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This ninth edition of Biostatistics: A Foundation for Analysis in the Health Sciences
should appeal to the same audience for which the first eight editions were written:
advanced undergraduate students, beginning graduate students, and health professionals
in need of a reference book on statistical methodology.

Like its predecessors, this edition requires few mathematical prerequisites. Only
reasonable proficiency in algebra is required for an understanding of the concepts and
methods underlying the calculations. The emphasis continues to be on an intuitive
understanding of principles rather than an understanding based on mathematical
sophistication.

For most of the statistical techniques covered in this edition, we discuss the capa-
bilities of one or more software packages (MINITAB, SAS, SPSS, and NCSS) that may
be used to perform the calculations needed for their application. Resulting screen dis-
plays are also shown.

NEW TO THIS EDITION

Chapter Overviews. In this edition, we introduce each chapter with a brief chapter
overview that alerts students to the concepts that they will encounter as they read and
study the chapter. The chapter overviews use non-technical language in order to provide
students with a general understanding of the chapter contents without having to be con-
fronted with unfamiliar terminology.

Leaning Outcomes. Before they begin reading each chapter, students are provided with
a list of learning outcomes that inform them of what they will be expected to know after
having read and studied the chapter. Instructors may also use the learning outcomes as
guides when preparing chapter-by-chapter syllabi.

Summaries of Equations. Where appropriate, students will find at the ends of chapters
a summary of the equations that were used in the chapter. This feature will provide stu-
dents with a quick reference source when working on homework assignments. Instruc-
tors who wish to do so may allow students to bring copies of the equation summaries
to the classroom for use during tests.

New Topics. Following is a chapter-by-chapter summary of the topics that are new to
this edition of Biostatistics.

PREFACE
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Chapter 1 Introduction to Biostatistics. The sampling topic is expanded to include a
discussion of systematic sampling, including comments on stratified systematic sampling
and stratified sampling proportional to size. A new section is devoted to the scientific
method and the design of experiments.

Chapter 2 Descriptive Statistics. Skewness and kurtosis are discussed in considerable
detail and illustrated with computer-generated graphs.

Chapter 3 Some Basic Probability Concepts. The discussion of Bayesian proba-
bility is expanded to enhance students’ understanding of the application of Bayes’s
theorem.

Chapter 4 Probability Distributions. The discussion of probability distributions is
expanded.

Chapter 5 Some Important Sampling Distributions. This chapter is essentially
unchanged.

Chapter 6 Estimation. Several brief comments and new computer output are added for
the purpose of clarifying certain topics.

Chapter 7 Hypothesis Testing. This chapter contains several new computer printouts.

Chapter 8 Analysis of Variance. Additional comments and new computer printouts are
added to help clarify several topics covered in this chapter.

Chapter 9 Simple Linear Regression and Correlation. Several explanatory comments,
a section on testing the regression assumptions, and several computer printouts are new
to this chapter.

Chapter 10 Multiple Regression and Correlation. New to this chapter are several com-
puter printouts and comments for added clarification.

Chapter 11 Regression Analysis: Some Additional Techniques. The discussion of
regression assumptions is expanded to include the following topics: non-normal data,
unequal error variances, and correlated independent variables. The discussion of variable
selection procedures is expanded to include forward selection and backward elimination
strategies. Discussions of multiple logistic regression and polytomous logistic regression
have been added to the logistic regression section.

Chapter 12 The Chi-Square Distribution and the Analysis of Frequencies. This
chapter contains several new explanatory paragraphs, new examples, and new computer
printouts. The section on survival analysis has been expanded and augmented with new
computer output.
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Chapter 13 Nonparametric and Distribution-Free Statistics. New explanatory com-
ments and computer printouts have been added in this chapter.

Chapter 14 Vital Statistics. The introduction now includes a paragraph on epidemiology.

SUPPLEMENTS

Instructor’s Solutions Manual. Prepared by Chad Cross, University of Nevada, Las
Vegas. Includes solutions to all problems found in the text. Available only to instructors
who have adopted the text.

New! Student Solutions Manual. Prepared by Chad Cross, University of Nevada, Las
Vegas. Includes solutions to all odd numbered exercises. May be packaged with the text
at a discounted price.

Data Sets. More than 250 data sets of varying sizes have been integrated throughout the
exposition, evidencing this edition’s focus on currency and relevance to modern students.
All examples, section exercises, and review exercises of more then 20 entries are avail-
able at the Wiley Web site below. The large data sets are designed for analysis by the
following techniques: probability (Chapter 3), interval estimation (Chapter 6), hypothesis
testing (Chapter 7), analysis of variance (Chapter 8), simple linear regression (Chapter 9),
multiple regression (Chapter 10), advanced regression analysis (Chapter 11), and chi-
square (Chapter 12). Exercises at the end of these chapters instruct students on how to
use the large data sets. The data sets are available to both instructor and student for down-
load from the Wiley Web site at

www.wiley.com/college/daniel

If you do not have Internet access, please contact the publisher at 111 River Street,
Hoboken, NJ 07030-5774, telephone: 1-877-762-2974 to obtain the electronic files.
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1

CHAPTER OVERVIEW

This chapter is intended to provide an overview of the basic statistical con-
cepts used throughout the textbook. A course in statistics requires the student
to learn many new terms and concepts. This chapter lays the foundation nec-
essary for the understanding of basic statistical terms and concepts and the
role that statisticians play in promoting scientific discovery and wisdom.

TOPICS

1.1 INTRODUCTION

1.2 SOME BASIC CONCEPTS

1.3 MEASUREMENT AND MEASUREMENT SCALES

1.4 SAMPLING AND STATISTICAL INFERENCE

1.5 THE SCIENTIFIC METHOD AND THE DESIGN OF EXPERIMENTS

1.6 COMPUTERS AND BIOSTATISTICAL ANALYSIS

1.7 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand the basic concepts and terminology of biostatistics, including the 

various kinds of variables, measurement, and measurement scales.
2. be able to select a simple random sample and other scientific samples from a 

population of subjects.
3. understand the processes involved in the scientific method and the design of 

experiments.
4. appreciate the advantages of using computers in the statistical analysis of data 

generated by studies and experiments conducted by researchers in the health 
sciences.

CHAPTER1
INTRODUCTION TO
BIOSTATISTICS



1.1 INTRODUCTION

We are frequently reminded of the fact that we are living in the information age. Appro-
priately, then, this book is about information—how it is obtained, how it is analyzed,
and how it is interpreted. The information about which we are concerned we call data,
and the data are available to us in the form of numbers.

The objectives of this book are twofold: (1) to teach the student to organize and
summarize data, and (2) to teach the student how to reach decisions about a large body
of data by examining only a small part of the data. The concepts and methods necessary
for achieving the first objective are presented under the heading of descriptive statistics,
and the second objective is reached through the study of what is called inferential sta-
tistics. This chapter discusses descriptive statistics. Chapters 2 through 5 discuss topics
that form the foundation of statistical inference, and most of the remainder of the book
deals with inferential statistics.

Because this volume is designed for persons preparing for or already pursuing a
career in the health field, the illustrative material and exercises reflect the problems and
activities that these persons are likely to encounter in the performance of their duties.

1.2 SOME BASIC CONCEPTS

Like all fields of learning, statistics has its own vocabulary. Some of the words and
phrases encountered in the study of statistics will be new to those not previously exposed
to the subject. Other terms, though appearing to be familiar, may have specialized mean-
ings that are different from the meanings that we are accustomed to associating with
these terms. The following are some terms that we will use extensively in this book.

Data The raw material of statistics is data. For our purposes we may define data as
numbers. The two kinds of numbers that we use in statistics are numbers that result from
the taking—in the usual sense of the term—of a measurement, and those that result from
the process of counting. For example, when a nurse weighs a patient or takes a patient’s
temperature, a measurement, consisting of a number such as 150 pounds or 100 degrees
Fahrenheit, is obtained. Quite a different type of number is obtained when a hospital
administrator counts the number of patients—perhaps 20—discharged from the hospital
on a given day. Each of the three numbers is a datum, and the three taken together are
data.

Statistics The meaning of statistics is implicit in the previous section. More con-
cretely, however, we may say that statistics is a field of study concerned with (1) the
collection, organization, summarization, and analysis of data; and (2) the drawing of
inferences about a body of data when only a part of the data is observed.

The person who performs these statistical activities must be prepared to interpret
and to communicate the results to someone else as the situation demands. Simply put,
we may say that data are numbers, numbers contain information, and the purpose of sta-
tistics is to investigate and evaluate the nature and meaning of this information.
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Sources of Data The performance of statistical activities is motivated by the need
to answer a question. For example, clinicians may want answers to questions regarding
the relative merits of competing treatment procedures. Administrators may want answers
to questions regarding such areas of concern as employee morale or facility utilization.
When we determine that the appropriate approach to seeking an answer to a question
will require the use of statistics, we begin to search for suitable data to serve as the raw
material for our investigation. Such data are usually available from one or more of the
following sources:

1. Routinely kept records. It is difficult to imagine any type of organization that
does not keep records of day-to-day transactions of its activities. Hospital medical
records, for example, contain immense amounts of information on patients, while
hospital accounting records contain a wealth of data on the facility’s business activ-
ities. When the need for data arises, we should look for them first among routinely
kept records.

2. Surveys. If the data needed to answer a question are not available from routinely
kept records, the logical source may be a survey. Suppose, for example, that the
administrator of a clinic wishes to obtain information regarding the mode of trans-
portation used by patients to visit the clinic. If admission forms do not contain a
question on mode of transportation, we may conduct a survey among patients to
obtain this information.

3. Experiments. Frequently the data needed to answer a question are available only
as the result of an experiment. A nurse may wish to know which of several strate-
gies is best for maximizing patient compliance. The nurse might conduct an exper-
iment in which the different strategies of motivating compliance are tried with dif-
ferent patients. Subsequent evaluation of the responses to the different strategies
might enable the nurse to decide which is most effective.

4. External sources. The data needed to answer a question may already exist in
the form of published reports, commercially available data banks, or the research
literature. In other words, we may find that someone else has already asked 
the same question, and the answer obtained may be applicable to our present
situation.

Biostatistics The tools of statistics are employed in many fields—business, edu-
cation, psychology, agriculture, and economics, to mention only a few. When the data
analyzed are derived from the biological sciences and medicine, we use the term biosta-
tistics to distinguish this particular application of statistical tools and concepts. This area
of application is the concern of this book.

Variable If, as we observe a characteristic, we find that it takes on different values
in different persons, places, or things, we label the characteristic a variable. We do this
for the simple reason that the characteristic is not the same when observed in different
possessors of it. Some examples of variables include diastolic blood pressure, heart rate,
the heights of adult males, the weights of preschool children, and the ages of patients
seen in a dental clinic.

1.2 SOME BASIC CONCEPTS 3



Quantitative Variables A quantitative variable is one that can be measured in
the usual sense. We can, for example, obtain measurements on the heights of adult males,
the weights of preschool children, and the ages of patients seen in a dental clinic. These
are examples of quantitative variables. Measurements made on quantitative variables
convey information regarding amount.

Qualitative Variables Some characteristics are not capable of being measured
in the sense that height, weight, and age are measured. Many characteristics can be
categorized only, as, for example, when an ill person is given a medical diagnosis, a
person is designated as belonging to an ethnic group, or a person, place, or object is
said to possess or not to possess some characteristic of interest. In such cases meas-
uring consists of categorizing. We refer to variables of this kind as qualitative vari-
ables. Measurements made on qualitative variables convey information regarding
attribute.

Although, in the case of qualitative variables, measurement in the usual sense of
the word is not achieved, we can count the number of persons, places, or things belong-
ing to various categories. A hospital administrator, for example, can count the number
of patients admitted during a day under each of the various admitting diagnoses. These
counts, or frequencies as they are called, are the numbers that we manipulate when our
analysis involves qualitative variables.

Random Variable Whenever we determine the height, weight, or age of an indi-
vidual, the result is frequently referred to as a value of the respective variable. When the
values obtained arise as a result of chance factors, so that they cannot be exactly pre-
dicted in advance, the variable is called a random variable. An example of a random
variable is adult height. When a child is born, we cannot predict exactly his or her height
at maturity. Attained adult height is the result of numerous genetic and environmental
factors. Values resulting from measurement procedures are often referred to as observa-
tions or measurements.

Discrete Random Variable Variables may be characterized further as to
whether they are discrete or continuous. Since mathematically rigorous definitions of dis-
crete and continuous variables are beyond the level of this book, we offer, instead, non-
rigorous definitions and give an example of each.

A discrete variable is characterized by gaps or interruptions in the values that it
can assume. These gaps or interruptions indicate the absence of values between particu-
lar values that the variable can assume. Some examples illustrate the point. The number
of daily admissions to a general hospital is a discrete random variable since the number
of admissions each day must be represented by a whole number, such as 0, 1, 2, or 3.
The number of admissions on a given day cannot be a number such as 1.5, 2.997, or
3.333. The number of decayed, missing, or filled teeth per child in an elementary school
is another example of a discrete variable.

Continuous Random Variable A continuous random variable does not
possess the gaps or interruptions characteristic of a discrete random variable. A con-
tinuous random variable can assume any value within a specified relevant interval of
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values assumed by the variable. Examples of continuous variables include the various
measurements that can be made on individuals such as height, weight, and skull cir-
cumference. No matter how close together the observed heights of two people, for
example, we can, theoretically, find another person whose height falls somewhere in
between.

Because of the limitations of available measuring instruments, however, observa-
tions on variables that are inherently continuous are recorded as if they were discrete.
Height, for example, is usually recorded to the nearest one-quarter, one-half, or whole
inch, whereas, with a perfect measuring device, such a measurement could be made as
precise as desired.

Population The average person thinks of a population as a collection of entities,
usually people. A population or collection of entities may, however, consist of animals,
machines, places, or cells. For our purposes, we define a population of entities as the
largest collection of entities for which we have an interest at a particular time. If we
take a measurement of some variable on each of the entities in a population, we gener-
ate a population of values of that variable. We may, therefore, define a population of
values as the largest collection of values of a random variable for which we have an
interest at a particular time. If, for example, we are interested in the weights of all the
children enrolled in a certain county elementary school system, our population consists
of all these weights. If our interest lies only in the weights of first-grade students in the
system, we have a different population—weights of first-grade students enrolled in the
school system. Hence, populations are determined or defined by our sphere of interest.
Populations may be finite or infinite. If a population of values consists of a fixed num-
ber of these values, the population is said to be finite. If, on the other hand, a popula-
tion consists of an endless succession of values, the population is an infinite one.

Sample A sample may be defined simply as a part of a population. Suppose our
population consists of the weights of all the elementary school children enrolled in a
certain county school system. If we collect for analysis the weights of only a fraction
of these children, we have only a part of our population of weights, that is, we have a
sample.

1.3 MEASUREMENT AND
MEASUREMENT SCALES

In the preceding discussion we used the word measurement several times in its usual sense,
and presumably the reader clearly understood the intended meaning. The word measure-
ment, however, may be given a more scientific definition. In fact, there is a whole body
of scientific literature devoted to the subject of measurement. Part of this literature is con-
cerned also with the nature of the numbers that result from measurements. Authorities on
the subject of measurement speak of measurement scales that result in the categorization
of measurements according to their nature. In this section we define measurement and the
four resulting measurement scales. A more detailed discussion of the subject is to be found
in the writings of Stevens (1, 2).
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Measurement This may be defined as the assignment of numbers to objects or
events according to a set of rules. The various measurement scales result from the fact
that measurement may be carried out under different sets of rules.

The Nominal Scale The lowest measurement scale is the nominal scale. As the
name implies it consists of “naming” observations or classifying them into various mutu-
ally exclusive and collectively exhaustive categories. The practice of using numbers to
distinguish among the various medical diagnoses constitutes measurement on a nominal
scale. Other examples include such dichotomies as male–female, well–sick, under 65
years of age–65 and over, child–adult, and married–not married.

The Ordinal Scale Whenever observations are not only different from category
to category but can be ranked according to some criterion, they are said to be measured
on an ordinal scale. Convalescing patients may be characterized as unimproved,
improved, and much improved. Individuals may be classified according to socioeconomic
status as low, medium, or high. The intelligence of children may be above average, aver-
age, or below average. In each of these examples the members of any one category are
all considered equal, but the members of one category are considered lower, worse, or
smaller than those in another category, which in turn bears a similar relationship to
another category. For example, a much improved patient is in better health than one clas-
sified as improved, while a patient who has improved is in better condition than one who
has not improved. It is usually impossible to infer that the difference between members
of one category and the next adjacent category is equal to the difference between mem-
bers of that category and the members of the next category adjacent to it. The degree of
improvement between unimproved and improved is probably not the same as that
between improved and much improved. The implication is that if a finer breakdown were
made resulting in more categories, these, too, could be ordered in a similar manner. The
function of numbers assigned to ordinal data is to order (or rank) the observations from
lowest to highest and, hence, the term ordinal.

The Interval Scale The interval scale is a more sophisticated scale than the
nominal or ordinal in that with this scale not only is it possible to order measurements,
but also the distance between any two measurements is known. We know, say, that the
difference between a measurement of 20 and a measurement of 30 is equal to the dif-
ference between measurements of 30 and 40. The ability to do this implies the use of a
unit distance and a zero point, both of which are arbitrary. The selected zero point is not
necessarily a true zero in that it does not have to indicate a total absence of the quan-
tity being measured. Perhaps the best example of an interval scale is provided by the
way in which temperature is usually measured (degrees Fahrenheit or Celsius). The unit
of measurement is the degree, and the point of comparison is the arbitrarily chosen “zero
degrees,” which does not indicate a lack of heat. The interval scale unlike the nominal
and ordinal scales is a truly quantitative scale.

The Ratio Scale The highest level of measurement is the ratio scale. This scale
is characterized by the fact that equality of ratios as well as equality of intervals may be
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determined. Fundamental to the ratio scale is a true zero point. The measurement of such
familiar traits as height, weight, and length makes use of the ratio scale.

1.4 SAMPLING AND 
STATISTICAL INFERENCE

As noted earlier, one of the purposes of this book is to teach the concepts of statistical
inference, which we may define as follows:

DEFINITION
Statistical inference is the procedure by which we reach a conclusion
about a population on the basis of the information contained in a 
sample that has been drawn from that population.

There are many kinds of samples that may be drawn from a population. Not every
kind of sample, however, can be used as a basis for making valid inferences about a pop-
ulation. In general, in order to make a valid inference about a population, we need a sci-
entific sample from the population. There are also many kinds of scientific samples that
may be drawn from a population. The simplest of these is the simple random sample. In
this section we define a simple random sample and show you how to draw one from a
population.

If we use the letter N to designate the size of a finite population and the letter n
to designate the size of a sample, we may define a simple random sample as follows:

DEFINITION
If a sample of size n is drawn from a population of size N in such a
way that every possible sample of size n has the same chance of being
selected, the sample is called a simple random sample.

The mechanics of drawing a sample to satisfy the definition of a simple random
sample is called simple random sampling.

We will demonstrate the procedure of simple random sampling shortly, but first let
us consider the problem of whether to sample with replacement or without replacement.
When sampling with replacement is employed, every member of the population is avail-
able at each draw. For example, suppose that we are drawing a sample from a population
of former hospital patients as part of a study of length of stay. Let us assume that the
sampling involves selecting from the shelves in the medical records department a sample
of charts of discharged patients. In sampling with replacement we would proceed as fol-
lows: select a chart to be in the sample, record the length of stay, and return the chart to
the shelf. The chart is back in the “population” and may be drawn again on some subse-
quent draw, in which case the length of stay will again be recorded. In sampling without
replacement, we would not return a drawn chart to the shelf after recording the length of
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stay, but would lay it aside until the entire sample is drawn. Following this procedure,
a given chart could appear in the sample only once. As a rule, in practice, sampling
is always done without replacement. The significance and consequences of this will be
explained later, but first let us see how one goes about selecting a simple random sam-
ple. To ensure true randomness of selection, we will need to follow some objective
procedure. We certainly will want to avoid using our own judgment to decide which
members of the population constitute a random sample. The following example illus-
trates one method of selecting a simple random sample from a population.

EXAMPLE 1.4.1

Gold et al. (A-1) studied the effectiveness on smoking cessation of bupropion SR, a nico-
tine patch, or both, when co-administered with cognitive-behavioral therapy. Consecutive
consenting patients assigned themselves to one of the three treatments. For illustrative pur-
poses, let us consider all these subjects to be a population of size N � 189. We wish to
select a simple random sample of size 10 from this population whose ages are shown in
Table 1.4.1.
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TABLE 1.4.1 Ages of 189 Subjects Who Participated in a Study on Smoking 
Cessation

Subject No. Age Subject No. Age Subject No. Age Subject No. Age

1 48 49 38 97 51 145 52
2 35 50 44 98 50 146 53
3 46 51 43 99 50 147 61
4 44 52 47 100 55 148 60
5 43 53 46 101 63 149 53
6 42 54 57 102 50 150 53
7 39 55 52 103 59 151 50
8 44 56 54 104 54 152 53
9 49 57 56 105 60 153 54

10 49 58 53 106 50 154 61
11 44 59 64 107 56 155 61
12 39 60 53 108 68 156 61
13 38 61 58 109 66 157 64
14 49 62 54 110 71 158 53
15 49 63 59 111 82 159 53
16 53 64 56 112 68 160 54
17 56 65 62 113 78 161 61
18 57 66 50 114 66 162 60
19 51 67 64 115 70 163 51
20 61 68 53 116 66 164 50
21 53 69 61 117 78 165 53
22 66 70 53 118 69 166 64
23 71 71 62 119 71 167 64
24 75 72 57 120 69 168 53

(Continued)
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Subject No. Age Subject No. Age Subject No. Age Subject No. Age

25 72 73 52 121 78 169 60
26 65 74 54 122 66 170 54
27 67 75 61 123 68 171 55
28 38 76 59 124 71 172 58
29 37 77 57 125 69 173 62
30 46 78 52 126 77 174 62
31 44 79 54 127 76 175 54
32 44 80 53 128 71 176 53
33 48 81 62 129 43 177 61
34 49 82 52 130 47 178 54
35 30 83 62 131 48 179 51
36 45 84 57 132 37 180 62
37 47 85 59 133 40 181 57
38 45 86 59 134 42 182 50
39 48 87 56 135 38 183 64
40 47 88 57 136 49 184 63
41 47 89 53 137 43 185 65
42 44 90 59 138 46 186 71
43 48 91 61 139 34 187 71
44 43 92 55 140 46 188 73
45 45 93 61 141 46 189 66
46 40 94 56 142 48
47 48 95 52 143 47
48 49 96 54 144 43

Source: Paul B. Gold, Ph.D. Used with permission.

Solution: One way of selecting a simple random sample is to use a table of random
numbers like that shown in the Appendix, Table A. As the first step, we
locate a random starting point in the table. This can be done in a number
of ways, one of which is to look away from the page while touching it with
the point of a pencil. The random starting point is the digit closest to where
the pencil touched the page. Let us assume that following this procedure
led to a random starting point in Table A at the intersection of row 21 and
column 28. The digit at this point is 5. Since we have 189 values to choose
from, we can use only the random numbers 1 through 189. It will be con-
venient to pick three-digit numbers so that the numbers 001 through 189
will be the only eligible numbers. The first three-digit number, beginning
at our random starting point is 532, a number we cannot use. The next num-
ber (going down) is 196, which again we cannot use. Let us move down
past 196, 372, 654, and 928 until we come to 137, a number we can use.
The age of the 137th subject from Table 1.4.1 is 43, the first value in our
sample. We record the random number and the corresponding age in Table
1.4.2. We record the random number to keep track of the random numbers
selected. Since we want to sample without replacement, we do not want to
include the same individual’s age twice. Proceeding in the manner just



described leads us to the remaining nine random numbers and their corre-
sponding ages shown in Table 1.4.2. Notice that when we get to the end of
the column, we simply move over three digits to 028 and proceed up the
column. We could have started at the top with the number 369.

Thus we have drawn a simple random sample of size 10 from a pop-
ulation of size 189. In future discussions, whenever the term simple random
sample is used, it will be understood that the sample has been drawn in this
or an equivalent manner. ■

The preceding discussion of random sampling is presented because of the impor-
tant role that the sampling process plays in designing research studies and experiments.
The methodology and concepts employed in sampling processes will be described in
more detail in Section 1.5.

DEFINITION
A research study is a scientific study of a phenomenon of interest.
Research studies involve designing sampling protocols, collecting and
analyzing data, and providing valid conclusions based on the results of
the analyses.

DEFINITION
Experiments are a special type of research study in which observations
are made after specific manipulations of conditions have been carried
out; they provide the foundation for scientific research.

Despite the tremendous importance of random sampling in the design of research
studies and experiments, there are some occasions when random sampling may not be the
most appropriate method to use. Consequently, other sampling methods must be considered.
The intention here is not to provide a comprehensive review of sampling methods, but rather
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TABLE 1.4.2 Sample of 
10 Ages Drawn from the 
Ages in Table 1.4.1

Random Sample

Number Subject Number Age

137 1 43

114 2 66

155 3 61

183 4 64

185 5 65

028 6 38

085 7 59

181 8 57

018 9 57

164 10 50



to acquaint the student with two additional sampling methods that are employed in the health
sciences, systematic sampling and stratified random sampling. Interested readers are referred
to the books by Thompson (3) and Levy and Lemeshow (4) for detailed overviews of var-
ious sampling methods and explanations of how sample statistics are calculated when these
methods are applied in research studies and experiments.

Systematic Sampling A sampling method that is widely used in healthcare
research is the systematic sample. Medical records, which contain raw data used in
healthcare research, are generally stored in a file system or on a computer and hence are
easy to select in a systematic way. Using systematic sampling methodology, a researcher
calculates the total number of records needed for the study or experiment at hand. A ran-
dom numbers table is then employed to select a starting point in the file system. The
record located at this starting point is called record x. A second number, determined by
the number of records desired, is selected to define the sampling interval (call this inter-
val k). Consequently, the data set would consist of records x, x � k, x � 2k, x � 3k,
and so on, until the necessary number of records are obtained.

EXAMPLE 1.4.2

Continuing with the study of Gold et al. (A-1) illustrated in the previous example, imag-
ine that we wanted a systematic sample of 10 subjects from those listed in Table 1.4.1.

Solution: To obtain a starting point, we will again use Appendix Table A. For pur-
poses of illustration, let us assume that the random starting point in Table
A was the intersection of row 10 and column 25. The digit is a 4 and will
serve as our starting point, x. Since we are starting at subject 4, this leaves
185 remaining subjects from which to choose. Since we wish to select 10
subjects, one method to define the sample interval, k, would be to take
185�10 � 18.5. To ensure that there will be enough subjects, it is custom-
ary to round this quotient down, and hence we will round the result to 18.
The resulting sample is shown in Table 1.4.3.

TABLE 1.4.3 Sample of 10 Ages Selected 
Using a Systematic Sample from the Ages 
in Table 1.4.1

Systematically Selected Subject Number Age

4 44

22 66

40 47

58 53

76 59

94 56

112 68

130 47

148 60

166 64
■
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Stratified Random Sampling A common situation that may be encountered
in a population under study is one in which the sample units occur together in a grouped
fashion. On occasion, when the sample units are not inherently grouped, it may be pos-
sible and desirable to group them for sampling purposes. In other words, it may be desir-
able to partition a population of interest into groups, or strata, in which the sample units
within a particular stratum are more similar to each other than they are to the sample
units that compose the other strata. After the population is stratified, it is customary to
take a random sample independently from each stratum. This technique is called strati-
fied random sampling. The resulting sample is called a stratified random sample.
Although the benefits of stratified random sampling may not be readily observable, it is
most often the case that random samples taken within a stratum will have much less vari-
ability than a random sample taken across all strata. This is true because sample units
within each stratum tend to have characteristics that are similar.

EXAMPLE 1.4.3

Hospital trauma centers are given ratings depending on their capabilities to treat various
traumas. In this system, a level 1 trauma center is the highest level of available trauma
care and a level 4 trauma center is the lowest level of available trauma care. Imagine
that we are interested in estimating the survival rate of trauma victims treated at hospi-
tals within a large metropolitan area. Suppose that the metropolitan area has a level 1, a
level 2, and a level 3 trauma center. We wish to take samples of patients from these
trauma centers in such a way that the total sample size is 30.

Solution: We assume that the survival rates of patients may depend quite significantly
on the trauma that they experienced and therefore on the level of care that
they receive. As a result, a simple random sample of all trauma patients,
without regard to the center at which they were treated, may not represent
true survival rates, since patients receive different care at the various trauma
centers. One way to better estimate the survival rate is to treat each trauma
center as a stratum and then randomly select 10 patient files from each of
the three centers. This procedure is based on the fact that we suspect that
the survival rates within the trauma centers are less variable than the sur-
vival rates across trauma centers. Therefore, we believe that the stratified
random sample provides a better representation of survival than would a
sample taken without regard to differences within strata. ■

It should be noted that two slight modifications of the stratified sampling technique
are frequently employed. To illustrate, consider again the trauma center example. In the
first place, a systematic sample of patient files could have been selected from each trauma
center (stratum). Such a sample is called a stratified systematic sample.

The second modification of stratified sampling involves selecting the sample from
a given stratum in such a way that the number of sample units selected from that stra-
tum is proportional to the size of the population of that stratum. Suppose, in our trauma
center example that the level 1 trauma center treated 100 patients and the level 2 and
level 3 trauma centers treated only 10 each. In that case, selecting a random sample of 10
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from each trauma center overrepresents the trauma centers with smaller patient loads. To
avoid this problem, we adjust the size of the sample taken from a stratum so that it is pro-
portional to the size of the stratum’s population. This type of sampling is called stratified
sampling proportional to size. The within-stratum samples can be either random or sys-
tematic as described above.

EXERCISES

1.4.1 Using the table of random numbers, select a new random starting point, and draw another simple
random sample of size 10 from the data in Table 1.4.1. Record the ages of the subjects in this new
sample. Save your data for future use. What is the variable of interest in this exercise? What meas-
urement scale was used to obtain the measurements?

1.4.2 Select another simple random sample of size 10 from the population represented in Table 1.4.1.
Compare the subjects in this sample with those in the sample drawn in Exercise 1.4.1. Are there
any subjects who showed up in both samples? How many? Compare the ages of the subjects in
the two samples. How many ages in the first sample were duplicated in the second sample?

1.4.3 Using the table of random numbers, select a random sample and a systematic sample, each of size
15, from the data in Table 1.4.1. Visually compare the distributions of the two samples. Do they
appear similar? Which appears to be the best representation of the data?

1.4.4 Construct an example where it would be appropriate to use stratified sampling. Discuss how you
would use stratified random sampling and stratified sampling proportional to size with this exam-
ple. Which do you think would best represent the population that you described in your example?
Why?

1.5 THE SCIENTIFIC METHOD AND 
THE DESIGN OF EXPERIMENTS

Data analyses by statistical methods play a significant role in scientific studies. The pre-
vious section highlighted the importance of obtaining samples in a scientific manner.
Appropriate sampling techniques enhance the likelihood that the results of statistical
analyses of a data set will provide valid and scientifically defensible results. Because of
the importance of the proper collection of data to support scientific discovery, it is nec-
essary to consider the foundation of such discovery—the scientific method—and to
explore the role of statistics in the context of this method.

DEFINITION
The scientific method is a process by which scientific information is
collected, analyzed, and reported in order to produce unbiased and
replicable results in an effort to provide an accurate representation of
observable phenomena.

The scientific method is recognized universally as the only truly acceptable way to
produce new scientific understanding of the world around us. It is based on an empirical
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approach, in that decisions and outcomes are based on data. There are several key ele-
ments associated with the scientific method, and the concepts and techniques of statistics
play a prominent role in all these elements.

Making an Observation First, an observation is made of a phenomenon or a
group of phenomena. This observation leads to the formulation of questions or uncer-
tainties that can be answered in a scientifically rigorous way. For example, it is readily
observable that regular exercise reduces body weight in many people. It is also readily
observable that changing diet may have a similar effect. In this case there are two observ-
able phenomena, regular exercise and diet change, that have the same endpoint. The
nature of this endpoint can be determined by use of the scientific method.

Formulating a Hypothesis In the second step of the scientific method a
hypothesis is formulated to explain the observation and to make quantitative predic-
tions of new observations. Often hypotheses are generated as a result of extensive back-
ground research and literature reviews. The objective is to produce hypotheses that are
scientifically sound. Hypotheses may be stated as either research hypotheses or statis-
tical hypotheses. Explicit definitions of these terms are given in Chapter 7, which dis-
cusses the science of testing hypotheses. Suffice it to say for now that a research
hypothesis from the weight-loss example would be a statement such as, “Exercise
appears to reduce body weight.” There is certainly nothing incorrect about this con-
jecture, but it lacks a truly quantitative basis for testing. A statistical hypothesis may
be stated using quantitative terminology as follows: “The average (mean) loss of body
weight of people who exercise is greater than the average (mean) loss of body weight
of people who do not exercise.” In this statement a quantitative measure, the “aver-
age” or “mean” value, is hypothesized to be greater in the sample of patients who exer-
cise. The role of the statistician in this step of the scientific method is to state the
hypothesis in a way that valid conclusions may be drawn and to interpret correctly the
results of such conclusions.

Designing an Experiment The third step of the scientific method involves
designing an experiment that will yield the data necessary to validly test an appropriate
statistical hypothesis. This step of the scientific method, like that of data analysis,
requires the expertise of a statistician. Improperly designed experiments are the leading
cause of invalid results and unjustified conclusions. Further, most studies that are chal-
lenged by experts are challenged on the basis of the appropriateness or inappropriate-
ness of the study’s research design.

Those who properly design research experiments make every effort to ensure that
the measurement of the phenomenon of interest is both accurate and precise. Accuracy
refers to the correctness of a measurement. Precision, on the other hand, refers to the
consistency of a measurement. It should be noted that in the social sciences, the term
validity is sometimes used to mean accuracy and that reliability is sometimes used to
mean precision. In the context of the weight-loss example given earlier, the scale used
to measure the weight of study participants would be accurate if the measurement is
validated using a scale that is properly calibrated. If, however, the scale is off by �3
pounds, then each participant’s weight would be 3 pounds heavy; the measurements
would be precise in that each would be wrong by �3 pounds, but the measurements
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would not be accurate. Measurements that are inaccurate or imprecise may invalidate
research findings.

The design of an experiment depends on the type of data that need to be collected
to test a specific hypothesis. As discussed in Section 1.2, data may be collected or made
available through a variety of means. For much scientific research, however, the standard
for data collection is experimentation. A true experimental design is one in which study
subjects are randomly assigned to an experimental group (or treatment group) and a con-
trol group that is not directly exposed to a treatment. Continuing the weight-loss exam-
ple, a sample of 100 participants could be randomly assigned to two conditions using
the methods of Section 1.4. A sample of 50 of the participants would be assigned to a
specific exercise program and the remaining 50 would be monitored, but asked not to
exercise for a specific period of time. At the end of this experiment the average (mean)
weight losses of the two groups could be compared. The reason that experimental designs
are desirable is that if all other potential factors are controlled, a cause–effect relation-
ship may be tested; that is, all else being equal, we would be able to conclude or fail to
conclude that the experimental group lost weight as a result of exercising.

The potential complexity of research designs requires statistical expertise, and
Chapter 8 highlights some commonly used experimental designs. For a more in-depth
discussion of research designs, the interested reader may wish to refer to texts by Kuehl
(5), Keppel and Wickens (6), and Tabachnick and Fidell (7).

Conclusion In the execution of a research study or experiment, one would hope
to have collected the data necessary to draw conclusions, with some degree of confi-
dence, about the hypotheses that were posed as part of the design. It is often the case
that hypotheses need to be modified and retested with new data and a different design.
Whatever the conclusions of the scientific process, however, results are rarely considered
to be conclusive. That is, results need to be replicated, often a large number of times,
before scientific credence is granted them.

EXERCISES

1.5.1 Using the example of weight loss as an endpoint, discuss how you would use the scientific method
to test the observation that change in diet is related to weight loss. Include all of the steps, includ-
ing the hypothesis to be tested and the design of your experiment.

1.5.2 Continuing with Exercise 1.5.1, consider how you would use the scientific method to test the obser-
vation that both exercise and change in diet are related to weight loss. Include all of the steps,
paying particular attention to how you might design the experiment and which hypotheses would
be testable given your design.

1.6 COMPUTERS AND
BIOSTATISTICAL ANALYSIS

The widespread use of computers has had a tremendous impact on health sciences
research in general and biostatistical analysis in particular. The necessity to perform
long and tedious arithmetic computations as part of the statistical analysis of data lives
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only in the memory of those researchers and practitioners whose careers antedate the
so-called computer revolution. Computers can perform more calculations faster and far
more accurately than can human technicians. The use of computers makes it possible
for investigators to devote more time to the improvement of the quality of raw data and
the interpretation of the results.

The current prevalence of microcomputers and the abundance of available statis-
tical software programs have further revolutionized statistical computing. The reader in
search of a statistical software package may wish to consult The American Statistician,
a quarterly publication of the American Statistical Association. Statistical software
packages are regularly reviewed and advertised in the periodical.

Many of the computers currently on the market are equipped with random number
generating capabilities. As an alternative to using printed tables of random numbers,
investigators may use computers to generate the random numbers they need. Actu-
ally, the “random” numbers generated by most computers are in reality pseudoran-
dom numbers because they are the result of a deterministic formula. However, as
Fishman (8) points out, the numbers appear to serve satisfactorily for many practical
purposes.

The usefulness of the computer in the health sciences is not limited to statistical
analysis. The reader interested in learning more about the use of computers in the health
sciences will find the books by Hersh (4), Johns (5), Miller et al. (6), and Saba and
McCormick (7) helpful. Those who wish to derive maximum benefit from the Internet
may wish to consult the books Physicians’ Guide to the Internet (13) and Computers in
Nursing’s Nurses’ Guide to the Internet (14). Current developments in the use of com-
puters in biology, medicine, and related fields are reported in several periodicals devoted
to the subject. A few such periodicals are Computers in Biology and Medicine, Comput-
ers and Biomedical Research, International Journal of Bio-Medical Computing, Computer
Methods and Programs in Biomedicine, Computer Applications in the Biosciences, and
Computers in Nursing.

Computer printouts are used throughout this book to illustrate the use of computers
in biostatistical analysis. The MINITAB, SPSS, and SAS® statistical software packages for
the personal computer have been used for this purpose.

1.7 SUMMARY

In this chapter we introduced the reader to the basic concepts of statistics. We defined
statistics as an area of study concerned with collecting and describing data and with
making statistical inferences. We defined statistical inference as the procedure by
which we reach a conclusion about a population on the basis of information contained
in a sample drawn from that population. We learned that a basic type of sample 
that will allow us to make valid inferences is the simple random sample. We learned
how to use a table of random numbers to draw a simple random sample from a 
population.

The reader is provided with the definitions of some basic terms, such as variable
and sample, that are used in the study of statistics. We also discussed measurement and
defined four measurement scales—nominal, ordinal, interval, and ratio. The reader is also
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introduced to the scientific method and the role of statistics and the statistician in this
process.

Finally, we discussed the importance of computers in the performance of the activ-
ities involved in statistics.

REVIEW QUESTIONS AND EXERCISES

1. Explain what is meant by descriptive statistics.

2. Explain what is meant by inferential statistics.

3. Define:

(a) Statistics (b) Biostatistics

(c) Variable (d) Quantitative variable

(e) Qualitative variable (f) Random variable

(g) Population (h) Finite population

(i) Infinite population ( j) Sample

(k) Discrete variable (l) Continuous variable

(m) Simple random sample (n) Sampling with replacement

(o) Sampling without replacement

4. Define the word measurement.

5. List, describe, and compare the four measurement scales.

6. For each of the following variables, indicate whether it is quantitative or qualitative and specify
the measurement scale that is employed when taking measurements on each:

(a) Class standing of the members of this class relative to each other

(b) Admitting diagnosis of patients admitted to a mental health clinic

(c) Weights of babies born in a hospital during a year

(d) Gender of babies born in a hospital during a year

(e) Range of motion of elbow joint of students enrolled in a university health sciences
curriculum

(f) Under-arm temperature of day-old infants born in a hospital

7. For each of the following situations, answer questions a through e:

(a) What is the sample in the study?

(b) What is the population?

(c) What is the variable of interest?

(d) How many measurements were used in calculating the reported results?

(e) What measurement scale was used?

Situation A. A study of 300 households in a small southern town revealed that 20 percent had at
least one school-age child present.
Situation B. A study of 250 patients admitted to a hospital during the past year revealed that, on
the average, the patients lived 15 miles from the hospital.

8. Consider the two situations given in Exercise 7. For Situation A describe how you would use a
stratified random sample to collect the data. For Situation B describe how you would use system-
atic sampling of patient records to collect the data.
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CHAPTER OVERVIEW

This chapter introduces a set of basic procedures and statistical measures for
describing data. Data generally consist of an extensive number of measure-
ments or observations that are too numerous or complicated to be under-
stood through simple observation. Therefore, this chapter introduces several
techniques including the construction of tables, graphical displays, and basic
statistical computations that provide ways to condense and organize infor-
mation into a set of descriptive measures and visual devices that enhance the
understanding of complex data.

TOPICS

2.1 INTRODUCTION

2.2 THE ORDERED ARRAY

2.3 GROUPED DATA: THE FREQUENCY DISTRIBUTION

2.4 DESCRIPTIVE STATISTICS: MEASURES OF CENTRAL TENDENCY

2.5 DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION

2.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how data can be appropriately organized and displayed.
2. understand how to reduce data sets into a few useful, descriptive measures.
3. be able to calculate and interpret measures of central tendency, such as the 

mean, median, and mode.
4. be able to calculate and interpret measures of dispersion, such as the range, 

variance, and standard deviation.

CHAPTER 2
DESCRIPTIVE STATISTICS
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2.1 INTRODUCTION

In Chapter 1 we stated that the taking of a measurement and the process of counting yield
numbers that contain information. The objective of the person applying the tools of sta-
tistics to these numbers is to determine the nature of this information. This task is made
much easier if the numbers are organized and summarized. When measurements of a ran-
dom variable are taken on the entities of a population or sample, the resulting values are
made available to the researcher or statistician as a mass of unordered data. Measurements
that have not been organized, summarized, or otherwise manipulated are called raw data.
Unless the number of observations is extremely small, it will be unlikely that these raw
data will impart much information until they have been put into some kind of order.

In this chapter we learn several techniques for organizing and summarizing data
so that we may more easily determine what information they contain. The ultimate
in summarization of data is the calculation of a single number that in some way con-
veys important information about the data from which it was calculated. Such single
numbers that are used to describe data are called descriptive measures. After study-
ing this chapter you will be able to compute several descriptive measures for both
populations and samples of data.

The purpose of this chapter is to equip you with skills that will enable you to manip-
ulate the information—in the form of numbers—that you encounter as a health sciences
professional. The better able you are to manipulate such information, the better under-
standing you will have of the environment and forces that generate the information.

2.2 THE ORDERED ARRAY

A first step in organizing data is the preparation of an ordered array. An ordered array is a
listing of the values of a collection (either population or sample) in order of magnitude from
the smallest value to the largest value. If the number of measurements to be ordered is of
any appreciable size, the use of a computer to prepare the ordered array is highly desirable.

An ordered array enables one to determine quickly the value of the smallest meas-
urement, the value of the largest measurement, and other facts about the arrayed data
that might be needed in a hurry. We illustrate the construction of an ordered array with
the data discussed in Example 1.4.1.

EXAMPLE 2.2.1

Table 1.4.1 contains a list of the ages of subjects who participated in the study on smok-
ing cessation discussed in Example 1.4.1. As can be seen, this unordered table requires
considerable searching for us to ascertain such elementary information as the age of the
youngest and oldest subjects.

Solution: Table 2.2.1 presents the data of Table 1.4.1 in the form of an ordered array.
By referring to Table 2.2.1 we are able to determine quickly the age of the
youngest subject (30) and the age of the oldest subject (82). We also readily
note that about one-third of the subjects are 50 years of age or younger.
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TABLE 2.2.1 Ordered Array of Ages of Subjects from Table 1.4.1

30 34 35 37 37 38 38 38 38 39 39 40 40 42 42

43 43 43 43 43 43 44 44 44 44 44 44 44 45 45

45 46 46 46 46 46 46 47 47 47 47 47 47 48 48

48 48 48 48 48 49 49 49 49 49 49 49 50 50 50

50 50 50 50 50 51 51 51 51 52 52 52 52 52 52

53 53 53 53 53 53 53 53 53 53 53 53 53 53 53

53 53 54 54 54 54 54 54 54 54 54 54 54 55 55

55 56 56 56 56 56 56 57 57 57 57 57 57 57 58

58 59 59 59 59 59 59 60 60 60 60 61 61 61 61

61 61 61 61 61 61 61 62 62 62 62 62 62 62 63

63 64 64 64 64 64 64 65 65 66 66 66 66 66 66

67 68 68 68 69 69 69 70 71 71 71 71 71 71 71

72 73 75 76 77 78 78 78 82 

■

Computer Analysis If additional computations and organization of a data set
have to be done by hand, the work may be facilitated by working from an ordered array.
If the data are to be analyzed by a computer, it may be undesirable to prepare an ordered
array, unless one is needed for reference purposes or for some other use. A computer does
not need its user to first construct an ordered array before entering data for the construc-
tion of frequency distributions and the performance of other analyses. However, almost
all computer statistical packages and spreadsheet programs contain a routine for sorting
data in either an ascending or descending order. See Figure 2.2.1, for example.

FIGURE 2.2.1 MINITAB dialog box for Example 2.2.1.

Dialog box:

Data

Session  command:

Sort MTB > Sort C1  C2;
SUBC>   By C1.



2.3 GROUPED DATA: THE 
FREQUENCY DISTRIBUTION

Although a set of observations can be made more comprehensible and meaningful by
means of an ordered array, further useful summarization may be achieved by grouping
the data. Before the days of computers one of the main objectives in grouping large data
sets was to facilitate the calculation of various descriptive measures such as percentages
and averages. Because computers can perform these calculations on large data sets with-
out first grouping the data, the main purpose in grouping data now is summarization.
One must bear in mind that data contain information and that summarization is a way
of making it easier to determine the nature of this information.

To group a set of observations we select a set of contiguous, nonoverlapping inter-
vals such that each value in the set of observations can be placed in one, and only one,
of the intervals. These intervals are usually referred to as class intervals.

One of the first considerations when data are to be grouped is how many intervals
to include. Too few intervals are undesirable because of the resulting loss of information.
On the other hand, if too many intervals are used, the objective of summarization will not
be met. The best guide to this, as well as to other decisions to be made in grouping data,
is your knowledge of the data. It may be that class intervals have been determined by
precedent, as in the case of annual tabulations, when the class intervals of previous years
are maintained for comparative purposes. A commonly followed rule of thumb states that
there should be no fewer than five intervals and no more than 15. If there are fewer than
five intervals, the data have been summarized too much and the information they contain
has been lost. If there are more than 15 intervals, the data have not been summarized
enough.

Those who need more specific guidance in the matter of deciding how many class
intervals to employ may use a formula given by Sturges (1). This formula gives

where k stands for the number of class intervals and n is the
number of values in the data set under consideration. The answer obtained by applying
Sturges’s rule should not be regarded as final, but should be considered as a guide only.
The number of class intervals specified by the rule should be increased or decreased for
convenience and clear presentation.

Suppose, for example, that we have a sample of 275 observations that we want to
group. The logarithm to the base 10 of 275 is 2.4393. Applying Sturges’s formula gives

In practice, other considerations might cause us to use
eight or fewer or perhaps 10 or more class intervals.

Another question that must be decided regards the width of the class intervals. Class
intervals generally should be of the same width, although this is sometimes impossible to
accomplish. This width may be determined by dividing the range by k, the number of class
intervals. Symbolically, the class interval width is given by

(2.3.1)

where R (the range) is the difference between the smallest and the largest observation in
the data set. As a rule this procedure yields a width that is inconvenient for use. Again,

w =
R

k

k = 1 + 3.32212.43932 M 9.

k = 1 + 3.3221log10 n2,
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we may exercise our good judgment and select a width (usually close to one given by
Equation 2.3.1) that is more convenient.

There are other rules of thumb that are helpful in setting up useful class intervals.
When the nature of the data makes them appropriate, class interval widths of 5 units, 10
units, and widths that are multiples of 10 tend to make the summarization more com-
prehensible. When these widths are employed it is generally good practice to have the
lower limit of each interval end in a zero or 5. Usually class intervals are ordered from
smallest to largest; that is, the first class interval contains the smaller measurements and
the last class interval contains the larger measurements. When this is the case, the lower
limit of the first class interval should be equal to or smaller than the smallest measure-
ment in the data set, and the upper limit of the last class interval should be equal to or
greater than the largest measurement.

Most statistical packages allow users to interactively change the number of class
intervals and/or the class widths, so that several visualizations of the data can be obtained
quickly. This feature allows users to exercise their judgment in deciding which data dis-
play is most appropriate for a given purpose. Let us use the 189 ages shown in Table
1.4.1 and arrayed in Table 2.2.1 to illustrate the construction of a frequency distribution.

EXAMPLE 2.3.1

We wish to know how many class intervals to have in the frequency distribution of the
data. We also want to know how wide the intervals should be.

Solution: To get an idea as to the number of class intervals to use, we can apply
Sturges’s rule to obtain

Now let us divide the range by 9 to get some idea about the class
interval width. We have

It is apparent that a class interval width of 5 or 10 will be more con-
venient to use, as well as more meaningful to the reader. Suppose we decide
on 10. We may now construct our intervals. Since the smallest value in Table
2.2.1 is 30 and the largest value is 82, we may begin our intervals with 30
and end with 89. This gives the following intervals:

30–39

40–49

50–59

60–69

R

k
=

82 - 30

9
=

52

9
= 5.778

L 9

= 1 + 3.32212.27646182k = 1 + 3.3221log1892
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70–79

80–89

We see that there are six of these intervals, three fewer than the number
suggested by Sturges’s rule.

It is sometimes useful to refer to the center, called the midpoint, of a
class interval. The midpoint of a class interval is determined by obtaining
the sum of the upper and lower limits of the class interval and dividing
by 2. Thus, for example, the midpoint of the class interval 30–39 is found
to be ■

When we group data manually, determining the number of values falling into each
class interval is merely a matter of looking at the ordered array and counting the num-
ber of observations falling in the various intervals. When we do this for our example,
we have Table 2.3.1.

A table such as Table 2.3.1 is called a frequency distribution. This table shows the
way in which the values of the variable are distributed among the specified class inter-
vals. By consulting it, we can determine the frequency of occurrence of values within
any one of the class intervals shown.

Relative Frequencies It may be useful at times to know the proportion, rather
than the number, of values falling within a particular class interval. We obtain this infor-
mation by dividing the number of values in the particular class interval by the total num-
ber of values. If, in our example, we wish to know the proportion of values between 50 and
59, inclusive, we divide 70 by 189, obtaining .3704. Thus we say that 70 out of 189, or
70�189ths, or .3704, of the values are between 50 and 59. Multiplying .3704 by 100 gives
us the percentage of values between 50 and 59. We can say, then, that 37.04 percent of the
subjects are between 50 and 59 years of age. We may refer to the proportion of values
falling within a class interval as the relative frequency of occurrence of values in that inter-
val. In Section 3.2 we shall see that a relative frequency may be interpreted also as the
probability of occurrence within the given interval. This probability of occurrence is also
called the experimental probability or the empirical probability.

130 + 392>2 = 34.5.

TABLE 2.3.1 Frequency Distribution of
Ages of 189 Subjects Shown in Tables 1.4.1
and 2.2.1

Class Interval Frequency

30–39 11

40–49 46

50–59 70

60–69 45

70–79 16

80–89 1

Total 189



In determining the frequency of values falling within two or more class intervals,
we obtain the sum of the number of values falling within the class intervals of interest.
Similarly, if we want to know the relative frequency of occurrence of values falling within
two or more class intervals, we add the respective relative frequencies. We may sum, or
cumulate, the frequencies and relative frequencies to facilitate obtaining information
regarding the frequency or relative frequency of values within two or more contiguous
class intervals. Table 2.3.2 shows the data of Table 2.3.1 along with the cumulative fre-
quencies, the relative frequencies, and cumulative relative frequencies.

Suppose that we are interested in the relative frequency of values between 50 and 79.
We use the cumulative relative frequency column of Table 2.3.2 and subtract .3016 from
.9948, obtaining .6932.

We may use a statistical package to obtain a table similar to that shown in Table
2.3.2. Tables obtained from both MINITAB and SPSS software are shown in Figure 2.3.1.

The Histogram We may display a frequency distribution (or a relative frequency
distribution) graphically in the form of a histogram, which is a special type of bar graph.

When we construct a histogram the values of the variable under consideration are
represented by the horizontal axis, while the vertical axis has as its scale the frequency
(or relative frequency if desired) of occurrence. Above each class interval on the hori-
zontal axis a rectangular bar, or cell, as it is sometimes called, is erected so that the
height corresponds to the respective frequency when the class intervals are of equal
width. The cells of a histogram must be joined and, to accomplish this, we must take into
account the true boundaries of the class intervals to prevent gaps from occurring between
the cells of our graph.

The level of precision observed in reported data that are measured on a continuous
scale indicates some order of rounding. The order of rounding reflects either the reporter’s
personal preference or the limitations of the measuring instrument employed. When a fre-
quency distribution is constructed from the data, the class interval limits usually reflect
the degree of precision of the raw data. This has been done in our illustrative example.
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TABLE 2.3.2 Frequency, Cumulative Frequency, Relative Frequency, and 
Cumulative Relative Frequency Distributions of the Ages of Subjects Described 
in Example 1.4.1

Cumulative

Class Cumulative Relative Relative

Interval Frequency Frequency Frequency Frequency

30–39 11 11 .0582 .0582

40–49 46 57 .2434 .3016

50–59 70 127 .3704 .6720

60–69 45 172 .2381 .9101

70–79 16 188 .0847 .9948

80–89 1 189 .0053 1.0001

Total 189 1.0001

Note: Frequencies do not add to 1.0000 exactly because of rounding.
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FIGURE 2.3.1 Frequency, cumulative frequencies, percent, and cumulative percent distri-
bution of the ages of subjects described in Example 1.4.1 as constructed by MINITAB and
SPSS.

Dialog box: Session command:

Stat ➤ Tables ➤ Tally Individual Variables MTB > Tally C2;
SUBC>  Counts;

Type C2 in Variables. Check Counts, Percents, SUBC>  CumCounts;
Cumulative counts, and Cumulative percents in SUBC>  Percents;
Display. Click OK. SUBC>  CumPercents;

Output:

Tally for Discrete Variables: C2

MINITAB Output SPSS Output

C2 Count CumCnt Percent CumPct
0 11 11 5.82 5.82
1 46 57 24.34 30.16
2 70 127 37.04 67.20
3 45 172 23.81 91.01
4 16 188 8.47 99.47
5 1 189 0.53 100.00

N= 189

Valid Cumulative
Frequency Percent Percent Percent

Valid 30-39 11 5.8 5.8 5.8
40-49 46 24.3 24.3 30.2
50-59 70 37.0 37.0 67.2
60-69 45 23.8 23.8 91.0
70-79 16 8.5 8.5 99.5
80-89 1 .5 .5 100.0
Total 189 100.0 100.0

We know, however, that some of the values falling in the second class interval, for exam-
ple, when measured precisely, would probably be a little less than 40 and some would be
a little greater than 49. Considering the underlying continuity of our variable, and assum-
ing that the data were rounded to the nearest whole number, we find it convenient to think
of 39.5 and 49.5 as the true limits of this second interval. The true limits for each of the
class intervals, then, we take to be as shown in Table 2.3.3.

If we construct a graph using these class limits as the base of our rectangles, no
gaps will result, and we will have the histogram shown in Figure 2.3.2. We used
MINITAB to construct this histogram, as shown in Figure 2.3.3.

We refer to the space enclosed by the boundaries of the histogram as the area of the
histogram. Each observation is allotted one unit of this area. Since we have 189 observa-
tions, the histogram consists of a total of 189 units. Each cell contains a certain propor-
tion of the total area, depending on the frequency. The second cell, for example, contains
46/189 of the area. This, as we have learned, is the relative frequency of occurrence of val-
ues between 39.5 and 49.5. From this we see that subareas of the histogram defined by
the cells correspond to the frequencies of occurrence of values between the horizontal scale
boundaries of the areas. The ratio of a particular subarea to the total area of the histogram
is equal to the relative frequency of occurrence of values between the corresponding points
on the horizontal axis.
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The Frequency Polygon A frequency distribution can be portrayed graphi-
cally in yet another way by means of a frequency polygon, which is a special kind of
line graph. To draw a frequency polygon we first place a dot above the midpoint of each
class interval represented on the horizontal axis of a graph like the one shown in Figure
2.3.2. The height of a given dot above the horizontal axis corresponds to the frequency
of the relevant class interval. Connecting the dots by straight lines produces the frequency
polygon. Figure 2.3.4 is the frequency polygon for the age data in Table 2.2.1.

Note that the polygon is brought down to the horizontal axis at the ends at points
that would be the midpoints if there were an additional cell at each end of the corre-
sponding histogram. This allows for the total area to be enclosed. The total area under
the frequency polygon is equal to the area under the histogram. Figure 2.3.5 shows the
frequency polygon of Figure 2.3.4 superimposed on the histogram of Figure 2.3.2. This
figure allows you to see, for the same set of data, the relationship between the two
graphic forms.

TABLE 2.3.3 The Data of 
Table 2.3.1 Showing True Class
Limits

True Class Limits Frequency

29.5–39.5 11

39.5–49.5 46

49.5–59.5 70

59.5–69.5 45

69.5–79.5 16

79.5–89.5 1

Total 189 

FIGURE 2.3.2 Histogram of ages of
189 subjects from Table 2.3.1.
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FIGURE 2.3.3 MINITAB dialog box and session command for constructing histogram from
data on ages in Example 1.4.1.

Dialog box: Session command:

Graph ➤ Histogram ➤ Simple ➤ OK MTB > Histogram 'Age';
SUBC> MidPoint 34.5:84.5/10;

Type Age in Graph Variables: Click OK. SUBC> Bar.

Now double click the histogram and click Binning Tab.
Type 34.5:84.5/10 in MidPoint/CutPoint positions:
Click OK.



Stem-and-Leaf Displays Another graphical device that is useful for represent-
ing quantitative data sets is the stem-and-leaf display. A stem-and-leaf display bears a
strong resemblance to a histogram and serves the same purpose. A properly constructed
stem-and-leaf display, like a histogram, provides information regarding the range of the
data set, shows the location of the highest concentration of measurements, and reveals the
presence or absence of symmetry. An advantage of the stem-and-leaf display over the his-
togram is the fact that it preserves the information contained in the individual measure-
ments. Such information is lost when measurements are assigned to the class intervals of
a histogram. As will become apparent, another advantage of stem-and-leaf displays is the
fact that they can be constructed during the tallying process, so the intermediate step of
preparing an ordered array is eliminated.

To construct a stem-and-leaf display we partition each measurement into two parts.
The first part is called the stem, and the second part is called the leaf. The stem consists
of one or more of the initial digits of the measurement, and the leaf is composed of one
or more of the remaining digits. All partitioned numbers are shown together in a single
display; the stems form an ordered column with the smallest stem at the top and the largest
at the bottom. We include in the stem column all stems within the range of the data even
when a measurement with that stem is not in the data set. The rows of the display con-
tain the leaves, ordered and listed to the right of their respective stems. When leaves con-
sist of more than one digit, all digits after the first may be deleted. Decimals when pres-
ent in the original data are omitted in the stem-and-leaf display. The stems are separated
from their leaves by a vertical line. Thus we see that a stem-and-leaf display is also an
ordered array of the data.

Stem-and-leaf displays are most effective with relatively small data sets. As a rule
they are not suitable for use in annual reports or other communications aimed at the gen-
eral public. They are primarily of value in helping researchers and decision makers under-
stand the nature of their data. Histograms are more appropriate for externally circulated
publications. The following example illustrates the construction of a stem-and-leaf
display.
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FIGURE 2.3.4 Frequency polygon for the ages of
189 subjects shown in Table 2.2.1.

FIGURE 2.3.5 Histogram and frequency polygon
for the ages of 189 subjects shown in Table 2.2.1.

0

10

20

30

40

50

60

70

Fr
eq

u
en

cy

74.5 84.5 94.524.5 34.5 44.5 54.5 64.5

Age

0

10

20

30

40

50

60

70

Fr
eq

u
en

cy

74.5 84.5 94.524.5 34.5 44.5 54.5 64.5

Age



2.3 GROUPED DATA: THE FREQUENCY DISTRIBUTION 29

EXAMPLE 2.3.2

Let us use the age data shown in Table 2.2.1 to construct a stem-and-leaf display.

Solution: Since the measurements are all two-digit numbers, we will have one-digit
stems and one-digit leaves. For example, the measurement 30 has a stem of
3 and a leaf of 0. Figure 2.3.6 shows the stem-and-leaf display for the data.

The MINITAB statistical software package may be used to construct
stem-and-leaf displays. The MINITAB procedure and output are as shown
in Figure 2.3.7. The increment subcommand specifies the distance from one
stem to the next. The numbers in the leftmost output column of Figure 2.3.7

FIGURE 2.3.6 Stem-and-leaf display of ages of 189 subjects shown in Table 2.2.1 
(stem unit 10, leaf unit 1).==

Stem Leaf

3 04577888899
4 0022333333444444455566666677777788888889999999
5 0000000011112222223333333333333333344444444444555666666777777788999999
6 000011111111111222222233444444556666667888999
7 0111111123567888
8 2

FIGURE 2.3.7 Stem-and-leaf display prepared by MINITAB from the data on subjects’
ages shown in Table 2.2.1.

Dialog box: Session command:

Graph ➤ Stem-and-Leaf MTB > Stem-and-Leaf 'Age';
SUBC>  Increment 10.

Type Age in Graph Variables. Type 10 in Increment.
Click OK.

Output:

Stem-and-Leaf Display: Age

Stem-and-leaf of Age N = 189
Leaf Unit = 1.0

11 3 04577888899

57 4 0022333333444444455566666677777788888889999999

(70) 5 00000000111122222233333333333333333444444444445556666667777777889+

62 6 000011111111111222222233444444556666667888999

17 7 0111111123567888

1 8 2
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provide information regarding the number of observations (leaves) on a
given line and above or the number of observations on a given line and
below. For example, the number 57 on the second line shows that there are
57 observations (or leaves) on that line and the one above it. The number
62 on the fourth line from the top tells us that there are 62 observations on
that line and all the ones below. The number in parentheses tells us that
there are 70 observations on that line. The parentheses mark the line con-
taining the middle observation if the total number of observations is odd or
the two middle observations if the total number of observations is even.

The at the end of the third line in Figure 2.3.7 indicates that the fre-
quency for that line (age group 50 through 59) exceeds the line capacity, and
that there is at least one additional leaf that is not shown. In this case, the
frequency for the 50–59 age group was 70. The line contains only 65 leaves,
so the indicates that there are five more leaves, the number 9, that are not
shown. ■

One way to avoid exceeding the capacity of a line is to have more lines. This is
accomplished by making the distance between lines shorter, that is, by decreasing the
widths of the class intervals. For the present example, we may use class interval widths
of 5, so that the distance between lines is 5. Figure 2.3.8 shows the result when MINITAB
is used to produce the stem-and-leaf display.

EXERCISES

2.3.1 In a study of the oral home care practice and reasons for seeking dental care among individuals
on renal dialysis, Atassi (A-1) studied 90 subjects on renal dialysis. The oral hygiene status of all
subjects was examined using a plaque index with a range of 0 to 3 soft plaque deposits,10 = no

+

+

FIGURE 2.3.8 Stem-and-leaf display prepared by MINITAB from the data on subjects’
ages shown in Table 2.2.1; class interval width 5.�

Stem-and-leaf of Age N = 189
Leaf Unit = 1.0

2 3 04
11 3 577888899
28 4 00223333334444444
57 4 55566666677777788888889999999

(46) 5 0000000011112222223333333333333333344444444444
86 5 555666666777777788999999
62 6 000011111111111222222233444444
32 6 556666667888999
17 7 0111111123
7 7 567888
1 8 2



EXERCISES 31

abundance of soft plaque deposits). The following table shows the plaque index scores for
all 90 subjects.

1.17 2.50 2.00 2.33 1.67 1.33
1.17 2.17 2.17 1.33 2.17 2.00
2.17 1.17 2.50 2.00 1.50 1.50
1.00 2.17 2.17 1.67 2.00 2.00
1.33 2.17 2.83 1.50 2.50 2.33
0.33 2.17 1.83 2.00 2.17 2.00
1.00 2.17 2.17 1.33 2.17 2.50
0.83 1.17 2.17 2.50 2.00 2.50
0.50 1.50 2.00 2.00 2.00 2.00
1.17 1.33 1.67 2.17 1.50 2.00
1.67 0.33 1.50 2.17 2.33 2.33
1.17 0.00 1.50 2.33 1.83 2.67
0.83 1.17 1.50 2.17 2.67 1.50
2.00 2.17 1.33 2.00 2.33 2.00
2.17 2.17 2.00 2.17 2.00 2.17
Source: Farhad Atassi, DDS, MSc, FICOI.
Used with permission.

(a) Use these data to prepare:

A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon

(b) What percentage of the measurements are less than 2.00?

(c) What proportion of the subjects have measurements greater than or equal to 1.50?

(d) What percentage of the measurements are between 1.50 and 1.99 inclusive?

(e) How many of the measurements are greater than 2.49?

(f) What proportion of the measurements are either less than 1.0 or greater than 2.49?

(g) Someone picks a measurement at random from this data set and asks you to guess the value.
What would be your answer? Why?

(h) Frequency distributions and their histograms may be described in a number of ways depend-
ing on their shape. For example, they may be symmetric (the left half is at least approximately a
mirror image of the right half), skewed to the left (the frequencies tend to increase as the meas-
urements increase in size), skewed to the right (the frequencies tend to decrease as the measure-
ments increase in size), or U-shaped (the frequencies are high at each end of the distribution and
small in the center). How would you describe the present distribution?

2.3.2 Janardhan et al. (A-2) conducted a study in which they measured incidental intracranial aneurysms
(IIAs) in 125 patients. The researchers examined postprocedural complications and concluded that
IIAs can be safely treated without causing mortality and with a lower complications rate than pre-
viously reported. The following are the sizes (in millimeters) of the 159 IIAs in the sample.

8.1 10.0 5.0 7.0 10.0 3.0
20.0 4.0 4.0 6.0 6.0 7.0

3 = an

(Continued)



32 CHAPTER 2 DESCRIPTIVE STATISTICS

10.0 4.0 3.0 5.0 6.0 6.0
6.0 6.0 6.0 5.0 4.0 5.0
6.0 25.0 10.0 14.0 6.0 6.0
4.0 15.0 5.0 5.0 8.0 19.0

21.0 8.3 7.0 8.0 5.0 8.0
5.0 7.5 7.0 10.0 15.0 8.0

10.0 3.0 15.0 6.0 10.0 8.0
7.0 5.0 10.0 3.0 7.0 3.3

15.0 5.0 5.0 3.0 7.0 8.0
3.0 6.0 6.0 10.0 15.0 6.0
3.0 3.0 7.0 5.0 4.0 9.2

16.0 7.0 8.0 5.0 10.0 10.0
9.0 5.0 5.0 4.0 8.0 4.0
3.0 4.0 5.0 8.0 30.0 14.0

15.0 2.0 8.0 7.0 12.0 4.0
3.8 10.0 25.0 8.0 9.0 14.0

30.0 2.0 10.0 5.0 5.0 10.0
22.0 5.0 5.0 3.0 4.0 8.0

7.5 5.0 8.0 3.0 5.0 7.0
8.0 5.0 9.0 11.0 2.0 10.0
6.0 5.0 5.0 12.0 9.0 8.0

15.0 18.0 10.0 9.0 5.0 6.0
6.0 8.0 12.0 10.0 5.0
5.0 16.0 8.0 5.0 8.0
4.0 16.0 3.0 7.0 13.0

Source: Vallabh Janardhan, M.D. Used with
permission.

