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CHAPTER 1

Basic Concepts

1.0 Renewable, Nonrenewable, and Environmental Resources

Economics might be defined as the study of how society allocates scarce
resources. The field of resource economics would then be the study of
how society allocates scarce natural resources such as stocks of fish,
stands of trees, fresh water, oil, and other naturally occurring resources.
A distinction is sometimes made between resource and environmental
economics, where the latter field is concerned with the way wastes are
disposed of and the resulting quality of air, water, and soil serving as
waste receptors. In addition, environmental economics is concerned with
the conservation of natural environments and biodiversity.

Natural resources are often categorized as being renewable or nonre-
newable. A renewable resource must display a significant rate of growth
or renewal on a relevant economic time scale. An economic time scale
is a time interval for which planning and management are meaningful.
The notion of an economic time scale can make the classification of
natural resources a bit tricky. For example, how should we classify a stand
of old-growth coast redwood or an aquifer with an insignificant rate of
recharge? Whereas the redwood tree is a plant, and can be grown com-
mercially, old-growth redwoods may be 800 to 1,000 years old, and their
remaining stands might be more appropriately viewed as a nonrenew-
able resource. Whereas the water cycle provides precipitation that will
replenish lakes and streams, the water contained in an aquifer with little
or no recharge might be more economically similar to a pool of oil (a
nonrenewable resource) than to a lake or reservoir that receives signif-
icant recharge from rain or melting snow.

A critical question in the allocation of natural resources is “How much
of the resource should be harvested (extracted) today?” Finding the
“best” allocation of natural resources over time can be regarded as a
dynamic optimization problem. In such problems it is common to try to
maximize some measure of net economic value, over some future
horizon, subject to the dynamics of the harvested resource and any other
relevant constraints. The solution to the dynamic optimization of a
natural resource would be a schedule or “time path” indicating the

1



2 1 Basic Concepts

optimal amount to be harvested (extracted) in each period. The optimal
rate of harvest or extraction in a particular period may be zero. For
example, if a fish stock has been historically mismanaged, and the current
stock is below what is deemed optimal, then zero harvest (a moratorium
on fishing) may be best until the stock recovers to a size at which a pos-
itive level of harvest is optimal.

Aspects of natural resource allocation are depicted in Figure 1.1. On
the right-hand side (RHS) of this figure we depict an ocean containing
a stock of fish. The fish stock at the beginning of period t is denoted by
the variable Xt, measured in metric tons. In each period the level of net
growth depends on the size of the fish stock and is given by the function
F(Xt). We will postpone a detailed discussion of the properties of F(Xt)
until Chapter 3. For now, simply assume that if the fish stock is bounded
by some “environmental carrying capacity,” denoted K, so that K ≥ Xt ≥
0, then F(Xt) might be increasing as Xt goes from a low level to where
F(Xt) reaches a maximum sustainable yield (MSY) at XMSY, and then
F(Xt) declines as Xt goes from XMSY to K. Let Yt denote the rate of
harvest, also measured in metric tons, and assume that net growth occurs
before harvest. Then, the change in the fish stock, going from period t
to period t + 1, is the difference Xt+1 - Xt and is given by the difference
equation

(1.1)

Note, if harvest exceeds net growth [Yt > F(Xt)], the fish stock declines
(Xt+1 - Xt < 0), and if harvest is less than net growth [Yt < F(Xt)], the fish
stock increases (Xt+1 - Xt > 0).

During period t, harvest, Yt, flows to the economy, where it yields a net
benefit to various firms and individuals. The stock left in the ocean forms
the inventory at the beginning of the next period: i.e., Xt+1. This future
stock also conveys a benefit to the economy, because it provides the basis
for future growth, and it is often the case that larger stocks will lower
the cost of future harvest. Thus, implicit in the harvest decision is a bal-
ancing of current net benefit from Yt and future benefit that a slightly
larger Xt+1 would provide the economy.

