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Chapter 1

Introduction to Nonlinear Systems

1.1 Analysis of nonlinear systems

An nth-order system of continuous differential equations has the following form:

ẋ1(t) = f1(x1(t), x2(t), · · ·, xn(t)),

ẋ2(t) = f1(x1(t), x2(t), · · ·, xn(t)),

· · · · · · · · · · · · · · · · · (1.1.1)

· · · · · · · · · · · · · · · · ·
ẋn(t) = fn(x1(t), x2(t), · · ·, xn(t)),

which can be expressed in matrix form as

Ẋ(t) = f(X(t), t), (1.1.2)

where X = [x1, x2, ..., xn]T and f = [f1, f2, ..., fn]T . T - meaning transpose.

In general, one does not seek detailed solutions either in numerical or analytical form,
but rather one seeks to characterize some aspects of system behaviour. For example
one might ask whether there are equilibrium points and whether they are stable. In
nonlinear systems, one might look, in addition to equilibrium points, for threshold
effects. The approach therefore, includes characterizing in broad terms the critical
aspects of the system behaviour.

1.2 Main tools for analysis of nonlinear systems

1.2.1 Equilibrium points

Definition 1.2.1 A vector X̄ is an equilibrium point for a dynamical system if once
the state vector is equal to X̄ it remains equal to X̄ for all future time.

1
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Example 1.2.2 If

Ẋ(t) = f(X(t), t)

then an equilibrium point is a state X̄ satisfying

f(X̄, t) = 0

for all time t.

An analysis of a nonlinear dynamical system may devote considerable attention to the
characterization of the equilibrium points. In the linear systems equilibrium points
are basically solutions to linear equations.

The nonlinear case is different in two essential respects:

1. First, since the equilibrium points are solutions, in this case, to nonlinear equa-
tions, finding such solutions is somewhat more of an accomplishment than in
the linear case.

2. The equilibrium point distribution is potentially more complex in the nonlinear
case than in the linear case.

Note: A system may have none, one or any number of equilibrium points in virtually
a spatial pattern in state space.

Thus characterization of equilibrium points is not only technically more difficult, it
is a much broader question. Ultimately, interest centers not just on the existence of
the equilibrium points but also on their stability properties.

1.2.2 Stability

Stability properties characterize how a system behaves if its state is initiated close
to, but not precisely at a given equilibrium point.

1. If a system is initiated with the state exactly equal to an equilibrium point,
then by definition it will never move.

2. When initiated close by, however, the state may remain close by, or it may move
away.

Roughly speaking, an equilibrium point is stable whenever the system state is ini-
tiated near that point, the state remains near it, perhaps even tending towards the
equilibrium point as time increases.
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Suppose X̄ is an equilibrium point of a time-invariant system i.e. X̄ is an equilibrium
point of

Ẋ(t) = f(X(t)).

For a precise definition of stability, it is convenient to introduce the notation S(X̄, R)
to denote a spherical region in the state space with center at X̄ and radius R.

Definition 1.2.3 An equilibrium point X̄ is stable if there exists R0 > 0 for which
the following is true. For every R < R0, there exists r, 0 < r < R, such that if X(0)
is inside S(X̄, r), then X(t) is inside S(X̄, R) for all t > 0.

Definition 1.2.4 An equilibrium point X̄ is asymptotically stable if whenever it is
stable and in addition there exists R̄0 > 0 such that whenever the state is initiated
inside S(X̄, R̄0), it tends to X̄ as time increases.

Definition 1.2.5 An equilibrium point X̄ is marginally stable if it is stable but not
asymptotically stable.

Definition 1.2.6 An equilibrium point X̄ is unstable if it is not stable. Equivalently,
X̄ is unstable if for some R > 0 and any r > 0 there is a point in the spherical region
S(X̄, r) such that if initiated there, the system state will eventually move outside of
S(X̄, R).

Below we give examples on stability and classification of equilibrium points.

Example 1.2.7 Consider the system

ẋ(t) = x(t)

ẏ(t) = −ky(t)

There is only one fixed point (0, 0). The solution is

x(t) = x0e
−t, y(t) = y0e

−kt

If x0 6= 0, we can express y as a function of x as shown below:

x(t) = x0e
−t, y = bxk, (1.2.3)

where b =
y0

xk
0

. We can consider some special cases of (1.2.3).

Case 1:

x(t) = x0e
−t, y(t) = bx
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Figure 1.1: Phase Portraits for k = 1.

y = bx is a family of straight lines with the slope b. As t →∞, x(t) → 0. Thus (0, 0)
is an asymptotically stable proper node.

Case 2:

Consider the case k = 2. This gives

x(t) = x0e
−t, y(t) = bx2

y = bx2 is a family of parabolas. As t →∞, x(t) → 0. Thus (0, 0) is an asymptotically
stable improper node.
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Figure 1.2: Phase Portraits for k = 2.
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Case 3:

For the case k = −1 equation (1.2.3) reduces to

x(t) = x0e
−t, y(t) = y0e

t or xy = C,

x(t) decreases with increasing time t but y increases with increasing t. This yields a
saddle node (unstable) at (0, 0).
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Figure 1.3: Phase Portraits for k = −1

One can obtain more phase portraits for the values of k but those are of no interest
to us.

Example 1.2.8 Consider the system

ẋ(t) = y(t),

ẏ(t) = −ω2x(t).

This system has one equilibrium point. However, we proceed by combining the two
equations. This gives

ẍ(t) = −ω2x(t). (1.2.4)

The solution is

x(t) = C cos(ωt− α),

y(t) = −ωC sin(ωt− α).
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This solution yields

x2

C2
+

y2

ω2C2
= 1,

which is a family of ellipses with period 2π
ω

.
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Figure 1.4: Phase Portraits for simple harmonic motion.

The equilibrium point (0, 0) is stable but not asymptotically stable. The equation
(1.2.4) represents simple harmonic motion in physics. The motion is not subjected
to damping.

Example 1.2.9 For the motion with damping, consider the following example.

ẋ(t) = y(t),

ẏ(t) = −2x(t)− 2y.(t)

This system has one equilibrium point at (0, 0). It is important to combine these
equations giving

ẍ(t) + 2ẋ + 2x = 0

The solution is

x(t) = Ce−t cos(t− α),

y(t) = −C
√

2e−t sin(t− α +
π

4
).

The amplitude is now time dependent and decreases as t →∞.
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Figure 1.5: Phase portraits for damped harmonic motion.

The point (0, 0) is a stable spiral.

1.3 Linearization and Stability

According to the basic definitions, stability properties depend only on the nature
of the system near the equilibrium point. Therefore, to conduct an analysis of the
stability, it is often theoretically legitimate and mathematically convenient to replace
the full nonlinear description by a simpler description that approximates the true
system near the equilibrium point. Often a linear approximation is sufficient to reveal
the stability properties.

The linearization of a nonlinear system is based on linearization of the nonlinear
function f in its description. For the first-order system, defined by a single function
f(x) of a single variable, the procedure is to approximate f near x̄ by

f(x̄ + y) = f(x̄) +
df(x̄)

dx
y. (1.3.5)

An n-order system is defined by n functions, each of which depends on the n variables.
In this case each function is approximated by the relation

fi(x̄1 + y1, x̄2 + y2, · · ·, x̄n + yn) ≈ fi(x̄1, x̄2, · · ·, x̄n) +
∂fi(x̄1, x̄2, · · ·, x̄n)

∂x1

y1 +

∂fi(x̄1, x̄2, · · ·, x̄n)

∂x2

y2 +
∂fi(x̄1, x̄2, · · ·, x̄n)

∂x3

y3 +
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· · · · · · · · · · · · · · · ·+∂fi(x̄1, x̄2, · · ·, x̄n)

∂xn

yn

where i = 1, 2, · · ·n. In matrix form, this can be written as

f(x̄ + y) ≈ f(x̄) + Fy, (1.3.6)

where

F =




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn




.

The matrix F is called the Jacobian matrix of f . Now consider the matrix equation

ẋ = f(x(t)). (1.3.7)

Setting x(t) = x̄ + y(t), we obtain

ẏ = f(x̄ + y(t)) = f(x̄) + Fy(t). (1.3.8)

Since x̄ is an equilibrium point of f , f(x̄) = 0. Therefore

ẏ(t) = Fy(t). (1.3.9)

Thus, the stability properties of the original system can be inferred from the linearized
system using the following results.

1. If all eigenvalues of F are strictly in the left half-plane, then x̄ is asymptotically
stable for the nonlinear system.

2. If at least one eigenvalue of F has a positive real part, then x̄ is unstable for
the nonlinear system.

3. If the eigenvalues of F are all in the left half-plane, but at least one has a zero
real part then x̄ may be either stable, asymptotically stable or unstable for the
nonlinear system.

1.3.1 Examples on Linearization and Classification of equi-
librium points

Example 1.3.1 Consider the system

ẋ1 = k1(1− x2)x1,

ẋ2 = −k2(1− x1)x2, x1, x2 ≥ 0, k1, k2 > 0.
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This system has two equilibrium points (0, 0) and (1, 1). We can linearize the system
about (0, 0) giving

ẋ1 = k1x1,

ẋ2 = −k2x2,

or
(

ẋ1

ẋ2

)
=

(
k1 0
0 −k2

) (
x1

x2

)
.

The eigenvalues are λ1 = k1 > 0 and λ2 = −k2 < 0. Therefore, (0, 0) is a saddle
point.

Consider the equilibrium point (1, 1). We define new local variables so that the point
(1, 1) is the origin of the new coordinate system. Let

y1 = x1 − 1 and y2 = x2 − 1.

The system becomes

ẏ1 = k1y2(y1 + 1),

ẏ2 = −k2y1(y2 + 1).

The associated linear system is
(

ẏ1

ẏ2

)
=

(
0 k1

−k2 0

) (
y1

y2

)
.

The eigenvalues are λ1 = i
√

k1k2 and λ2 = −i
√

k1k2. Therefore, (1, 1) is either a
center or a focus.
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Figure 1.6: Phase portraits for predator-prey systems.
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The equilibrium point (1, 1) is stable but not asymptotically stable.

Example 1.3.2 Consider the system

ẋ1 = k1(1− εx1 − x2)x1, 0 < ε << 1 (1.3.10)

ẋ2 = −k2(1− x1)x2. (1.3.11)

The system has three equilibrium points (0, 0), (1, 1− ε) and (1
ε
, 0).

Consider the equilibrium point (0, 0). We can linearize the given system giving

ẋ1 = k1x1,

ẋ2 = −k2x2.

or
(

ẋ1

ẋ2

)
=

(
k1 0
0 −k2

) (
x1

x2

)
.

This is exactly the same as in example 1.3.1. The extra term −εk1x
2
1 does not change

the nature of the equilibrium point (0, 0). Thus, (0, 0) remains a saddle point.

Near the fixed point (1
ε
, 0):

Let

y1 = x1 − 1

ε
and y2 = x2.

Then, substituting in the given system, we obtain

ẏ1 = −k1(y1 +
1

ε
)(εy1 + y2),

ẏ2 = −k2y2(1− y1 − 1

ε
).

The associated linear system is

(
ẏ1

ẏ2

)
=

(−k1 −k1

ε

0 k2(
1
ε
− 1)

) (
y1

y2

)
.

The eigenvalue equation is
∣∣∣∣
−k1 − λ −k1

ε

0 k2(
1
ε
− 1)− λ

∣∣∣∣ = 0.

with solutions

λ1 = −k1 < 0 and λ2 = k2(
1

ε
− 1) > 0.
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Therefore, the equilibrium point (1
ε
, 0) is another saddle point.

Near the fixed point (1, 1− ε): (which was a center when ε = 0)

Let

y1 = x1 − 1 and y2 = x2 − 1 + ε.

Then,

ẏ1 = −k1(y1 + 1)(εy1 + y2),

ẏ2 = −k2y1(y1 + 1− ε).

The associated linear system is

(
ẏ1

ẏ2

)
=

( −k1ε −k1

k2(1− ε) 0

) (
y1

y2

)
.

The eigenvalue equation is

∣∣∣∣
−k1ε− λ −k1

k2(1− ε) −λ

∣∣∣∣ = 0.

with solutions

λ1, λ2 =
−k1ε±

√
k2

1ε
2 − 4k1k2(1− ε)

2
.

If ε << 1 then

λ1, λ2 ≈
−k1ε± 2i

√
k1k2(1− ε

2
)

2
.

We have two complex roots with negative real parts indicating a stable focus at
(1, 1− ε).
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Figure 1.7: Phase portraits exhibiting bifurcations.

So the effect of a very small perturbation εx1 is to change the center at (1, 1) to a
stable focus (spiral point) at (1, 1− ε).

Note that if −1 << ε < 0 then the eigenvalues would be

λ1, λ2 =
1

2
k1|ε| ± i

√
k1k2(1 +

1

2
|ε|)

and since the real parts are now positive the focus at (1, 1 + ε) is unstable. So we
have

• ε > 0 stable focus at (1, 1− ε)

• ε = 0 not asymptotically stable center at (1, 1)

• ε < 0 Unstable focus at (1, 1 + |ε|)
The system has a bifurcation (splitting into two) point at ε = 0.