(a) Use these data to prepare:

A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon

(b) What percentage of the measurements are between 10 and 14.9 inclusive?

(c) How many observations are less than 20?

(d) What proportion of the measurements are greater than or equal to 25?

(e) What percentage of the measurements are either less than 10.0 or greater than 19.95?

(f) Refer to Exercise 2.3.1, part h. Describe the distribution of the size of the aneurysms in this
sample.

2.3.3 Hoekema et al. (A-3) studied the craniofacial morphology of patients diagnosed with obstructive
sleep apnea syndrome (OSAS) in healthy male subjects. One of the demographic variables the
researchers collected for all subjects was the Body Mass Index (calculated by dividing weight in kg
by the square of the patient’s height in cm). The following are the BMI values of 29 OSAS subjects.

33.57 27.78 40.81
38.34 29.01 47.78
26.86 54.33 28.99

(Continued)



25.21 30.49 27.38
36.42 41.50 29.39
24.54 41.75 44.68
24.49 33.23 47.09
29.07 28.21 42.10
26.54 27.74 33.48
31.44 30.08

Source: A. Hoekema, D.D.S.
Used with permission.

(a) Use these data to construct:

A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon

(b) What percentage of the measurements are less than 30?

(c) What percentage of the measurements are between 40.0 and 49.99 inclusive?

(d) What percentage of the measurements are greater than 34.99?

(e) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

(f) How many of the measurements are less than 40?

2.3.4 David Holben (A-4) studied selenium levels in beef raised in a low selenium region of the United
States. The goal of the study was to compare selenium levels in the region-raised beef to selenium
levels in cooked venison, squirrel, and beef from other regions of the United States. The data below
are the selenium levels calculated on a dry weight basis in for a sample of 53 region-
raised cattle.

11.23 15.82
29.63 27.74
20.42 22.35
10.12 34.78
39.91 35.09
32.66 32.60
38.38 37.03
36.21 27.00
16.39 44.20
27.44 13.09
17.29 33.03
56.20 9.69
28.94 32.45
20.11 37.38
25.35 34.91
21.77 27.99
31.62 22.36
32.63 22.68
30.31 26.52
46.16 46.01

mg>100 g
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56.61 38.04
24.47 30.88
29.39 30.04
40.71 25.91
18.52 18.54
27.80 25.51
19.49

Source: David Holben, Ph.D.
Used with permission.

(a) Use these data to construct:

A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

(c) How many of the measurements are greater than 40?

(d) What percentage of the measurements are less than 25?

2.3.5 The following table shows the number of hours 45 hospital patients slept following the adminis-
tration of a certain anesthetic.

7 10 12 4 8 7 3 8 5
12 11 3 8 1 1 13 10 4

4 5 5 8 7 7 3 2 3
8 13 1 7 17 3 4 5 5
3 1 17 10 4 7 7 11 8

(a) From these data construct:

A frequency distribution
A relative frequency distribution
A histogram
A frequency polygon

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.

2.3.6 The following are the number of babies born during a year in 60 community hospitals.

30 55 27 45 56 48 45 49 32 57 47 56
37 55 52 34 54 42 32 59 35 46 24 57
32 26 40 28 53 54 29 42 42 54 53 59
39 56 59 58 49 53 30 53 21 34 28 50
52 57 43 46 54 31 22 31 24 24 57 29

(a) From these data construct:

A frequency distribution
A relative frequency distribution
A frequency polygon

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.



2.3.7 In a study of physical endurance levels of male college freshman, the following composite
endurance scores based on several exercise routines were collected.

254 281 192 260 212 179 225 179 181 149
182 210 235 239 258 166 159 223 186 190
180 188 135 233 220 204 219 211 245 151
198 190 151 157 204 238 205 229 191 200
222 187 134 193 264 312 214 227 190 212
165 194 206 193 218 198 241 149 164 225
265 222 264 249 175 205 252 210 178 159
220 201 203 172 234 198 173 187 189 237
272 195 227 230 168 232 217 249 196 223
232 191 175 236 152 258 155 215 197 210
214 278 252 283 205 184 172 228 193 130
218 213 172 159 203 212 117 197 206 198
169 187 204 180 261 236 217 205 212 218
191 124 199 235 139 231 116 182 243 217
251 206 173 236 215 228 183 204 186 134
188 195 240 163 208

(a) From these data construct:

A frequency distribution
A relative frequency distribution
A frequency polygon
A histogram

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.

2.3.8 The following are the ages of 30 patients seen in the emergency room of a hospital on a Friday
night. Construct a stem-and-leaf display from these data. Describe these data relative to symme-
try and skewness as discussed in Exercise 2.3.1, part h.

35 32 21 43 39 60
36 12 54 45 37 53
45 23 64 10 34 22
36 45 55 44 55 46
22 38 35 56 45 57

2.3.9 The following are the emergency room charges made to a sample of 25 patients at two city hos-
pitals. Construct a stem-and-leaf display for each set of data. What does a comparison of the two
displays suggest regarding the two hospitals? Describe the two sets of data with respect to sym-
metry and skewness as discussed in Exercise 2.3.1, part h.

Hospital A

249.10 202.50 222.20 214.40 205.90
214.30 195.10 213.30 225.50 191.40
201.20 239.80 245.70 213.00 238.80
171.10 222.00 212.50 201.70 184.90
248.30 209.70 233.90 229.80 217.90
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Hospital B

199.50 184.00 173.20 186.00 214.10
125.50 143.50 190.40 152.00 165.70
154.70 145.30 154.60 190.30 135.40
167.70 203.40 186.70 155.30 195.90
168.90 166.70 178.60 150.20 212.40

2.3.10 Refer to the ages of patients discussed in Example 1.4.1 and displayed in Table 1.4.1.

(a) Use class interval widths of 5 and construct:

A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

2.3.11 The objectives of a study by Skjelbo et al. (A-5) were to examine (a) the relationship between
chloroguanide metabolism and efficacy in malaria prophylaxis and (b) the mephenytoin metabo-
lism and its relationship to chloroguanide metabolism among Tanzanians. From information pro-
vided by urine specimens from the 216 subjects, the investigators computed the ratio of unchanged
S-mephenytoin to R-mephenytoin (S/R ratio). The results were as follows:

0.0269 0.0400 0.0550 0.0550 0.0650 0.0670 0.0700 0.0720
0.0760 0.0850 0.0870 0.0870 0.0880 0.0900 0.0900 0.0990
0.0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0990
0.0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0990
0.0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0990
0.0990 0.0990 0.0990 0.0990 0.0990 0.1000 0.1020 0.1040
0.1050 0.1050 0.1080 0.1080 0.1090 0.1090 0.1090 0.1160
0.1190 0.1200 0.1230 0.1240 0.1340 0.1340 0.1370 0.1390
0.1460 0.1480 0.1490 0.1490 0.1500 0.1500 0.1500 0.1540
0.1550 0.1570 0.1600 0.1650 0.1650 0.1670 0.1670 0.1677
0.1690 0.1710 0.1720 0.1740 0.1780 0.1780 0.1790 0.1790
0.1810 0.1880 0.1890 0.1890 0.1920 0.1950 0.1970 0.2010
0.2070 0.2100 0.2100 0.2140 0.2150 0.2160 0.2260 0.2290
0.2390 0.2400 0.2420 0.2430 0.2450 0.2450 0.2460 0.2460
0.2470 0.2540 0.2570 0.2600 0.2620 0.2650 0.2650 0.2680
0.2710 0.2800 0.2800 0.2870 0.2880 0.2940 0.2970 0.2980
0.2990 0.3000 0.3070 0.3100 0.3110 0.3140 0.3190 0.3210
0.3400 0.3440 0.3480 0.3490 0.3520 0.3530 0.3570 0.3630
0.3630 0.3660 0.3830 0.3900 0.3960 0.3990 0.4080 0.4080
0.4090 0.4090 0.4100 0.4160 0.4210 0.4260 0.4290 0.4290
0.4300 0.4360 0.4370 0.4390 0.4410 0.4410 0.4430 0.4540
0.4680 0.4810 0.4870 0.4910 0.4980 0.5030 0.5060 0.5220
0.5340 0.5340 0.5460 0.5480 0.5480 0.5490 0.5550 0.5920
0.5930 0.6010 0.6240 0.6280 0.6380 0.6600 0.6720 0.6820
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0.6870 0.6900 0.6910 0.6940 0.7040 0.7120 0.7200 0.7280
0.7860 0.7950 0.8040 0.8200 0.8350 0.8770 0.9090 0.9520
0.9530 0.9830 0.9890 1.0120 1.0260 1.0320 1.0620 1.1600
Source: Erik Skjelbo, M.D. Used with permission.

(a) From these data construct the following distributions: frequency, relative frequency, cumula-
tive frequency, and cumulative relative frequency; and the following graphs: histogram, frequency
polygon, and stem-and-leaf plot.

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

(c) The investigators defined as poor metabolizers of mephenytoin any subject with an S/R mepheny-
toin ratio greater than .9. How many and what percentage of the subjects were poor metabolizers?

(d) How many and what percentage of the subjects had ratios less than .7? Between .3 and .6999
inclusive? Greater than .4999?

2.3.12 Schmidt et al. (A-6) conducted a study to investigate whether autotransfusion of shed mediastinal
blood could reduce the number of patients needing homologous blood transfusion and reduce the
amount of transfused homologous blood if fixed transfusion criteria were used. The following table
shows the heights in centimeters of the 109 subjects of whom 97 were males.
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1.720 1.710 1.700 1.655 1.800 1.700
1.730 1.700 1.820 1.810 1.720 1.800
1.800 1.800 1.790 1.820 1.800 1.650
1.680 1.730 1.820 1.720 1.710 1.850
1.760 1.780 1.760 1.820 1.840 1.690
1.770 1.920 1.690 1.690 1.780 1.720
1.750 1.710 1.690 1.520 1.805 1.780
1.820 1.790 1.760 1.830 1.760 1.800
1.700 1.760 1.750 1.630 1.760 1.770
1.840 1.690 1.640 1.760 1.850 1.820
1.760 1.700 1.720 1.780 1.630 1.650
1.660 1.880 1.740 1.900 1.830
1.600 1.800 1.670 1.780 1.800
1.750 1.610 1.840 1.740 1.750
1.960 1.760 1.730 1.730 1.810
1.810 1.775 1.710 1.730 1.740
1.790 1.880 1.730 1.560 1.820
1.780 1.630 1.640 1.600 1.800
1.800 1.780 1.840 1.830
1.770 1.690 1.800 1.620
Source: Erik Skjelbo, M.D. Used with permission.

(a) For these data construct the following distributions: frequency, relative frequency, cumulative
frequency, and cumulative relative frequency; and the following graphs: histogram, frequency poly-
gon, and stem-and-leaf plot.

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

(c) How do you account for the shape of the distribution of these data?

(d) How tall were the tallest 6.42 percent of the subjects?

(e) How tall were the shortest 10.09 percent of the subjects?
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2.4 DESCRIPTIVE STATISTICS: 
MEASURES OF CENTRAL TENDENCY

Although frequency distributions serve useful purposes, there are many situations that
require other types of data summarization. What we need in many instances is the abil-
ity to summarize the data by means of a single number called a descriptive measure.
Descriptive measures may be computed from the data of a sample or the data of a pop-
ulation. To distinguish between them we have the following definitions:

DEFINITIONS
1. A descriptive measure computed from the data of a sample is

called a statistic.
2. A descriptive measure computed from the data of a population is

called a parameter.

Several types of descriptive measures can be computed from a set of data. In this
chapter, however, we limit discussion to measures of central tendency and measures of dis-
persion. We consider measures of central tendency in this section and measures of disper-
sion in the following one.

In each of the measures of central tendency, of which we discuss three, we have
a single value that is considered to be typical of the set of data as a whole. Measures of
central tendency convey information regarding the average value of a set of values. As
we will see, the word average can be defined in different ways.

The three most commonly used measures of central tendency are the mean, the
median, and the mode.

Arithmetic Mean The most familiar measure of central tendency is the arith-
metic mean. It is the descriptive measure most people have in mind when they speak of
the “average.” The adjective arithmetic distinguishes this mean from other means that
can be computed. Since we are not covering these other means in this book, we shall
refer to the arithmetic mean simply as the mean. The mean is obtained by adding all the
values in a population or sample and dividing by the number of values that are added.

EXAMPLE 2.4.1

We wish to obtain the mean age of the population of 189 subjects represented in Table
1.4.1.

Solution: We proceed as follows:

■

The three dots in the numerator represent the values we did not show in order to
save space.

mean age =
48 + 35 + 46 + Á + 73 + 66

189
= 55.032



General Formula for the Mean It will be convenient if we can generalize
the procedure for obtaining the mean and, also, represent the procedure in a more com-
pact notational form. Let us begin by designating the random variable of interest by the
capital letter X. In our present illustration we let X represent the random variable, age.
Specific values of a random variable will be designated by the lowercase letter x. To dis-
tinguish one value from another, we attach a subscript to the x and let the subscript refer
to the first, the second, the third value, and so on. For example, from Table 1.4.1 we have

In general, a typical value of a random variable will be designated by and the final
value, in a finite population of values, by where N is the number of values in the
population. Finally, we will use the Greek letter to stand for the population mean. We
may now write the general formula for a finite population mean as follows:

(2.4.1)

The symbol instructs us to add all values of the variable from the first to the last.
This symbol called the summation sign, will be used extensively in this book. When
from the context it is obvious which values are to be added, the symbols above and below

will be omitted.

The Sample Mean When we compute the mean for a sample of values, the pro-
cedure just outlined is followed with some modifications in notation. We use to desig-
nate the sample mean and n to indicate the number of values in the sample. The sample
mean then is expressed as

(2.4.2)

EXAMPLE 2.4.2

In Chapter 1 we selected a simple random sample of 10 subjects from the population of
subjects represented in Table 1.4.1. Let us now compute the mean age of the 10 subjects
in our sample.

Solution: We recall (see Table 1.4.2) that the ages of the 10 subjects in our sam-
ple were 

Substitution of our sample data into Equa-
tion 2.4.2 gives

■
x =

a
n

i=1
x i

n
=

43 + 66 + . . . + 50

10
= 56

x 8 = 57, x 9 = 57, x 10 = 50.
x1 = 43, x2 = 66, x3 = 61, x4 = 64, x 5 = 65, x 6 = 38, x 7 = 59,

x =
a

n

i=1
x i

n

x

g
g ,
gN

i=1

m =
a
N

i=1
x i

N

m

xN,
x i

x1 = 48, x2 = 35, . . . , x189 = 66
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Properties of the Mean The arithmetic mean possesses certain properties,
some desirable and some not so desirable. These properties include the following:

1. Uniqueness. For a given set of data there is one and only one arithmetic mean.

2. Simplicity. The arithmetic mean is easily understood and easy to compute.

3. Since each and every value in a set of data enters into the computation of the mean,
it is affected by each value. Extreme values, therefore, have an influence on the
mean and, in some cases, can so distort it that it becomes undesirable as a meas-
ure of central tendency.

As an example of how extreme values may affect the mean, consider the follow-
ing situation. Suppose the five physicians who practice in an area are surveyed to deter-
mine their charges for a certain procedure. Assume that they report these charges: $75,
$75, $80, $80, and $280. The mean charge for the five physicians is found to be $118,
a value that is not very representative of the set of data as a whole. The single atypical
value had the effect of inflating the mean.

Median The median of a finite set of values is that value which divides the set into
two equal parts such that the number of values equal to or greater than the median is
equal to the number of values equal to or less than the median. If the number of values
is odd, the median will be the middle value when all values have been arranged in order
of magnitude. When the number of values is even, there is no single middle value. Instead
there are two middle values. In this case the median is taken to be the mean of these
two middle values, when all values have been arranged in the order of their magnitudes.
In other words, the median observation of a data set is the one when the
observation have been ordered. If, for example, we have 11 observations, the median is
the ordered observation. If we have 12 observations the median is the

ordered observation and is a value halfway between the 6th and 7th
ordered observations.

EXAMPLE 2.4.3

Let us illustrate by finding the median of the data in Table 2.2.1.

Solution: The values are already ordered so we need only to find the two middle
values. The middle value is the 
95th one. Counting from the smallest up to the 95th value we see that it is
54. Thus the median age of the 189 subjects is 54 years. ■

EXAMPLE 2.4.4

We wish to find the median age of the subjects represented in the sample described in
Example 2.4.2.

Solution: Arraying the 10 ages in order of magnitude from smallest to largest gives 38,
43, 50, 57, 57, 59, 61, 64, 65, 66. Since we have an even number of ages,

1n + 12>2 = 1189 + 12>2 = 190>2 =

112 + 12>2 = 6.5th
111 + 12>2 = 6th

1n + 12>2th



there is no middle value. The two middle values, however, are 57 and 59. The
median, then, is ■

Properties of the Median Properties of the median include the following:

1. Uniqueness. As is true with the mean, there is only one median for a given set of
data.

2. Simplicity. The median is easy to calculate.

3. It is not as drastically affected by extreme values as is the mean.

The Mode The mode of a set of values is that value which occurs most frequently.
If all the values are different there is no mode; on the other hand, a set of values may
have more than one mode.

EXAMPLE 2.4.5

Find the modal age of the subjects whose ages are given in Table 2.2.1.

Solution: A count of the ages in Table 2.2.1 reveals that the age 53 occurs most fre-
quently (17 times). The mode for this population of ages is 53. ■

For an example of a set of values that has more than one mode, let us consider
a laboratory with 10 employees whose ages are 20, 21, 20, 20, 34, 22, 24, 27, 27,
and 27. We could say that these data have two modes, 20 and 27. The sample
consisting of the values 10, 21, 33, 53, and 54 has no mode since all the values are
different.

The mode may be used for describing qualitative data. For example, suppose the
patients seen in a mental health clinic during a given year received one of the following
diagnoses: mental retardation, organic brain syndrome, psychosis, neurosis, and person-
ality disorder. The diagnosis occurring most frequently in the group of patients would
be called the modal diagnosis.

An attractive property of a data distribution occurs when the mean, median, and
mode are all equal. The well-known “bell-shaped curve” is a graphical representation of
a distribution for which the mean, median, and mode are all equal. Much statistical infer-
ence is based on this distribution, the most common of which is the normal distribution.
The normal distribution is introduced in Section 4.6 and discussed further in subsequent
chapters. Another common distribution of this type is the t-distribution, which is intro-
duced in Section 6.3.

Skewness Data distributions may be classified on the basis of whether they are
symmetric or asymmetric. If a distribution is symmetric, the left half of its graph (his-
togram or frequency polygon) will be a mirror image of its right half. When the left half
and right half of the graph of a distribution are not mirror images of each other, the dis-
tribution is asymmetric.

157 + 592>2 = 58.
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DEFINITION
If the graph (histogram or frequency polygon) of a distribution is
asymmetric, the distribution is said to be skewed. If a distribution is
not symmetric because its graph extends further to the right than to
the left, that is, if it has a long tail to the right, we say that the distri-
bution is skewed to the right or is positively skewed. If a distribution is
not symmetric because its graph extends further to the left than to the
right, that is, if it has a long tail to the left, we say that the distribu-
tion is skewed to the left or is negatively skewed.

A distribution will be skewed to the right, or positively skewed, if its mean is
greater than its mode. A distribution will be skewed to the left, or negatively skewed, if
its mean is less than its mode. Skewness can be expressed as follows:

(2.4.3)

In Equation 2.4.3, s is the standard deviation of a sample as defined in Equation 2.5.4.
Most computer statistical packages include this statistic as part of a standard printout. A
value of skewness � 0 indicates positive skewness and a value of skewness � 0 indi-
cates negative skewness. An illustration of skewness is shown in Figure 2.4.1.

EXAMPLE 2.4.6

Consider the three distributions shown in Figure 2.4.1. Given that the histograms repre-
sent frequency counts, the data can be easily re-created and entered into a statistical pack-
age.  For example, observation of the “No Skew” distribution would yield the following
data: 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11. Values can be

Skewness =
2na

n

i=1
1x i - x23

aan
i=1
1x i - x22b3>2 =

2na
n

i=1
1x i - x231n - 122n - 1 s3

FIGURE 2.4.1 Three histograms illustrating skewness.



obtained from the skewed distributions in a similar fashion. Using SPSS software, the
following descriptive statistics were obtained for these three distributions

No Skew Right Skew Left Skew

Mean 8.0000 6.6667 8.3333
Median 8.0000 6.0000 9.0000
Mode 8.00 5.00 10.00
Skewness .000 .627 �.627 ■

2.5 DESCRIPTIVE STATISTICS: 
MEASURES OF DISPERSION

The dispersion of a set of observations refers to the variety that they exhibit. A measure
of dispersion conveys information regarding the amount of variability present in a set of
data. If all the values are the same, there is no dispersion; if they are not all the same,
dispersion is present in the data. The amount of dispersion may be small when the val-
ues, though different, are close together. Figure 2.5.1 shows the frequency polygons for
two populations that have equal means but different amounts of variability. Population
B, which is more variable than population A, is more spread out. If the values are widely
scattered, the dispersion is greater. Other terms used synonymously with dispersion
include variation, spread, and scatter.

The Range One way to measure the variation in a set of values is to compute the
range. The range is the difference between the largest and smallest value in a set of
observations. If we denote the range by R, the largest value by and the smallest value
by we compute the range as follows:

(2.5.1)R = xL - xS

xs,
xL,
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EXAMPLE 2.5.1

We wish to compute the range of the ages of the sample subjects discussed in Example
2.4.2.

Solution: Since the youngest subject in the sample is 30 years old and the oldest is
82, we compute the range to be

■

The usefulness of the range is limited. The fact that it takes into account only two val-
ues causes it to be a poor measure of dispersion. The main advantage in using the range
is the simplicity of its computation. Since the range, expressed as a single measure,
imparts minimal information about a data set and therefore, is of limited use, it is often
preferable to express the range as a number pair, [xS, xL], in which xS and xL are the
smallest and largest values in the data set, respectively. For the data in Example 2.5.1,
we may express the range as the number pair [30, 82]. Although this is not the tradi-
tional expression for the range, it is intuitive to imagine that knowledge of the minimum
and maximum values in this data set would convey more information than knowing only
that the range is equal to 52. An infinite number of distributions, each with quite differ-
ent minimum and maximum values, may have a range of 52.

The Variance When the values of a set of observations lie close to their mean,
the dispersion is less than when they are scattered over a wide range. Since this is true,
it would be intuitively appealing if we could measure dispersion relative to the scatter
of the values about their mean. Such a measure is realized in what is known as the vari-
ance. In computing the variance of a sample of values, for example, we subtract the
mean from each of the values, square the resulting differences, and then add up the
squared differences. This sum of the squared deviations of the values from their mean
is divided by the sample size, minus 1, to obtain the sample variance. Letting s2 stand
for the sample variance, the procedure may be written in notational form as follows:

(2.5.2)

EXAMPLE 2.5.2

Let us illustrate by computing the variance of the ages of the subjects discussed in
Example 2.4.2.

Solution:

■

Degrees of Freedom The reason for dividing by rather than n, as we
might have expected, is the theoretical consideration referred to as degrees of freedom.

n - 1

=
810

9
= 90

s 2 =
143 - 5622 + 166 - 5622 + . . . + 150 - 5622

9

s 2 =
a

n

i=1
1x i - x22
n - 1

R = 82 - 30 = 52



In computing the variance, we say that we have degrees of freedom. We reason
as follows. The sum of the deviations of the values from their mean is equal to zero, as
can be shown. If, then, we know the values of of the deviations from the mean,
we know the nth one, since it is automatically determined because of the necessity for
all n values to add to zero. From a practical point of view, dividing the squared differ-
ences by rather than n is necessary in order to use the sample variance in the
inference procedures discussed later. The concept of degrees of freedom will be revis-
ited in a later Chapter. Students interested in pursuing the matter further at this time
should refer to the article by Walker (2).

When we compute the variance from a finite population of N values, the proce-
dures outlined above are followed except that we subtract from each x and divide by
N rather than If we let stand for the finite population variance, the formula
is as follows:

(2.5.3)

Standard Deviation The variance represents squared units and, therefore, is not
an appropriate measure of dispersion when we wish to express this concept in terms of
the original units. To obtain a measure of dispersion in original units, we merely take
the square root of the variance. The result is called the standard deviation. In general,
the standard deviation of a sample is given by

(2.5.4)

The standard deviation of a finite population is obtained by taking the square root of the
quantity obtained by Equation 2.5.3.

The Coefficient of Variation The standard deviation is useful as a measure
of variation within a given set of data. When one desires to compare the dispersion in two
sets of data, however, comparing the two standard deviations may lead to fallacious results.
It may be that the two variables involved are measured in different units. For example, we
may wish to know, for a certain population, whether serum cholesterol levels, measured in
milligrams per 100 ml, are more variable than body weight, measured in pounds.

Furthermore, although the same unit of measurement is used, the two means may
be quite different. If we compare the standard deviation of weights of first-grade chil-
dren with the standard deviation of weights of high school freshmen, we may find that
the latter standard deviation is numerically larger than the former, because the weights
themselves are larger, not because the dispersion is greater.

What is needed in situations like these is a measure of relative variation rather than
absolute variation. Such a measure is found in the coefficient of variation, which expresses
the standard deviation as a percentage of the mean. The formula is given by

(2.5.5)C.V. =
s

x
11002%

s = 2s2 = Qa
n

i=1
1x i - x22
n - 1

s2 =
a
N

i=1
1x i - m22

N

s2N - 1.
m

n - 1

n - 1

n - 1
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We see that, since the mean and standard deviations are expressed in the same unit
of measurement, the unit of measurement cancels out in computing the coefficient of vari-
ation. What we have, then, is a measure that is independent of the unit of measurement.

EXAMPLE 2.5.3

Suppose two samples of human males yield the following results:

Sample 1 Sample 2

Age 25 years 11 years
Mean weight 145 pounds 80 pounds
Standard deviation 10 pounds 10 pounds

We wish to know which is more variable, the weights of the 25-year-olds or the weights
of the 11-year-olds.

Solution: A comparison of the standard deviations might lead one to conclude that
the two samples possess equal variability. If we compute the coefficients of
variation, however, we have for the 25-year-olds

and for the 11-year-olds

If we compare these results, we get quite a different impression. It is clear
from this example that variation is much higher in the sample of 11-year-
olds than in the sample of 25-year-olds. ■

The coefficient of variation is also useful in comparing the results obtained by
different persons who are conducting investigations involving the same variable. Since
the coefficient of variation is independent of the scale of measurement, it is a useful
statistic for comparing the variability of two or more variables measured on different
scales. We could, for example, use the coefficient of variation to compare the variabil-
ity in weights of one sample of subjects whose weights are expressed in pounds with
the variability in weights of another sample of subjects whose weights are expressed in
kilograms.

Computer Analysis Computer software packages provide a variety of possibil-
ities in the calculation of descriptive measures. Figure 2.5.2 shows a printout of the
descriptive measures available from the MINITAB package. The data consist of the ages
from Example 2.4.2.

In the printout Q 1 and Q 3 are the first and third quartiles, respectively. These meas-
ures are described later in this chapter. N stands for the number of data observations, and
N* stands for the number of missing values. The term SEMEAN stands for standard

C.V. =
10

80
11002 = 12.5%

C.V. =
10

145
11002 = 6.9%



error of the mean. This measure will be discussed in detail in a later chapter. Figure
2.5.3 shows, for the same data, the SAS® printout obtained by using the PROC MEANS
statement.

Percentiles and Quartiles The mean and median are special cases of a fam-
ily of parameters known as location parameters. These descriptive measures are called
location parameters because they can be used to designate certain positions on the hori-
zontal axis when the distribution of a variable is graphed. In that sense the so-called loca-
tion parameters “locate” the distribution on the horizontal axis. For example, a distribution
with a median of 100 is located to the right of a distribution with a median of 50 when
the two distributions are graphed. Other location parameters include percentiles and quar-
tiles. We may define a percentile as follows:

DEFINITION
Given a set of n observations the pth percentile P is the
value of X such that p percent or less of the observations are less than P
and percent or less of the observations are greater than P.

Subscripts on P serve to distinguish one percentile from another. The 10th per-
centile, for example, is designated the 70th is designated and so on. The 50th
percentile is the median and is designated The 25th percentile is often referred to as
the first quartile and denoted The 50th percentile (the median) is referred to as
the second or middle quartile and written and the 75th percentile is referred to
as the third quartile, Q 3.

Q 2,
Q 1.

P50.
P70,P10,

(100 � p)

x1, x2, . . . xn,
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FIGURE 2.5.2 Printout of descriptive measures computed from the sample of ages in
Example 2.4.2, MINITAB software package.

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
C1 10 0 56.00 3.00 9.49 38.00 48.25 58.00 64.25 66.00

FIGURE 2.5.3 Printout of descriptive measures computed from the sample of ages in
Example 2.4.2, SAS® software package.

The MEANS Procedure

Analysis Variable: Age

N Mean Std Dev Minimum Maximum
10 56.0000000 9.4868330 38.0000000 66.0000000

Coeff of
Std Error Sum Variance Variation
3.0000000 560.0000000 90.0000000 16.9407732
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When we wish to find the quartiles for a set of data, the following formulas are
used:

(2.5.6)

Interquartile Range As we have seen, the range provides a crude measure of
the variability present in a set of data. A disadvantage of the range is the fact that it is
computed from only two values, the largest and the smallest. A similar measure that
reflects the variability among the middle 50 percent of the observations in a data set is
the interquartile range.

DEFINITION
The interquartile range (IQR) is the difference between the third and
first quartiles: that is,

(2.5.7)

A large IQR indicates a large amount of variability among the middle 50 percent of the
relevant observations, and a small IQR indicates a small amount of variability among the
relevant observations. Since such statements are rather vague, it is more informative to
compare the interquartile range with the range for the entire data set. A comparison may
be made by forming the ratio of the IQR to the range (R) and multiplying by 100. That
is, 100(IQR/R) tells us what percent the IQR is of the overall range.

Kurtosis Just as we may describe a distribution in terms of skewness, we may
describe a distribution in terms of kurtosis.

DEFINITION
Kurtosis is a measure of the degree to which a distribution is “peaked”
or flat in comparison to a normal distribution whose graph is charac-
terized by a bell-shaped appearance.

A distribution, in comparison to a normal distribution, may possess an excessive propor-
tion of observations in its tails, so that its graph exhibits a flattened appearance. Such a
distribution is said to be platykurtic. Conversely, a distribution, in comparison to a nor-
mal distribution, may possess a smaller proportion of observations in its tails, so that its
graph exhibits a more peaked appearance. Such a distribution is said to be leptokurtic.
A normal, or bell-shaped distribution, is said to be mesokurtic.

IQR � Q 3 � Q1

Q 3 =
31n + 12

4
 th ordered observation

Q 2 =
21n + 12

4
=

n + 1

2
 th ordered observation

Q 1 =
n + 1

4
 th ordered observation ∂



Kurtosis can be expressed as

(2.5.8)

Manual calculation using Equation 2.5.8 is usually not necessary, since most statisti-
cal packages calculate and report information regarding kurtosis as part of the descrip-
tive statistics for a data set. Note that each of the two parts of  Equation 2.5.8 has been
reduced by 3. A perfectly mesokurtic distribution has a kurtosis measure of 3 based
on the equation. Most computer algorithms reduce the measure by 3, as is done in
Equation 2.5.8, so that the kurtosis measure of a mesokurtic distribution will be equal
to 0. A leptokurtic distribution, then, will have a kurtosis measure � 0, and a platykur-
tic distribution will have a kurtosis measure � 0. Be aware that not all computer pack-
ages make this adjustment. In such cases, comparisons with a mesokurtic distribution
are made against 3 instead of against 0. Graphs of distributions representing the three
types of kurtosis are shown in Figure 2.5.4.

EXAMPLE 2.5.4

Consider the three distributions shown in Figure 2.5.4. Given that the histograms rep-
resent frequency counts, the data can be easily re-created and entered into a statistical
package. For example, observation of the “mesokurtic” distribution would yield the fol-
lowing data: 1, 2, 2, 3, 3, 3, 3, 3, … , 9, 9, 9, 9, 9, 10, 10, 11. Values can be obtained
from the other distributions in a similar fashion. Using SPSS software, the following
descriptive statistics were obtained for these three distributions:

Mesokurtic Leptokurtic Platykurtic

Mean 6.0000 6.0000 6.0000
Median 6.0000 6.0000 6.0000
Mode 6.00 6.00 6.00
Skewness .000 .608 �1.158

■

Kurtosis =
na

n

i=1
1x i - x24

aan
i=1
1x i - x22b2 - 3 =

na
n

i=1
1x i - x241n - 122 s4 - 3
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FIGURE 2.5.4 Three histograms representing kurtosis.
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Box-and-Whisker Plots A useful visual device for communicating the infor-
mation contained in a data set is the box-and-whisker plot. The construction of a box-
and-whisker plot (sometimes called, simply, a boxplot) makes use of the quartiles of a
data set and may be accomplished by following these five steps:

1. Represent the variable of interest on the horizontal axis.

2. Draw a box in the space above the horizontal axis in such a way that the left end
of the box aligns with the first quartile and the right end of the box aligns with
the third quartile 

3. Divide the box into two parts by a vertical line that aligns with the median 

4. Draw a horizontal line called a whisker from the left end of the box to a point that
aligns with the smallest measurement in the data set.

5. Draw another horizontal line, or whisker, from the right end of the box to a point
that aligns with the largest measurement in the data set.

Examination of a box-and-whisker plot for a set of data reveals information regard-
ing the amount of spread, location of concentration, and symmetry of the data.

The following example illustrates the construction of a box-and-whisker plot.

EXAMPLE 2.5.5

Evans et al. (A-7) examined the effect of velocity on ground reaction forces (GRF) in
dogs with lameness from a torn cranial cruciate ligament. The dogs were walked and
trotted over a force platform, and the GRF was recorded during a certain phase of their
performance. Table 2.5.1 contains 20 measurements of force where each value shown is
the mean of five force measurements per dog when trotting.

Solution: The smallest and largest measurements are 14.6 and 44, respectively. The
first quartile is the measurement, which is

The median is the 
measurement or and the

third quartile is the measurement, which is
equal to The interquartile range 
is The range is 29.4, and the IQR is

percent of the range. The resulting box-and-whisker
plot is shown in Figure 2.5.5. ■

Examination of Figure 2.5.5 reveals that 50 percent of the measurements are
between about 27 and 33, the approximate values of the first and third quartiles, respec-
tively. The vertical bar inside the box shows that the median is about 31.

10016.275>29.42 = 21
IQR = 33.525 - 27.25 = 6.275.

33.3 + 1.752133.6 - 33.32 = 33.525.
Q 3 + 3120 + 12>4 = 15.75th

30.7 + 1.52131.5 - 30.72 = 31.1;>2 = 10.5th
Q 2 + 120 + 1227.2 + 1.252127.4 - 27.22 = 27.25.

Q 1 = 120 + 12>4 = 5.25th

Q 2.

Q 3.
Q 1

TABLE 2.5.1 GRF Measurements When Trotting of 20 Dogs with a Lame Ligament

14.6 24.3 24.9 27.0 27.2 27.4 28.2 28.8 29.9 30.7

31.5 31.6 32.3 32.8 33.3 33.6 34.3 36.9 38.3 44.0

Source: Richard Evans, Ph.D. Used with permission.



Many statistical software packages have the capability of constructing box-and-
whisker plots. Figure 2.5.6 shows one constructed by MINITAB  and one constructed by
NCSS from the data of Table 2.5.1. The procedure to produce the MINITAB plot is shown
in Figure 2.5.7. The asterisks in Figure 2.5.6 alert us to the fact that the data set contains
one unusually large and one unusually small value, called outliers. The outliers are the
dogs that generated forces of 14.6 and 44. Figure 2.5.6 illustrates the fact that box-and-
whisker plots may be displayed vertically as well as horizontally.

An outlier, or a typical observation, may be defined as follows.

DEFINITION
An outlier is an observation whose value, x, either exceeds the value of
the third quartile by a magnitude greater than 1.5(IQR) or is less than
the value of the first quartile by a magnitude greater than 1.5(IQR).
That is, an observation of x Q 3 � 1.5(IQR) or an observation of 
x Q 1 � 1.5(IQR) is called an outlier.

For the data in Table 2.5.1 we may use the previously computed values of Q1, Q3, and
IQR to determine how large or how small a value would have to be in order to be con-
sidered an outlier. The calculations are as follows:

For the data in Table 2.5.1, then, an observed value smaller than 17.8375 or larger than
42.9375 would be considered an outlier.

x 7 27.25 - 1.516.2752 = 17.8375  and  x 7 33.525 + 1.516.2752 = 42.9375

<
>

2.5 DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION 51

FIGURE 2.5.5 Box-and-whisker plot for Example 2.5.5.

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 4644

GRF Measurements

FIGURE 2.5.6 Box-and-whisker plot constructed by MINITAB (left) and by NCSS (right)
from the data of Table 2.5.1.
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The SAS® statement PROC UNIVARIATE may be used to obtain a box-and-
whisker plot. The statement also produces other descriptive measures and displays,
including stem-and-leaf plots, means, variances, and quartiles.

Exploratory Data Analysis Box-and-whisker plots and stem-and-leaf dis-
plays are examples of what are known as exploratory data analysis techniques. These
techniques, made popular as a result of the work of Tukey (3), allow the investigator to
examine data in ways that reveal trends and relationships, identify unique features of
data sets, and facilitate their description and summarization.

EXERCISES

For each of the data sets in the following exercises compute (a) the mean, (b) the median, (c) the
mode, (d) the range, (e) the variance, (f) the standard deviation, (g) the coefficient of variation,
and (h) the interquartile range. Treat each data set as a sample. For those exercises for which you
think it would be appropriate, construct a box-and-whisker plot and discuss the usefulness in under-
standing the nature of the data that this device provides. For each exercise select the measure of
central tendency that you think would be most appropriate for describing the data. Give reasons
to justify your choice.

2.5.1 Porcellini et al. (A-8) studied 13 HIV-positive patients who were treated with highly active antiretro-
viral therapy (HAART) for at least 6 months. The CD4 T cell counts at baseline for the
13 subjects are listed below.

230 205 313 207 227 245 173
58 103 181 105 301 169

Source: Simona Porcellini, Guiliana Vallanti, Silvia
Nozza, Guido Poli, Adriano Lazzarin, Guiseppe
Tambussi, Antonio Grassia, “Improved Thymopoi-
etic Potential in Aviremic HIV Infected Individuals
with HAART by Intermittent IL-2 Administration,”
AIDS, 17 (2003), 1621–1630.

2.5.2 Shair and Jasper (A-9) investigated whether decreasing the venous return in young rats would affect
ultrasonic vocalizations (USVs). Their research showed no significant change in the number of
ultrasonic vocalizations when blood was removed from either the superior vena cava or the carotid

1* 106>L2

FIGURE 2.5.7 MINITAB procedure to produce Figure 2.5.6.

Dialog box: Session command:

Stat ➤ EDA ➤ Boxplot ➤ Simple MTB > Boxplot ‘Force’;
Click OK. SUBC> IQRbox;

SUBC> Outlier.
Type Force Graph Variables.
Click OK.



artery. Another important variable measured was the heart rate (bmp) during the withdrawal of
blood. The table below presents the heart rate of seven rat pups from the experiment involving the
carotid artery.

500 570 560 570 450 560 570
Source: Harry N. Shair and Anna Jasper,
“Decreased Venous Return Is Neither Sufficient
nor Necessary to Elicit Ultrasonic Vocalization of
Infant Rat Pups,” Behavioral Neuroscience, 117
(2003), 840–853.

2.5.3 Butz et al. (A-10) evaluated the duration of benefit derived from the use of noninvasive positive-
pressure ventilation by patients with amyotrophic lateral sclerosis on symptoms, quality of life,
and survival. One of the variables of interest is partial pressure of arterial carbon dioxide (PaCO2).
The values below (mm Hg) reflect the result of baseline testing on 30 subjects as established by
arterial blood gas analyses.

40.0 47.0 34.0 42.0 54.0 48.0 53.6 56.9 58.0 45.0
54.5 54.0 43.0 44.3 53.9 41.8 33.0 43.1 52.4 37.9
34.5 40.1 33.0 59.9 62.6 54.1 45.7 40.6 56.6 59.0
Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu, A. Sperfeld, 
S. Winter, H. H. Mehrkens, A. C. Ludolph, and H. Schreiber, “Longitudinal
Effects of Noninvasive Positive-Pressure Ventilation in Patients with Amyotrophic
Lateral Sclerosis,” American Journal of Medical Rehabilitation, 82 (2003),
597–604.

2.5.4 According to Starch et al. (A-11), hamstring tendon grafts have been the “weak link” in anterior
cruciate ligament reconstruction. In a controlled laboratory study, they compared two techniques
for reconstruction: either an interference screw or a central sleeve and screw on the tibial side. For
eight cadaveric knees, the measurements below represent the required force (in newtons) at which
initial failure of graft strands occurred for the central sleeve and screw technique.

172.5 216.63 212.62 98.97 66.95 239.76 19.57 195.72
Source: David W. Starch, Jerry W. Alexander, Philip C. Noble, Suraj Reddy, and
David M. Lintner, “Multistranded Hamstring Tendon Graft Fixation with a Cen-
tral Four-Quadrant or a Standard Tibial Interference Screw for Anterior Cruciate
Ligament Reconstruction,” American Journal of Sports Medicine, 31 (2003),
338–344.

2.5.5 Cardosi et al. (A-12) performed a 4-year retrospective review of 102 women undergoing radical
hysterectomy for cervical or endometrial cancer. Catheter-associated urinary tract infection was
observed in 12 of the subjects. Below are the numbers of postoperative days until diagnosis of the
infection for each subject experiencing an infection.

16 10 49 15 6 15
8 19 11 22 13 17

Source: Richard J. Cardosi, Rosemary Cardosi, Edward
C. Grendys Jr., James V. Fiorica, and Mitchel S. Hoffman,
“Infectious Urinary Tract Morbidity with Prolonged Bladder
Catheterization After Radical Hysterectomy,” American Journal
of Obstetrics and Gynecology, 189 (2003), 380–384.

2.5.6 The purpose of a study by Nozawa et al. (A-13) was to evaluate the outcome of surgical repair
of a pars interarticularis defect by segmental wire fixation in young adults with lumbar spondy-
lolysis. The authors found that segmental wire fixation historically has been successful in the
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treatment of nonathletes with spondylolysis, but no information existed on the results of this type
of surgery in athletes. In a retrospective study, the authors found 20 subjects who had the sur-
gery between 1993 and 2000. For these subjects, the data below represent the duration in months
of follow-up care after the operation.

103 68 62 60 60 54 49 44 42 41
38 36 34 30 19 19 19 19 17 16

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto,
and Mizuo Tanaka, “Repair of Pars Interarticularis Defect by
Segmental Wire Fixation in Young Athletes with Spondyloly-
sis,” American Journal of Sports Medicine, 31 (2003),
359–364.

2.5.7 See Exercise 2.3.1.

2.5.8 See Exercise 2.3.2.

2.5.9 See Exercise 2.3.3.

2.5.10 See Exercise 2.3.4.

2.5.11 See Exercise 2.3.5.

2.5.12 See Exercise 2.3.6.

2.5.13 See Exercise 2.3.7.

2.5.14 In a pilot study, Huizinga et al. (A-14) wanted to gain more insight into the psychosocial conse-
quences for children of a parent with cancer. For the study, 14 families participated in semistruc-
tured interviews and completed standardized questionnaires. Below is the age of the sick parent
with cancer (in years) for the 14 families.

37 48 53 46 42 49 44
38 32 32 51 51 48 41

Source: Gea A. Huizinga, Winette T.A. van der Graaf, 
Annemike Visser, Jos S. Dijkstra, and Josette E. H. M. 
Hoekstra-Weebers, “Psychosocial Consequences for Children
of a Parent with Cancer,” Cancer Nursing, 26 (2003),
195–202.

2.6 SUMMARY

In this chapter various descriptive statistical procedures are explained. These include the
organization of data by means of the ordered array, the frequency distribution, the rela-
tive frequency distribution, the histogram, and the frequency polygon. The concepts of
central tendency and variation are described, along with methods for computing their
more common measures: the mean, median, mode, range, variance, and standard devia-
tion. The reader is also introduced to the concepts of skewness and kurtosis, and to
exploratory data analysis through a description of stem-and-leaf displays and box-and-
whisker plots.

We emphasize the use of the computer as a tool for calculating descriptive meas-
ures and constructing various distributions from large data sets.
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SUMMARY OF FORMULAS FOR CHAPTER 2

Formula Number Name Formula

2.3.1 Class interval width 
using Sturges’s rule

2.4.1 Mean of a population

2.4.2 Skewness

2.4.2 Mean of a sample

2.5.1 Range

2.5.2 Sample variance

2.5.3 Population variance

2.5.4 Standard deviation

2.5.5 Coefficient of variation

2.5.6 Quartile location in

2.5.7 Interquartile range IQR = Q3 - Q1

Q3 =
3

4
1n + 12Q2 =

1

2
1n + 12Q1 =

1

4
1n + 12

C.V. =
S

x
11002%

s = 2s2 = Qa
n

i=1
1x i - x22
n - 1

s2 =
a

n

i=1
1x i - m22

N

s2 =
a

n

i=1
1x i - x22
n - 1

R = xL - xS

x =
a

n

i=1
x i

n

m =
a
N

i=1
x i

N

w =
R

k
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ordered array

(Continued)

=
2na

n

i=1
1x i - x231n - 122n - 1 s3

Skewness =
2nan

i=1
1xi - x23

aan
i=1
1xi - x22b3>2
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2.5.8 Kurtosis

Symbol Key • C.V. � coefficient of variation
• IQR � Interquartile range
• k � number of class intervals
• � population mean
• N � population size
• n � sample size
• � degrees of freedom
• Q1 � first quartile
• Q2 � second quartile � median
• Q3 � third quartile
• R � range
• s � standard deviation
• s2 � sample variance
• � population variance
• xi � ith data observation
• xL � largest data point
• xS � smallest data point
• � sample mean
• w � class width

REVIEW QUESTIONS AND EXERCISES

1. Define:

(a) Stem-and-leaf display (b) Box-and-whisker plot

(c) Percentile (d) Quartile

(e) Location parameter (f) Exploratory data analysis

(g) Ordered array (h) Frequency distribution

(i) Relative frequency distribution ( j) Statistic

(k) Parameter (l) Frequency polygon

(m) True class limits (n) Histogram

2. Define and compare the characteristics of the mean, the median, and the mode.

3. What are the advantages and limitations of the range as a measure of dispersion?

4. Explain the rationale for using to compute the sample variance.

5. What is the purpose of the coefficient of variation?

n - 1

x

s2

1n - 12
m

=
na

n

i=1
1x i - x241n - 122 s4

- 3

Kurtosis =
a
n

i=1
1xi - x24

aan
i=1
1xi - x22b2

- 3



6. What is the purpose of Sturges’s rule?

7. What is another name for the 50th percentile (second or middle quartile)?

8. Describe from your field of study a population of data where knowledge of the central tendency
and dispersion would be useful. Obtain real or realistic synthetic values from this population and
compute the mean, median, mode, variance, and standard deviation.

9. Collect a set of real, or realistic, data from your field of study and construct a frequency distribu-
tion, a relative frequency distribution, a histogram, and a frequency polygon.

10. Compute the mean, median, mode, variance, and standard deviation for the data in Exercise 9.

11. Find an article in a journal from your field of study in which some measure of central tendency
and dispersion have been computed.

12. The purpose of a study by Tam et al. (A-15) was to investigate the wheelchair maneuvering in
individuals with lower-level spinal cord injury (SCI) and healthy controls. Subjects used a modi-
fied wheelchair to incorporate a rigid seat surface to facilitate the specified experimental measure-
ments. Interface pressure measurement was recorded by using a high-resolution pressure-sensitive
mat with a spatial resolution of 4 sensors per square centimeter taped on the rigid seat support.
During static sitting conditions, average pressures were recorded under the ischial tuberosities. The
data for measurements of the left ischial tuberosity (in mm Hg) for the SCI and control groups
are shown below.

Control 131 115 124 131 122 117 88 114 150 169

SCI 60 150 130 180 163 130 121 119 130 148
Source: Eric W. Tam, Arthur F. Mak, Wai Nga Lam, John H. Evans, and York
Y. Chow, “Pelvic Movement and Interface Pressure Distribution During Manual Wheel-
chair Propulsion,” Archives of Physical Medicine and Rehabilitation, 84 (2003),
1466 –1472.

(a) Find the mean, median, variance, and standard deviation for the controls.

(b) Find the mean, median variance, and standard deviation for the SCI group.

(c) Construct a box-and-whisker plot for the controls.

(d) Construct a box-and-whisker plot for the SCI group.

(e) Do you believe there is a difference in pressure readings for controls and SCI subjects in this
study?

13. Johnson et al. (A-16) performed a retrospective review of 50 fetuses that underwent open fetal
myelomeningocele closure. The data below show the gestational age in weeks of the 50 fetuses
undergoing the procedure.

25 25 26 27 29 29 29 30 30 31
32 32 32 33 33 33 33 34 34 34
35 35 35 35 35 35 35 35 35 36
36 36 36 36 36 36 36 36 36 36
36 36 36 36 36 36 36 36 37 37

Source: Mark P. Johnson, Leslie N. Sutton, Natalie Rintoul, Timothy M.
Crombleholme, Alan W. Flake, Lori J. Howell, Holly L. Hedrick, R. Douglas
Wilson, and N. Scott Adzick, “Fetal Myelomeningocele Repair: Short-Term
Clinical Outcomes,” American Journal of Obstetrics and Gynecology, 189
(2003), 482–487.
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(a) Construct a stem-and-leaf plot for these gestational ages.

(b) Based on the stem-and-leaf plot, what one word would you use to describe the nature of the
data?

(c) Why do you think the stem-and-leaf plot looks the way it does?

(d) Compute the mean, median, variance, and standard deviation.

14. The following table gives the age distribution for the number of deaths in New York State due to
accidents for residents age 25 and older.

Age (Years) Number of Deaths Due to Accidents

25–34 393
35–44 514
45–54 460
55–64 341
65–74 365
75–84 616
85–94* 618

For these data construct a cumulative frequency distribution, a relative frequency distribution, and
a cumulative relative frequency distribution.

15. Krieser et al. (A-17) examined glomerular filtration rate (GFR) in pediatric renal transplant recip-
ients. GFR is an important parameter of renal function assessed in renal transplant recipients. The
following are measurements from 19 subjects of GFR measured with diethylenetriamine penta-
acetic acid. (Note: some subjects were measured more than once.)

18 42
21 43
21 43
23 48
27 48
27 51
30 55
32 58
32 60
32 62
36 67
37 68
41 88
42 63

Source: D. M. Z. Krieser, M.D. Used with permission.

(a) Compute mean, median, variance, standard deviation, and coefficient of variation.

(b) Construct a stem-and-leaf display.

(c) Construct a box-and-whisker plot.

(d) What percentage of the measurements is within one standard deviation of the mean? Two stan-
dard deviations? Three standard deviations?

16. The following are the cystatin C levels (mg/L) for the patients described in Exercise 15 (A-17).
Cystatin C is a cationic basic protein that was investigated for its relationship to GFR levels. In

Source: New York State Department of
Health, Vital Statistics of New York
State, 2000, Table 32: Death Summary
Information by Age.

*May include deaths due to accident for
adults over age 94.
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addition, creatinine levels are also given. (Note: Some subjects were measured more than
once.)

Cystatin C (mg/L) Creatinine (mmol/L)

1.78 4.69 0.35 0.14
2.16 3.78 0.30 0.11
1.82 2.24 0.20 0.09
1.86 4.93 0.17 0.12
1.75 2.71 0.15 0.07
1.83 1.76 0.13 0.12
2.49 2.62 0.14 0.11
1.69 2.61 0.12 0.07
1.85 3.65 0.24 0.10
1.76 2.36 0.16 0.13
1.25 3.25 0.17 0.09
1.50 2.01 0.11 0.12
2.06 2.51 0.12 0.06
2.34

Source: D. M. Z. Krieser, M.D. Used with permission.

(a) For each variable, compute the mean, median, variance, standard deviation, and coefficient of
variation.

(b) For each variable, construct a stem-and-leaf display and a box-and-whisker plot.

(c) Which set of measurements is more variable, cystatin C or creatinine? On what do you base
your answer?

17. Give three synonyms for variation (variability).

18. The following table shows the age distribution of live births in Albany County, New York, 
for 2000.

Mother’s Age Number of Live Births

10–14 7
15–19 258
20–24 585
25–29 841
30–34 981
35–39 526
40–44 99
45–49* 4

Source: New York State Department of Health, 
Annual Vital Statistics 2000, Table 7, Live Births 
by Resident County and Mother’s Age.
*May include live births to mothers over age 49.

For these data construct a cumulative frequency distribution, a relative frequency distribution, and
a cumulative relative frequency distribution.
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19. Spivack (A-18) investigated the severity of disease associated with C. difficile in pediatric inpa-
tients. One of the variables they examined was number of days patients experienced diarrhea. The
data for the 22 subjects in the study appear below. Compute the mean, median, variance, and stan-
dard deviation.

3 11 3 4 14 2 4 5 3 11 2
2 3 2 1 1 7 2 1 1 3 2
Source: Jordan G. Spivack, Stephen C. Eppes, and Joel
D. Klien, “Clostridium Difficile–Associated Diarrhea in
a Pediatric Hospital,” Clinical Pediatrics, 42 (2003),
347–352.

20. Express in words the following properties of the sample mean:

(a)

(b)

(c)

21. Your statistics instructor tells you on the first day of class that there will be five tests during the
term. From the scores on these tests for each student, the instructor will compute a measure of
central tendency that will serve as the student’s final course grade. Before taking the first test, you
must choose whether you want your final grade to be the mean or the median of the five test
scores. Which would you choose? Why?

22. Consider the following possible class intervals for use in constructing a frequency distribution of
serum cholesterol levels of subjects who participated in a mass screening:

(a) 50–74 (b) 50–74 (c) 50–75

75–99 75–99 75–100
100–149 100–124 100–125
150–174 125–149 125–150
175–199 150–174 150–175
200–249 175–199 175–200
250–274 200–224 200–225
etc. 225–249 225–250

etc. etc.

Which set of class intervals do you think is most appropriate for the purpose? Why? State specif-
ically for each one why you think the other two are less desirable.

23. On a statistics test students were asked to construct a frequency distribution of the blood creatine
levels (units/liter) for a sample of 300 healthy subjects. The mean was 95, and the standard devi-
ation was 40. The following class interval widths were used by the students:

(a) 1 (d) 15

(b) 5 (e) 20

(c) 10 (f) 25

Comment on the appropriateness of these choices of widths.

24. Give a health sciences–related example of a population of measurements for which the mean would
be a better measure of central tendency than the median.

g1x - x2 = 0

nx = gx

g1x - x22 = a minimum



25. Give a health sciences–related example of a population of measurements for which the median
would be a better measure of central tendency than the mean.

26. Indicate for the following variables which you think would be a better measure of central ten-
dency, the mean, the median, or mode, and justify your choice:

(a) Annual incomes of licensed practical nurses in the Southeast.

(b) Diagnoses of patients seen in the emergency department of a large city hospital.

(c) Weights of high-school male basketball players.

27. Refer to Exercise 2.3.11. Compute the mean, median, variance, standard deviation, first quartile, third
quartile, and interquartile range. Construct a boxplot of the data. Are the mode, median, and mean
equal? If not, explain why. Discuss the data in terms of variability. Compare the IQR with the range.
What does the comparison tell you about the variability of the observations?

28. Refer to Exercise 2.3.12. Compute the mean, median, variance, standard deviation, first quartile, third
quartile, and interquartile range. Construct a boxplot of the data. Are the mode, median, and mean
equal? If not, explain why. Discuss the data in terms of variability. Compare the IQR with the range.
What does the comparison tell you about the variability of the observations?

29. Thilothammal et al. (A-19) designed a study to determine the efficacy of BCG (bacillus Calmette-
Guérin) vaccine in preventing tuberculous meningitis. Among the data collected on each subject
was a measure of nutritional status (actual weight expressed as a percentage of expected weight for
actual height). The following table shows the nutritional status values of the 107 cases studied.

73.3 54.6 82.4 76.5 72.2 73.6 74.0
80.5 71.0 56.8 80.6 100.0 79.6 67.3
50.4 66.0 83.0 72.3 55.7 64.1 66.3
50.9 71.0 76.5 99.6 79.3 76.9 96.0
64.8 74.0 72.6 80.7 109.0 68.6 73.8
74.0 72.7 65.9 73.3 84.4 73.2 70.0
72.8 73.6 70.0 77.4 76.4 66.3 50.5
72.0 97.5 130.0 68.1 86.4 70.0 73.0
59.7 89.6 76.9 74.6 67.7 91.9 55.0
90.9 70.5 88.2 70.5 74.0 55.5 80.0
76.9 78.1 63.4 58.8 92.3 100.0 84.0
71.4 84.6 123.7 93.7 76.9 79.6
45.6 92.5 65.6 61.3 64.5 72.7
77.5 76.9 80.2 76.9 88.7 78.1
60.6 59.0 84.7 78.2 72.4 68.3 Source: Dr. N. Thilothammal.
67.5 76.9 82.6 85.4 65.7 65.9 Used with permission.

(a) For these data compute the following descriptive measures: mean, median, mode, variance,
standard deviation, range, first quartile, third quartile, and IQR.

(b) Construct the following graphs for the data: histogram, frequency polygon, stem-and-leaf plot,
and boxplot.

(c) Discuss the data in terms of variability. Compare the IQR with the range. What does the com-
parison tell you about the variability of the observations?

(d) What proportion of the measurements are within one standard deviation of the mean? Two
standard deviations of the mean? Three standard deviations of the mean?

(e) What proportion of the measurements are less than 100?

(f) What proportion of the measurements are less than 50?
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Exercises for Use with Large Data Sets Available on the Following Website: 
www.wiley.com/college/daniel
Refer to the dataset NCBIRTH800. The North Carolina State Center for Health Statistics and
Howard W. Odum Institute for Research in Social Science at the University of North Carolina at
Chapel Hill (A-20) make publicly available birth and infant death data for all children born in the
state of North Carolina. These data can be accessed at www.irss.unc.edu/ncvital/bfd1down.html.
Records on birth data go back to 1968. This comprehensive data set for the births in 2001 con-
tains 120,300 records. The data represents a random sample of 800 of those births and selected
variables. The variables are as follows:

Variable Label Description

PLURALITY Number of children born of the pregnancy
SEX Sex of child 
MAGE Age of mother (years)
WEEKS Completed weeks of gestation (weeks)
MARITAL Marital status 
RACEMOM Race of mother non-White, 

Indian,
Asian or Pacific Islander)

HISPMOM Mother of Hispanic origin -Hispanic,
and unknown Hispanic, 

American, classifiable)
GAINED Weight gained during pregnancy (pounds)
SMOKE did not smoke during pregnancy

did smoke during pregnancy
DRINK did not consume alcohol during pregnancy

did consume alcohol during pregnancy
TOUNCES Weight of child (ounces)
TGRAMS Weight of child (grams)
LOW was not low birth weight

was low birth weight
PREMIE was not premature

was premature
Premature defined at 36 weeks or sooner

For the variables of MAGE, WEEKS, GAINED, TOUNCES, and TGRAMS: 

1. Calculate the mean, median, standard deviation, IQR, and range.

2. For each, construct a histogram and comment on the shape of the distribution.

3. Do the histograms for TOUNCES and TGRAMS look strikingly similar? Why?

4. Construct box-and-whisker plots for all four variables.

5. Construct side-by-side box-and-whisker plots for the variable of TOUNCES for women who admit-
ted to smoking and women who did not admit to smoking. Do you see a difference in birth weight
in the two groups? Which group has more variability?

6. Construct side-by-side box-and-whisker plots for the variable of MAGE for women who are and
are not married. Do you see a difference in ages in the two groups? Which group has more vari-
ability? Are the results surprising?

7. Calculate the skewness and kurtosis of the data set. What do they indicate?

1 = infant
0 = infant
1 = infant
0 = infant

1 = mother
0 = mother
1 = mother
0 = mother

U = not
S = Central/SouthP = Puerto Rican,O = other

(C = Cuban, M = Mexican, N = Non

7 = Filipino, 8 = Other4 = Chinese, 5 = Japanese, 6 = Hawaiian,
3 = American1 = White, 2 = Black(0 = other

(1 = married, 2 = not married)

(1 = male, 2 = female)

www.wiley.com/college/daniel
www.irss.unc.edu/ncvital/bfd1down.html
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CHAPTER OVERVIEW

Probability lays the foundation for statistical inference. This chapter provides
a brief overview of the probability concepts necessary for the understanding
of topics covered in the chapters that follow. It also provides a context for
understanding the probability distributions used in statistical inference, and
introduces the student to several measures commonly found in the medical
literature (e.g., the sensitivity and specificity of a test).

TOPICS

3.1 INTRODUCTION

3.2 TWO VIEWS OF PROBABILITY: OBJECTIVE AND SUBJECTIVE

3.3 ELEMENTARY PROPERTIES OF PROBABILITY

3.4 CALCULATING THE PROBABILITY OF AN EVENT

3.5 BAYES’ THEOREM, SCREENING TESTS, SENSITIVITY, SPECIFICITY, 
AND PREDICTIVE VALUE POSITIVE AND NEGATIVE

3.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand classical, relative frequency, and subjective probability.
2. understand the properties of probability and selected probability rules.
3. be able to calculate the probability of an event.
4. be able to apply Bayes’ theorem when calculating screening test results.

CHAPTER 3
SOME BASIC PROBABILITY
CONCEPTS



3.1 INTRODUCTION

The theory of probability provides the foundation for statistical inference. However, this
theory, which is a branch of mathematics, is not the main concern of this book, and,
consequently, only its fundamental concepts are discussed here. Students who desire to
pursue this subject should refer to the many books on probability available in most college
and university libraries. The books by Gut (1), Isaac (2), and Larson (3) are recommended.
The objectives of this chapter are to help students gain some mathematical ability in the
area of probability and to assist them in developing an understanding of the more impor-
tant concepts. Progress along these lines will contribute immensely to their success in under-
standing the statistical inference procedures presented later in this book.

The concept of probability is not foreign to health workers and is frequently
encountered in everyday communication. For example, we may hear a physician say that
a patient has a 50–50 chance of surviving a certain operation. Another physician may
say that she is 95 percent certain that a patient has a particular disease. A public health
nurse may say that nine times out of ten a certain client will break an appointment. As
these examples suggest, most people express probabilities in terms of percentages. In
dealing with probabilities mathematically, it is more convenient to express probabilities
as fractions. (Percentages result from multiplying the fractions by 100.) Thus, we meas-
ure the probability of the occurrence of some event by a number between zero and one.
The more likely the event, the closer the number is to one; and the more unlikely the
event, the closer the number is to zero. An event that cannot occur has a probability of
zero, and an event that is certain to occur has a probability of one.

Health sciences researchers continually ask themselves if the results of their
efforts could have occurred by chance alone or if some other force was operating to
produce the observed effects. For example, suppose six out of ten patients suffering
from some disease are cured after receiving a certain treatment. Is such a cure rate likely
to have occurred if the patients had not received the treatment, or is it evidence of a
true curative effect on the part of the treatment? We shall see that questions such as
these can be answered through the application of the concepts and laws of probability.

3.2 TWO VIEWS OF PROBABILITY: 
OBJECTIVE AND SUBJECTIVE

Until fairly recently, probability was thought of by statisticians and mathematicians only
as an objective phenomenon derived from objective processes.

The concept of objective probability may be categorized further under the headings
of (1) classical, or a priori, probability; and (2) the relative frequency, or a posteriori, con-
cept of probability.

Classical Probability The classical treatment of probability dates back to the
17th century and the work of two mathematicians, Pascal and Fermat. Much of this the-
ory developed out of attempts to solve problems related to games of chance, such as
those involving the rolling of dice. Examples from games of chance illustrate very well
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the principles involved in classical probability. For example, if a fair six-sided die is
rolled, the probability that a 1 will be observed is equal to and is the same for
the other five faces. If a card is picked at random from a well-shuffled deck of ordinary
playing cards, the probability of picking a heart is Probabilities such as these are
calculated by the processes of abstract reasoning. It is not necessary to roll a die or draw
a card to compute these probabilities. In the rolling of the die, we say that each of the
six sides is equally likely to be observed if there is no reason to favor any one of the six
sides. Similarly, if there is no reason to favor the drawing of a particular card from a
deck of cards, we say that each of the 52 cards is equally likely to be drawn. We may
define probability in the classical sense as follows:

DEFINITION
If an event can occur in N mutually exclusive and equally likely
ways, and if m of these possess a trait E, the probability of the
occurrence of E is equal to m�N.

If we read as “the probability of E,” we may express this definition as

(3.2.1)

Relative Frequency Probability The relative frequency approach to prob-
ability depends on the repeatability of some process and the ability to count the number
of repetitions, as well as the number of times that some event of interest occurs. In this
context we may define the probability of observing some characteristic, E, of an event
as follows:

DEFINITION
If some process is repeated a large number of times, n, and if some
resulting event with the characteristic E occurs m times, the relative
frequency of occurrence of E, will be approximately equal to the
probability of E.

To express this definition in compact form, we write

(3.2.2)

We must keep in mind, however, that, strictly speaking, m�n is only an estimate of 

Subjective Probability In the early 1950s, L. J. Savage (4) gave considerable
impetus to what is called the “personalistic” or subjective concept of probability. This view

P1E2.
P1E2 =

m

n

m>n,

P1E2 =
m

N

P1E2

13>52.

1>6
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holds that probability measures the confidence that a particular individual has in the truth
of a particular proposition. This concept does not rely on the repeatability of any process.
In fact, by applying this concept of probability, one may evaluate the probability of an
event that can only happen once, for example, the probability that a cure for cancer will
be discovered within the next 10 years.

Although the subjective view of probability has enjoyed increased attention over
the years, it has not been fully accepted by statisticians who have traditional orientations.

Bayesian Methods Bayesian methods are named in honor of the Reverend
Thomas Bayes (1702–1761), an English clergyman who had an interest in mathematics.
Bayesian methods are an example of subjective probability, since it takes into consider-
ation the degree of belief that one has in the chance that an event will occur. While
probabilities based on classical or relative frequency concepts are designed to allow for
decisions to be made solely on the basis of collected data, Bayesian methods make use
of what are known as prior probabilities and posterior probabilities.

DEFINITION
The prior probability of an event is a probability based on prior
knowledge, prior experience, or results derived from prior 
data collection activity. 