On the left-hand side (LHS) of Figure 1.1 we show an equation
describing the dynamics of a nonrenewable resource. The stock of
extractable ore in period t is denoted by Rt and the current rate of extrac-
tion by qt. With no growth or renewal the stock in period t + 1 is simply
the stock in period t less the amount extracted in period t, so Rt+1 = Rt -
qt. The amount extracted also flows into the economy, where it generates
net benefits, but in contrast to harvest from the fish stock, consumption
of the nonrenewable resource generates a residual waste, aqt, propor-

X X F X Yt t t t+ - = ( ) -1



Figure 1.1. Renewable, Nonrenewable, and Environmental Resources



4 1 Basic Concepts

tional to the rate of extraction (1 > a > 0). For example, if Rt were a
deposit of coal (measured in metric tons) and qt were the number of tons
extracted and burned in period t, then aqt might be the tons of CO2 or
SO2 emerging from the smokestacks of utilities or foundries.

This residual waste can accumulate as a stock pollutant, denoted Zt. If
the rate at which the pollutant is generated, aqt, exceeds the rate at which
it is assimilated (or decomposed), -gZt, the stock pollutant will increase,
(Zt+1 - Zt > 0), whereas if the rate of generation is less than assimilation,
then the stock will decrease. The parameter g is called the assimilation
or degradation coefficient, where 1 > g > 0. Not shown in Figure 1.1 are
the consequences of different levels of Zt. Presumably there would be
some social or external cost imposed on the economy (society). This is
sometimes represented through a damage function, D(Zt). Damage func-
tions will be discussed in greater detail in Chapter 6.

If the economy is represented by the box in Figure 1.1, then the natural
environment, surrounding the economy, can be thought of as providing
a flow of renewable and nonrenewable resources, and also various media
for the disposal of unwanted (negatively valued) wastes. Missing from
Figure 1.1, however, is one additional service, usually referred to as
amenity value. A wilderness, a pristine stretch of beach, or a lake with
“swimmable” water quality provides individuals in the economy with
places for observation of flora and fauna, relaxation, and recreation that
are fundamentally different from comparable services provided at a 
city zoo, an exclusive beach hotel, or a backyard swimming pool. The
amenity value provided by various natural environments may critically
depend on the location and rate of resource extraction and waste dis-
posal. Thus, the optimal rates of harvest, extraction, and disposal should
take into account any reduction in amenity values. In general, current
net benefit from, say, Yt or qt, must be balanced with the discounted
future costs from reduced resource stocks, Xt+1 and Rt+1, and any reduc-
tion in amenity values caused by harvest, extraction, or disposal of asso-
ciated wastes.

1.1 Discounting

When attempting to determine the optimal allocation of natural
resources over time one immediately confronts the issue of “time pref-
erence.” Most individuals exhibit a preference for receiving benefits now,
as opposed to receiving the same level of benefits at a later date. Such
individuals are said to have a positive time preference. In order to induce
these individuals to save (thus providing funds for investment), an inter-
est payment or premium, over and above the amount borrowed, must be



1.1 Discounting 5

offered. A society composed of individuals with positive time prefer-
ences will typically develop “markets for loanable funds” (capital
markets) where the interest rates which emerge are like prices and
reflect, in part, society’s underlying time preference.

An individual with a positive time preference will discount the value
of a note or contract which promises to pay a fixed amount of money at
some future date. For example, a bond which promises to pay $10,000 10
years from now is not worth $10,000 today in a society of individuals with
positive time preferences. Suppose you own such a bond.What could you
get for it if you wished to sell it today? The answer will depend on the
credit rating (trustworthiness) of the government or corporation promis-
ing to make the payment, the expectation of inflation, and the taxes that
would be paid on the interest income. Suppose the payment will be made
with certainty, there is no expectation of inflation, and there is no tax on
earned interest. Then, the bond payment would be discounted by a rate
that would approximate society’s “pure” rate of time preference. We will
denote this rate by the symbol d, and simply refer to it as the discount
rate. The risk of default (nonpayment), the expectation of inflation, or
the presence of taxes on earned interest would raise private market rates
of interest above the discount rate. (Why?)

If the discount rate were 3%, so d = 0.03, then the “discount factor” is
defined as r = 1/(1 + d) = 1/(1 + 0.03) ª 0.97.The present value of a $10,000
payment made 10 years from now would be $10,000/(1 + d)10 = $10,000r10

ª $7,441. This should be the amount of money you would get for your
bond if you wished to sell it today. Note that the amount $7,441 is also
the amount you would need to invest at a rate of 3%, compounded annu-
ally, to have $10,000 10 years from now.