1.4 Liapunov functions

The method of Liapunov functions enables the analysis to be extended beyond only
a small region near the equilibrium point (global analysis). The basic idea of this
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technique for verifying stability is to seek an aggregated summarizing function that
continually decreases towards a minimum as the system evolves.

Suppose that x̄ is an equilibrium point of a given dynamical system. A Liapunov
function for the system and the equilibrium point x̄ is a real valued function V, which
is defined over a region Ω of the state space that contains x̄ and satisfies the three
requirements:

1. V is continuous

2. V (x) has a unique minimum at x̄ with respect to all other points in Ω

3. Along any trajectory of the system contained in Ω, the value of V never in-
creases.

1.4.1 Liapunov Theorem for continuous case

Consider the system
ẋ(t) = f(x(t)) (1.4.12)

together with a given equilibrium point x̄. In the time continuous case the requirement
that the value of a Liapunov function never increases along a trajectory is expressed
in terms of the time derivative.

Suppose x(t) is a trajectory. Then V (x(t)) represents the corresponding value of
V (x(t)) along the trajectory. In order for V not to increase, we require that

V̇ (x(t)) ≤ 0

for all t. This derivative can be expressed, using the chain rule for differentiation as

V̇ (x(t)) =
∂V

∂x1

ẋ1(t) +
∂V

∂x2

ẋ2(t) + · · ·+ ∂V

∂xn

ẋn(t). (1.4.13)

Then using the original system, this becomes

V̇ (x(t)) =
∂V

∂x1

f1(t) +
∂V

∂x2

f2(t) + · · ·+ ∂V

∂xn

fn(t),

= ∇V (x(t))f(x(t)). (1.4.14)

Therefore, the requirement that V is non-increasing along any trajectory of the system
translates into the requirement that

V̇ (x(t)) = ∇V (x(t))f(x(t)) ≤ 0 (1.4.15)

for all x is Ω.



14 CHAPTER 1. INTRODUCTION TO NONLINEAR SYSTEMS

Definition 1.4.1 A function V defined on a region Ω of the state space and contain-
ing x̄ is a Liapunov function if it satisfies the following three requirements

1. V is continuous and has continuous first partial derivatives

2. V(x) has a unique minimum at x̄ with respect to all other points in Ω

3. The function V̇ (x) = ∇V (x)f(x) satisfies V̇ (x) ≤ 0 for all x(t) in Ω.

Theorem 1.4.2 (Liapunov Theorem) If there exists a Liapunov function V (x),
then the equilibrium point x̄ is stable. If, furthermore, the function V̇ (x) is strictly
negative for every point then the stability is asymptotic.

Example 1.4.3 Consider the system

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)− x2(t).

Show that the equilibrium point (0, 0) is stable.

Solution

Define
V (x1, x2) = x2

1 + x2
2.

This function is certainly continuous with continuous first partial derivatives. V (x1, x2

is clearly minimum at (0, 0). The chosen Liapunov V (x1, x2) satisfies the first two
requirements of a Liapunov function. We want to check the final requirement.

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2

= 2x1x2 + 2x2(−x1 − x2)

= 2x1x2 − 2x1x2 − 2x2
2

= −2x2
2 < 0.

Therefore, the equilibrium point (0, 0) is stable, but not asymptotically stable since
V̇ is strictly negative at every non-zero point.

1.5 Invariant sets

The Liapunov function concept and stability theorems can be generalized in several
directions to treat special circumstances. One generalization based on the idea of an
invariant set is particularly useful.



1.5. INVARIANT SETS 15

1. Where a Liapunov function is found and V̇ (x) is strictly less than zero for
some values of x but not for all x. In this case the Liapunov theorem only
assures stability. By employing the invariant set concept, however, one can
often establish asymptotic stability with the same Liapunov function.

2. For systems that do not have equilibrium points, but in which the state vector
does tend to follow a fixed pattern as time increases.

Definition 1.5.1 A set G is an invariant set for a dynamic system if whenever a
point x on a system trajectory is in G, the trajectory remains in G. An equilibrium
point is the simplest example of an invariant set. Once the system reaches such a
point, it never leaves. Also, if a system has several equilibrium points, the collection
G of these points is an invariant set.

Example 1.5.2

ẋ1 = x2 + x1(1− x2
1 − x2

2),

ẋ2 = −x1 + x2(1− x2
1 − x2

2).

The only equilibrium point of the system is (0, 0). The linearized system is

(
ẋ1

ẋ2

)
=

(
1 1
−1 1

) (
x1

x2

)
.

The eigenvalue equation is

∣∣∣∣
1− λ 1
−1 1− λ

∣∣∣∣ = 0.

≡ (1− λ)2 + 1 = 0

≡ λ2 − 2λ + 2 = 0,

with solutions

λ1, λ2 =
2±√4− 8

2
= 1± i.

Therefore, the origin is an unstable spiral. The question is ”where does the trajectory
tend as t →∞?”

Note that

x1ẋ1 + x2ẋ2 = x1x2 + x2
1 − x4

1 − x2
1x

2
2 − x1x2 + x2

2 − x2
1x

2
2 − x4

2

= x2
1(1− x2

1 − x2
2) + x2

2(1− x2
1 − x2

2)

= (x2
1 + x2

2)(1− x2
1 − x2

2).
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We can write this as

(x1, x2)
(

ẋ1

ẋ2

)
= (x2

1 + x2
2)(1− x2

1 − x2
2),

or

< x1, x2 > · < ẋ1, ẋ2 >= (x2
1 + x2

2)(1− x2
1 − x2

2).

where < x1, x2 > and < ẋ1, ẋ2 > are respectively the state space vector and velocity
vector.

Hence, the velocity vector and the state space vector are orthogonal on the unit circle
1−x2

1−x2
2 = 0. The unit circle is an invariant set for the system. To obtain the useful

generalized Liapunov results, the concept of invariant sets is combined with another
key idea form the Liapunov stability theorem.

Theorem 1.5.3 (Invariant Set Theorem) Let V (x) be a scalar function with con-
tinuous first partial derivatives. Let Ωs denote the region where V (x) < s. Assume
that Ωs is bounded and that V̇ (x) ≤ 0 within Ωs. Let S be the set of points within Ωs

where V̇ (x) = 0, and let G be the largest invariant set within S. Then every trajectory
in Ωs tends to G as time increases.

Example 1.5.4 For the system

ẋ1 = x2 + x1(1− x2
1 − x2

2),

ẋ2 = −x1 + x2(1− x2
1 − x2

2).

Define the function

V (x1, x2) = (1− x2
1 − x2

2)
2.

Then

V̇ (x1, x2) =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2

= 2(−2x1)(1− x2
1 − x2

2)ẋ1 + 2(−2x2)(1− x2
1 − x2

2)ẋ2

= −4(1− x2
1 − x2

2)(x1ẋ1 + x2ẋ2)

= −4(x2
1 + x2

2)(1− x2
1 − x2

2)
2

≤ 0.

This result is zero if and only if x2
1 + x2

2 = 1 on the unit circle. The set S consists of
the origin and the unit circle. S is not an invariant set because it contains the origin.
The invariant set G is the unit circle.
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1.6 Bifurcations and Manifolds

A characteristic of nonlinear oscillating systems is the sudden change in behaviour
which occurs as a parameter passes through a critical value called a bifurcation point
(as we saw in example 1.3.10). A system may contain several bifurcation points and
display extremely complex behaviour. In this section, we consider some elementary
characteristics of bifurcations as they arise in the fold or cusp catastrophes, the hopf
bifurcation and structural stability.

Example 1.6.1 Consider the system

ẋ1 = x2,

ẋ2 = −mx1.

The system has an equilibrium point at (0, 0). In matrix form, the system can be
written as

(
ẋ1

ẋ2

)
=

(
0 1
−m 0

) (
x1

x2

)
.

The eigenvalues of the system are obtained from

λ2 + m = 0.

If m > 0 then λ = ±i
√

m, that is (0, 0) is a centre.

If m < 0, let m = −k, where k > 0 then λ1 =
√

k, λ1 = −√k. Thus, (0, 0) is a saddle
point. The classification of (0, 0) represents radically different types of the system
behaviour. The change in the system behaviour occurs as λ passes through λ = 0. A
bifurcation occurs at λ = 0 called the bifurcation point.

Example 1.6.2 To demonstrate that a system can display extremely complex be-
haviour, consider the damped system

ẋ1 = x2,

ẋ2 = −kx2 − ω2x1,

where ω > 0 and −∞ < k < ∞. The system has an equilibrium point at (0, 0). It is
more convinient to convert the system to a second order differential equation, that is

ẍ1 + kẋ1 + ω2x1 = 0.

The characteristic equation is

λ2 + kλ + ω2 = 0.
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The roots are

λ =
−k ±√k2 − 4ω2

2
=
−k ±

√
(k − 2ω)(k + 2ω)

2
.

We have the following cases

1. If k < −2ω, then (0, 0) is an unstable node.

2. If −2ω < k < 0, then (0, 0) is an unstable spiral.

3. If 0 < k < 2ω, then (0, 0) is a stable spiral.

4. If k > 2ω, then (0, 0) is a stable node.

These can be written in tabular form as

Unstable node Unstable Spiral Stable Spiral Stable node
−∞ < k < −2ω −2ω < k < 0 0 < k < 2ω 2ω < k < ∞

Note that the transition from stable spiral to stable node is not a bifurcation since
both states are asymptotically stable. Even though the stable spiral is different from
a stable node we do not call the value k = 2ω a bifurcation point.

However, the transition from unstable spiral to stable spiral as k increases from −2ω
through k = 0 is a bifurcation point.

Example 1.6.3 Find the bifurcation points of the system

ẋ1 = −kx1 + x2,

ẋ2 = −kx1 − 3x2.

In matrix form, this can be written as
(

ẋ1

ẋ2

)
=

(−k 1
−k −3

) (
x1

x2

)
.

This system has an equilibrium point at (0, 0). The characteristic equation is
∣∣∣∣
−k − λ 1
−k −3− λ

∣∣∣∣ = λ2 + (3 + k)λ + 4k = 0.

The roots are

λ1 =
−(3 + k) +

√
(k − 1)(k − 9)

2
,

or

λ2 =
−(3 + k)−

√
(k − 1)(k − 9)

2
.
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There are three important points, namely k = 0, k = 1 and k = 9. Classification
of the equilibrium points is as follows:

k − 1 < 0 k − 1 < 0 k − 1 > 0 k − 1 > 0
k − 9 < 0 k − 9 < 0 k − 9 < 0 k − 9 > 0
k < 0 k > 0 k > 0 k > 0
Roots are real Roots are real Complex roots Roots are real
with opposite signs. with same signs with negative with same signs

(positive) real part. (negative)
(0, 0) is a saddle (0, 0) is an unstable (0, 0) is a stable (0, 0) is a stable
point. node. spiral. node.

There is a change of stability at k = 0 from saddle point to a stable node as k increases
through k = 0.
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Figure 1.8: Phase portraits of ẋ1 = −kx1 + x2, ẋ2 = −kx1 − 3x2: for k < 0.
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Figure 1.9: Phase portraits of ẋ1 = −kx1 + x2, ẋ2 = −kx1 − 3x2: for 0 < k < 1.
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Figure 1.10: Phase portraits of ẋ1 = −kx1 + x2, ẋ2 = −kx1 − 3x2: for 1 < k < 9.
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Figure 1.11: Phase portraits of ẋ1 = −kx1 + x2, ẋ2 = −kx1 − 3x2: for k > 9.

There is a change of stability at k = 0 from saddle point to a stable node as k increases
through k = 0.

1.7 Types of Bifurcations

Consider

ẋ = f(x, µ), x ∈ Rn, µ ∈ Rm (1.7.16)

Equilibrium points occur where

f(x, µ) = 0

for any given µ. Suppose that (µ0, x0) is a solution of the equation. Then µ = µ0 is a
bifurcation point if the structure of the phase diagram changes as µ passes through
µ0.

Example 1.7.1 Consider the system

ẋ1 = x2,

ẋ2 = x2
1 − x2 − µ.

The equilibrium points occur where

x2 = 0, x2
1 − x2 − µ = 0 or x2

1 = µ.
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For µ > 0 : (
√

µ, 0) and (−√µ, 0) are the equilibrium points. For µ < 0 there are no
equilibrium points.

Consider the equilibrium point (
√

µ, 0), define

y1 = x1 −√µ, y2 = x2,

then

ẏ1 = y2,

ẏ2 = (y1 +
√

µ)2 − y2 − µ = y2
1 + 2

√
µy1 − y2.

The associated linear system is
(

ẏ1

ẏ2

)
=

(
0 1

2
√

µ −1

) (
y1

y2

)
.

The characteristic equation is
∣∣∣∣
−λ 1
2
√

µ −1− λ

∣∣∣∣ = λ(1 + λ)− 2
√

µ = λ2 + λ− 2
√

µ = 0.