DEFINITION
The posterior probability of an event is a probability obtained by using
new information to update or revise a prior probability.

As more data are gathered, the more is likely to be known about the “true” probability of
the event under consideration. Although the idea of updating probabilities based on new
information is in direct contrast to the philosophy behind frequency-of-occurrence proba-
bility, Bayesian concepts are widely used. For example, Bayesian techniques have found
recent application in the construction of e-mail spam filters. Typically, the application of
Bayesian concepts makes use of a mathematical formula called Bayes’ theorem. In
Section 3.5 we employ Bayes’ theorem in the evaluation of diagnostic screening test data.

3.3 ELEMENTARY PROPERTIES
OF PROBABILITY

In 1933 the axiomatic approach to probability was formalized by the Russian mathe-
matician A. N. Kolmogorov (5). The basis of this approach is embodied in three prop-
erties from which a whole system of probability theory is constructed through the use
of mathematical logic. The three properties are as follows.
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1. Given some process (or experiment) with n mutually exclusive outcomes (called
events), the probability of any event is assigned a nonnegative
number. That is,

(3.3.1)

In other words, all events must have a probability greater than or equal to
zero, a reasonable requirement in view of the difficulty of conceiving of negative
probability. A key concept in the statement of this property is the concept of mutu-
ally exclusive outcomes. Two events are said to be mutually exclusive if they can-
not occur simultaneously.

2. The sum of the probabilities of the mutually exclusive outcomes is equal to 1.

(3.3.2)

This is the property of exhaustiveness and refers to the fact that the observer
of a probabilistic process must allow for all possible events, and when all are taken
together, their total probability is 1. The requirement that the events be mutually
exclusive is specifying that the events do not overlap; that is, no
two of them can occur at the same time.

3. Consider any two mutually exclusive events, and The probability of the occur-
rence of either or is equal to the sum of their individual probabilities.

(3.3.3)

Suppose the two events were not mutually exclusive; that is, suppose they could
occur at the same time. In attempting to compute the probability of the occurrence of
either or the problem of overlapping would be discovered, and the procedure
could become quite complicated. This concept will be discussed further in the next
section.

3.4 CALCULATING THE PROBABILITY 
OF AN EVENT

We now make use of the concepts and techniques of the previous sections in calculat-
ing the probabilities of specific events. Additional ideas will be introduced as needed.

EXAMPLE 3.4.1

The primary aim of a study by Carter et al. (A-1) was to investigate the effect of the age
at onset of bipolar disorder on the course of the illness. One of the variables investigated
was family history of mood disorders. Table 3.4.1 shows the frequency of a family his-
tory of mood disorders in the two groups of interest (Early age at onset defined to be

EjEi

P1Ei + Ej2 = P1Ei2 + P1Ej2
EjEi

Ej.Ei

E1, E2, . . . , En

P1E12 + P1E 22 + Á + P1En2 = 1

P1Ei2 Ú 0

EiE1, E2, . . . , En,
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18 years or younger and Later age at onset defined to be later than 18 years). Suppose
we pick a person at random from this sample. What is the probability that this person
will be 18 years old or younger?

Solution: For purposes of illustrating the calculation of probabilities, we consider
this group of 318 subjects to be the largest group for which we have an
interest. In other words, for this example, we consider the 318 subjects as
a population. We assume that Early and Later are mutually exclusive cat-
egories and that the likelihood of selecting any one person is equal to the
likelihood of selecting any other person. We define the desired probability
as the number of subjects with the characteristic of interest (Early) divided
by the total number of subjects. We may write the result in probability
notation as follows:

= 141>318 = .4434

P1E2 = number of Early subjects /total number of subjects
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TABLE 3.4.1 Frequency of Family History of Mood Disorder 
by Age Group Among Bipolar Subjects

Family History of

Mood Disorders Total

Negative (A) 28 35 63

Bipolar disorder (B) 19 38 57

Unipolar (C) 41 44 85

Unipolar and bipolar (D) 53 60 113

Total 141 177 318

Source: Tasha D. Carter, Emanuela Mundo, Sagar V. Parkh, and James L. Kennedy,
“Early Age at Onset as a Risk Factor for Poor Outcome of Bipolar Disorder,” Journal
of Psychiatric Research, 37 (2003), 297–303.

Later>18(L )Early � 18(E )

■

Conditional Probability On occasion, the set of “all possible outcomes” may
constitute a subset of the total group. In other words, the size of the group of interest
may be reduced by conditions not applicable to the total group. When probabilities are
calculated with a subset of the total group as the denominator, the result is a conditional
probability.

The probability computed in Example 3.4.1, for example, may be thought of as an
unconditional probability, since the size of the total group served as the denominator. No
conditions were imposed to restrict the size of the denominator. We may also think of
this probability as a marginal probability since one of the marginal totals was used as
the numerator.

We may illustrate the concept of conditional probability by referring again to
Table 3.4.1.



EXAMPLE 3.4.2

Suppose we pick a subject at random from the 318 subjects and find that he is 18 years
or younger . What is the probability that this subject will be one who has no family
history of mood disorders 

Solution: The total number of subjects is no longer of interest, since, with the selec-
tion of an Early subject, the Later subjects are eliminated. We may define
the desired probability, then, as follows: What is the probability that a sub-
ject has no family history of mood disorders , given that the selected
subject is Early ? This is a conditional probability and is written as

in which the vertical line is read “given.” The 141 Early subjects
become the denominator of this conditional probability, and 28, the num-
ber of Early subjects with no family history of mood disorders, becomes
the numerator. Our desired probability, then, is

■

Joint Probability Sometimes we want to find the probability that a subject
picked at random from a group of subjects possesses two characteristics at the same time.
Such a probability is referred to as a joint probability. We illustrate the calculation of a
joint probability with the following example.

EXAMPLE 3.4.3

Let us refer again to Table 3.4.1. What is the probability that a person picked at random
from the 318 subjects will be Early and will be a person who has no family history
of mood disorders ?

Solution: The probability we are seeking may be written in symbolic notation as
in which the symbol is read either as “intersection” or “and.”

The statement indicates the joint occurrence of conditions E and A.
The number of subjects satisfying both of the desired conditions is found
in Table 3.4.1 at the intersection of the column labeled E and the row
labeled A and is seen to be 28. Since the selection will be made from the
total set of subjects, the denominator is 318. Thus, we may write the joint
probability as

■

The Multiplication Rule A probability may be computed from other prob-
abilities. For example, a joint probability may be computed as the product of an appro-
priate marginal probability and an appropriate conditional probability. This relationship
is known as the multiplication rule of probability. We illustrate with the following
example.

P1E ¨ A2 = 28>318 = .0881

E ¨ A
¨P1E ¨ A2

1A2 1E2

P1A ƒ E2 = 28>141 = .1986

P1A ƒ E2 1E2 1A2
1A2?1E2
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EXAMPLE 3.4.4

We wish to compute the joint probability of Early age at onset and a negative family
history of mood disorders from knowledge of an appropriate marginal probability and
an appropriate conditional probability.

Solution: The probability we seek is We have already computed a mar-
ginal probability, and a conditional probability,

It so happens that these are appropriate mar-
ginal and conditional probabilities for computing the desired joint proba-
bility. We may now compute 

This, we note, is, as expected, the same result we obtained earlier
for ■

We may state the multiplication rule in general terms as follows: For any two events A
and B,

(3.4.1)

For the same two events A and B, the multiplication rule may also be written as

We see that through algebraic manipulation the multiplication rule as stated in
Equation 3.4.1 may be used to find any one of the three probabilities in its statement if
the other two are known. We may, for example, find the conditional probability 
by dividing by . This relationship allows us to formally define conditional
probability as follows.

DEFINITION
The conditional probability of A given B is equal to the probability 
of divided by the probability of B, provided the probability of
B is not zero.

That is,

(3.4.2)

We illustrate the use of the multiplication rule to compute a conditional probability with
the following example.

EXAMPLE 3.4.5

We wish to use Equation 3.4.2 and the data in Table 3.4.1 to find the conditional prob-
ability, 

Solution: According to Equation 3.4.2,

■P1A | E2 = P1A ¨ E2>P1E2
P1A ƒ E2.

P1A ƒ B2 =
P1A ¨ B2

P1B2 ,  P1B2 Z 0

A º B

P1B2P1A ¨ B2 P1A ƒ B2
P1A ¨ B2 = P1A2P1B ƒ A2, if P1A2 Z 0.

P1A ¨ B2 = P1B2P1A ƒ B2,  if P1B2 Z 0

P(E ¨ A).
=  .0881.

P(E ¨ A) = P (E)P (A ƒ E) =1.443421.19862P1A ƒ E2 = 28>141 = .1986.
P(E) = 141>318 = .4434,

P(E ¨ A).

1A2 1E2
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Earlier we found We have also determined
that Using these results we are able to compute

which, as expected, is the same result we obtained
by using the frequencies directly from Table 3.4.1. (The slight discrepancy is due to
rounding.)

The Addition Rule The third property of probability given previously states
that the probability of the occurrence of either one or the other of two mutually
exclusive events is equal to the sum of their individual probabilities. Suppose, for
example, that we pick a person at random from the 318 represented in Table 3.4.1.
What is the probability that this person will be Early age at onset or Later age
at onset ? We state this probability in symbols as where the symbol

is read either as “union” or “or.” Since the two age conditions are mutually exclusive,

What if two events are not mutually exclusive? This case is covered by what is
known as the addition rule, which may be stated as follows:

DEFINITION
Given two events A and B, the probability that event A, or event B,
or both occur is equal to the probability that event A occurs, plus the
probability that event B occurs, minus the probability that the events
occur simultaneously.

The addition rule may be written

(3.4.3)

When events A and B cannot occur simultaneously, is sometimes called
“exclusive or,” and When events A and B can occur simultaneously,

is sometimes called “inclusive or,” and we use the addition rule to calculate
Let us illustrate the use of the addition rule by means of an example.

EXAMPLE 3.4.6

If we select a person at random from the 318 subjects represented in Table 3.4.1, what
is the probability that this person will be an Early age of onset subject or will have
no family history of mood disorders or both?

Solution: The probability we seek is By the addition rule as expressed by
Equation 3.4.3, this probability may be written as 

We have already found that 
and From the information in Table 3.4.1
we calculate Substituting these results into the
equation for we have 

■.5534.
P1E ´ A2 = .4434 + .1981 - .0881 =P1E ´ A2P1A2 = 63>318 = .1981.

P1E ¨ A2 = 28>318 = .0881.
P1E2 = 141>318 = .4434P1A2 - P1E ¨ A2. P1E ´ A2 = P1E2 +

P1E ´ A2.1A2 1E2
P1A ´ B2.P1A ´ B2 P1A ´ B2 = 0.

P1A ¨ B2P1A ´ B2 = P1A2 + P1B2 - P1A ¨ B2

P1E ¨ L2 = 1141>3182 + 1177>3182 = .4434 + .5566 = 1.
´

P1E ´ L2,1L2 1E2

P1A ƒ E2 = .0881>.4434 = .1987,
P1E2 = 141>318 = .4434.

P1E ¨ A2 = P1A ¨ E2 = 28>318 = .0881.
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Note that the 28 subjects who are both Early and have no family history of mood dis-
orders are included in the 141 who are Early as well as in the 63 who have no family
history of mood disorders. Since, in computing the probability, these 28 have been added
into the numerator twice, they have to be subtracted out once to overcome the effect of
duplication, or overlapping.

Independent Events Suppose that, in Equation 3.4.2, we are told that event B
has occurred, but that this fact has no effect on the probability of A. That is, suppose
that the probability of event A is the same regardless of whether or not B occurs. In this
situation, In such cases we say that A and B are independent events.
The multiplication rule for two independent events, then, may be written as

(3.4.4)

Thus, we see that if two events are independent, the probability of their joint occur-
rence is equal to the product of the probabilities of their individual occurrences.

Note that when two events with nonzero probabilities are independent, each of the
following statements is true:

Two events are not independent unless all these statements are true. It is important to be
aware that the terms independent and mutually exclusive do not mean the same thing.

Let us illustrate the concept of independence by means of the following example.

EXAMPLE 3.4.7

In a certain high school class, consisting of 60 girls and 40 boys, it is observed that
24 girls and 16 boys wear eyeglasses. If a student is picked at random from this class,
the probability that the student wears eyeglasses, P(E), is 40�100, or .4.

(a) What is the probability that a student picked at random wears eyeglasses, given
that the student is a boy?

Solution: By using the formula for computing a conditional probability, we find this
to be

Thus the additional information that a student is a boy does not alter the
probability that the student wears eyeglasses, and We say
that the events being a boy and wearing eyeglasses for this group are inde-
pendent. We may also show that the event of wearing eyeglasses, E, and
not being a boy, are also independent as follows:

(b) What is the probability of the joint occurrence of the events of wearing eyeglasses
and being a boy?

P1E ƒ B2 =
P1E ¨ B 2

P1B 2 =
24>100

60>100
=

24

60
= .4

B

P1E2 = P1E ƒ B2.
P1E ƒ B2 =

P1E ¨ B2
P1B2 =

16>100

40>100
= .4

P1A ƒ B2 = P1A2,  P1B ƒ A2 = P1B2,  P1A ¨ B2 = P1A2P1B2

P1A ¨ B2 = P1A2P1B2;  P1A2 Z 0,  P1B2 Z 0

P1A ƒ B2 = P1A2.
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Solution: Using the rule given in Equation 3.4.1, we have

but, since we have shown that events E and B are independent we may
replace by to obtain, by Equation 3.4.4,

■

Complementary Events Earlier, using the data in Table 3.4.1, we computed the
probability that a person picked at random from the 318 subjects will be an Early age of onset
subject as We found the probability of a Later age at onset to
be The sum of these two probabilities we found to be equal to
1. This is true because the events being Early age at onset and being Later age at onset are
complementary events. In general, we may make the following statement about complemen-
tary events. The probability of an event A is equal to 1 minus the probability of its comple-
ment, which is written and

(3.4.5)

This follows from the third property of probability since the event, A, and its com-
plement, are mutually exclusive.

EXAMPLE 3.4.8

Suppose that of 1200 admissions to a general hospital during a certain period of time,
750 are private admissions. If we designate these as set A, then is equal to 1200 minus
750, or 450. We may compute

and

and see that

■

Marginal Probability Earlier we used the term marginal probability to refer to
a probability in which the numerator of the probability is a marginal total from a table
such as Table 3.4.1. For example, when we compute the probability that a person picked
at random from the 318 persons represented in Table 3.4.1 is an Early age of onset
subject, the numerator of the probability is the total number of Early subjects, 141. Thus,

We may define marginal probability more generally as
follows:
P1E2 = 141>318 = .4434.

 .375 = .375

 .375 = 1 - .625

P1A2 = 1 - P1A2
P1A2 = 450>1200 = .375

P1A2 = 750>1200 = .625

A

A,

P1A2 = 1 - P1A2A,

P1L2 = 177>318 = .5566.
P1E2 = 141>318 = .4434.

= .16

= a 40

100
b a 40

100
bP1E ¨ B2 = P1B2P1E2P1E2P1E ƒ B2

P1E ¨ B2 = P1B2P1E ƒ B2
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DEFINITION
Given some variable that can be broken down into m categories
designated by and another jointly occurring
variable that is broken down into n categories designated by

the marginal probability of is
equal to the sum of the joint probabilities of with all the cate-
gories of B. That is,

(3.4.6)

The following example illustrates the use of Equation 3.4.6 in the calculation of a marginal
probability.

EXAMPLE 3.4.9

We wish to use Equation 3.4.6 and the data in Table 3.4.1 to compute the marginal prob-
ability .

Solution: The variable age at onset is broken down into two categories, Early for
onset 18 years or younger and Later for onset occurring at an age over
18 years . The variable family history of mood disorders is broken down
into four categories: negative family history bipolar disorder only 
unipolar disorder only and subjects with a history of both unipolar and
bipolar disorder The category Early occurs jointly with all four cate-
gories of the variable family history of mood disorders. The four joint prob-
abilities that may be computed are 

We obtain the marginal probability P(E) by adding these four joint proba-
bilities as follows:

■

The result, as expected, is the same as the one obtained by using the marginal total for
Early as the numerator and the total number of subjects as the denominator.

EXERCISES

3.4.1 In a study of violent victimization of women and men, Porcerelli et al. (A-2) collected information
from 679 women and 345 men aged 18 to 64 years at several family practice centers in the met-
ropolitan Detroit area. Patients filled out a health history questionnaire that included a question about

= .4434
= .0881 + .0597 + .1289 + .1667

P1E 2 = P1E ¨ A2 + P1E ¨ B2 + P1E ¨ C 2 + P1E ¨ D2
P1E ¨ D2 = 53>318 = .1667

P1E ¨ C 2 = 41>318 = .1289

P1E ¨ B2 = 19>318 = .0597

P1E ¨ A2 = 28>318 = .0881

(D).
(C ),

(B),(A),
(L)

(E )

P(E )

P1Ai2 � g P1Ai º Bj2,  for all values of j

Ai

Ai, P1Ai2,B1, B2, . . . , Bj, . . . , Bn,

A1, A2, . . . ,  Ai, . . . ,  Am

76 CHAPTER 3 SOME BASIC PROBABILITY CONCEPTS



victimization. The following table shows the sample subjects cross-classified by sex and the type
of violent victimization reported. The victimization categories are defined as no victimization, part-
ner victimization (and not by others), victimization by persons other than partners (friends, family
members, or strangers), and those who reported multiple victimization.

Multiple
No Victimization Partners Nonpartners Victimization Total

Women 611 34 16 18 679
Men 308 10 17 10 345

Total 919 44 33 28 1024

Source: John H. Porcerelli, Ph.D., Rosemary Cogan, Ph.D. Used with permission.

(a) Suppose we pick a subject at random from this group. What is the probability that this sub-
ject will be a woman?

(b) What do we call the probability calculated in part a?

(c) Show how to calculate the probability asked for in part a by two additional methods.

(d) If we pick a subject at random, what is the probability that the subject will be a woman and
have experienced partner abuse?

(e) What do we call the probability calculated in part d?

(f) Suppose we picked a man at random. Knowing this information, what is the probability that
he experienced abuse from nonpartners?

(g) What do we call the probability calculated in part f?

(h) Suppose we pick a subject at random. What is the probability that it is a man or someone
who experienced abuse from a partner?

(i) What do we call the method by which you obtained the probability in part h?

3.4.2 Fernando et al. (A-3) studied drug-sharing among injection drug users in the South Bronx in
New York City. Drug users in New York City use the term “split a bag” or “get down on a
bag” to refer to the practice of dividing a bag of heroin or other injectable substances. A com-
mon practice includes splitting drugs after they are dissolved in a common cooker, a procedure
with considerable HIV risk. Although this practice is common, little is known about the preva-
lence of such practices. The researchers asked injection drug users in four neighborhoods in
the South Bronx if they ever “got down on” drugs in bags or shots. The results classified by
gender and splitting practice are given below:

Gender Split Drugs Never Split Drugs Total

Male 349 324 673
Female 220 128 348

Total 569 452 1021

Source: Daniel Fernando, Robert F. Schilling, Jorge Fontdevila,
and Nabila El-Bassel, “Predictors of Sharing Drugs Among
Injection Drug Users in the South Bronx: Implications for HIV
Transmission,” Journal of Psychoactive Drugs, 35 (2003),
227–236.
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(a) How many marginal probabilities can be calculated from these data? State each in probabil-
ity notation and do the calculations.

(b) How many joint probabilities can be calculated? State each in probability notation and do the
calculations.

(c) How many conditional probabilities can be calculated? State each in probability notation and
do the calculations.

(d) Use the multiplication rule to find the probability that a person picked at random never split
drugs and is female.

(e) What do we call the probability calculated in part d?

(f) Use the multiplication rule to find the probability that a person picked at random is male,
given that he admits to splitting drugs.

(g) What do we call the probability calculated in part f?

3.4.3 Refer to the data in Exercise 3.4.2. State the following probabilities in words and calculate:

(a) P(Male Split Drugs)

(b) P(Male Split Drugs)

(c) P(Male Split Drugs)

(d) P(Male)

3.4.4 Laveist and Nuru-Jeter (A-4) conducted a study to determine if doctor–patient race concordance was
associated with greater satisfaction with care. Toward that end, they collected a national sample of
African-American, Caucasian, Hispanic, and Asian-American respondents. The following table clas-
sifies the race of the subjects as well as the race of their physician:

Patient’s Race

Physician’s Race Caucasian African-American Hispanic Asian-American Total

White 779 436 406 175 1796
African-American 14 162 15 5 196
Hispanic 19 17 128 2 166
Asian/Pacific-Islander 68 75 71 203 417
Other 30 55 56 4 145

Total 910 745 676 389 2720

Source: Thomas A. Laveist and Amani Nuru-Jeter, “Is Doctor-Patient Race Concordance Associated with
Greater Satisfaction with Care?” Journal of Health and Social Behavior, 43 (2002), 296–306.

(a) What is the probability that a randomly selected subject will have an Asian/Pacific-Islander
physician?

(b) What is the probability that an African-American subject will have an African-American physician?

(c) What is the probability that a randomly selected subject in the study will be Asian-American
and have an Asian/Pacific-Islander physician?

(d) What is the probability that a subject chosen at random will be Hispanic or have a Hispanic
physician?

(e) Use the concept of complementary events to find the probability that a subject chosen at random
in the study does not have a white physician.

ƒ
´
¨
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3.4.5 If the probability of left-handedness in a certain group of people is .05, what is the probability of
right-handedness (assuming no ambidexterity)?

3.4.6 The probability is .6 that a patient selected at random from the current residents of a certain hos-
pital will be a male. The probability that the patient will be a male who is in for surgery is .2. A
patient randomly selected from current residents is found to be a male; what is the probability that
the patient is in the hospital for surgery?

3.4.7 In a certain population of hospital patients the probability is .35 that a randomly selected patient
will have heart disease. The probability is .86 that a patient with heart disease is a smoker. What
is the probability that a patient randomly selected from the population will be a smoker and have
heart disease?

3.5 BAYES’ THEOREM, SCREENING 
TESTS, SENSITIVITY, SPECIFICITY, 
AND PREDICTIVE VALUE POSITIVE 
AND NEGATIVE

In the health sciences field a widely used application of probability laws and concepts
is found in the evaluation of screening tests and diagnostic criteria. Of interest to clini-
cians is an enhanced ability to correctly predict the presence or absence of a particular
disease from knowledge of test results (positive or negative) and/or the status of present-
ing symptoms (present or absent). Also of interest is information regarding the likeli-
hood of positive and negative test results and the likelihood of the presence or absence
of a particular symptom in patients with and without a particular disease.

In our consideration of screening tests, we must be aware of the fact that they are not
always infallible. That is, a testing procedure may yield a false positive or a false negative.

DEFINITIONS
1. A false positive results when a test indicates a positive status

when the true status is negative.
2. A false negative results when a test indicates a negative status

when the true status is positive.

In summary, the following questions must be answered in order to evaluate the
usefulness of test results and symptom status in determining whether or not a subject
has some disease:

1. Given that a subject has the disease, what is the probability of a positive test result
(or the presence of a symptom)?

2. Given that a subject does not have the disease, what is the probability of a negative
test result (or the absence of a symptom)?

3. Given a positive screening test (or the presence of a symptom), what is the prob-
ability that the subject has the disease?

4. Given a negative screening test result (or the absence of a symptom), what is the
probability that the subject does not have the disease?
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Suppose we have for a sample of n subjects (where n is a large number) the infor-
mation shown in Table 3.5.1. The table shows for these n subjects their status with regard
to a disease and results from a screening test designed to identify subjects with the dis-
ease. The cell entries represent the number of subjects falling into the categories defined
by the row and column headings. For example, a is the number of subjects who have the
disease and whose screening test result was positive.

As we have learned, a variety of probability estimates may be computed from the
information displayed in a two-way table such as Table 3.5.1. For example, we may
compute the conditional probability estimate This ratio is an
estimate of the sensitivity of the screening test.

DEFINITION
The sensitivity of a test (or symptom) is the probability of a positive test
result (or presence of the symptom) given the presence of the disease.

We may also compute the conditional probability estimate 
This ratio is an estimate of the specificity of the screening test.

DEFINITION
The specificity of a test (or symptom) is the probability of a negative
test result (or absence of the symptom) given the absence of the disease.

From the data in Table 3.5.1 we answer Question 3 by computing the conditional
probability estimate This ratio is an estimate of a probability called the pre-
dictive value positive of a screening test (or symptom).

DEFINITION
The predictive value positive of a screening test (or symptom) is the
probability that a subject has the disease given that the subject has a
positive screening test result (or has the symptom).

P1D ƒ T 2.

P1T ƒ D2 = d>1b + d2.

P1T ƒ D2 = a>1a + c2.
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Table 3.5.1 Sample of n Subjects (Where n Is
Large) Cross-Classified According to Disease
Status and Screening Test Result

Disease

Test Result Present Absent Total

Positive (T ) a b a b
Negative c d c d

Total a c b d n++

+1T 2 +

(D )(D )



Similarly, the ratio is an estimate of the conditional probability that a
subject does not have the disease given that the subject has a negative screening test
result (or does not have the symptom). The probability estimated by this ratio is called
the predictive value negative of the screening test or symptom.

DEFINITION
The predictive value negative of a screening test (or symptom) is
the probability that a subject does not have the disease, given that the
subject has a negative screening test result (or does not have the
symptom).

Estimates of the predictive value positive and predictive value negative of a test
(or symptom) may be obtained from knowledge of a test’s (or symptom’s) sensitivity
and specificity and the probability of the relevant disease in the general population. To
obtain these predictive value estimates, we make use of Bayes’s theorem. The following
statement of Bayes’s theorem, employing the notation established in Table 3.5.1, gives
the predictive value positive of a screening test (or symptom):

(3.5.1)

It is instructive to examine the composition of Equation 3.5.1. We recall from
Equation 3.4.2 that the conditional probability is equal to 
To understand the logic of Bayes’s theorem, we must recognize that the numerator of
Equation 3.5.1 represents and that the denominator represents . We
know from the multiplication rule of probability given in Equation 3.4.1 that the numer-
ator of Equation 3.5.1, is equal to 

Now let us show that the denominator of Equation 3.5.1 is equal to . We know
that event T is the result of a subject’s being classified as positive with respect to a screen-
ing test (or classified as having the symptom). A subject classified as positive may have
the disease or may not have the disease. Therefore, the occurrence of T is the result of
a subject having the disease and being positive or not having the disease
and being positive These two events are mutually exclusive (their intersec-
tion is zero), and consequently, by the addition rule given by Equation 3.4.3, we may
write

(3.5.2)

Since, by the multiplication rule, and 
we may rewrite Equation 3.5.2 as

(3.5.3)

which is the denominator of Equation 3.5.1.

P1T2 = P1T ƒ D2 P1D2 + P1T ƒ D2 P1D2P1T ƒ D2 P1D2, P1D ¨ T2 =P1D ¨ T2 = P1T ƒ D2 P1D2P1T2 = P1D ¨ T2 + P1D ¨ T2
3P1D ¨ T24. 3P1D ¨ T24

P1T2P1D ¨ T2.P1T ƒ D2 P1D2, P1T2P1D ¨ T2 P1D ¨ T2>P1T2.P1D ƒ T2
P1D ƒ T 2 =

P1T ƒ D2 P1D2
P1T ƒ D2 P1D2 + P1T ƒ D2 P1D2
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Note, also, that the numerator of Equation 3.5.1 is equal to the sensitivity times the
rate (prevalence) of the disease and the denominator is equal to the sensitivity times the
rate of the disease plus the term 1 minus the sensitivity times the term 1 minus the rate of
the disease. Thus, we see that the predictive value positive can be calculated from knowl-
edge of the sensitivity, specificity, and the rate of the disease.

Evaluation of Equation 3.5.1 answers Question 3. To answer Question 4 we
follow a now familiar line of reasoning to arrive at the following statement of Bayes’s
theorem:

(3.5.4)

Equation 3.5.4 allows us to compute an estimate of the probability that a subject who is
negative on the test (or has no symptom) does not have the disease, which is the predic-
tive value negative of a screening test or symptom.

We illustrate the use of Bayes’ theorem for calculating a predictive value positive
with the following example.

EXAMPLE 3.5.1

A medical research team wished to evaluate a proposed screening test for Alzheimer’s dis-
ease. The test was given to a random sample of 450 patients with Alzheimer’s disease and
an independent random sample of 500 patients without symptoms of the disease. The two
samples were drawn from populations of subjects who were 65 years of age or older. The
results are as follows:

Alzheimer’s Diagnosis?

Test Result Yes (D) No ( ) Total

Positive 436 5 441
Negative 14 495 509

Total 450 500 950

Using these data we estimate the sensitivity of the test to be 
The specificity of the test is estimated to be We now use the
results of the study to compute the predictive value positive of the test. That is, we wish
to estimate the probability that a subject who is positive on the test has Alzheimer’s
disease. From the tabulated data we compute and

Substitution of these results into Equation 3.5.1 gives

(3.5.5)P1D ƒ T2 =
1.96892 P1D21.96892 P1D2 + 1.012 P1D2

P1T ƒ D2 = 5>500 = .01.
P1T ƒ D2 = 436>450 = .9689

P1T ƒ D2 =  495>500 = .99.
P1T ƒ D2 = 436>450 = .97.

1T21T2 D

P1D ƒ T 2 =
P1T ƒ D2 P1D2

P1T ƒ D2 P1D2 + P1T ƒ D2 P1D2
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We see that the predictive value positive of the test depends on the rate of the disease in
the relevant population in general. In this case the relevant population consists of subjects
who are 65 years of age or older. We emphasize that the rate of disease in the relevant
general population, cannot be computed from the sample data, since two independ-
ent samples were drawn from two different populations. We must look elsewhere for an
estimate of Evans et al. (A-5) estimated that 11.3 percent of the U.S. population
aged 65 and over have Alzheimer’s disease. When we substitute this estimate of 
into Equation 3.5.5 we obtain

As we see, in this case, the predictive value of the test is very high.
Similarly, let us now consider the predictive value negative of the test. We have

already calculated all entries necessary except for . Using
the values previously obtained and our new value, we find

As we see, the predictive value negative is also quite high. ■

EXERCISES

3.5.1 A medical research team wishes to assess the usefulness of a certain symptom (call it S ) in the
diagnosis of a particular disease. In a random sample of 775 patients with the disease, 744 reported
having the symptom. In an independent random sample of 1380 subjects without the disease,
21 reported that they had the symptom.

(a) In the context of this exercise, what is a false positive?

(b) What is a false negative?

(c) Compute the sensitivity of the symptom.

(d) Compute the specificity of the symptom.

(e) Suppose it is known that the rate of the disease in the general population is .001. What is the
predictive value positive of the symptom?

(f) What is the predictive value negative of the symptom?

(g) Find the predictive value positive and the predictive value negative for the symptom for the
following hypothetical disease rates: .0001, .01, and .10.

(h) What do you conclude about the predictive value of the symptom on the basis of the results
obtained in part g?

3.5.2 In an article entitled “Bucket-Handle Meniscal Tears of the Knee: Sensitivity and Specificity of
MRI signs,” Dorsay and Helms (A-6) performed a retrospective study of 71 knees scanned by
MRI. One of the indicators they examined was the absence of the “bow-tie sign” in the MRI as
evidence of a bucket-handle or “bucket-handle type” tear of the meniscus. In the study, surgery

P1D ƒ T 2 =
(.99)(1 - .113)

(.99)(1 - .113) + (.0311)(.113)
= .996

P1T ƒ D2 = 14>450 = .0311

P1D ƒ T2 =
1.968921.11321.968921.1132 + 1.01211 - .1132 = .93

P1D2P1D2. P1D2,
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confirmed that 43 of the 71 cases were bucket-handle tears. The cases may be cross-classified by
“bow-tie sign” status and surgical results as follows:

Tear Surgically Tear Surgically Confirmed As
Confirmed (D) Not Present ( ) Total

Positive Test 38 10 48
(absent bow-tie sign) 

Negative Test 5 18 23
(bow-tie sign present) 

Total 43 28 71

Source: Theodore A. Dorsay and Clyde A. Helms, “Bucket-Handle Meniscal Tears of the Knee: Sensitivity
and Specificity of MRI Signs,” Skeletal Radiology, 32 (2003), 266–272.

(a) What is the sensitivity of testing to see if the absent bow-tie sign indicates a meniscal tear?

(b) What is the specificity of testing to see if the absent bow-tie sign indicates a meniscal tear?

(c) What additional information would you need to determine the predictive value of the test?

3.5.3 Oexle et al. (A-7) calculated the negative predictive value of a test for carriers of X-linked ornithine
transcarbamylase deficiency (OTCD—a disorder of the urea cycle). A test known as the “allopuri-
nol test” is often used as a screening device of potential carriers whose relatives are OTCD patients.
They cited a study by Brusilow and Horwich (A-8) that estimated the sensitivity of the allopuri-
nol test as .927. Oexle et al. themselves estimated the specificity of the allopurinol test as .997.
Also they estimated the prevalence in the population of individuals with OTCD as 1�32000. Use
this information and Bayes’s theorem to calculate the predictive value negative of the allopurinol
screening test.

3.6 SUMMARY

In this chapter some of the basic ideas and concepts of probability were presented. The
objective has been to provide enough of a “feel” for the subject so that the probabilis-
tic aspects of statistical inference can be more readily understood and appreciated when
this topic is presented later.

We defined probability as a number between 0 and 1 that measures the likelihood
of the occurrence of some event. We distinguished between subjective probability and
objective probability. Objective probability can be categorized further as classical or rel-
ative frequency probability. After stating the three properties of probability, we defined
and illustrated the calculation of the following kinds of probabilities: marginal, joint, and
conditional. We also learned how to apply the addition and multiplication rules to
find certain probabilities. We learned the meaning of independent, mutually exclusive,
and complementary events. We learned the meaning of specificity, sensitivity, predic-
tive value positive, and predictive value negative as applied to a screening test or disease
symptom. Finally, we learned how to use Bayes’s theorem to calculate the probability
that a subject has a disease, given that the subject has a positive screening test result
(or has the symptom of interest).

1T2
1T2

D
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SUMMARY OF FORMULAS FOR CHAPTER 3 85

SUMMARY OF FORMULAS FOR CHAPTER 3

Formula Number Name Formula

3.2.1 Classical
probability

3.2.2 Relative
frequency 
probability

3.3.1–3.3.3 Properties of

3.4.1 Multiplication
rule

3.4.2 Conditional
probability

3.4.3 Addition rule

3.4.4 Independent
events

3.4.5 Complementary
events

3.4.6 Marginal
Probability

Sensitivity of a
screening test

Specificity of a
screening test

3.5.1 Predictive value
positive of a 
screening test

3.5.2 Predictive value
negative of a 
screening test

Symbol Key • D � disease
• m � the number of times an event Ei occurs
• n � sample size or the total number of time a process occurs
• N � population size or the total number of mutually exclusive and 

equally likely events

P1D ƒ T2 =
P1T ƒ D2P1D2

P1T ƒ D2P1D2 + P1T ƒ D2P1D2
P1D ƒ T2 =

P1T ƒ D2P1D2
P1T ƒ D2P1D2 + P1T ƒ D2P1D2

P1T ƒ D2 =
d1b + d2

P1T ƒ D2 =
a1a + c2

P1Ai2 = aP1Ai ¨ Bj2
P1A 2 = 1 - P1A2
P1A ¨ B2 = P1A2P1B2P1A ´ B2 = P1A2 + P1B2 - P1A ¨ B2
P1A ƒ B2 =

P1A ¨ B2
P1B2

P1A ¨ B2 = P1B2P1A ƒ B2 = P1A2P1B ƒ A2P1Ei + Ej) = P(Ei) + P(Ej)

P1E12 + P(E2) + Á + P(En) = 1

P1Ei2 Ú 0

P1E2 =
m
n

P1E2 =
m

N

probability

(Continued)



REVIEW QUESTIONS AND EXERCISES

1. Define the following:

(a) Probability (b) Objective probability

(c) Subjective probability (d) Classical probability

(e) The relative frequency concept of probability (f) Mutually exclusive events

(g) Independence (h) Marginal probability

(i) Joint probability ( j) Conditional probability

(k) The addition rule (l) The multiplication rule

(m) Complementary events (n) False positive

(o) False negative (p) Sensitivity

(q) Specificity (r) Predictive value positive

(s) Predictive value negative (t) Bayes’s theorem

2. Name and explain the three properties of probability.

3. Coughlin et al. (A-9) examined the breast and cervical screening practices of Hispanic and non-Hispanic
women in counties that approximate the U.S. southern border region. The study used data from the
Behavioral Risk Factor Surveillance System surveys of adults age years or older conducted in
1999 and 2000. The table below reports the number of observations of Hispanic and non-Hispanic
women who had received a mammogram in the past 2 years cross-classified with marital status.

Marital Status Hispanic Non-Hispanic Total

Currently Married 319 738 1057
Divorced or Separated 130 329 459
Widowed 88 402 490
Never Married or Living As
an Unmarried Couple 41 95 136

Total 578 1564 2142

Source: Steven S. Coughlin, Robert J. Uhler, Thomas Richards, and Katherine
M. Wilson, “Breast and Cervical Cancer Screening Practices Among Hispanic
and Non-Hispanic Women Residing Near the United States–Mexico Border,
1999–2000,” Family and Community Health, 26 (2003), 130–139.

18
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• � a complementary event; the probability of an event A, not
occurring

• P(Ei) � probability of some event Ei occurring
• � an “intersection” or “and” statement; the probability of 

an event A and an event B occurring
• � a “union” or “or” statement; the probability of an event 

A or an event B or both occurring
• � a conditional statement; the probability of an event A

occurring given that an event B has already occurred
• T � test results 

P1A ƒ B2P1A ´ B2P1A ¨ B2
P1A2



(a) We select at random a subject who had a mammogram. What is the probability that she is
divorced or separated?

(b) We select at random a subject who had a mammogram and learn that she is Hispanic. With
that information, what is the probability that she is married?

(c) We select at random a subject who had a mammogram. What is the probability that she is
non-Hispanic and divorced or separated?

(d) We select at random a subject who had a mammogram. What is the probability that she is
Hispanic or she is widowed?

(e) We select at random a subject who had a mammogram. What is the probability that she is not
married?

4. Swor et al. (A-10) looked at the effectiveness of cardiopulmonary resuscitation (CPR) training in
people over 55 years old. They compared the skill retention rates of subjects in this age group
who completed a course in traditional CPR instruction with those who received chest-compression
only cardiopulmonary resuscitation (CC-CPR). Independent groups were tested 3 months after
training. The table below shows the skill retention numbers in regard to overall competence as
assessed by video ratings done by two video evaluators.

Rated Overall
Competent CPR CC-CPR Total

Yes 12 15 27
No 15 14 29

Total 27 29 56

Source: Robert Swor, Scott Compton, Fern Vining,
Lynn Ososky Farr, Sue Kokko, Rebecca Pascual, and
Raymond E. Jackson, “A Randomized Controlled Trial
of Chest Compression Only CPR for Older Adults—a
Pilot Study,” Resuscitation, 58 (2003), 177–185.

(a) Find the following probabilities and explain their meaning:
1. A randomly selected subject was enrolled in the CC-CPR class.
2. A randomly selected subject was rated competent.
3. A randomly selected subject was rated competent and was enrolled in the CPR course.
4. A randomly selected subject was rated competent or was enrolled in CC-CPR.
5. A randomly selected subject was rated competent given that he or she enrolled in the

CC-CPR course.

(b) We define the following events to be 
A a subject enrolled in the CPR course
B a subject enrolled in the CC-CPR course
C a subject was evaluated as competent
D a subject was evaluated as not competent

Then explain why each of the following equations is or is not a true statement:

1. 2.
3. 4.
5. 6.
7. 8.
9. P1A ¨ D2 = P1A2 P1A ƒ D2 P1C ¨ B2 = P1B2 P1C ƒ B2P1A ¨ B2 = 0

P1C ¨ B2 = P1C2P1B2P1D ƒ A2 = P1D2 P1B ´ C2 = P1B2 + P1C2P1A2 = P1A ´ C2 + P1A ´ D2 P1A ´ B2 = P1B ´ A2P1A ¨ C2 = P1C ¨ A2
=
=
=
=
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5. Pillmann et al. (A-11) studied patients with acute brief episodes of psychoses. The researchers
classified subjects into four personality types: obsessoid, asthenic/low self-confident, asthenic/high
self-confident, nervous/tense, and undeterminable. The table below cross-classifies these personal-
ity types with three groups of subjects—those with acute and transient psychotic disorders (ATPD),
those with “positive” schizophrenia (PS), and those with bipolar schizo-affective disorder (BSAD):

Personality Type ATPD (1) PS (2) BSAD (3) Total

Obsessoid (O) 9 2 6 17
Asthenic/low Self-confident (A) 20 17 15 52
Asthenic/high Self-confident (S) 5 3 8 16
Nervous/tense (N ) 4 7 4 15
Undeterminable (U) 4 13 9 26

Total 42 42 42 126

Source: Frank Pillmann, Raffaela Blõink, Sabine Balzuweit, Annette Haring, and Andreas
Marneros, “Personality and Social Interactions in Patients with Acute Brief Psychoses,”
Journal of Nervous and Mental Disease, 191 (2003), 503–508.

Find the following probabilities if a subject in this study is chosen at random:

(a) (b) (c) (d)

(e) (f) (g) (h)

6. A certain county health department has received 25 applications for an opening that exists for a
public health nurse. Of these applicants 10 are over 30 and 15 are under 30. Seventeen hold bach-
elor’s degrees only, and eight have master’s degrees. Of those under 30, six have master’s degrees.
If a selection from among these 25 applicants is made at random, what is the probability that a
person over 30 or a person with a master’s degree will be selected?

7. The following table shows 1000 nursing school applicants classified according to scores made on
a college entrance examination and the quality of the high school from which they graduated, as
rated by a group of educators:

Quality of High Schools

Poor Average Superior
Score (P) (A) (S) Total

Low (L) 105 60 55 220
Medium (M) 70 175 145 390
High (H) 25 65 300 390

Total 200 300 500 1000

(a) Calculate the probability that an applicant picked at random from this group:
1. Made a low score on the examination.
2. Graduated from a superior high school.
3. Made a low score on the examination and graduated from a superior high school.
4. Made a low score on the examination given that he or she graduated from a superior high

school.
5. Made a high score or graduated from a superior high school.

P12 ƒ A2P12 ¨ 32P132P1A ƒ  32 P1A2P112P1A ´ 22P1O2

88 CHAPTER 3 SOME BASIC PROBABILITY CONCEPTS



(b) Calculate the following probabilities:
1. 2. 3.
4. 5. 6.

8. If the probability that a public health nurse will find a client at home is .7, what is the probabil-
ity (assuming independence) that on two home visits made in a day both clients will be home?

9. For a variety of reasons, self-reported disease outcomes are frequently used without verification in epi-
demiologic research. In a study by Parikh-Patel et al. (A-12), researchers looked at the relationship
between self-reported cancer cases and actual cases. They used the self-reported cancer data from a
California Teachers Study and validated the cancer cases by using the California Cancer Registry data.
The following table reports their findings for breast cancer:

Cancer Reported (A) Cancer in Registry (B) Cancer Not in Registry Total

Yes 2991 2244 5235
No 112 115849 115961

Total 3103 118093 121196

Source: Arti Parikh-Patel, Mark Allen, William E. Wright, and the California Teachers Study Steering
Committee, “Validation of Self-Reported Cancers in the California Teachers Study,” American Journal
of Epidemiology, 157 (2003), 539–545.

(a) Let A be the event of reporting breast cancer in the California Teachers Study. Find the prob-
ability of A in this study. 

(b) Let B be the event of having breast cancer confirmed in the California Cancer Registry. Find
the probability of B in this study. 

(c) Find

(d) Find

(e) Find

(f) Find the sensitivity of using self-reported breast cancer as a predictor of actual breast cancer
in the California registry.

(g) Find the specificity of using self-reported breast cancer as a predictor of actual breast cancer
in the California registry.

10. In a certain population the probability that a randomly selected subject will have been exposed
to a certain allergen and experience a reaction to the allergen is .60. The probability is .8 that a
subject exposed to the allergen will experience an allergic reaction. If a subject is selected at ran-
dom from this population, what is the probability that he or she will have been exposed to the
allergen?

11. Suppose that 3 percent of the people in a population of adults have attempted suicide. It is also
known that 20 percent of the population are living below the poverty level. If these two events
are independent, what is the probability that a person selected at random from the population
will have attempted suicide and be living below the poverty level?

12. In a certain population of women 4 percent have had breast cancer, 20 percent are smokers, and 
3 percent are smokers and have had breast cancer. A woman is selected at random from the popu-
lation. What is the probability that she has had breast cancer or smokes or both?

13. The probability that a person selected at random from a population will exhibit the classic symp-
tom of a certain disease is .2, and the probability that a person selected at random has the disease

P1B ƒ A2P1A ƒ B2P1A ¨ B2

1H ƒ S2P1M ¨ P2P1A ƒ H2 P1M2P1H2P1A2
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is .23. The probability that a person who has the symptom also has the disease is .18. A person
selected at random from the population does not have the symptom. What is the probability that
the person has the disease?

14. For a certain population we define the following events for mother’s age at time of giving birth:
A under 20 years; B 20–24 years; C 25–29 years; D 30–44 years. Are the events A, B,
C, and D pairwise mutually exclusive?

15. Refer to Exercise 14. State in words the event 

16. Refer to Exercise 14. State in words the event 

17. Refer to Exercise 14. Comment on the event 

18. For a certain population we define the following events with respect to plasma lipoprotein levels
(mg �dl): A (10–15); Are the events A and B mutually exclusive? A
and C? B and C? Explain your answer to each question.

19. Refer to Exercise 18. State in words the meaning of the following events:

(a) (b) (c) (d)

20. Refer to Exercise 18. State in words the meaning of the following events:

(a) (b) (c)

21. Rothenberg et al. (A-13) investigated the effectiveness of using the Hologic Sahara Sonometer, a
portable device that measures bone mineral density (BMD) in the ankle, in predicting a fracture.
They used a Hologic estimated bone mineral density value of .57 as a cutoff. The results of the
investigation yielded the following data:

Confirmed Fracture

Present Not Present Total

BMD 214 670 884
BMD 73 330 403

Total 287 1000 1287

Source: Ralph J. Rothenberg, M.D., Joan L. Boyd, Ph.D., and John P.
Holcomb, Ph.D. Used with permission. 

(a) Calculate the sensitivity of using a BMD value of .57 as a cutoff value for predicting fracture
and interpret your results.

(b) Calculate the specificity of using a BMD value of .57 as a cutoff value for predicting fracture
and interpret your results.

22. Verma et al. (A-14) examined the use of heparin-PF4 ELISA screening for heparin-induced throm-
bocytopenia (HIT) in critically ill patients. Using C-serotonin release assay (SRA) as the way of
validating HIT, the authors found that in 31 patients tested negative by SRA, 22 also tested neg-
ative by heparin-PF4 ELISA.

(a) Calculate the specificity of the heparin-PF4 ELISA testing for HIT.

(b) Using a “literature-derived sensitivity” of 95 percent and a prior probability of HIT occur-
rence as 3.1 percent, find the positive predictive value.

(c) Using the same information as part (b), find the negative predictive value.

7 .57 1T2= .57 1T2 1D21D2

CBA

A ´ CA ¨ CA ¨ BA ´ B

B = 1Ú302;C = 1…202.=

G = 1A ¨ B2.F = 1B ´ C2.E = 1A ´ B2.
====
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23. The sensitivity of a screening test is .95, and its specificity is .85. The rate of the disease for which
the test is used is .002. What is the predictive value positive of the test?

Exercises for Use with Large Data Sets Available on the Following Website: 
www.wiley.com/college/daniel
Refer to the random sample of 800 subjects from the North Carolina birth registry we investigated
in the Chapter 2 review exercises.

1. Create a table that cross-tabulates the counts of mothers in the classifications of whether the baby
was premature or not (PREMIE) and whether the mother admitted to smoking during pregnancy
(SMOKE) or not.

(a) Find the probability that a mother in this sample admitted to smoking.

(b) Find the probability that a mother in this sample had a premature baby.

(c) Find the probability that a mother in the sample had a premature baby given that the mother
admitted to smoking.

(d) Find the probability that a mother in the sample had a premature baby given that the mother
did not admit to smoking.

(e) Find the probability that a mother in the sample had a premature baby or that the mother did
not admit to smoking.

2. Create a table that cross-tabulates the counts of each mother’s marital status (MARITAL) and
whether she had a low birth weight baby (LOW).

(a) Find the probability a mother selected at random in this sample had a low birth weight baby.

(b) Find the probability a mother selected at random in this sample was married.

(c) Find the probability a mother selected at random in this sample had a low birth weight child
given that she was married.

(d) Find the probability a mother selected at random in this sample had a low birth weight child
given that she was not married.

(e) Find the probability a mother selected at random in this sample had a low birth weight child
and the mother was married.
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CHAPTER OVERVIEW

Probability distributions of random variables assume powerful roles in statis-
tical analyses. Since they show all possible values of a random variable and
the probabilities associated with these values, probability distributions may
be summarized in ways that enable researchers to easily make objective de-
cisions based on samples drawn from the populations that the distributions
represent. This chapter introduces frequently used discrete and continuous
probability distributions that are used in later chapters to make statistical
inferences.

TOPICS

4.1 INTRODUCTION

4.2 PROBABILITY DISTRIBUTIONS OF DISCRETE VARIABLES

4.3 THE BINOMIAL DISTRIBUTION

4.4 THE POISSON DISTRIBUTION

4.5 CONTINUOUS PROBABILITY DISTRIBUTIONS

4.6 THE NORMAL DISTRIBUTION

4.7 NORMAL DISTRIBUTION APPLICATIONS

4.8 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand selected discrete distributions and how to use them to calculate 

probabilities in real-world problems.
2. understand selected continuous distributions and how to use them to calculate 

probabilities in real-world problems.
3. be able to explain the similarities and differences between distributions of the 

discrete type and the continuous type and when the use of each is appropriate.

CHAPTER 4
PROBABILITY DISTRIBUTIONS



4.1 INTRODUCTION

In the preceding chapter we introduced the basic concepts of probability as well as meth-
ods for calculating the probability of an event. We build on these concepts in the present
chapter and explore ways of calculating the probability of an event under somewhat more
complex conditions. In this chapter we shall see that the relationship between the values
of a random variable and the probabilities of their occurrence may be summarized by means
of a device called a probability distribution. A probability distribution may be expressed
in the form of a table, graph, or formula. Knowledge of the probability distribution of a
random variable provides the clinician and researcher with a powerful tool for summariz-
ing and describing a set of data and for reaching conclusions about a population of data
on the basis of a sample of data drawn from the population.

4.2 PROBABILITY DISTRIBUTIONS 
OF DISCRETE VARIABLES

Let us begin our discussion of probability distributions by considering the probability
distribution of a discrete variable, which we shall define as follows:

DEFINITION
The probability distribution of a discrete random variable is a table,
graph, formula, or other device used to specify all possible values of a
discrete random variable along with their respective probabilities.

If we let the discrete probability distribution be represented by , then 
is the probability of the discrete random variable X to assume a value x.

EXAMPLE 4.2.1

In an article appearing in the Journal of the American Dietetic Association, Holben et al.
(A-1) looked at food security status in families in the Appalachian region of southern Ohio.
The purpose of the study was to examine hunger rates of families with children in a local
Head Start program in Athens, Ohio. The survey instrument included the 18-question U.S.
Household Food Security Survey Module for measuring hunger and food security. In addi-
tion, participants were asked how many food assistance programs they had used in the last
12 months. Table 4.2.1 shows the number of food assistance programs used by subjects in
this sample.

We wish to construct the probability distribution of the discrete variable X, where
of food assistance programs used by the study subjects.

Solution: The values of X are and We compute
the probabilities for these values by dividing their respective frequencies by
the total, 297. Thus, for example, p1x12 = P1X = x12 = 62>297 = .2088.

x8 = 8.x1 = 1, x2 = 2, . . . , x 7 = 7,

X = number

p1x2 = P1X = x2p1x2
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We display the results in Table 4.2.2, which is the desired probability
distribution. ■

Alternatively, we can present this probability distribution in the form of a graph, as
in Figure 4.2.1. In Figure 4.2.1 the length of each vertical bar indicates the probability
for the corresponding value of x.

It will be observed in Table 4.2.2 that the values of are all
positive, they are all less than 1, and their sum is equal to 1. These are not phenomena
peculiar to this particular example, but are characteristics of all probability distributions
of discrete variables. If are all possible values of the discrete randomx1, x2, x3, . . . , xk

p1x2 = P1X = x2
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TABLE 4.2.1 Number of Assistance
Programs Utilized by Families with 
Children in Head Start Programs in
Southern Ohio

Number of Programs Frequency

1 62

2 47

3 39

4 39

5 58

6 37

7 4

8 11

Total 297

Source: David H. Holben, Ph.D. and John P. Holcomb,
Ph.D. Used with permission.

TABLE 4.2.2 Probability Distribution of
Programs Utilized by Families Among
the Subjects Described in Example 4.2.1

Number of Programs (x)

1 .2088

2 .1582

3 .1313

4 .1313

5 .1953

6 .1246

7 .0135

8 .0370

Total 1.0000 

P (X � x )



variable X, then we may then give the following two essential properties of a probability
distribution of a discrete variable:

(1)

(2)

The reader will also note that each of the probabilities in Table 4.2.2 is the
relative frequency of occurrence of the corresponding value of X.

With its probability distribution available to us, we can make probability statements
regarding the random variable X. We illustrate with some examples.

EXAMPLE 4.2.2

What is the probability that a randomly selected family used three assistance 
programs?

Solution: We may write the desired probability as . We see in 
Table 4.2.2 that the answer is .1313. ■

EXAMPLE 4.2.3

What is the probability that a randomly selected family used either one or two programs?

Solution: To answer this question, we use the addition rule for mutually exclusive
events. Using probability notation and the results in Table 4.2.2, we write the
answer as ■P11 ´ 22 = P112 + P122 = .2088 + .1582 = .3670.

p132 = P1X = 32

aP1X = x2 = 1,  for all x

 0 … P1X = x2 … 1

96 CHAPTER 4 PROBABILITY DISTRIBUTIONS

0.00

0.05

0.10

0.15

0.20

0.25

Pr
o

b
ab

ili
ty

x (number of assistance programs)

1 2 3 4 5 6 7 8

FIGURE 4.2.1 Graphical representation of the probability
distribution shown in Table 4.2.1.



Cumulative Distributions Sometimes it will be more convenient to work
with the cumulative probability distribution of a random variable. The cumulative prob-
ability distribution for the discrete variable whose probability distribution is given in
Table 4.2.2 may be obtained by successively adding the probabilities, given
in the last column. The cumulative probability for xi is written as 
It gives the probability that X is less than or equal to a specified value, xi.

The resulting cumulative probability distribution is shown in Table 4.2.3. The graph
of the cumulative probability distribution is shown in Figure 4.2.2. The graph of a cumu-
lative probability distribution is called an ogive. In Figure 4.2.2 the graph of con-
sists solely of the horizontal lines. The vertical lines only give the graph a connected
appearance. The length of each vertical line represents the same probability as that of the
corresponding line in Figure 4.2.1. For example, the length of the vertical line at X = 3

F1x2
F1x i2 = P1X … x i2.P1X = x i2,
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TABLE 4.2.3 Cumulative Probability Distribution of Number
of Programs Utilized by Families Among the Subjects
Described in Example 4.2.1

Number of Programs (x) Cumulative Frequency 

1 .2088

2 .3670

3 .4983

4 .6296

5 .8249

6 .9495

7 .9630

8 1.0000 

P (X ◊ x )
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FIGURE 4.2.2 Cumulative probability distribu-
tion of number of assistance programs among the
subjects described in Example 4.2.1.



in Figure 4.2.2 represents the same probability as the length of the line erected at 
in Figure 4.2.1, or .1313 on the vertical scale.

By consulting the cumulative probability distribution we may answer quickly ques-
tions like those in the following examples.

EXAMPLE 4.2.4

What is the probability that a family picked at random used two or fewer assistance
programs?

Solution: The probability we seek may be found directly in Table 4.2.3 by reading
the cumulative probability opposite and we see that it is .3670. That
is, We also may find the answer by inspecting Figure
4.2.2 and determining the height of the graph (as measured on the vertical
axis) above the value  ■

EXAMPLE 4.2.5

What is the probability that a randomly selected family used fewer than four programs?

Solution: Since a family that used fewer than four programs used either one, two, or
three programs, the answer is the cumulative probability for 3. That is,

■

EXAMPLE 4.2.6

What is the probability that a randomly selected family used five or more programs?

Solution: To find the answer we make use of the concept of complementary probabilities.
The set of families that used five or more programs is the complement of the
set of families that used fewer than five (that is, four or fewer) programs. The
sum of the two probabilities associated with these sets is equal to 1. We write
this relationship in probability notation as
Therefore, ■

EXAMPLE 4.2.7

What is the probability that a randomly selected family used between three and five
programs, inclusive?

Solution: is the probability that a family used between one and
five programs, inclusive. To get the probability of between three and 
five programs, we subtract, from .8249, the probability of two or fewer.
Using probability notation we write the answer as

■

The probability distribution given in Table 4.2.1 was developed out of actual experience, so
to find another variable following this distribution would be coincidental. The probability

P1X … 52 - P1X … 22 = .8249 - .3670 = .4579.
P13 … X … 52 =

P1X … 52 = .8249

P1X Ú 52 = 1 - P1X … 42 = 1 - .6296 = .3704.
P1X Ú 52 + P1X … 42 = 1.

P1X 6 42 = P1X … 32 = .4983.

X = 2.

P1X … 22 = .3670.
x = 2,

X = 3
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distributions of many variables of interest, however, can be determined or assumed on
the basis of theoretical considerations. In later sections, we study in detail three of these
theoretical probability distributions: the binomial, the Poisson, and the normal.

Mean and Variance of Discrete Probability Distributions The
mean and variance of a discrete probability distribution can easily be found using the
formulae below.

(4.2.1)

(4.2.2)

where is the relative frequency of a given random variable X. The standard deviation
is simply the positive square root of the variance.

EXAMPLE 4.2.8

What are the mean, variance, and standard deviation of the distribution from Example 4.2.1?

Solution:

We therefore can conclude that the mean number of programs utilized was 3.5589 with a
variance of 3.8559. The standard deviation is therefore programs.   ■

EXERCISES

4.2.1 In a study by Cross et al. (A-2), patients who were involved in problem gambling treatment were
asked about co-occurring drug and alcohol addictions. Let the discrete random variable X represent
the number of co-occurring addictive substances used by the subjects. Table 4.2.4 summarizes the
frequency distribution for this random variable.
(a) Construct a table of the relative frequency and the cumulative frequency for this discrete
distribution.

(b) Construct a graph of the probability distribution and a graph representing the cumulative
probability distribution for these data.

4.2.2 Refer to Exercise 4.2.1.

(a) What is probability that an individual selected at random used five addictive substances?

(b) What is the probability that an individual selected at random used fewer than three addictive
substances?

(c) What is the probability that an individual selected at random used more than six addictive
substances?

(d) What is the probability that an individual selected at random used between two and five
addictive substances, inclusive?

4.2.3 Refer to Exercise 4.2.1. Find the mean, variance, and standard deviation of this frequency distribution.

23.5589 = 1.9637

+ Á + 18 - 3.5589221.03702 = 3.8559

s2 = 11 - 3.5589221.20882 + 12 - 3.5589221.15822 + 13 - 3.5589221.13132m = 1121.20882 + 1221.15822 + 1321.13132 + Á + 1821.03702 = 3.5589

p1x2 s2 = a 1x - m22 p1x2 = a x2 p1x2 - m2

m = a xp1x2
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4.3 THE BINOMIAL DISTRIBUTION

The binomial distribution is one of the most widely encountered probability distributions
in applied statistics. The distribution is derived from a process known as a Bernoulli trial,
named in honor of the Swiss mathematician James Bernoulli (1654–1705), who made
significant contributions in the field of probability, including, in particular, the binomial
distribution. When a random process or experiment, called a trial, can result in only one
of two mutually exclusive outcomes, such as dead or alive, sick or well, full-term or
premature, the trial is called a Bernoulli trial.

The Bernoulli Process A sequence of Bernoulli trials forms a Bernoulli
process under the following conditions.

1. Each trial results in one of two possible, mutually exclusive, outcomes. One of the pos-
sible outcomes is denoted (arbitrarily) as a success, and the other is denoted a failure.

2. The probability of a success, denoted by p, remains constant from trial to trial. The
probability of a failure, is denoted by q.

3. The trials are independent; that is, the outcome of any particular trial is not affected
by the outcome of any other trial.

EXAMPLE 4.3.1

We are interested in being able to compute the probability of x successes in n Bernoulli
trials. For example, if we examine all birth records from the North Carolina State Center
for Health Statistics (A-3) for the calendar year 2001, we find that 85.8 percent of the
pregnancies had delivery in week 37 or later. We will refer to this as a full-term birth.
With that percentage, we can interpret the probability of a recorded birth in week 37 or
later as .858. If we randomly select five birth records from this population, what is the
probability that exactly three of the records will be for full-term births?

1 - p,
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Table 4.2.4  Number of Co-occurring Addictive Substances
Used by Patients in Selected Gambling Treatment Programs

Number of Substances Used Frequency

0 144

1 342

2 142

3 72

4 39

5 20

6 6

7 9

8 2

9 1

Total 777



Solution: Let us designate the occurrence of a record for a full-term birth (F) as a
“success,” and hasten to add that a premature birth (P) is not a failure, but
medical research indicates that children born in week 36 or sooner are at
risk for medical complications. If we are looking for birth records of pre-
mature deliveries, these would be designated successes, and birth records
of full-term would be designated failures.

It will also be convenient to assign the number 1 to a success (record for
a full-term birth) and the number 0 to a failure (record of a premature birth).

The process that eventually results in a birth record we consider to be
a Bernoulli process.

Suppose the five birth records selected resulted in this sequence of
full-term births:

FPFFP

In coded form we would write this as

10110

Since the probability of a success is denoted by p and the probabil-
ity of a failure is denoted by q, the probability of the above sequence of
outcomes is found by means of the multiplication rule to be

The multiplication rule is appropriate for computing this probability since
we are seeking the probability of a full-term, and a premature, and a full-
term, and a full-term, and a premature, in that order or, in other words, the
joint probability of the five events. For simplicity, commas, rather than inter-
section notation, have been used to separate the outcomes of the events in
the probability statement.

The resulting probability is that of obtaining the specific sequence of out-
comes in the order shown. We are not, however, interested in the order of occur-
rence of records for full-term and premature births but, instead, as has been
stated already, the probability of the occurrence of exactly three records of full-
term births out of five randomly selected records. Instead of occurring in the
sequence shown above (call it sequence number 1), three successes and two
failures could occur in any one of the following additional sequences as well:

Number Sequence

2 11100
3 10011
4 11010
5 11001
6 10101
7 01110
8 00111
9 01011

10 01101

P11, 0, 1, 1, 02 = pqppq = q2 p3
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Each of these sequences has the same probability of occurring, and
this probability is equal to the probability computed for the first
sequence mentioned.

When we draw a single sample of size five from the population spec-
ified, we obtain only one sequence of successes and failures. The question
now becomes, What is the probability of getting sequence number 1 or
sequence number 2 . . . or sequence number 10? From the addition rule we
know that this probability is equal to the sum of the individual probabili-
ties. In the present example we need to sum the or, equivalently,
multiply by 10. We may now answer our original question: What is
the probability, in a random sample of size 5, drawn from the specified
population, of observing three successes (record of a full-term birth) and
two failures (record of a premature birth)? Since in the population,

the answer to the question is

■

Large Sample Procedure: Use of Combinations We can easily
anticipate that, as the size of the sample increases, listing the number of sequences becomes
more and more difficult and tedious. What is needed is an easy method of counting the
number of sequences. Such a method is provided by means of a counting formula that
allows us to determine quickly how many subsets of objects can be formed when we use
in the subsets different numbers of the objects that make up the set from which the objects
are selected. When the order of the objects in a subset is immaterial, the subset is called
a combination of objects. When the order of objects in a subset does matter, we refer to
the subset as a permutation of objects. Though permutations of objects are often used in
probability theory, they will not be used in our current discussion. If a set consists of n
objects, and we wish to form a subset of x objects from these n objects, without regard to
the order of the objects in the subset, the result is called a combination. For examples, we
define a combination as follows when the combination is formed by taking x objects from
a set of n objects.

DEFINITION
A combination of n objects taken x at a time is an unordered subset of
x of the n objects.

The number of combinations of n objects that can be formed by taking x of them
at a time is given by

(4.3.1)

where read x factorial, is the product of all the whole numbers from x down to 1.
That is, We note that, by definition, 

Let us return to our example in which we have a sample of birth records and
we are interested in finding the probability that three of them will be for full-term births.

n = 5
0! = 1.x! = x1x - 121x - 22 . . . 112.x!,

nCx =
n!

x!1n - x2!

101.142221.85823 = 101.020221.63162 = .1276

p = .858, q = 11 - p2 = 11 - .8582 = .142

q2 p3
10q2 p3’s

q2 p3,
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The number of sequences in our example is found by Equation 4.3.1 to be

In our example we let the number of successes, so that the
number of failures. We then may write the probability of obtaining exactly x successes
in n trials as

(4.3.2)

This expression is called the binomial distribution. In Equation 4.3.2 �
where X is the random variable, the number of successes in n trials. We use 

rather than because of its compactness and because of its almost universal use.
We may present the binomial distribution in tabular form as in Table 4.3.1.
We establish the fact that Equation 4.3.2 is a probability distribution by showing

the following:

1. for all real values of x. This follows from the fact that n and p are both
nonnegative and, hence, and are all nonnegative and, therefore,
their product is greater than or equal to zero.

2. This is seen to be true if we recognize that is equal to
the familiar binomial expansion. If the binomial

is expanded, we have

If we compare the terms in the expansion, term for term, with the in
Table 4.3.1 we see that they are, term for term, equivalent, since

f112 = nC1q
n-1p1 = nqn-1p

f102 = nC 0q
n-0p0 = qn

f1x21q + p2n = qn + nqn-1p1 +
n1n - 12

2
qn-2p2 + . . . + nq 1pn-1 + pn

1q + p2n311 - p2 + p4n = 1n = 1,
©nCxqn-xpx©f1x2 = 1.

11 - p2n-x
nCx, px,

f1x2 = 0

P1X = x2 f1x2P1X = x2, f1x2=  0,  elsewhere

f1x2 = nCxqn-xpx = nCx pxqn-x for x = 0, 1, 2, . . . , n

n - x = 2,x = 3,

5C 3 =
5 # 4 # 3 # 2 # 1
3 # 2 # 1 # 2 # 1 =

120

12
= 10
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TABLE 4.3.1 The Binomial Distribution

Number of Successes, x Probability,

0

1

2

x

n

Total 1 

nCnqn-npn

oo
nCxqn-xpx

oo
nC2q

n-2p2
nC1q

n-1p1
nC0q

n-0p0

f (x )



EXAMPLE 4.3.2

As another example of the use of the binomial distribution, the data from the North
Carolina State Center for Health Statistics (A-3) show that 14 percent of mothers admit-
ted to smoking one or more cigarettes per day during pregnancy. If a random sample
of size 10 is selected from this population, what is the probability that it will contain
exactly four mothers who admitted to smoking during pregnancy?