The present-value calculation for a single payment can be generalized
to a future stream of payments in a straightforward fashion. Let Nt

denote a payment made in year t. Suppose these payments are made over
the horizon t = 0, 1, 2, . . . , T, where t = 0 is the current year (period) and
t = T is the last year (or terminal period).The present value of this stream
of payments can be calculated by adding up the present value of each
individual payment. We can represent this calculation mathematically as

(1.2)

Suppose that N0 = 0 and Nt = A for t = 1, 2, . . . , •. In this case we have
a bond which promises to pay A dollars every year, from next year until
the end of time. Such a bond is called a perpetuity, and with 1 > r > 0,
when d > 0, equation (1.2) becomes an infinite geometric progression
which converges to N = A/d. This special result might be used to approx-

N Nt t
t

t T

=
=

=

Âr
0
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imate the value of certain long-lived projects or the decision to preserve
a natural environment for all future generations. For example, if a pro-
posed park were estimated to provide A = $10 million in annual net ben-
efits into the indefinite future, it would have a present value of $500
million at d = 0.02.

The preceding examples presume that time can be partitioned into dis-
crete periods (for example, years). In some resource allocation problems,
it is useful to treat time as a continuous variable, where the future
horizon becomes the interval T ≥ t ≥ 0. Recall the formula for compound
interest. It says that if A dollars is put in the bank at interest rate d, and
compounded m times over a horizon of length T, then the value at the
end of the horizon will be given by

(1.3)

where n = m/d. If interest is compounded continuously, both m and n
tend to infinity and [1 + 1/n]n tends to e, the base of the natural loga-
rithm. This implies V(T) = A edT. Note that A = V(T)e-dT becomes the
present value of a promise to pay V(T) at t = T (from the perspective of
t = 0). Thus, the continuous-time discount factor for a payment at instant
t is e-dt, and the present value of a continuous stream of payments N(t)
is calculated as

(1.4)

If N(t) = A (a constant) and if T Æ •, equation (1.4) can be integrated
directly to yield N = A/d, which is interpreted as the present value of an
asset which pays A dollars in each and every instant into the indefinite
future.

Our discussion of discounting and present value has focused on the
mathematics of making present-value calculations. The practice of dis-
counting has an important ethical dimension, particularly with regard to
the way resources are harvested over time, the evaluation of investments
or policies to protect the environment, and more generally the way the
current generation weights the welfare and options of future generations.

In financial markets the practice of discounting might be justified by
society’s positive time preference and by the economy’s need to allocate
scarce investment funds to firms which have expected returns that equal
or exceed the appropriate rate of discount. To ignore the time prefer-
ences of individuals and to replace competitive capital markets by the
decisions of some savings/investment czar would likely lead to ineffi-
ciencies, a reduction in the output and wealth generated by the economy,

N N t e dtt
T

= ( ) -Ú d

0

V T A m A m A n
mT m T n T

( ) = +( ) = +( )[ ] = +( )[ ]1 1 1 1d d d d d
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and the oppression of what many individuals regard as a fundamental
economic right. The commodity prices and interest rates which emerge
from competitive markets are highly efficient in allocating resources
toward those economic activities which are demanded by the individu-
als with purchasing power.

Although the efficiency of competitive markets in determining the
allocation of labor and capital is widely accepted, there remain questions
about discounting and the appropriate rate of discount when allocating
natural resources over time or investing in environmental quality. Basi-
cally the interest rates that emerge from capital markets reflect society’s
underlying rate of discount, the riskiness of a particular asset or portfo-
lio, and the prospect of general inflation. These factors, as already noted,
tend to raise market rates of interest above the discount rate.

Estimates of the discount rate in the United States have ranged
between 2% and 5%.This rate will vary across cultures at a point in time
and within a culture over time. A society’s discount rate would in theory
reflect its collective “sense of immediacy” and its general level of devel-
opment. A society where time is of the essence or where a large fraction
of the populace is on the brink of starvation would presumably have a
higher rate of discount.