The eigenvalues are

λ1,2 =
−1±

√
1 + 8

√
µ

2
.

Therefore (
√

µ, 0) is a saddle point.

Consider the equilibrium point (−√µ, 0) : The eigenvalues are

λ1,2 =
−1±

√
1− 8

√
µ

2
.

Therefore, (−√µ, 0) is a stable node which becomes a stable spiral for
√

µ > 1
8
. This

is called the saddle node bifurcation.

Example 1.7.2 Consider the system (Transcritical bifurcation)

ẋ1 = x2,

ẋ2 = µx1 − x2
1 − x2.

The system has two equilibrium points at (0, 0) and (µ, 0).

Consider (0, 0) :

The linearized system is
(

ẋ1,
ẋ2

)
=

(
0 1
µ −1

) (
x1

x2

)
.
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The characteristic equation is

∣∣∣∣
−λ 1
2µ −1− λ

∣∣∣∣ = λ(1 + λ)− µ = λ2 + λ− µ = 0.

with roots

λ1,2 =
−1±√1 + 4µ

2
.

1. For µ < 0, the origin is stable; a node if 1
4

< µ < 0 and a spiral if µ < −1
4
.

2. For µ > 0, the origin is a saddle point.

Consider (µ, 0) : Define

y1 = x1 − µ, y2 = x2.

The system becomes

ẏ1 = y2,

ẏ2 = µ(y1 + µ)− (y1 + µ)− y2 = −µy1 − y2
1 − y2.

The associated linear system is

(
ẏ1

ẏ2

)
=

(
0 1
−µ −1

) (
y1

y2

)
.

The characteristic equation is

∣∣∣∣
−λ 1
−µ −1− λ

∣∣∣∣ = λ(1 + λ) + µ = λ2 + λ + µ = 0.

The eigenvalues are

λ1,2 =
−1±√1− 4µ

2
.

1. For µ < 0, (µ, 0) is a saddle point.

2. For µ > 0, the equilibrium point (µ, 0) is a stable node for 0 < µ < 1
4

and a
spiral if µ > 1

4
.

This is an example of a transcritical bifurcation where, at the intersection of the two
bifurcation curves, stable equilibrium point switches from one curve to the other at
the bifurcation point. As µ increases through zero, the saddle point collides with the
node at the origin and then remains there whilst the stable node moves away from
the origin.
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1.8 Hopf Bifurcation

Some bifurcation generate limit cycles or other periodic solutions. Consider the sys-
tem

ẋ1 = µx1 + x2 − x1(x
2
1 + x2

2),

ẋ2 = −x1 + µx2 − x2(x
2
1 + x2

2).

Solution

The system has one equilibrium point at (0, 0). The linearized system is

(
ẋ1

ẋ2

)
=

(
µ 1
−1 µ

) (
x1

x2

)
.

The characteristic equation is

∣∣∣∣
µ− λ 1
−1 µ− λ

∣∣∣∣ = (µ− λ)2 + 1 = λ2 − 2µλ + µ2 + 1 = 0.

The eigenvalues are

λ1,2 =
2µ±

√
4µ2 − 4(µ2 + 1)

2
= µ± i.

(i) If µ < 0 then the origin is a stable spiral.
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Figure 1.12: Catastrophic behavior: case µ = −1 < 0
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(ii) If µ = 0 then the origin is a centre. It is not asymptotically stable.
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Figure 1.13: Catastrophic behavior: case µ = 0.

(iii) If µ > 0, then the origin is an unstable spiral which is surrounded by a stable
limit cycle. This was demonstrated using the invariant set theorem. The case
µ > 0 is an example of a Hopf bifurcation because it generates a limit cycle.
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Figure 1.14: Catastrophic behavior: case µ = 1 > 0.

Exercise
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Show that the equation

ẍ + (x2 + ẋ2 − µ)ẋ + x = 0

exhibits a hopf bifurcation as µ increases through zero.

1.9 Population dynamics

In the study of population ecology, we use mathematical models in order to under-
stand the interaction between species and their environment. Dynamic processes
such as predator-prey, competition and symbiotic interactions, renewable resource
management, ecological control of pest etc can be understood by studying mathe-
matical models.We begin by a consideration of interaction between species living in
an ecosystem.Their interaction affects the dynamics of each species.There are three
main types of interactions:

1. predator-prey interaction,

2. competition interactions,

3. mutualism or symbiotic interaction.

1.9.1 Population interactions

In 1926, Volterra proposed a mathematical model that tried to explain the oscillatory
levels of some fish species in the Adriatic. If we assume that n species live in an
ecosystem with density xi for species i = 1, 2, . . ., then the ecological equation is
given by

xi = xifi(x). (1.9.17)

If fi is linear then we have the Lotka-Voltera equation

xi = xi


ri +

m∑

j=1

aijxj


 i = 1, 2, ..n. (1.9.18)

where ri is the per capita growth rate and aij are the interaction parameters for
species i and j, for example a12 measures the effect of species 2 on species 1.
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1.9.2 Predator-Prey interactions

Let N(t) be the number (or density) of the prey and let P (t) be the number (or
density ) of the predators. The Volterra model is defined by the following system of
equations:

dN

dt
= rN − cNP, (1.9.19)

dP

dt
= bNP −mP, (1.9.20)

where r, c, b, m are positive constants.

The model is set under the following assumption:

1. in the absence of the predator N grows unboundedly (in equation (1.9.19) set
P = 0).

2. the effect of predation is to reduce the prey population N by a rate proportional
to the prey and predator population.

3. If there is no prey the predator population decays exponentially.

4. the predator grows due to the presence of the prey.

Analysis of the model

We introduce a change of variables for the sake of parameter reduction and rescaling
(It is easier to work with fewer parameters). Let

x1 ≡ b

m
N, x2 ≡ c

r
P

Equations (1.9.19) and (1.9.20) can now be written as

dx1

dt
= r(1− x2)x1, (1.9.21)

dx2

dt
= m(x1 − 1)x2. (1.9.22)

Equations (1.9.21) and (1.9.22) determine whether the variables x1 and x2 increase
or decrease at each point of the (x1, x2) phase plane. The ratio

dx2

dx1

=
m(x1 − 1)x2

r(1− x2)x1

, (1.9.23)
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determines the slope of the vector field at every point of the phase plane. By setting
equation (1.9.23) to zero we will have the predator zero growth isoclines (nucclines),
x1 = 1 and x2 = 0. This is the locus of all points where predator numbers stay
constant. The prey zero-growth isocline are x2 = 1 and x1 = 0, the prey numbers do
not change. The figure below shows the direction fields of the vector. The vectors in

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 1.15: Predator-prey direction fields

Figure 1.15 rotate as we move through the plane. If the predator and prey populations
are all less than one, the predator numbers decrease and the prey numbers increase.
If the prey population is high and the predator population is low ie x1 > 1 and x2 < 1,
both population increase. As the predator population increases i.e x1 > 1 and x2 > 1
the prey population begins to decrease. When the predator population is high and
the prey population is low i.e x1 < 1 and x2 > 1, both the predators and the prey
population will decrease.

We can put some further analysis as regards the equilibrium points. These equilibria
occur at the intersection of the predator and prey zero-growth isoclines. We thus
have two equilibria, one at E0 = (0, 0), called the trivial equilibrium point) and the
other at E1 = (1, 1) called the nontrivial equilibrium point. Linearization about the
point E0 gives the following system

(
ẋ1

ẋ2

)
=

(
r 0
0 −m

) (
x1

x2

)

which is of the form Ẋ = AX.
Stability of the steady state is determined by the eigenvalues of A. In this case
the eigenvalues of A are λ1 = r and λ2 = −m. This means the prey increases
exponentially fast near the origin while the predators decrease. The equilibrium at
the origin will thus have one stable direction along x2 and one unstable direction
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along x1. E0 is referred to as a saddle point.

Linearizing about the nontrivial equilibrium point, we define new variables

y1 ≡ x1 − 1, y2 ≡ x2 − 1.

The resulting system will be,

dy1

dt
= −ry2(1 + y1), (1.9.24)

dy2

dt
= my1(1 + y2). (1.9.25)

Neglecting the nonlinear terms we have

(
ẏ1

ẏ2

)
=

(
0 −r
m 0

) (
y1

y2

)

which is again of the form Ẏ = BY .
The eigenvalues of B are λ1,2 = ±i

√
rm. We conclude that the linearized system is

neutrally stable, and thus a center. This is the situation represented by figure 1.15.

1.9.3 Competing species

Competition is active demand by two or more organism for the same resource. Com-
peting species need not be similar e.g. agricultural pests compete with man for food.
Competition is depends mostly on density, given limited resources, greater population
size causes greater intensity of competition and greater scarcity leading to adverse
effects on population growth rates and sizes.
If species are competing for the same resources, we to assume that the growth rates
are positive and interaction terms are negative. For two species, on each positive axis,
there is one fixed point Fi corresponding to equilibrium of one species in the absence
of the other species. There are generally three possible outcomes

1. - dominance: all trajectories in the IntR2
+ converge to one of the fixed points

Fi on the axis.

2. - coexistence: a fixed point F12 ∈ IntR2
+ exists and is globally stable, i.e it

attracts all orbits in the IntR2
+.

3. - bistability: F12 is a saddle point and almost all trajectories in the IntR2
+

converge to F1 or F2 depending on the initial conditions.
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Consider a simple two species Volterra competition model. Let N1 and N2 be two
species that diminish each other’s per capita growth rate by direct interference. The
model is given by

dN1

dt
= r1N1

(
1− N1

K1

− b12
N2

K1

)
, (1.9.26)

dN2

dt
= r2N2

(
1− N2

K2

− b21
N1

K2

)
, (1.9.27)

where r, c, b, m are positive constants, with r1, r2 being the intrinsic growth rates,
K1, K2, the carrying capacities and b12, b21 the interaction coefficients of N1, N2 re-
spectively.

We can non-dimensionalize the system by letting

x1 ≡ N1

K1

, x2 ≡ N2

K2

, τ = r1t ρ =
r2

r1

, a12 = b12
K2

K1

, a21 = b21
K1

K2

.

so that system (1.9.26-1.9.27) becomes

dx1

dτ
= x1 (1− x1 − a12x2) = f1(x1, x2), (1.9.28)

dx2

dτ
= ρx2 (1− x2 − a21x1) = f2(x1, x2). (1.9.29)

This system has four equilibria given by

(0, 0), (1, 0), (0, 1) and
(

1− a12

1− a12a21

,
1− a21

1− a12a21

)
.

1.9.4 Mutualism/Symbiosis

Mutualism is an interaction in which species help one another. These are situations
in which the interaction of the two species is mutually beneficial e.g the plant pol-
linator system, seed dispersal (many plants rely on animals to carry their seeds to
favorable sites), digestion (animals depend on bacteria, yeast etc for digestion, rumi-
nants depend on bacteria for the digestion of cellulose) and protection (ants protect
the Acacia from predators but they find refuge in the trees ). The interaction may
be facultative (two species can survive separately, the interaction is helpful but not
essential) or obligatory (each species will become extinct without the other).

We assume that two species N1 and N2 interact and each one of them grows logisti-
cally in the absence of the other. Consider the model,

dN1

dt
= r1N1

(
1− N1

K1

+ b12
N2

K1

)
, (1.9.30)

dN2

dt
= r2N2

(
1− N2

K2

+ b21
N1

K2

)
, (1.9.31)
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where r1, r2 are the intrinsic growth rates, K1, K2, the carrying capacities and b12, b21

the interaction coefficients of N1, N2 respectively.

Exercises

1. Examine the stability of the fixed point at the origin of

(i) ẋ1 = −x3
1 + x4

2

ẋ2 = x2(2x
2
1 − x2

2 − x1x
2
2)

(ii) ẋ1 = x2

ẋ2 = −x1 − x3
2

2. Prove that the function

V (x1, x2) = x2
1 + x2

1x
2
2 + x4

2 (x1, x2) ∈ R2

is a strong Liapunov function for the system

ẋ1 = 1− 3x1 + 3x2
1 + 2x2

2 − x3
1 − 2x1x

2
2,

ẋ2 = x2 − 2x1x2 + x2
1x2 − x3

2.

3. Discuss the stability of the system

ẋ(t) = y(t),

ẏ(t) = 2x(t) + 2y(t).

4. Consider system (1.9.28)-(1.9.29):

(a) Determine the stability of the equilibrium points, clearly stating the sta-
bility conditions.

(b) Draw the phase portraits for the following cases:

i. a12 < 1, a21 < 1.

ii. a12 > 1, a21 > 1.

iii. a12 < 1, a21 > 1.

iv. a12 > 1, a21 < 1.

5. Consider the system (1.9.30)-(1.9.31):

(a) Non dimensionalize the system by letting

x1 ≡ N1

K1

, x2 ≡ N2

K2

, τ = r1t ρ =
r2

r1

, a12 = b12
K2

K1

, a21 = b21
K1

K2

,

and determine the four equilibrium points.