Solution: We take the probability of a mother admitting to smoking to be .14. Using
Equation 4.3.2 we find

■

Binomial Table The calculation of a probability using Equation 4.3.2 can be a
tedious undertaking if the sample size is large. Fortunately, probabilities for different val-
ues of n, p, and x have been tabulated, so that we need only to consult an appropriate
table to obtain the desired probability. Table B of the Appendix is one of many such
tables available. It gives the probability that X is less than or equal to some specified
value. That is, the table gives the cumulative probabilities from up through some
specified positive number of successes.

Let us illustrate the use of the table by using Example 4.3.2, where it was desired
to find the probability that when and Drawing on our knowledge
of cumulative probability distributions from the previous section, we know that 
may be found by subtracting from If in Table B we locate 
for we find that and Subtracting the
latter from the former gives which nearly agrees with our hand
calculation (discrepancy due to rounding).

Frequently we are interested in determining probabilities, not for specific values
of X, but for intervals such as the probability that X is between, say, 5 and 10. Let us
illustrate with an example.

EXAMPLE 4.3.3

Suppose it is known that 10 percent of a certain population is color blind. If a random
sample of 25 people is drawn from this population, use Table B in the Appendix to find
the probability that:

(a) Five or fewer will be color blind.

.9927 - .9600 = .0327,
P1X … 32 = .9600.P1X … 42 = .9927n = 10,

p = .14P1X … 42.P1X … 32 P1x = 42p = .14.n = 10x = 4

x = 0

=  .0326

=
10!

4!6!
1.404567221.00038422f142 = 10C 41.86261.1424

f1n2 = nCnq
n-npn = pn

o     o     o

f122 = nC 2q
n-2p2 =

n1n - 12
2

qn-2p2
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Solution: This probability is an entry in the table. No addition or subtraction is nec-
essary. 

(b) Six or more will be color blind.

Solution: We cannot find this probability directly in the table. To find the answer, we
use the concept of complementary probabilities. The probability that six or
more are color blind is the complement of the probability that five or fewer
are color blind. That is, this set is the complement of the set specified in
part a; therefore,

(c) Between six and nine inclusive will be color blind.

Solution: We find this by subtracting the probability that X is less than or equal to 5
from the probability that X is less than or equal to 9. That is,

(d) Two, three, or four will be color blind.

Solution: This is the probability that X is between 2 and 4 inclusive.

■

Using Table B When Table B does not give probabilities for values of
p greater than .5. We may obtain probabilities from Table B, however, by restating the
problem in terms of the probability of a failure, rather than in terms of the prob-
ability of a success, p. As part of the restatement, we must also think in terms of the num-
ber of failures, rather than the number of successes, x. We may summarize this
idea as follows:

(4.3.3)

In words, Equation 4.3.3 says, “The probability that X is equal to some specified value given
the sample size and a probability of success greater than .5 is equal to the probability that
X is equal to given the sample size and the probability of a failure of ” For
purposes of using the binomial table we treat the probability of a failure as though it were
the probability of a success. When p is greater than .5, we may obtain cumulative proba-
bilities from Table B by using the following relationship:

(4.3.4)

Finally, to use Table B to find the probability that X is greater than or equal to some x
when we use the following relationship:

(4.3.5)P1X Ú x ƒ n, p 7 .502 = P1X … n - x ƒ n, 1 - p2P 7 .5,

P1X … x ƒ n, p 7 .502 = P1X Ú n - x ƒ n, 1 - p2
1 - p.n - x

P1X = x ƒ n, p 7 .502 = P1X = n - x ƒ n, 1 - p2
n - x,

1 - p,

p>.5

P12 … X … 42 = P1X … 42 - P1X … 12 = .9020 - .2712 = .6308

P16 … X … 92 = P1X … 92 - P1X … 52 = .9999 - .9666 = .0333

P1X Ú 62 = 1 - P1X … 52 = 1 - .9666 = .0334

P1X … 52 = .9666.
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EXAMPLE 4.3.4

According to a June 2003 poll conducted by the Massachusetts Health Benchmarks
project (A-4), approximately 55 percent of residents answered “serious problem” to the
question, “Some people think that childhood obesity is a national health problem. What
do you think? Is it a very serious problem, somewhat of a problem, not much of a prob-
lem, or not a problem at all?” Assuming that the probability of giving this answer to the
question is .55 for any Massachusetts resident, use Table B to find the probability that if 
12 residents are chosen at random:

(a) Exactly seven will answer “serious problem.”

Solution: We restate the problem as follows: What is the probability that a randomly
selected resident gives an answer other than “serious problem” from exactly
five residents out of 12, if 45 percent of residents give an answer other than
“serious problem.” We find the answer as follows:

(b) Five or fewer households will answer “serious problem.”

Solution: The probability we want is

(c) Eight or more households will answer “serious problem.”

Solution: The probability we want is

■

Figure 4.3.1 provides a visual representation of the solution to the three parts of
Example 4.3.4.

The Binomial Parameters The binomial distribution has two parameters,
n and p. They are parameters in the sense that they are sufficient to specify a bino-
mial distribution. The binomial distribution is really a family of distributions with
each possible value of n and p designating a different member of the family. The
mean and variance of the binomial distribution are and 
respectively.

Strictly speaking, the binomial distribution is applicable in situations where sam-
pling is from an infinite population or from a finite population with replacement. Since
in actual practice samples are usually drawn without replacement from finite populations,
the question arises as to the appropriateness of the binomial distribution under these
circumstances. Whether or not the binomial is appropriate depends on how drastic the
effect of these conditions is on the constancy of p from trial to trial. It is generally agreed

s2 = np11 - p2,m = np

P1X Ú 8 ƒ n = 12, p = .552 = P1X … 4 ƒ n = 12, p = .452 = .3044

=  1 - .7393 = .2607

= 1 - P1X … 6 ƒ n = 12, p = .452= P1X Ú 7 ƒ n = 12, p = .452P1X … 5 ƒ n = 12, p = .552 = P1X Ú 12 - 5 ƒ n = 12, p = .452
=  .5269 - .3044 = .2225

P1X = 5 ƒ n = 12, p = .452 = P1X … 52 - P1X … 42
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that when n is small relative to N, the binomial model is appropriate. Some writers say
that n is small relative to N if N is at least 10 times as large as n.

Most statistical software programs allow for the calculation of binomial probabilities
with a personal computer. EXCEL, for example, can be used to calculate individual or cumu-
lative probabilities for specified values of x, n, and p. Suppose we wish to find the individ-
ual probabilities for through when and We enter the numbers
0 through 6 in Column 1 and proceed as shown in Figure 4.3.2. We may follow a similar
procedure to find the cumulative probabilities. For this illustration, we use MINITAB and
place the numbers 1 through 6 in Column 1. We proceed as shown in Figure 4.3.3.

p = .3.n = 6x = 6x = 0
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FIGURE 4.3.1 Schematic representation of solutions to Example 4.3.4 (the relevant 
numbers of successes and failures in each case are circled).

0 0.117649

1 0.302526

2 0.324135

3 0.185220

4 0.059535

5 0.010206

6 0.000729

FIGURE 4.3.2 Excel calculation of individual binomial probabilities for through
when and p = 3.n = 6x = 6

x = 0

Using the following cell command:

BINOMDIST(A*, 6, .3, false), where A* is the appropriate cell reference

We obtain the following output:



EXERCISES

In each of the following exercises, assume that N is sufficiently large relative to n that the bino-
mial distribution may be used to find the desired probabilities.

4.3.1 Based on data collected by the National Center for Health Statistics and made available to the
public in the Sample Adult database (A-5), an estimate of the percentage of adults who have at
some point in their life been told they have hypertension is 23.53 percent. If we select a simple
random sample of 20 U.S. adults and assume that the probability that each has been told that he
or she has hypertension is .24, find the probability that the number of people in the sample who
have been told that they have hypertension will be:

(a) Exactly three (b) Three or more

(c) Fewer than three (d) Between three and seven, inclusive
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FIGURE 4.3.3 MINITAB calculation of cumulative binomial probabilities for through
when and p = 3.n = 6x = 6

x = 0

Data:

C1: 0 1 2 3 4 5 6

Dialog box: Session command:

Calc ➤ Probability Distributions ➤ MTB > CDF C1;
Binomial SUBC> BINOMIAL 6 0.3.

Choose Cumulative probability. Type 6 in Number of
trials. Type 0.3 in Probability of success. Choose
Input column and type C1. Click OK.

Output:

Cumulative Distribution Function

Binomial with n � 6 and p � 0.300000

x P( X <� x)
0.00 0.1176
1.00 0.4202
2.00 0.7443
3.00 0.9295
4.00 0.9891
5.00 0.9993
6.00 1.0000



4.3.2 Refer to Exercise 4.3.1. How many adults who have been told that they have hypertension would
you expect to find in a sample of 20?

4.3.3 Refer to Exercise 4.3.1. Suppose we select a simple random sample of five adults. Use Equation
4.3.2 to find the probability that, in the sample, the number of people who have been told that
they have hypertension will be:

(a) Zero (b) More than one

(c) Between one and three, inclusive (d) Two or fewer

(e) Five

4.3.4 The same survey database cited in exercise 4.3.1 (A-5) shows that 32 percent of U.S. adults indi-
cated that they have been tested for HIV at some point in their life. Consider a simple random
sample of 15 adults selected at that time. Find the probability that the number of adults who have
been tested for HIV in the sample would be:

(a) Three (b) Less than five

(c) Between five and nine, inclusive (d) More than five, but less than 10

(e) Six or more

4.3.5 Refer to Exercise 4.3.4. Find the mean and variance of the number of people tested for HIV in
samples of size 15.

4.3.6 Refer to Exercise 4.3.4. Suppose we were to take a simple random sample of 25 adults today and
find that two have been tested for HIV at some point in their life. Would these results be surpris-
ing? Why or why not?

4.3.7 Coughlin et al. (A-6) estimated the percentage of women living in border counties along the south-
ern United States with Mexico (designated counties in California, Arizona, New Mexico, and
Texas) who have less than a high school education to be 18.7. Assume the corresponding proba-
bility is .19. Suppose we select three women at random. Find the probability that the number with
less than a high-school education is:

(a) Exactly zero (b) Exactly one

(c) More than one (d) Two or fewer

(e) Two or three (f) Exactly three

4.3.8 In a survey of nursing students pursuing a master’s degree, 75 percent stated that they expect
to be promoted to a higher position within one month after receiving the degree. If this per-
centage holds for the entire population, find, for a sample of 15, the probability that the num-
ber expecting a promotion within a month after receiving their degree is:

(a) Six (b) At least seven

(c) No more than five (d) Between six and nine, inclusive

4.3.9 Given the binomial parameters and show by means of the binomial expansion given
in Table 4.3.1 that 

4.4 THE POISSON DISTRIBUTION

The next discrete distribution that we consider is the Poisson distribution, named for
the French mathematician Simeon Denis Poisson (1781–1840), who is generally cred-
ited for publishing its derivation in 1837. This distribution has been used extensively as

g f1x2 = 1.
n = 3,p = .8
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a probability model in biology and medicine. Haight (1) presents a fairly extensive cat-
alog of such applications in Chapter 7 of his book.

If x is the number of occurrences of some random event in an interval of time or
space (or some volume of matter), the probability that x will occur is given by

(4.4.1)

The Greek letter (lambda) is called the parameter of the distribution and is the aver-
age number of occurrences of the random event in the interval (or volume). The symbol
e is the constant (to four decimals) 2.7183.

It can be shown that for every x and that so that the distri-
bution satisfies the requirements for a probability distribution.

The Poisson Process We have seen that the binomial distribution results from
a set of assumptions about an underlying process yielding a set of numerical observa-
tions. Such, also, is the case with the Poisson distribution. The following statements
describe what is known as the Poisson process.

1. The occurrences of the events are independent. The occurrence of an event in an
interval1 of space or time has no effect on the probability of a second occurrence
of the event in the same, or any other, interval.

2. Theoretically, an infinite number of occurrences of the event must be possible in
the interval.

3. The probability of the single occurrence of the event in a given interval is propor-
tional to the length of the interval.

4. In any infinitesimally small portion of the interval, the probability of more than
one occurrence of the event is negligible.

An interesting feature of the Poisson distribution is the fact that the mean and vari-
ance are equal.

When to Use the Poisson Model The Poisson distribution is employed
as a model when counts are made of events or entities that are distributed at random
in space or time. One may suspect that a certain process obeys the Poisson law, and
under this assumption probabilities of the occurrence of events or entities within some
unit of space or time may be calculated. For example, under the assumptions that the
distribution of some parasite among individual host members follows the Poisson law,
one may, with knowledge of the parameter calculate the probability that a randomly
selected individual host will yield x number of parasites. In a later chapter we will
learn how to decide whether the assumption that a specified process obeys the Pois-
son law is plausible. An additional use of the Poisson distribution in practice occurs

l,

g x f1x2 = 1f1x2 Ú 0

l

f1x2 =
e-llx

x!
,  x = 0, 1, 2, . . .
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when n is large and p is small. In this case, the Poisson distribution can be used to
approximate the binomial distribution. In other words,

where
To illustrate the use of the Poisson distribution for computing probabilities, let us

consider the following examples.

EXAMPLE 4.4.1

In a study of drug-induced anaphylaxis among patients taking rocuronium bromide as
part of their anesthesia, Laake and Røttingen (A-7) found that the occurrence of anaphy-
laxis followed a Poisson model with incidents per year in Norway. Find the prob-
ability that in the next year, among patients receiving rocuronium, exactly three will
experience anaphylaxis.

Solution: By Equation 4.4.1, we find the answer to be

■

EXAMPLE 4.4.2

Refer to Example 4.4.1. What is the probability that at least three patients in the next
year will experience anaphylaxis if rocuronium is administered with anesthesia?

Solution: We can use the concept of complementary events in this case. Since
is the complement of we have 

■

In the foregoing examples the probabilities were evaluated directly from the equation.
We may, however, use Appendix Table C, which gives cumulative probabilities for
various values of and X.

EXAMPLE 4.4.3

In the study of a certain aquatic organism, a large number of samples were taken from a
pond, and the number of organisms in each sample was counted. The average number

l

= .99947775
=  1 - .00052225

=  1 - 3.00000614 + .00007373 + .000442384=  1 - c e-12120

0!
+

e-12121

1!
+

e-12122

2!
dP1X Ú 32 = 1 - P1X … 22 = 1 - 3P1X = 02 + P1X = 12 + P1X = 224P1X Ú 32,P1X … 22

P1X = 32 =
e-12123

3!
= .00177

l = 12

l = np.

nCx pxqn-x «
e-llx

x!
 , x = 0, 1, 2, . . .
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of organisms per sample was found to be two. Assuming that the number of organisms
follows a Poisson distribution, find the probability that the next sample taken will contain
one or fewer organisms.

Solution: In Table C we see that when the probability that is .406.
That is, ■

EXAMPLE 4.4.4

Refer to Example 4.4.3. Find the probability that the next sample taken will contain
exactly three organisms.

Solution:

■P1X = 3 ƒ  22 = P1X … 32 - P1X … 22 = .857 - .677 = .180

P1X … 1 ƒ  22 = .406.
X … 1l = 2,
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FIGURE 4.4.1 MINITAB calculation of individual Poisson probabilities for through
and l = .7.x = 6

x = 0

Data:

C1: 0 1 2 3 4 5 6

Dialog box: Session command:

Calc ➤ Probability Distributions ➤ Poisson MTB > PDF C1;
SUBC> Poisson .70.

Choose Probability. Type .70 in Mean. Choose Input column and
type C1. Click OK.

Output:

Probability Density Function

Poisson with mu � 0.700000

x P( X � x)
0.00 0.4966
1.00 0.3476
2.00 0.1217
3.00 0.0284
4.00 0.0050
5.00 0.0007
6.00 0.0001



EXAMPLE 4.4.5

Refer to Example 4.4.3. Find the probability that the next sample taken will contain more
than five organisms.

Solution: Since the set of more than five organisms does not include five, we are ask-
ing for the probability that six or more organisms will be observed. This is
obtained by subtracting the probability of observing five or fewer from one.
That is,

■

Poisson probabilities are obtainable from most statistical software packages. To illustrate
the use of MINITAB for this purpose, suppose we wish to find the individual probabil-
ities for through when We enter the values of x in Column 1 and
proceed as shown in Figure 4.4.1. We obtain the cumulative probabilities for the same
values of x and as shown in Figure 4.4.2.

EXERCISES

4.4.1 Singh et al. (A-8) looked at the occurrence of retinal capillary hemangioma (RCH) in patients with
von Hippel–Lindau (VHL) disease. RCH is a benign vascular tumor of the retina. Using a retro-
spective consecutive case series review, the researchers found that the number of RCH tumor

l

l = .7.x = 6x = 0

P1X 7 5 ƒ  22 = 1 - P1X … 52 = 1 - .983 = .017
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FIGURE 4.4.2 MINITAB calculation of cumulative Poisson probabilities
for through and l = .7.x = 6x = 0

Using commands found in:

Analysis ➤ Other ➤ Probability Calculator

We obtain the following output:

0 <= X Prob(x <= X)

0 0.4966

1 0.8442

2 0.9659

3 0.9942

4 0.9992

5 0.9999

6 1.0000



incidents followed a Poisson distribution with tumors per eye for patients with VHL. Using
this model, find the probability that in a randomly selected patient with VHL:

(a) There are exactly five occurrences of tumors per eye.

(b) There are more than five occurrences of tumors per eye.

(c) There are fewer than five occurrences of tumors per eye.

(d) There are between five and seven occurrences of tumors per eye, inclusive.

4.4.2 Tubert-Bitter et al. (A-9) found that the number of serious gastrointestinal reactions reported to the
British Committee on Safety of Medicine was 538 for 9,160,000 prescriptions of the anti-inflammatory
drug piroxicam. This corresponds to a rate of .058 gastrointestinal reactions per 1000 prescriptions
written. Using a Poisson model for probability, with find the probability of 

(a) Exactly one gastrointestinal reaction in 1000 prescriptions

(b) Exactly two gastrointestinal reactions in 1000 prescriptions

(c) No gastrointestinal reactions in 1000 prescriptions

(d) At least one gastrointestinal reaction in 1000 prescriptions

4.4.3 If the mean number of serious accidents per year in a large factory (where the number of employ-
ees remains constant) is five, find the probability that in the current year there will be:

(a) Exactly seven accidents (b) Ten or more accidents

(c) No accidents (d) Fewer than five accidents

4.4.4 In a study of the effectiveness of an insecticide against a certain insect, a large area of land was
sprayed. Later the area was examined for live insects by randomly selecting squares and count-
ing the number of live insects per square. Past experience has shown the average number of live
insects per square after spraying to be .5. If the number of live insects per square follows a Pois-
son distribution, find the probability that a selected square will contain:

(a) Exactly one live insect (b) No live insects

(c) Exactly four live insects (d) One or more live insects

4.4.5 In a certain population an average of 13 new cases of esophageal cancer are diagnosed each year.
If the annual incidence of esophageal cancer follows a Poisson distribution, find the probability
that in a given year the number of newly diagnosed cases of esophageal cancer will be:

(a) Exactly 10 (b) At least eight

(c) No more than 12 (d) Between nine and 15, inclusive

(e) Fewer than seven

4.5 CONTINUOUS PROBABILITY
DISTRIBUTIONS

The probability distributions considered thus far, the binomial and the Poisson, are dis-
tributions of discrete variables. Let us now consider distributions of continuous random
variables. In Chapter 1 we stated that a continuous variable is one that can assume any
value within a specified interval of values assumed by the variable. Consequently,
between any two values assumed by a continuous variable, there exist an infinite num-
ber of values.

l = .06,

l = 4
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To help us understand the nature of the distribution of a continuous random vari-
able, let us consider the data presented in Table 1.4.1 and Figure 2.3.2. In the table we
have 189 values of the random variable, age. The histogram of Figure 2.3.2 was con-
structed by locating specified points on a line representing the measurement of interest
and erecting a series of rectangles, whose widths were the distances between two spec-
ified points on the line, and whose heights represented the number of values of the vari-
able falling between the two specified points. The intervals defined by any two consec-
utive specified points we called class intervals. As was noted in Chapter 2, subareas of
the histogram correspond to the frequencies of occurrence of values of the variable
between the horizontal scale boundaries of these subareas. This provides a way whereby
the relative frequency of occurrence of values between any two specified points can be
calculated: merely determine the proportion of the histogram’s total area falling between
the specified points. This can be done more conveniently by consulting the relative fre-
quency or cumulative relative frequency columns of Table 2.3.2.

Imagine now the situation where the number of values of our random variable is
very large and the width of our class intervals is made very small. The resulting his-
togram could look like that shown in Figure 4.5.1.

If we were to connect the midpoints of the cells of the histogram in Figure 4.5.1
to form a frequency polygon, clearly we would have a much smoother figure than the
frequency polygon of Figure 2.3.4.

In general, as the number of observations, n, approaches infinity, and the width
of the class intervals approaches zero, the frequency polygon approaches a smooth curve
such as is shown in Figure 4.5.2. Such smooth curves are used to represent graphically
the distributions of continuous random variables. This has some important consequences
when we deal with probability distributions. First, the total area under the curve is equal
to one, as was true with the histogram, and the relative frequency of occurrence of val-
ues between any two points on the x-axis is equal to the total area bounded by the
curve, the x -axis, and perpendicular lines erected at the two points on the x -axis. See
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x

f (x)

FIGURE 4.5.1 A histogram resulting from a large number of values
and small class intervals.



Figure 4.5.3. The probability of any specific value of the random variable is zero. This
seems logical, since a specific value is represented by a point on the x -axis and the area
above a point is zero.

Finding Area Under a Smooth Curve With a histogram, as we have seen,
subareas of interest can be found by adding areas represented by the cells. We have no cells
in the case of a smooth curve, so we must seek an alternate method of finding subareas. Such
a method is provided by the integral calculus. To find the area under a smooth curve between
any two points a and b, the density function is integrated from a to b. A density function is a
formula used to represent the distribution of a continuous random variable. Integration is the
limiting case of summation, but we will not perform any integrations, since the level of math-
ematics involved is beyond the scope of this book. As we will see later, for all the continu-
ous distributions we will consider, there will be an easier way to find areas under their curves.

Although the definition of a probability distribution for a continuous random vari-
able has been implied in the foregoing discussion, by way of summary, we present it in
a more compact form as follows.

DEFINITION
A nonnegative function f(x) is called a probability distribution (some-
times called a probability density function) of the continuous random
variable X if the total area bounded by its curve and the x-axis is
equal to 1 and if the subarea under the curve bounded by the curve,
the x-axis, and perpendiculars erected at any two points a and b give
the probability that X is between the points a and b.
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x

f (x)

FIGURE 4.5.2 Graphical representation of a continuous
distribution.

xa b

f (x)

FIGURE 4.5.3 Graph of a continuous distribution
showing area between a and b.



Thus, the probability of a continuous random variable to assume values between
a and b is denoted by 

4.6 THE NORMAL DISTRIBUTION

We come now to the most important distribution in all of statistics—the normal dis-
tribution. The formula for this distribution was first published by Abraham De Moivre
(1667–1754) on November 12, 1733. Many other mathematicians figure prominently
in the history of the normal distribution, including Carl Friedrich Gauss (1777–1855).
The distribution is frequently called the Gaussian distribution in recognition of his
contributions.

The normal density is given by

(4.6.1)

In Equation 4.6.1, and e are the familiar constants, 3.14159 . . . and  2.71828 . . . ,
respectively, which are frequently encountered in mathematics. The two parameters of the
distribution are the mean, and the standard deviation. For our purposes we may think
of and of a normal distribution, respectively, as measures of central tendency and dis-
persion as discussed in Chapter 2. Since, however, a normally distributed random variable
is continuous and takes on values between and its mean and standard deviation
may be more rigorously defined; but such definitions cannot be given without using calcu-
lus. The graph of the normal distribution produces the familiar bell-shaped curve shown in
Figure 4.6.1.

Characteristics of the Normal Distribution The following are some
important characteristics of the normal distribution.

1. It is symmetrical about its mean, As is shown in Figure 4.6.1, the curve on
either side of is a mirror image of the other side.

2. The mean, the median, and the mode are all equal.

3. The total area under the curve above the x-axis is one square unit. This character-
istic follows from the fact that the normal distribution is a probability distribution.
Because of the symmetry already mentioned, 50 percent of the area is to the right
of a perpendicular erected at the mean, and 50 percent is to the left.

m

m.

+q ,-q

sm

s,m,

p

f1x2 =
122ps

e-1x-m22>2s2

,  -q 6 x 6 q

P1a 6 X 6 b2
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FIGURE 4.6.1 Graph of a normal distribution.



4. If we erect perpendiculars a distance of 1 standard deviation from the mean in both
directions, the area enclosed by these perpendiculars, the x-axis, and the curve will
be approximately 68 percent of the total area. If we extend these lateral bound-
aries a distance of two standard deviations on either side of the mean, approxi-
mately 95 percent of the area will be enclosed, and extending them a distance of
three standard deviations will cause approximately 99.7 percent of the total area to
be enclosed. These approximate areas are illustrated in Figure 4.6.2.

5. The normal distribution is completely determined by the parameters and In
other words, a different normal distribution is specified for each different value of

and Different values of shift the graph of the distribution along the x-axis
as is shown in Figure 4.6.3. Different values of determine the degree of flatness
or peakedness of the graph of the distribution as is shown in Figure 4.6.4. Because
of the characteristics of these two parameters, is often referred to as a location
parameter and is often referred to as a shape parameter.s

m

s

ms.m

s.m
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 m _ 1s m m + 1s x

.68

1s 1s

(a)

m _ 2s m m + 2s x

.95

2s 2s

(b)

m _ 3s m m + 3s x

.997

3s 3s

(c)

.025.025

.16 .16

.0015 .0015

FIGURE 4.6.2 Subdivision of the area under the normal
curve (areas are approximate).



The Standard Normal Distribution The last-mentioned characteristic of
the normal distribution implies that the normal distribution is really a family of distribu-
tions in which one member is distinguished from another on the basis of the values of

and The most important member of this family is the standard normal distribution
or unit normal distribution, as it is sometimes called, because it has a mean of 0 and a
standard deviation of 1. It may be obtained from Equation 4.6.1 by creating a random
variable.

(4.6.2)

The equation for the standard normal distribution is written

(4.6.3)

The graph of the standard normal distribution is shown in Figure 4.6.5.
The z-transformation will prove to be useful in the examples and applications that

follow. This value of z denotes, for a value of a random variable, the number of stan-
dard deviations that value falls above (�z) or below (�z) the mean, which in this case
is 0. For example, a z-transformation that yields a value of z � 1 indicates that the value
of x used in the transformation is 1 standard deviation above 0. A value of z � �1
indicates that the value of x used in the transformation is 1 standard deviation below 0.
This property is illustrated in the examples of Section 4.7.

f 1z2 =
122p

e-z2>2,  -q 6 z 6 q

z = 1x - m2>s
s.m
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m1 m2
m1 < m2 < m3

m3 x

FIGURE 4.6.3 Three normal distributions with different means but the same amount of
variability.

s1 < s2 < s3

s1

s2

s3

x

FIGURE 4.6.4 Three normal distributions with different standard deviations but the same
mean.



To find the probability that z takes on a value between any two points on the z-axis,
say, and we must find the area bounded by perpendiculars erected at these points,
the curve, and the horizontal axis. As we mentioned previously, areas under the curve of
a continuous distribution are found by integrating the function between two values of the
variable. In the case of the standard normal, then, to find the area between and 
directly, we would need to evaluate the following integral:

Although a closed-form solution for the integral does not exist, we can use numeri-
cal methods of calculus to approximate the desired areas beneath the curve to a
desired accuracy. Fortunately, we do not have to concern ourselves with such matters,
since there are tables available that provide the results of any integration in which we
might be interested. Table D in the Appendix is an example of these tables. In the
body of Table D are found the areas under the curve between and the values of
z shown in the leftmost column of the table. The shaded area of Figure 4.6.6 repre-
sents the area listed in the table as being between and z0, where z0 is the spec-
ified value of z.

We now illustrate the use of Table D by several examples.

EXAMPLE 4.6.1

Given the standard normal distribution, find the area under the curve, above the z-axis
between and z = 2.z = -q

-q

-q

L
z1

z0

122p
e-z2>2 dz

z1z 0

z1,z 0
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m = 0

s = 1

z

FIGURE 4.6.5 The standard normal distribution.

0 zz0

FIGURE 4.6.6 Area given by Appendix Table D.



Solution: It will be helpful to draw a picture of the standard normal distribution and
shade the desired area, as in Figure 4.6.7. If we locate in Table D
and read the corresponding entry in the body of the table, we find the
desired area to be .9772. We may interpret this area in several ways. We
may interpret it as the probability that a z picked at random from the pop-
ulation of z’s will have a value between and 2. We may also interpret
it as the relative frequency of occurrence (or proportion) of values of z
between and 2, or we may say that 97.72 percent of the z’s have a
value between and 2.

EXAMPLE 4.6.2

What is the probability that a z picked at random from the population of z’s will have a
value between and 

Solution: Figure 4.6.8 shows the area desired. Table D gives us the area between
and 2.55, which is found by locating 2.5 in the leftmost column of

the table and then moving across until we come to the entry in the column
headed by 0.05. We find this area to be .9946. If we look at the picture
we draw, we see that this is more area than is desired. We need to sub-
tract from .9946 the area to the left of Reference to Table D shows
that the area to the left of is .0054. Thus the desired probability is

P1-2.55 6 z 6 2.552 = .9946 - .0054 = .9892

-2.55
-2.55.

-q

+2.55?-2.55

-q
-q

-q

z = 2
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0 2 z

FIGURE 4.6.7 The standard normal distribution showing
area between and z = 2.z = -q

0_2.55 2.55 x

FIGURE 4.6.8 Standard normal curve showing 
■P1-2.55 6 z 6 2.552.

■



Suppose we had been asked to find the probability that z is between and 2.55 inclu-
sive. The desired probability is expressed as Since, as we noted in
Section 4.5, 

EXAMPLE 4.6.3

What proportion of z values are between and 1.53?

Solution: Figure 4.6.9 shows the area desired. We find in Table D that the area between
and 1.53 is .9370, and the area between and is .0031. To

obtain the desired probability we subtract .0031 from .9370. That is,

■

EXAMPLE 4.6.4

Given the standard normal distribution, find 

Solution: The area desired is shown in Figure 4.6.10. We obtain the area to the right
of by subtracting the area between and 2.71 from 1. Thus,

= .0034
= 1 - .9966

P1z Ú 2.712 = 1 - P1z … 2.712-qz = 2.71

P1z Ú 2.712.
P1-2.74 … z … 1.532 = .9370 - .0031 = .9339

-2.74-q-q

-2.74

P1z = z 02 = 0,P1-2.55 … z … 2.552 = P1-2.55 6 z 6 2.552 = .9892.
P1-2.55 … z … 2.552.-2.55
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0_2.74 1.53 z

FIGURE 4.6.9 Standard normal curve showing proportion
of z values between and z = 1.53.z = -2.74

FIGURE 4.6.10 Standard normal distribution showing 
■P1z Ú 2.712.

0 2.71 z



EXERCISES

Given the standard normal distribution find:

4.6.1 The area under the curve between and 

4.6.2 The probability that a z picked at random will have a value between and 

4.6.3 4.6.4

4.6.5 4.6.6

4.6.7 4.6.8

4.6.9 4.6.10

Given the following probabilities, find z1:

4.6.11 4.6.12

4.6.13 4.6.14

4.6.15

4.7 NORMAL DISTRIBUTION APPLICATIONS

Although its importance in the field of statistics is indisputable, one should realize that
the normal distribution is not a law that is adhered to by all measurable characteris-
tics occurring in nature. It is true, however, that many of these characteristics are

P1-z1 … z … z12 = .8132

P1z1 … z … 2.982 = .1117P1z 7 z12 = .0384

P1-2.67 … z … z12 = .9718P1z … z12 = .0055

P1z = .742P1-1.65 … z … 1.652 P1-2.58 … z … 2.582P1-1.96 … z … 1.962 P1z 6 2.332P1z 6 -2.332 P1z Ú - .552P1z Ú .552 z = 2.64z = -2.87

z = 1.43z = 0
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0 2.45.84 z

FIGURE 4.6.11 Standard normal curve showing 
■P1.84 … z … 2.452.

EXAMPLE 4.6.5

Given the standard normal distribution, find 

Solution: The area we are looking for is shown in Figure 4.6.11. We first obtain the
area between and 2.45 and from that subtract the area between 
and .84. In other words,

= .1934
= .9929 - .7995

P1.84 … z … 2.452 = P1z … 2.452 - P1z … .842
-q-q

P1.84 … z … 2.452.



approximately normally distributed. Consequently, even though no variable encoun-
tered in practice is precisely normally distributed, the normal distribution can be used
to model the distribution of many variables that are of interest. Using the normal dis-
tribution as a model allows us to make useful probability statements about some vari-
ables much more conveniently than would be the case if some more complicated model
had to be used.

Human stature and human intelligence are frequently cited as examples of vari-
ables that are approximately normally distributed. On the other hand, many distributions
relevant to the health field cannot be described adequately by a normal distribution.
Whenever it is known that a random variable is approximately normally distributed, or
when, in the absence of complete knowledge, it is considered reasonable to make this
assumption, the statistician is aided tremendously in his or her efforts to solve practical
problems relative to this variable. Bear in mind, however, that “normal” in this context
refers to the statistical properties of a set of data and in no way connotes normality in
the sense of health or medical condition.

There are several other reasons why the normal distribution is so important in sta-
tistics, and these will be considered in due time. For now, let us see how we may answer
simple probability questions about random variables when we know, or are willing to
assume, that they are, at least, approximately normally distributed.

EXAMPLE 4.7.1

The Uptimer is a custom-made lightweight battery-operated activity monitor that records
the amount of time an individual spends in the upright position. In a study of children
ages 8 to 15 years, Eldridge et al. (A-10) studied 529 normally developing children who
each wore the Uptimer continuously for a 24-hour period that included a typical school
day. The researchers found that the amount of time children spent in the upright position
followed a normal distribution with a mean of 5.4 hours and standard deviation of 1.3
hours. Assume that this finding applies to all children 8 to 15 years of age. Find the prob-
ability that a child selected at random spends less than 3 hours in the upright position in
a 24-hour period.

Solution: First let us draw a picture of the distribution and shade the area correspon-
ding to the probability of interest. This has been done in Figure 4.7.1.
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3.0 m = 5.4

s = 1.3

x

FIGURE 4.7.1 Normal distribution to approximate 
distribution of amount of time children spent in upright
position (mean and standard deviation estimated).



If our distribution were the standard normal distribution with a mean
of 0 and a standard deviation of 1, we could make use of Table D and find
the probability with little effort. Fortunately, it is possible for any normal
distribution to be transformed easily to the standard normal. What we do
is transform all values of X to corresponding values of z. This means that
the mean of X must become 0, the mean of z. In Figure 4.7.2 both distri-
butions are shown. We must determine what value of z, say, corresponds
to an x of 3.0. This is done using formula 4.6.2, which
transforms any value of x in any normal distribution to the corresponding
value of z in the standard normal distribution. For the present example we
have

The value of z0 we seek, then, is ■

Let us examine these relationships more closely. It is seen that the distance from the
mean, 5.4, to the x-value of interest, 3.0, is which is a distance of
1.85 standard deviations. When we transform x values to z values, the distance of the z
value of interest from its mean, 0, is equal to the distance of the corresponding x value
from its mean, 5.4, in standard deviation units. We have seen that this latter distance is
1.85 standard deviations. In the z distribution a standard deviation is equal to 1, and con-
sequently the point on the z scale located a distance of 1.85 standard deviations below
0 is the result obtained by employing the formula. By consulting Table D,z = -1.85,

3.0 - 5.4 = -2.4,

-1.85.

z =
3.0 - 5.4

1.3
= -1.85

z = 1x - m2>s,
z 0,
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3.0 5.4

s = 1.3

s = 1

_1.85 0

x

z

FIGURE 4.7.2 Normal distribution of time spent
upright and the standard normal distribution 1z2.1x2



we find that the area to the left of is .0322. We may summarize this discus-
sion as follows:

To answer the original question, we say that the probability is .0322 that a randomly
selected child will have uptime of less than 3.0 hours.

EXAMPLE 4.7.2

Diskin et al. (A-11) studied common breath metabolites such as ammonia, acetone, iso-
prene, ethanol, and acetaldehyde in five subjects over a period of 30 days. Each day,
breath samples were taken and analyzed in the early morning on arrival at the labora-
tory. For subject A, a 27-year-old female, the ammonia concentration in parts per billion
(ppb) followed a normal distribution over 30 days with mean 491 and standard devia-
tion 119. What is the probability that on a random day, the subject’s ammonia concen-
tration is between 292 and 649 ppb?

Solution: In Figure 4.7.3 are shown the distribution of ammonia concentrations and
the z distribution to which we transform the original values to determine
the desired probabilities. We find the z value corresponding to an x of
292 by

z =
292 - 491

119
= -1.67

P1x 6 3.02 = Paz 6
3.0 - 5.4

1.3
b = P1z 6 -1.852 = .0322

z = -1.85
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491292 649 x

0_1.67 1.33 z

s = 119

s = 1

FIGURE 4.7.3 Distribution of ammonia concentration 
and the corresponding standard normal distribution 1z2.1x2



Similarly, for we have

From Table D we find the area between and to be .0475 and the
area between and 1.33 to be .9082. The area desired is the difference
between these, To summarize,

The probability asked for in our original question, then, is .8607. ■

EXAMPLE 4.7.3

In a population of 10,000 of the children described in Example 4.7.1, how many would
you expect to be upright more than 8.5 hours?

Solution: We first find the probability that one child selected at random from the pop-
ulation would be upright more than 8.5 hours. That is,

Out of 10,000 people we would expect to spend more
than 8.5 hours upright. ■

We may use MINITAB to calculate cumulative standard normal probabilities. Suppose
we wish to find the cumulative probabilities for the following values of 

and 3. We enter the values of z into Column 1 and proceed as shown in Fig-
ure 4.7.4.

The preceding two sections focused extensively on the normal distribution, the
most important and most frequently used continuous probability distribution. Though
much of what will be covered in the next several chapters uses this distribution, it is not
the only important continuous probability distribution. We will be introducing several
other continuous distributions later in the text, namely the t-distribution, the chi-square
distribution, and the F-distribution. The details of these distributions will be discussed
in the chapters in which we need them for inferential tests.

0, 1, 2,
z: -3, -2, -1,

10,0001.00872 = 87

P1x Ú 8.52 = Paz Ú
8.5 - 5.4

1.3
b = P1z Ú 2.382 = 1 - .9913 = .0087

= .8607
= .9082 - .0475

= P1-q … z … 1.332 - P1-q … z … -1.672= P1-1.67 … z … 1.332P1292 … x … 6492 = Pa292 - 491

119
… z …

649 - 491

119
b

.9082 - .0475 = .8607.
-q

-1.67-q

z =
649 - 491

119
= 1.33

x = 649
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EXERCISES

4.7.1 For another subject (a 29-year-old male) in the study by Diskin et al. (A-11), acetone levels were
normally distributed with a mean of 870 and a standard deviation of 211 ppb. Find the probability
that on a given day the subject’s acetone level is:

(a) Between 600 and 1000 ppb

(b) Over 900 ppb

(c) Under 500 ppb

(d) Between 900 and 1100 ppb

4.7.2 In the study of fingerprints, an important quantitative characteristic is the total ridge count for the
10 fingers of an individual. Suppose that the total ridge counts of individuals in a certain popula-
tion are approximately normally distributed with a mean of 140 and a standard deviation of 50.
Find the probability that an individual picked at random from this population will have a ridge
count of:

(a) 200 or more

(b) Less than 100
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FIGURE 4.7.4 MINITAB calculation of cumulative standard normal probabilities.

Data:

C1: -3 -2 -1 0 1 2 3

Dialog box: Session command:

Calc ➤ Probability Distributions ➤ Normal MTB > CDF C1;
SUBC> Normal 0 1.

Choose Cumulative probability. Choose Input column
and type C1. Click OK.

Output:

Cumulative Distribution Function

Normal with mean � 0 and standard
deviation � 1.00000

x P( X <� x)
�3.0000 0.0013
�2.0000 0.0228
�1.0000 0.1587
0.0000 0.5000
1.0000 0.8413
2.0000 0.9772
3.0000 0.9987



(c) Between 100 and 200

(d) Between 200 and 250

(e) In a population of 10,000 people how many would you expect to have a ridge count of 200
or more?

4.7.3 One of the variables collected in the North Carolina Birth Registry data (A-3) is pounds gained
during pregnancy. According to data from the entire registry for 2001, the number of pounds gained
during pregnancy was approximately normally distributed with a mean of 30.23 pounds and a stan-
dard deviation of 13.84 pounds. Calculate the probability that a randomly selected mother in North
Carolina in 2001 gained:

(a) Less than 15 pounds during pregnancy (b) More than 40 pounds

(c) Between 14 and 40 pounds (d) Less than 10 pounds

(e) Between 10 and 20 pounds

4.7.4 Suppose the average length of stay in a chronic disease hospital of a certain type of patient is 
60 days with a standard deviation of 15. If it is reasonable to assume an approximately normal
distribution of lengths of stay, find the probability that a randomly selected patient from this group
will have a length of stay:

(a) Greater than 50 days (b) Less than 30 days

(c) Between 30 and 60 days (d) Greater than 90 days

4.7.5 If the total cholesterol values for a certain population are approximately normally distributed with a
mean of 200 mg/100 ml and a standard deviation of 20 mg/100 ml, find the probability that an indi-
vidual picked at random from this population will have a cholesterol value:

(a) Between 180 and 200 mg/100 ml (b) Greater than 225 mg/100 ml

(c) Less than 150 mg/100 ml (d) Between 190 and 210 mg/100 ml

4.7.6 Given a normally distributed population with a mean of 75 and a variance of 625, find:

(a) (b)

(c) (d)

(e)

4.7.7 The weights of a certain population of young adult females are approximately normally distrib-
uted with a mean of 132 pounds and a standard deviation of 15. Find the probability that a sub-
ject selected at random from this population will weigh:

(a) More than 155 pounds (b) 100 pounds or less

(c) Between 105 and 145 pounds

4.8 SUMMARY

In this chapter the concepts of probability described in the preceding chapter are further
developed. The concepts of discrete and continuous random variables and their proba-
bility distributions are discussed. In particular, two discrete probability distributions, the
binomial and the Poisson, and one continuous probability distribution, the normal, are
examined in considerable detail. We have seen how these theoretical distributions allow
us to make probability statements about certain random variables that are of interest to
the health professional.

P130 … x … 1102 P1x Ú 852P1x 6 602 P1x 7 902P150 … x … 1002
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Poisson distribution 
function

Normal distribution 
function

s 7 0
-q 6 m 6 q
-q 6 x 6 q

SUMMARY OF FORMULAS FOR CHAPTER 4

Formula

Number Name Formula

4.2.1 Mean of a frequency
distribution

4.2.2 Variance of a 
frequency 
distribution

4.3.1 Combination of

4.3.2 Binomial
distribution function

4.3.3–4.3.5 Tabled binomial
probability
equalities

4.4.1

4.6.1

4.6.2 z-transformation

4.6.3 Standard normal
distribution function

Symbol Key • a combination of n events taken x at a time
• Euler’s constant = 2.71828…
• function of x
• the parameter of the Poisson distribution
• sample size or the total number of time a process occurs
• binomial “success” probability
• discrete probability of random variable X
• binomial “failure” probability
• constant � 3.14159…
• population standard deviation
• population variance
• population mean
• a quantity of individual value of X
• random variable
• standard normal transformationz =

X =
x2 =
m =
s2 =
s =
p = pi =
q = 1 - p =
p1x2 =
p =
n =
l =
f1x2 =
e =
nCx =

f1z2 =
122p

e-z2>2, -q 6 z 6 q

Z =
X - m
s

f1x2 =
122ps

e-1x-m22>2s2

,

f1x2 =
e-llx

x!
, x = 0, 1, 2, . . .

P1X Ú x ƒ n, p 7 502 = P1X … n - x ƒ n, 1 - p2P1X … x ƒ n, p 7 502 = P1X Ú n - x ƒ n, 1 - p2P1X = x ƒ n, p 7 502 = P1X = n - x ƒ n, 1 - p2
f1x2 = nCx pxqn-x, x = 0, 1, 2, Á

m = a xp1x2
or

s2 = a x2p1x2 - m2

s2 = a 1x - m22p1x2

objects nCx =
n!

x!1n - 12!



REVIEW QUESTIONS AND EXERCISES

1. What is a discrete random variable? Give three examples that are of interest to the health professional.

2. What is a continuous random variable? Give three examples of interest to the health professional.

3. Define the probability distribution of a discrete random variable.

4. Define the probability distribution of a continuous random variable.

5. What is a cumulative probability distribution?

6. What is a Bernoulli trial?

7. Describe the binomial distribution.

8. Give an example of a random variable that you think follows a binomial distribution.

9. Describe the Poisson distribution.

10. Give an example of a random variable that you think is distributed according to the Poisson law.

11. Describe the normal distribution.

12. Describe the standard normal distribution and tell how it is used in statistics.

13. Give an example of a random variable that you think is, at least approximately, normally distributed.

14. Using the data of your answer to Question 13, demonstrate the use of the standard normal distri-
bution in answering probability questions related to the variable selected.

15. Kanjanarat et al. (A-12) estimate the rate of preventable adverse drug events (ADEs) in hospitals
to be 35.2 percent. Preventable ADEs typically result from inappropriate care or medication errors,
which include errors of commission and errors of omission. Suppose that 10 hospital patients expe-
riencing an ADE are chosen at random. Let and calculate the probability that:

(a) Exactly seven of those drug events were preventable

(b) More than half of those drug events were preventable

(c) None of those drug events were preventable

(d) Between three and six inclusive were preventable

16. In a poll conducted by the Pew Research Center in 2003 (A-13), a national sample of adults answered
the following question, “All in all, do you strongly favor, favor, oppose, or strongly oppose . . . mak-
ing it legal for doctors to give terminally ill patients the means to end their lives?” The results showed
that 43 percent of the sample subjects answered “strongly favor” or “favor” to this question. If 12
subjects represented by this sample are chosen at random, calculate the probability that:

(a) Exactly two of the respondents answer “strongly favor” or “favor”

(b) No more than two of the respondents answer “strongly favor” or “favor”

(c) Between five and nine inclusive answer “strongly favor” or “favor”

17. In a study by Thomas et al. (A-14) the Poisson distribution was used to model the number of
patients per month referred to an oncologist. The researchers use a rate of 15.8 patients per month
that are referred to the oncologist. Use Table C in the Appendix and a rate of 16 patients per month
to calculate the probability that in a month:

(a) Exactly 10 patients are referred to an oncologist

(b) Between five and 15 inclusive are referred to an oncologist

p = .35,
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(c) More than 10 are referred to an oncologist

(d) Less than eight are referred to an oncologist

(e) Less than 12, but more than eight are referred to an oncologist

18. On the average, two students per hour report for treatment to the first-aid room of a large elementary
school.

(a) What is the probability that during a given hour three students come to the first-aid room for
treatment?

(b) What is the probability that during a given hour two or fewer students will report to the first-
aid room?

(c) What is the probability that during a given hour between three and five students, inclusive,
will report to the first-aid room?

19. A Harris Interactive poll conducted in Fall, 2002 (A-15) via a national telephone survey of adults
asked, “Do you think adults should be allowed to legally use marijuana for medical purposes if
their doctor prescribes it, or do you think that marijuana should remain illegal even for medical
purposes.” The results showed that 80 percent of respondents answered “Yes” to the above ques-
tion. Assuming 80 percent of Americans would say “Yes” to the above question, find the proba-
bility when eight Americans are chosen at random that:

(a) Six or fewer said “Yes” (b) Seven or more said “Yes”

(c) All eight said “Yes” (d) Fewer than four said “Yes”

(e) Between four and seven inclusive said “Yes”

20. In a study of the relationship between measles vaccination and Guillain-Barré syndrome (GBS), Sil-
veira et al. (A-16) used a Poisson model in the examination of the occurrence of GBS during latent
periods after vaccinations. They conducted their study in Argentina, Brazil, Chile, and Colombia.
They found that during the latent period, the rate of GBS was 1.28 cases per day. Using this esti-
mate rounded to 1.3, find the probability on a given day of:

(a) No cases of GBS (b) At least one case of GBS

(c) Fewer than five cases of GBS

21. The IQs of individuals admitted to a state school for the mentally retarded are approximately nor-
mally distributed with a mean of 60 and a standard deviation of 10.

(a) Find the proportion of individuals with IQs greater than 75.

(b) What is the probability that an individual picked at random will have an IQ between 55 and 75?

(c) Find

22. A nurse supervisor has found that staff nurses, on the average, complete a certain task in 10 minutes.
If the times required to complete the task are approximately normally distributed with a standard
deviation of 3 minutes, find:

(a) The proportion of nurses completing the task in less than 4 minutes

(b) The proportion of nurses requiring more than 5 minutes to complete the task

(c) The probability that a nurse who has just been assigned the task will complete it within 3
minutes

23. Scores made on a certain aptitude test by nursing students are approximately normally distributed
with a mean of 500 and a variance of 10,000.

(a) What proportion of those taking the test score below 200?

(b) A person is about to take the test. What is the probability that he or she will make a score of
650 or more?

(c) What proportion of scores fall between 350 and 675?

P150 … X … 702.
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24. Given a binomial variable with a mean of 20 and a variance of 16, find n and p.

25. Suppose a variable X is normally distributed with a standard deviation of 10. Given that .0985 of
the values of X are greater than 70, what is the mean value of X ?

26. Given the normally distributed random variable X, find the numerical value of k such that

27. Given the normally distributed random variable X with mean 100 and standard deviation 15, find
the numerical value of k such that:

(a)

(b)

(c)

(d) where k� and k are equidistant from 

28. Given the normally distributed random variable X with and find

29. Given the normally distributed random variable X with and find

30. Given the normally distributed random variable X with and find

31. Given the normally distributed random variable X with and find

32. Given the normally distributed random variable X with and find

33. Explain why each of the following measurements is or is not the result of a Bernoulli trial:

(a) The gender of a newborn child

(b) The classification of a hospital patient’s condition as stable, critical, fair, good, or poor

(c) The weight in grams of a newborn child

34. Explain why each of the following measurements is or is not the result of a Bernoulli trial:

(a) The number of surgical procedures performed in a hospital in a week

(b) A hospital patient’s temperature in degrees Celsius

(c) A hospital patient’s vital signs recorded as normal or not normal

35. Explain why each of the following distributions is or is not a probability distribution:

(a) (b)

(c) (d)

s.P1X … 502 = .9772,m = 30

s.P1X … 102 = .0778,m = 25

m.P1X Ú 252 = .0526,s = 5

m.P1X … 502 = .9904,s = 15

m.P1X … 402 = .0080,s = 10

mP1k¿ … X … k2 = .9660,

P1100 … X … k2 = .4778

P1X Ú k2 = .1093

P1X … k2 = .0094

P1m - ks … X … m + ks2 = .754.
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1 0.25
2 0.10
3 0.25
4 0.30 

P (X � x) x

0 0.15
1 0.20
2 0.30
3 0.10

P (X � x)

x

0 0.15
1
2 0.30
3 0.20
4 0.15 

-0.20

P (X � x) x

0.15
0 0.30
1 0.20
2 0.15
3 0.10
4 0.10 

-1

P (X � x)
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CHAPTER OVERVIEW

This chapter ties together the foundations of applied statistics: descriptive
measures, basic probability, and inferential procedures. This chapter also in-
cludes a discussion of one of the most important theorems in statistics, the
central limit theorem. Students may find it helpful to revisit this chapter from
time to time as they study the remaining chapters of the book.

TOPICS

5.1 INTRODUCTION

5.2 SAMPLING DISTRIBUTIONS

5.3 DISTRIBUTION OF THE SAMPLE MEAN

5.4 DISTRIBUTION OF THE DIFFERENCE BETWEEN TWO SAMPLE MEANS

5.5 DISTRIBUTION OF THE SAMPLE PROPORTION

5.6 DISTRIBUTION OF THE DIFFERENCE BETWEEN TWO SAMPLE PROPORTIONS

5.7 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. be able to construct a sampling distribution of a statistic.
2. understand how to use a sampling distribution to calculate basic probabilities.
3. understand the central limit theorem and when to apply it.
4. understand the basic concepts of sampling with replacement and without 

replacement.

CHAPTER 5
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5.1 INTRODUCTION

Before we examine the subject matter of this chapter, let us review the high points of what
we have covered thus far. Chapter 1 introduces some basic and useful statistical vocabulary
and discusses the basic concepts of data collection. In Chapter 2, the organization and sum-
marization of data are emphasized. It is here that we encounter the concepts of central ten-
dency and dispersion and learn how to compute their descriptive measures. In Chapter 3,
we are introduced to the fundamental ideas of probability, and in Chapter 4 we consider the
concept of a probability distribution. These concepts are fundamental to an understanding
of statistical inference, the topic that comprises the major portion of this book.

This chapter serves as a bridge between the preceding material, which is essen-
tially descriptive in nature, and most of the remaining topics, which have been selected
from the area of statistical inference.

5.2 SAMPLING DISTRIBUTIONS

The topic of this chapter is sampling distributions. The importance of a clear understand-
ing of sampling distributions cannot be overemphasized, as this concept is the very key
to the understanding of statistical inference. Sampling distributions serve two purposes:
(1) they allow us to answer probability questions about sample statistics, and (2) they pro-
vide the necessary theory for making statistical inference procedures valid. In this chap-
ter we use sampling distributions to answer probability questions about sample statistics.
We recall from Chapter 2 that a sample statistic is a descriptive measure, such as the
mean, median, variance, or standard deviation, that is computed from the data of a sam-
ple. In the chapters that follow, we will see how sampling distributions make statistical
inferences valid.

We begin with the following definition.

DEFINITION
The distribution of all possible values that can be assumed by some
statistic, computed from samples of the same size randomly drawn
from the same population, is called the sampling distribution of that
statistic.

Sampling Distributions: Construction Sampling distributions may be
constructed empirically when sampling from a discrete, finite population. To construct a
sampling distribution we proceed as follows:

1. From a finite population of size N, randomly draw all possible samples of size n.

2. Compute the statistic of interest for each sample.

3. List in one column the different distinct observed values of the statistic, and in
another column list the corresponding frequency of occurrence of each distinct
observed value of the statistic.
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The actual construction of a sampling distribution is a formidable undertaking if the
population is of any appreciable size and is an impossible task if the population is infinite.
In such cases, sampling distributions may be approximated by taking a large number of
samples of a given size.

Sampling Distributions: Important Characteristics We usually
are interested in knowing three things about a given sampling distribution: its mean, its
variance, and its functional form (how it looks when graphed).

We can recognize the difficulty of constructing a sampling distribution according
to the steps given above when the population is large. We also run into a problem when
considering the construction of a sampling distribution when the population is infinite.
The best we can do experimentally in this case is to approximate the sampling distribu-
tion of a statistic.

Both these problems may be obviated by means of mathematics. Although the pro-
cedures involved are not compatible with the mathematical level of this text, sampling
distributions can be derived mathematically. The interested reader can consult one of
many mathematical statistics textbooks, for example, Larsen and Marx (1) or Rice (2).

In the sections that follow, some of the more frequently encountered sampling
distributions are discussed.

5.3 DISTRIBUTION OF THE SAMPLE MEAN

An important sampling distribution is the distribution of the sample mean. Let us see
how we might construct the sampling distribution by following the steps outlined in the
previous section.

EXAMPLE 5.3.1

Suppose we have a population of size consisting of the ages of five children
who are outpatients in a community mental health center. The ages are as follows:

and The mean, of this population is
equal to and the variance is

Let us compute another measure of dispersion and designate it by capital S as
follows:

We will refer to this quantity again in the next chapter. We wish to construct the sam-
pling distribution of the sample mean, based on samples of size drawn from
this population.

Solution: Let us draw all possible samples of size from this population. These
samples, along with their means, are shown in Table 5.3.1.

n = 2

n = 2x,

S 2 =
g1x i - m22

N - 1
=

40

4
= 10

s2 =
g1x i - m22

N
=

40

5
= 8

gx i>N = 10
m,x5 = 14.x1 = 6, x 2 = 8, x3 = 10, x4 = 12,

N = 5,
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We see in this example that, when sampling is with replacement, there
are 25 possible samples. In general, when sampling is with replacement, the
number of possible samples is equal to .

We may construct the sampling distribution of by listing the differ-
ent values of in one column and their frequency of occurrence in another,
as in Table 5.3.2. ■

We see that the data of Table 5.3.2 satisfy the requirements for a probability
distribution. The individual probabilities are all greater than 0, and their sum is equal
to 1.

x
x

N n
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TABLE 5.3.1 All Possible Samples of Size from a Population of Size 
Samples Above or Below the Principal Diagonal Result When Sampling Is Without
Replacement. Sample Means Are in Parentheses

Second Draw

6 8 10 12 14

6 6, 6 6, 8 6, 10 6, 12 6, 14

(6) (7) (8) (9) (10)

8 8, 6 8, 8 8, 10 8, 12 8, 14

(7) (8) (9) (10) (11)
First

10 10, 6 10, 8 10, 10 10, 12 10, 14
Draw

(8) (9) (10) (11) (12)

12 12, 6 12, 8 12, 10 12, 12 12, 14

(9) (10) (11) (12) (13)

14 14, 6 14, 8 14, 10 14, 12 14, 14

(10) (11) (12) (13) (14) 

N � 5.n � 2

TABLE 5.3.2 Sampling 
Distribution of Computed 
from Samples in Table 5.3.1

Relative

Frequency Frequency

6 1 1/25

7 2 2/25

8 3 3/25

9 4 4/25

10 5 5/25

11 4 4/25

12 3 3/25

13 2 2/25

14 1 1/25

Total 25 25/25 

x

x



It was stated earlier that we are usually interested in the functional form of a sam-
pling distribution, its mean, and its variance. We now consider these characteristics for
the sampling distribution of the sample mean, 

Sampling Distribution of Functional Form Let us look at the dis-
tribution of plotted as a histogram, along with the distribution of the population, both
of which are shown in Figure 5.3.1. We note the radical difference in appearance between
the histogram of the population and the histogram of the sampling distribution of 
Whereas the former is uniformly distributed, the latter gradually rises to a peak and then
drops off with perfect symmetry.

Sampling Distribution of Mean Now let us compute the mean, which
we will call of our sampling distribution. To do this we add the 25 sample means
and divide by 25. Thus,

We note with interest that the mean of the sampling distribution of has the same
value as the mean of the original population.

x

mx = gxi

N n =
6 + 7 + 7 + 8 + Á + 14

25
=

250

25
= 10

mx ,
x:

x.

x
x:

x.
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Sampling Distribution of Variance Finally, we may compute the vari-
ance of which we call as follows:

We note that the variance of the sampling distribution is not equal to the population vari-
ance. It is of interest to observe, however, that the variance of the sampling distribution
is equal to the population variance divided by the size of the sample used to obtain the
sampling distribution. That is,

The square root of the variance of the sampling distribution, is called
the standard error of the mean or, simply, the standard error.

These results are not coincidences but are examples of the characteristics of sam-
pling distributions in general, when sampling is with replacement or when sampling is
from an infinite population. To generalize, we distinguish between two situations: sam-
pling from a normally distributed population and sampling from a nonnormally distrib-
uted population.

Sampling Distribution of Sampling from Normally Distrib-
uted Populations When sampling is from a normally distributed population, the
distribution of the sample mean will possess the following properties:

1. The distribution of will be normal.

2. The mean, of the distribution of will be equal to the mean of the population
from which the samples were drawn.

3. The variance, of the distribution of will be equal to the variance of the pop-
ulation divided by the sample size.

Sampling from Nonnormally Distributed Populations For the case
where sampling is from a nonnormally distributed population, we refer to an important
mathematical theorem known as the central limit theorem. The importance of this theorem
in statistical inference may be summarized in the following statement.

The Central Limit Theorem

Given a population of any nonnormal functional form with a mean and finite
variance the sampling distribution of computed from samples of size n from
this population, will have mean and variance and will be approximately
normally distributed when the sample size is large.

s2>nm

x,s 2,
m

xsx
2

xmx ,

x

x:

2sx
2 = s>1n

sx
2 =
s2

n
=

8

2
= 4

=
100

25
= 4

=
16 - 1022 + 17 - 1022 + 17 - 1022 + Á + 114 - 1022

25

sx
2 =
g1x i - mx22

N n

sx
2x,

x:
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A mathematical formulation of the central limit theorem is that the distribution of

approaches a normal distribution with mean 0 and variance 1 as Note that the
central limit theorem allows us to sample from nonnormally distributed populations with
a guarantee of approximately the same results as would be obtained if the populations
were normally distributed provided that we take a large sample.

The importance of this will become evident later when we learn that a normally
distributed sampling distribution is a powerful tool in statistical inference. In the case of
the sample mean, we are assured of at least an approximately normally distributed sam-
pling distribution under three conditions: (1) when sampling is from a normally distrib-
uted population; (2) when sampling is from a nonnormally distributed population and
our sample is large; and (3) when sampling is from a population whose functional form
is unknown to us as long as our sample size is large.

The logical question that arises at this point is, How large does the sample have
to be in order for the central limit theorem to apply? There is no one answer, since the
size of the sample needed depends on the extent of nonnormality present in the popula-
tion. One rule of thumb states that, in most practical situations, a sample of size 30 is
satisfactory. In general, the approximation to normality of the sampling distribution of 
becomes better and better as the sample size increases.

Sampling Without Replacement The foregoing results have been given on
the assumption that sampling is either with replacement or that the samples are drawn
from infinite populations. In general, we do not sample with replacement, and in most
practical situations it is necessary to sample from a finite population; hence, we need to
become familiar with the behavior of the sampling distribution of the sample mean under
these conditions. Before making any general statements, let us again look at the data in
Table 5.3.1. The sample means that result when sampling is without replacement are
those above the principal diagonal, which are the same as those below the principal diag-
onal, if we ignore the order in which the observations were drawn. We see that there are
10 possible samples. In general, when drawing samples of size n from a finite popula-
tion of size N without replacement, and ignoring the order in which the sample values
are drawn, the number of possible samples is given by the combination of N things taken
n at a time. In our present example we have

The mean of the 10 sample means is

We see that once again the mean of the sampling distribution is equal to the population
mean.

mx =
g x i

NCn
=

7 + 8 + 9 + Á + 13

10
=

100

10
= 10

NCn =
N !

n!1N - n2! =
5!

2!3!
=

5 # 4 # 3!

2!3!
= 10  possible samples.

x

n: q .

x - m
s>1n
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The variance of this sampling distribution is found to be

and we note that this time the variance of the sampling distribution is not equal to the
population variance divided by the sample size, since There 
is, however, an interesting relationship that we discover by multiplying by

That is,

This result tells us that if we multiply the variance of the sampling distribution that would
be obtained if sampling were with replacement, by the factor we
obtain the value of the variance of the sampling distribution that results when sampling
is without replacement. We may generalize these results with the following statement.

When sampling is without replacement from a finite population, the sampling distribu-
tion of will have mean and variance

If the sample size is large, the central limit theorem applies and the sampling
distribution of will be approximately normally distributed.

The Finite Population Correction The factor is called
the finite population correction and can be ignored when the sample size is small in com-
parison with the population size. When the population is much larger than the sample,
the difference between and will be negligible. Imagine
a population of size 10,000 and a sample from this population of size 25; the finite pop-
ulation correction would be equal to To multiply 
by .9976 is almost equivalent to multiplying it by 1. Most practicing statisticians do not
use the finite population correction unless the sample is more than 5 percent of the size
of the population. That is, the finite population correction is usually ignored when

The Sampling Distribution of A Summary Let us summarize the
characteristics of the sampling distribution of under two conditions.

1. Sampling is from a normally distributed population with a known population
variance:
(a)
(b)
(c) The sampling distribution of is normal.x
sx = s>1n
mx = m

x
x:

n>N … .05.

s2>n110,000 - 252>199992 = .9976.

1s2>n231N - n2>1N - 124s2>n
1N - n2>1N - 12

x

sx
2 =
s2

n
# N - n

N - 1

mx

1N - n2>1N - 12,
s2

n
# N - n

N - 1
=

8

2
# 5 - 2

4
= 3

1N - n2>1N - 12. s2>nsx
2 = 3 Z 8>2 = 4.

sx
2 =
g1x i - mx22

NCn
=

30

10
= 3
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2. Sampling is from a nonnormally distributed population with a known population
variance:
(a)
(b) , when

otherwise

(c) The sampling distribution of is approximately normal.

Applications As we will see in succeeding chapters, knowledge and understand-
ing of sampling distributions will be necessary for understanding the concepts of statis-
tical inference. The simplest application of our knowledge of the sampling distribution
of the sample mean is in computing the probability of obtaining a sample with a mean
of some specified magnitude. Let us illustrate with some examples.

EXAMPLE 5.3.2

Suppose it is known that in a certain large human population cranial length is approx-
imately normally distributed with a mean of 185.6 mm and a standard deviation of
12.7 mm. What is the probability that a random sample of size 10 from this popula-
tion will have a mean greater than 190?

Solution: We know that the single sample under consideration is one of all possible
samples of size 10 that can be drawn from the population, so that the mean
that it yields is one of the constituting the sampling distribution of 
that, theoretically, could be derived from this population.

When we say that the population is approximately normally distrib-
uted, we assume that the sampling distribution of will be, for all prac-
tical purposes, normally distributed. We also know that the mean and
standard deviation of the sampling distribution are equal to 185.6 and

respectively. We assume that the
population is large relative to the sample so that the finite population cor-
rection can be ignored.

We learn in Chapter 4 that whenever we have a random variable that is
normally distributed, we may very easily transform it to the standard normal
distribution. Our random variable now is the mean of its distribution is 
and its standard deviation is By appropriately modifying the
formula given previously, we arrive at the following formula for transform-
ing the normal distribution of to the standard normal distribution:

(5.3.1)
■

The probability that answers our question is represented by the area to the right of 
under the curve of the sampling distribution. This area is equal to the area to the right of

z =
190 - 185.6

4.0161
=

4.4

4.0161
= 1.10

x = 190

z =
x - mx

s>1n

x

sx = s>1n.
mx,x,

2112.722>10 = 12.7>210 = 4.0161,

x

xx’s

x

sx = 1s>1n2AN - n

N - 1
,

n >N … .05sx = s>1n

mx = m
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By consulting the standard normal table, we find that the area to the right of 1.10 is
.1357; hence, we say that the probability is .1357 that a sample of size 10 will have a
mean greater than 190.

Figure 5.3.2 shows the relationship between the original population, the sampling dis-
tribution of and the standard normal distribution.

EXAMPLE 5.3.3

If the mean and standard deviation of serum iron values for healthy men are 120 and
15 micrograms per 100 ml, respectively, what is the probability that a random sample
of 50 normal men will yield a mean between 115 and 125 micrograms per 100 ml?