As we will see in subsequent chapters, higher discount rates tend to
favor more rapid depletion of nonrenewable resources and lower stock
levels for renewable resources. High discount rates can make invest-
ments to improve or protect environmental quality unattractive when
compared to alternative investments in the private sector. High rates of
discount will greatly reduce the value of harvesting decisions or invest-
ments that have a preponderance of their benefits in the distant future.
Recall that a single payment of $10,000 in 10 years had a present value
of $7,441 at d = 0.03. If the discount rate increases to d = 0.10, its present
value drops to $3,855. If the payment of $10,000 would not be made until
100 years into the future, it would have a present value of only $520 at
d = 0.03 and the minuscule value of $0.72 (72 cents) if d = 0.10.

The exponential nature of discounting has the effect of weighting near-
term benefits much more heavily than benefits in the distant future. If 75
years were the life span of a single generation, and if that generation had
absolute discretion over resource use and a discount rate of d = 0.10, then
the weight attached to the welfare of the next generation would be sim-
ilarly minuscule. Such a situation could lead the current generation to
throw one long, extravagant, resource-depleting party that left subse-
quent generations with an impoverished inventory of natural resources,
a polluted environment, and very few options to change their economic
destiny.
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There are some who would view the current mélange of resource 
and environmental problems as being precisely the result of tyrannical
and selfish decisions by recent generations. Such a characterization
would not be fair or accurate. Although many renewable resources 
have been mismanaged (such as marine fisheries and tropical rain
forest), and various nonrenewable resources may have been depleted 
too rapidly (oil reserves in the United States), the process, though nonop-
timal, has generated both physical and human capital in the form of
buildings, a housing stock, highways and public infrastructure, modern
agriculture, and the advancement of science and technology. These 
also benefit and have expanded the choices open to future generations.
Further, any single generation is usually closely “linked” to the two 
generations which preceded it and the two generations which will 
follow. The current generation has historically made sacrifices in their
immediate well-being to provide for parents, children, and grandchil-
dren. Although intergenerational altruism may not be obvious in the
functioning of financial markets, it is more obvious in the way we 
have collectively tried to regulate the use of natural resources and the
quality of the environment. Our policies have not always been effective,
but their motivation seems to derive from a sincere concern for future
generations.

Determining the “best” endowment of human and natural capital to
leave future generations is made difficult because we do not know what
they will need or want. Some recommend that if we err, we should err
on the side of leaving more natural resources and undisturbed natural
environments. By saving them now we derive certain amenity benefits
and preserve the options to harvest or develop in the future.

The process of discounting, to the extent that it reflects a stable time
preference across a succession of generations is probably appropriate
when managing natural resources and environmental quality for the
maximum benefit of an ongoing society. Improving the well-being of the
current generation is a part of an ongoing process seeking to improve
the human condition. And when measured in terms of infant mortality,
caloric intake, and life expectancy, successive generations have been
made better off.

Nothing in the preceeding discussion helps us in determining the
precise rate of discount which should be used for a particular natural
resource or environmental project. In the analysis in future chapters 
we will explore the sensitivity of harvest and extraction rates, forest 
rotations, and rates of waste disposal to different rates of discount.
This will enable us to get a numerical feel for the significance of 
discounting.
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1.2 A Discrete-Time Extension of the Method of 
Lagrange Multipliers

In subsequent chapters we will encounter many problems where we wish
to maximize some measure of economic value subject to resource
dynamics. Such problems can often be viewed as special cases of a more
general dynamic optimization problem. The method of Lagrange multi-
pliers is a technique for solving constrained optimization problems. It is
regularly used to solve static allocation problems, but it can be extended
to solve dynamic problems as well. We will work through the mathe-
matics of a general problem in this section. In Chapter 2 we will show
how numerical problems can be posed and solved using Excel’s Solver.
Chapters 3–8 will examine how these problems arise when seeking to
maximize the net value from renewable and nonrenewable resources, the
control of stock pollutants, risky investment, and the selection of activi-
ties which might promote sustainable development.

Let Xt denote a physical measure of the size or amount of some
resource in period t. In a fishery Xt might represent the number of metric
tons of some (commercially valued) species. In a forest it may represent
the volume of standing (merchantable) timber.