32 CHAPTER 1. INTRODUCTION TO NONLINEAR SYSTEMS

(b) Carry out the stability analysis of each of the equilibrium points.

(c) Draw the phase portraits for each of the following cases:

i. 1− a12a21 < 0.

ii. a12 > 1, a21 < 1.

6. Suppose there exist self elimination in the prey (density restriction), the preda-
tor prey model will be given by

dx1

dt
= (a− ex1 − bx2)x1,

dx2

dt
= (dx1 − c)x2.

Investigate the stability of the above system and draw phase diagrams to illus-
trate your analysis.
What happens if e À 0?

7. Consider the following equations

dN1

dt
= N1(a− bN1 − cN2),

dN2

dt
= N2(e− f

N2

N1

).

For this system verify the following.

(a) If N1 is very large relative to N2, the second population grows exponen-
tially.

(b) The isoclines are straight lines, the prey isocline has a negative slope and
the predator isocline has a positive slope.

(c) At equilibrium N∗
1 =

af

bf + ce
; N∗

2 =
ae

bf + ce
.

(d) roots of the community matrix are complex with negative real parts ensur-
ing a convergence to the equilibrium through a spiral trajectory, i.e stable
spiral.

8. Consider the predator prey system

dN1

dt
= rN1 − c1N2(N1 −H),

dN2

dt
= N2[c2(N1 −H)− d].

(a) Verify that, when the prey population falls to level H it becomes immune
to predators and grows exponentially whereas the predator population de-
clines exponentially. This process is called refugium. How can this be
insured?

(b) Sketch the isoclines.
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(c) Obtain the community matrix and verify that the system converges.

(d) Interpret the case H = 0.

9. Give a full analysis of the model of interacting species given by

dx

dt
= x(λ− ax + by),

dy

dt
= y(µ + cx− dy).

Draw nulclines and give the stability analysis.

10. Given that two interacting populations x and y are governed by the equations

x′ = 0.15(1− 0.005x− 0.01y)x,

y′ = 0.03(1− 0.006x− 0.005y)y.

(a) What king of interaction is defined by this system.

(b) If x and y are both small, which species exhibits a faster growth rate.

(c) (This requires Matlab program) Staring with the various cases (x, y) =
(10, 10), (150, 25), (300, 10), (50, 200), (10, 300), examine the behavior
of the system.

(d) Is the mathematical model consistent with the principle of competitive ex-
clusion.

Program 1
g = inline(′[y(1)∗(1−y(1)−0.5∗y(2)); 2∗y(2)∗(1−y(2)−0.4∗y(1))]′,′ t′,′ y′);
vectfield(g, 0 : .2 : 2, 0 : .2 : 2);
hold on
% the initial conditions for y(1) and y(2) are set as follows.
for y10 = 0 : .1 : 2;
for y20 = 0 : .1 : 2;
% to call the Runge-Kutta method of order 4 and 5 we type
[ts, ys] = ode45(g, [0, 10], [y10, y20]);
plot(ys(:, 1), ys(:, 2))
end
end
hold off

11. Consider the model given by

x′ = 0.x(1− x

10
− 0.5xy

x + 1
,

y′ = 0.1y
(
1− y

2x

)
.
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(a) Show that the constant functions x(t) = 10 and y(t) = 0 are solutions of
the above system. Explain the behavior of this solution.

(b) Find the other equilibrium solutions.

(c) Use the programme above to graph the solution of the model for the initial
conditions x(0) = 5 and y(0) = 5. The graph should be as given below
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Figure 1.16: limit cycle for initial conditions far away from the non trivial equilibrium
point

(d) Graph the solution of the model for the initial conditions x(0) = 1 and
y(0) = 4, these are very near to the non trivial solution. The graph should
be as given below

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x

y

Figure 1.17: limit cycle for initial conditions near the non trivial equilibrium point

(e) Suppose that the prey species is actually an agricultural pest and the
predator of the pests does not harm the crops. If farmers propose to
eliminate the pest by bringing a large number of predators, would the
strategy work? If not why?



Chapter 2

Mathematical Modelling:
Epidemiology

2.1 The SIR epidemic model

Let us consider a large population of n individuals and a disease in which infection
spreads by contact between individuals. Let us consider a simple model whereby
individuals who are once infected either die or are isolated or recover with immunity.
Thus, at any one time the population is comprised of x1 susceptible individuals, x2

infected and circulating individuals, and x3 individuals who either have been removed
(by death or isolation) or are immune. We have x1 + x2 + x3 = n, for all time.

We assume that the population is subject to some form of homogeneous mixing, and
that the rate of contact between susceptibles and infectives is proportional to the
product x1x2.

The rate of generation of new infectives is therefore βx1x2, where β is an infection-rate
constant. Infectives are assumed to be removed or become immune at the rate propor-
tional to their number with an associated removal rate γ. The governing differential
equations are therefore

ẋ1 = −βx1x2,

ẋ2 = βx1x2 − γx2,

ẋ3 = γx2.

It is easy to verify that this is a constant population model. Since x3 does not appear
in the first two equations, the model can be reduced to two equations given below;

ẋ1 = −βx1x2, (2.1.1)

ẋ2 = βx2(x1 − γ

β
) = βx2(x1 − ρ). (2.1.2)

35
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Obviously, any point (x1, x2) = (c, 0) is a fixed point. That is, we have a line of fixed
points. Also the x2−axis is a separatrix because

dx2

dx1

=
βx1 − γ

−βx1

.

Let us examine the nature of one of the fixed points (c, 0). Define

y1 = x1 − c, y2 = x2.

Then

ẏ1 = −β(y1 + c)y2,

ẏ2 = βy2(y1 + c− ρ).

When c = 0, there is a non-simple fixed point at (0, 0). Again when c = ρ, we have
another non-simple fixed point at (ρ, 0). Keeping away from these two special fixed
points, the linearized equations at (c, 0) are

(
ẏ1

ẏ2

)
=

(
0 −βc
0 β(c− ρ)

) (
y1

y2

)
.

The eigenvalues are λ1 = 0, λ2 = β(c − ρ). The solution in the neighborhood of
y1 = 0, y2 = 0 is

y1 = C1 + C2e
λ2t,

y2 = − 1

βc
ẏ1 = −λ2

βc
C2e

λ2t.

Special orbits:

C2 = 0, y1 = c, y2 = 0. This is not an orbit.

Consider a case: C1 = 0,

y2 = C2e
λ2t = −λ2

βc
C2e

λ2t = −λ2

βc
y1

= −
(

c− ρ

c

)
y1.

This is a family of straight lines with slope − (c−ρ)
c

. The maximum value of x2 occurs
where ẋ2 = 0. That is when x1 = ρ. If c > ρ then the straight lines have negative slope
and if c < ρ then the straight lines have a positive slope (figure 2.1). The solution
above is an approximate solution which has given us information on the nature of
trajectories. We can solve (2.1.1)-(2.1.2) exactly as follows:

ẋ2

ẋ1

=
βx1 − γ

−βx1

.
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x
2

x
1ρ

Figure 2.1: Special orbits for the SIR epidemic model

Upon rearranging, we obtain

dx2 = (−1 +
ρ

x1

)dx1, ρ =
γ

β
.

Integrating this gives

x2 = −x1 + ρ ln x1 + Const.

At t = 0, x1(0) = n = x0, x2(0) = a.

x2 = −x1 + ρ ln
(

x1

x0

)
+ n + a

x2 is a family of trajectories. Several interesting qualitative conclusions can be made
from this.

1. The threshold effect: The maximum value of x2 occurs at the point x1 = ρ.
Suppose that a number of infectives x2(0) is introduced in a population x0 of
susceptibles. If x0 > ρ, the level of infectives will increase until the number
of susceptibles is reduced below ρ and will decrease thereafter. If x0 < ρ, the
level of infectives will decrease monotonically to zero (no epidemic). Thus, ρ
represents a threshold value of susceptibles for the phenomena of an epidemic
to occur.

2. The Escape Effect: Since x2(0) = −∞, it follows that x2 must vanish at some
positive value of x1. This means that the trajectories terminate on the x1−axis
at a positive value. Therefore, the epidemic terminates for lack of infectives
rather than lack of susceptibles, and some individuals escape the disease entirely.
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3. Symmetry Effect: For the case x1(0) > ρ but x1(0) − ρ is small, the epidemic
curves are nearly symmetric with respect to the point x1 = ρ. This means
that during the course of the epidemic the number of susceptibles is ultimately
reduced to a level about as far below the threshold value ρ as it was initially
above this value-(Threshold theorem).

Theorem 2.1.1 (The Threshold Theorem) Let x1(0) = ρ + ε, ε << ρ and sup-
pose that x2(0) is very small, then ultimately x1(0)− x1(∞) = 2ε.

Proof

dx2

dx1

=
βx1x2 − γx2

−βx1x2

= −1 +
ρ

x1

,

x2 = C − x1 + ρ ln
(

x1

x0

)
.

At t = 0, x2(0) = C − x1(0), thus C = x2(0) + x1(0).

x2 = x2(0) + x1(0)− x1 + ρ ln

(
x1

x1(0)

)
.

At a very long time x1(t) → x1(∞), x2(t) → 0.

Then

0 = x2(0) + x1(0)− x1(∞) + ρ ln

(
x1(∞)

x1(0)

)
.

We can neglect x2(0) since it is small

0 = x1(0)− x1(∞) + ρ ln

(
1− x(0) − x1(∞)

x1(0)

)

= x1(0)− x1(∞) + ρ


x(0) − x1(∞)

x1(0)
+

1

2

(
x(0) − x1(∞)

x1(0)

)2



= (x1(0)− x1(∞))

[
1− ρ

x1(0)
− ρ

2x2
1(0)

(x1(0)− x1(∞))

]

Thus

x1(0)− x1(∞) = 2x1(0)

(
x1(0)

ρ
− 1

)

= 2(ρ + ε)

(
ρ + ε

ρ
− 1

)

= 2(ρ + ε)

(
ε

ρ

)

≈ 2ε.
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2.2 Simple extensions of the SIR model

2.2.1 Loss of immunity

Suppose that the problem is as before, except that the susceptibles are being added
to by (births-deaths) at rate µ and that the removed population looses immunity
at a rate µ2. For simplicity, let’s take µ2 = µ, so that the total population remains
constant. The system becomes

ẋ1 = −βx1x2 + µ,

ẋ2 = βx1x2 − γx2,

ẋ3 = γx2 − µ,

with x1 + x2 + x3 = N.

Normally, a plot of x3 against x2 is of special interest because medical records are
kept on those who are infected and those who have died or recovered with immunity.
Let us eliminate x1 to obtain

ẋ2 = βx2

(
N − x2 − x3 − γ

β

)
,

ẋ3 = γx2 − µ,

with
x2 + x3 = N − x1 ≤ N.

There is only one fixed point E given by (x2, x3) = (µ
γ
, N − µ

γ
− γ

β
) which lies in the

feasible region provided
µ

γ
< N. The isoclines are given by

dx3

dx2

=
γx2 − µ

x2[β(N − x2 − x3)− γ]
=

{
0, when x2 = µ

γ

∞, when x2 = 0.

Also
dx3

dx2

= ∞ along the line x2 + x3 = N − γ

β
.

Let us examine the nature of the fixed point E. Introduce local coordinates at E

y2 = x2 − µ

γ
, y3 = x3 −

(
N − µ

γ
− γ

β

)
.

The system becomes

ẏ2 =

(
y2 +

µ

γ

)
(−βy2 − βy3),

ẏ3 = γ

(
y2 +

µ

γ

)
− µ = γy2.
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The linearized system is

(
ẏ2

ẏ3

)
=

(−µβ
γ

−µβ
γ

γ 0

) (
y2

y3

)
.

The eigenvalues are

(i) If γ >
1

2

√
µβ, then λ1,2 =

−µβ ± iµβ
√

4γ2

µβ
− 1

2γ
. In this case E is a stable focus.

(ii) If γ <
1

2

√
µβ, then λ1,2 =

−µβ ± µβ
√

1− 4γ2

µβ

2γ
. In this case both roots are real

and negative, Hence E is a stable node.

In either case, the infection never clears up but the number of cases x3 reaches a

ceiling value of N − µ

γ
− γ

β
.

2.2.2 Inclusion of immigration or emigration

If immigrants arrive at a rate µ, the system becomes

ẋ1 = −βx1x2 + µ,

ẋ2 = βx2(x1 − ρ), ρ =
γ

β
,

ẋ3 = γx2

Take the first two equations: ẋ2 = 0 when x1 = ρ and then the first equation is

ẋ1 = −βρx2 + µ. Therefore, ẋ1 = 0 when x2 =
µ

ρβ
=

µ

γ
.