Solution: The functional form of the population of serum iron values is not speci-
fied, but since we have a sample size greater than 30, we make use of the

x
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FIGURE 5.3.2 Population distribution, sampling distribution,
and standard normal distribution, Example 5.3.2: (a) population
distribution; (b) sampling distribution of for samples of size
10; (c) standard normal distribution.
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central limit theorem and transform the resulting approximately normal
sampling distribution of (which has a mean of 120 and a standard devi-
ation of to the standard normal. The probability we
seek is

■

EXERCISES

5.3.1 The National Health and Nutrition Examination Survey of 1988–1994 (NHANES III, A-1) esti-
mated the mean serum cholesterol level for U.S. females aged 20–74 years to be 204 mg/dl. The
estimate of the standard deviation was approximately 44. Using these estimates as the mean and
standard deviation for the U.S. population, consider the sampling distribution of the sample mean
based on samples of size 50 drawn from women in this age group. What is the mean of the sam-
pling distribution? The standard error?

5.3.2 The study cited in Exercise 5.3.1 reported an estimated mean serum cholesterol level of 183 for
women aged 20–29 years. The estimated standard deviation was approximately 37. Use these esti-
mates as the mean and standard deviation for the U.S. population. If a simple random sample
of size 60 is drawn from this population, find the probability that the sample mean serum choles-
terol level will be:

(a) Between 170 and 195 (b) Below 175

(c) Greater than 190

5.3.3 If the uric acid values in normal adult males are approximately normally distributed with a mean
and standard deviation of 5.7 and 1 mg percent, respectively, find the probability that a sample of
size 9 will yield a mean:

(a) Greater than 6 (b) Between 5 and 6

(c) Less than 5.2

5.3.4 Wright et al. (A-2) used the 1999–2000 National Health and Nutrition Examination Survey (NHANES)
to estimate dietary intake of 10 key nutrients. One of those nutrients was calcium (mg). They found
in all adults 60 years or older a mean daily calcium intake of 721 mg with a standard deviation of
454. Using these values for the mean and standard deviation for the U.S. population, find the proba-
bility that a random sample of size 50 will have a mean:

(a) Greater than 800 mg (b) Less than 700 mg

(c) Between 700 and 850 mg

5.3.5 In the study cited in Exercise 5.3.4, researchers found the mean sodium intake in men and women
60 years or older to be 2940 mg with a standard deviation of 1476 mg. Use these values for the
mean and standard deviation of the U.S. population and find the probability that a random sam-
ple of 75 people from the population will have a mean:

(a) Less than 2450 mg (b) Over 3100 mg

(c) Between 2500 and 3300 mg (d) Between 2500 and 2900 mg

sm

s

m

= .9818
= .9909 - .0091
= P1-2.36 … z … 2.362P1115 … x … 1252 = Pa115 - 120

2.12
… z …

125 - 120

2.12
b

15>150 = 2.12132x
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5.3.6 Given a normally distributed population with a mean of 100 and a standard deviation of 20, find
the following probabilities based on a sample of size 16:

(a) (b)

(c)

5.3.7 Given and find:

(a) (b)

(c) (d)

5.3.8 Suppose a population consists of the following values: 1, 3, 5, 7, 9. Construct the sampling dis-
tribution of based on samples of size 2 selected without replacement. Find the mean and vari-
ance of the sampling distribution.

5.3.9 Use the data of Example 5.3.1 to construct the sampling distribution of based on samples of size 3
selected without replacement. Find the mean and variance of the sampling distribution.

5.3.10 Use the data cited in Exercise 5.3.1. Imagine we take samples of size 5, 25, 50, 100, and 500 from
the women in this age group.

(a) Calculate the standard error for each of these sampling scenarios.

(b) Discuss how sample size affects the standard error estimates calculated in part (a) and the
potential implications this may have in statistical practice.

5.4 DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO SAMPLE MEANS

Frequently the interest in an investigation is focused on two populations. Specifically, an
investigator may wish to know something about the difference between two population
means. In one investigation, for example, a researcher may wish to know if it is reason-
able to conclude that two population means are different. In another situation, the
researcher may desire knowledge about the magnitude of the difference between two
population means. A medical research team, for example, may want to know whether or
not the mean serum cholesterol level is higher in a population of sedentary office work-
ers than in a population of laborers. If the researchers are able to conclude that the pop-
ulation means are different, they may wish to know by how much they differ. A knowl-
edge of the sampling distribution of the difference between two means is useful in
investigations of this type.

Sampling from Normally Distributed Populations The following
example illustrates the construction of and the characteristics of the sampling distribu-
tion of the difference between sample means when sampling is from two normally dis-
tributed populations.

EXAMPLE 5.4.1

Suppose we have two populations of individuals—one population (population 1) has
experienced some condition thought to be associated with mental retardation, and the
other population (population 2) has not experienced the condition. The distribution of

x

x

P149 … x … 562P1x 6 472 P1x 7 532P145 … x … 552 n = 64,m = 50, s = 16,

P196 … x … 1082 P1x … 1102P1x Ú 1002
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intelligence scores in each of the two populations is believed to be approximately nor-
mally distributed with a standard deviation of 20.

Suppose, further, that we take a sample of 15 individuals from each population and
compute for each sample the mean intelligence score with the following results: 
and If there is no difference between the two populations, with respect to their
true mean intelligence scores, what is the probability of observing a difference this large
or larger between sample means?

Solution: To answer this question we need to know the nature of the sampling distri-
bution of the relevant statistic, the difference between two sample means,

Notice that we seek a probability associated with the difference
between two sample means rather than a single mean. ■

Sampling Distribution of Construction Although, in prac-
tice, we would not attempt to construct the desired sampling distribution, we can concep-
tualize the manner in which it could be done when sampling is from finite populations.
We would begin by selecting from population 1 all possible samples of size 15 and com-
puting the mean for each sample. We know that there would be such samples where

is the population size and Similarly, we would select all possible samples of
size 15 from population 2 and compute the mean for each of these samples. We would
then take all possible pairs of sample means, one from population 1 and one from popu-
lation 2, and take the difference. Table 5.4.1 shows the results of following this procedure.
Note that the 1’s and 2’s in the last line of this table are not exponents, but indicators of
population 1 and 2, respectively.

Sampling Distribution of Characteristics It is the distri-
bution of the differences between sample means that we seek. If we plotted the sample
differences against their frequency of occurrence, we would obtain a normal distribution
with a mean equal to the difference between the two population means, and a
variance equal to That is, the standard error of the difference between1s2

1>n12 + 1s2
2>n22.m1 - m2,

x1 - x2:

n1 = 15.N1

N1
Cn1

x1 - x2:

x 1 - x 2.

1x1 - x 22x2 = 105.
x1 = 92
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TABLE 5.4.1 Working Table for Constructing the Distribution of the Difference
Between Two Sample Means

Samples Samples Sample Sample All Possible

from from Means Means Differences

Population 1 Population 2 Population 1 Population 2 Between Means

xN1
cn1

1 - xN2
cn2

2xN2
cn2

2xN1
cn1

1nN2
cn2

2nN1
cn1

1

#####
#####
#####
x11 - x32x32x31n 32n 31

x11 - x22x22x21n22n 21

x11 - x12x12x11n12n11



sample means would be equal to It should be noted that these
properties convey two important points. First, the means of two distributions can be
subtracted from one another, or summed together, using standard arithmetic operations.
Second, since the overall variance of the sampling distribution will be affected by both
contributing distributions, the variances will always be summed even if we are interested
in the difference of the means. This last fact assumes that the two distributions are inde-
pendent of one another.

For our present example we would have a normal distribution with a mean of 0
(if there is no difference between the two population means) and a variance of

The graph of the sampling distribution is shown
in Figure 5.4.1.

Converting to z We know that the normal distribution described in Example
5.4.1 can be transformed to the standard normal distribution by means of a modification
of a previously learned formula. The new formula is as follows:

(5.4.1)

The area under the curve of corresponding to the probability we seek is
the area to the left of The z value corresponding to 
assuming that there is no difference between population means, is

By consulting Table D, we find that the area under the standard normal curve to the left
of is equal to .0375. In answer to our original question, we say that if there is no-1.78

z =
-13 - 0

D12022
15

+
12022

15

=
-13253.3

=
-13

7.3
= -1.78

-13,x1 - x 2 = 92 - 105 = -13.
x1 - x 2

z =
1x 1 - x 22 - 1m1 - m22

As2
1

n1
+
s2

2

n2

312022>154 + 312022>154 = 53.3333.

21s2
1>n12 + 1s2

2>n22.
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FIGURE 5.4.1 Graph of the sampling distribution of when
there is no difference between population means, Example 5.4.1.
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difference between population means, the probability of obtaining a difference between
sample means as large as or larger than 13 is .0375.

Sampling from Normal Populations The procedure we have just
followed is valid even when the sample sizes, and are different and when the
population variances, and have different values. The theoretical results on which
this procedure is based may be summarized as follows.

Given two normally distributed populations with means and and variances
and , respectively, the sampling distribution of the difference, 

between the means of independent samples of size and drawn from these
populations is normally distributed with mean and variance

Sampling from Nonnormal Populations Many times a researcher is
faced with one or the other of the following problems: the necessity of (1) sampling from
nonnormally distributed populations, or (2) sampling from populations whose functional
forms are not known. A solution to these problems is to take large samples, since when
the sample sizes are large the central limit theorem applies and the distribution of the
difference between two sample means is at least approximately normally distributed with
a mean equal to and a variance of To find probabilities
associated with specific values of the statistic, then, our procedure would be the same as
that given when sampling is from normally distributed populations.

EXAMPLE 5.4.2

Suppose it has been established that for a certain type of client the average length of a
home visit by a public health nurse is 45 minutes with a standard deviation of 15 min-
utes, and that for a second type of client the average home visit is 30 minutes long with
a standard deviation of 20 minutes. If a nurse randomly visits 35 clients from the first
and 40 from the second population, what is the probability that the average length of
home visit will differ between the two groups by 20 or more minutes?

Solution: No mention is made of the functional form of the two populations, so let
us assume that this characteristic is unknown, or that the populations are
not normally distributed. Since the sample sizes are large (greater than 30)
in both cases, we draw on the results of the central limit theorem to answer
the question posed. We know that the difference between sample means is
at least approximately normally distributed with the following mean and
variance:

s 2
x1-x2

=
s2

1

n1
+
s2

2

n2
=
11522

35
+
12022

40
= 16.4286

mx1-x2
= m1 - m2 = 45 - 30 = 15

1s2
1>n12 + 1s2

2>n 22.m1 - m2

21s2
1>n12 + 1s2

2>n 22. m1 - m2

n 2n1

x 1 - x 2,s2
2s2

1

m2m1

s2
2s2

1

n2,n1
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The area under the curve of that we seek is that area to the right
of 20. The corresponding value of z in the standard normal is

In Table D we find that the area to the right of is
We say, then, that the probability of the nurse’s ran-

dom visits resulting in a difference between the two means as great as or
greater than 20 minutes is .1093. The curve of and the correspon-
ding standard normal curve are shown in Figure 5.4.2. ■

EXERCISES

5.4.1 The study cited in Exercises 5.3.1 and 5.3.2 gives the following data on serum cholesterol levels
in U.S. females:

Population Age Mean Standard Deviation

A 20–29 183 37.2
B 30–39 189 34.7

x1 - x 2

1 - .8907 = .1093.
z = 1.23

z =
1x 1 - x 22 - 1m1 - m22

As2
1

n1
+
s2

2

n2

=
20 - 15216.4286

=
5

4.0532
= 1.23

x 1 - x 2
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FIGURE 5.4.2 Sampling distribution of and the
corresponding standard normal distribution, home visit example.
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Use these estimates as the mean and standard deviation for the respective U.S. populations.
Suppose we select a simple random sample of size 50 independently from each population. What
is the probability that the difference between sample means will be more than 8?

5.4.2 In the study cited in Exercises 5.3.4 and 5.3.5, the calcium levels in men and women ages 60 years
or older are summarized in the following table:

Mean Standard Deviation

Men 797 482
Women 660 414

Use these estimates as the mean and standard deviation for the U.S. populations for these age
groups. If we take a random sample of 40 men and 35 women, what is the probability of obtain-
ing a difference between sample means of 100 mg or more?

5.4.3 Given two normally distributed populations with equal means and variances of and
what is the probability that samples of size and will yield a value of

greater than or equal to 8?

5.4.4 Given two normally distributed populations with equal means and variances of and
what is the probability that samples of size and will yield a value of

as large as or larger than 12?

5.4.5 For a population of 17-year-old boys and 17-year-old girls, the means and standard deviations,
respectively, of their subscapular skinfold thickness values are as follows: boys, 9.7 and 6.0; girls,
15.6 and 9.5. Simple random samples of 40 boys and 35 girls are selected from the populations.
What is the probability that the difference between sample means will be greater
than 10?

5.5 DISTRIBUTION OF THE 
SAMPLE PROPORTION

In the previous sections we have dealt with the sampling distributions of statistics com-
puted from measured variables. We are frequently interested, however, in the sampling
distribution of a statistic, such as a sample proportion, that results from counts or fre-
quency data.

EXAMPLE 5.5.1

Results (A-3) from the 1999–2000 National Health and Nutrition Examination Survey
(NHANES), show that 31 percent of U.S. adults ages 20–74 are obese (obese as defined
with body mass index greater than or equal to 30.0). We designate this population pro-
portion as If we randomly select 150 individuals from this population, what is
the probability that the proportion in the sample who are obese will be as great as .40?

Solution: To answer this question, we need to know the properties of the sampling dis-
tribution of the sample proportion. We will designate the sample proportion
by the symbol pN .

p = .31.

x girls - x boys

x1 - x 2

n 2 = 35n1 = 40s2
2 = 350,

s2
1 = 240

x1 - x 2

n 2 = 16n1 = 25s2
2 = 80,

s2
1 = 100

sm

xB - xA

sm
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You will recognize the similarity between this example and those
presented in Section 4.3, which dealt with the binomial distribution. The
variable obesity is a dichotomous variable, since an individual can be clas-
sified into one or the other of two mutually exclusive categories obese or
not obese. In Section 4.3, we were given similar information and were asked
to find the number with the characteristic of interest, whereas here we are
seeking the proportion in the sample possessing the characteristic of inter-
est. We could with a sufficiently large table of binomial probabilities, such
as Table B, determine the probability associated with the number correspon-
ding to the proportion of interest. As we will see, this will not be neces-
sary, since there is available an alternative procedure, when sample sizes
are large, that is generally more convenient. ■

Sampling Distribution of : Construction The sampling distribution
of a sample proportion would be constructed experimentally in exactly the same man-
ner as was suggested in the case of the arithmetic mean and the difference between two
means. From the population, which we assume to be finite, we would take all possible
samples of a given size and for each sample compute the sample proportion, . We would
then prepare a frequency distribution of by listing the different distinct values of 
along with their frequencies of occurrence. This frequency distribution (as well as the
corresponding relative frequency distribution) would constitute the sampling distribution
of .

Sampling Distribution of : Characteristics When the sample size
is large, the distribution of sample proportions is approximately normally distributed by
virtue of the central limit theorem. The mean of the distribution, that is, the aver-
age of all the possible sample proportions, will be equal to the true population propor-
tion, p, and the variance of the distribution, will be equal to or 
where To answer probability questions about p, then, we use the following
formula:

(5.5.1)

The question that now arises is, How large does the sample size have to be for the
use of the normal approximation to be valid? A widely used criterion is that both np and

must be greater than 5, and we will abide by that rule in this text.
We are now in a position to answer the question regarding obesity in the sample of

150 individuals from a population in which 31 percent are obese. Since both np and
are greater than and we can say

that, in this case, is approximately normally distributed with a mean and
The probability we seek is the areas2

pN = p11 - p2>n = 1.3121.692>150 = .001426.
mpN , = p = .31pN

150 * .69 = 103.52,51150 * .31 = 46.5n11 - p2
n11 - p2

z =
pN - p

Ap11 - p2
n

q = 1 - p.
pq>n,p11 - p2>ns2

pN ,

mpN ,

pn

pN

pNpN
pN

pn
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under the curve of that is to the right of .40. This area is equal to the area under the
standard normal curve to the right of

The transformation to the standard normal distribution has been accomplished in the
usual manner: z is found by dividing the difference between a value of a statistic and its
mean by the standard error of the statistic. Using Table D we find that the area to the
right of is We may say, then, that the probability of observ-
ing in a random sample of size from a population in which 
is .0087. If we should, in fact, draw such a sample, most people would consider it a rare
event.

Correction for Continuity The normal approximation may be improved by
the correction for continuity, a device that makes an adjustment for the fact that a
discrete distribution is being approximated by a continuous distribution. Suppose we
let the number in the sample with the characteristic of interest when the pro-
portion is To apply the correction for continuity, we compute

for (5.5.2)

or

for (5.5.3)

where The correction for continuity will not make a great deal of difference
when n is large. In the above example and

and a result not greatly different from that obtained
without the correction for continuity. This adjustment is not often done by hand, since
most statistical computer programs automatically apply the appropriate continuity cor-
rection when necessary.

P1pN Ú .402 = 1 - .9893 = .0107,

zc =

60 - .5

150
- .31

21.3121.692>150
= 2.30

npN = 1501.42 = 60,
q = 1 - p.

x 7 npzc =

x - .5
n

- p

2pq>n ,

x 6 npzc =

x + .5
n

- p

2pq>n ,

pN.
x = npN ,

p = .31n = 150pN Ú .40
1 - .9913 = .0087.z = 2.38

z =
pN - p

Ap11 - p2
n

=
.40 - .312.001426

= 2.38

pN
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EXAMPLE 5.5.2

Blanche Mikhail (A-4) studied the use of prenatal care among low-income African-
American women. She found that only 51 percent of these women had adequate prena-
tal care. Let us assume that for a population of similar low-income African-American
women, 51 percent had adequate prenatal care. If 200 women from this population are
drawn at random, what is the probability that less than 45 percent will have received
adequate prenatal care?

Solution: We can assume that the sampling distribution of is approximately normally
distributed with and We compute

The area to the left of under the standard normal curve is .0446.
Therefore, ■

EXERCISES

5.5.1 Smith et al. (A-5) performed a retrospective analysis of data on 782 eligible patients admitted with
myocardial infarction to a 46-bed cardiac service facility. Of these patients, 248 (32 percent)
reported a past myocardial infarction. Use .32 as the population proportion. Suppose 50 subjects
are chosen at random from the population. What is the probability that over 40 percent would
report previous myocardial infarctions?

5.5.2 In the study cited in Exercise 5.5.1, 13 percent of the patients in the study reported previous
episodes of stroke or transient ischemic attack. Use 13 percent as the estimate of the prevalence
of stroke or transient ischemic attack within the population. If 70 subjects are chosen at random
from the population, what is the probability that 10 percent or less would report an incidence of
stroke or transient ischemic attack?

5.5.3 In the same 1999–2000 NHANES (A-3) report cited in Example 5.5.1, researchers estimated that
64 percent of U.S. adults ages 20–74 were overweight or obese (overweight: BMI 25-29, obese:
BMI 30 or greater). Use this estimate as the population proportion for U.S. adults ages 20–74. If
125 subjects are selected at random from the population, what is the probability that 70 percent
or more would be found to be overweight or obese?

5.5.4 Gallagher et al. (A-6) reported on a study to identify factors that influence women’s attendance at
cardiac rehabilitation programs. They found that by 12 weeks post-discharge, only 64 percent of
eligible women attended such programs. Using 64 percent as an estimate of the attendance per-
centage of all eligible women, find the probability that in a sample of 45 women selected at ran-
dom from the population of eligible women less than 50 percent would attend programs.

5.5.5 Given a population in which and a random sample from this population of size 100, find:

(a) (b)
(c) P1.56 … pN … .632 P1pN … .582P1pN Ú .652 p = .6

P1pN … .452 = P1z … -1.702 = .0446.
-1.70

z =
.45 - .512.00125

=
- .06

.0353
= -1.70

s 2
Np = 1.5121.492>200 = .00125.m

Np = .51
pN

154 CHAPTER 5 SOME IMPORTANT SAMPLING DISTRIBUTIONS



5.5.6 It is known that 35 percent of the members of a certain population suffer from one or more chronic
diseases. What is the probability that in a sample of 200 subjects drawn at random from this pop-
ulation 80 or more will have at least one chronic disease?

5.6 DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO SAMPLE PROPORTIONS

Often there are two population proportions in which we are interested and we desire to
assess the probability associated with a difference in proportions computed from sam-
ples drawn from each of these populations. The relevant sampling distribution is the
distribution of the difference between the two sample proportions.

Sampling Distribution of Characteristics The character-
istics of this sampling distribution may be summarized as follows:

If independent random samples of size and are drawn from two populations
of dichotomous variables where the proportions of observations with the characteristic
of interest in the two populations are and respectively, the distribution of the
difference between sample proportions, is approximately normal with mean

and variance

when and are large.

We consider and sufficiently large when and
are all greater than 5.

Sampling Distribution of Construction To physically con-
struct the sampling distribution of the difference between two sample proportions, we
would proceed in the manner described in Section 5.4 for constructing the sampling dis-
tribution of the difference between two means.

Given two sufficiently small populations, one would draw, from population 1, all
possible simple random samples of size and compute, from each set of sample data,
the sample proportion . From population 2, one would draw independently all possi-
ble simple random samples of size and compute, for each set of sample data, the
sample proportion One would compute the differences between all possible pairs of
sample proportions, where one number of each pair was a value of and the other a
value of The sampling distribution of the difference between sample proportions,
then, would consist of all such distinct differences, accompanied by their frequencies (or
relative frequencies) of occurrence. For large finite or infinite populations, one could
approximate the sampling distribution of the difference between sample proportions by
drawing a large number of independent simple random samples and proceeding in the
manner just described.

pN2.
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pN2.
n2

pN1

n1

pN 1 � pN 2:

n 211 - p22 n1p1, n 2 p2, n111 - p12,n2n1
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To answer probability questions about the difference between two sample propor-
tions, then, we use the following formula:

(5.6.1)

EXAMPLE 5.6.1

The 1999 National Health Interview Survey, released in 2003 (A-7), reported that 28 per-
cent of the subjects self-identifying as white said they had experienced lower back pain
during the three months prior to the survey. Among subjects of Hispanic origin, 21 per-
cent reported lower back pain. Let us assume that .28 and .21 are the proportions for the
respective races reporting lower back pain in the United States. What is the probability
that independent random samples of size 100 drawn from each of the populations will
yield a value of as large as .10?

Solution: We assume that the sampling distribution of is approximately nor-
mal with mean

and variance

The area corresponding to the probability we seek is the area under the curve
of to the right of .10. Transforming to the standard normal distribu-
tion gives

Consulting Table D, we find that the area under the standard normal curve that
lies to the right of is The probability of observ-
ing a difference as large as .10 is, then, .3121. ■

EXAMPLE 5.6.2

In the 1999 National Health Interview Survey (A-7), researchers found that among U.S.
adults ages 75 or older, 34 percent had lost all their natural teeth and for U.S. adults
ages 65–74, 26 percent had lost all their natural teeth. Assume that these proportions are
the parameters for the United States in those age groups. If a random sample of 250
adults ages 65–74 and an independent random sample of 200 adults ages 45–64 years

1 - .6879 = .3121.z = .49

z =
1pN1 - pN22 - 1p1 - p22
Ap111 - p12

n1
+

p211 - p22
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old are drawn from these populations, find the probability that the difference in percent
of total natural teeth loss is less than 5 percent between the two populations.

Solution: We assume that the sampling distribution is approximately normal.
The mean difference in proportions of those losing all their teeth is

and the variance is

The area of interest under the curve of is that to the left of .05. The
corresponding z value is 

Consulting Table D, we find that the area to the left of is
.2420. ■

EXERCISES

5.6.1 According to the 2000 U.S. Census Bureau (A-8), in 2000, 9.5 percent of children in the state of
Ohio were not covered by private or government health insurance. In the neighboring state of
Pennsylvania, 4.9 percent of children were not covered by health insurance. Assume that these
proportions are parameters for the child populations of the respective states. If a random sample
of size 100 children is drawn from the Ohio population, and an independent random sample of
size 120 is drawn from the Pennsylvania population, what is the probability that the samples would
yield a difference, of .09 or more?

5.6.2 In the report cited in Exercise 5.6.1 (A-8), the Census Bureau stated that for Americans in the age
group 18–24 years, 64.8 percent had private health insurance. In the age group 25–34 years, the per-
centage was 72.1. Assume that these percentages are the population parameters in those age groups
for the United States. Suppose we select a random sample of 250 Americans from the 18–24 age
group and an independent random sample of 200 Americans from the age group 25–34; find the prob-
ability that is less than 6 percent.

5.6.3 From the results of a survey conducted by the U.S. Bureau of Labor Statistics (A-9), it was esti-
mated that 21 percent of workers employed in the Northeast participated in health care benefits
programs that included vision care. The percentage in the South was 13 percent. Assume these
percentages are population parameters for the respective U.S. regions. Suppose we select a sim-
ple random sample of size 120 northeastern workers and an independent simple random sample
of 130 southern workers. What is the probability that the difference between sample proportions,

will be between .04 and .20?pN1 - pN 2,

pN 2 - pN 1

pN1 - pN2

z = - .70

z =
.05 - 1.0822.00186

= - .70
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Np1- Np2 =
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+
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n 2
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m
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= .34 - .26 = .08
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5.7 SUMMARY

This chapter is concerned with sampling distributions. The concept of a sampling distri-
bution is introduced, and the following important sampling distributions are covered:

1. The distribution of a single sample mean.

2. The distribution of the difference between two sample means.

3. The distribution of a sample proportion.

4. The distribution of the difference between two sample proportions.

We emphasize the importance of this material and urge readers to make sure that
they understand it before proceeding to the next chapter.

SUMMARY OF FORMULAS FOR CHAPTER 5

Formula Number Name Formula

5.3.1 z-transformation
for sample mean Z =

X - mx

s>1n

5.4.1 z-transformation for 
difference between 
two means

5.5.1 z-transformation for
sample proportion

5.5.2 Continuity correction 
when x � np

5.5.3 Continuity correction
when x � np

5.6.1 z-transformation for
difference between 
two proportions

Symbol Key • � mean of population i
• mean of sampling distribution if 
• sample size for sample i from population i
• proportion for population i
• proportion for sample i from population i
• variance for population i
• mean of sample i from population i
• standard normal random variablez =

Xi =
s2

i =
Npi =

pi =
ni =

xmx =
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REVIEW QUESTIONS AND EXERCISES

1. What is a sampling distribution?

2. Explain how a sampling distribution may be constructed from a finite population.

3. Describe the sampling distribution of the sample mean when sampling is with replacement from
a normally distributed population.

4. Explain the central limit theorem.

5. How does the sampling distribution of the sample mean, when sampling is without replacement,
differ from the sampling distribution obtained when sampling is with replacement?

6. Describe the sampling distribution of the difference between two sample means.

7. Describe the sampling distribution of the sample proportion when large samples are drawn.

8. Describe the sampling distribution of the difference between two sample means when large sam-
ples are drawn.

9. Explain the procedure you would follow in constructing the sampling distribution of the difference
between sample proportions based on large samples from finite populations.

10. Suppose it is known that the response time of healthy subjects to a particular stimulus is a nor-
mally distributed random variable with a mean of 15 seconds and a variance of 16. What is the
probability that a random sample of 16 subjects will have a mean response time of 12 seconds
or more?

11. Janssen et al. (A-10) studied Americans ages 60 and over. They estimated the mean body mass index
of women over age 60 with normal skeletal muscle to be 23.1 with a standard deviation of 3.7. Using
these values as the population mean and standard deviation for women over age 60 with normal skele-
tal muscle index, find the probability that 45 randomly selected women in this age range with normal
skeletal muscle index will have a mean BMI greater than 25.

12. In the study cited in Review Exercise 11, the researchers reported the mean BMI for men ages
60 and older with normal skeletal muscle index to be 24.7 with a standard deviation of 3.3.
Using these values as the population mean and standard deviation, find the probability that 50
randomly selected men in this age range with normal skeletal muscle index will have a mean
BMI less than 24.

13. Using the information in Review Exercises 11 and 12, find the probability that the difference in
mean BMI for 45 women and 50 men selected independently and at random from the respective
populations will exceed 3.

14. In the results published by Wright et al. (A-2) based on data from the 1999–2000 NHANES study
referred to in Exercises 5.4.1 and 5.4.2, investigators reported on their examination of iron levels. The
mean iron level for women ages 20–39 years was 13.7 mg with an estimated standard deviation of
8.9 mg. Using these as population values for women ages 20–39, find the probability that a random
sample of 100 women will have a mean iron level less than 12 mg.

15. Refer to Review Exercise 14. The mean iron level for men between the ages of 20 and 39 years
is 17.9 mg with an estimated standard deviation of 10.9 mg. Using 17.9 and 10.9 as population
parameters, find the probability that a random sample of 120 men will have a mean iron level
higher than 19 mg.
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16. Using the information in Review Exercises 14 and 15, and assuming independent random samples
of size 100 and 120 for women and men, respectively, find the probability that the difference in
sample mean iron levels is greater than 5 mg.

17. The results of the 1999 National Health Interview Survey released in 2003 (A-7) showed that
among U.S. adults ages 60 and older, 19 percent had been told by a doctor or other health care
provider that they had some form of cancer. If we use this as the percentage for all adults 65 years
old and older living in the United States, what is the probability that among 65 adults chosen at
random more than 25 percent will have been told by their doctor or some other health care provider
that they have cancer?

18. Refer to Review Exercise 17. The reported cancer rate for women subjects ages 65 and older is 17
percent. Using this estimate as the true percentage of all females ages 65 and over who have been
told by a health care provider that they have cancer, find the probability that if 220 women are selected
at random from the population, more than 20 percent will have been told they have cancer.

19. Refer to Review Exercise 17. The cancer rate for men ages 65 and older is 23 percent. Use this
estimate as the percentage of all men ages 65 and older who have been told by a health care
provider that they have cancer. Find the probability that among 250 men selected at random that
fewer than 20 percent will have been told they have cancer.

20. Use the information in Review Exercises 18 and 19 to find the probability that the difference in
the cancer percentages between men and women will be less than 5 percent when 220 women and
250 men aged 65 and older are selected at random.

21. How many simple random samples (without replacement) of size 5 can be selected from a popu-
lation of size 10?

22. It is estimated by the 1999–2000 NHANES (A-7) that among adults 18 years old or older 53 percent
have never smoked. Assume the proportion of U.S. adults who have never smoked to be .53.
Consider the sampling distribution of the sample proportion based on simple random samples of
size 110 drawn from this population. What is the functional form of the sampling distribution?

23. Refer to Exercise 22. Compute the mean and variance of the sampling distribution.

24. Refer to Exercise 22. What is the probability that a single simple random sample of size 110 drawn
from this population will yield a sample proportion smaller than .50?

25. In a population of subjects who died from lung cancer following exposure to asbestos, it was found
that the mean number of years elapsing between exposure and death was 25. The standard devia-
tion was 7 years. Consider the sampling distribution of sample means based on samples of size
35 drawn from this population. What will be the shape of the sampling distribution?

26. Refer to Exercise 25. What will be the mean and variance of the sampling distribution?

27. Refer to Exercise 25. What is the probability that a single simple random sample of size 35 drawn
from this population will yield a mean between 22 and 29?

28. For each of the following populations of measurements, state whether the sampling distribution of
the sample mean is normally distributed, approximately normally distributed, or not approximately
normally distributed when computed from samples of size (A) 10, (B) 50, and (C) 200.

(a) The logarithm of metabolic ratios. The population is normally distributed.

(b) Resting vagal tone in healthy adults. The population is normally distributed.

(c) Insulin action in obese subjects. The population is not normally distributed.
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29. For each of the following sampling situations indicate whether the sampling distribution of the
sample proportion can be approximated by a normal distribution and explain why or why not.

(a) (b)

(c) (d)

(e) (f)
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CHAPTER OVERVIEW

This chapter covers estimation, one of the two types of statistical inference.
As discussed in earlier chapters, statistics, such as means and variances, can
be calculated from samples drawn from populations. These statistics serve as
estimates of the corresponding population parameters. We expect these esti-
mates to differ by some amount from the parameters they estimate. This
chapter introduces estimation procedures that take these differences into ac-
count, thereby providing a foundation for statistical inference procedures
discussed in the remaining chapters of the book.
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LEARNING OUTCOMES

After studying this chapter, the student will
1. understand the importance and basic principles of estimation.
2. be able to calculate interval estimates for a variety of parameters.
3. be able to interpret a confidence interval from both a practical and a probabilistic 

viewpoint.
4. understand the basic properties and uses of the t distribution, chi-square distri-

bution, and F distribution.

6.1 INTRODUCTION

We come now to a consideration of estimation, the first of the two general areas of statisti-
cal inference. The second general area, hypothesis testing, is examined in the next chapter.

We learned in Chapter 1 that inferential statistics is defined as follows.

DEFINITION
Statistical inference is the procedure by which we reach a conclusion
about a population on the basis of the information contained in a 
sample drawn from that population.

The process of estimation entails calculating, from the data of a sample, some sta-
tistic that is offered as an approximation of the corresponding parameter of the popula-
tion from which the sample was drawn.

The rationale behind estimation in the health sciences field rests on the assump-
tion that workers in this field have an interest in the parameters, such as means and pro-
portions, of various populations. If this is the case, there is a good reason why one must
rely on estimating procedures to obtain information regarding these parameters. Many
populations of interest, although finite, are so large that a 100 percent examination would
be prohibitive from the standpoint of cost.

Suppose the administrator of a large hospital is interested in the mean age of patients
admitted to his hospital during a given year. He may consider it too expensive to go
through the records of all patients admitted during that particular year and, consequently,
elect to examine a sample of the records from which he can compute an estimate of the
mean age of patients admitted that year.

A physician in general practice may be interested in knowing what proportion of
a certain type of individual, treated with a particular drug, suffers undesirable side effects.
No doubt, her concept of the population consists of all those persons who ever have been
or ever will be treated with this drug. Deferring a conclusion until the entire population
has been observed could have an adverse effect on her practice.

These two examples have implied an interest in estimating, respectively, a popula-
tion mean and a population proportion. Other parameters, the estimation of which we
will cover in this chapter, are the difference between two means, the difference between
two proportions, the population variance, and the ratio of two variances.
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We will find that for each of the parameters we discuss, we can compute two types
of estimate: a point estimate and an interval estimate.

DEFINITION
A point estimate is a single numerical value used to estimate the 
corresponding population parameter.

DEFINITION
An interval estimate consists of two numerical values defining a range
of values that, with a specified degree of confidence, most likely
includes the parameter being estimated.

These concepts will be elaborated on in the succeeding sections.

Choosing an Appropriate Estimator Note that a single computed value
has been referred to as an estimate. The rule that tells us how to compute this value, or
estimate, is referred to as an estimator. Estimators are usually presented as formulas. For
example,

is an estimator of the population mean, The single numerical value that results from
evaluating this formula is called an estimate of the parameter 

In many cases, a parameter may be estimated by more than one estimator. For
example, we could use the sample median to estimate the population mean. How then
do we decide which estimator to use for estimating a given parameter? The decision is
based on an objective measure or set of criteria that reflect some desired property of a par-
ticular estimator. When measured against these criteria, some estimators are better than oth-
ers. One of these criteria is the property of unbiasedness.

DEFINITION
An estimator, say, T, of the parameter is said to be an unbiased
estimator of if 

is read, “the expected value of T.” For a finite population, is obtained
by taking the average value of T computed from all possible samples of a given size that
may be drawn from the population. That is, For an infinite population, 
is defined in terms of calculus.

In the previous chapter we have seen that the sample mean, the sample proportion,
the difference between two sample means, and the difference between two sample
proportions are each unbiased estimates of their corresponding parameters. This prop-
erty was implied when the parameters were said to be the means of the respective sam-
pling distributions. For example, since the mean of the sampling distribution of is equalx

E1T2E1T2 = mT.

E1T2E1T2
E(T ) � U.U
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to we know that is an unbiased estimator of The other criteria of good estima-
tors will not be discussed in this book. The interested reader will find them covered in
detail in most mathematical statistics texts.

Sampled Populations and Target Populations The health researcher
who uses statistical inference procedures must be aware of the difference between two
kinds of population—the sampled population and the target population.

DEFINITION
The sampled population is the population from which one actually
draws a sample.

DEFINITION
The target population is the population about which one wishes to
make an inference.

These two populations may or may not be the same. Statistical inference procedures
allow one to make inferences about sampled populations (provided proper sampling meth-
ods have been employed). Only when the target population and the sampled population
are the same is it possible for one to use statistical inference procedures to reach conclu-
sions about the target population. If the sampled population and the target population are
different, the researcher can reach conclusions about the target population only on the
basis of nonstatistical considerations.

Suppose, for example, that a researcher wishes to assess the effectiveness of some
method for treating rheumatoid arthritis. The target population consists of all patients
suffering from the disease. It is not practical to draw a sample from this population. The
researcher may, however, select a sample from all rheumatoid arthritis patients seen in
some specific clinic. These patients constitute the sampled population, and, if proper sam-
pling methods are used, inferences about this sampled population may be drawn on the
basis of the information in the sample. If the researcher wishes to make inferences about
all rheumatoid arthritis sufferers, he or she must rely on nonstatistical means to do so.
Perhaps the researcher knows that the sampled population is similar, with respect to all
important characteristics, to the target population. That is, the researcher may know that
the age, sex, severity of illness, duration of illness, and so on are similar in both popu-
lations. And on the strength of this knowledge, the researcher may be willing to extrap-
olate his or her findings to the target population.

In many situations the sampled population and the target population are identical;
when this is the case, inferences about the target population are straightforward. The
researcher, however, should be aware that this is not always the case and not fall into
the trap of drawing unwarranted inferences about a population that is different from the
one that is sampled.

Random and Nonrandom Samples In the examples and exercises of this
book, we assume that the data available for analysis have come from random samples.
The strict validity of the statistical procedures discussed depends on this assumption. In

m.xm,
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many instances in real-world applications it is impossible or impractical to use truly ran-
dom samples. In animal experiments, for example, researchers usually use whatever ani-
mals are available from suppliers or their own breeding stock. If the researchers had to
depend on randomly selected material, very little research of this type would be conducted.
Again, nonstatistical considerations must play a part in the generalization process.
Researchers may contend that the samples actually used are equivalent to simple random
samples, since there is no reason to believe that the material actually used is not represen-
tative of the population about which inferences are desired.

In many health research projects, samples of convenience, rather than random sam-
ples, are employed. Researchers may have to rely on volunteer subjects or on readily avail-
able subjects such as students in their classes. Samples obtained from such sources are exam-
ples of convenience samples. Again, generalizations must be made on the basis of
nonstatistical considerations. The consequences of such generalizations, however, may be
useful or they may range from misleading to disastrous.

In some situations it is possible to introduce randomization into an experiment even
though available subjects are not randomly selected from some well-defined population. In
comparing two treatments, for example, each subject may be randomly assigned to one or
the other of the treatments. Inferences in such cases apply to the treatments and not the sub-
jects, and hence the inferences are valid.

6.2 CONFIDENCE INTERVAL 
FOR A POPULATION MEAN

Suppose researchers wish to estimate the mean of some normally distributed population.
They draw a random sample of size n from the population and compute which they use
as a point estimate of Although this estimator of possesses all the qualities of a
good estimator, we know that because random sampling inherently involves chance, 
cannot be expected to be equal to 

It would be much more meaningful, therefore, to estimate by an interval that
somehow communicates information regarding the probable magnitude of 

Sampling Distributions and Estimation To obtain an interval estimate,
we must draw on our knowledge of sampling distributions. In the present case, because we
are concerned with the sample mean as an estimator of a population mean, we must recall
what we know about the sampling distribution of the sample mean.

In the previous chapter we learned that if sampling is from a normally distributed
population, the sampling distribution of the sample mean will be normally distributed with
a mean equal to the population mean and a variance equal to We could
plot the sampling distribution if we only knew where to locate it on the -axis. From our
knowledge of normal distributions, in general, we know even more about the distribution
of in this case. We know, for example, that regardless of where the distribution of is
located, approximately 95 percent of the possible values of constituting the distribution
are within two standard deviations of the mean. The two points that are two standard devi-
ations from the mean are and so that the interval will con-
tain approximately 95 percent of the possible values of We know that and, hence 
are unknown, but we may arbitrarily place the sampling distribution of on the -axis.xx
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Since we do not know the value of not a great deal is accomplished by the expres-
sion We do, however, have a point estimate of which is Would it be use-
ful to construct an interval about this point estimate of The answer is yes. Suppose
we constructed intervals about every possible value of computed from all possible sam-
ples of size n from the population of interest. We would have a large number of intervals
of the form with widths all equal to the width of the interval about the unknown

Approximately 95 percent of these intervals would have centers falling within the 
interval about Each of the intervals whose centers fall within of would contain

These concepts are illustrated in Figure 6.2.1, in which we see that , and all
fall within the interval about and, consequently, the intervals about these sample
means include the value of The sample means and do not fall within the 
interval about and the intervals about them do not include 

EXAMPLE 6.2.1

Suppose a researcher, interested in obtaining an estimate of the average level of some
enzyme in a certain human population, takes a sample of 10 individuals, determines the
level of the enzyme in each, and computes a sample mean of Suppose further
it is known that the variable of interest is approximately normally distributed with a vari-
ance of 45. We wish to estimate 

Solution: An approximate 95 percent confidence interval for is given by

■17.76, 26.24
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Interval Estimate Components Let us examine the composition of the
interval estimate constructed in Example 6.2.1. It contains in its center the point esti-
mate of The 2 we recognize as a value from the standard normal distribution that tells
us within how many standard errors lie approximately 95 percent of the possible values
of This value of z is referred to as the reliability coefficient. The last component, 
is the standard error, or standard deviation of the sampling distribution of In general,
then, an interval estimate may be expressed as follows:

reliability coefficient (6.2.1)

In particular, when sampling is from a normal distribution with known variance,
an interval estimate for may be expressed as

(6.2.2)

where is the value of z to the left of which lies and to the right of
which lies of the area under its curve.

Interpreting Confidence Intervals How do we interpret the interval given
by Expression 6.2.2? In the present example, where the reliability coefficient is equal to
2, we say that in repeated sampling approximately 95 percent of the intervals constructed
by Expression 6.2.2 will include the population mean. This interpretation is based on the
probability of occurrence of different values of We may generalize this interpretation
if we designate the total area under the curve of that is outside the interval 
as and the area within the interval as and give the following probabilistic inter-
pretation of Expression 6.2.2.

Probabilistic Interpretation

In repeated sampling, from a normally distributed population with a known standard
deviation, percent of all intervals of the form will in 
the long run include the population mean 

The quantity in this case .95, is called the confidence coefficient (or confi-
dence level), and the interval is called a confidence interval for When

the interval is called the 95 percent confidence interval for In the present
example we say that we are 95 percent confident that the population mean is between 17.76
and 26.24. This is called the practical interpretation of Expression 6.2.2. In general, it may
be expressed as follows.

Practical Interpretation

When sampling is from a normally distributed population with known standard
deviation, we are percent confident that the single computed interval,

, contains the population mean 

In the example given here we might prefer, rather than 2, the more exact value of
z, 1.96, corresponding to a confidence coefficient of .95. Researchers may use any con-
fidence coefficient they wish; the most frequently used values are .90, .95, and .99, which
have associated reliability factors, respectively, of 1.645, 1.96, and 2.58.
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Precision The quantity obtained by multiplying the reliability factor by the stan-
dard error of the mean is called the precision of the estimate. This quantity is also called
the margin of error.

EXAMPLE 6.2.2

A physical therapist wished to estimate, with 99 percent confidence, the mean maximal
strength of a particular muscle in a certain group of individuals. He is willing to assume
that strength scores are approximately normally distributed with a variance of 144. A
sample of 15 subjects who participated in the experiment yielded a mean of 84.3.

Solution: The z value corresponding to a confidence coefficient of .99 is found in Appen-
dix Table D to be 2.58. This is our reliability coefficient. The standard error is

Our 99 percent confidence interval for then, is

We say we are 99 percent confident that the population mean is between
76.3 and 92.3 since, in repeated sampling, 99 percent of all intervals that
could be constructed in the manner just described would include the popu-
lation mean. ■

Situations in which the variable of interest is approximately normally distributed with a
known variance are so rare as to be almost nonexistent. The purpose of the preceding
examples, which assumed that these ideal conditions existed, was to establish the theo-
retical background for constructing confidence intervals for population means. In most
practical situations either the variables are not approximately normally distributed or the
population variances are not known or both. Example 6.2.3 and Section 6.3 explain the
procedures that are available for use in the less than ideal, but more common, situations.

Sampling from Nonnormal Populations As noted, it will not always
be possible or prudent to assume that the population of interest is normally distributed.
Thanks to the central limit theorem, this will not deter us if we are able to select a
large enough sample. We have learned that for large samples, the sampling distribu-
tion of is approximately normally distributed regardless of how the parent popula-
tion is distributed.

EXAMPLE 6.2.3

Punctuality of patients in keeping appointments is of interest to a research team. In a
study of patient flow through the offices of general practitioners, it was found that a sam-
ple of 35 patients were 17.2 minutes late for appointments, on the average. Previous
research had shown the standard deviation to be about 8 minutes. The population distri-
bution was felt to be nonnormal. What is the 90 percent confidence interval for the
true mean amount of time late for appointments?

m,

x

76.3, 92.3

84.3 ; 8.0

84.3 ; 2.5813.09842 m,sx = 12>115 = 3.0984.
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Solution: Since the sample size is fairly large (greater than 30), and since the popu-
lation standard deviation is known, we draw on the central limit theorem
and assume the sampling distribution of to be approximately normally
distributed. From Appendix Table D we find the reliability coefficient cor-
responding to a confidence coefficient of .90 to be about 1.645, if we inter-
polate. The standard error is so that our 90 percent
confidence interval for is

■

Frequently, when the sample is large enough for the application of the central limit the-
orem, the population variance is unknown. In that case we use the sample variance as a
replacement for the unknown population variance in the formula for constructing a con-
fidence interval for the population mean.

Computer Analysis When confidence intervals are desired, a great deal of time
can be saved if one uses a computer, which can be programmed to construct intervals
from raw data.

EXAMPLE 6.2.4

The following are the activity values (micromoles per minute per gram of tissue) of a cer-
tain enzyme measured in normal gastric tissue of 35 patients with gastric carcinoma.

.360 1.189 .614 .788 .273 2.464 .571
1.827 .537 .374 .449 .262 .448 .971

.372 .898 .411 .348 1.925 .550 .622

.610 .319 .406 .413 .767 .385 .674

.521 .603 .533 .662 1.177 .307 1.499

We wish to use the MINITAB computer software package to construct a 95 percent confi-
dence interval for the population mean. Suppose we know that the population variance is
.36. It is not necessary to assume that the sampled population of values is normally distrib-
uted since the sample size is sufficiently large for application of the central limit theorem.

Solution: We enter the data into Column 1 and proceed as shown in Figure 6.2.2. These
instructions tell the computer that the reliability factor is z, that a 95 percent
confidence interval is desired, that the population standard deviation is .6, and
that the data are in Column 1. The output tells us that the sample mean is
.718, the sample standard deviation is .511, and the standard error of the
mean,  is 

We are 95 percent confident that the population mean is somewhere between .519
and .917. Confidence intervals may be obtained through the use of many other software
packages. Users of SAS®, for example, may wish to use the output from PROC MEANS
or PROC UNIVARIATE to construct confidence intervals.

.6>135 = .101.s>1n
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Alternative Estimates of Central Tendency As noted previously, the
mean is sensitive to extreme values—those values that deviate appreciably from most of
the measurements in a data set. They are sometimes referred to as outliers. We also noted
earlier that the median, because it is not so sensitive to extreme measurements, is some-
times preferred over the mean as a measure of central tendency when outliers are pres-
ent. For the same reason, we may prefer to use the sample median as an estimator of
the population median when we wish to make an inference about the central tendency
of a population. Not only may we use the sample median as a point estimate of the pop-
ulation median, we also may construct a confidence interval for the population median.
The formula is not given here but may be found in the book by Rice (1).

Trimmed Mean Estimators that are insensitive to outliers are called robust esti-
mators. Another robust measure and estimator of central tendency is the trimmed mean.
For a set of sample data containing n measurements we calculate the percent
trimmed mean as follows:

1. Order the measurements.

2. Discard the smallest percent and the largest percent of the mea-
surements. The recommended value of is something between .1 and .2.

3. Compute the arithmetic mean of the remaining measurements.

Note that the median may be regarded as a 50 percent trimmed mean.

EXERCISES

For each of the following exercises construct 90, 95, and 99 percent confidence intervals for the
population mean, and state the practical and probabilistic interpretations of each. Indicate which
interpretation you think would be more appropriate to use when discussing confidence intervals with

a

100a100a

100a
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FIGURE 6.2.2 MINITAB procedure for constructing 95 percent confidence interval for a
population mean, Example 6.2.4.

Dialog box: Session command:

Stat ➤ Basic Statistics ➤ 1-Sample z MTB > ZINTERVAL 95 .6 C1

Type C1 in Samples in Columns.
Type .6 in Standard deviation. Click OK.

Output:

One-Sample Z: C1

The assumed standard deviaion � 0.600

Variable N Mean StDev SE Mean 95.0 % C.I.
MicMoles 35 0.718 0.511 0.101 ( 0.519, 0.917)
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someone who has not had a course in statistics, and state the reason for your choice. Explain why
the three intervals that you construct are not of equal width. Indicate which of the three intervals
you would prefer to use as an estimate of the population mean, and state the reason for your choice.

6.2.1 We wish to estimate the average number of heartbeats per minute for a certain population. The
average number of heartbeats per minute for a sample of 49 subjects was found to be 90. Assume
that these 49 patients constitute a random sample, and that the population is normally distributed
with a standard deviation of 10.

6.2.2 We wish to estimate the mean serum indirect bilirubin level of 4-day-old infants. The mean for a
sample of 16 infants was found to be 5.98 mg�100 cc. Assume that bilirubin levels in 4-day-old
infants are approximately normally distributed with a standard deviation of 3.5 mg�100 cc.

6.2.3 In a length of hospitalization study conducted by several cooperating hospitals, a random sample
of 64 peptic ulcer patients was drawn from a list of all peptic ulcer patients ever admitted to the
participating hospitals and the length of hospitalization per admission was determined for each.
The mean length of hospitalization was found to be 8.25 days. The population standard deviation
is known to be 3 days.

6.2.4 A sample of 100 apparently normal adult males, 25 years old, had a mean systolic blood pressure
of 125. It is believed that the population standard deviation is 15.

6.2.5 Some studies of Alzheimer’s disease (AD) have shown an increase in production in patients
with the disease. In one such study the following values were obtained from 16 neocorti-
cal biopsy samples from AD patients.

1009 1280 1180 1255 1547 2352 1956 1080
1776 1767 1680 2050 1452 2857 3100 1621

Assume that the population of such values is normally distributed with a standard deviation of 350.

6.3 THE t DISTRIBUTION

In Section 6.2, a procedure was outlined for constructing a confidence interval for a pop-
ulation mean. The procedure requires knowledge of the variance of the population from
which the sample is drawn. It may seem somewhat strange that one can have knowledge
of the population variance and not know the value of the population mean. Indeed, it is
the usual case, in situations such as have been presented, that the population variance,
as well as the population mean, is unknown. This condition presents a problem with
respect to constructing confidence intervals. Although, for example, the statistic

is normally distributed when the population is normally distributed and is at least approx-
imately normally distributed when n is large, regardless of the functional form of the
population, we cannot make use of this fact because is unknown. However, all is not
lost, and the most logical solution to the problem is the one followed. We use the sam-
ple standard deviation

s = 2g1x i - x22>1n - 12
s

z =
x - m
s>1n

14CO2

14CO2



to replace When the sample size is large, say, greater than 30, our faith in s as an
approximation of is usually substantial, and we may be appropriately justified in using
normal distribution theory to construct a confidence interval for the population mean. In
that event, we proceed as instructed in Section 6.2.

It is when we have small samples that it becomes mandatory for us to find an alter-
native procedure for constructing confidence intervals.

As a result of the work of Gosset (2), writing under the pseudonym of “Student,”
an alternative, known as Student’s t distribution, usually shortened to t distribution, is
available to us.

The quantity

(6.3.1)

follows this distribution.

Properties of the t Distribution The t distribution has the following
properties.

1. It has a mean of 0.

2. It is symmetrical about the mean.

3. In general, it has a variance greater than 1, but the variance approaches 1 as the
sample size becomes large. For the variance of the t distribution is

where df is the degrees of freedom. Alternatively, since here
for we may write the variance of the t distribution as

4. The variable t ranges from to 

5. The t distribution is really a family of distributions, since there is a different dis-
tribution for each sample value of the divisor used in computing We
recall that is referred to as degrees of freedom. Figure 6.3.1 shows t distri-
butions corresponding to several degrees-of-freedom values.

n - 1
s2.n - 1,

+q .-q
1n - 12>1n - 32.n 7 3,df = n - 1
df>1df - 22, df 7 2,

t =
x - m
s>1n

s

s.
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Degrees of  freedom = 30

Degrees of  freedom = 5

Degrees of  freedom = 2

t

FIGURE 6.3.1 The t distribution for different degrees-of-freedom values.
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6. Compared to the normal distribution, the t distribution is less peaked in the center
and has thicker tails. Figure 6.3.2 compares the t distribution with the normal.

7. The t distribution approaches the normal distribution as approaches infinity.

The t distribution, like the standard normal, has been extensively tabulated. One
such table is given as Table E in the Appendix. As we will see, we must take both the
confidence coefficient and degrees of freedom into account when using the table of the
t distribution.

You may use MINITAB to graph the t distribution (for specified degrees-of-freedom
values) and other distributions. After designating the horizontal axis by following direc-
tions in the Set Patterned Data box, choose menu path Calc and then Probability Distri-
butions. Finally, click on the distribution desired and follow instructions. Use the Plot
dialog box to plot the graph.

Confidence Intervals Using t The general procedure for constructing con-
fidence intervals is not affected by our having to use the t distribution rather than the
standard normal distribution. We still make use of the relationship expressed by

reliability coefficient

What is different is the source of the reliability coefficient. It is now obtained from the
table of the t distribution rather than from the table of the standard normal distribution.
To be more specific, when sampling is from a normal distribution whose standard devi-
ation, is unknown, the percent confidence interval for the population
mean, is given by

(6.3.2)

We emphasize that a requirement for the strictly valid use of the t distribution is that the
sample must be drawn from a normal distribution. Experience has shown, however, that
moderate departures from this requirement can be tolerated. As a consequence, the t dis-
tribution is used even when it is known that the parent population deviates somewhat
from normality. Most researchers require that an assumption of, at least, a mound-shaped
population distribution be tenable.

EXAMPLE 6.3.1

Maffulli et al. (A-1) studied the effectiveness of early weightbearing and ankle mobiliza-
tion therapies following acute repair of a ruptured Achilles tendon. One of the variables

x ; t 11-a>22 s1n

m,
10011 - a2s,

2 * 1standard error of the estimator2estimator ; 1

n - 1

x

Normal distribution
t distribution

FIGURE 6.3.2 Comparison of normal distribution and t distribution.



they measured following treatment was the isometric gastrocsoleus muscle strength. In
19 subjects, the mean isometric strength for the operated limb (in newtons) was 250.8
with a standard deviation of 130.9. We assume that these 19 patients constitute a ran-
dom sample from a population of similar subjects. We wish to use these sample data to
estimate for the population the mean isometric strength after surgery.

Solution: We may use the sample mean, 250.8, as a point estimate of the population
mean but, because the population standard deviation is unknown, we must
assume the population of values to be at least approximately normally dis-
tributed before constructing a confidence interval for Let us assume
that such an assumption is reasonable and that a 95 percent confidence
interval is desired. We have our estimator, and our standard error is

We need now to find the reliability coeffi-
cient, the value of t associated with a confidence coefficient of .95 and

degrees of freedom. Since a 95 percent confidence interval
leaves .05 of the area under the curve of t to be equally divided between
the two tails, we need the value of t to the right of which lies .025 of the
area. We locate in Appendix Table E the column headed This is 
the value of t to the left of which lies .975 of the area under the curve. The
area to the right of this value is equal to the desired .025. We now locate the
number 18 in the degrees-of-freedom column. The value at the intersection
of the row labeled 18 and the column labeled is the t we seek. This
value of t, which is our reliability coefficient, is found to be 2.1009. We
now construct our 95 percent confidence interval as follows:

■

This interval may be interpreted from both the probabilistic and practical points of view.
We are 95 percent confident that the true population mean, is somewhere between
187.7 and 313.9 because, in repeated sampling, 95 percent of intervals constructed in
like manner will include 

Deciding Between z and t When we construct a confidence interval for a
population mean, we must decide whether to use a value of z or a value of t as the reli-
ability factor. To make an appropriate choice we must consider sample size, whether the
sampled population is normally distributed, and whether the population variance is
known. Figure 6.3.3 provides a flowchart that one can use to decide quickly whether the
reliability factor should be z or t.

Computer Analysis If you wish to have MINITAB construct a confidence inter-
val for a population mean when the t statistic is the appropriate reliability factor, the
command is TINTERVAL. In Windows choose 1-Sample t from the Basic Statistics
menu.

m.

m,

187.7, 313.9

250.8 ; 63.1

250.8 ; 2.1009130.03052
t.975

t.975.

n - 1 = 18

s>1n = 130.9>119 = 30.0305.
x,

m.
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EXERCISES

6.3.1 Use the t distribution to find the reliability factor for a confidence interval based on the following
confidence coefficients and sample sizes:

a b c d

Confidence coefficient .95 .99 .90 .95
Sample size 15 24 8 30

6.3.2 In a study of the effects of early Alzheimer’s disease on nondeclarative memory, Reber et al. (A-2)
used the Category Fluency Test to establish baseline persistence and semantic memory and language
abilities. The eight subjects in the sample had Category Fluency Test scores of 11, 10, 6, 3, 11, 10,
9, 11. Assume that the eight subjects constitute a simple random sample from a normally distributed
population of similar subjects with early Alzheimer’s disease.

(a) What is the point estimate of the population mean?

(b) What is the standard deviation of the sample?

(c) What is the estimated standard error of the sample mean?

(d) Construct a 95 percent confidence interval for the population mean category fluency test score.

(e) What is the precision of the estimate?

(f) State the probabilistic interpretation of the confidence interval you constructed.

(g) State the practical interpretation of the confidence interval you constructed.

6.3.3 Pedroletti et al. (A-3) reported the maximal nitric oxide diffusion rate in a sample of 15 asthmatic
schoolchildren and 15 controls as mean standard error of the mean. For asthmatic children, they;

Population
normally
distributed

Population
variance
known?

Population
variance
known?

Population
variance
known?

Population
normally

distributed?

Yes

Yes

No Yes No

No Yes No

or

Yes

Yes

No

*

Yes No

No

Sample
size

large?

Sample
size

large?

Population
variance
known?

z

z

t z ztz

Central limit theorem applies

*

FIGURE 6.3.3 Flowchart for use in deciding between z and t when making inferences
about population means. (*Use a nonparametric procedure. See Chapter 13.)



reported (nanoliters per second) and for control subjects they reported
For each group, determine the following:

(a) What was the sample standard deviation?

(b) What is the 95 percent confidence interval for the mean maximal nitric oxide diffusion rate
of the population?

(c) What assumptions are necessary for the validity of the confidence interval you constructed?

(d) What are the practical and probabilistic interpretations of the interval you constructed?

(e) Which interpretation would be more appropriate to use when discussing confidence intervals
with someone who has not had a course in statistics? State the reasons for your choice.

(f) If you were to construct a 90 percent confidence interval for the population mean from the
information given here, would the interval be wider or narrower than the 95 percent confidence
interval? Explain your answer without actually constructing the interval.

(g) If you were to construct a 99 percent confidence interval for the population mean from the
information given here, would the interval be wider or narrower than the 95 percent confidence
interval? Explain your answer without actually constructing the interval.

6.3.4 The concern of a study by Beynnon et al. (A-4) were nine subjects with chronic anterior cru-
ciate ligament (ACL) tears. One of the variables of interest was the laxity of the anteroposte-
rior, where higher values indicate more knee instability. The researchers found that among
subjects with ACL-deficient knees, the mean laxity value was 17.4 mm with a standard devi-
ation of 4.3 mm.

(a) What is the estimated standard error of the mean?

(b) Construct the 99 percent confidence interval for the mean of the population from which the
nine subjects may be presumed to be a random sample.

(c) What is the precision of the estimate?

(d) What assumptions are necessary for the validity of the confidence interval you constructed?

6.3.5 A sample of 16 ten-year-old girls had a mean weight of 71.5 and a standard deviation of 12 pounds,
respectively. Assuming normality, find the 90, 95, and 99 percent confidence intervals for 

6.3.6 The subjects of a study by Dugoff et al. (A-5) were 10 obstetrics and gynecology interns at the
University of Colorado Health Sciences Center. The researchers wanted to assess competence in
performing clinical breast examinations. One of the baseline measurements was the number of
such examinations performed. The following data give the number of breast examinations per-
formed for this sample of 10 interns.

Intern Number No. of Breast Exams Performed

1 30
2 40
3 8
4 20
5 26
6 35
7 35
8 20
9 25

10 20

m.

0.7 ; .1 nL /s.
3.5 ; 0.4 nL /s
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Source: Lorraine Dugoff, Mauritha R.
Everett, Louis Vontver, and Gwyn E.
Barley, “Evaluation of Pelvic and Breast
Examination Skills of Interns in Obstetrics
and Gynecology and Internal Medicine,”
American Journal of Obstetrics and
Gynecology, 189 (2003), 655–658.
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Construct a 95 percent confidence interval for the mean of the population from which the study
subjects may be presumed to have been drawn.

6.4 CONFIDENCE INTERVAL FOR 
THE DIFFERENCE BETWEEN TWO 
POPULATION MEANS

Sometimes there arise cases in which we are interested in estimating the difference
between two population means. From each of the populations an independent random
sample is drawn and, from the data of each, the sample means and respectively,
are computed. We learned in the previous chapter that the estimator yields an
unbiased estimate of the difference between the population means. The vari-
ance of the estimator is We also know from Chapter 5 that, depend-
ing on the conditions, the sampling distribution of may be, at least, approxi-
mately normally distributed, so that in many cases we make use of the theory relevant
to normal distributions to compute a confidence interval for When the popu-
lation variances are known, the percent confidence interval for is
given by

(6.4.1)

An examination of a confidence interval for the difference between population means
provides information that is helpful in deciding whether or not it is likely that the two
population means are equal. When the constructed interval does not include zero, we say
that the interval provides evidence that the two population means are not equal. When
the interval includes zero, we say that the population means may be equal.

Let us illustrate for the case where sampling is from normal distributions.

EXAMPLE 6.4.1

A research team is interested in the difference between serum uric acid levels in patients
with and without Down’s syndrome. In a large hospital for the treatment of the men-
tally retarded, a sample of 12 individuals with Down’s syndrome yielded a mean of

In a general hospital a sample of 15 normal individuals of the same
age and sex were found to have a mean value of If it is reasonable to assume
that the two populations of values are normally distributed with variances equal to 1 and
1.5, find the 95 percent confidence interval for 

Solution: For a point estimate of we use The
reliability coefficient corresponding to .95 is found in Appendix Table D to
be 1.96. The standard error is

sx1-x2
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= .4282
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The 95 percent confidence interval, then, is

We say that we are 95 percent confident that the true difference,
is somewhere between .26 and 1.94 because, in repeated sampling,

95 percent of the intervals constructed in this manner would include the dif-
ference between the true means.

Since the interval does not include zero, we conclude that the two pop-
ulation means are not equal. ■

Sampling from Nonnormal Populations The construction of a confi-
dence interval for the difference between two population means when sampling is from
nonnormal populations proceeds in the same manner as in Example 6.4.1 if the sample
sizes and are large. Again, this is a result of the central limit theorem. If the pop-
ulation variances are unknown, we use the sample variances to estimate them.

EXAMPLE 6.4.2

Despite common knowledge of the adverse effects of doing so, many women continue
to smoke while pregnant. Mayhew et al. (A-6) examined the effectiveness of a smoking
cessation program for pregnant women. The mean number of cigarettes smoked daily at
the close of the program by the 328 women who completed the program was 4.3 with
a standard deviation of 5.22. Among 64 women who did not complete the program, the
mean number of cigarettes smoked per day at the close of the program was 13 with a
standard deviation of 8.97. We wish to construct a 99 percent confidence interval for the
difference between the means of the populations from which the samples may be pre-
sumed to have been selected.

Solution: No information is given regarding the shape of the distribution of cigarettes
smoked per day. Since our sample sizes are large, however, the central limit
theorem assures us that the sampling distribution of the difference between
sample means will be approximately normally distributed even if the distri-
bution of the variable in the populations is not normally distributed. We may
use this fact as justification for using the z statistic as the reliability factor
in the construction of our confidence interval. Also, since the population
standard deviations are not given, we will use the sample standard devia-
tions to estimate them. The point estimate for the difference between pop-
ulation means is the difference between sample means, 
In Appendix Table D we find the reliability factor to be 2.58. The estimated
standard error is

sx1-x2
= A5.222

328
+

8.972

64
= 1.1577

4.3 - 13.0 = -8.7.

n 2n1

m1 - m2,

.26, 1.94

1.1 ; .84

1.1 ; 1.961.42822
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By Equation 6.4.1, our 99 percent confidence interval for the difference
between population means is

We are 99 percent confident that the mean number of cigarettes smoked per
day for women who complete the program is between 5.7 and 11.7 lower
than the mean for women who do not complete the program. ■

The t Distribution and the Difference Between Means When
population variances are unknown, and we wish to estimate the difference between two
population means with a confidence interval, we can use the t distribution as a source of
the reliability factor if certain assumptions are met. We must know, or be willing to
assume, that the two sampled populations are normally distributed. With regard to the
population variances, we distinguish between two situations: (1) the situation in which
the population variances are equal, and (2) the situation in which they are not equal. Let
us consider each situation separately.

Population Variances Equal If the assumption of equal population variances
is justified, the two sample variances that we compute from our two independent sam-
ples may be considered as estimates of the same quantity, the common variance. It seems
logical, then, that we should somehow capitalize on this in our analysis. We do just that
and obtain a pooled estimate of the common variance. This pooled estimate is obtained
by computing the weighted average of the two sample variances. Each sample variance
is weighted by its degrees of freedom. If the sample sizes are equal, this weighted aver-
age is the arithmetic mean of the two sample variances. If the two sample sizes are
unequal, the weighted average takes advantage of the additional information provided by
the larger sample. The pooled estimate is given by the formula

(6.4.2)

The standard error of the estimate, then, is given by

(6.4.3)

and the percent confidence interval for is given by

(6.4.4)

The number of degrees of freedom used in determining the value of t to use in construct-
ing the interval is the denominator of Equation 6.4.2. We interpret this
interval in the usual manner.

Methods that may be used in reaching a decision about the equality of population
variances are discussed in Sections 6.10 and 7.8.
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EXAMPLE 6.4.3

The purpose of a study by Granholm et al. (A-7) was to determine the effectiveness of
an integrated outpatient dual-diagnosis treatment program for mentally ill subjects. The
authors were addressing the problem of substance abuse issues among people with severe
mental disorders. A retrospective chart review was carried out on 50 consecutive patient
referrals to the Substance Abuse /Mental Illness program at the VA San Diego Health-
care System. One of the outcome variables examined was the number of inpatient treat-
ment days for psychiatric disorder during the year following the end of the program.
Among 18 subjects with schizophrenia, the mean number of treatment days was 4.7 with
a standard deviation of 9.3. For 10 subjects with bipolar disorder, the mean number of
psychiatric disorder treatment days was 8.8 with a standard deviation of 11.5. We wish
to construct a 95 percent confidence interval for the difference between the means of the
populations represented by these two samples.