Let Yt denote the level of harvest, measured in the same units as Xt.
For renewable resources we will frequently assume that resource dynam-
ics can be represented by the first-order difference equation (1.1). In that
equation Xt+1 - Xt = F(Xt) - Yt, where F(Xt) was the net growth function
for the resource. It assumed that the net growth from period t to period
t + 1 was a function of resource abundance in period t. We will assume
that the net growth function has continuous first- and second-order
derivatives. The current resource stock is represented by the initial con-
dition, X0, denoting the stock at t = 0.

The net benefits from resource abundance and harvest in period t are
denoted by pt and given by the function pt = p(Xt,Yt), which is also
assumed to have continuous first- and second-order derivatives. Higher
levels of harvest of the resource stock will normally yield higher net ben-
efits. The resource stock, Xt, may enter the net benefit function because
a larger stock conveys cost savings during search and harvest, or because
an intrinsic value is placed on the resource itself.

It is common practice to compare different harvest strategies, say Y1,t to
Y2,t, by computing the present value of the net benefits that they produce.
Note from equation (1.1) that different harvest strategies will result in dif-
ferent time-paths for the resource stock, Xt. Suppose Y1,t results in X1,t and
Y2,t results in X2,t, and we wish to calculate present value over the horizon
t = 0, 1, 2, . . . , T. As in the previous section we will denote the discount
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factor by r = 1/(1 + d), where d is called the periodic rate of discount. In
this problem we will assume a constant, time-invariant rate of discount,
which implies that the discount factor is also time-invariant. It is not diffi-
cult to allow for changes in the discount rate over time. You would,
however, need to be able to predict the future values for this rate.

The present value comparison for the preceding two harvest strategies
would require a comparison of

In the first summation we are calculating the present value of the harvest
schedule Y1,t and the resulting biomass levels, X1,t. We would want to
know if this summation is greater than, less than, or equal to the present
value calculation for the second harvest schedule, Y2,t, which results in
X2,t.

Frequently we will seek the “best” harvest policy: that is, a harvest
strategy that maximizes the present value of net benefits. Candidate
harvest strategies must also satisfy equation (1.1) describing resource
dynamics. Mathematically we wish to find the harvest schedule, Yt, which
will

Thus, the objective is to maximize p, the present value of net benefits,
subject to the equation describing resource dynamics and the initial con-
dition, X0.

There are likely to be an infinite number of feasible harvest strategies.
How can we find the optimal Yt? Will it be unique? If T Æ •, will it ever
be the case, after some transition period, that the level of harvest and
the resource stock are unchanging through time and the system attains
a “steady state”? These are difficult but important questions. Let’s take
them one at a time.

Recall from calculus that when seeking the extremum (maximum,
minimum, or inflection point) of a single variable function, a necessary
condition requires that the first derivative of the function, when evalu-
ated at a candidate extremum, be equal to zero. Our optimization
problem is more complex because we have to determine the T + 1 values
for Yt which maximize p, and we have constraints in the form of our first-
order difference equation and the initial condition X0. We can, however,
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follow a similar procedure after forming the appropriate Lagrangian
expression for our problem.This is done by introducing a set of new vari-
ables, denoted lt, called Lagrange multipliers. In general, every vari-
able defined by a difference equation will have an associated Lagrange
multiplier. This means that Xt will be associated with lt, Xt+1 will be 
associated with lt+1, and so on. It will turn out that the new variables, lt,
will have an important economic interpretation. They are also called
“shadow prices” because their value indicates the marginal value of an
incremental increase in Xt in period t.

We form the Lagrangian expression by writing the difference equa-
tion in implicit form, Xt + F(Xt) - Yt - Xt+1 = 0, premultiplying it by rt+1

lt+1, and then adding all such products to the objective function. The
Lagrangian expression for our problem takes the form

(1.5)

The rationale behind writing the Lagrangian this way is as follows: Since
the Lagrange multipliers are interpreted as shadow prices which measure
the value of an additional unit of the resource, we can think of the dif-
ference equation, written implicitly, as defining the level of Xt+1 that will
be available in period t + 1. The value of an additional (marginal) unit
of Xt+1 in period t + 1 is lt+1. This value is discounted one period, by r, to
put it on the same present-value basis as the net benefits in period t.Thus,
the expression in the curly brackets, {•}, is the sum of net benefits in
period t and the discounted value of the resource stock (biomass) in
period t + 1. This sum is then discounted back to the present by rt and
similar expressions are summed over all periods.