Let

y1 = x1 − ρ, y2 = x2 − µ

γ

So that the system becomes

ẏ1 = −β(y1 + ρ)

(
y2 +

µ

γ

)

ẏ2 = β

(
y2 +

µ

γ

)
y1

The linearized system is

(
ẏ1

ẏ2

)
=

(−µ
ρ

−γ
µ
ρ

0

) (
y1

y2

)
.
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The eigenvalues are

λ1,2 =
−µ± µ

√
1− 4ρ2

µ

2ρ

Thus,

1. E(ρ,
µ

γ
) is a stable focus if

4ρ2

µ
> 1, that is if µ < 4ρ2.

2. E(ρ,
µ

γ
) is a stable node if

4ρ2

µ
< 1, that is if µ > 4ρ2.

Immigration or emigration can not make the situation worse. The infection never
clears.

2.2.3 Immunization

Suppose susceptibles are immunized at a rate µ starting at t = 0. Then

ẋ1 = −βx1x2 − µ,

ẋ2 = βx2(x1 − ρ, )

ẋ3 = γx2,

where x1 + x2 + x3 = N − µt.

The equilibrium point is at (ρ,−µ

γ
). The eigenvalues are

λ1,2 =
−µ± µ

√
1 + 4ρ2

µ

2ρ
.

The roots are real and of opposite sign. Therefore, E(ρ,−µ

γ
) is a saddle point. An

orbit starting at (n, a) will have x2 → 0 as t → ∞. The infection clears up. If a is
too large then x1 → 0 as t →∞.

Exercises

1. A simple deterministic model for the spread of an epidemic is
{

ẋ1 = −βx1x2

ẋ2 = βx1x2 − γx2, x1 ≥ 0, x2 ≥ 0, (β, γ > 0),

where
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• x1 = s(t), the number of susceptibles at time t,

• x2 = I(t), the number of infectives at time t.

Draw a diagram showing the orbits in the x1x2 plane and explain the significance

of the fixed point (ρ, 0), where ρ =
γ

β
. Show that if an orbit starts at (ρ + ε, δ)

with ε, δ << ρ, then it ends at (ρ− ε, 0).

2. The following model is proposed for the immunization of a population consisting
of x1 susceptibles, x2 infectives and x3 removals:

ẋ1 = −βx1x2 − µx3,

ẋ2 = βx1x2 − γx2,

ẋ3 = γx2 + µx3,

where N = x1 + x2 + x3. Take β = 1, µ = 2, N = 1000 and γ = 400 and find in
the x2x3 plane:

(a) The feasible region.

(b) The nature of the fixed point (0, 0) and the equations giving the orbits in
the neighbourhood of (0, 0). Give a sketch of these orbits.

(c) The isoclines

dx3

dx2

= ∞ and
dx3

dx2

= 0.

Further, answer the following questions:

(d) Describe the variation of
dx3

dx2

along the line x2 + x3 = N from the point

(N, 0) to the point (0, N).

(e) Sketch the phase portraits in the feasible region.

3. A recurrent epidemic in the constant population is modelled by the equations

ẋ1 = −βx1x2 + µ,

ẋ2 = βx1x2 − γx2,

ẋ3 = γx2 − µ, (β, γ, µ > 0),

where, at time t, x1(t) is the number of susceptibles, x2(t) is the numbers of
infectives and x3(t) is the number of confirmed cases of the disease. Initial
values are x1(0) = n, x2(0) = a and x3(0) = 0. The plot of x3 against x2 is of
special interest. Show that

(a) provided
µ

γ
+

γ

β
< N ; where N = n + a, a fixed point E (the endemic

point) exists in the feasible region of the x2x3 plane;
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(b) Provided
µ

γ
< a, the orbit approaches E along a spiral path;

(c) Provided γ >
1

2
(µβ)

1
2 , the number of cases fluctuates and near to E the

period of fluctuation is

(
4πγ

µβ

) (
4γ2

µβ
− 1

) 1
2

.

(d) Discuss briefly the situation of
µ

γ
+

γ

β
> N. Is it possible in this case for

the epidemic to clear up in a finite time?

4. A preliminary model to describe heartbeats is

εẋ = x− x3 − b (0 < ε << 1),

ḃ = x− x0 (x0 > 3−
1
2 ),

where x represents the length of the muscle fibre and b is an electro-chemical
control variable.

Examine the stability of the fixed point x = x0, b = x0 − x′0. Sketch the global
phase portrait and explain briefly the terms fast movement and slow movement.

5. A epidemiological model has, after time t,

ẋ1 = −βx1x2 − µ,

ẋ2 = βx2(x1 − ρ), (ρ =
γ

β
)

ẋ3 = γx2,

where

• x1(t) is the number of susceptibles,

• x2(t) is the numbers of infectives,

• x3(t) is the number of removals and

• µ is constant rate of immunization (starting at t = 0).

(a) Show that a first integral is

x1 + x2 + x3 = N − µt,

where N is the total population when t = 0.

(b) Working in the x1x2 plane, show that the fixed point exists at (ρ,−µ

γ
).

Establish that this is a saddle point.
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(c) Draw a diagram showing the feasible region after time t. Show how an
orbit starting at x1 = n, x2 = a at time t = 0 is influenced by the presence
of the saddle point found in part (b) (assume that µ is small, so that the
saddle point is only outside the feasible region). What can you deduce is
the effect of immunization on the epidemic if a is small?



Chapter 3

Calculation of the Reproduction
Number

3.1 Reproduction numbers

In all the models presented in Chapter 2, the reproduction number could be obtained
by inspection. This was possible because there was only one infective class. If the
number of infective classes is two or more, then the technique due to Diekmann (1990)
is more appropriate. The technique has been studied by a number of researchers,
among them (van den Driessche and Watmough (2002), Hyman et al.(2004). In the
next subsection, we summarize the technique known as the next generation matrix
technique and some examples from van den Driessche and Watmough (2002).

3.1.1 The next generation matrix

Define Xs to be the set of all disease free states, that is

Xs = {x ≥ 0 | xi = 0, i = 1, 2, ...m}.

In order to compute <0, it is important to distinguish new infections from all other
changes in the population.

Let Fi(x) be the rate of appearance of new infections in compartments i,

V+
i be the rate of transfer of individuals into compartment i by all other means.

V−i be the rate of transfer of individuals out of compartment i.

It is assumed that each function (Fi(x), V+
i and V−i ) is continuously differentiable at

least twice with respect to each variable.

The transmission model consists of the non-negative initial conditions together with

45
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the following system of equations

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, 2, ..., n (3.1.1)

where Vi = V−i − V+
i and the functions satisfying the following conditions:

C1: If x ≥ 0, then Fi,V−i ,V+
i ≥ 0 for i = 1, 2, ..., n.

Note: If the compartment is empty, then there can be no transfer of individuals
out of the compartment by death, infection nor any other means.

C2: If xi = 0, then V−i = 0 (Nobody leaves the compartment). In particular if
x ∈ Xs, then V−i = 0 for i = 1, 2, ..., m.

C3: Fi = 0, i > m. (m is the number of infective classes)

C4: If x ∈ Xs, then Fi = 0, and Vi = 0 for all i = 1, 2, ..., m.

C5: If F(x) is set to zero, then all the eigenvalues of Df(x0) have negative real
parts.

Lemma 3.1.1 If x0 is a disease-free equilibrium (DFE) of (3.1.1) and fi(x) satisfies
C1− C5 then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =
(

F 0
0 0

)
, V(x0) =

(
V 0
J3 J4

)
. (3.1.2)

where F and V are the m×m matrices defined by

F =

[
∂F(x0)

∂xj

]
and V =

[
∂V(x0)

∂xj

]
(3.1.3)

with 1 ≤ i ≤ m. F is non-negative and V is a is non-singular M-matrix.

Following Diekmann et al. (1990) we call FV −1 the next generation matrix for the
model and we shall set R0 as equal to the spectral radius ρ(FV −1) i.e,

<0 = ρ(FV −1), (3.1.4)

where ρ(A) denotes the spectral radius of the matrix A.

3.2 Applications of the technique

We consider three examples obtained from van den Driessche and Watmough (2002).
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3.2.1 Example 1: TB treatment model

Consider the model

dS

dt
= bN − dS − β1

SI
N

,

dE

dt
= β1

SI
N

+ β2
TI
N
− (d + ν + r1)E + pr2I,

dI

dt
= νE − (d + r2)I − qr2I,

dT

dt
= r1E + qrrI − dT − β2

TI
N

.

(3.2.5)

Re-arranging the equations so that we start with infective classes, we obtain

dE

dt
= β1

SI
N

+ β2
TI
N
− (d + ν + r1)E + pr2I,

dI

dt
= νE − (d + r2)I − qr2I,

dS

dt
= bN − dS − β1

SI
N

,

dT

dt
= r1E + qrrI − dT − β2β2

TI
N

.

(3.2.6)

In this case m = 2 (Two infected compartments). From (3.2.6), we obtain

F =




β1
SI
N

+ β2
TI
N

0
0
0


 , V = V−i − V+

i =




(d + ν + r1)E − pr2I
(d + r2)I + qr2I − νE

dS + β1
SI
N
− bN

dT − r1E − qr2I + β2
TI
N


 .

The disease free equilibrium point of the system (3.2.6) has coordinates

(E∗, I∗, S∗, T ∗) = (0, 0, 1, 0).

The derivatives of F and V at (0, 0, 1, 0) are given by

F =
(

0 β1

0 0

)
and V =




d + ν + r1 −pr2

−ν d + r2




respectively. The inverse of V is given by

V −1 =
1

(d + ν + r1)(d + r2)− νpr2




d + r2 pr2

ν d + ν + r1



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and a calculation of FV −1 gives the reproduction number of the model as

<0 =
νβ1

(d + ν + r1)(d + r2)− νpr2

.

3.2.2 Example 2: Multi-strain model

We consider the model

dI1

dt
= β1SI1 − (b + γ1)I1 + νI1I2,

dI2

dt
= β2I2S − (d + r2)I2 − νI1I2,

dS

dt
= b− bS + ν1I1 + r2I2 − (β1I1 + β2I2)S,

(3.2.7)

The disease-free equilibrium is (0, 0, 1) and the derivatives of F and V

F =
(

0 β1

0 β2

)
and V =




b + r1 0

0 b + r2




giving

Ri =
βi

b + ri

i = 1, 2.

So that the reproduction of the model is given by

<0 = max
i={1,2}

Ri. (3.2.8)

3.2.3 Example 3: Host-Vector model

We consider the model governed by the system of differential equations (proposed by
Feng and Velasco-Hernandez (1997) for Dengue fever)

dI

dt
= βsSV − (b + r)I,

dV

dt
= βmMI − cV,

dS

dt
= b− bS + γI − βsSV,

dM

dt
= c− cM − βmMI.

(3.2.9)
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The DFE is x0 = (0, 0, 1, 1) and the derivatives of F and V at the disease free
equilibrium point are

F =
(

0 βs

βm 0

)
and V =




b + γ 0

0 c


 .

So that the reproduction number of the model is given by

<0 =

√
βsβm

c(b + γ)
. (3.2.10)

The interpretation of terms under the square-root is as follows: Infected vector pro-

duces on average
βs

b + γ
new hosts, while infected host produces

βm

c
new vectors. The

square root means that the disease is passed on through a vector i.e two generations
are required for an infected vector or host to ‘reproduce’ itself.

3.3 Exercises

1. Given a model dividing the population into three classes susceptibles (S), in-
fected (I) and vaccinated (V ); (Kgosimore, Koga and Lungu) with equations

dS

dt
= µN − βSI

N
− (µ + φ)S + θV,

dI

dt
= β

(S + σV )

N
− (µ + c)I,

dV

dt
= φS − σβ

V I

N
− (µ + φ)V,

(3.3.11)

Calculate <0.
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2. Consider the model given by

dX0

dt
= µN − λ̄X0 − (µ + φ)X0,

dX1

dt
= φX0 − (1− γ)λ̄X1 − µX1,

dX2

dt
= λ̄X0 − (µ + α + ν1)X2,

dX3

dt
= (1− γ)λ̄X1 − (µ + σ + ν2)X3,

dX4

dt
= αX2 + σX3 − (µ + ν3)X4,

dX5

dt
= ν1X2 + ν2X2 + ν3X4 − (µ + δ)X5,

(3.3.12)

where λ̄ =
cβ0X2 + cβ1X3 + β2X4

N
and X0− susceptible class, X1− vaccinated

susceptible class, X2− normal infected class, X3− vaccinate infected class, X4−
treated infected class, X5− full blown AIDS class. Draw the model diagram and
calculate reproduction number for the model (Kgosimore and Lungu (2006)).

3. For the SIR model
dS

dt
= Π− βSI − µS,

dI

dt
= βSI − (µ + γ)I,

dR

dt
= γI − νR,

(3.3.13)

Show that the basic reproduction number of the model is <0 =
βS∗

µ + γ
.

4. For the SIS model
dS

dt
= Π− βSI − µS + αI,

dI

dt
= βSI − (µ + γ + α)I,

(3.3.14)

Show that the basic reproduction number of the model is <0 =
βS∗

µ + γ + α
.