Solution: First we use Equation 6.4.2 to compute the pooled estimate of the common
population variance.

When we enter Appendix Table E with degrees of free-
dom and a desired confidence level of .95, we find that the reliability factor
is 2.0555. By Expression 6.4.4 we compute the 95 percent confidence inter-
val for the difference between population means as follows:

We are 95 percent confident that the difference between population means
is somewhere between and 4.10. We can say this because we know
that if we were to repeat the study many, many times, and compute con-
fidence intervals in the same way, about 95 percent of the intervals would
include the difference between the population means.

Since the interval includes zero, we conclude that the population
means may be equal. ■

Population Variances Not Equal When one is unable to conclude that the
variances of two populations of interest are equal, even though the two populations may
be assumed to be normally distributed, it is not proper to use the t distribution as just
outlined in constructing confidence intervals.

A solution to the problem of unequal variances was proposed by Behrens (3) and
later was verified and generalized by Fisher (4, 5). Solutions have also been proposed by
Neyman (6), Scheffé (7, 8), and Welch (9, 10). The problem is discussed in detail by
Cochran (11).

-12.3

-12.3, 4.10
-4.1 ; 8.20

14.7 - 8.82 ; 2.0555A102.33

18
+

102.33

10

18 + 10 - 2 = 26

s 2
p =
118 - 1219.322 + 110 - 12111.522

18 + 10 - 2
= 102.33
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The problem revolves around the fact that the quantity

does not follow a t distribution with degrees of freedom when the popu-
lation variances are not equal. Consequently, the t distribution cannot be used in the usual
way to obtain the reliability factor for the confidence interval for the difference between
the means of two populations that have unequal variances. The solution proposed by
Cochran consists of computing the reliability factor, by the following formula:

(6.4.5)

where for degrees of freedom, and 
for degrees of freedom. An approximate percent confidence

interval for is given by

(6.4.6)

Adjustments to the reliability coefficient may also be made by reducing the number of
degrees of freedom instead of modifying t in the manner just demonstrated. Many com-
puter programs calculate an adjusted reliability coefficient in this way.

EXAMPLE 6.4.4

Let us reexamine the data presented in Example 6.4.3 from the study by Granholm et al.
(A-7). Recall that among the 18 subjects with schizophrenia, the mean number of treat-
ment days was 4.7 with a standard deviation of 9.3. In the bipolar disorder treatment group
of 10 subjects, the mean number of psychiatric disorder treatment days was 8.8 with a
standard deviation of 11.5. We assume that the two populations of number of psychiatric
disorder days are approximately normally distributed. Now let us assume, however, that
the two population variances are not equal. We wish to construct a 95 percent confidence
interval for the difference between the means of the two populations represented by the
samples.

Solution: We will use as found in Equation 6.4.5 for the reliability factor. Refer-
ence to Appendix Table E shows that with 17 degrees of freedom and

Similarly, with 9 degrees of freedom 
and We now compute

t ¿ =
19.32>18212.10982 + 111.52>10212.2622219.32>182 + 111.52>102 = 2.2216
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By Expression 6.4.6 we now construct the 95 percent confidence interval for
the difference between the two population means.

Since the interval does include zero, we conclude that the two population
means may be equal. ■

When constructing a confidence interval for the difference between two population
means one may use Figure 6.4.1 to decide quickly whether the reliability factor should
be or 

EXERCISES

For each of the following exercises construct 90, 95, and 99 percent confidence intervals for the
difference between population means. Where appropriate, state the assumptions that make your
method valid. State the practical and probabilistic interpretations of each interval that you con-
struct. Consider the variables under consideration in each exercise, and state what use you think
researchers might make of your results.

6.4.1 Iannelo et al. (A-8) performed a study that examined free fatty acid concentrations in 18 lean sub-
jects and 11 obese subjects. The lean subjects had a mean level of 299 Eq/L with a standardm

t ¿.z, t,

-13.5, 5.3

14.7 - 8.82 ; 2.221614.246175214.7 - 8.82 ; 2.2216A9.32
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10
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FIGURE 6.4.1 Flowchart for use in deciding whether the reliability factor should be z, t, or
when making inferences about the difference between two population means. (*Use a
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error of the mean of 30, while the obese subjects had a mean of 744 Eq/L with a standard error
of the mean of 62.

6.4.2 Chan et al. (A-9) developed a questionnaire to assess knowledge of prostate cancer. There was a
total of 36 questions to which respondents could answer “agree,” “disagree,” or “don’t know.”
Scores could range from 0 to 36. The mean scores for Caucasian study participants was 20.6 with
a standard deviation of 5.8, while the mean scores for African-American men was 17.4 with a
standard deviation of 5.8. The number of Caucasian study participants was 185, and the number
of African-Americans was 86.

6.4.3 The objectives of a study by van Vollenhoven et al. (A-10) were to examine the effectiveness of
etanercept alone and etanercept in combination with methotrexate in the treatment of rheumatoid
arthritis. The researchers conducted a retrospective study using data from the STURE database,
which collects efficacy and safety data for all patients starting biological treatments at the major
hospitals in Stockholm, Sweden. The researchers identified 40 subjects who were prescribed etan-
ercept only and 57 subjects who were given etanercept with methotrexate. Using a 100-mm visual
analogue scale (the higher the value, the greater the pain), researchers found that after 3 months
of treatment, the mean pain score was 36.4 with a standard error of the mean of 5.5 for subjects
taking etanercept only. In the sample receiving etanercept plus methotrexate, the mean score was
30.5 with a standard error of the mean of 4.6.

6.4.4 The purpose of a study by Nozawa et al. (A-11) was to determine the effectiveness of segmental
wire fixation in athletes with spondylolysis. Between 1993 and 2000, 20 athletes (6 women and
14 men) with lumbar spondylolysis were treated surgically with the technique. The following table
gives the Japanese Orthopaedic Association (JOA) evaluation score for lower back pain syndrome
for men and women prior to the surgery. The lower score indicates less pain.

Gender JOA scores

Female 14, 13, 24, 21, 20, 21
Male 21, 26, 24, 24, 22, 23, 18, 24, 13, 22, 25, 23, 21, 25
Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo
Tanaka, “Repair of Pars Interarticularis Defect by Segmental Wire Fixa-
tion in Young Athletes with Spondylolysis,” American Journal of Sports
Medicine, 31 (2003), 359–364.

6.4.5 Krantz et al. (A-12) investigated dose-related effects of methadone in subjects with torsade de
pointes, a polymorphic ventricular tachycardia. In the study of 17 subjects, nine were being
treated with methadone for opiate dependency and eight for chronic pain. The mean daily dose
of methadone in the opiate dependency group was 541 mg/day with a standard deviation of
156, while the chronic pain group received a mean dose of 269 mg/day with a standard devi-
ation of 316.

6.4.6 Transverse diameter measurements on the hearts of adult males and females gave the following
results:

Group Sample Size (cm) s (cm)

Males 12 13.21 1.05
Females 9 11.00 1.01

Assume normally distributed populations with equal variances.

x

m
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6.4.7 Twenty-four experimental animals with vitamin D deficiency were divided equally into two groups.
Group 1 received treatment consisting of a diet that provided vitamin D. The second group was
not treated. At the end of the experimental period, serum calcium determinations were made with
the following results:

Treated group:

Untreated group:

Assume normally distributed populations with equal variances.

6.4.8 Two groups of children were given visual acuity tests. Group 1 was composed of 11 children
who receive their health care from private physicians. The mean score for this group was 26
with a standard deviation of 5. Group 2 was composed of 14 children who receive their health
care from the health department, and had an average score of 21 with a standard deviation of
6. Assume normally distributed populations with equal variances.

6.4.9 The average length of stay of a sample of 20 patients discharged from a general hospital was 
7 days with a standard deviation of 2 days. A sample of 24 patients discharged from a chronic
disease hospital had an average length of stay of 36 days with a standard deviation of 10 days.
Assume normally distributed populations with unequal variances.

6.4.10 In a study of factors thought to be responsible for the adverse effects of smoking on human repro-
duction, cadmium level determinations (nanograms per gram) were made on placenta tissue of a
sample of 14 mothers who were smokers and an independent random sample of 18 nonsmoking
mothers. The results were as follows:

Nonsmokers: 10.0, 8.4, 12.8, 25.0, 11.8, 9.8, 12.5, 15.4, 23.5,
9.4, 25.1, 19.5, 25.5, 9.8, 7.5, 11.8, 12.2, 15.0

Smokers: 30.0, 30.1, 15.0, 24.1, 30.5, 17.8, 16.8, 14.8,
13.4, 28.5, 17.5, 14.4, 12.5, 20.4

Does it appear likely that the mean cadmium level is higher among smokers than nonsmokers?
Why do you reach this conclusion?

6.5 CONFIDENCE INTERVAL FOR 
A POPULATION PROPORTION

Many questions of interest to the health worker relate to population proportions. What
proportion of patients who receive a particular type of treatment recover? What propor-
tion of some population has a certain disease? What proportion of a population is immune
to a certain disease?

To estimate a population proportion we proceed in the same manner as when esti-
mating a population mean. A sample is drawn from the population of interest, and the
sample proportion, is computed. This sample proportion is used as the point estimator
of the population proportion. A confidence interval is obtained by the general formula

In the previous chapter we saw that when both np and are greater than
5, we may consider the sampling distribution of to be quite close to the normalpN

n11 - p2estimator ; 1reliability coefficient2 * 1standard error of the estimator2
pN ,

x = 7.8 mg>100 ml, s = 2.0

x = 11.1 mg>100 ml, s = 1.5



distribution. When this condition is met, our reliability coefficient is some value of z
from the standard normal distribution. The standard error, we have seen, is equal to

Since p, the parameter we are trying to estimate, is unknown, we

must use as an estimate. Thus, we estimate by , and our
percent confidence interval for p is given by

(6.5.1)

We give this interval both the probabilistic and practical interpretations.

EXAMPLE 6.5.1

The Pew Internet and American Life Project (A-13) reported in 2003 that 18 percent of
Internet users have used it to search for information regarding experimental treatments
or medicines. The sample consisted of 1220 adult Internet users, and information was
collected from telephone interviews. We wish to construct a 95 percent confidence inter-
val for the proportion of Internet users in the sampled population who have searched for
information on experimental treatments or medicines.

Solution: We shall assume that the 1220 subjects were sampled in random fashion.
The best point estimate of the population proportion is The size
of the sample and our estimate of p are of sufficient magnitude to justify
use of the standard normal distribution in constructing a confidence inter-
val. The reliability coefficient corresponding to a confidence level of .95 
is 1.96, and our estimate of the standard error is

The 95 percent confidence interval for p,
based on these data, is

We are 95 percent confident that the population proportion p is between .158
and .202 because, in repeated sampling, about 95 percent of the intervals con-
structed in the manner of the present single interval would include the true p.
On the basis of these results we would expect, with 95 percent confidence, to
find somewhere between 15.8 percent and 20.2 percent of adult Internet users
to have used it for information on medicine or experimental treatments. ■

EXERCISES

For each of the following exercises state the practical and probabilistic interpretations of the inter-
val that you construct. Identify each component of the interval: point estimate, reliability coeffi-
cient, and standard error. Explain why the reliability coefficients are not the same for all exercises.

6.5.1 Luna et al. (A-14) studied patients who were mechanically ventilated in the intensive care unit
of six hospitals in Buenos Aires, Argentina. The researchers found that of 472 mechanically

.158, .202

.18 ; .022

.18 ; 1.961.01102
21.1821.822>1220 = .0110.

2pN11 - pN2>n =spN

pN = .18.

pN ; z1-a>22pN11 - pN2>n10011 - a2 2pN11 - pN2>nspNpN

spN = 1p11 - p2>n.
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ventilated patients, 63 had clinical evidence of ventilator-associated pneumonia (VAP). Construct
a 95 percent confidence interval for the proportion of all mechanically ventilated patients at these
hospitals who may be expected to develop VAP.

6.5.2 Q waves on the electrocardiogram, according to Schinkel et al. (A-15), are often considered to be
reflective of irreversibly scarred myocardium. These researchers assert, however, that there are
some indications that residual viable tissue may be present in Q-wave-infarcted regions. Their study
of 150 patients with chronic electrocardiographic Q-wave infarction found 202 dysfunctional 
Q-wave regions. With dobutamine stress echocardiography (DSE), they noted that 118 of these
202 regions were viable with information from the DSE testing. Construct a 90 percent confidence
interval for the proportion of viable regions that one might expect to find a population of dysfunc-
tional Q-wave regions.

6.5.3 In a study by von zur Muhlen et al. (A-16), 136 subjects with syncope or near syncope were stud-
ied. Syncope is the temporary loss of consciousness due to a sudden decline in blood flow to the
brain. Of these subjects, 75 also reported having cardiovascular disease. Construct a 99 percent
confidence interval for the population proportion of subjects with syncope or near syncope who
also have cardiovascular disease.

6.5.4 In a simple random sample of 125 unemployed male high-school dropouts between the ages of 16
and 21, inclusive, 88 stated that they were regular consumers of alcoholic beverages. Construct a
95 percent confidence interval for the population proportion.

6.6 CONFIDENCE INTERVAL FOR 
THE DIFFERENCE BETWEEN TWO
POPULATION PROPORTIONS

The magnitude of the difference between two population proportions is often of inter-
est. We may want to compare, for example, men and women, two age groups, two
socioeconomic groups, or two diagnostic groups with respect to the proportion pos-
sessing some characteristic of interest. An unbiased point estimator of the difference
between two population proportions is provided by the difference between sample pro-
portions, As we have seen, when and are large and the population
proportions are not too close to 0 or 1, the central limit theorem applies and normal
distribution theory may be employed to obtain confidence intervals. The standard error
of the estimate usually must be estimated by

because, as a rule, the population proportions are unknown. A percent con-
fidence interval for is given by

(6.6.1)

We may interpret this interval from both the probabilistic and practical points of view.

1pN1 - pN22 ; z1-a>2ApN111 - pN12
n1

+
p2N 11 - p22N

n2

p1 - p2

10011 - a2
sN pN1-pN2

= ApN111 - pN12
n1

+
p2N 11 - p22N

n2

n2n1p1N - p2.N



EXAMPLE 6.6.1

Connor et al. (A-17) investigated gender differences in proactive and reactive aggression
in a sample of 323 children and adolescents (68 females and 255 males). The subjects
were from unsolicited consecutive referrals to a residential treatment center and a pedi-
atric psychopharmacology clinic serving a tertiary hospital and medical school. In the
sample, 31 of the females and 53 of the males reported sexual abuse. We wish to con-
struct a 99 percent confidence interval for the difference between the proportions of sex-
ual abuse in the two sampled populations.

Solution: The sample proportions for the females and males are, respectively, 
and The difference between sample

proportions is The estimated standard
error of the difference between sample proportions is

The reliability factor from Appendix Table D is 2.58, so that our confidence
interval, by Expression 6.6.1, is

We are 99 percent confident that for the sampled populations, the proportion
of cases of reported sexual abuse among females exceeds the proportion of
cases of reported sexual abuse among males by somewhere between .0791
and .4171.

Since the interval does not include zero, we conclude that the two
population proportions are not equal. ■

EXERCISES

For each of the following exercises state the practical and probabilistic interpretations of the inter-
val that you construct. Identify each component of the interval: point estimate, reliability coeffi-
cient, and standard error. Explain why the reliability coefficients are not the same for all exercises.

6.6.1 Horwitz et al. (A-18) studied 637 persons who were identified by court records from 1967 to 1971
as having experienced abuse or neglect. For a control group, they located 510 subjects who as chil-
dren attended the same elementary school and lived within a five-block radius of those in the
abused /neglected group. In the abused/neglected group, and control group, 114 and 57 subjects,
respectively, had developed antisocial personality disorders over their lifetimes. Construct a 95 per-
cent confidence interval for the difference between the proportions of subjects developing antiso-
cial personality disorders one might expect to find in the populations of subjects from which the
subjects of this study may be presumed to have been drawn.

6.6.2 The objective of a randomized controlled trial by Adab et al. (A-19) was to determine whether pro-
viding women with additional information on the pros and cons of screening for cervical cancer would

.0791, .4171

.2481 ; 2.581.06552
= .0655

sNpNF -pN M
= C1.455921.54412

68
+
1.207821.79222

255

pFN - pMN = .4559 - .2078 = .2481.
pMN = 53>255 = .2078.31>68 = .4559

pFN =

188 CHAPTER 6 ESTIMATION



6.7 DETERMINATION OF SAMPLE SIZE FOR ESTIMATING MEANS 189

increase the willingness to be screened. A treatment group of 138 women received a leaflet on screen-
ing that contained more information (average individual risk for cervical cancer, likelihood of positive
finding, the possibility of false positive/negative results, etc.) than the standard leaflet developed by
the British National Health Service that 136 women in a control group received. In the treatment group,
109 women indicated they wanted to have the screening test for cervical cancer while in the control
group, 120 indicated they wanted the screening test. Construct a 95 percent confidence interval for the
difference in proportions for the two populations represented by these samples.

6.6.3 Spertus et al. (A-20) performed a randomized single blind study for subjects with stable coronary
artery disease. They randomized subjects into two treatment groups. The first group had current
angina medications optimized, and the second group was tapered off existing medications and then
started on long-acting diltiazem at 180 mg/day. The researchers performed several tests to deter-
mine if there were significant differences in the two treatment groups at baseline. One of the char-
acteristics of interest was the difference in the percentages of subjects who had reported a history
of congestive heart failure. In the group where current medications were optimized, 16 of 49 sub-
jects reported a history of congestive heart failure. In the subjects placed on the diltiazem, 12 of
the 51 subjects reported a history of congestive heart failure. State the assumptions that you think
are necessary and construct a 95 percent confidence interval for the difference between the pro-
portions of those reporting congestive heart failure within the two populations from which we pre-
sume these treatment groups to have been selected.

6.6.4 To study the difference in drug therapy adherence among subjects with depression who received usual
care and those who received care in a collaborative care model was the goal of a study conducted
by Finley et al. (A-21). The collaborative care model emphasized the role of clinical pharmacists in
providing drug therapy management and treatment follow-up. Of the 50 subjects receiving usual care,
24 adhered to the prescribed drug regimen, while 50 out of 75 subjects in the collaborative care model
adhered to the drug regimen. Construct a 90 percent confidence interval for the difference in adherence
proportions for the populations of subjects represented by these two samples.

6.7 DETERMINATION OF SAMPLE SIZE 
FOR ESTIMATING MEANS

The question of how large a sample to take arises early in the planning of any survey
or experiment. This is an important question that should not be treated lightly. To take
a larger sample than is needed to achieve the desired results is wasteful of resources,
whereas very small samples often lead to results that are of no practical use. Let us con-
sider, then, how one may go about determining the sample size that is needed in a given
situation. In this section, we present a method for determining the sample size required
for estimating a population mean, and in the next section we apply this method to the
case of sample size determination when the parameter to be estimated is a population
proportion. By straightforward extensions of these methods, sample sizes required for
more complicated situations can be determined.

Objectives The objectives in interval estimation are to obtain narrow intervals with
high reliability. If we look at the components of a confidence interval, we see that the
width of the interval is determined by the magnitude of the quantity1reliability coefficient2 * 1standard error of the estimator2



since the total width of the interval is twice this amount. We have learned that this quan-
tity is usually called the precision of the estimate or the margin of error. For a given
standard error, increasing reliability means a larger reliability coefficient. But a larger
reliability coefficient for a fixed standard error makes for a wider interval.

On the other hand, if we fix the reliability coefficient, the only way to reduce the
width of the interval is to reduce the standard error. Since the standard error is equal to

and since is a constant, the only way to obtain a small standard error is to take
a large sample. How large a sample? That depends on the size of the population stan-
dard deviation, the desired degree of reliability, and the desired interval width.

Let us suppose we want an interval that extends d units on either side of the esti-
mator. We can write

(6.7.1)

If sampling is to be with replacement, from an infinite population, or from a pop-
ulation that is sufficiently large to warrant our ignoring the finite population correction,
Equation 6.7.1 becomes

(6.7.2)

which, when solved for n, gives

(6.7.3)

When sampling is without replacement from a small finite population, the finite popula-
tion correction is required and Equation 6.7.1 becomes

(6.7.4)

which, when solved for n, gives

(6.7.5)

If the finite population correction can be ignored, Equation 6.7.5 reduces to Equa-
tion 6.7.3.

Estimating The formulas for sample size require knowledge of but, as has
been pointed out, the population variance is, as a rule, unknown. As a result, has to
be estimated. The most frequently used sources of estimates for are the following:

1. A pilot or preliminary sample may be drawn from the population, and the variance
computed from this sample may be used as an estimate of Observations used
in the pilot sample may be counted as part of the final sample, so that n (the com-
puted sample size) (the pilot sample size) (the number of observations
needed to satisfy the total sample size requirement).

= n 2- n1

s2.

s2
s2

s2S2

n =
Nz 2s2

d 21N - 12 + z 2s2

d = z
s1n AN - n

N - 1

n =
z2s2

d 2

d = z
s1n

d = 1reliability coefficient2 * 1standard error of the estimator2
s,
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2. Estimates of may be available from previous or similar studies.

3. If it is thought that the population from which the sample is to be drawn is approx-
imately normally distributed, one may use the fact that the range is approxi-
mately equal to six standard deviations and compute This method
requires some knowledge of the smallest and largest value of the variable in the
population.

EXAMPLE 6.7.1

A health department nutritionist, wishing to conduct a survey among a population of
teenage girls to determine their average daily protein intake (measured in grams), is seek-
ing the advice of a biostatistician relative to the sample size that should be taken.

What procedure does the biostatistician follow in providing assistance to the nutri-
tionist? Before the statistician can be of help to the nutritionist, the latter must provide
three items of information: (1) the desired width of the confidence interval, (2) the level
of confidence desired, and (3) the magnitude of the population variance.

Solution: Let us assume that the nutritionist would like an interval about 10 grams
wide; that is, the estimate should be within about 5 grams of the popula-
tion mean in either direction. In other words, a margin of error of 5 grams
is desired. Let us also assume that a confidence coefficient of .95 is decided
on and that, from past experience, the nutritionist feels that the population
standard deviation is probably about 20 grams. The statistician now has the
necessary information to compute the sample size: and

Let us assume that the population of interest is large so that the stat-
istician may ignore the finite population correction and use Equation 6.7.3.
On making proper substitutions, the value of n is found to be

The nutritionist is advised to take a sample of size 62. When cal-
culating a sample size by Equation 6.7.3 or Equation 6.7.5, we round up
to the next-largest whole number if the calculations yield a number that
is not itself an integer. ■

EXERCISES

6.7.1 A hospital administrator wishes to estimate the mean weight of babies born in her hospital. How
large a sample of birth records should be taken if she wants a 99 percent confidence interval that
is 1 pound wide? Assume that a reasonable estimate of is 1 pound. What sample size is required
if the confidence coefficient is lowered to .95?

6.7.2 The director of the rabies control section in a city health department wishes to draw a sample from
the department’s records of dog bites reported during the past year in order to estimate the mean

s

= 61.47

n =
11.9622 120221522

d = 5.
z = 1.96, s = 20,

s L R>6.

s2



age of persons bitten. He wants a 95 percent confidence interval, he will be satisfied to let 
and from previous studies he estimates the population standard deviation to be about 15 years.
How large a sample should be drawn?

6.7.3 A physician would like to know the mean fasting blood glucose value (milligrams per 100 ml) of
patients seen in a diabetes clinic over the past 10 years. Determine the number of records the
physician should examine in order to obtain a 90 percent confidence interval for if the desired
width of the interval is 6 units and a pilot sample yields a variance of 60.

6.7.4 For multiple sclerosis patients we wish to estimate the mean age at which the disease was first
diagnosed. We want a 95 percent confidence interval that is 10 years wide. If the population vari-
ance is 90, how large should our sample be?

6.8 DETERMINATION OF SAMPLE SIZE 
FOR ESTIMATING PROPORTIONS

The method of sample size determination when a population proportion is to be esti-
mated is essentially the same as that described for estimating a population mean. We
make use of the fact that one-half the desired interval, d, may be set equal to the prod-
uct of the reliability coefficient and the standard error.

Assuming that random sampling and conditions warranting approximate nor-
mality of the distribution of leads to the following formula for n when sampling
is with replacement, when sampling is from an infinite population, or when the sam-
pled population is large enough to make use of the finite population correction
unnecessary,

(6.8.1)

where
If the finite population correction cannot be disregarded, the proper formula for

n is

(6.8.2)

When N is large in comparison to n (that is, the finite population cor-
rection may be ignored, and Equation 6.8.2 reduces to Equation 6.8.1.

Estimating p As we see, both formulas require knowledge of p, the proportion in
the population possessing the characteristic of interest. Since this is the parameter we
are trying to estimate, it, obviously, will be unknown. One solution to this problem is to
take a pilot sample and compute an estimate to be used in place of p in the formula for
n. Sometimes an investigator will have some notion of an upper bound for p that can be
used in the formula. For example, if it is desired to estimate the proportion of some pop-
ulation who have a certain disability, we may feel that the true proportion cannot be

n>N … .052
n =

Nz 2pq

d 21N - 12 + z 2pq

q = 1 - p.

n =
z 2pq
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greater than, say, .30. We then substitute .30 for p in the formula for n. If it is impossi-
ble to come up with a better estimate, one may set p equal to .5 and solve for n. Since

in the formula yields the maximum value of n, this procedure will give a large
enough sample for the desired reliability and interval width. It may, however, be larger
than needed and result in a more expensive sample than if a better estimate of p had
been available. This procedure should be used only if one is unable to arrive at a better
estimate of p.

EXAMPLE 6.8.1

A survey is being planned to determine what proportion of families in a certain area are
medically indigent. It is believed that the proportion cannot be greater than .35. A 95
percent confidence interval is desired with What size sample of families should
be selected?

Solution: If the finite population correction can be ignored, we have

The necessary sample size, then, is 350. ■

EXERCISES

6.8.1 An epidemiologist wishes to know what proportion of adults living in a large metropolitan area
have subtype ayr hepatitis B virus. Determine the sample size that would be required to estimate
the true proportion to within .03 with 95 percent confidence. In a similar metropolitan area the
proportion of adults with the characteristic is reported to be .20. If data from another metropoli-
tan area were not available and a pilot sample could not be drawn, what sample size would be
required?

6.8.2 A survey is planned to determine what proportion of the high-school students in a metropolitan
school system have regularly smoked marijuana. If no estimate of p is available from previous
studies, a pilot sample cannot be drawn, a confidence coefficient of .95 is desired, and is
to be used, determine the appropriate sample size. What sample size would be required if 99 per-
cent confidence were desired?

6.8.3 A hospital administrator wishes to know what proportion of discharged patients is unhappy with
the care received during hospitalization. How large a sample should be drawn if we let 
the confidence coefficient is .95, and no other information is available? How large should the sam-
ple be if p is approximated by .25?

6.8.4 A health planning agency wishes to know, for a certain geographic region, what proportion of
patients admitted to hospitals for the treatment of trauma die in the hospital. A 95 percent confi-
dence interval is desired, the width of the interval must be .06, and the population proportion, from
other evidence, is estimated to be .20. How large a sample is needed?

d = .05,

d = .04

n =
11.96221.3521.6521.0522 = 349.59

d = .05.

p = .5



6.9 CONFIDENCE INTERVAL FOR 
THE VARIANCE OF A NORMALLY
DISTRIBUTED POPULATION

Point Estimation of the Population Variance In previous sections
it has been suggested that when a population variance is unknown, the sample variance
may be used as an estimator. You may have wondered about the quality of this estima-
tor. We have discussed only one criterion of quality—unbiasedness—so let us see if the
sample variance is an unbiased estimator of the population variance. To be unbiased,
the average value of the sample variance over all possible samples must be equal to the
population variance. That is, the expression must hold. To see if this con-
dition holds for a particular situation, let us refer to the example of constructing a
sampling distribution given in Section 5.3. In Table 5.3.1 we have all possible sam-
ples of size 2 from the population consisting of the values 6, 8, 10, 12, and 14. It will
be recalled that two measures of dispersion for this population were computed as
follows:

and

If we compute the sample variance for each of the possible
samples shown in Table 5.3.1, we obtain the sample variances shown in Table 6.9.1.

Sampling with Replacement If sampling is with replacement, the expected
value of is obtained by taking the mean of all sample variances in Table 6.9.1. When
we do this, we have

and we see, for example, that when sampling is with replacement where
and s2 = g1x i - m22>N.s2 = g1x i - x22>1n - 12 E1s 22 = s2,

E1s 22 =
gs 2

i

N n =
0 + 2 + Á + 2 + 0

25
=

200

25
= 8

s2

s2 = g1x i - x22>1n - 12
S 2 =

g1x i - m22
N - 1

= 10s2 =
g1x i - m22

N
= 8

E1s 22 = s2
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TABLE 6.9.1 Variances Computed from Samples
Shown in Table 5.3.1

Second Draw

6 8 10 12 14

6 0 2 8 18 32
8 2 0 2 8 18

First Draw 10 8 2 0 2 8
12 18 8 2 0 2
14 32 18 8 2 0 
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Sampling Without Replacement If we consider the case where sampling
is without replacement, the expected value of is obtained by taking the mean of all
variances above (or below) the principal diagonal. That is,

which, we see, is not equal to but is equal to 
These results are examples of general principles, as it can be shown that, in 

general,

when sampling is with replacement

when sampling is without replacement

When N is large, and N will be approximately equal and, consequently, 
and will be approximately equal.

These results justify our use of when computing the
sample variance. In passing, let us note that although is an unbiased estimator of

is not an unbiased estimator of The bias, however, diminishes rapidly as n
increases.

Interval Estimation of a Population Variance With a point estimate
available, it is logical to inquire about the construction of a confidence interval for a pop-
ulation variance. Whether we are successful in constructing a confidence interval for 
will depend on our ability to find an appropriate sampling distribution.

The Chi-Square Distribution Confidence intervals for are usually based
on the sampling distribution of If samples of size n are drawn from a nor-
mally distributed population, this quantity has a distribution known as the chi-square
distribution with degrees of freedom. As we will say more about this distribution in
chapter 12, we only say here that it is the distribution that the quantity fol-
lows and that it is useful in finding confidence intervals for when the assumption that
the population is normally distributed holds true.

Figure 6.9.1 shows chi-square distributions for several values of degrees of free-
dom. Percentiles of the chi-square distribution are given in Appendix Table F. The col-
umn headings give the values of to the left of which lies a proportion of the total
area under the curve equal to the subscript of The row labels are the degrees of
freedom.

To obtain a percent confidence interval for we first obtain the
percent confidence interval for To do this, we select the val-

ues of from Appendix Table F in such a way that is to the left of the smaller value
and is to the right of the larger value. In other words, the two values of are selected
in such a way that is divided equally between the two tails of the distribution. We maya

x2a>2 a>2x2
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designate these two values of as and respectively. The per-
cent confidence interval for then, is given by

We now manipulate this expression in such a way that we obtain an expression with
alone as the middle term. First, let us divide each term by to get

If we take the reciprocal of this expression, we have

Note that the direction of the inequalities changed when we took the reciprocals. If we
reverse the order of the terms, we have

(6.9.1)
1n - 12s2

x2
1-1a>22 6 s2 6
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FIGURE 6.9.1 Chi-square distributions for several values of degrees of freedom k.
(Source: Paul G. Hoel and Raymond J. Jessen, Basic Statistics for Business and
Economics, Wiley, 1971. Used with permission.)
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which is the percent confidence interval for If we take the square root
of each term in Expression 6.9.1, we have the following percent confidence
interval for the population standard deviation:

(6.9.2)

EXAMPLE 6.9.1

In a study of the effectiveness of a gluten-free diet in first-degree relatives of patients with
type I diabetics, Hummel et al. (A-22) placed seven subjects on a gluten-free diet for
12 months. Prior to the diet, they took baseline measurements of several antibodies and
autoantibodies, one of which was the diabetes related insulin autoantibody (IAA). The IAA
levels were measured by radiobinding assay. The seven subjects had IAA units of

9.7, 12.3, 11.2, 5.1, 24.8, 14.8, 17.7

We wish to estimate from the data in this sample the variance of the IAA units in the
population from which the sample was drawn and construct a 95 percent confidence inter-
val for this estimate.

Solution: The sample yielded a value of The degrees of freedom
are The appropriate values of from Appendix Table F are

and Our 95 percent confidence interval for
is

The 95 percent confidence interval for is

We are 95 percent confident that the parameters being estimated are within
the specified limits, because we know that in the long run, in repeated sam-
pling, 95 percent of intervals constructed as illustrated would include the
respective parameters. ■

Some Precautions Although this method of constructing confidence intervals
for is widely used, it is not without its drawbacks. First, the assumption of the nor-
mality of the population from which the sample is drawn is crucial, and results may be
misleading if the assumption is ignored.

Another difficulty with these intervals results from the fact that the estimator is not
in the center of the confidence interval, as is the case with the confidence interval for 
This is because the chi-square distribution, unlike the normal, is not symmetric. The prac-
tical implication of this is that the method for the construction of confidence intervals
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for which has just been described, does not yield the shortest possible confidence
intervals. Tate and Klett (12) give tables that may be used to overcome this difficulty.

EXERCISES

6.9.1 A study by Aizenberg et al. (A-23) examined the efficacy of sildenafil, a potent phosphodiesterase
inhibitor, in the treatment of elderly men with erectile dysfunction induced by antidepressant treat-
ment for major depressive disorder. The ages of the 10 enrollees in the study were

74, 81, 70, 70, 74, 77, 76, 70, 71, 72

Assume that the subjects in this sample constitute a simple random sample drawn from a popula-
tion of similar subjects. Construct a 95 percent confidence interval for the variance of the ages of
subjects in the population.

6.9.2 Borden et al. (A-24) performed experiments on cadaveric knees to test the effectiveness of several
meniscal repair techniques. Specimens were loaded into a servohydraulic device and tension-loaded
to failure. The biomechanical testing was performed by using a slow loading rate to simulate the
stresses that the medial meniscus might be subjected to during early rehabilitation exercises and
activities of daily living. One of the measures is the amount of displacement that occurs. Of the
12 specimens receiving the vertical mattress suture and the FasT-FIX method, the displacement
values measured in millimeters are 16.9, 20.2, 20.1, 15.7, 13.9, 14.9, 18.0, 18.5, 9.2, 18.8, 22.8,
17.5. Construct a 90 percent confidence interval for the variance of the displacement in millime-
ters for a population of subjects receiving these repair techniques.

6.9.3 Forced vital capacity determinations were made on 20 healthy adult males. The sample variance
was 1,000,000. Construct 90 percent confidence intervals for and 

6.9.4 In a study of myocardial transit times, appearance transit times were obtained on a sample of
30 patients with coronary artery disease. The sample variance was found to be 1.03. Construct
99 percent confidence intervals for and 

6.9.5 A sample of 25 physically and mentally healthy males participated in a sleep experiment in which
the percentage of each participant’s total sleeping time spent in a certain stage of sleep was
recorded. The variance computed from the sample data was 2.25. Construct 95 percent confidence
intervals for and 

6.9.6 Hemoglobin determinations were made on 16 animals exposed to a harmful chemical. The follow-
ing observations were recorded: 15.6, 14.8, 14.4, 16.6, 13.8, 14.0, 17.3, 17.4, 18.6, 16.2, 14.7, 15.7,
16.4, 13.9, 14.8, 17.5. Construct 95 percent confidence intervals for and 

6.9.7 Twenty air samples taken at the same site over a period of 6 months showed the following amounts
of suspended particulate matter (micrograms per cubic meter of air):

68 22 36 32
42 24 28 38
30 44 28 27
28 43 45 50
79 74 57 21

Consider these measurements to be a random sample from a population of normally distributed
measurements, and construct a 95 percent confidence interval for the population variance.

s.s2

s.s2

s.s2

s.s2

s2,
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6.10 CONFIDENCE INTERVAL 
FOR THE RATIO OF THE VARIANCES 
OF TWO NORMALLY DISTRIBUTED
POPULATIONS

It is frequently of interest to compare two variances, and one way to do this is to form
their ratio, If two variances are equal, their ratio will be equal to 1. We usually
will not know the variances of populations of interest, and, consequently, any compar-
isons we make will be based on sample variances. In other words, we may wish to esti-
mate the ratio of two population variances. We learned in Section 6.4 that the valid use
of the t distribution to construct a confidence interval for the difference between two
population means requires that the population variances be equal. The use of the ratio
of two population variances for determining equality of variances has been formalized
into a statistical test. The distribution of this test provides test values for determining
if the ratio exceeds the value 1 to a large enough extent that we may conclude that the
variances are not equal. The test is referred to as the F-max Test by Hartley (13) or the
Variance Ratio Test by Zar (14). Many computer programs provide some formalized
test of the equality of variances so that the assumption of equality of variances associ-
ated with many of the tests in the following chapters can be examined. If the confi-
dence interval for the ratio of two population variances includes 1, we conclude that
the two population variances may, in fact, be equal. Again, since this is a form of infer-
ence, we must rely on some sampling distribution, and this time the distribution of

is utilized provided certain assumptions are met. The assumptions are
that and are computed from independent samples of size and respectively,
drawn from two normally distributed populations. We use to designate the larger of
the two sample variances.

The F Distribution If the assumptions are met, follows a
distribution known as the F distribution. We defer a more complete discussion of this
distribution until chapter 8, but note that this distribution depends on two-degrees-of-
freedom values, one corresponding to the value of used in computing and
the other corresponding to the value of used in computing These are usu-
ally referred to as the numerator degrees of freedom and the denominator degrees of
freedom. Figure 6.10.1 shows some F distributions for several numerator and denomi-
nator degrees-of-freedom combinations. Appendix Table G contains, for specified com-
binations of degrees of freedom and values of values to the right of which lies 
of the area under the curve of F.

A Confidence Interval for To find the percent confi-
dence interval for we begin with the expression
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where and are the values from the F table to the left and right of which,
respectively, lies of the area under the curve. The middle term of this expression
may be rewritten so that the entire expression is

If we divide through by we have

Taking the reciprocals of the three terms gives

and if we reverse the order, we have the following percent confidence inter-
val for 

(6.10.1)

EXAMPLE 6.10.1

Allen and Gross (A-25) examine toe flexors strength in subjects with plantar fasciitis (pain
from heel spurs, or general heel pain), a common condition in patients with musculoskele-
tal problems. Inflammation of the plantar fascia is often costly to treat and frustrating for
both the patient and the clinician. One of the baseline measurements was the body mass
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FIGURE 6.10.1 The F distribution for various degrees of freedom.
(From Documenta Geigy, Scientific Tables, Seventh Edition, 1970.
Courtesy of Ciba-Geigy Limited, Basel, Switzerland.)
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index (BMI). For the 16 women in the study, the standard deviation for BMI was 8.1 and
for four men in the study, the standard deviation was 5.9. We wish to construct a 95 per-
cent confidence interval for the ratio of the variances of the two populations from which
we presume these samples were drawn.

Solution: We have the following information:

We are now ready to obtain our 95 percent confidence interval for
by substituting appropriate values into Expression 6.10.1:

We give this interval the appropriate probabilistic and practical interpretations.
Since the interval .1323 to 7.8221 includes 1, we are able to conclude

that the two population variances may be equal. ■

Finding and At this point we must make a cumbersome, but
unavoidable, digression and explain how the values and were
obtained. The value of at the intersection of the column headed and the row
labeled is 14.25. If we had a more extensive table of the F distribution, finding

would be no trouble; we would simply find as we found We would take
the value at the intersection of the column headed 15 and the row headed 3. To include
every possible percentile of F would make for a very lengthy table. Fortunately, however,
there exists a relationship that enables us to compute the lower percentile values from our
limited table. The relationship is as follows:

(6.10.2)

We proceed as follows.
Interchange the numerator and denominator degrees of freedom and locate the appro-

priate value of F. For the problem at hand we locate 4.15, which is at the intersection of
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the column headed 3 and the row labeled 15. We now take the reciprocal of this value,
In summary, the lower confidence limit (LCL) and upper confidence

limit (UCL) are as follows:

Alternative procedures for making inferences about the equality of two variances
when the sampled populations are not normally distributed may be found in the book by
Daniel (15).

Some Precautions Similar to the discussion in the previous section of con-
structing confidence intervals for , the assumption of normality of the populations from
which the samples are drawn is crucial to obtaining correct intervals for the ratio of vari-
ances discussed in this section. Fortunately, most statistical computer programs provide
alternatives to the F-ratio, such as Levene’s test, when the underlying distributions can-
not be assumed to be normally distributed. Computationally, Levene’s test uses a meas-
ure of distance from a sample median instead of a sample mean, hence removing the
assumption of normality.

EXERCISES

6.10.1 The purpose of a study by Moneim et al. (A-26) was to examine thumb amputations from team
roping at rodeos. The researchers reviewed 16 cases of thumb amputations. Of these, 11 were com-
plete amputations while five were incomplete. The ischemia time is the length of time that insuf-
ficient oxygen is supplied to the amputated thumb. The ischemia times (hours) for 11 subjects
experiencing complete amputations were

4.67, 10.5, 2.0, 3.18, 4.00, 3.5, 3.33, 5.32, 2.0, 4.25, 6.0

For five victims of incomplete thumb amputation, the ischemia times were

3.0, 10.25, 1.5, 5.22, 5.0

Treat the two reported sets of data as sample data from the two populations as described. 
Construct a 95 percent confidence interval for the ratio of the two unknown population 
variances.

6.10.2 The objective of a study by Horesh et al. (A-27) was to explore the hypothesis that some forms
of suicidal behavior among adolescents are related to anger and impulsivity. The sample consisted
of 65 adolescents admitted to a university-affiliated adolescent psychiatric unit. The researchers
used the Impulsiveness-Control Scale (ICS, A-28) where higher numbers indicate higher degrees
of impulsiveness and scores can range from 0 to 45. The 33 subjects classified as suicidal had an
ICS score standard deviation of 8.4 while the 32 nonsuicidal subjects had a standard deviation of
6.0. Assume that these two groups constitute independent simple random samples from two
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populations of similar subjects. Assume also that the ICS scores in these two populations are nor-
mally distributed. Find the 99 percent confidence interval for the ratio of the two population vari-
ances of scores on the ICS.

6.10.3 Stroke index values were statistically analyzed for two samples of patients suffering from
myocardial infarction. The sample variances were 12 and 10. There were 21 patients in 
each sample. Construct the 95 percent confidence interval for the ratio of the two population
variances.

6.10.4 Thirty-two adult asphasics seeking speech therapy were divided equally into two groups. Group 1
received treatment 1, and group 2 received treatment 2. Statistical analysis of the treatment effec-
tiveness scores yielded the following variances: Construct the 90 percent confi-
dence interval for 

6.10.5 Sample variances were computed for the tidal volumes (milliliters) of two groups of patients suf-
fering from atrial septal defect. The results and sample sizes were as follows:

Construct the 95 percent confidence interval for the ratio of the two population variances.

6.10.6 Glucose responses to oral glucose were recorded for 11 patients with Huntington’s disease (group 1)
and 13 control subjects (group 2). Statistical analysis of the results yielded the following sample
variances: Construct the 95 percent confidence interval for the ratio of the
two population variances.

6.10.7 Measurements of gastric secretion of hydrochloric acid (milliequivalents per hour) in 16 normal
subjects and 10 subjects with duodenal ulcer yielded the following results:

Normal subjects: 6.3, 2.0, 2.3, 0.5, 1.9, 3.2, 4.1, 4.0, 6.2, 6.1,
3.5, 1.3, 1.7, 4.5, 6.3, 6.2

Ulcer subjects: 13.7, 20.6, 15.9, 28.4, 29.4, 18.4, 21.1, 3.0,
26.2, 13.0

Construct a 95 percent confidence interval for the ratio of the two population variances. What
assumptions must be met for this procedure to be valid?

6.11 SUMMARY

This chapter is concerned with one of the major areas of statistical inference—estimation.
Both point estimation and interval estimation are covered. The concepts and methods
involved in the construction of confidence intervals are illustrated for the following
parameters: means, the difference between two means, proportions, the difference between
two proportions, variances, and the ratio of two variances. In addition, we learned in this
chapter how to determine the sample size needed to estimate a population mean and a
population proportion at specified levels of precision.

We learned, also, in this chapter that interval estimates of population parameters
are more desirable than point estimates because statements of confidence can be attached
to interval estimates.
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SUMMARY OF FORMULAS FOR CHAPTER 6

Formula Number Name Formula

6.2.1 Expression of estimator (reliability coefficient) 
an interval estimate 	 (standard error of the estimator)

6.2.2 Interval estimate
for when is 
known

6.3.1 t-transformation

6.3.2 Interval estimate
for when is 
unknown

6.4.1 Interval estimate
for the difference 
between two 
population means 
when and are 
known

6.4.2 Pooled variance
estimate

6.4.3 Standard error
of estimate

6.4.4 Interval estimate
for the difference 
between two 
population means 
when is unknown

6.4.5 Cochran’s
correction for 
reliability coefficient 
when variances 
are not equal 

6.4.6 Interval estimate 
using Cochran’s 
correction for t

6.5.1 Interval estimate 
for a population 
proportion
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(Continued)

6.6.1 Interval estimate
for the difference 
between two 
population
proportions

6.7.1–6.7.3 Sample size d � (reliability coefficient) 	 (standard error) 
determination
when sampling 
with replacement 

6.7.4–6.7.5 Sample size 
determination when 
sampling without 
replacement

6.8.1 Sample size
determination
for proportions 
when sampling 
with replacement

6.8.2 Sample size
determination for 
proportions when 
sampling without 
replacement

6.9.1 Interval estimate
for

6.9.2 Interval estimate
for

6.10.1 Interval estimate
for the ratio of 
two variances

6.10.2 Relationship 
among F ratios

Symbol Key • � Type 1 error rate
• � Chi-square distribution
• d � error component of interval estimate
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• df � degrees of freedom
• F � F-distribution
• � mean of population
• n � sample size
• p � proportion for population
• q � (1 � p)
• � estimated proportion for sample
• � population variance
• � population standard deviation
• � standard error
• s � standard deviation of sample
• sp � pooled standard deviation
• t � Student’s t-transformation
• t� � Cochran’s correction to t
• � mean of sample
• z � standard normal distribution

REVIEW QUESTIONS AND EXERCISES

1. What is statistical inference?

2. Why is estimation an important type of inference?

3. What is a point estimate?

4. Explain the meaning of unbiasedness.

5. Define the following:

(a) Reliability coefficient (c) Precision (e) Estimator

(b) Confidence coefficient (d) Standard error (f) Margin of error

6. Give the general formula for a confidence interval.

7. State the probabilistic and practical interpretations of a confidence interval.

8. Of what use is the central limit theorem in estimation?

9. Describe the t distribution.

10. What are the assumptions underlying the use of the t distribution in estimating a single popula-
tion mean?

11. What is the finite population correction? When can it be ignored?

12. What are the assumptions underlying the use of the t distribution in estimating the difference
between two population means?

13. Arterial blood gas analyses performed on a sample of 15 physically active adult males yielded the
following resting values:

75, 80, 80, 74, 84, 78, 89, 72, 83, 76, 75, 87, 78, 79, 88

PaO2

x

sx

s

s2
pN

m



Compute the 95 percent confidence interval for the mean of the population.

14. What proportion of asthma patients are allergic to house dust? In a sample of 140, 35 percent
had positive skin reactions. Construct the 95 percent confidence interval for the population 
proportion.

15. An industrial hygiene survey was conducted in a large metropolitan area. Of 70 manufacturing
plants of a certain type visited, 21 received a “poor” rating with respect to absence of safety haz-
ards. Construct a 95 percent confidence interval for the population proportion deserving a “poor”
rating.

16. Refer to the previous problem. How large a sample would be required to estimate the population
proportion to within .05 with 95 percent confidence (.30 is the best available estimate of p):

(a) If the finite population correction can be ignored?

(b) If the finite population correction is not ignored and N 1500?

17. In a dental survey conducted by a county dental health team, 500 adults were asked to give the
reason for their last visit to a dentist. Of the 220 who had less than a high-school education, 44
said they went for preventative reasons. Of the remaining 280, who had a high-school educa-
tion or better, 150 stated that they went for preventative reasons. Construct a 95 percent confi-
dence interval for the difference between the two population proportions.

18. A breast cancer research team collected the following data on tumor size:

Type of Tumor n s

A 21 3.85 cm 1.95 cm
B 16 2.80 cm 1.70 cm

Construct a 95 percent confidence interval for the difference between population means.

19. A certain drug was found to be effective in the treatment of pulmonary disease in 180 of 200
cases treated. Construct the 90 percent confidence interval for the population proportion.

20. Seventy patients with stasis ulcers of the leg were randomly divided into two equal groups. Each
group received a different treatment for edema. At the end of the experiment, treatment effective-
ness was measured in terms of reduction in leg volume as determined by water displacement. The
means and standard deviations for the two groups were as follows:

Group (Treatment) s

A 95 cc 25
B 125 cc 30

Construct a 95 percent confidence interval for the difference in population means.

21. What is the average serum bilirubin level of patients admitted to a hospital for treatment of hep-
atitis? A sample of 10 patients yielded the following results:

20.5, 14.8, 21.3, 12.7, 15.2, 26.6, 23.4, 22.9, 15.7, 19.2

Construct a 95 percent confidence interval for the population mean.

x

x

=
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22. Determinations of saliva pH levels were made in two independent random samples of seventh-
grade schoolchildren. Sample A children were caries-free while sample B children had a high
incidence of caries. The results were as follows:

A: 7.14, 7.11, 7.61, 7.98, 7.21, 7.16, 7.89 B: 7.36, 7.04, 7.19, 7.41, 7.10, 7.15, 7.36,
7.24, 7.86, 7.47, 7.82, 7.37, 7.66, 7.62, 7.65 7.57, 7.64, 7.00, 7.25, 7.19

Construct a 90 percent confidence interval for the difference between the population means.
Assume that the population variances are equal.

23. Drug A was prescribed for a random sample of 12 patients complaining of insomnia. An independ-
ent random sample of 16 patients with the same complaint received drug B. The number of hours of
sleep experienced during the second night after treatment began were as follows:

A: 3.5, 5.7, 3.4, 6.9, 17.8, 3.8, 3.0, 6.4, 6.8, 3.6, 6.9, 5.7

B: 4.5, 11.7, 10.8, 4.5, 6.3, 3.8, 6.2, 6.6, 7.1, 6.4, 4.5,
5.1, 3.2, 4.7, 4.5, 3.0

Construct a 95 percent confidence interval for the difference between the population means.
Assume that the population variances are equal.

24. The objective of a study by Crane et al. (A-29) was to examine the efficacy, safety, and maternal
satisfaction of (a) oral misoprostol and (b) intravenous oxytocin for labor induction in women with
premature rupture of membranes at term. Researchers randomly assigned women to the two treat-
ments. For the 52 women who received oral misoprostol, the mean time in minutes to active labor
was 358 minutes with a standard deviation of 308 minutes. For the 53 women taking oxytocin,
the mean time was 483 minutes with a standard deviation of 144 minutes. Construct a 99 percent
confidence interval for the difference in mean time to active labor for these two different medica-
tions. What assumptions must be made about the reported data? Describe the population about
which an inference can be made.

25. Over a 2-year period, 34 European women with previous gestational diabetes were retrospec-
tively recruited from West London antenatal databases for a study conducted by Kousta et al.
(A-30). One of the measurements for these women was the fasting nonesterified fatty acids con-
centration (NEFA) measured in In the sample of 34 women, the mean NEFA level was
435 with a sample standard deviation of 215.0. Construct a 95 percent confidence interval for
the mean fasting NEFA level for a population of women with gestational diabetes. State all
necessary assumptions about the reported data and subjects.

26. Scheid et al. (A-31) questioned 387 women receiving free bone mineral density screening. The
questions focused on past smoking history. Subjects undergoing hormone replacement therapy
(HRT), and subjects not undergoing HRT, were asked if they had ever been a regular smoker. In
the HRT group, 29.3 percent of 220 women stated that they were at some point in their life a reg-
ular smoker. In the non–HRT group, 17.3 percent of 106 women responded positively to being at
some point in their life a regular smoker. (Sixty-one women chose not to answer the question.)
Construct a 95 percent confidence interval for the difference in smoking percentages for the two
populations of women represented by the subjects in the study. What assumptions about the data
are necessary?

27. The purpose of a study by Elliott et al. (A-32) was to assess the prevalence of vitamin D defi-
ciency in women living in nursing homes. The sample consisted of 39 women in a 120-bed skilled
nursing facility. Women older than 65 years of age who were long-term residents were invited 
to participate if they had no diagnosis of terminal cancer or metastatic disease. In the sample, 

mmol/L.
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23 women had 25-hydroxyvitamin D levels of 20 ng/ml or less. Construct a 95 percent confidence
interval for the percent of women with vitamin D deficiency in the population presumed to be rep-
resented by this sample.

28. In a study of the role of dietary fats in the etiology of ischemic heart disease the subjects were
60 males between 40 and 60 years of age who had recently had a myocardial infarction and 50
apparently healthy males from the same age group and social class. One variable of interest in
the study was the proportion of linoleic acid (L.A.) in the subjects’ plasma triglyceride fatty acids.
The data on this variable were as follows:

Subjects with Myocardial Infarction

Subject L.A. Subject L.A. Subject L.A. Subject L.A.

1 18.0 2 17.6 3 9.6 4 5.5
5 16.8 6 12.9 7 14.0 8 8.0
9 8.9 10 15.0 11 9.3 12 5.8

13 8.3 14 4.8 15 6.9 16 18.3
17 24.0 18 16.8 19 12.1 20 12.9
21 16.9 22 15.1 23 6.1 24 16.6
25 8.7 26 15.6 27 12.3 28 14.9
29 16.9 30 5.7 31 14.3 32 14.1
33 14.1 34 15.1 35 10.6 36 13.6
37 16.4 38 10.7 39 18.1 40 14.3
41 6.9 42 6.5 43 17.7 44 13.4
45 15.6 46 10.9 47 13.0 48 10.6
49 7.9 50 2.8 51 15.2 52 22.3
53 9.7 54 15.2 55 10.1 56 11.5
57 15.4 58 17.8 59 12.6 60 7.2

Healthy Subjects

Subject L.A. Subject L.A. Subject L.A. Subject L.A.

1 17.1 2 22.9 3 10.4 4 30.9
5 32.7 6 9.1 7 20.1 8 19.2
9 18.9 10 20.3 11 35.6 12 17.2

13 5.8 14 15.2 15 22.2 16 21.2
17 19.3 18 25.6 19 42.4 20 5.9
21 29.6 22 18.2 23 21.7 24 29.7
25 12.4 26 15.4 27 21.7 28 19.3
29 16.4 30 23.1 31 19.0 32 12.9
33 18.5 34 27.6 35 25.0 36 20.0
37 51.7 38 20.5 39 25.9 40 24.6
41 22.4 42 27.1 43 11.1 44 32.7
45 13.2 46 22.1 47 13.5 48 5.3
49 29.0 50 20.2

Construct the 95 percent confidence interval for the difference between population means. What do
these data suggest about the levels of linoleic acid in the two sampled populations?
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29. The purpose of a study by Tahmassebi and Curzon (A-33) was to compare the mean salivary flow
rate among subjects with cerebral palsy and among subjects in a control group. Each group had 10
subjects. The following table gives the mean flow rate in ml /minute as well as the standard error.

Group Sample Size Mean ml/minute Standard Error

Cerebral palsy 10 0.220 0.0582
Control 10 0.334 0.1641

Source: J. F. Tahmassebi and M. E. J. Curzon, “The Cause of Drooling in Children
with Cerebral Palsy—Hypersalivation or Swallowing Defect?” International Journal of
Paediatric Dentistry, 13 (2003), 106–111.

Construct the 90 percent confidence interval for the difference in mean salivary flow rate for the
two populations of subjects represented by the sample data. State the assumptions necessary for
this to be a valid confidence interval.

30. Culligan et al. (A-34) compared the long-term results of two treatments: (a) a modified Burch pro-
cedure, and (b) a sling procedure for stress incontinence with a low-pressure urethra. Thirty-six
women took part in the study with 19 in the Burch treatment group and 17 in the sling procedure
treatment group. One of the outcome measures at three months post-surgery was maximum ure-
thral closure pressure (cm In the Burch group the mean and standard deviation were 16.4
and 8.2 cm, respectively. In the sling group, the mean and standard deviation were 39.8 and 23.0,
respectively. Construct the 99 percent confidence interval for the difference in mean maximum ure-
thral closure pressure for the two populations represented by these subjects. State all necessary
assumptions.

31. In general, narrow confidence intervals are preferred over wide ones. We can make an interval nar-
row by using a small confidence coefficient. For a given set of other conditions, what happens to
the level of confidence when we use a small confidence coefficient? What would happen to the
interval width and the level of confidence if we were to use a confidence coefficient of zero?

32. In general, a high level of confidence is preferred over a low level of confidence. For a given set
of other conditions, suppose we set our level of confidence at 100 percent. What would be the
effect of such a choice on the width of the interval?

33. The subjects of a study by Borland et al. (A-35) were children in acute pain. Thirty-two children who
presented at an emergency room were enrolled in the study. Each child used the visual analogue scale
to rate pain on a scale from 0 to 100 mm. The mean pain score was 61.3 mm with a 95 percent con-
fidence interval of 53.2 mm–69.4 mm. Which would be the appropriate reliability factor for the inter-
val, z or t? Justify your choice. What is the precision of the estimate? The margin of error?

34. Does delirium increase hospital stay? That was the research question investigated by McCusker 
et al. (A-36). The researchers sampled 204 patients with prevalent delirium and 118 without delir-
ium. The conclusion of the study was that patients with prevalent delirium did not have a higher
mean length of stay compared to those without delirium. What was the target population? The
sampled population?

35. Assessing driving self-restriction in relation to vision performance was the objective of a study
by West et al. (A-37). The researchers studied 629 current drivers ages 55 and older for 2 years.
The variables of interest were driving behavior, health, physical function, and vision function.
The subjects were part of a larger vision study at the Smith-Kettlewell Eye Research Institute.
A conclusion of the study was that older adults with early changes in spatial vision function

H2O2.
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and depth perception appear to recognize their limitations and restrict their driving. What was
the target population? The sampled population?

36. In a pilot study conducted by Ayouba et al. (A-38), researchers studied 123 children born of HIV-1-
infected mothers in Yaoundé, Cameroon. Counseled and consenting pregnant women were given a
single dose of nevirapine at the onset of labor. Babies were given a syrup containing nevirapine within
the first 72 hours of life. The researchers found that 87 percent of the children were considered not
infected at 6–8 weeks of age. What is the target population? What is the sampled population?

37. Refer to Exercise 2.3.11. Construct a 95 percent confidence interval for the population mean S/R
ratio. Should you use t or z as the reliability coefficient? Why? Describe the population about
which inferences based on this study may be made.

38. Refer to Exercise 2.3.12. Construct a 90 percent confidence interval for the population mean height.
Should you use t or z as the reliability coefficient? Why? Describe the population about which
inferences based on this study may be made.

Exercises for Use with Large Data Sets Available on the Following Website: 
www.wiley.com/college/daniel

1. Refer to North Carolina Birth Registry Data NCBIRTH800 with 800 observations (see Large Data
Exercise 1 in Chapter 2). Calculate 95 percent confidence intervals for the following:

(a) the percentage of male children

(b) the mean age of a mother giving birth

(c) the mean weight gained during pregnancy

(d) the percentage of mothers admitting to smoking during pregnancy

(e) the difference in the average weight gained between smoking and nonsmoking mothers

(f) the difference in the average birth weight in grams between married and nonmarried mothers

(g) the difference in the percentage of low birth weight babies between married and nonmarried
mothers

2. Refer to the serum cholesterol levels for 1000 subjects (CHOLEST). Select a simple random sam-
ple of size 15 from this population and construct a 95 percent confidence interval for the popula-
tion mean. Compare your results with those of your classmates. What assumptions are necessary
for your estimation procedure to be valid?

3. Refer to the serum cholesterol levels for 1000 subjects (CHOLEST). Select a simple random sam-
ple of size 50 from the population and construct a 95 percent confidence interval for the proportion
of subjects in the population who have readings greater than 225. Compare your results with those
of your classmates.

4. Refer to the weights of 1200 babies born in a community hospital (BABY WGTS). Draw a sim-
ple random sample of size 20 from this population and construct a 95 percent confidence interval
for the population mean. Compare your results with those of your classmates. What assumptions
are necessary for your estimation procedure to be valid?

5. Refer to the weights of 1200 babies born in a community hospital (BABY WGTS). Draw a simple ran-
dom sample of size 35 from the population and construct a 95 percent confidence interval for the pop-
ulation mean. Compare this interval with the one constructed in Exercise 4.

6. Refer to the heights of 1000 twelve-year-old boys (BOY HGTS). Select a simple random sample
of size 15 from this population and construct a 99 percent confidence interval for the population
mean. What assumptions are necessary for this procedure to be valid?
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7. Refer to the heights of 1000 twelve-year-old boys (BOY HGTS). Select a simple random sample
of size 35 from the population and construct a 99 percent confidence interval for the population
mean. Compare this interval with the one constructed in Exercise 5.
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CHAPTER OVERVIEW

This chapter covers hypothesis testing, the second of two general areas of
statistical inference. Hypothesis testing is a topic with which you as a student are
likely to have some familiarity. Interval estimation, discussed in the preceding
chapter, and hypothesis testing are based on similar concepts. In fact, confi-
dence intervals may be used to arrive at the same conclusions that are reached
through the use of hypothesis tests. This chapter provides a format, followed
throughout the remainder of this book, for conducting a hypothesis test.

TOPICS

7.1 INTRODUCTION

7.2 HYPOTHESIS TESTING: A SINGLE POPULATION MEAN

7.3 HYPOTHESIS TESTING: THE DIFFERENCE BETWEEN TWO POPULATION MEANS

7.4 PAIRED COMPARISONS

7.5 HYPOTHESIS TESTING: A SINGLE POPULATION PROPORTION

7.6 HYPOTHESIS TESTING: THE DIFFERENCE BETWEEN TWO POPULATION 
PROPORTIONS

7.7 HYPOTHESIS TESTING: A SINGLE POPULATION VARIANCE

7.8 HYPOTHESIS TESTING: THE RATIO OF TWO POPULATION VARIANCES

7.9 THE TYPE II ERROR AND THE POWER OF A TEST

7.10 DETERMINING SAMPLE SIZE TO CONTROL TYPE II ERRORS

7.11 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how to correctly state a null and alternative hypothesis and carry out 

a structured hypothesis test.
2. understand the concepts of type I error, type II error, and the power of a test.
3. be able to calculate and interpret z, t, F, and chi-square test statistics for making 

statistical inferences.
4. understand how to calculate and interpret p values.

CHAPTER7
HYPOTHESIS TESTING



7.1 INTRODUCTION

One type of statistical inference, estimation, is discussed in the preceding chapter.
The other type, hypothesis testing, is the subject of this chapter. As is true with esti-
mation, the purpose of hypothesis testing is to aid the clinician, researcher, or admin-
istrator in reaching a conclusion concerning a population by examining a sample from
that population. Estimation and hypothesis testing are not as different as they are
made to appear by the fact that most textbooks devote a separate chapter to each. As
we will explain later, one may use confidence intervals to arrive at the same conclu-
sions that are reached by using the hypothesis testing procedures discussed in this
chapter.

Basic Concepts In this section some of the basic concepts essential to an under-
standing of hypothesis testing are presented. The specific details of particular tests will
be given in succeeding sections.

DEFINITION
A hypothesis may be defined simply as a statement about one or more
populations.

The hypothesis is frequently concerned with the parameters of the populations
about which the statement is made. A hospital administrator may hypothesize that the
average length of stay of patients admitted to the hospital is 5 days; a public health nurse
may hypothesize that a particular educational program will result in improved commu-
nication between nurse and patient; a physician may hypothesize that a certain drug will
be effective in 90 percent of the cases for which it is used. By means of hypothesis test-
ing one determines whether or not such statements are compatible with the available
data.

Types of Hypotheses Researchers are concerned with two types of hypotheses—
research hypotheses and statistical hypotheses.

DEFINITION
The research hypothesis is the conjecture or supposition that motivates
the research.

It may be the result of years of observation on the part of the researcher. A public
health nurse, for example, may have noted that certain clients responded more readily to
a particular type of health education program. A physician may recall numerous instances
in which certain combinations of therapeutic measures were more effective than any one of
them alone. Research projects often result from the desire of such health practitioners to
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determine whether or not their theories or suspicions can be supported when subjected
to the rigors of scientific investigation.

Research hypotheses lead directly to statistical hypotheses.

DEFINITION
Statistical hypotheses are hypotheses that are stated in such a way that
they may be evaluated by appropriate statistical techniques.

In this book the hypotheses that we will focus on are statistical hypotheses. We
will assume that the research hypotheses for the examples and exercises have already
been considered.

Hypothesis Testing Steps For convenience, hypothesis testing will be pre-
sented as a ten-step procedure. There is nothing magical or sacred about this particu-
lar format. It merely breaks the process down into a logical sequence of actions and
decisions.

1. Data. The nature of the data that form the basis of the testing procedures must be
understood, since this determines the particular test to be employed. Whether the
data consist of counts or measurements, for example, must be determined.

2. Assumptions. As we learned in the chapter on estimation, different assump-
tions lead to modifications of confidence intervals. The same is true in hypoth-
esis testing: A general procedure is modified depending on the assumptions. In
fact, the same assumptions that are of importance in estimation are important
in hypothesis testing. We have seen that these include assumptions about the nor-
mality of the population distribution, equality of variances, and independence of
samples.

3. Hypotheses. There are two statistical hypotheses involved in hypothesis testing,
and these should be stated explicitly. The null hypothesis is the hypothesis to be
tested. It is designated by the symbol The null hypothesis is sometimes
referred to as a hypothesis of no difference, since it is a statement of agreement
with (or no difference from) conditions presumed to be true in the population of
interest. In general, the null hypothesis is set up for the express purpose of being
discredited. Consequently, the complement of the conclusion that the researcher
is seeking to reach becomes the statement of the null hypothesis. In the testing
process the null hypothesis either is rejected or is not rejected. If the null hypoth-
esis is not rejected, we will say that the data on which the test is based do not
provide sufficient evidence to cause rejection. If the testing procedure leads to
rejection, we will say that the data at hand are not compatible with the null
hypothesis, but are supportive of some other hypothesis. The alternative hypoth-
esis is a statement of what we will believe is true if our sample data cause us to
reject the null hypothesis. Usually the alternative hypothesis and the research
hypothesis are the same, and in fact the two terms are used interchangeably. We
shall designate the alternative hypothesis by the symbol HA.

H0.
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Rules for Stating Statistical Hypotheses When hypotheses are of the
type considered in this chapter an indication of equality (either or ) must appear
in the null hypothesis. Suppose, for example, that we want to answer the question: Can
we conclude that a certain population mean is not 50? The null hypothesis is

and the alternative is

Suppose we want to know if we can conclude that the population mean is greater than
50. Our hypotheses are

If we want to know if we can conclude that the population mean is less than 50, the
hypotheses are

In summary, we may state the following rules of thumb for deciding what state-
ment goes in the null hypothesis and what statement goes in the alternative hypothesis:

(a) What you hope or expect to be able to conclude as a result of the test usually
should be placed in the alternative hypothesis.