After forming the Lagrangian expression we proceed to take a series
of first-order partial derivatives and set them equal to zero. Collectively
they define the first-order necessary conditions, analogous to the first-
order condition for a single-variable function. They will be used in
solving for the optimal levels of Yt, Xt, and lt in transition and, if T Æ •,
at a steady state, if one exists. For our problem the necessary conditions
require

(1.6)

(1.7)

(1.8)
∂
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The partial of the Lagrangian with respect to Xt may seem a bit puzzling.
When we examine the Lagrangian and the representative term in period
t, we observe Xt as an argument of the net benefit function p(Xt,Yt), by
itself, and as the sole argument in the net growth function, F(Xt). These
partials appear in the brackets {•} in equation (1.7). Where did the last
term, -rtlt, come from? If we think of the Lagrangian as a long sum of
expressions, and if we wish to take the partial with respect to Xt, we need
to find all the terms involving Xt. When we back up one period, from t
to t - 1, most of the terms are subscripted t - 1, with the notable excep-
tion of the last term, which becomes -rtltXt, with partial derivative -rtlt.

In addition to equations (1.6)–(1.8), which hold for t = 0, 1, . . . ,T, there
are two boundary conditions. The first is simply the initial condition that
X0 is known and given. To make things more concrete, suppose X0 = A,
where A is a known, positive constant. The second boundary condition
for this problem is a condition on lT+1. Recall that the Lagrange multi-
pliers were to be interpreted as shadow prices. Thus, lT+1 would be the
marginal value of one more unit of XT+1. Let’s suppose we are free to
choose lT+1 as some nonnegative number B, so that lT+1 = B ≥ 0. Then,
along with X0 = A and lT+1 = B, equations (1.6)–(1.8) can be thought of
as a system of (3T + 5) equations in (3T + 5) unknowns. The unknowns
are the optimal values for Yt, t = 0, 1, . . . , T, Xt, t = 0, 1, . . . , T + 1, and
lt, t = 0, 1, . . . , T + 1.

Equations (1.6)–(1.8) are likely to be nonlinear; this means there could
be more than one solution. It is also possible that there could be no solu-
tion in the sense that there is no set of values Yt, Xt, lt which simultane-
ously solve (1.6)–(1.8) and the boundary conditions. It is possible to
impose some curvature assumptions on p(•) and F(•) which will guar-
antee a unique solution for A > 0 and B ≥ 0. The details of these condi-
tions are a bit technical and need not concern us here. Of concern is the
economic interpretation of equations (1.6)–(1.8).

We can simplify and rewrite the first-order conditions to facilitate their
interpretation.

(1.9)

(1.10)

(1.11)

The LHS of equation (1.9) is the marginal net benefit of an additional
unit of the resource harvested in period t. For a harvest strategy to be
optimal this marginal net benefit must equal the opportunity cost, also
called user cost. User cost is represented by the term rlt+1, equal to the
discounted value of an additional unit of the resource in period t + 1.

X X F X Yt t t t+ = + ( ) -1

l ∂p ∂ rlt t tX F= ( ) + + ¢( )[ ]+• •1 1

∂p ∂ rl•( ) = +Yt t 1
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Thus equation (1.9) requires that we account for two types of costs, the
standard marginal cost of harvest in the current period (which has
already been accounted for in ∂p(•)/∂Yt) and the future cost that results
from the decision to harvest an additional unit of the resource today,
which is rlt+1. In some problems we may see this condition written p =
∂C(•)/∂Yt + rlt+1, implying that price today should equal marginal cost
(∂C(•)/∂Yt) plus user cost, rlt+1,

On the LHS of equation (1.10) we have lt, the value of an additional
unit of the resource, in situ, in period t. When a resource is optimally
managed, the marginal value of an additional unit of the resource in
period t equals the current period marginal net benefit, ∂p(•)/∂Xt, plus
the marginal benefit that an unharvested unit will convey in the next
period, rlt+1[1 + F¢(•)]. Note that this last term is the discounted value
of the marginal unit itself plus its marginal growth.