Chapter 4

Advanced HIV/AIDS Models

4.1 HIV/AIDS model with treatment

4.1.1 Model formulation

It is known (WHO 2006), that there are three stages of HIV before full blown AIDS
develops. Hence, staging of HIV introduces reality into the model. Accordingly,
we study a population divided into the following classes: Susceptible individuals X,
infected individuals in the primary (high viral load stage) HIV stage Y, infected indi-
viduals in the incubation stage of HIV I1, the pre-AIDS (a period of high viral load
or the pre AIDS stage) stage of HIV I2, and treated individuals with full blown AIDS
A.

We shall consider two scenarios namely (i) the case when treated AIDS individuals
remain in the AIDS stage. This is true in the case where individuals reduce their
viral load but their CD4 count is still significantly lower than that of the individuals
in classes I1 and I2. (ii) In the second scenario, treated AIDS individuals are assumed
to achieve a very low viral load and a significantly high CD4 count and can therefore
be considered to have made a transition to the incubation HIV stage. In both sce-
narios, we ignore disease related death in order to allow us to understand the disease
dynamics. The error of this assumption is investigated numerically.

New susceptible individuals enter the sexually active population at a rate bN. Sus-
ceptible individuals become HIV-infected at rate λX. The force of infection given
by

λ =
c1β1Y + c2β2I1 + c3β3I2 + c4β4A

N
, (4.1.1)

where β1 denotes the per partnership transmission probability of individuals in the
Y class, β2 denotes the per partnership transmission probability of individuals in
the I1 class, β3 denotes the per partnership transmission probability of individuals
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individuals in the I2 class, β4 denotes the per partnership transmission probability
of individuals in the A class and ci where i = 1, 2, 3, 4 is the average number of new
sexual partners acquired per unit time. Infected individuals in the primary stage
progress to the incubation stage at the rate σ. Infected individuals in the incubation
stage progress to the pre-AIDS stage at the rate ν1. Infected individuals in the pre-
AIDS stage progress to full blown AIDS at the rate θ. The model is then described
by a system of ordinary differential equations

Model 1

Ẋ = bN − λX − µX,

Ẏ = λX − (µ + σ)Y, (4.1.2)

İ1 = σY − (µ + ν1)I1,

İ2 = ν1I1 − (µ + θ)I2,

Ȧ = θI2 − µ̂A,

where we shall assume µ̂ ≈ µ and

N = X + Y + I1 + I2 + A.

Adding equations of system (4.1.2), we obtain Ṅ = (b − µ)N. We shall assume that
b = µ, so that the model becomes a constant population model.

Define local variables

y1 =
X

N
, y2 =

Y

N
, y3 =

I1

N
, y4 =

I2

N
, y5 =

A

N
,

then system (4.1.2) can be written as

ẏ1 = b− by1 − λ̄y1,

ẏ2 = λ̄y1 − (b + σ)y2,

ẏ3 = σy2 − (b + ν1)y3, (4.1.3)

ẏ4 = ν1y2 − (b + θ)y4,

ẏ5 = θy4 − by5.

where

y1 + y2 + y3 + y4 + y5 = 1 and λ̄ = c1β1y2 + c2β2y3 + c3β3y4 + c4β4y5.

4.1.2 Steady state solutions

We solve the system

b− by∗1 − λ̄∗y∗1 = 0, (4.1.4)
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λ̄∗y∗1 − (b + σ)y∗2 = 0, (4.1.5)

σy∗2 − (b + ν1)y
∗
3, (4.1.6)

ν1y
∗
3 − (b + θ)y∗4 = 0, (4.1.7)

θy∗4 − by∗5 = 0. (4.1.8)

Equations (4.1.4) to (4.1.8) yield

y∗1 =
1

R1

,

y∗2 =

(
µ

µ + σ

) (
R1 − 1

R1

)
,

y∗3 =

(
µ

µ + σ

)(
σ

µ + θ

) (
R1 − 1

R1

)
,

y∗4 =

(
µ

µ + θ

)(
σ

µ + σ

)(
ν1

µ + ν1

) (
R1 − 1

R1

)
,

y∗5 =

(
θ

µ + θ

)(
ν1

µ + ν1

)(
µ

µ + σ

)(
σ

µ + σ

) (
R1 − 1

R1

)
,

where

R1 =
µ

µ + σ
Rop +

σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot,

where

Rop =
c1β1

µ
, Rom

c2β2

µ + ν1

, Roa
c3β3

µ + θ
, Rot

c4β4

µ
.

Theorem 4.1.1 The endemic equilibrium point exits for R1 > 1.

In the model above, we assumed that treated HIV individuals remained in the AIDS
class, which dynamically is equivalent to a no treatment model. In the next model,
we consider a scenario in which the viral load of treated AIDS individuals reduces
significantly and their CD4 count improves to a level of individuals in the intermediate
stage. Such individuals may be considered to have made a transition to the incubation
stage. The model may now be described by the following system:

Model 2

Ẋ = bN − λX − µX,

Ẏ = λX − (µ + σ)Y, (4.1.9)

İ1 = σY − (µ + ν1)I1 + ν2A,

İ2 = ν1I1 − (µ + θ)I2,

Ȧ = θI2 − (µ + ν2)A,
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where

λ =
c1β1Y + c2β2I1 + c3β3I2 + c4β4A

N
,

and
N = X + Y + I1 + I2 + A.

Define dimensionless variables

x =
X

N
, y =

Y

N
, i =

I1

N
, a1 =

I2

N
, a2 =

A

N
,

the system becomes

ẋ = b− λ̂x− µx,

ẏ = λ̂x− (µ + σ)y, (4.1.10)

i̇ = σy − (µ + ν1)i + ν2a2,

ȧ1 = ν1i− (µ + θ)a1,

ȧ2 = θa1 − (µ + ν2)a2,

where

λ = c1β1y + c2β2i + c3β3a1 + c4β4a2

and
x + y + i + a1 + a2 = 1.

The disease free equilibrium is given by

(x∗, y∗, i∗, a∗1, a
∗
2) = (1, 0, 0, 0, 0)

and the endemic equilibrium is given by (x∗, y∗, i∗, a∗1, a
∗
2) where the components are

given by

x∗ =
1

R2

,

y∗ =
(

µ

R2

)
(R2 − 1),

i∗ =
σµ (µ + ν2) (µ + θ)

((µ + ν1) (µ + ν2) (µ + θ)− ν1ν2θ)
(R2 − 1), (4.1.11)

a∗1 =
σν1µ (µ + ν2)

((µ + ν1) (µ + ν2) (µ + θ)− ν1ν2θ)
(R2 − 1), (4.1.12)

a∗2 =
σν1µθ

((µ + ν1) (µ + ν2) (µ + θ)− ν1ν2θ)
(R2 − 1), (4.1.13)
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where

R2 =
µ

µ + σ
Rop +

(
σ

µ + σ

)
Rom +

(
ν1

µ + ν1

) (
σ

µ + σ

)
Roa

+
(

θ
µ+θ

) (
ν1

µ+ν1

) (
σ

µ+σ

)
Rot

(
1−

(
ν1

µ+ν1

) (
ν2

µ+ν2

) (
θ

µ+θ

))−1
.

Theorem 4.1.2 The endemic equilibrium point exists for R2 > 1.

4.1.3 The reproduction numbers R1 and R2.

In this section, we compare the reproduction numbers from our two models. By
expanding

(1− ε)−1 = 1 + ε + O (ε)2 ,

where

ε =

(
ν1

µ + ν1

) (
ν2

µ + ν2

) (
θ

µ + θ

)
,

we can rewrite the reproduction number R2 as follows:

R2 =
µ

µ + σ
Rop +

{(
σ

µ + σ

)
Rom +

(
ν1

µ + ν1

) (
σ

µ + σ

)
Roa

+

(
θ

µ + θ

) (
ν1

µ + ν1

) (
σ

µ + σ

)
Rot

}
(1− ε)−1 ,

=
µ

µ + σ
Rop +

σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot

+

[
σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot

]
ε + O(ε2)

= R1 +

[
σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot

]
ε + O(ε2),

> R1.

In the two models considered above, we have considered the effect of decreased in-
fectivity and increased duration of infectiousness. We have demonstrated through
a comparison of the reproduction numbers R1 and R2 that the effect of decreased
infectivity and increased duration of infectiousness may be to increase the pool of
transmitters of infection. This confirms the result by Baggaley R. F et al. (2005),
who also concluded that ARV administration may result in increase in life expectancy
of individuals over time and over this time this may cause an increase in a pool of
transmitters of the disease. Our result has been obtained in the absence of education
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on prevention. The situation may of course improve with effective education on pre-
vention.

Exercise

Use the Routh-Hurwitz conditions to study the stability of the two models in this
chapter.
Hint: For the coefficients of a polynomial equation

λn + a1λ
n−1 + a2λ

n−2 · · · · · · an−1λ + an = 0,

the conditions for n = 4 are

a4 > 0, a2 > 0, a1 > 0, a3(a1a2 − a4) > a2
1a4.

4.1.4 Varying population model

In the previous sections, we analyzed constant population models in order to gain
understanding of the dynamics of the disease. Exclusion of disease related death in
the case of AIDS is a very unreasonable assumption but it allows us to investigate
the worst scenario as the accumulation of AIDS individuals is at its maximum. In
this chapter, we consider the effect of deaths due to HIV. Let δ be the death rate due
to AIDS. Then, the system (4.1.10) becomes

Ẋ = bN − λX − µX,

Ẏ = λX − (µ + σ)Y, (4.1.14)

İ1 = σY − (µ + ν1)I1 + ν2A,

İ2 = ν1I1 − (µ + θ)I2,

Ȧ = θI2 − (µ + ν2 + δ)A,

where

λ =
c1β1Y + c2β2I1 + c3β3I2 + c4β4A

N

and
N = X + Y + I1 + I2 + A.

Adding the equations in (4.1.14) we obtain

Ṅ = (b− µ)N − δA.

It is not easy to find the endemic equilibrium point as in the previous sections. How-
ever, to understand the effect of disease related deaths, we only need to find the
reproduction number from which the effect of disease related deaths can be inferred.
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The reproduction number for this model can be found using the disease free equilib-
rium point. This is given by

R3 =
µ

µ + σ
Rop +

{(
σ

µ + σ

)
Rom +

(
ν1

µ + ν1

) (
σ

µ + σ

)
Roa

+

(
θ

µ + θ

) (
ν1

µ + ν1

) (
σ

µ + σ

)
Rot

}
(1− ε̂)−1

=
µ

µ + σ
Rop +

σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot

+

[
σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot

]
ε̂ + O(ε̂2)

= R1 +

[
σ

µ + σ
Rom +

ν1

µ + ν1

σ

µ + σ
Roa +

θ

µ + θ

ν1

µ + ν1

σ

µ + σ
Rot

]
ε + O(ε̂2)

< R2.

where

ε̂ =

(
ν1

µ + ν1

) (
ν2

µ + ν2 + δ

) (
θ

µ + θ

)
< ε.

Clearly, if the total population is decreasing, that is, when b ≤ µ, then the effect of dis-
ease related deaths is to lower the reproduction number. We investigate numerically
what happens when the population is increasing.
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Figure 4.1: Graphs showing sub-population levels for a decreasing population for the
following parameter values: b = µ = 0.02, β1 = 0.001, β2 = 0.5, β3 = 0.01, β4 =
0.01, ν1 = 0.03, ν2 = 0.02, c1 = 1, c2 = 2, c3 = 1.25, c4 = 1.25, θ = 0.1, σ = 0.1
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Figure 4.2: Graphs showing sub-population levels for an increasing population for
the following parameter values: b = 0.03, µ = 0.02, β1 = 0.001, β2 = 0.5, β3 =
0.01, β4 = 0.01, ν1 = 0.03, ν2 = 0.02, ν3 = 0.005, c1 = 1, c2 = 2, c3 = 1.25, c4 =
1.25, θ = 0.1, σ = 0.1

When b ≤ µ, the population size of susceptible individuals can decrease to below the
population size of AIDS individuals. However, when b > µ, the population size of
susceptible individuals remains greater, in the short term, even though there is an
accumulation of AIDS individuals in the total population.

4.2 Spread of diseases for interlinked discrete ge-

ographic locations

There are many factors that affect the spread of infectious diseases. Some of these
are

1. Cultural beliefs

2. Living styles

3. Sexual practices

4. Climatic and Environmental factors.

For some infectious diseases such as (i) Foot and Mouth diseases (in Southern Africa)
(ii) SARS (in South East Asia/Western Countries), e.t.c, travel and movement of
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animals are important factors that must be included in eradication strategies. For
Foot and Mouth and SARS, quarantine is a very important option as an eradication
strategy. For HIV/AIDS, cultural beliefs and sexual practices are very important fac-
tors in disease propagation. In the case of HIV, travel is also important, but because
the incubation period is very long, eradication strategies that work for SARS might
not be appropriate. Infectious diseases such as foot and mouth disease and SARS are
spread over a very short time scale. Diseases such HIV/AIDS, TB are spread over a
long period of time scale. Information on time scales help us to know which effects
to include in our model. Consider the spread of SARS for two neighbouring distinct
settlements with road/train travel between them. While on the bus/train some of
the susceptibles on the journey (αS2) may be infected by infectives (I2) at the rate
γα to produce

γαS2I2

S2 + I2

infectives for settlement 1. Similarly, for those travelling to settlement 2, some of the
susceptibles (αS1) may be infected by infectives I1 at the rate αγ to produce

γαS1I1

S1 + I1

infectives for settlement 2. Because of the time scales involved here, we can ignore
cross infection i.e.