(b) The null hypothesis should contain a statement of equality, either or

(c) The null hypothesis is the hypothesis that is tested.

(d) The null and alternative hypotheses are complementary. That is, the two together
exhaust all possibilities regarding the value that the hypothesized parameter can
assume.

A Precaution It should be pointed out that neither hypothesis testing nor statisti-
cal inference, in general, leads to the proof of a hypothesis; it merely indicates whether
the hypothesis is supported or is not supported by the available data. When we fail to
reject a null hypothesis, therefore, we do not say that it is true, but that it may be true.
When we speak of accepting a null hypothesis, we have this limitation in mind and do
not wish to convey the idea that accepting implies proof.

4. Test statistic. The test statistic is some statistic that may be computed from the
data of the sample. As a rule, there are many possible values that the test statistic
may assume, the particular value observed depending on the particular sample
drawn. As we will see, the test statistic serves as a decision maker, since the decision

Ú .… ,= ,

H0: m Ú 50  HA: m 6 50

H0: m … 50  HA: m 7 50

HA: m Z 50

H0: m = 50

Ú… ,= ,
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to reject or not to reject the null hypothesis depends on the magnitude of the test
statistic. An example of a test statistic is the quantity

(7.1.1)

where is a hypothesized value of a population mean. This test statistic is related
to the statistic

(7.1.2)

with which we are already familiar.

General Formula for Test Statistic The following is a general formula for
a test statistic that will be applicable in many of the hypothesis tests discussed in this book:

In Equation 7.1.1, is the relevant statistic, is the hypothesized parameter, and 
is the standard error of , the relevant statistic.

5. Distribution of test statistic. It has been pointed out that the key to statistical
inference is the sampling distribution. We are reminded of this again when it
becomes necessary to specify the probability distribution of the test statistic. The
distribution of the test statistic

for example, follows the standard normal distribution if the null hypothesis is true
and the assumptions are met.

6. Decision rule. All possible values that the test statistic can assume are points on
the horizontal axis of the graph of the distribution of the test statistic and are divided
into two groups; one group constitutes what is known as the rejection region and the
other group makes up the nonrejection region. The values of the test statistic form-
ing the rejection region are those values that are less likely to occur if the null hypoth-
esis is true, while the values making up the acceptance region are more likely to
occur if the null hypothesis is true. The decision rule tells us to reject the null hypoth-
esis if the value of the test statistic that we compute from our sample is one of the
values in the rejection region and to not reject the null hypothesis if the computed
value of the test statistic is one of the values in the nonrejection region.

Significance Level The decision as to which values go into the rejection region
and which ones go into the nonrejection region is made on the basis of the desired level
of significance, designated by . The term level of significance reflects the fact that
hypothesis tests are sometimes called significance tests, and a computed value of the test

a

z =
x - m0

s>1n

x
s>1nm0x

test statistic =
relevant statistic - hypothesized parameter

standard error of the relevant statistic

z =
x - m
s>1n

m0

z =
x - m0

s>1n
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statistic that falls in the rejection region is said to be significant. The level of significance,
, specifies the area under the curve of the distribution of the test statistic that is above

the values on the horizontal axis constituting the rejection region.

DEFINITION
The level of significance is a probability and, in fact, is the probability
of rejecting a true null hypothesis.

Since to reject a true null hypothesis would constitute an error, it seems only rea-
sonable that we should make the probability of rejecting a true null hypothesis small and,
in fact, that is what is done. We select a small value of in order to make the proba-
bility of rejecting a true null hypothesis small. The more frequently encountered values
of are .01, .05, and .10.

Types of Errors The error committed when a true null hypothesis is rejected is
called the type I error. The type II error is the error committed when a false null hypoth-
esis is not rejected. The probability of committing a type II error is designated by .

Whenever we reject a null hypothesis there is always the concomitant risk of com-
mitting a type I error, rejecting a true null hypothesis. Whenever we fail to reject a null
hypothesis the risk of failing to reject a false null hypothesis is always present. We make

small, but we generally exercise no control over , although we know that in most
practical situations it is larger than .

We never know whether we have committed one of these errors when we reject
or fail to reject a null hypothesis, since the true state of affairs is unknown. If the test-
ing procedure leads to rejection of the null hypothesis, we can take comfort from the
fact that we made small and, therefore, the probability of committing a type I error
was small. If we fail to reject the null hypothesis, we do not know the concurrent risk
of committing a type II error, since is usually unknown but, as has been pointed out,
we do know that, in most practical situations, it is larger than .

Figure 7.1.1 shows for various conditions of a hypothesis test the possible actions
that an investigator may take and the conditions under which each of the two types of
error will be made. The table shown in this figure is an example of what is generally
referred to as a confusion matrix.

7. Calculation of test statistic. From the data contained in the sample we compute
a value of the test statistic and compare it with the rejection and nonrejection
regions that have already been specified.

a

b

a

a

ba

b

a

a

A

a
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8. Statistical decision. The statistical decision consists of rejecting or of not reject-
ing the null hypothesis. It is rejected if the computed value of the test statistic falls
in the rejection region, and it is not rejected if the computed value of the test sta-
tistic falls in the nonrejection region.

9. Conclusion. If is rejected, we conclude that is true. If is not rejected,
we conclude that may be true.

10. p values. The p value is a number that tells us how unusual our sample results
are, given that the null hypothesis is true. A p value indicating that the sample
results are not likely to have occurred, if the null hypothesis is true, provides jus-
tification for doubting the truth of the null hypothesis.

DEFINITION
A p value is the probability that the computed value of a test statistic is
at least as extreme as a specified value of the test statistic when the null
hypothesis is true. Thus, the p value is the smallest value of for which
we can reject a null hypothesis.

We emphasize that when the null hypothesis is not rejected one should not say that
the null hypothesis is accepted. We should say that the null hypothesis is “not rejected.”
We avoid using the word “accept” in this case because we may have committed a type II
error. Since, frequently, the probability of committing a type II error can be quite high, we
do not wish to commit ourselves to accepting the null hypothesis.

Figure 7.1.2 is a flowchart of the steps that we follow when we perform a hypothe-
sis test.

Purpose of Hypothesis Testing The purpose of hypothesis testing is to
assist administrators and clinicians in making decisions. The administrative or clinical
decision usually depends on the statistical decision. If the null hypothesis is rejected, the
administrative or clinical decision usually reflects this, in that the decision is compatible
with the alternative hypothesis. The reverse is usually true if the null hypothesis is not
rejected. The administrative or clinical decision, however, may take other forms, such as
a decision to gather more data.

We also emphasize that the hypothesis testing procedures highlighted in the remain-
der of this chapter generally examine the case of normally distributed data or cases where
the procedures are appropriate because the central limit theorem applies. In practice, it
is not uncommon for samples to be small relative to the size of the population, or to
have samples that are highly skewed, and hence the assumption of normality is violated.
Methods to handle this situation, that is distribution-free or nonparametric methods, are
examined in detail in Chapter 13. Most computer packages include an analytical proce-
dure (for example, the Shapiro-Wilk or Anderson-Darling test) for testing normality. It
is important that such tests are carried out prior to analysis of data. Further, when test-
ing two samples, there is an implicit assumption that the variances are equal. Tests for
this assumption are provided in Section 7.8. Finally, it should be noted that hypothesis

A

H0

H0HAH0
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tests, just like confidence intervals, are relatively sensitive to the size of the samples being
tested, and caution should be taken when interpreting results involving very small sample
sizes.

We must emphasize at this point, however, that the outcome of the statistical test
is only one piece of evidence that influences the administrative or clinical decision. The
statistical decision should not be interpreted as definitive but should be considered along
with all the other relevant information available to the experimenter.

With these general comments as background, we now discuss specific hypoth-
esis tests.
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7.2 HYPOTHESIS TESTING: 
A SINGLE POPULATION MEAN

In this section we consider the testing of a hypothesis about a population mean under
three different conditions: (1) when sampling is from a normally distributed population
of values with known variance; (2) when sampling is from a normally distributed pop-
ulation with unknown variance, and (3) when sampling is from a population that is not
normally distributed. Although the theory for conditions 1 and 2 depends on normally
distributed populations, it is common practice to make use of the theory when relevant
populations are only approximately normally distributed. This is satisfactory as long as
the departure from normality is not drastic. When sampling is from a normally distrib-
uted population and the population variance is known, the test statistic for testing

is

(7.2.1)

which, when is true, is distributed as the standard normal. Examples 7.2.1 and 7.2.2
illustrate hypothesis testing under these conditions.

Sampling from Normally Distributed Populations: Population
Variances Known As we did in Chapter 6, we again emphasize that situations in
which the variable of interest is normally distributed with a known variance are rare. The
following example, however, will serve to illustrate the procedure.

EXAMPLE 7.2.1

Researchers are interested in the mean age of a certain population. Let us say that they
are asking the following question: Can we conclude that the mean age of this popula-
tion is different from 30 years?

Solution: Based on our knowledge of hypothesis testing, we reply that they can con-
clude that the mean age is different from 30 if they can reject the null
hypothesis that the mean is equal to 30. Let us use the ten-step hypothesis
testing procedure given in the previous section to help the researchers reach
a conclusion.

1. Data. The data available to the researchers are the ages of a simple ran-
dom sample of 10 individuals drawn from the population of interest.
From this sample a mean of has been computed.

2. Assumptions. It is assumed that the sample comes from a population
whose ages are approximately normally distributed. Let us also assume
that the population has a known variance of 

3. Hypotheses. The hypothesis to be tested, or null hypothesis, is that the
mean age of the population is equal to 30. The alternative hypothesis is

s2 = 20.

x = 27

H0

z =
x - m
s>1n

H0: m = m0
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that the mean age of the population is not equal to 30. Note that we are
identifying with the alternative hypothesis the conclusion the researchers
wish to reach, so that if the data permit rejection of the null hypothesis,
the researchers’ conclusion will carry more weight, since the accompa-
nying probability of rejecting a true null hypothesis will be small. We
will make sure of this by assigning a small value to , the probability
of committing a type I error. We may present the relevant hypotheses in
compact form as follows:

4. Test statistic. Since we are testing a hypothesis about a population
mean, since we assume that the population is normally distributed, and
since the population variance is known, our test statistic is given by
Equation 7.2.1.

5. Distribution of test statistic. Based on our knowledge of sampling
distributions and the normal distribution, we know that the test statis-
tic is normally distributed with a mean of 0 and a variance of 1, if 

is true. There are many possible values of the test statistic that
the present situation can generate; one for every possible sample of
size 10 that can be drawn from the population. Since we draw only
one sample, we have only one of these possible values on which to
base a decision.

6. Decision rule. The decision rule tells us to reject if the computed
value of the test statistic falls in the rejection region and to fail to reject

if it falls in the nonrejection region. We must now specify the rejec-
tion and nonrejection regions. We can begin by asking ourselves what
magnitude of values of the test statistic will cause rejection of . If the
null hypothesis is false, it may be so either because the population mean
is less than 30 or because the population mean is greater than 30. There-
fore, either sufficiently small values or sufficiently large values of the
test statistic will cause rejection of the null hypothesis. We want these
extreme values to constitute the rejection region. How extreme must a
possible value of the test statistic be to qualify for the rejection region?
The answer depends on the significance level we choose, that is, the size
of the probability of committing a type I error. Let us say that we want
the probability of rejecting a true null hypothesis to be . Since
our rejection region is to consist of two parts, sufficiently small values
and sufficiently large values of the test statistic, part of will have to
be associated with the large values and part with the small values. It
seems reasonable that we should divide equally and let 
be associated with small values and be associated with large
values.

a>2 = .025
a>2 = .025a

a

a = .05

H0

H0

H0

H0

HA: m Z 30

H0: m = 30

a
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Critical Value of Test Statistic

What value of the test statistic is so large that, when the null hypothesis is true, the
probability of obtaining a value this large or larger is .025? In other words, what is the
value of z to the right of which lies .025 of the area under the standard normal distri-
bution? The value of z to the right of which lies .025 of the area is the same value that
has .975 of the area between it and . We look in the body of Appendix Table D
until we find .975 or its closest value and read the corresponding marginal entries to
obtain our z value. In the present example the value of z is 1.96. Similar reasoning will
lead us to find as the value of the test statistic so small that when the null hypoth-
esis is true, the probability of obtaining a value this small or smaller is .025. Our rejec-
tion region, then, consists of all values of the test statistic equal to or greater than 1.96
and less than or equal to . The nonrejection region consists of all values in
between. We may state the decision rule for this test as follows: reject if the com-
puted value of the test statistic is either or . Otherwise, do not reject

. The rejection and nonrejection regions are shown in Figure 7.2.1. The values of the
test statistic that separate the rejection and nonrejection regions are called critical val-
ues of the test statistic, and the rejection region is sometimes referred to as the critical
region.

The decision rule tells us to compute a value of the test statistic from the data of
our sample and to reject if we get a value that is either equal to or greater than 1.96
or equal to or less than and to fail to reject if we get any other value. The
value of and, hence, the decision rule should be decided on before gathering the data.
This prevents our being accused of allowing the sample results to influence our choice
of . This condition of objectivity is highly desirable and should be preserved in all
tests.

7. Calculation of test statistic. From our sample we compute

8. Statistical decision. Abiding by the decision rule, we are able to
reject the null hypothesis since is in the rejection region. We-2.12

z =
27 - 30120>10

=
-3

1.4142
= -2.12

a

a

H0-1.96
H0

H0

… -1.961.96Ú
H0

-1.96

-1.96

-q
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can say that the computed value of the test statistic is significant at
the .05 level.

9. Conclusion. We conclude that is not equal to 30 and let our 
administrative or clinical actions be in accordance with this conclu-
sion.

10. p values. Instead of saying that an observed value of the test statis-
tic is significant or is not significant, most writers in the research lit-
erature prefer to report the exact probability of getting a value as
extreme as or more extreme than that observed if the null hypothe-
sis is true. In the present instance these writers would give the com-
puted value of the test statistic along with the statement .
The statement means that the probability of getting a value
as extreme as 2.12 in either direction, when the null hypothesis is
true, is .0340. The value .0340 is obtained from Appendix Table D
and is the probability of observing a or a when
the null hypothesis is true. That is, when is true, the probabil-
ity of obtaining a value of z as large as or larger than 2.12 is .0170,
and the probability of observing a value of z as small as or smaller
than is .0170. The probability of one or the other of these events
occurring, when is true, is equal to the sum of the two individ-
ual probabilities, and hence, in the present example, we say that

.

Recall that the p value for a test may be defined also as the small-
est value of for which the null hypothesis can be rejected. Since, in
Example 7.2.1, our p value is .0340, we know that we could have chosen
an value as small as .0340 and still have rejected the null hypothesis.
If we had chosen an smaller than .0340, we would not have been 
able to reject the null hypothesis. A general rule worth remembering, 
then, is this: if the p value is less than or equal to , we reject the null
hypothesis; if the p value is greater than , we do not reject the null
hypothesis.

The reporting of p values as part of the results of an investigation is
more informative to the reader than such statements as “the null hypothesis
is rejected at the .05 level of significance” or “the results were not signifi-
cant at the .05 level.” Reporting the p value associated with a test lets the
reader know just how common or how rare is the computed value of the test
statistic given that  is true. ■

Testing by Means of a Confidence Interval Earlier, we stated
that one can use confidence intervals to test hypotheses. In Example 7.2.1 we used a
hypothesis testing procedure to test against the alternative, We
were able to reject because the computed value of the test statistic fell in the rejec-
tion region.

H0

HA: m Z 30.H0: m = 30

H0

H0
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Let us see how we might have arrived at this same conclusion by using a 100
percent confidence interval. The 95 percent confidence interval for is

Since this interval does not include 30, we say 30 is not a candidate for the mean we
are estimating and, therefore, is not equal to 30 and is rejected. This is the same
conclusion reached by means of the hypothesis testing procedure.

If the hypothesized parameter, 30, had been within the 95 percent confidence inter-
val, we would have said that is not rejected at the .05 level of significance. In gen-
eral, when testing a null hypothesis by means of a two-sided confidence interval, we
reject at the level of significance if the hypothesized parameter is not contained
within the percent confidence interval. If the hypothesized parameter is con-
tained within the interval, cannot be rejected at the level of significance.

One-Sided Hypothesis Tests The hypothesis test illustrated by Example
7.2.1 is an example of a two-sided test, so called because the rejection region is split
between the two sides or tails of the distribution of the test statistic. A hypothesis test
may be one-sided, in which case all the rejection region is in one or the other tail of the
distribution. Whether a one-sided or a two-sided test is used depends on the nature of
the question being asked by the researcher.

If both large and small values will cause rejection of the null hypothesis, a two-
sided test is indicated. When either sufficiently “small” values only or sufficiently “large”
values only will cause rejection of the null hypothesis, a one-sided test is indicated.

EXAMPLE 7.2.2

Refer to Example 7.2.1. Suppose, instead of asking if they could conclude that ,
the researchers had asked: Can we conclude that ? To this question we would
reply that they can so conclude if they can reject the null hypothesis that 

Solution: Let us go through the ten-step procedure to reach a decision based on a
one-sided test.

1. Data. See the previous example.

2. Assumptions. See the previous example.

3. Hypotheses.

The inequality in the null hypothesis implies that the null hypothesis
consists of an infinite number of hypotheses. The test will be made only

HA: m 6 30

H0: m Ú 30

m Ú 30.
m 6 30

m Z 30

aH0

10011 - a2aH0

H0

H0m

 24.2286,  29.7714

 27 ; 2.7714

 27 ; 1.9611.4142 27 ; 1.96120>10

m11 - a2
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at the point of equality, since it can be shown that if is rejected when
the test is made at the point of equality it would be rejected if the test
were done for any other value of indicated in the null hypothesis.

4. Test statistic.

5. Distribution of test statistic. See the previous example.

6. Decision rule. Let us again use . To determine where to place
the rejection region, let us ask ourselves what magnitude of values
would cause rejection of the null hypothesis. If we look at the
hypotheses, we see that sufficiently small values would cause rejec-
tion and that large values would tend to reinforce the null hypothe-
sis. We will want our rejection region to be where the small values
are—at the lower tail of the distribution. This time, since we have a
one-sided test, all of will go in the one tail of the distribution. By
consulting Appendix Table D, we find that the value of z to the left
of which lies .05 of the area under the standard normal curve is

after interpolating. Our rejection and nonrejection regions are
now specified and are shown in Figure 7.2.2.

Our decision rule tells us to reject if the computed value of
the test statistic is less than or equal to 1.645.

7. Calculation of test statistic. From our data we compute

8. Statistical decision. We are able to reject the null hypothesis since
.

9. Conclusion. We conclude that the population mean is smaller than 30
and act accordingly.

10. p value. The p value for this test is .0170, since , when
is true, is .0170 as given by Appendix Table D when we determineH0

P1z … -2.122
-2.12 6 -1.645

z =
27 - 30120>10

= -2.12

-
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the magnitude of the area to the left of under the standard normal
curve. One can test a one-sided null hypothesis by means of a one-sided
confidence interval. However, we will not cover the construction and inter-
pretation of this type of confidence interval in this book.

If the researcher’s question had been, “Can we conclude that the mean is
greater than 30?,” following the above ten-step procedure would have led
to a one-sided test with all the rejection region at the upper tail of the dis-
tribution of the test statistic and a critical value of 

Sampling from a Normally Distributed Population: Popula-
tion Variance Unknown As we have already noted, the population variance
is usually unknown in actual situations involving statistical inference about a population
mean. When sampling is from an approximately normal population with an unknown
variance, the test statistic for testing is

(7.2.2)

which, when is true, is distributed as Student’s t with degrees of freedom. The
following example illustrates the hypothesis testing procedure when the population is
assumed to be normally distributed and its variance is unknown. This is the usual situ-
ation encountered in practice.

EXAMPLE 7.2.3

Nakamura et al. (A-1) studied subjects with medial collateral ligament (MCL) and anterior
cruciate ligament (ACL) tears. Between February 1995 and December 1997, 17 consecu-
tive patients with combined acute ACL and grade III MCL injuries were treated by the same
physician at the research center. One of the variables of interest was the length of time in
days between the occurrence of the injury and the first magnetic resonance imaging (MRI).
The data are shown in Table 7.2.1. We wish to know if we can conclude that the mean
number of days between injury and initial MRI is not 15 days in a population presumed to
be represented by these sample data.

n - 1H0

t =
x - m0

s>1n

H0: m = m0

+1.645.

-2.12
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TABLE 7.2.1 Number of Days Until MRI for Subjects with MCL 
and ACL Tears

Subject Days Subject Days Subject Days Subject Days

1 14 6 0 11 28 16 14

2 9 7 10 12 24 17 9

3 18 8 4 13 24

4 26 9 8 14 2

5 12 10 21 15 3

Source: Norimasa Nakamura, Shuji Horibe, Yukyoshi Toritsuka, Tomoki Mitsuoka, Hideki Yoshikawa, and
Konsei Shino, “Acute Grade III Medial Collateral Ligament Injury of the Knee Associated with Anterior
Cruciate Ligament Tear,” American Journal of Sports Medicine, 31 (2003), 261–267.

■



Solution: We will be able to conclude that the mean number of days for the popula-
tion is not 15 if we can reject the null hypothesis that the population mean
is equal to 15.

1. Data. The data consist of number of days until MRI on 17 subjects as
previously described.

2. Assumptions. The 17 subjects constitute a simple random sample from
a population of similar subjects. We assume that the number of days
until MRI in this population is approximately normally distributed.

3. Hypotheses.

4. Test statistic. Since the population variance is unknown, our test sta-
tistic is given by Equation 7.2.2.

5. Distribution of test statistic. Our test statistic is distributed as Stu-
dent’s t with degrees of freedom if is true.

6. Decision rule. Let . Since we have a two-sided test, we put
in each tail of the distribution of our test statistic. The t

values to the right and left of which .025 of the area lies are 2.1199 and
. These values are obtained from Appendix Table E. The rejec-

tion and nonrejection regions are shown in Figure 7.2.3.
The decision rule tells us to compute a value of the test statistic

and reject if the computed t is either greater than or equal to 2.1199
or less than or equal to 2.1199.

7. Calculation of test statistic. From our sample data we compute a sam-
ple mean of 13.2941 and a sample standard deviation of 8.88654. Sub-
stituting these statistics into Equation 7.2.2 gives

t =
13.2941 - 15

8.88654>117
=

-1.7059

2.1553
= - .791

-
H0

-2.1199

a>2 = .025
a = .05

H0n - 1 = 17 - 1 = 16

HA: m Z 15

H0: m = 15
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8. Statistical decision. Do not reject , since falls in the nonre-
jection region.

9. Conclusion. Our conclusion, based on these data, is that the mean of
the population from which the sample came may be 15.

10. p value. The exact p value for this test cannot be obtained from
Appendix Table E since it gives t values only for selected percentiles.
The p value can be stated as an interval, however. We find that .791 is
less than , the value of t to the left of which lies .10 of the area
under the t with 16 degrees of freedom. Consequently, when is true,
the probability of obtaining a value of t as small as or smaller than 
is greater than .10. That is Since the test was two-
sided, we must allow for the possibility of a computed value of the test
statistic as large in the opposite direction as that observed. Appendix
Table E reveals that also. The p value, then, is

. Figure 7.2.4 shows the p value for this example.

If in the previous example the hypotheses had been

the testing procedure would have led to a one-sided test with all the rejection
region at the lower tail of the distribution, and if the hypotheses had been

we would have had a one-sided test with all the rejection region at the upper
tail of the distribution. ■

Sampling from a Population That Is Not Normally Distributed
If, as is frequently the case, the sample on which we base our hypothesis test about a
population mean comes from a population that is not normally distributed, we may, if our
sample is large (greater than or equal to 30), take advantage of the central limit theorem
and use as the test statistic. If the population standard deviationz = 1x - m02>1s>1n2

HA: m 7 15
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P1t Ú .7912 7 .10
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is not known, the usual practice is to use the sample standard deviation as an estimate.
The test statistic for testing , then, is

(7.2.3)

which, when is true, is distributed approximately as the standard normal distribution
if n is large. The rationale for using s to replace is that the large sample, necessary
for the central limit theorem to apply, will yield a sample standard deviation that closely
approximates .

EXAMPLE 7.2.4

The goal of a study by Klingler et al. (A-2) was to determine how symptom recognition
and perception influence clinical presentation as a function of race. They characterized
symptoms and care-seeking behavior in African-American patients with chest pain seen
in the emergency department. One of the presenting vital signs was systolic blood pres-
sure. Among 157 African-American men, the mean systolic blood pressure was 146 mm
Hg with a standard deviation of 27. We wish to know if, on the basis of these data, we
may conclude that the mean systolic blood pressure for a population of African-American
men is greater than 140.

Solution: We will say that the data do provide sufficient evidence to conclude that the
population mean is greater than 140 if we can reject the null hypothesis that
the mean is less than or equal to 140. The following test may be carried out:

1. Data. The data consist of systolic blood pressure scores for 157
African-American men with and .

2. Assumptions. The data constitute a simple random sample from a pop-
ulation of African-American men who report to an emergency depart-
ment with symptoms similar to those in the sample. We are unwilling
to assume that systolic blood pressure values are normally distributed
in such a population.

3. Hypotheses.

4. Test statistic. The test statistic is given by Equation 7.2.3, since s is
unknown.

5. Distribution of test statistic. Because of the central limit theorem, the
test statistic is at worst approximately normally distributed with 
if is true.

6. Decision rule. Let . The critical value of the test statistic is
1.645. The rejection and nonrejection regions are shown in Figure 7.2.5.
Reject if computed .z Ú 1.645H0

a = .05

H0

m = 0

HA: m 7 140

H0: m … 140

s = 27x = 146

s

s

H0

z =
x - m0

s>1n

H0: m = m0
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7. Calculation of test statistic.

8. Statistical decision. Reject since .

9. Conclusion. Conclude that the mean systolic blood pressure for the
sampled population is greater than 140.

10. p value. The p value for this test is , since as shown
in Appendix Table D, the area to the right of 2.78 is less than
.05, the area to the right of 1.645. ■

Procedures for Other Conditions If the population variance had been
known, the procedure would have been identical to the above except that the known value
of , instead of the sample value s, would have been used in the denominator of the
computed test statistic.

Depending on what the investigators wished to conclude, either a two-sided test or
a one-sided test, with the rejection region at the lower tail of the distribution, could have
been made using the above data.

When testing a hypothesis about a single population mean, we may use Figure
6.3.3 to decide quickly whether the test statistic is z or t.

Computer Analysis To illustrate the use of computers in testing hypotheses we
consider the following example.

EXAMPLE 7.2.5

The following are the head circumferences (centimeters) at birth of 15 infants:

33.38 32.15 33.99 34.10 33.97
34.34 33.95 33.85 34.23 32.73
33.46 34.13 34.45 34.19 34.05

We wish to test against .HA: m Z 34.5H0: m = 34.5

s

1.002721 - .9973 = .0027

2.78 7 1.645H0

z =
146 - 140

27>1157
=

6

2.1548
= 2.78
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Solution: We assume that the assumptions for use of the t statistic are met. We enter
the data into Column 1 and proceed as shown in Figure 7.2.6.

To indicate that a test is one-sided when in Windows, click on the
Options button and then choose “less than” or “greater than” as appropri-
ate in the Alternative box. If z is the appropriate test statistic, we choose
1-Sample z from the Basic Statistics menu. The remainder of the commands
are the same as for the t test.

We learn from the printout that the computed value of the test statis-
tic is and the p value for the test is .0007. users may use the
output from PROC MEANS or PROC UNIVARIATE to perform hypothesis
tests.

When both the z statistic and the t statistic are inappropriate test
statistics for use with the available data, one may wish to use a nonpara-
metric technique to test a hypothesis about a single population measure
of central tendency. One such procedure, the sign test, is discussed in
Chapter 13. ■

EXERCISES

For each of the following exercises carry out the ten-step hypothesis testing procedure for the given
significance level. For each exercise, as appropriate, explain why you chose a one-sided test or a
two-sided test. Discuss how you think researchers and/or clinicians might use the results of your
hypothesis test. What clinical and/or research decisions and/or actions do you think would be
appropriate in light of the results of your test?

7.2.1 Escobar et al. (A-3) performed a study to validate a translated version of the Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC) questionnaire used with Spanish-speaking
patients with hip or knee osteoarthritis. For the 76 women classified with severe hip pain, the

SAS®-4.31
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Dialog box: Session command:

Stat ➤ Basic Statistics ➤ 1-Sample t MTB > TTEST 34.5 C1

Type C1 in Samples in columns. Type 34.5
in the Test mean box. Click OK .

Output:

One-Sample T: C1

TEST OF MU � 34.5 VS NOT � 34.5
VARIABLE N MEAN STDEV SE MEAN 95% CI T P
C1 15 33.7980 0.6303 0.1627 (33.4490, 34.1470) �4.31 0.001

FIGURE 7.2.6 MINITAB procedure and output for Example 7.2.5.



WOMAC mean function score (on a scale from 0 to 100 with a higher number indicating less
function) was 70.7 with a standard deviation of 14.6. We wish to know if we may conclude that
the mean function score for a population of similar women subjects with severe hip pain is less
than 75. Let 

7.2.2 A study by Thienprasiddhi et al. (A-4) examined a sample of 16 subjects with open-angle glaucoma
and unilateral hemifield defects. The ages (years) of the subjects were:

62 62 68 48 51 60 51 57
57 41 62 50 53 34 62 61
Source: Phamornsak Thienprasiddhi, Vivienne 
C. Greenstein, Candice S. Chen, Jeffrey M. Liebmann,
Robert Ritch, and Donald C. Hood, “Multifocal Visual
Evoked Potential Responses in Glaucoma Patients with
Unilateral Hemifield Defects,” American Journal of 
Ophthalmology, 136 (2003), 34–40.

Can we conclude that the mean age of the population from which the sample may be presumed
to have been drawn is less than 60 years? Let 

7.2.3 The purpose of a study by Lugliè et al. (A-5) was to investigate the oral status of a group of
patients diagnosed with thalassemia major (TM). One of the outcome measures was the decayed,
missing, and filled teeth index (DMFT). In a sample of 18 patients the mean DMFT index value
was 10.3 with a standard deviation of 7.3. Is this sufficient evidence to allow us to conclude that
the mean DMFT index is greater than 9.0 in a population of similar subjects? Let 

7.2.4 A study was made of a sample of 25 records of patients seen at a chronic disease hospital on an
outpatient basis. The mean number of outpatient visits per patient was 4.8, and the sample stan-
dard deviation was 2. Can it be concluded from these data that the population mean is greater than
four visits per patient? Let the probability of committing a type I error be .05. What assumptions
are necessary?

7.2.5 In a sample of 49 adolescents who served as the subjects in an immunologic study, one variable
of interest was the diameter of skin test reaction to an antigen. The sample mean and standard
deviation were 21 and 11 mm erythema, respectively. Can it be concluded from these data that the
population mean is less than 30? Let 

7.2.6 Nine laboratory animals were infected with a certain bacterium and then immunosuppressed. The
mean number of organisms later recovered from tissue specimens was 6.5 (coded data) with a stan-
dard deviation of .6. Can one conclude from these data that the population mean is greater than
6? Let What assumptions are necessary?

7.2.7 A sample of 25 freshman nursing students made a mean score of 77 on a test designed to meas-
ure attitude toward the dying patient. The sample standard deviation was 10. Do these data pro-
vide sufficient evidence to indicate, at the .05 level of significance, that the population mean is
less than 80? What assumptions are necessary?

7.2.8 We wish to know if we can conclude that the mean daily caloric intake in the adult rural popula-
tion of a developing country is less than 2000. A sample of 500 had a mean of 1985 and a stan-
dard deviation of 210. Let 

7.2.9 A survey of 100 similar-sized hospitals revealed a mean daily census in the pediatrics service of
27 with a standard deviation of 6.5. Do these data provide sufficient evidence to indicate that the
population mean is greater than 25? Let a = .05.

a = .05.

a = .05.

a = .05.

a = .10.

a = .05.

a = .01.

EXERCISES 235



7.2.10 Following a week-long hospital supervisory training program, 16 assistant hospital administra-
tors made a mean score of 74 on a test administered as part of the evaluation of the training
program. The sample standard deviation was 12. Can it be concluded from these data that the
population mean is greater than 70? Let What assumptions are necessary?

7.2.11 A random sample of 16 emergency reports was selected from the files of an ambulance service.
The mean time (computed from the sample data) required for ambulances to reach their destina-
tions was 13 minutes. Assume that the population of times is normally distributed with a vari-
ance of 9. Can we conclude at the .05 level of significance that the population mean is greater
than 10 minutes?

7.2.12 The following data are the oxygen uptakes (milliliters) during incubation of a random sample of
15 cell suspensions:

14.0, 14.1, 14.5, 13.2, 11.2, 14.0, 14.1, 12.2,
11.1, 13.7, 13.2, 16.0, 12.8, 14.4, 12.9

Do these data provide sufficient evidence at the .05 level of significance that the population mean
is not 12 ml? What assumptions are necessary?

7.2.13 Can we conclude that the mean maximum voluntary ventilation value for apparently healthy col-
lege seniors is not 110 liters per minute? A sample of 20 yielded the following values:

132, 33, 91, 108, 67, 169, 54, 203, 190, 133,
96, 30, 187, 21, 63, 166, 84, 110, 157, 138

Let . What assumptions are necessary?

7.2.14 The following are the systolic blood pressures (mm Hg) of 12 patients undergoing drug therapy
for hypertension:

183, 152, 178, 157, 194, 163, 144, 114, 178, 152, 118, 158

Can we conclude on the basis of these data that the population mean is less than 165? Let 
What assumptions are necessary?

7.2.15 Can we conclude that the mean age at death of patients with homozygous sickle-cell disease is
less than 30 years? A sample of 50 patients yielded the following ages in years:

15.5 2.0 45.1 1.7 .8 1.1 18.2 9.7 28.1 18.2
27.6 45.0 1.0 66.4 2.0 67.4 2.5 61.7 16.2 31.7

6.9 13.5 1.9 31.2 9.0 2.6 29.7 13.5 2.6 14.4
20.7 30.9 36.6 1.1 23.6 .9 7.6 23.5 6.3 40.2
23.7 4.8 33.2 27.1 36.7 3.2 38.0 3.5 21.8 2.4

Let What assumptions are necessary?

7.2.16 The following are intraocular pressure (mm Hg) values recorded for a sample of 21 elderly subjects:

14.5 12.9 14.0 16.1 12.0 17.5 14.1 12.9 17.9 12.0
16.4 24.2 12.2 14.4 17.0 10.0 18.5 20.8 16.2 14.9
19.6

Can we conclude from these data that the mean of the population from which the sample was
drawn is greater than 14? Let . What assumptions are necessary?a = .05

a = .05.

a = .05.

a = .01

a = .05.

236 CHAPTER 7 HYPOTHESIS TESTING



7.2.17 Suppose it is known that the IQ scores of a certain population of adults are approximately nor-
mally distributed with a standard deviation of 15. A simple random sample of 25 adults drawn
from this population had a mean IQ score of 105. On the basis of these data can we conclude that
the mean IQ score for the population is not 100? Let the probability of committing a type I error
be .05.

7.2.18 A research team is willing to assume that systolic blood pressures in a certain population of males
are approximately normally distributed with a standard deviation of 16. A simple random sample
of 64 males from the population had a mean systolic blood pressure reading of 133. At the .05
level of significance, do these data provide sufficient evidence for us to conclude that the popula-
tion mean is greater than 130?

7.2.19 A simple random sample of 16 adults drawn from a certain population of adults yielded a mean
weight of 63 kg. Assume that weights in the population are approximately normally distributed with
a variance of 49. Do the sample data provide sufficient evidence for us to conclude that the mean
weight for the population is less than 70 kg? Let the probability of committing a type I error be .01.

7.3 HYPOTHESIS TESTING: 
THE DIFFERENCE BETWEEN TWO 
POPULATION MEANS

Hypothesis testing involving the difference between two population means is most fre-
quently employed to determine whether or not it is reasonable to conclude that the two
population means are unequal. In such cases, one or the other of the following hypothe-
ses may be formulated:

1.

2.

3.

It is possible, however, to test the hypothesis that the difference is equal to, greater
than or equal to, or less than or equal to some value other than zero.

As was done in the previous section, hypothesis testing involving the difference
between two population means will be discussed in three different contexts: (1) when
sampling is from normally distributed populations with known population variances,
(2) when sampling is from normally distributed populations with unknown population
variances, and (3) when sampling is from populations that are not normally distributed.

Sampling from Normally Distributed Populations: Population
Variances Known When each of two independent simple random samples has
been drawn from a normally distributed population with a known variance, the test sta-
tistic for testing the null hypothesis of equal population means is

(7.3.1)z =
1x1 - x22 - 1m1 - m220

Cs2
1

n1
+
s2

2

n2

H0: m1 - m2 … 0, HA: m1 - m2 7 0

H0: m1 - m2 Ú 0, HA: m1 - m2 6 0

H0: m1 - m2 = 0, HA: m1 - m2 Z 0
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where the subscript 0 indicates that the difference is a hypothesized parameter. When is
true the test statistic of Equation 7.3.1 is distributed as the standard normal.

EXAMPLE 7.3.1

Researchers wish to know if the data they have collected provide sufficient evidence to
indicate a difference in mean serum uric acid levels between normal individuals and indi-
viduals with Down’s syndrome. The data consist of serum uric acid readings on 12 indi-
viduals with Down’s syndrome and 15 normal individuals. The means are 
mg/100 ml and mg/100 ml.

Solution: We will say that the sample data do provide evidence that the population
means are not equal if we can reject the null hypothesis that the population
means are equal. Let us reach a conclusion by means of the ten-step hypoth-
esis testing procedure.

1. Data. See problem statement.

2. Assumptions. The data constitute two independent simple random
samples each drawn from a normally distributed population with a vari-
ance equal to 1 for the Down’s syndrome population and 1.5 for the
normal population.

3. Hypotheses.

An alternative way of stating the hypotheses is as follows:

4. Test statistic. The test statistic is given by Equation 7.3.1.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic follows the standard normal distribution.

6. Decision rule. Let . The critical values of z are . Reject
unless The rejection and nonrejection

regions are shown in Figure 7.3.1.

7. Calculation of test statistic.

8. Statistical decision. Reject , since .

9. Conclusion. Conclude that, on the basis of these data, there is an indi-
cation that the two population means are not equal.

10. p value. For this test, p = .0102.

2.57 7 1.96H0

z =
14.5 - 3.42 - 011>12 + 1.5>15

=
1.1

.4282
= 2.57

-1.96 6 zcomputed 6 1.96.H0

;1.96a = .05

HA: m1 Z m2

H0: m1 = m2

HA: m1 - m2 Z 0

H0: m1 - m2 = 0

x2 = 3.4
x1 = 4.5

H0
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A 95 Percent Confidence Interval for In the previous chap-
ter the 95 percent confidence interval for , computed from the same data, was
found to be .26 to 1.94. Since this interval does not include 0, we say that 0 is not a
candidate for the difference between population means, and we conclude that the dif-
ference is not zero. Thus we arrive at the same conclusion by means of a confidence
interval.

Sampling from Normally Distributed Populations: Population
Variances Unknown As we have learned, when the population variances are
unknown, two possibilities exist. The two population variances may be equal or they may
be unequal. We consider first the case where it is known, or it is reasonable to assume,
that they are equal. A test of the hypothesis that two population variances are equal is
described in Section 7.8.

Population Variances Equal When the population variances are unknown, but
assumed to be equal, we recall from Chapter 6 that it is appropriate to pool the sample vari-
ances by means of the following formula:

When each of two independent simple random samples has been drawn from a normally
distributed population and the two populations have equal but unknown variances, the
test statistic for testing is given by

(7.3.2)

which, when is true, is distributed as Student’s t with degrees of freedom.n1 + n2 - 2H0

t =
1x1 - x22 - 1m1 - m220

Ds 2
p

n1
+

s 2
p

n2

H0: m1 = m2

s2
p =
1n1 - 12s2

1 + 1n2 - 12s2
2

n1 + n2 - 2

m1 - m2

M1 � M2
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EXAMPLE 7.3.2

The purpose of a study by Tam et al. (A-6) was to investigate wheelchair maneuvering in
individuals with lower-level spinal cord injury (SCI) and healthy controls (C). Subjects
used a modified wheelchair to incorporate a rigid seat surface to facilitate the specified
experimental measurements. Interface pressure measurement was recorded by using a high-
resolution pressure-sensitive mat with a spatial resolution of four sensors per square cen-
timeter taped on the rigid seat support. During static sitting conditions, average pressures
were recorded under the ischial tuberosities (the bottom part of the pelvic bones). The data
for measurements of the left ischial tuberosity (in mm Hg) for the SCI and control groups
are shown in Table 7.3.1. We wish to know if we may conclude, on the basis of these data,
that, in general, healthy subjects exhibit lower pressure than SCI subjects.

Solution:

1. Data. See statement of problem.

2. Assumptions. The data constitute two independent simple random
samples of pressure measurements, one sample from a population of
control subjects and the other sample from a population with lower-
level spinal cord injury. We shall assume that the pressure measure-
ments in both populations are approximately normally distributed. The
population variances are unknown but are assumed to be equal.

3. Hypotheses.

4. Test statistic. The test statistic is given by Equation 7.3.2.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic follows Student’s t distribution with degrees of
freedom.

6. Decision rule. Let . The critical value of t is Reject
unless .

7. Calculation of test statistic. From the sample data we compute

Next, we pool the sample variances to obtain

s 2
p =

9121.822 + 9132.222
9 + 9

= 756.04

x C = 126.1,  sC = 21.8,  x SCI = 133.1,  sSCI = 32.2

tcomputed 7 -1.7341H0

-1.7341.a = .05

n1 + n 2 - 2

H0: mC Ú mSCI, HA: mC 6 mSCI.

240 CHAPTER 7 HYPOTHESIS TESTING

TABLE 7.3.1 Pressures (mm Hg) Under the Pelvis during 
Static Conditions for Example 7.3.2

Control 131 115 124 131 122 117 88 114 150 169

SCI 60 150 130 180 163 130 121 119 130 148

Source: Eric W. Tam, Arthur F. Mak, Wai Nga Lam, John H. Evans, and York Y. Chow, “Pelvic Movement
and Interface Pressure Distribution During Manual Wheelchair Propulsion,” Archives of Physical Medicine
and Rehabilitation, 84 (2003), 1466–1472.



We now compute

8. Statistical decision. We fail to reject , since ; that
is, falls in the nonrejection region.

9. Conclusion. On the basis of these data, we cannot conclude that the pop-
ulation mean pressure is less for healthy subjects than for SCI subjects.

10. p value. For this test, since ■

Population Variances Unequal When two independent simple random
samples have been drawn from normally distributed populations with unknown and
unequal variances, the test statistic for testing is

(7.3.3)

The critical value of for an level of significance and a two-sided test is approximately

(7.3.4)

where for degrees of freedom, and 
for degrees of freedom. The critical value of for a one-sided test is

found by computing by Equation 7.3.4, using for degrees of free-
dom and for degrees of freedom.

For a two-sided test, reject if the computed value of is either greater than or
equal to the critical value given by Equation 7.3.4 or less than or equal to the negative
of that value.

For a one-sided test with the rejection region in the right tail of the sampling dis-
tribution, reject if the computed is equal to or greater than the critical For a one-
sided test with a left-tail rejection region, reject if the computed value of is equal
to or smaller than the negative of the critical computed by the indicated adaptation of
Equation 7.3.4.

EXAMPLE 7.3.3
Dernellis and Panaretou (A-7) examined subjects with hypertension and healthy control
subjects. One of the variables of interest was the aortic stiffness index. Measures of this
variable were calculated from the aortic diameter evaluated by M-mode echocardiogra-
phy and blood pressure measured by a sphygmomanometer. Generally, physicians wish

t ¿
t ¿H0

t ¿.t ¿H0

t ¿H0

n 2 - 1t 2 = t1-a

n1 - 1t1 = t1-at ¿1-a
t ¿n 2 - 1t1-1a>22 t 2 =n1 - 1w1 = s1

2>n1, w2 = s2
2>n2, t1 = t1-1a>22

t ¿1-1a>22 =
w1t1 + w 2t2

w1 + w2

at ¿

t ¿ =
1x1 - x22 - 1m1 - m220

A s 2
1

n1
+

s 2
2

n 2

H0: m1 = m2

-1.330 6 - .569.p 7 .10

- .569
-1.7341 6 - .569H0

t =
1126.1 - 133.12 - 0

A756.04

10
+

756.04

10

= - .569
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to reduce aortic stiffness. In the 15 patients with hypertension (group 1), the mean aor-
tic stiffness index was 19.16 with a standard deviation of 5.29. In the 30 control sub-
jects (group 2), the mean aortic stiffness index was 9.53 with a standard deviation of
2.69. We wish to determine if the two populations represented by these samples differ
with respect to mean aortic stiffness index.

Solution:

1. Data. The sample sizes, means, and sample standard deviations are:

2. Assumptions. The data constitute two independent random samples,
one from a population of subjects with hypertension and the other from
a control population. We assume that aortic stiffness values are approx-
imately normally distributed in both populations. The population vari-
ances are unknown and unequal.

3. Hypotheses.

4. Test statistic. The test statistic is given by Equation 7.3.3.

5. Distribution of test statistic. The statistic given by Equation 7.3.3
does not follow Student’s t distribution. We, therefore, obtain its critical
values by Equation 7.3.4.

6. Decision rule. Let . Before computing we calculate
and . In Appen-

dix Table E we find that and . By Equation
7.3.4 we compute

Our decision rule, then, is reject if the computed t is either 
or .

7. Calculation of test statistic. By Equation 7.3.3 we compute

t ¿ =
119.16 - 9.532 - 0

B 15.2922
15

+
12.6922

30

=
9.63

1.4515
= 6.63

… -2.133
Ú  2.133H0

t ¿ =
1.865612.14482 + .241212.04522

1.8656 + .2412
= 2.133

t 2 = 2.0452t1 = 2.1448
w2 = 12.6922>30 = .2412w1 = 15.2922>15 = 1.8656

t ¿a = .05

HA: m1 - m2 Z 0

H0: m1 - m2 = 0

n 2 = 30, x2 = 9.53, s2 = 2.69

n1 = 15, x1 = 19.16, s1 = 5.29
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8. Statistical decision. Since , we reject .

9. Conclusion. On the basis of these results we conclude that the two
population means are different.

10. p value. For this test ■

Sampling from Populations That Are Not Normally Distributed
When sampling is from populations that are not normally distributed, the results of the
central limit theorem may be employed if sample sizes are large (say, This will
allow the use of normal theory since the distribution of the difference between sample
means will be approximately normal. When each of two large independent simple ran-
dom samples has been drawn from a population that is not normally distributed, the test
statistic for testing is

(7.3.5)

which, when is true, follows the standard normal distribution. If the population vari-
ances are known, they are used; but if they are unknown, as is the usual case, the sample
variances, which are necessarily based on large samples, are used as estimates. Sample
variances are not pooled, since equality of population variances is not a necessary assump-
tion when the z statistic is used.

EXAMPLE 7.3.4

The objective of a study by Sairam et al. (A-8) was to identify the role of various dis-
ease states and additional risk factors in the development of thrombosis. One focus of
the study was to determine if there were differing levels of the anticardiolipin antibody
IgG in subjects with and without thrombosis. Table 7.3.2 summarizes the researchers’
findings:

H0

z =
1x1 - x 22 - 1m1 - m220

As2
1

n1
+
s2

2

n 2

H0: m1 = m2

Ú302.
p 6 .05.

H06.63 7 2.133
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TABLE 7.3.2 IgG Levels for Subjects with and Without Thrombosis 
for Example 7.3.4

Mean IgG Level

Group (ml/unit) Sample Size Standard Deviation

Thrombosis 59.01 53 44.89

No thrombosis 46.61 54 34.85

Source: S. Sairam, B. A. Baethge and T. McNearney, “Analysis of Risk Factors and
Comorbid Diseases in the Development of Thrombosis in Patients with Anticardiolipin
Antibodies,” Clinical Rheumatology, 22 (2003), 24–29.



We wish to know if we may conclude, on the basis of these results, that, in general,
persons with thrombosis have, on the average, higher IgG levels than persons without
thrombosis.

Solution:

1. Data. See statement of example.

2. Assumptions. The statistics were computed from two independent sam-
ples that behave as simple random samples from a population of per-
sons with thrombosis and a population of persons who do not have
thrombosis. Since the population variances are unknown, we will use the
sample variances in the calculation of the test statistic.

3. Hypotheses.

or, alternatively,

4. Test statistic. Since we have large samples, the central limit theorem
allows us to use Equation 7.3.5 as the test statistic.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed approximately as the standard normal.

6. Decision rule. Let . This is a one-sided test with a critical
value of z equal to 2.33. Reject if .

7. Calculation of test statistic.

8. Statistical decision. Fail to reject , since is in the nonre-
jection region.

9. Conclusion. These data indicate that on the average, persons with
thrombosis and persons without thrombosis may not have differing IgG
levels.

10. p value. For this test, . When testing a hypothesis about the
difference between two populations means, we may use Figure 6.4.1 to
decide quickly whether the test statistic should be z or t. ■

We may use MINITAB to perform two-sample t tests. To illustrate, let us 
refer to the data in Table 7.3.1. We put the data for control subjects and spinal cord

p = .0559

z = 1.59H0

z =
59.01 - 46.61

A44.892

53
+

34.852

54

= 1.59

z computed Ú 2.33H0

a = .01

HA: mT 7 mNT

H0: mT … mNT

HA: mT - mNT 7 0

H0: mT - mNT … 0
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injury subjects in Column 1 and Column 2, respectively, and proceed as shown in 
Figure 7.3.2.

The SAS® statistical package performs the t test for equality of population means
under both assumptions regarding population variances: that they are equal and that they
are not equal. Note that SAS® designates the p value as The default output is
a p value for a two-sided test. The researcher using SAS® must divide this quantity in
half when the hypothesis test is one-sided. The SAS® package also tests for equality of
population variances as described in Section 7.8. Figure 7.3.3 shows the SAS® output
for Example 7.3.2.

Alternatives to z and t Sometimes neither the z statistic nor the t statistic is
an appropriate test statistic for use with the available data. When such is the case, one
may wish to use a nonparametric technique for testing a hypothesis about the difference
between two population measures of central tendency. The Mann-Whitney test statistic
and the median test, discussed in Chapter 13, are frequently used alternatives to the z
and t statistics.

Pr 7 ƒ t ƒ .
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FIGURE 7.3.2 MINITAB procedure and output for two-sample t test, Example 7.3.2 
(data in Table 7.3.1).

Dialog box: Session command:

Stat ➤ Basic Statistics ➤ 2-Sample t MTB > TwoSample 95.0 C1 C2
SUBC> Alternative �1,

Choose Samples in different columns. Type C1 SUBC> Pooled.
in First and C2 in Second. Click the Options box
and select “less than” in the Alternatives box.
Check Assume equal variances. Click OK.

Output:

Two-Sample T-Test and CI: C, SCI

Two-sample T for C vs SCI
N Mean StDev SE Mean

C 10 126.1 21.8 6.9
SCI 10 133.1 32.2 10

Difference � mu C � mu SCI
Estimate for difference: �7.0
95% upper bound for difference: 14.3
T-Test of difference � 0 (vs <): T-Value � �0.57 P-Value � 0.288
DF � 18
Both use Pooled StDev � 27.5



EXERCISES

In each of the following exercises, complete the ten-step hypothesis testing procedure. State
the assumptions that are necessary for your procedure to be valid. For each exercise, as appro-
priate, explain why you chose a one-sided test or a two-sided test. Discuss how you 
think researchers or clinicians might use the results of your hypothesis test. What clinical or
research decisions or actions do you think would be appropriate in light of the results of your
test?

7.3.1 Subjects in a study by Dabonneville et al. (A-9) included a sample of 40 men who claimed to engage
in a variety of sports activities (multisport). The mean body mass index (BMI) for these men was 22.41
with a standard deviation of 1.27. A sample of 24 male rugby players had a mean BMI of 27.75 with
a standard deviation of 2.64. Is there sufficient evidence for one to claim that, in general, rugby players
have a higher BMI than the multisport men? Let 

7.3.2 The purpose of a study by Ingle and Eastell (A-10) was to examine the bone mineral density
(BMD) and ultrasound properties of women with ankle fractures. The investigators recruited 31
postmenopausal women with ankle fractures and 31 healthy postmenopausal women to serve as
controls. One of the baseline measurements was the stiffness index of the lunar Achilles. The
mean stiffness index for the ankle fracture group was 76.9 with a standard deviation of 12.6. In
the control group, the mean was 90.9 with a standard deviation of 12.5. Do these data provide
sufficient evidence to allow you to conclude that, in general, the mean stiffness index is higher

a = .01.
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FIGURE 7.3.3 SAS® output for Example 7.3.2 (data in Table 7.3.1).

The SAS System
The TTEST Procedure

Statistics Lower CL Upper CL
Lower CL Upper CL Std Std Std Std

Variable group N Mean Mean Mean Dev Dev Dev Err
---------------------------------------------------------------------------
pressure C 10 110.49 126.1 141.71 15.008 21.82 39.834 6.9
pressure SCI 10 110.08 133.1 156.12 22.133 32.178 58.745 10.176
pressure Diff (1–2) �32.83 �7 18.83 20.773 27.491 40.655 12.294

T-Tests
---------------------------------------------------------------------------
Variable Method Variances DF t Value Pr > |t|

pressure Pooled Equal 18 �0.57 0.5761
pressure Satterthwaite Unequal 15.8 �0.57 0.5771

Equality of Variances
---------------------------------------------------------------------------
Variable Method Num DF Den DF F Value Pr > F
pressure Folded F 9 9 2.17 0.2626



in healthy postmenopausal women than in postmenopausal women with ankle fractures? Let
.

7.3.3 Hoekema et al. (A-11) studied the craniofacial morphology of 26 male patients with obstructive
sleep apnea syndrome (OSAS) and 37 healthy male subjects (non–OSAS). One of the variables of
interest was the length from the most superoanterior point of the body of the hyoid bone to the
Frankfort horizontal (measured in millimeters).

Length (mm) Non–OSAS Length (mm) OSAS

96.80 97.00 101.00 88.95 105.95 114.90 113.70
100.70 97.70 88.25 101.05 114.90 114.35 116.30
94.55 97.00 92.60 92.60 110.35 112.25 108.75
99.65 94.55 98.25 97.00 123.10 106.15 113.30

109.15 106.45 90.85 91.95 119.30 102.60 106.00
102.75 94.55 95.25 88.95 110.00 102.40 101.75
97.70 94.05 88.80 95.75 98.95 105.05
92.10 89.45 101.40 114.20 112.65
91.90 89.85 90.55 108.95 128.95
89.50 98.20 109.80 105.05 117.70

Source: A. Hoekema, D.D.S. Used with permission.

Do these data provide sufficient evidence to allow us to conclude that the two sampled popula-
tions differ with respect to length from the hyoid bone to the Frankfort horizontal? Let .

7.3.4 Can we conclude that patients with primary hypertension (PH), on the average, have higher total
cholesterol levels than normotensive (NT) patients? This was one of the inquiries of interest for Rossi
et al. (A-12). In the following table are total cholesterol measurements (mg/dl) for 133 PH patients
and 41 NT patients. Can we conclude that PH patients have, on average, higher total cholesterol
levels than NT patients? Let .

Total Cholesterol (mg/dl)

Primary Hypertensive Patients Normotensive Patients

207 221 212 220 190 286 189
172 223 260 214 245 226 196
191 181 210 215 171 187 142
221 217 265 206 261 204 179
203 208 206 247 182 203 212
241 202 198 221 162 206 163
208 218 210 199 182 196 196
199 216 211 196 225 168 189
185 168 274 239 203 229 142
235 168 223 199 195 184 168
214 214 175 244 178 186 121
134 203 203 214 240 281
226 280 168 236 222 203

a = .05

a = .01

a = .05
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Total Cholesterol (mg/dl)

Primary Hypertensive Patients Normotensive Patients

222 203 178 249 117 177 135
213 225 217 212 252 179 161
272 227 200 259 203 194
185 239 226 189 245 206
181 265 207 235 218 219
238 228 232 239 152 173
141 226 182 239 231 189
203 236 215 210 237 194
222 195 239 203 196
221 284 210 188 212
180 183 207 237 168
276 266 224 231 188
226 258 251 222 232
224 214 212 174 242
206 260 201 219 200

Source: Gian Paolo Rossi, M.D., F.A.C.C., F.A.H.A. Used with permission.

7.3.5 Garção and Cabrita (A-13) wanted to evaluate the community pharmacist’s capacity to positively
influence the results of antihypertensive drug therapy through a pharmaceutical care program in Por-
tugal. Eighty-two subjects with essential hypertension were randomly assigned to an intervention
or a control group. The intervention group received monthly monitoring by a research pharmacist
to monitor blood pressure, assess adherence to treatment, prevent, detect, and resolve drug-related
problems, and encourage nonpharmacologic measures for blood pressure control. The changes after
6 months in diastolic blood pressure , mm Hg) are given in the following table for
patients in each of the two groups.

Intervention Group Control Group

20 4 12 16 0 4 12 0
2 24 6 10 12 2 2 8

36 6 24 16 18 2 0 10
26 �2 42 10 0 8 0 14

2 8 20 6 8 10 �4 8
20 8 14 6 10 0 12 0
2 16 �2 2 8 6 4 2

14 14 10 8 14 10 28 �8
30 8 2 16 4 �2 �18 16
18 20 18 �12 �2 2 12 12
6 �6

On the basis of these data, what should the researcher conclude? Let .

7.3.6 A test designed to measure mothers’ attitudes toward their labor and delivery experiences was
given to two groups of new mothers. Sample 1 (attenders) had attended prenatal classes held at

a = .05

1pre - post
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Source: José Garção, M.S.,
Pharm.D. Used with permission.



the local health department. Sample 2 (nonattenders) did not attend the classes. The sample sizes
and means and standard deviations of the test scores were as follows:

Sample n s

1 15 4.75 1.0
2 22 3.00 1.5

Do these data provide sufficient evidence to indicate that attenders, on the average, score higher
than nonattenders? Let .

7.3.7 Cortisol level determinations were made on two samples of women at childbirth. Group 1 subjects
underwent emergency cesarean section following induced labor. Group 2 subjects delivered by
either cesarean section or the vaginal route following spontaneous labor. The sample sizes, mean
cortisol levels, and standard deviations were as follows:

Sample n s

1 10 435 65
2 12 645 80

Do these data provide sufficient evidence to indicate a difference in the mean cortisol levels in the
populations represented? Let .

7.3.8 Protoporphyrin levels were measured in two samples of subjects. Sample 1 consisted of 50 adult
male alcoholics with ring sideroblasts in the bone marrow. Sample 2 consisted of 40 apparently
healthy adult nonalcoholic males. The mean protoporphyrin levels and standard deviations for the
two samples were as follows:

Sample s

1 340 250
2 45 25

Can one conclude on the basis of these data that protoporphyrin levels are higher in the repre-
sented alcoholic population than in the nonalcoholic population? Let .

7.3.9 A researcher was interested in knowing if preterm infants with late metabolic acidosis and
preterm infants without the condition differ with respect to urine levels of a certain chemical.
The mean levels, standard deviations, and sample sizes for the two samples studied were as
follows:

Sample n s

With condition 35 8.5 5.5
Without condition 40 4.8 3.6

What should the researcher conclude on the basis of these results? Let .a = .05

x

a = .01

x

a = .05

x

a = .05

x
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7.3.10 Researchers wished to know if they could conclude that two populations of infants differ with respect
to mean age at which they walked alone. The following data (ages in months) were collected:

Sample from population A: 9.5, 10.5, 9.0, 9.75, 10.0, 13.0,
10.0, 13.5, 10.0, 9.5, 10.0, 9.75

Sample from population B: 12.5, 9.5, 13.5, 13.75, 12.0, 13.75,
12.5, 9.5, 12.0, 13.5, 12.0, 12.0

What should the researchers conclude? Let .

7.3.11 Does sensory deprivation have an effect on a person’s alpha-wave frequency? Twenty volunteer
subjects were randomly divided into two groups. Subjects in group A were subjected to a 10-day
period of sensory deprivation, while subjects in group B served as controls. At the end of the
experimental period, the alpha-wave frequency component of subjects’ electroencephalograms was
measured. The results were as follows:

Group A: 10.2, 9.5, 10.1, 10.0, 9.8, 10.9, 11.4, 10.8, 9.7, 10.4

Group B: 11.0, 11.2, 10.1, 11.4, 11.7, 11.2, 10.8, 11.6, 10.9, 10.9

Let .

7.3.12 Can we conclude that, on the average, lymphocytes and tumor cells differ in size? The following
are the cell diameters of 40 lymphocytes and 50 tumor cells obtained from biopsies of 
tissue from patients with melanoma:

Lymphocytes

9.0 9.4 4.7 4.8 8.9 4.9 8.4 5.9
6.3 5.7 5.0 3.5 7.8 10.4 8.0 8.0
8.6 7.0 6.8 7.1 5.7 7.6 6.2 7.1
7.4 8.7 4.9 7.4 6.4 7.1 6.3 8.8
8.8 5.2 7.1 5.3 4.7 8.4 6.4 8.3

Tumor Cells

12.6 14.6 16.2 23.9 23.3 17.1 20.0 21.0 19.1 19.4
16.7 15.9 15.8 16.0 17.9 13.4 19.1 16.6 18.9 18.7
20.0 17.8 13.9 22.1 13.9 18.3 22.8 13.0 17.9 15.2
17.7 15.1 16.9 16.4 22.8 19.4 19.6 18.4 18.2 20.7
16.3 17.7 18.1 24.3 11.2 19.5 18.6 16.4 16.1 21.5

Let .

7.4 PAIRED COMPARISONS

In our previous discussion involving the difference between two population means, it
was assumed that the samples were independent. A method frequently employed for
assessing the effectiveness of a treatment or experimental procedure is one that makes

a = .05

1mm2
a = .05

a = .05
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use of related observations resulting from nonindependent samples. A hypothesis test
based on this type of data is known as a paired comparisons test.

Reasons for Pairing It frequently happens that true differences do not exist
between two populations with respect to the variable of interest, but the presence of extra-
neous sources of variation may cause rejection of the null hypothesis of no difference. On
the other hand, true differences also may be masked by the presence of extraneous factors.

Suppose, for example, that we wish to compare two sunscreens. There are at least
two ways in which the experiment may be carried out. One method would be to select
a simple random sample of subjects to receive sunscreen A and an independent simple
random sample of subjects to receive sunscreen B. We send the subjects out into the sun-
shine for a specified length of time, after which we will measure the amount of damage
from the rays of the sun. Suppose we employ this method, but inadvertently, most of the
subjects receiving sunscreen A have darker complexions that are naturally less sensitive
to sunlight. Let us say that after the experiment has been completed we find that sub-
jects receiving sunscreen A had less sun damage. We would not know if they had less
sun damage because sunscreen A was more protective than sunscreen B or because the
subjects were naturally less sensitive to the sun.

A better way to design the experiment would be to select just one simple random
sample of subjects and let each member of the sample receive both sunscreens. We could,
for example, randomly assign the sunscreens to the left or the right side of each sub-
ject’s back with each subject receiving both sunscreens. After a specified length of expo-
sure to the sun, we would measure the amount of sun damage to each half of the back.
If the half of the back receiving sunscreen A tended to be less damaged, we could more
confidently attribute the result to the sunscreen, since in each instance both sunscreens
were applied to equally pigmented skin.

The objective in paired comparisons tests is to eliminate a maximum number of
sources of extraneous variation by making the pairs similar with respect to as many
variables as possible.

Related or paired observations may be obtained in a number of ways. The same sub-
jects may be measured before and after receiving some treatment. Litter mates of the same
sex may be assigned randomly to receive either a treatment or a placebo. Pairs of twins or
siblings may be assigned randomly to two treatments in such a way that members of a sin-
gle pair receive different treatments. In comparing two methods of analysis, the material
to be analyzed may be divided equally so that one-half is analyzed by one method and
one-half is analyzed by the other. Or pairs may be formed by matching individuals on some
characteristic, for example, digital dexterity, which is closely related to the measurement
of interest, say, posttreatment scores on some test requiring digital manipulation.

Instead of performing the analysis with individual observations, we use , the
difference between pairs of observations, as the variable of interest.

When the n sample differences computed from the n pairs of measurements con-
stitute a simple random sample from a normally distributed population of differences,
the test statistic for testing hypotheses about the population mean difference is

(7.4.1)t =
d - md0

sd

md

di
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where is the sample mean difference, is the hypothesized population mean dif-
ference, is the number of sample differences, and is the standard
deviation of the sample differences. When is true, the test statistic is distributed
as Student’s t with degrees of freedom.

Although to begin with we have two samples—say, before levels and after levels—
we do not have to worry about equality of variances, as with independent samples, since
our variable is the difference between readings in the same individual, or matched indi-
viduals, and, hence, only one variable is involved. The arithmetic involved in perform-
ing a paired comparisons test, therefore, is the same as for performing a test involving
a single sample as described in Section 7.2.

The following example illustrates the procedures involved in a paired comparisons
test.

EXAMPLE 7.4.1

John M. Morton et al. (A-14) examined gallbladder function before and after fundopli-
cation—a surgery used to stop stomach contents from flowing back into the esophagus
(reflux)—in patients with gastroesophageal reflux disease. The authors measured gall-
bladder functionality by calculating the gallbladder ejection fraction (GBEF) before and
after fundoplication. The goal of fundoplication is to increase GBEF, which is meas-
ured as a percent. The data are shown in Table 7.4.1. We wish to know if these data
provide sufficient evidence to allow us to conclude that fundoplication increases GBEF
functioning.

Solution: We will say that sufficient evidence is provided for us to conclude that the
fundoplication is effective if we can reject the null hypothesis that the pop-
ulation mean change is different from zero in the appropriate direction.
We may reach a conclusion by means of the ten-step hypothesis testing
procedure.

1. Data. The data consist of the GBEF for 12 individuals, before
and after fundoplication. We shall perform the statistical analysis on
the differences in preop and postop GBEF. We may obtain the dif-
ferences in one of two ways: by subtracting the preop percents from 
the postop percents or by subtracting the postop percents from the
preop percents. Let us obtain the differences by subtracting the preop

md

n - 1
H0

sdsd = sd>1n, n
md0

d
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TABLE 7.4.1 Gallbladder Function in Patients with Presentations of
Gastroesophageal Reflux Disease Before and After Treatment

Preop (%) 22 63.3 96 9.2 3.1 50 33 69 64 18.8 0 34

Postop (%) 63.5 91.5 59 37.8 10.1 19.6 41 87.8 86 55 88 40

Source: John M. Morton, Steven P. Bowers, Tananchai A. Lucktong, Samer Mattar, W. Alan Bradshaw,
Kevin E. Behrns, Mark J. Koruda, Charles A. Herbst, William McCartney, Raghuveer K. Halkar, C. Daniel
Smith, and Timothy M. Farrell, “Gallbladder Function Before and After Fundoplication,” Journal of
Gastrointestinal Surgery, 6 (2002), 806–811.



percents from the postop percents. The differ-
ences are:

41.5, 28.2, �37.0, 28.6, 7.0, �30.4, 8.0, 18.8, 22.0, 36.2, 88.0, 6.0

2. Assumptions. The observed differences constitute a simple random
sample from a normally distributed population of differences that could
be generated under the same circumstances.