Equation (1.11) is simply a rewrite of equation (1.1), but now obtained
from the partial of the Lagrangian with respect to rlt+1.This should occur
in general: that is, the partial of the Lagrangian with respect to a dis-
counted multiplier should yield the difference equation for the associ-
ated state variable, in this case the resource stock.

What if T Æ •? In this case we have an infinite-horizon problem.
Equations (1.6)–(1.8) become an infinitely large system of equations in
an infinite number of unknowns, a potentially daunting problem. Under
certain conditions such problems will have a transitional period, say for
t ≥ t ≥ 0, where Yt, Xt, and lt are changing, followed by a period • > t >
t, where Yt, Xt, and lt are unchanging. In this infinitely long latter period
the variables or “system” is said to have reached a steady state because
Xt+1 = Xt = X*, Yt+1 = Yt = Y* , and lt+1 = lt = l*. The triple [X*,Y*, l*] is
called a steady-state optimum.

It is often possible to solve for the steady-state optimum by evaluat-
ing the first-order necessary conditions when Xt, Yt, and lt are unchang-
ing. In steady state we can dispense with all the time subscripts in
equations (1.6)–(1.8), which simply become three equations in three
unknowns, X*, Y*, and l*, and may be written as

(1.12)

(1.13)

(1.14)

Equation (1.13) requires a little bit of algebra and use of the definition
r = 1/(1 + d). It can be further manipulated to yield

(1.15)- - ¢( )[ ] = - ( )rl d ∂p ∂F X X•

Y F X= ( )
rl d ∂p ∂1 1+ ¢( ) - +( )[ ] = - ( )F X X•

rl ∂p ∂= ( )• Y
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Multiplying both sides by -1, substituting (1.12) into (1.15), and isolat-
ing d on the RHS yields

(1.16)

Equation (1.16) has been called the “fundamental equation of renew-
able resources.” Along with equation (1.14) it will define the optimal
steady-state values for X and Y.

Equation (1.16) has an interesting economic interpretation. On the
LHS, the term F ¢(X) my be interpreted as the marginal net growth rate.
The second term, called the “marginal stock effect,” measures the mar-
ginal value of the stock relative to the marginal value of harvest.The two
terms on the LHS sum to what might be interpreted as the resource’s
internal rate of return. Equation (1.16) thus requires that the optimal
steady-state values of X and Y cause the resource’s internal rate of return
to equal the rate of discount, d, which presumably equals the rate of
return on investments elsewhere in the economy. From this capital-the-
oretic point of view, the renewable resource is viewed as an asset, which
under optimal management will yield a rate of return comparable to that
of other capital assets. Are all renewable resources capable of yielding
an internal rate of return equal to the rate of discount? We will revisit
this question in Chapter 3.

Equation (1.14) results when equation (1.1) is evaluated at steady
state. It has an obvious and compelling logic. At the bioeconomic
optimum, and in fact at any sustainable equilibrium, harvest must equal
net growth. If this were not the case, if net growth exceeded harvest or
if harvest exceeded net growth, the resource stock would be changing
and we could not, by definition, be at a steady-state equilibrium. Thus 
Y = F(X) at any sustainable equilibrium, including the bioeconomic
optimum.

Equation (1.16), by the implicit function theorem, will imply a 
curve in X - Y space. Under a plausible set of curvature assumptions 
for F(X) and p(X,Y), the slope of this curve will be positive. Its exact
shape and placement in X - Y space will depend on all the bioeconomic
parameters in the functions F(X ) and p(X,Y ), and on the discount rate
d.

Several possible curves (for different underlying parameters) are
labeled f1, f2, and f3 in Figure 1.2. The net growth function is assumed
to take a logistic form where Y = F(X ) = rX(1 - X/K). The intersection
of F(X ) and a particular f(X ) would represent the solution of equations

¢( ) +
( )
( ) =F X

X
Y

∂p ∂
∂p ∂

d
•
•
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(1.14) and (1.16) and therefore depict the steady-state bioeconomic
optimum.