γαSiIj

Si + Ij

where i 6= j.

The model in this case can be written as

Settlement 1

Ṡ1 = a− βS1I1

S1 + I1

− bS1 + dI1 − αS1 + αS2 − αγS2I2

S2 + I2

,

İ1 =
βS1I1

S1 + I1

− (c + d + α)I1 + αI2 +
αγS2I2

S2 + I2

.

(4.2.15)

Settlement 2

Ṡ2 = a− βS2I2

S2 + I2

− bS2 + dI2 − αS2 + αS1 − αγS1I1

S1 + I1

,

İ1 =
βS2I2

S2 + I2

− (c + d + α)I2 + αI1 +
αγS1I1

S1 + I1

.

(4.2.16)

For HIV/AIDS the time scale for infection of susceptibles is much longer. Indeed
most likely nobody will be infected during travel. Now we cannot ignore the terms
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of the type

SiIj

Si + Ij

where i 6= j.

Now, if we want to reduce the number of terms, we can take into account the quality
of education in the two settlements, cultural beliefs e.t.c.

Consider the model (4.2.15-4.2.16):

We can study several sub-cases to understand the broader picture.

Case 1: Neglect movement of individuals i.e. α = 0.

Then, the two settlements are not communicating, each one is an absorbing state.
This gives the Brauer-Castillo-Chavez model in each settlement given by

Ṡ = a− βSI

S + I
− bS + dI,

İ =
βSI

S + I
− (c + d)I.

(4.2.17)

Here, there is one infective class

F =
βSI

S + I
, V = (c + d)I. (4.2.18)

Note that the DFE is given by
(

a

b
, 0

)
and

F =
∂F
∂I

= β, V =
∂V
∂I

= c + d, FV −1 = <0 =
β

c + d
.

The endemic equilibrium point is given by

(S∗, I∗) =

(
a

b + c(<0 − 1)
,

a(<0 − 1)

b + c(<0 − 1)
.

)
(4.2.19)

The disease-free equilibrium exists and is globally asymptotically stable for <0 < 1.
The endemic equilibrium point S∗, I∗ exists for <0 > 1 and is globally asymptotically
stable where it exists.

Case 2: Only susceptible individuals travel:
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In this case, infected individuals are prohibited from travelling. The model becomes

Ṡ1 = a− βS1I1

S1 + I1

− bS1 + dI1 − αS1 + αS2,

İ1 =
βS1I1

S1 + I1

− (c + d)I1,

Ṡ2 = a− βS2I2

S2 + I2

− bS2 + dI2 − αS2 + αS1,

İ2 =
βS2I2

S2 + I2

− (c + d)I2.

(4.2.20)

The disease-free equilibrium in both settlements is given by

(S∗1 , I
∗
1 , S

∗
2 , I

∗
2 ) =

(
a

b
, 0,

a

b
, 0

)
.

The disease-free in one settlement but endemic in the other settlement is either

(S∗1 , I
∗
1 , S

∗
2 , I

∗
2 ) =

(
a

b
, 0,

a

b
,

bd

a(β + d)

)
,

or

(S∗1 , I
∗
1 , S

∗
2 , I

∗
2 ) =

(
a

b
,

aβ

b + d
,
a

b
, 0

)
.

The model reproduction number <0:

In this case m = 2

F =




βS1I1

S1 + I1

βS2I2

S2 + I2


 , V =

(
(c + d)I1

(c + d)I2

)

F =
(

β 0
0 β

)
and V =




c + d 0

0 c + d


 ,

so that

FV −1 =




β
c+d

0

0 β
c+d


 and <0 =

β

c + d
.

The model behaves like a disease-free model. Clearly we can see that quarantine is
very effective.
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Exercises

1. Investigate the stability of the model (4.2.15) - (4.2.16) when there is free move-
ment.

2. Consider a model described by a system of ordinary differential equations

Ẋ1 = π −BX1 − µX1,

Ẋ2 = BX1 − (ρ + µ)X2,

Ẋ3 = ρX2 − (σ + µ)X3,

Ẋ4 = σX3 − µX4

where B = βX1+γX3

N
, π is constant recruitment for the susceptible population

X1, β and γ are transmission probabilities for normal infectives X2 and carriers
X3 respectively, µ is the natural death rate, ρ is the rate at which normal
infectives become carriers and σ is the rate at which carriers are removed.

(a) Find the equilibrium points.

(b) Determine the model reproduction number R.

(c) Investigate the stability of the equilibrium points.

3. An HIV/AIDS model with carriers in the presence of random screening is given
by

Ẋ1 = π −BX1 − µX1,

Ẋ2 = BX1 − (ρ1 + ρ2 + µ)X2,

Ẋ3 = ρ1X2 − (σ1 + µ + ε)X3,

Ẋ4 = εX3 − (σ2 + µ)X4

Ẋ5 = ρ2X2 + σ1X3 + σ2X4 − µX5

where B =
βX2 + γX3

N
, N = X1 + X2 + X3 + X4 + X5, and the parameters

β, γ, ρ1, ρ2, γ1, γ2, µ, ε are positive constants.

(a) Define the parameters in the model.

(b) Find the equilibrium points.

(c) Determine the model reproduction number R.

(d) Investigate the stability of the equilibrium points.



Chapter 5

Other Mathematical Modelling
Problems

5.1 Modelling HIV-TB co-infection

The estimated incidence of Tuberculosis (TB) is growing worldwide. The HIV pan-
demic has increased the TB case load by five or more times in Sub-Saharan Africa.
TB is an example of a disease with an exposed non-infectious class. Infected individ-
uals are called active TB cases. Worldwide more than 2 billion individuals are known
to harbor the TB bacteria. For this reason, it is important to develop the TB models
with the hope of providing insight into the dynamics of the disease.

5.1.1 The model description

We assume that individuals enter the susceptible class (S) at the rate bN and leave
all classes at the rate µ. Susceptible individuals are infected at a per capita rate λ.
This force of infection depends on the probability of infection β. Once infected, indi-
viduals are not immediately infectious, they enter the exposed class E. A fraction of
individuals develop noninfectious sputum-smear-negative SS− TB and join the class
L. The rest develop infectious sputum-smear-positive SS+ and join the class I. The
parameters in the SELIR disease transmission model have the following meaning.

1. an average infective individual produces β new infections per unit of time when
all contacts are with susceptibles but otherwise this rate is reduced by the ratio
S/N, where N = S + E + L + I.

2. individuals in the exposed class E progress to the noninfectious sputum-smear-
negative SS− class at the per capita rate (1− α)κ.
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3. individuals in the exposed class E progress to the sputum-smear-positive SS+
class at the per capita rate ακ.

4. the removal rates from the L and I classes are γ1 and γ2 respectively.

The model equations are

Ṡ = bN − µS − βS
I

N
, (5.1.1)

Ė = βS
I

N
− (κ + µ)E, (5.1.2)

L̇ = (1− α)κE − (γ1 + µ)L, (5.1.3)

İ = ακE − (γ2 + µ)I, (5.1.4)

Ṙ = γ1L + γ2I − µR. (5.1.5)

5.2 Modelling the role of chemo-prevention in malaria

5.2.1 Model formulation

The model consists of six ordinary differential equations which specify the rate of
change of four categories of individuals in the human population and two categories of
the vector population over time. The human population consists of a class susceptible
individuals (S), a class of individuals under chemoprevention (V ), a class infected
individuals (I) and a class of individuals who recover with temporary immunity (R),
while the vector population consists of a class of susceptible mosquitoes (Sv) and a
class of infected mosquitoes (Iv). Suppose the human population NH (where NH =
S + V + I + R) and the vector population Nv (where Nv = Sv + Iv) have constant
mortality rates µ and ν respectively. The mortality rate of the vector population is a
sum of the natural and induced (for example by the use of pesticides) mortality rates.
A proportion ε of the population is under chemotherapy (i.e given malaria prevention
drugs) while (1 − ε) are not. Furthermore, therapy only reduces the probability of
infection when exposed to pathogens, i.e it offers a degree of protection denoted ψ
with (1 − ψ) measuring the protection failure of the therapy, so that ψ = 0 means
the therapy is completely ineffective in preventing infection, while ψ = 1 means the
therapy is very effective i.e no individual under therapy will be infected. We let
β1, β2 and β3 be the effective contacts between susceptible individuals and vectors,
individuals under chemoprevention and vectors and susceptible vectors and infected
individuals respectively. The effective contact rate between the human and vector
populations may be defined as the average number of contacts per given time that
will lead to the infection of one population if the other population is infectious. It is
taken to be the product of the number of bites per vector per host per unit time, the
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proportion of bites that lead to an infection and the ratio of the vector numbers to the
host numbers. Even though the human population under chemoprevention can still
be infected and become infections, it will be reasonable to assume that β1 > β2. The
chemoprevention immunity wanes at a rate θ and thus the average time of prevention
is 1

θ
. We assume a recovery rate γ for infected individuals who loose immunity at a

rate σ. The dynamics of the disease is modelled by the following system of differential
equations. All parameters in the model are positive.

Ṡ(t) = µ(1− ε)NH − µS(t)− β1S(t)
Iv(t)

Nv

+ θV (t) + σR,

V̇ (t) = µεNH − (1− ψ)β2V (t)
Iv(t)

Nv

− (µ + θ)V (t),

İ(t) = β1S(t)
Iv(t)

Nv

+ (1− ψ)β2V (t)
Iv(t)

Nv

− (γ + µ)I(t),

Ṙ(t) = γI(t)− (µ + σ)R(t), (5.2.6)

Ṡv(t) = νNv − νSv − β3Sv(t)
I(t)

NH

,

İv(t) = β3Sv(t)
I(t)

NH

− νIv(t).

5.3 Modelling fisheries

5.3.1 Harvesting

The theory of harvesting is important in natural resource management and bioeco-
nomics. Most species have a growth rate which more or less maintains a constant
population equal to the carrying capacity of the environment K (this of course de-
pend on the population). In this case the growth and death rates are nearly equal.
The harvesting of species affects their mortality rates and if the harvesting is not
too much the population will adjust to a new equilibrium N∗ < K. It has been
evident that there is need to develop ecologically acceptable strategies for harvesting
any renewable resources such as fish, plants, animals etc. It is interesting to note
that even if the excess harvest does not threaten extinction, it can cause damage to
the resource in the long run. Massive fruit collection from the forest has an adverse
effect on regeneration. The problem then is to determine a strategy which ensures
steady harvest year after year without a progressive decline in the abundance of the
resource. The aim of this section is to determine the acceptable harvesting strategies.
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5.3.2 Maximum sustainable yield (MSY)

The problem here is how to maximize the sustainable yield (SY) by determining
the population growth dynamics so as to obtain a harvesting rate which keeps the
population at its maximum growth. We consider a logistic population growth model
in which the mortality rate is enhanced by harvesting, by a term that is proportional
to the existing population N . We consider a logistic growth model

F (N) = rN
(
1− N

K

)
, (5.3.7)

where r is the intrinsic growth rate and K the carrying capacity of the environment.
Considering the effort E of harvesting, we assume that the harvest is proportional to
the stock level as well as the effort ie h = qEN where q is the constant of proportion-
ality called the catchability constant. The effort is measured in man days. If grass is
cut with strokes of a sickle, the harvest depends on the number of strokes E on the
grass density. If the effort is constant then the harvest as a function of the stock is a
straight line passing through the origin. The greater the effort the steeper the slope.
The intersection of the line or the growth curve gives the sustainable yield. The net
growth rate after harvest is given by

dN

dt
= rN

(
1− N

K

)
− qEN

At equilibrium ie dN
dt

= 0 We have

N
[
r(1− N

K
− qE)

]
= 0

We thus have N∗
1 = 0 and

N∗
2 = (r − qE)

k

r
= k(1− qE

r
) (5.3.8)

Note that N∗
2 > 0 if qE

r
< 1 i.e qE < r and this ensures population growth in the

presents of harvesting. On the other hand if qE > r the only steady state that exists
is N∗

1 i.e if the harvesting effort is greater than r then the species die out.

Since h = qEN , from (5.3.8) we get

h = qEK
(
1− qE

r

)
.

The sustainable yield is a quadratic function of E and is maximized when dh
dE

= 0 i.e
E∗ = r

2q
. At this effort we will get the MSY given by

h∗ =
rK

4
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5.3.3 Fisheries management

Most dams in Africa have put restrictions on fishing. They are now allowing seasonal
fishing as opposed to continuous fishing to allowing for breeding. Fisheries can either
be open access or sole fisheries.

Open access fisheries

Definition 5.3.1 An open-access fishery is an unrestricted fishery in which fisher-
man fish at will.

We give a model below for such a fishery;

dN

dt
= rN

(
1− N

K

)
− qEN,

dE

dt
= κ(pqN − c)E,

where N is the stock level, E is the fishing effort level, r is the intrinsic growth of
the stock, K is the carrying capacity of the stock, q is the catchability constant, p
is the price of fish, c is the (opportunity) cost per unit effort and κ a constant of
proportionality. We have looked at the first equation but the second equation states
that the rate of change of the fishing effort is proportional to the profit where pqEN
is the revenue and cE the costs. Despite the economic interpretation of the model, it
is still a Volterra model with fisherman as the predator.

Exercise

Carry out the stability analysis of the model and give logical interpretations.

Sole-owner fishery (Optimal Harvesting)

Definition 5.3.2 A sole-owner fishery is one owned and regulated by an individual.

We shall assume that the sole owner is a profit maximizer, the question here is; how
is he expected to harvest his fish? One common approach is to use the ‘present value’
to make decisions for future gains. This is like considering an interest rate of 10%
per year, on income of 100 units will be equivalent to 110 units the following year.
In general if the interest is 100n%, then the present value of the income Pt will be
Pt(1 + n)−t, t years from today and

Pt(1 + n)−t = Pte
−δt
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where δ = ln(1 + n). If the income flow over a period (0, T ) given by Pt, then the
total total present value of this income flow is

P =
∫ T

0
Pte

−δt =
∫ T

0
e−δt(pqN − c)Edt

This is the objective function to be maximized in the present value approach. The
variable to cost is E. The maximization is subject to the condition

dN

dt
= rN

(
1− N

K

)
− qEN = F (N)− qEN.

The owner wishes to control the fishing effort E(t) so as to maximize the discounted
net economic rent (profit) over a period T of ownership. The profit is discounted
at a rate δ because a dollar today is worth more than a dollar tomorrow if only the
owner can invest today’s dollar. The maximum fishing effort is usually determined
by the number of boats, the labor, and any purchase of new fishing equipment or
reduced boat sizes. Any change in the fishing effort has an immediate effect on the
state variable and stock level N(t). This then is an optimal control theory problem.

Let us then begin by considering a sole-owner fishery with no cots and discounting.

Example 5.3.3 Consider a problem to find

max
0 ≤ E ≤ Emax

∫ T

0
pqE(t)N(t)dt

subject to

dN

dt
= rN

(
1− N

K

)
− qEN = f(N)− qEN, (0) = K.

This is a typical optimal control problem which contains

1. the state variable N(t).

2. a set of admissible controls E .

3. the control variable E(t) ∈ E .

4. the objective functional, payoff J(N(t), E(t)).

We need one more tool to tackle our example.

Pontryagin’s Maximum Principle

We wish to find
max

E ∈ E J(N(t), E(t))
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where

J(N(t), E(t)) =
∫ t1

t0
F [N(t), E(t), t]dt + G[t0, N(t0), t1, N(t1)]

subject to
dNi

dt
= fi(N(t), E(t), t)

for i = 1, 2, · · ·n state variables with initial and terminal conditions xi(t0) = xi0 and
xi(t1) = xi1 respectively. We will also assume that each of the control variables is
piecewise continuous and the functions F, G and fi are well behaved. If E(t) is an
optimal control and if N(t) is the corresponding response then;

1. we can define adjoint variables λ(t) = [λ0, λ1(t), · · · , λn(t)] with λ0 a constant
and λ(t) 6= 0.

2. we can define a Hamiltonian:

H(N,E, λ, t) = λ0F +
n∑

i=1

λi(t)fi(N,E, t)

and a maximized Hamiltonian is defined

M [N(t), λ(t), t] = sup
E∈E

H[N(t), E(t), λ(t), t]

3. the control variable E(t) ∈ EH[N(t), E(t), λ(t), t].

Pontryagin’s Maximum Principle states that:
If E(t) is an optimal control and if N(t) is the corresponding response, then:

1. there exists
λ(t) = [λ0, λ1(t), · · · , λn(t)]

with
λ(t) 6= 0, t0 ≤ t ≤ t1

such that the canonical equations

dNi

dt
=

∂H

∂λi

, (5.3.9)

dλi

dt
= − ∂H

∂Ni

, (5.3.10)

are satisfied for each i = 1, 2, · · · , n.

2. E(t) satisfies

H[N(t), E(t), λ(t), t] = M [N(t), λ(t), t]. (5.3.11)
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3. the transversality condition

λ0dG +


M(t1)dt1 −

n∑

i−1

λi(t1)dxi1


−


M(t0)dt0 −

n∑

i−1

λi(t0)dxi0


 = 0

is satisfied.

Equations (5.3.9) and (5.3.10) form a system of ordinary differential equations for the
state variables and the adjoint variables. Equation (5.3.11) additional conditions for
the control variables. The transversality condition supplies the missing initial and
terminal conditions.

We can now go back to the example (5.3.3). The initial condition suggests that the
fishery is in its pristine condition at the beginning. The procedure is as follows:
We form the Hamiltonian

H = pqEN + λ[f(N)− qEN ]

or
H = q(p− λ)EN + λf(N)

The corresponding canonical equations are simply

dN

dt
= G(N)− qEN (5.3.12)

dλ

dt
= −dH

dN
= −q(p− λ)E − λf ′(N) (5.3.13)

The Hamiltonian is linear in the control variable E. To maximize the Hamiltonian
we must close.

E(t) =

{
Emaximum + λ(t) < p
0 + λ(t) > p.

if λ = p then G1(N) = 0 we must then keep the stock at a level that maximizes the
sustainable yield

N(t) = N∗
MSY

The control variable

E∗(t) =
f(N∗

MSY )

qN∗
MSY

(5.3.14)

We conclude that we must harvest at the maximum possible rate,leave the stock alone
or apply singular control (5.3.14) depending on the magnitude of λ(t).

The transversality condition is supposed to provide use with missing initial and ter-
minal conditions. We will take dt0 = dt1 = 0 the initial and terminal times. We also
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do not have the initial and terminal payoffs ie df = 0. The state variable is fixed
at t0 = 0 (dN, = 0). The state variable is unconstrained at t1 = T so that dN1 is
arbitrary. This reduces the transversality condition to λ(T ) = 0. This is actually the
terminal value on the adjoint variable and not on the initial condition. We thus have
a boundary value problem (BVP).

Example 5.3.4 Find

max
0 ≤ E ≤ Emax

∫ T

0
e−δt[pqN(t)− c]E(t)dt

subject to

dN

dt
= f(N)− qEN, N(0) = K.

The Hamiltonian, which is linear in the control variable is given by

H = e−δt[pqN − c]E + λ[f(N)− qEN ]

= [e−δt(pqN − c)E − λqN ]E + f(N).

The coefficient of E,
ψ = e−δt(pqN − c)E − λqN

is a switching function, i.e it may change sign.

We are interested in the interval where the switching function is identically zero. On
such intervals we have singular controls that dominate the problem. There will also
be a rapid approach to singular state at the beginning of the problem and some profit
taking at the end of the problem. Setting ψ to zero, we have

λ = e−δt

(
p− c

qN

)
.

Differentiating with respect to t gives

dλ

dt
= −δe−δt

(
p− c

qN

)
+ e−δt c

qN2

dN

dt
(5.3.15)

= −δe−δt

(
p− c

qN

)
+ e−δt c

qN2
(f(N)− qEN). (5.3.16)

For the canonical equation for the time derivative of λ is given by

dλ

dt
= −δe−δtpqE + λqE − λf ′(N). (5.3.17)
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Equating (5.3.16) and (5.3.17) gives

f ′(N) = δ − cf(N)

N(pqN − c)
. (5.3.18)

Exercise Derive result (5.3.18).

Equation (5.3.18) is an implicit equation for the unknown N . So, any unknown
N∗, which satisfies the above equation is a singular solution of our original control
problem. We can rewrite the equation as

f ′(N) = δ −
c

qN2 f(N)

p− c
qN2

. (5.3.19)

If we multiply by the denominator on the right hand side of (5.3.19) and doing some
nit of manipulation, we obtain

[
(p− c

qN
)f ′(N) +

c

qN2
f(N)

]
= δ

(
p− c

qN

)
,

or simply

dS

dN
= δ

(
p− c

qN

)
, (5.3.20)

where S = (p− c
qN

)f(N).

S can be taken as the sustainable rent (profit).

Definition 5.3.5 The sustainable rent is the difference between the revenue and the
costs for a given level of effort.

Considering (5.3.20), the case δ = 0, gives dS
dN

= 0. This corresponds to choosing
the stock level that maximizes the sustainable rent. We can find the stock level by
considering

dN

dt
= rN

(
1− N

K

)
− qEN

and at equilibrium we have

N∗ = K
(
1− q

E∗

r

)

The equilibrium stock is a function of the effort level. Note that

qE∗N∗ = qKE∗
(
1− qE∗

r

)
.
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The sustainable rent S can be written as

S =

(
pqN − c

qN

)
f(N)

but at equilibrium N ′(t) = 0, giving f(N) = qEN , giving

S = pqE∗N∗ − cE∗.

To maximize the rent we need to maximize the difference between revenue and the
cost functions. We can do this by choosing the effort level so that the slope of the
revenue curve is identical to the slope of the cost function. Costs lead to reduced
fishing and greater amounts of environmental conservation.

The case where δ = ∞, we require that

pqN∗ = c

and the sustainable rent is zero. If there are costs, increases in discount rate need not
lead to the extinction of the stock. The sole-owner fishery looks more and more like
an open access fishery, all economic rent is squandered.

Exercises

1. Consider the model (5.1.1) - (5.1.5).

(a) Show that the mean number of secondary infections (belonging to the
exposed class) produced by one infective individual in a population of
susceptibles is Q0 = β

γ

(b) Assuming that κ and µ are time-independent, show that R0 is given by
Q0f where f = κ/(κ + µ). What is the epidemiological interpretation of
Q0f?

(c) Choose suitable values of b and set γ = 1yr−1, β = 10yr−1. Simulate the
epidemic starting at t = 0, S = 250888 for constant values of f.

(d) Find the equilibrium points and find conditions under which the model is
stable.

(e) Use Watmough’s technique to find the model reproduction number and
discuss the existence and stability of the endemic equilibrium point.

(f) Suppose the suscetible individuals are vaccinated but the vaccine wanes
with time, write down the modified model and repeat the analysis.
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2. If we include treatment of infected individuals as well as treatment failure, the
model equations are:

Ṡ = bN − µS − βS I
N

,

Ė = βS I
N
− (κ + µ)E + σpI,

İ = ακE − (σ + µ)I,

Ṫ = σ(1− p)I − (γ + µ)T,

Ṙ = γT − µR,

where σ is the rate of treatment failure, 0 < p < 1, T is the class of treated
individuals, and γ is the rate of removal.

(a) Find the equilibrium points and find conditions under which the model is
stable.

(b) Use Watmough’s technique to find the model reproduction number and
discuss the existence and stability of the endemic equilibrium point.

3. Consider model (5.2.6) and answer the following questions.

(a) Introducing the following fractions

s =
S(t)

NH

, v =
V (t)

NH

, i =
I(t)

NH

, r =
R(t)

NH

, sv =
Sv(t)

Nv

and iv =
Iv(t)

Nv

and using the relations r = 1 − v − i − s and sv = 1 − iv show that the
system reduces to

ṡ = π − (µ + σ)s− β1siv + (θ − σ)v − σi, (5.3.21)

v̇ = µε− (1− ψ)β2viv − (µ + θ)v, (5.3.22)

i̇ = β1siv + (1− ψ)β2viv − (γ + µ)i, (5.3.23)

i̇v = β3i(1− iv)− νiv. (5.3.24)

where π = µ(1− ε) + σ.

(b) Determine the disease free equilibrium point of the system (5.3.21) - (5.3.24).

(c) Show that reproductive number is given by

R =

√√√√β3(β1(1− φ) + (1− ψ)β2φ)

ν(γ + µ)
.

(d) Show that this reproduction number can be written as

R =
√

Rv ·Rh
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where Rv = β3

ν
, and

Rh = (1− φ)R1 + φ(1− ψ)R2,

with R1 = β1

µ+γ
and R2 = β2

µ+γ
.

(e) From the value of R, show that the critical chemoprevention coverage is
given by

ε∗ =
µ + θ

µ

(
1−R0

(1− ψ)Rm −R0

)

where Rm = RvR2.

(f) Show that the disease free equilibrium point is asymptotically stable for
R < 1 and unstable for R > 1.

(g) Show that in the case where where ψ = 1, there is a unique stable endemic
equilibrium given by,

E1 =

(
1 + (1− φ)ηRv

ηRv + R0

, φ,
η(R0 − 1)

R0 + ηRv

,
η(R0 − 1)

R1 + ηR0

)
.

(h) Show that if 0 < ψ < 1, multiple endemic equilibria exist.