Figure 1.2 shows four equilibria: three bioeconomic optima and
maximum sustainable yield (MSY). The bioeconomic optimum at the
intersection of f1 and F(X) would imply that extinction is optimal! Such
an equilibrium might result if a slow-growing resource were confronted
by a high rate of discount and if harvesting costs for the last members of
the species were less than their market price.

The intersection of F(X) and f2 implies an optimal resource stock of
X*

2, positive, but less than K/2, which supports MSY = rK/4. This would

Figure 1.2. Maximum Sustainable Yield (MSY) and Three Bioeco-
nomic Optima
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be the case if the marginal stock effect is less than the discount 
rate. (Look at equation [1.16] and see if you can figure out why this is
true.)

The curve f3 implies a large marginal stock effect, greater in magni-
tude than the discount rate, d. This would occur if smaller fishable stocks
significantly increased cost. In such a case it is optimal to maintain a large
stock at the bioeconomic optimum, even greater than the maximum sus-
tainable yield stock, K/2. The conclusion to be drawn from Figure 1.2 is
that the optimal stock, from a bioeconomic perspective, may be less than
or greater than the stock level supporting maximum sustainable yield.
Its precise location will depend on the forms for p(X,Y) and F(X) and
the relevant bioeconomic parameters.

In our discussion of the infinite-horizon problem we mentioned 
that for certain problems the dynamics of the system has two stages, a
transitional stage, where the variables are changing, and a steady 
state, where the variables are unchanging. Equations (1.14) and (1.16),
when plotted in X - Y space, would define the steady-state values X*
and Y*. A possible transition (approach) to X* from X0 < X* is shown
in Figure 1.3. This might be the approach and steady state in a single-
species fishery where open access or mismanagement allowed the stock
to be overfished to a suboptimal level. By restricting harvest to a level
less than net growth [Yt < F(Xt)], the fish stock would grow, reaching X*
at t = t.

Although the general problem has the virtue of providing some broad
and important insights into resource management from an economic per-
spective, its presentation has been tedious and abstract. In the next
chapter we will solve some numerical problems using Excel’s Solver.
These numerical problems, and the problems found elsewhere in this
book, will, it is hoped, make the basic concepts and the economic
approach introduced in this chapter more operational, and thus more
meaningful.

1.3 Questions and Exercises

Q1.1 What is the central subject in the field of resource economics?

Q1.2 What is the economic distinction between renewable and nonre-
newable resources?

Q1.3 What is meant by the term user cost? If user cost increases, what
happens to the level of harvest or extraction today?

E1.1 Suppose the dynamics of a fish stock are given by the difference
equation (written in “iterative” form) Xt+1 = Xt + rXt(1 - Xt/K) - Yt, where
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X0 = 0.1, r = 0.5, and K = 1. Management authorities regard the stock as
being dangerously depleted and have imposed a 10-year moratorium on
harvesting (Yt = 0 for t = 0, 1, 2, . . . , 9). What happens to Xt during the
moratorium? Plot the time path for Xt (t = 0, 1, 2, . . . , 9) in t - X space.
(Hint: Set up an Excel Spreadsheet.)

E1.2 After the moratorium the management authorities are planning 
to allow fishing for 10 years at a harvest rate of Yt = 0.125 (for t =
10, 11, . . . , 19). Suppose the net benefit from harvest is given by pt =
pYt - cYt/Xt, where p = 2, c = 0.5, and d = 0.05. What is the present value
of net benefits of the 10-year moratorium followed by 10 years of fishing
at Yt = 0.125? (Hint: Modify the Excel Spreadsheet of E1.1.)

Figure 1.3. An Approach to the Steady-State Optimum X*
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E1.3 In steady state the fishery will yield Y = F(X) = rX(1 - X/K) and
an annual net benefit of p(X,Y) = (p - c/X)Y.Take the derivatives F ’(X),
∂p(•)/∂X, and ∂p(•)/∂Y, substitute them and Y = rX(1 - X/K) into equa-
tion (1.16), and simplify the LHS. We will make use of the result in
Chapter 3.
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