3. Hypotheses. The way we state our null and alternative hypotheses
must be consistent with the way in which we subtract measurements to
obtain the differences. In the present example, we want to know if we
can conclude that the fundoplication is useful in increasing GBEF
percentage. If it is effective in improving GBEF, we would expect the
postop percents to tend to be higher than the preop percents. If, there-
fore, we subtract the preop percents from the postop percents
( ), we would expect the differences to tend to be posi-
tive. Furthermore, we would expect the mean of a population of such
differences to be positive. So, under these conditions, asking if we can
conclude that the fundoplication is effective is the same as asking if we
can conclude that the population mean difference is positive (greater
than zero).

The null and alternative hypotheses are as follows:

If we had obtained the differences by subtracting the postop percents
from the preop weights (preop � postop), our hypotheses would have
been

If the question had been such that a two-sided test was indicated, the
hypotheses would have been

regardless of the way we subtracted to obtain the differences.

4. Test statistic. The appropriate test statistic is given by Equation 7.4.1.

5. Distribution of test statistic. If the null hypothesis is true, the test
statistic is distributed as Student’s t with degrees of freedom.

6. Decision rule. Let . The critical value of t is 1.7959. Reject
if computed t is greater than or equal to the critical value. The rejec-

tion and nonrejection regions are shown in Figure 7.4.1.
H0

a = .05

n - 1

HA: md Z 0

H0: md = 0

HA: md 6 0

H0: md Ú  0

HA: md 7  0

H0: md … 0

postop - preop

di = postop - preop
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7. Calculation of test statistic. From the differences , we
compute the following descriptive measures:

8. Statistical decision. Reject , since 1.9159 is in the rejection region.

9. Conclusion. We may conclude that the fundoplication procedure
increases GBEF functioning.

10. p value. For this test, , since 
2.2010. ■

A Confidence Interval for A 95 percent confidence interval for may
be obtained as follows:

The Use of z If, in the analysis of paired data, the population variance of the
differences is known, the appropriate test statistic is

(7.4.2)

It is unlikely that will be known in practice.sd

z =
d - md

sd>1n

-2.690, 38.840

 18.075 ; 20.765

 18.075 ; 2.201011068.0930>12

d ; t1-1a>22sd

mdMd

1.7959 6 1.9159 6.025 6 p 6 .05

H0

t =
18.075 - 011068.0930>12

=
18.075

9.4344
= 1.9159

s 2
d =
g1di - d 22

n - 1
=

ng d 2
i - 1gd i22

n1n - 12 =
12115669.492 - 1216.92211221112 = 1068.0930

d =
g di

n
=
141.52 + 128.22 + 1-37.02 + . . . + 16.02

12
=

216.9

12
= 18.075

din = 12
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a = .05

Nonrejection region Rejection region

FIGURE 7.4.1 Rejection and nonrejection regions for
Example 7.4.1.



If the assumption of normally distributed ’s cannot be made, the central limit
theorem may be employed if n is large. In such cases, the test statistic is Equation 7.4.2,
with used to estimate when, as is generally the case, the latter is unknown.

We may use MINITAB to perform a paired t-test.  The output from this procedure
is given in Figure 7.4.2.

Disadvantages The use of the paired comparisons test is not without its problems.
If different subjects are used and randomly assigned to two treatments, considerable time
and expense may be involved in our trying to match individuals on one or more relevant
variables. A further price we pay for using paired comparisons is a loss of degrees of
freedom. If we do not use paired observations, we have degrees of freedom avail-
able as compared to when we use the paired comparisons procedure.

In general, in deciding whether or not to use the paired comparisons procedure,
one should be guided by the economics involved as well as by a consideration of the
gains to be realized in terms of controlling extraneous variation.

Alternatives If neither z nor t is an appropriate test statistic for use with available
data, one may wish to consider using some nonparametric technique to test a hypothe-
sis about a median difference. The sign test, discussed in Chapter 13, is a candidate for
use in such cases.

EXERCISES

In the following exercises, carry out the ten-step hypothesis testing procedure at the specified signif-
icance level. For each exercise, as appropriate, explain why you chose a one-sided test or a two-sided
test. Discuss how you think researchers or clinicians might use the results of your hypothesis test.

n - 1
2n - 2

sdsd

di
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Paired T-Test and CI: C2, C1 

Paired T for C2 - C1

N    Mean    StDev  SE Mean
C2              12  56.6083  27.8001   8.0252
C1              12  38.5333  30.0587   8.6772
Difference      12  18.0750  32.6817   9.4344

95% lower bound for mean difference: 1.1319
T-Test of mean difference � 0 (vs � 0): T-Value � 1.92 P-Value �
0.041

FIGURE 7.4.2 MINITAB procedure and output for paired comparisons test, Example 7.4.1
(data in Table 7.4.1).



What clinical or research decisions or actions do you think would be appropriate in light of the results
of your test?

7.4.1 Ellen Davis Jones (A-15) studied the effects of reminiscence therapy for older women with depres-
sion. She studied 15 women 60 years or older residing for 3 months or longer in an assisted liv-
ing long-term care facility. For this study, depression was measured by the Geriatric Depression
Scale (GDS). Higher scores indicate more severe depression symptoms. The participants received
reminiscence therapy for long-term care, which uses family photographs, scrapbooks, and personal
memorabilia to stimulate memory and conversation among group members. Pre-treatment and post-
treatment depression scores are given in the following table. Can we conclude, based on these data,
that subjects who participate in reminiscence therapy experience, on average, a decline in GDS
depression scores? Let .

Pre–GDS: 12 10 16 2 12 18 11 16 16 10 14 21 9 19 20

Post–GDS: 11 10 11 3 9 13 8 14 16 10 12 22 9 16 18
Source: Ellen Davis Jones, N.D., R.N., FNP-C. Used with permission.

7.4.2 Beney et al. (A-16) evaluated the effect of telephone follow-up on the physical well-being dimen-
sion of health-related quality of life in patients with cancer. One of the main outcome variables was
measured by the physical well-being subscale of the Functional Assessment of Cancer Therapy
Scale–General (FACT-G). A higher score indicates higher physical well-being. The following table
shows the baseline FACT-G score and the follow-up score to evaluate the physical well-being dur-
ing the 7 days after discharge from hospital to home for 66 patients who received a phone call
48–72 hours after discharge that gave patients the opportunity to discuss medications, problems,
and advice. Is there sufficient evidence to indicate that quality of physical well-being significantly
decreases in the first week of discharge among patients who receive a phone call? Let .

Baseline Follow-up Baseline Follow-up
Subject FACT-G FACT-G Subject FACT-G FACT-G

1 16 19 34 25 14
2 26 19 35 21 17
3 13 9 36 14 22
4 20 23 37 23 22
5 22 25 38 19 16
6 21 20 39 19 15
7 20 10 40 18 23
8 15 20 41 20 21
9 25 22 42 18 11

10 20 18 43 22 22
11 11 6 44 7 17
12 22 21 45 23 9
13 18 17 46 19 16
14 21 13 47 17 16
15 25 25 48 22 20
16 17 21 49 19 23
17 26 22 50 5 17
18 18 22 51 22 17
19 7 9 52 12 6

(Continued )

a = .05

a = .01
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Baseline Follow-up Baseline Follow-up
Subject FACT-G FACT-G Subject FACT-G FACT-G

20 25 24 53 19 19
21 22 15 54 17 20
22 15 9 55 7 6
23 19 7 56 27 10
24 23 20 57 22 16
25 19 19 58 16 14
26 21 24 59 26 24
27 24 23 60 17 19
28 21 15 61 23 22
29 28 27 62 23 23
30 18 26 63 13 3
31 25 26 64 24 22
32 25 26 65 17 21
33 28 28 66 22 21

Source: Johnny Beney, Ph.D. and E. Beth Devine, Pharm.D., M.B.A. et al. Used with
permission.

7.4.3 The purpose of an investigation by Morley et al. (A-17) was to evaluate the analgesic effective-
ness of a daily dose of oral methadone in patients with chronic neuropathic pain syndromes. The
researchers used a visual analogue scale (0–100 mm, higher number indicates higher pain) ratings
for maximum pain intensity over the course of the day. Each subject took either 20 mg of
methadone or a placebo each day for 5 days. Subjects did not know which treatment they were
taking. The following table gives the mean maximum pain intensity scores for the 5 days on
methadone and the 5 days on placebo. Do these data provide sufficient evidence, at the .05 level
of significance, to indicate that in general the maximum pain intensity is lower on days when
methadone is taken?

Subject Methadone Placebo

1 29.8 57.2
2 73.0 69.8
3 98.6 98.2
4 58.8 62.4
5 60.6 67.2
6 57.2 70.6
7 57.2 67.8
8 89.2 95.6
9 97.0 98.4

10 49.8 63.2
11 37.0 63.6

7.4.4 Woo and McKenna (A-18) investigated the effect of broadband ultraviolet B (UVB) therapy and top-
ical calcipotriol cream used together on areas of psoriasis. One of the outcome variables is the Pso-
riasis Area and Severity Index (PASI). The following table gives the PASI scores for 20 subjects
measured at baseline and after eight treatments. Do these data provide sufficient evidence, at the .01
level of significance, to indicate that the combination therapy reduces PASI scores?
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Miles, Sarah White, and Matthew K. Makin, “Low-Dose
Methadone Has an Analgesic Effect in Neuropathic Pain: 
A Double-Blind Randomized Controlled Crossover Trial,”
Palliative Medicine, 17 (2003), 576–587.



After 8
Subject Baseline Treatments

1 5.9 5.2
2 7.6 12.2
3 12.8 4.6
4 16.5 4.0
5 6.1 0.4
6 14.4 3.8
7 6.6 1.2
8 5.4 3.1
9 9.6 3.5

10 11.6 4.9
11 11.1 11.1
12 15.6 8.4
13 6.9 5.8
14 15.2 5.0
15 21.0 6.4
16 5.9 0.0
17 10.0 2.7
18 12.2 5.1
19 20.2 4.8
20 6.2 4.2

7.4.5 One of the purposes of an investigation by Porcellini et al. (A-19) was to investigate the effect on
CD4 T cell count of administration of intermittent interleukin (IL-2) in addition to highly active
antiretroviral therapy (HAART). The following table shows the CD4 T cell count at baseline and
then again after 12 months of HAART therapy with IL-2. Do the data show, at the .05 level, a
significant change in CD4 T cell count?

Subject 1 2 3 4 5 6 7

CD4 T cell count at 173 58 103 181 105 301 169
entry

CD4 T cell count at end 257 108 315 362 141 549 369
of follow-up 

Source: Simona Procellini, Giuliana Vallanti, Silvia Nozza, Guido Poli, Adraino Lazzarin,
Guiseppe Tabussi, and Antonio Grassia, “Improved Thymopoietic Potential in Aviremic HIV-
Infected Individuals with HAART by Intermittent IL-2 Administration,” AIDS, 17 (2003),
1621–1630.

7.5 HYPOTHESIS TESTING: A SINGLE
POPULATION PROPORTION

Testing hypotheses about population proportions is carried out in much the same way
as for means when the conditions necessary for using the normal curve are met. One-
sided or two-sided tests may be made, depending on the question being asked. When a

(:  106/L)

(:  106/L)
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sample sufficiently large for application of the central limit theorem as discussed in Sec-
tion 5.5 is available for analysis, the test statistic is

(7.5.1)

which, when is true, is distributed approximately as the standard normal.

EXAMPLE 7.5.1

Wagenknecht et al. (A-20) collected data on a sample of 301 Hispanic women living in
San Antonio, Texas. One variable of interest was the percentage of subjects with impaired
fasting glucose (IFG). IFG refers to a metabolic stage intermediate between normal glu-
cose homeostasis and diabetes. In the study, 24 women were classified in the IFG stage.
The article cites population estimates for IFG among Hispanic women in Texas as 6.3
percent. Is there sufficient evidence to indicate that the population of Hispanic women
in San Antonio has a prevalence of IFG higher than 6.3 percent?

Solution:

1. Data. The data are obtained from the responses of 301 individuals 
of which 24 possessed the characteristic of interest; that is, 

2. Assumptions. The study subjects may be treated as a simple random
sample from a population of similar subjects, and the sampling distri-
bution of is approximately normally distributed in accordance with
the central limit theorem.

3. Hypotheses.

We conduct the test at the point of equality. The conclusion we reach
will be the same as we would reach if we conducted the test using any
other hypothesized value of p greater than .063. If is true, 
and the standard error . Note that we use the
hypothesized value of p in computing . We do this because the
entire test is based on the assumption that the null hypothesis is true.
To use the sample proportion, , in computing would not be consis-
tent with this concept.

4. Test statistic. The test statistic is given by Equation 7.5.1.

5. Distribution of test statistic. If the null hypothesis is true, the test sta-
tistic is approximately normally distributed with a mean of zero.

6. Decision rule. Let . The critical value of z is 1.645. Reject 
if the computed z is .Ú1.645

H0a = .05

spNpN

spN

spN = 11.06321.9372>301
p = .063H0

HA : p 7 .063

H0 : p … .063

Np

24>301 = .080.
Np =

H0

z =
pN - p0

Ap0q0

n
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7. Calculation of test statistic.

8. Statistical decision. Do not reject since .

9. Conclusion. We cannot conclude that in the sampled population the
proportion who are IFG is higher than 6.3 percent.

10. p value. . ■

Tests involving a single proportion can be carried out using a variety
of computer programs. Outputs from MINITAB and NCSS, using the data
from Example 7.5.1, are shown in Figure 7.5.1. It should be noted that the
results will vary slightly, because of rounding errors, if calculations are done
by hand. It should also be noted that some programs, such as NCSS, use a
continuity correction in calculating the z-value, and therefore the test statis-
tic values and corresponding p values differ slightly from the MINITAB
output.

p = .1131

1.21 6 1.645H0

z =
.080 - .063

A 1.06321.9372
301

= 1.21
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MINITAB Output

Test and CI for One Proportion

Test of p � 0.063 vs p � 0.063

95% Lower
Sample      X  N    Sample p Bound     Z-Value     P-Value
1           24   301   0.079734   0.054053     1.19      0.116

Using the normal approximation.

NCSS Output

Normal Approximation using (P0)

Alternative Z-Value Prob Decision 
Hypothesis Level (5%)
P��P0 1.0763 0.281780 Accept H0
P�P0 1.0763 0.859110 Accept H0
P�P0 1.0763 0.140890 Accept H0

FIGURE 7.5.1 MINITAB and partial NCSS output for the data in Example 7.5.1



EXERCISES

For each of the following exercises, carry out the ten-step hypothesis testing procedure at the des-
ignated level of significance. For each exercise, as appropriate, explain why you chose a one-sided
test or a two-sided test. Discuss how you think researchers or clinicians might use the results of
your hypothesis test. What clinical or research decisions or actions do you think would be appro-
priate in light of the results of your test?

7.5.1 Jacquemyn et al. (A-21) conducted a survey among gynecologists-obstetricians in the Flanders
region and obtained 295 responses. Of those responding, 90 indicated that they had performed at
least one cesarean section on demand every year. Does this study provide sufficient evidence for
us to conclude that less than 35 percent of the gynecologists-obstetricians in the Flanders region
perform at least one cesarean section on demand each year? Let .

7.5.2 In an article in the journal Health and Place, Hui and Bell (A-22) found that among 2428 boys
ages 7 to 12 years, 461 were overweight or obese. On the basis of this study, can we conclude
that more than 15 percent of the boys ages 7 to 12 in the sampled population  are obese or over-
weight? Let .

7.5.3 Becker et al. (A-23) conducted a study using a sample of 50 ethnic Fijian women. The women com-
pleted a self-report questionnaire on dieting and attitudes toward body shape and change. The
researchers found that five of the respondents reported at least weekly episodes of binge eating dur-
ing the previous 6 months. Is this sufficient evidence to conclude that less than 20 percent of the
population of Fijian women engage in at least weekly episodes of binge eating? Let .

7.5.4 The following questionnaire was completed by a simple random sample of 250 gynecologists. The
number checking each response is shown in the appropriate box.

1. When you have a choice, which procedure do you prefer for obtaining samples of endometrium?

(a) Dilation and curettage 175

(b) Vobra aspiration 75

2. Have you seen one or more pregnant women during the past year whom you knew to have ele-
vated blood lead levels?

(a) Yes  25

(b) No 225

3. Do you routinely acquaint your pregnant patients who smoke with the suspected hazards of
smoking to the fetus?

(a) Yes 238

(b) No 12

Can we conclude from these data that in the sampled population more than 60 percent prefer dila-
tion and curettage for obtaining samples of endometrium? Let .

7.5.5 Refer to Exercise 7.5.4. Can we conclude from these data that in the sampled population fewer
than 15 percent have seen (during the past year) one or more pregnant women with elevated blood
lead levels? Let .

7.5.6 Refer to Exercise 7.5.4. Can we conclude from these data that more than 90 percent acquaint
their pregnant patients who smoke with the suspected hazards of smoking to the fetus? Let

.a = .05

a = .05

a = .01

a = .05

a = .05

a = .05
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7.6 HYPOTHESIS TESTING: 
THE DIFFERENCE BETWEEN TWO
POPULATION PROPORTIONS

The most frequent test employed relative to the difference between two population
proportions is that their difference is zero. It is possible, however, to test that the
difference is equal to some other value. Both one-sided and two-sided tests may be
made.

When the null hypothesis to be tested is , we are hypothesizing that
the two population proportions are equal. We use this as justification for combining
the results of the two samples to come up with a pooled estimate of the hypothesized
common proportion. If this procedure is adopted, one computes

where and are the numbers in the first and second samples, respectively, possess-
ing the characteristic of interest. This pooled estimate of is used in com-
puting the estimated standard error of the estimator, as follows:

(7.6.1)

The test statistic becomes

(7.6.2)

which is distributed approximately as the standard normal if the null hypothesis is 
true.

EXAMPLE 7.6.1

Noonan syndrome is a genetic condition that can affect the heart, growth, blood clot-
ting, and mental and physical development. Noonan et al. (A-24) examined the stature
of men and women with Noonan syndrome. The study contained 29 male and 44 female
adults. One of the cut-off values used to assess stature was the third percentile of adult
height. Eleven of the males fell below the third percentile of adult male height, while
24 of the females fell below the third percentile of female adult height. Does this study
provide sufficient evidence for us to conclude that among subjects with Noonan syn-
drome, females are more likely than males to fall below the respective third percentile
of adult height? Let .a = .05

z =
1pN1 - pN22 - 1p1 - p220

sN pN 1-pN 2

sN
N
p1 - N

p2
= A p11 - p2

n1
+

p11 - p2
n2

sN pN 1 - pN 2
,

p = p1 = p2

x2x1

p =
x1 + x 2

n1 + n 2
, and q = 1 - p

p1 - p2 = 0
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Solution:

1. Data. The data consist of information regarding the height status of Noo-
nan syndrome males and females as described in the statement of the
example.

2. Assumptions. We assume that the patients in the study constitute inde-
pendent simple random samples from populations of males and females
with Noonan syndrome.

3. Hypotheses.

where is the proportion of females below the third percentile of
female adult height and pM is the proportion of males below the third
percentile of male adult height.

4. Test statistic. The test statistic is given by Equation 7.6.2.

5. Distribution of test statistic. If the null hypothesis is true, the test sta-
tistic is distributed approximately as the standard normal.

6. Decision rule. Let . The critical value of z is 1.645. Reject 
if computed z is greater than 1.645.

7. Calculation of test statistic. From the sample data we compute 

The computed value of the test statistic, then, is

8. Statistical decision. Fail to reject since .

9. Conclusion. In the general population of adults with Noonan syndrome
there may be no difference in the proportion of males and females who
have heights below the third percentile of adult height.

10. p value. For this test . ■

Tests involving two proportions, using the data from Example 7.6.1,
can be carried out with a variety of computer programs. Outputs from
MINITAB and NCSS are shown in Figure 7.6.1. Again, it should be noted
that, because of rounding errors, the results will vary slightly if calculations
are done by hand. 

p = .0823

1.39 6 1.645H0

z =
1.545 - .3792

A 1.47921.5212
44

+
1.47921.5212

29

= 1.39

.479.
24>44 = .545, NpM = 11>29 = .379,  and p = 124 + 112>144 + 292 =

NpF =

H0a = .05

pF

HA : pF 7 pM  or pF - pM 7 0

H0 : p F … pM  or pF - pM … 0
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EXERCISES

In each of the following exercises use the ten-step hypothesis testing procedure. For each exercise, as
appropriate, explain why you chose a one-sided test or a two-sided test. Discuss how you think
researchers or clinicians might use the results of your hypothesis test. What clinical or research deci-
sions or actions do you think would be appropriate in light of the results of your test?

7.6.1 Ho et al. (A-25) used telephone interviews of randomly selected respondents in Hong Kong to obtain
information regarding individuals’ perceptions of health and smoking history. Among 1222 current
male smokers, 72 reported that they had “poor” or “very poor” health, while 30 among 282 former
male smokers reported that they had “poor” or “very poor” health. Is this sufficient evidence to
allow one to conclude that among Hong Kong men there is a difference between current and for-
mer smokers with respect to the proportion who perceive themselves as having “poor” and “very
poor” health? Let .

7.6.2 Landolt et al. (A-26) examined rates of posttraumatic stress disorder (PTSD) in mothers and
fathers. Parents were interviewed 5 to 6 weeks after an accident or a new diagnosis of cancer or
diabetes mellitus type I for their child. Twenty-eight of the 175 fathers interviewed and 43 of the

a = .01
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MINITAB Output

Test and CI for Two Proportions

Sample   X    N  Sample p

1        24   44  0.545455

2        11   29  0.379310

Difference � p (1) � p (2)

Estimate for difference: 0.166144

95% lower bound for difference: �0.0267550

Test for difference � 0 (vs > 0):  Z � 1.39  P-Value � 0.082

NCSS Output

Test Test Test Prob Conclude H1
Name Statistic’s Statistic Level at 5%

Distribution Value Significance?
Z-Test Normal 1.390 0.0822 No

FIGURE 7.6.1 MINITAB and partial NCSS output for the data in Example 7.6.1



180 mothers interviewed met the criteria for current PTSD. Is there sufficient evidence for us to
conclude that fathers are less likely to develop PTSD than mothers when a child is traumatized by
an accident, cancer diagnosis, or diabetes diagnosis? Let .

7.6.3 In a Kidney International article, Avram et al. (A-27) reported on a study involving
529 hemodialysis patients and 326 peritoneal dialysis patients. They found that at baseline
249 subjects in the hemodialysis treatment group were diabetic, while at baseline 134 of the
subjects in the peritoneal dialysis group were diabetic. Is there a significant difference in dia-
betes prevalence at baseline between the two groups of this study? Let . What does your
finding regarding sample significance imply about the populations of subjects?

7.6.4 In a study of obesity the following results were obtained from samples of males and females
between the ages of 20 and 75:

n Number Overweight

Males 150 21
Females 200 48

Can we conclude from these data that in the sampled populations there is a difference in the
proportions who are overweight? Let .

7.7 HYPOTHESIS TESTING: A SINGLE
POPULATION VARIANCE

In Section 6.9 we examined how it is possible to construct a confidence interval for
the variance of a normally distributed population. The general principles presented in
that section may be employed to test a hypothesis about a population variance. When
the data available for analysis consist of a simple random sample drawn from a
normally distributed population, the test statistic for testing hypotheses about a
population variance is

(7.7.1)

which, when is true, is distributed as with degrees of freedom.

EXAMPLE 7.7.1

The purpose of a study by Wilkins et al. (A-28) was to measure the effectiveness of
recombinant human growth hormone (rhGH) on children with total body surface area
burns percent. In this study, 16 subjects received daily injections at home of rhGH.
At baseline, the researchers wanted to know the current levels of insulin-like growth fac-
tor (IGF-I) prior to administration of rhGH. The sample variance of IGF-I levels (in
ng/ml) was 670.81. We wish to know if we may conclude from these data that the
population variance is not 600.

7 40

n - 1x2H0

x2 = 1n - 12s 2>s2

a = .05

a = .05

a = .05
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Solution:

1. Data. See statement in the example.

2. Assumptions. The study sample constitutes a simple random sample
from a population of similar children. The IGF-I levels are normally dis-
tributed.

3. Hypotheses.

4. Test statistic. The test statistic is given by Equation 7.7.1.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed as with degrees of freedom.

6. Decision rule. Let . Critical values of are 6.262 and 27.488.
Reject unless the computed value of the test statistic is between
6.262 and 27.488. The rejection and nonrejection regions are shown in
Figure 7.7.1.

7. Calculation of test statistic.

8. Statistical decision. Do not reject since 

9. Conclusion. Based on these data we are unable to conclude that the
population variance is not 600.

10. p value. The determination of the p value for this test is complicated
by the fact that we have a two-sided test and an asymmetric sampling
distribution. When we have a two-sided test and a symmetric sam-
pling distribution such as the standard normal or t, we may, as we
have seen, double the one-sided p value. Problems arise when we
attempt to do this with an asymmetric sampling distribution such as the

6.262 6 16.77 6 27.488.H0

x2 =
151670.812

600
= 16.77

H0

x2a = .05

n - 1x2

HA : s2 Z 600

H0 : s2 = 600
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27.4886.2620

Nonrejection region Rejection regionRejection region

.025
.025

x2
15

FIGURE 7.7.1 Rejection and nonrejection regions for Example 7.7.1.



chi-square distribution. In this situation the one-sided p value is
reported along with the direction of the observed departure from the
null hypothesis. In fact, this procedure may be followed in the case
of symmetric sampling distributions. Precedent, however, seems to
favor doubling the one-sided p value when the test is two-sided and
involves a symmetric sampling distribution.

For the present example, then, we may report the p value as
follows: (two-sided test). A population variance greater than
600 is suggested by the sample data, but this hypothesis is not strongly
supported by the test.

If the problem is stated in terms of the population standard devi-
ation, one may square the sample standard deviation and perform the
test as indicated above. ■

One-Sided Tests Although this was an example of a two-sided test, one-sided
tests may also be made by logical modification of the procedure given here.

Tests involving a single population variance can be carried out using MINITAB
software. Most other statistical computer programs lack procedures for carrying out these
tests directly. The output from MINITAB, using the data from Example 7.7.1, is shown
in Figure 7.7.2.

 For HA : s2 6 s2
0, reject H0 if computed x2 … x 2

a

 For HA : s2 7 s2
0, reject H0 if computed x 2 Ú x 2

1-a

p 7 .05
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Test and CI for One Variance 

Statistics

N  StDev  Variance
16   25.9       671

95% Confidence Intervals

CI for      CI for
Method        StDev       Variance
Standard  (19.1, 40.1)  (366, 1607)

Tests

Method    Chi-Square    DF    P-Value
Standard       16.77    15      0.666

FIGURE 7.7.2 MINITAB output for the data in Example 7.7.1.



EXERCISES

In each of the following exercises, carry out the ten-step testing procedure. For each exercise, as
appropriate, explain why you chose a one-sided test or a two-sided test. Discuss how you think
researchers or clinicians might use the results of your hypothesis test. What clinical or research
decisions or actions do you think would be appropriate in light of the results of your test?

7.7.1 Recall Example 7.2.3, where Nakamura et al. (A-1) studied subjects with acute medial collateral
ligament injury (MCL) with anterior cruciate ligament tear (ACL). The ages of the 17 subjects were:

Use these data to determine if there is sufficient evidence for us to conclude that in a population
of similar subjects, the variance of the ages of the subjects is not 20 years. Let .

7.7.2 Robinson et al. (A-29) studied nine subjects who underwent baffle procedure for transposition of
the great arteries (TGA). At baseline, the systemic vascular resistance (SVR) measured in

values at rest yielded a standard deviation of 28. Can we conclude from these data
that the SVR variance of a population of similar subjects with TGA is not 700? Let .

7.7.3 Vital capacity values were recorded for a sample of 10 patients with severe chronic airway obstruc-
tion. The variance of the 10 observations was .75. Test the null hypothesis that the population
variance is 1.00. Let .

7.7.4 Hemoglobin (g percent) values were recorded for a sample of 20 children who were part of a study
of acute leukemia. The variance of the observations was 5. Do these data provide sufficient evi-
dence to indicate that the population variance is greater than 4? Let .

7.7.5 A sample of 25 administrators of large hospitals participated in a study to investigate the nature and
extent of frustration and emotional tension associated with the job. Each participant was given a test
designed to measure the extent of emotional tension he or she experienced as a result of the duties
and responsibilities associated with the job. The variance of the scores was 30. Can it be concluded
from these data that the population variance is greater than 25? Let .

7.7.6 In a study in which the subjects were 15 patients suffering from pulmonary sarcoid disease,
blood gas determinations were made. The variance of the PaO2 (mm Hg) values was 450. Test
the null hypothesis that the population variance is greater than 250. Let .

7.7.7 Analysis of the amniotic fluid from a simple random sample of 15 pregnant women yielded the
following measurements on total protein (grams per 100 ml) present:

Do these data provide sufficient evidence to indicate that the population variance is greater than
.05? Let . What assumptions are necessary?

7.8 HYPOTHESIS TESTING: THE RATIO 
OF TWO POPULATION VARIANCES

As we have seen, the use of the t distribution in constructing confidence intervals and in
testing hypotheses for the difference between two population means assumes that the
population variances are equal. As a rule, the only hints available about the magnitudes

a = .05

 .83, 1.00, .19, .61, .42, .20, .79

 .69, 1.04, .39, .37, .64, .73, .69, 1.04,

a = .05

a = .05

a = .05

a = .05

a = .10
WU * m22 1

a = .01

31, 26, 21, 15, 26, 16, 19, 21, 28, 27, 22, 20, 25, 31, 20, 25, 15
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of the respective variances are the variances computed from samples taken from the
populations. We would like to know if the difference that, undoubtedly, will exist between
the sample variances is indicative of a real difference in population variances, or if the
difference is of such magnitude that it could have come about as a result of chance alone
when the population variances are equal.

Two methods of chemical analysis may give the same results on the average. It
may be, however, that the results produced by one method are more variable than the
results of the other. We would like some method of determining whether this is likely
to be true.

Variance Ratio Test Decisions regarding the comparability of two population
variances are usually based on the variance ratio test, which is a test of the null hypoth-
esis that two population variances are equal. When we test the hypothesis that two pop-
ulation variances are equal, we are, in effect, testing the hypothesis that their ratio is
equal to 1.

We learned in the preceding chapter that, when certain assumptions are met, the
quantity is distributed as F with numerator degrees of freedom
and denominator degrees of freedom. If we are hypothesizing that , we
assume that the hypothesis is true, and the two variances cancel out in the above expres-
sion leaving , which follows the same F distribution. The ratio will be desig-
nated V.R. for variance ratio.

For a two-sided test, we follow the convention of placing the larger sample vari-
ance in the numerator and obtaining the critical value of F for and the appropriate
degrees of freedom. However, for a one-sided test, which of the two sample variances
is to be placed in the numerator is predetermined by the statement of the null hypothe-
sis. For example, for the null hypothesis that the appropriate test statistic is

The critical value of F is obtained for (not ) and the appropriate
degrees of freedom. In like manner, if the null hypothesis is that , the appropri-
ate test statistic is . In all cases, the decision rule is to reject the null hypoth-
esis if the computed V.R. is equal to or greater than the critical value of F.

EXAMPLE 7.8.1

Borden et al. (A-30) compared meniscal repair techniques using cadaveric knee speci-
mens. One of the variables of interest was the load at failure (in newtons) for knees fixed
with the FasT-FIX technique (group 1) and the vertical suture method (group 2). Each
technique was applied to six specimens. The standard deviation for the FasT-FIX method
was 30.62, and the standard deviation for the vertical suture method was 11.37. Can we
conclude that, in general, the variance of load at failure is higher for the FasT-FIX tech-
nique than the vertical suture method?

Solution:
1. Data. See the statement of the example.

2. Assumptions. Each sample constitutes a simple random sample of a
population of similar subjects. The samples are independent. We assume
the loads at failure in both populations are approximately normally
distributed.

V.R. = s2
2>s2

1

s2
1 Ú s2

2

a>2aV.R. = s2
1>s2

2.
s2

1>s2
2,

a>2
s2

1>s2
2s2

1>s2
2

s2
1 = s2

2n2 - 1
n1 - 11s2

1>s2
12>1s2

2> s2
22
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3. Hypotheses.

4. Test statistic.

(7.8.1)

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed as F with numerator and denom-
inator degrees of freedom.

6. Decision rule. Let . The critical value of F, from Appendix Table
G, is 5.05. Note that if Table G does not contain an entry for the given
numerator degrees of freedom, we use the column closest in value to the
given numerator degrees of freedom. Reject if 
The rejection and nonrejection regions are shown in Figure 7.8.1.

7. Calculation of test statistic.

8. Statistical decision. We reject , since ; that is, the com-
puted ratio falls in the rejection region.

9. Conclusion. The failure load variability is higher when using the FasT-
FIX method than the vertical suture method.

10. p value. Because the computed V.R. of 7.25 is greater than 5.05, the p
value for this test is less than 0.05. ■

Several computer programs can be used to test the equality of two variances. Outputs
from these programs will differ depending on the test that is used. We saw in Figure 7.3.3,

7.25 7 5.05H0

V.R. =
130.6222111.3722 = 7.25

V.R. Ú 5.05.H0

a = .05

n2 - 1n1 - 1

V.R. =
s2

1

s2
2

HA : s2
1 7 s2

2

H0 : s2
1 … s2

2
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5.050 F(5, 5)

Nonrejection region Rejection region

.05

FIGURE 7.8.1 Rejection and nonrejection regions,
Example 7.8.1.



for example, that the SAS system uses a folded F-test procedure. MINITAB uses two dif-
ferent tests. The first is an F-test under the assumption of normality, and the other is a mod-
ified Levene’s test (1) that is used when normality cannot be assumed. SPSS uses an unmod-
ified Levene’s test (2). Regardless of the options, these tests are generally considered superior
to the variance ratio test that is presented in Example 7.8.1. Discussion of the mathematics
behind these tests is beyond the scope of this book, but an example is given to illustrate
these procedures, since results from these tests are often provided automatically as outputs
when a computer program is used to carry out a t-test.

EXAMPLE 7.8.2

Using the data from Example 7.3.2, we are interested in testing whether the assumption
of the equality of variances can be assumed prior to performing a t-test. For ease of dis-
cussion, the data are reproduced below (Table 7.8.1):
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MINITAB Output SPSS Output

SAS Output

Equality of Variances

Variable    Method      Num DF    Den DF    F Value    Pr � F
pressure    Folded F         9         9       2.17    0.2626

FIGURE 7.8.2 Partial MINITAB, SPSS, and SAS outputs for testing the equality of two
population variances.

F-Test

Test Statistic 0.46
P-Value 0.263

Levene’s Test

Test Statistic 0.49
P-Value 0.495

Levene’s Test for
Equality of Variances

F Sig.

.664 .482

TABLE 7.8.1 Pressures (mm Hg) Under the Pelvis During Static Conditions for
Example 7.3.2

Control 131 115 124 131 122 117 88 114 150 169

SCI 60 150 130 180 163 130 121 119 130 148

Partial outputs for MINITAB, SAS, and SPSS are shown in Figure 7.8.2. Regardless of
the test or program that is used, we fail to reject the null hypothesis of equal variances

because all p values � 0.05. We may now proceed with a t-test under
the assumption of equal variances. ■

1H0:s1
2 = s2

22



EXERCISES

In the following exercises perform the ten-step test. For each exercise, as appropriate, explain why
you chose a one-sided test or a two-sided test. Discuss how you think researchers or clinicians
might use the results of your hypothesis test. What clinical or research decisions or actions do you
think would be appropriate in light of the results of your test?

7.8.1 Dora et al. (A-31) investigated spinal canal dimensions in 30 subjects symptomatic with disc hernia-
tion selected for a discectomy and 45 asymptomatic individuals. The researchers wanted to know if
spinal canal dimensions are a significant risk factor for the development of sciatica. Toward that end,
they measured the spinal canal dimension between vertebrae L3 and L4 and obtained a mean of 17.8
mm in the discectomy group with a standard deviation of 3.1. In the control group, the mean was
18.5 mm with a standard deviation of 2.8 mm. Is there sufficient evidence to indicate that in relevant
populations the variance for subjects symptomatic with disc herniation is larger than the variance for
control subjects? Let .

7.8.2 Nagy et al. (A-32) studied 50 stable patients who were admitted for a gunshot wound that tra-
versed the mediastinum. Of these, eight were deemed to have a mediastinal injury and 42 did
not. The standard deviation for the ages of the eight subjects with mediastinal injury was 4.7
years, and the standard deviation of ages for the 42 without injury was 11.6 years. Can we con-
clude from these data that the variance of age is larger for a population of similar subjects with-
out injury compared to a population with mediastinal injury? Let 

7.8.3 A test designed to measure level of anxiety was administered to a sample of male and a sample
of female patients just prior to undergoing the same surgical procedure. The sample sizes and the
variances computed from the scores were as follows:

Do these data provide sufficient evidence to indicate that in the represented populations the scores
made by females are more variable than those made by males? Let .

7.8.4 In an experiment to assess the effects on rats of exposure to cigarette smoke, 11 animals were exposed
and 11 control animals were not exposed to smoke from unfiltered cigarettes. At the end of the exper-
iment, measurements were made of the frequency of the ciliary beat (beats/min at ) in each ani-
mal. The variance for the exposed group was 3400 and 1200 for the unexposed group. Do these data
indicate that in the populations represented the variances are different? Let .

7.8.5 Two pain-relieving drugs were compared for effectiveness on the basis of length of time elapsing
between administration of the drug and cessation of pain. Thirteen patients received drug 1, and
13 received drug 2. The sample variances were and . Test the null hypothesis that
the two populations variances are equal. Let .

7.8.6 Packed cell volume determinations were made on two groups of children with cyanotic congeni-
tal heart disease. The sample sizes and variances were as follows:

Group n

1 10 40
2 16 84

s2

a = .05
s2

2 = 16s2
1 = 64

a = .05

20°C

a = .05

 Females:  n = 21, s2 = 275

 Males:  n = 16, s2 = 150

a = .05.

a = .05
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Do these data provide sufficient evidence to indicate that the variance of population 2 is larger
than the variance of population 1? Let .

7.8.7 Independent simple random samples from two strains of mice used in an experiment yielded the fol-
lowing measurements on plasma glucose levels following a traumatic experience:

Do these data provide sufficient evidence to indicate that the variance is larger in the population of
strain A mice than in the population of strain B mice? Let . What assumptions are necessary?

7.9 THE TYPE II ERROR AND 
THE POWER OF A TEST

In our discussion of hypothesis testing our focus has been on , the probability of com-
mitting a type I error (rejecting a true null hypothesis). We have paid scant attention to

, the probability of committing a type II error (failing to reject a false null hypothe-
sis). There is a reason for this difference in emphasis. For a given test, is a single num-
ber assigned by the investigator in advance of performing the test. It is a measure of the
acceptable risk of rejecting a true null hypothesis. On the other hand, may assume one
of many values. Suppose we wish to test the null hypothesis that some population param-
eter is equal to some specified value. If is false and we fail to reject it, we commit
a type II error. If the hypothesized value of the parameter is not the true value, the value
of (the probability of committing a type II error) depends on several factors: (1) the
true value of the parameter of interest, (2) the hypothesized value of the parameter,
(3) the value of , and (4) the sample size, n. For fixed and n, then, we may, before
performing a hypothesis test, compute many values of by postulating many values for
the parameter of interest given that the hypothesized value is false.

For a given hypothesis test it is of interest to know how well the test controls type
II errors. If is in fact false, we would like to know the probability that we will reject
it. The power of a test, designated , provides this desired information. The quan-
tity is the probability that we will reject a false null hypothesis; it may be com-
puted for any alternative value of the parameter about which we are testing a hypothesis.
Therefore, is the probability that we will take the correct action when is false
because the true parameter value is equal to the one for which we computed . For
a given test we may specify any number of possible values of the parameter of interest
and for each compute the value of . The result is called a power function. The
graph of a power function, called a power curve, is a helpful device for quickly assess-
ing the nature of the power of a given test. The following example illustrates the proce-
dures we use to analyze the power of a test.

EXAMPLE 7.9.1

Suppose we have a variable whose values yield a population standard deviation of 3.6.
From the population we select a simple random sample of size . We select a
value of for the following hypotheses:

H0: m = 17.5, HA: m Z 17.5

a = .05
n = 100

1 - b

1 - b
H01 - b

1 - b
1 - b

H0

b

aa

b

H0

b

a

b

a

a = .05

 Strain B:  93, 91, 93, 150, 80, 104, 128, 83, 88, 95, 94, 97

 Strain A:  54, 99, 105, 46, 70, 87, 55, 58, 139, 91

a = .05
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Solution: When we study the power of a test, we locate the rejection and nonrejec-
tion regions on the scale rather than the z scale. We find the critical val-
ues of for a two-sided test using the following formulas:

(7.9.1)

and

(7.9.2)

where and are the upper and lower critical values, respectively, of 
and are the critical values of z; and is the hypothesized value of

. For our example, we have

and

Suppose that is false, that is, that is not equal to 17.5. In that case,
is equal to some value other than 17.5. We do not know the actual value of

. But if is false, is one of the many values that are greater than or
smaller than 17.5. Suppose that the true population mean is . Then
the sampling distribution of is also approximately normal, with

We call this sampling distribution and we call the sam-
pling distribution under the null hypothesis 

the probability of the type II error of failing to reject a false null
hypothesis, is the area under the curve of that overlaps the nonrejec-
tion region specified under To determine the value of we find the
area under above the axis, and between and 
The value of is equal to when This is
the same as

Thus, the probability of taking an appropriate action (that is, rejecting
) when the null hypothesis states that but in fact ism = 16.5,m = 17.5,H0

L 1 - .7910 = .2090

= P1.81 … z … 4.752Pa16.79 - 16.5

.36
… z …

18.21 - 16.5

.36
b = Pa .29

.36
… z …

1.71

.36
b

m = 16.5.P116.79 … x … 18.212b

x = 18.21.x = 16.79xf1x12, b,H0.
f1x12b,
f1x02. f1x12,mx = m = 16.5.

x1

m1 = 16.5
mH0m

m

mH0

x L = 17.50 - 1.961.362 = 17.50 - .7056 = 16.79

= 17.50 + .7056 = 18.21

xU = 17.50 + 1.96
13.621102 = 17.50 + 1.961.362

m

m0-z+z
x;x Lx U

xL = m0 - z
s1n

xU = m0 + z
s1n

x
x
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As we noted, may be one of a large number of pos-
sible values when is false. Figure 7.9.1 shows a graph of several such
possibilities. Table 7.9.1 shows the corresponding values of and 
(which are approximate), along with the values of for some additional
alternatives.

Note that in Figure 7.9.1 and Table 7.9.1 those values of under the
alternative hypothesis that are closer to the value of specified by have
larger associated values. For example, when under the alterna-
tive hypothesis, and when under The
power of the test for these two alternatives, then, is and

respectively. We show the power of the test graphically1 - .0143 = .9857,
1 - .7190 = .2810

b = .0143.HA,m = 19.0b = .7190;
m = 18b

H0m

m

b

1 - bb

H0

m1 - .2090 = .7910.
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FIGURE 7.9.1 Size of for selected values for for Example 7.9.1.H1b



in a power curve, as in Figure 7.9.2. Note that the higher the curve, the
greater the power. ■

Although only one value of is associated with a given hypothesis test, there are many
values of one for each possible value of if is not the true value of as hypoth-
esized. Unless alternative values of are much larger or smaller than is relatively
large compared with Typically, we use hypothesis-testing procedures more often in
those cases in which, when is false, the true value of the parameter is fairly close to
the hypothesized value. In most cases, the computed probability of failing to reject a
false null hypothesis, is larger than the probability of rejecting a true null hypothesis.
These facts are compatible with our statement that a decision based on a rejected null
hypothesis is more conclusive than a decision based on a null hypothesis that is not
rejected. The probability of being wrong in the latter case is generally larger than the
probability of being wrong in the former case.

Figure 7.9.2 shows the V-shaped appearance of a power curve for a two-sided test.
In general, a two-sided test that discriminates well between the value of the parameter
in and values in results in a narrow V-shaped power curve. A wide V-shaped curveH1H0

a,
b,

H0

a.
bm0,m

mm0mb,
a
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TABLE 7.9.1 Values of and for
Selected Alternative Values of , Example
7.9.1

Possible Values of Under

When is False

16.0 0.0143 0.9857
16.5 0.2090 0.7910
17.0 0.7190 0.2810
18.0 0.7190 0.2810
18.5 0.2090 0.7910
19.0 0.0143 0.9857

1 � BBH0HA

M

M1

1 � BB

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0
16.0 17.0 18.0 19.0

Alternative values of m

1 – b

FIGURE 7.9.2 Power curve for Example 7.9.1.



indicates that the test discriminates poorly over a relatively wide interval of alternative
values of the parameter.

Power Curves for One-Sided Tests The shape of a power curve for a
one-sided test with the rejection region in the upper tail is an elongated S. If the rejec-
tion region of a one-sided test is located in the lower tail of the distribution, the power
curve takes the form of a reverse elongated S. The following example shows the nature
of the power curve for a one-sided test.

EXAMPLE 7.9.2

The mean time laboratory employees now take to do a certain task on a machine is 65 sec-
onds, with a standard deviation of 15 seconds. The times are approximately normally distrib-
uted. The manufacturers of a new machine claim that their machine will reduce the mean
time required to perform the task. The quality-control supervisor designs a test to determine
whether or not she should believe the claim of the makers of the new machine. She chooses
a significance level of and randomly selects 20 employees to perform the task on
the new machine. The hypotheses are

The quality-control supervisor also wishes to construct a power curve for the test.

Solution: The quality-control supervisor computes, for example, the following value
of for the alternative The critical value of for the
test is

We find as follows:

Consequently, Figure 7.9.3 shows the calcu-
lation of Similar calculations for other alternative values of also yieldmb.

1 - b = 1 - .2743 = .7257.

= 1 - .7257 = .2743

b = P1x 7 57 ƒ m = 552 = Paz 7
57 - 55

15>120
b = P1z 7 .602

b

65 - 2.33a 15120
b = 57

1 - bm = 55.1 - b

H0: m Ú 65, HA: m 6 65

a = 0.01
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a = 0.01 b = 0.2743

55 57 65
x–

FIGURE 7.9.3 calculated for .m = 55b



values of When plotted against the values of these give the power
curve shown in Figure 7.9.4. ■

Operating Characteristic Curves Another way of evaluating a test is to
look at its operating characteristic (OC) curve. To construct an OC curve, we plot val-
ues of rather than along the vertical axis. Thus, an OC curve is the comple-
ment of the corresponding power curve.

EXERCISES

Construct and graph the power function for each of the following situations.

7.9.1

7.9.2

7.9.3

7.10 DETERMINING SAMPLE SIZE 
TO CONTROL TYPE II ERRORS

You learned in Chapter 6 how to find the sample sizes needed to construct confidence
intervals for population means and proportions for specified levels of confidence. You
learned in Chapter 7 that confidence intervals may be used to test hypotheses. The
method of determining sample size presented in Chapter 6 takes into account the prob-
ability of a type I error, but not a type II error since the level of confidence is deter-
mined by the confidence coefficient, 1 - a.

H0: m … 4.25, HA: m 7 4.25, n = 81, s = 1.8, a = 0.01.

H0: m = 3, HA: m Z 3, n = 100, s = 1, a = 0.05.

H0: m … 516, HA: m 7 516, n = 16, s = 32, a = 0.05.

1 - b,b,

m,1 - b.
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1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

1 – b

51 53 55 57 59 61 63 65
Alternative values of m

FIGURE 7.9.4 Power curve for Example 7.9.2.



In many statistical inference procedures, the investigator wishes to consider the
type II error as well as the type I error when determining the sample size. To illustrate
the procedure, we refer again to Example 7.9.2.

EXAMPLE 7.10.1

In Example 7.9.2, the hypotheses are

The population standard deviation is 15, and the probability of a type I error is set at
.01. Suppose that we want the probability of failing to reject to be .05 if is
false because the true mean is 55 rather than the hypothesized 65. How large a sample
do we need in order to realize, simultaneously, the desired levels of and 

Solution: For and is equal to .2743. The critical value is 57. Under
the new conditions, the critical value is unknown. Let us call this new crit-
ical value C. Let be the hypothesized mean and the mean under the
alternative hypothesis. We can transform each of the relevant sampling dis-
tributions of the one with a mean of and the one with a mean of 
to a z distribution. Therefore, we can convert C to a z value on the hori-
zontal scale of each of the two standard normal distributions. When we
transform the sampling distribution of that has a mean of to the stan-
dard normal distribution, we call the z that results When we transform
the sampling distribution that has a mean of to the standard normal
distribution, we call the z that results Figure 7.10.1 represents the situ-
ation described so far.

We can express the critical value C as a function of and and
also as a function of and This gives the following equations:

(7.10.1)

(7.10.2)C = m1 + z1
s1n

C = m0 - z 0
s1n

m1.z1

m0z 0

z1.
m1x

z 0.
m0x

m1m0x,

m1m0

bn = 20,a = .01

b?a

H0H01b2
H0: m Ú 65, HA: m 6 65
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a b

m1 C m0

x–

z

z

0

z0

z1

0

FIGURE 7.10.1 Graphic representation of relationships in determination
of sample size to control both type I and type II errors.



We set the right-hand sides of these equations equal to each other and solve
for n, to obtain

(7.10.3)

To find n for our illustrative example, we substitute appropriate quanti-
ties into Equation 7.10.3. We have and From
Appendix Table D, the value of z that has .01 of the area to its left is 
The value of z that has .05 of the area to its right is 1.645. Both and are
taken as positive. We determine whether C lies above or below either or

when we substitute into Equations 7.10.1 and 7.10.2. Thus, we compute

We would need a sample of size 36 to achieve the desired levels of and
when we choose as the alternative value of 

We now compute C, the critical value for the test, and state an appro-
priate decision rule. To find C, we may substitute known numerical values
into either Equation 7.10.1 or Equation 7.10.2. For illustrative purposes, we
solve both equations for C. First we have

From Equation 7.10.2, we have

The difference between the two results is due to rounding error.
The decision rule, when we use the first value of C, is as follows:

Select a sample of size 36 and compute , if , reject . If
do not reject .

We have limited our discussion of the type II error and the power of
a test to the case involving a population mean. The concepts extend to cases
involving other parameters. ■

EXERCISES

7.10.1 Given Let and and
find n and C. State the appropriate decision rule.

7.10.2 Given Let and 
and find n and C. State the appropriate decision rule.

7.10.3 Given Let and 
and find n and C. State the appropriate decision rule.

m1 = 5.00,b = .03a = .01.s = 1.8,n = 81,HA: m 7 4.25,H0: m … 4.25,

4.52,
m1 =b = .05a = .01.s = .020,n = 16,HA: m 7 4.500,H0: m … 4.500,

m1 = 520,b = .10a = .05.s = 32,n = 16,HA: m 7 516,H0: m = 516,

H0x 7 59.175,
H0x … 59.175x

C = 55 - 1.645 a 15136
b = 59.1125

C = 65 - 2.33 a 15136
b = 59.175

m.m1 = 55b

a

n = c 12.33 + 1.64521152165 - 552 d2 = 35.55

m1

m0

z1z 0

-2.33.
s = 15.m1 = 55,m0 = 65,

n = c 1z 0 + z12s1m0 - m12 d2
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7.11 SUMMARY

In this chapter the general concepts of hypothesis testing are discussed. A general proce-
dure for carrying out a hypothesis test consisting of the following ten steps is suggested.

1. Description of data.

2. Statement of necessary assumptions.

3. Statement of null and alternative hypotheses.

4. Specification of the test statistic.

5. Specification of the distribution of the test statistic.

6. Statement of the decision rule.

7. Calculation of test statistic from sample data.

8. The statistical decision based on sample results.

9. Conclusion.

10. Determination of p value.

A number of specific hypothesis tests are described in detail and illustrated with
appropriate examples. These include tests concerning population means, the difference
between two population means, paired comparisons, population proportions, the difference
between two population proportions, a population variance, and the ratio of two popula-
tion variances. In addition we discuss the power of a test and the determination of sample
size for controlling both type I and type II errors.

SUMMARY OF FORMULAS FOR CHAPTER 7

Formula Number Name Formula

7.1.1, 7.1.2, 7.2.1 z-transformation
(using either or )

7.2.2 t-transformation

7.2.3 Test statistic
when sampling from a 
population that is not 
normally distributed

7.3.1 Test statistic
when sampling 
from normally distributed 
populations: population 
variances known

z =
1x1 - x22 - 1m1 - m220

Cs2
1

n1
+
s2

2

n2

z =
x - m0

s>2n

t =
x - m0

s>2n

m0m
z =

x - m0

s>2n
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7.3.2 Test statistic when sampling where
from normally distributed 
populations: population 
variances unknown and 
equal

7.3.3, 7.3.4 Test statistic when where
sampling from normally 
distributed populations: 
population variances 
unknown and 
unequal

7.3.5 Sampling from populations
that are not normally 
distributed 

7.4.1 Test statistic for paired
differences when the 
population variance is 
unknown

7.4.2 Test statistic for paired
differences when the 
population variance is 
known

7.5.1 Test statistic for a single
population proportion

7.6.1, 7.6.2 Test statistic where
for the difference 
between two population 
proportions

7.7.1 Test statistic for a single
population variance

7.8.1 Variance ratio
V.R. =

s2
1

s2
2

x2 =
(n - 12s2

s2

z =
1pN 1 - pN 22 - 1p1 - p220

sN pN 1-pN 2

,

z =
pN - p0

Ap0q0

n

z =
d - md0

sd>2n

t =
d - md0

sd

z =
1x1 - x22 - 1m1 - m220

Cs2
1

n1
+
s2

2

n2

t¿11-a>22 =
w1t1 + w2t2

w1 + w2

t¿ =
1x1 - x22 - 1m1 - m220

C s2
1

n1
+

s2
2

n2

,

s2
p =
1n1 - 12s2

1 + 1n2 - 12s2
2

n1 + n2 - 2

t =
1x1 - x22 - 1m1 - m220

C s2
p

n1
+

s2
p

n2

,

sN pN 1-pN 2
= Cp11 - p2

n1
+

p11 - p2
n2

p =
x1 + x2

n1 + n2
, and
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7.9.1, 7.9.2 Upper and lower critical
values for 

7.10.1, 7.10.2 Critical value for
determining sample 
size to control type II 
errors

7.10.3 Sample size to control
type II errors

Symbol Key • � type 1 error rate
• C � critical value
• � chi-square distribution
• � average difference
• � mean of population
• � hypothesized mean
• n � sample size
• p � proportion for population
• � average proportion
• q � (1�p)
• � estimated proportion for sample
• � population variance
• � population standard deviation
• � standard error of difference
• � standard error
• s � standard deviation of sample
• � standard deviation of the difference
• � pooled standard deviation
• t � Student’s t-transformation
• � Cochran’s correction to t
• � mean of sample
• � lower limit of critical value for 
• � upper limit of critical value for 
• z � standard normal transformation

REVIEW QUESTIONS AND EXERCISES

1. What is the purpose of hypothesis testing?

2. What is a hypothesis?

3. List and explain each step in the ten-step hypothesis testing procedure.

xxU

xxL

x
t¿

sp

sd

sx

sd

s

s2
pN

p

m0

m

d
x2

a

n = c 1z0 + z12s1m0 - m12 d2
C = m0 - z0

s2n
= m1 + z1

s2n

x

XL = m0 - z
s2n

XU = m0 + z
s2n
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4. Define:

(a) Type I error (b) Type II error

(c) The power of a test (d) Power function

(e) Power curve (f) Operating characteristic curve

5. Explain the difference between the power curves for one-sided tests and two-sided tests.

6. Explain how one decides what statement goes into the null hypothesis and what statement goes
into the alternative hypothesis.

7. What are the assumptions underlying the use of the t statistic in testing hypotheses about a single
mean? The difference between two means?

8. When may the z statistic be used in testing hypotheses about

(a) a single population mean?

(b) the difference between two population means?

(c) a single population proportion?

(d) the difference between two population proportions?

9. In testing a hypothesis about the difference between two population means, what is the rationale
behind pooling the sample variances?

10. Explain the rationale behind the use of the paired comparisons test.

11. Give an example from your field of interest where a paired comparisons test would be appropri-
ate. Use real or realistic data and perform an appropriate hypothesis test.

12. Give an example from your field of interest where it would be appropriate to test a hypothesis
about the difference between two population means. Use real or realistic data and carry out the
ten-step hypothesis testing procedure.

13. Do Exercise 12 for a single population mean.

14. Do Exercise 12 for a single population proportion.

15. Do Exercise 12 for the difference between two population proportions.

16. Do Exercise 12 for a population variance.

17. Do Exercise 12 for the ratio of two population variances.

18. Ochsenkühn et al. (A-33) studied birth as a result of in vitro fertilization (IVF) and birth from
spontaneous conception. In the sample, there were 163 singleton births resulting from IVF with a
mean birth weight of 3071 g and sample standard deviation of 761 g. Among the 321 singleton
births resulting from spontaneous conception, the mean birth weight was 3172 g with a standard
deviation of 702 g. Determine if these data provide sufficient evidence for us to conclude that the
mean birth weight in grams of singleton births resulting from IVF is lower, in general, than the
mean birth weight of singleton births resulting from spontaneous conception. Let .

19. William Tindall (A-34) performed a retrospective study of the records of patients receiving care
for hypercholesterolemia. The following table gives measurements of total cholesterol for patients
before and 6 weeks after taking a statin drug. Is there sufficient evidence at the level of
significance for us to conclude that the drug would result in reduction in total cholesterol in a pop-
ulation of similar hypercholesterolemia patients?

a = .01

a = .10



Id. No. Before After Id. No. Before After Id. No. Before After

1 195 125 37 221 191 73 205 151
2 208 164 38 245 164 74 298 163
3 254 152 39 250 162 75 305 171
4 226 144 40 266 180 76 262 129
5 290 212 41 240 161 77 320 191
6 239 171 42 218 168 78 271 167
7 216 164 43 278 200 79 195 158
8 286 200 44 185 139 80 345 192
9 243 190 45 280 207 81 223 117

10 217 130 46 278 200 82 220 114
11 245 170 47 223 134 83 279 181
12 257 182 48 205 133 84 252 167
13 199 153 49 285 161 85 246 158
14 277 204 50 314 203 86 304 190
15 249 174 51 235 152 87 292 177
16 197 160 52 248 198 88 276 148
17 279 205 53 291 193 89 250 169
18 226 159 54 231 158 90 236 185
19 262 170 55 208 148 91 256 172
20 231 180 56 263 203 92 269 188
21 234 161 57 205 156 93 235 172
22 170 139 58 230 161 94 184 151
23 242 159 59 250 150 95 253 156
24 186 114 60 209 181 96 352 219
25 223 134 61 269 186 97 266 186
26 220 166 62 261 164 98 321 206
27 277 170 63 255 164 99 233 173
28 235 136 64 275 195 100 224 109
29 216 134 65 239 169 101 274 109
30 197 138 66 298 177 102 222 136
31 253 181 67 265 217 103 194 131
32 209 147 68 220 191 104 293 228
33 245 164 69 196 129 105 262 211
34 217 159 70 177 142 106 306 192
35 187 139 71 211 138 107 239 174
36 265 171 72 244 166

Source: William Tindall, Ph.D. and the Wright State University Consulting Center. Used with permission.

20. The objective of a study by van Vollenhoven et al. (A-35) was to examine the effectiveness of
Etanercept alone and Etanercept in combination with methotrexate in the treatment of rheumatoid
arthritis. They performed a retrospective study using data from the STURE database, which collects
efficacy and safety data for all patients starting biological treatments at the major hospitals in
Stockholm, Sweden. The researchers identified 40 subjects who were prescribed Etanercept only and
57 who were given Etanercept with methotrexate. One of the outcome measures was the number of
swollen joints. The following table gives the mean number of swollen joints in the two groups as well
as the standard error of the mean. Is there sufficient evidence at the level of significance for
us to conclude that there is a difference in mean swollen joint counts in the relevant populations?

a = .05
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Treatment Mean Standard Error of Mean

Etanercept 5.56 0.84
Etanercept plus methotrexate 4.40 0.57

21. Miyazaki et al. (A-36) examined the recurrence-free rates of stripping with varicectomy and strip-
ping with sclerotherapy for the treatment of primary varicose veins. The varicectomy group con-
sisted of 122 limbs for which the procedure was done, and the sclerotherapy group consisted of 98
limbs for which that procedure was done. After 3 years, 115 limbs of the varicectomy group and 87
limbs of the sclerotherapy group were recurrence-free. Is this sufficient evidence for us to conclude
there is no difference, in general, in the recurrence-free rate between the two procedures for treating
varicose veins? Let 

22. Recall the study, reported in Exercise 7.8.1, in which Dora et al. (A-37) investigated spinal
canal dimensions in 30 subjects symptomatic with disc herniation selected for a discectomy
and 45 asymptomatic individuals (control group). One of the areas of interest was determining
if there is a difference between the two groups in the spinal canal cross-sectional area (cm2)
between vertebrae L5/S1. The data in the following table are simulated to be consistent with
the results reported in the paper. Do these simulated data provide evidence for us to conclude
that a difference in the spinal canal cross-sectional area exists between a population of sub-
jects with disc herniations and a population of those who do not have disc herniations? Let

.

Herniated Disc Group Control Group

2.62 2.57 1.98 3.21 3.59 3.72 4.30 2.87 3.87 2.73 5.28
1.60 1.80 3.91 2.56 1.53 1.33 2.36 3.67 1.64 3.54 3.63
2.39 2.67 3.53 2.26 2.82 4.26 3.08 3.32 4.00 2.76 3.58
2.05 1.19 3.01 2.39 3.61 3.11 3.94 4.39 3.73 2.22 2.73
2.09 3.79 2.45 2.55 2.10 5.02 3.62 3.02 3.15 3.57 2.37
2.28 2.33 2.81 3.70 2.61 5.42 3.35 2.62 3.72 4.37 5.28

4.97 2.58 2.25 3.12 3.43
3.95 2.98 4.11 3.08 2.22

Source: Simulated data.

23. Iannelo et al. (A-38) investigated differences between triglyceride levels in healthy obese (con-
trol) subjects and obese subjects with chronic active B or C hepatitis. Triglyceride levels of
208 obese controls had a mean value of 1.81 with a standard error of the mean of .07 mmol/L.
The 19 obese hepatitis subjects had a mean of .71 with a standard error of the mean of .05. Is
this sufficient evidence for us to conclude that, in general, a difference exists in average triglyc-
eride levels between obese healthy subjects and obese subjects with hepatitis B or C? Let

24. Kindergarten students were the participants in a study conducted by Susan Bazyk et al. (A-39).
The researchers studied the fine motor skills of 37 children receiving occupational therapy. They
used an index of fine motor skills that measured hand use, eye–hand coordination, and manual

a = .01.

a = .05

a = .05.
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dexterity before and after 7 months of occupational therapy. Higher values indicate stronger fine
motor skills. The scores appear in the following table.

Subject Pre Post Subject Pre Post

1 91 94 20 76 112
2 61 94 21 79 91
3 85 103 22 97 100
4 88 112 23 109 112
5 94 91 24 70 70
6 112 112 25 58 76
7 109 112 26 97 97
8 79 97 27 112 112
9 109 100 28 97 112

10 115 106 29 112 106
11 46 46 30 85 112
12 45 41 31 112 112
13 106 112 32 103 106
14 112 112 33 100 100
15 91 94 34 88 88
16 115 112 35 109 112
17 59 94 36 85 112
18 85 109 37 88 97
19 112 112

Source: Susan Bazyk, M.H.S. Used with permission.

Can one conclude on the basis of these data that after 7 months, the fine motor skills in a popu-
lation of similar subjects would be stronger? Let . Determine the p value.

25. A survey of 90 recently delivered women on the rolls of a county welfare department revealed that
27 had a history of intrapartum or postpartum infection. Test the null hypothesis that the popula-
tion proportion with a history of intrapartum or postpartum infection is less than or equal to .25.
Let Determine the p value.

26. In a sample of 150 hospital emergency admissions with a certain diagnosis, 128 listed vomiting as a
presenting symptom. Do these data provide sufficient evidence to indicate, at the .01 level of signifi-
cance, that the population proportion is less than .92? Determine the p value.

27. A research team measured tidal volume in 15 experimental animals. The mean and standard devi-
ation were 45 and 5 cc, respectively. Do these data provide sufficient evidence to indicate that the
population mean is greater than 40 cc? Let 

28. A sample of eight patients admitted to a hospital with a diagnosis of biliary cirrhosis had a mean
IgM level of 160.55 units per milliliter. The sample standard deviation was 50. Do these data pro-
vide sufficient evidence to indicate that the population mean is greater than 150? Let 
Determine the p value.

29. Some researchers have observed a greater airway resistance in smokers than in nonsmokers. Sup-
pose a study, conducted to compare the percent of tracheobronchial retention of particles in
smoking-discordant monozygotic twins, yielded the following results:

a = .05.

a = .05.

a = .05.

a = .05
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Percent Retention Percent Retention

Smoking Twin Nonsmoking Twin Smoking Twin Nonsmoking Twin

60.6 47.5 57.2 54.3
12.0 13.3 62.7 13.9
56.0 33.0 28.7 8.9
75.2 55.2 66.0 46.1
12.5 21.9 25.2 29.8
29.7 27.9 40.1 36.2

Do these data support the hypothesis that tracheobronchial clearance is slower in smokers? Let
. Determine the p value for this test.

30. Circulating levels of estrone were measured in a sample of 25 postmenopausal women following
estrogen treatment. The sample mean and standard deviation were 73 and 16, respectively. At the
.05 significance level can one conclude on the basis of these data that the population mean is higher
than 70?

31. Systemic vascular resistance determinations were made on a sample of 16 patients with chronic,
congestive heart failure while receiving a particular treatment. The sample mean and standard
deviation were 1600 and 700, respectively. At the .05 level of significance do these data provide
sufficient evidence to indicate that the population mean is less than 2000?

32. The mean length at birth of 14 male infants was 53 cm with a standard deviation of 9 cm. Can
one conclude on the basis of these data that the population mean is not 50 cm? Let the probability
of committing a type I error be .10.

For each of the studies described in Exercises 33 through 38, answer as many of the fol-
lowing questions as possible: (a) What is the variable of interest? (b) Is the parameter of interest
a mean, the difference between two means (independent samples), a mean difference (paired data),
a proportion, or the difference between two proportions (independent samples)? (c) What is the
sampled population? (d) What is the target population? (e) What are the null and alternative
hypotheses? (f) Is the alternative one-sided (left tail), one-sided (right tail), or two-sided? (g) What
type I and type II errors are possible? (h) Do you think the null hypothesis was rejected? Explain
why or why not.

33. During a one-year period, Hong et al. (A-40) studied all patients who presented to the surgical serv-
ice with possible appendicitis. One hundred eighty-two patients with possible appendicitis were ran-
domized to either clinical assessment (CA) alone or clinical evaluation and abdominal/pelvic CT. A
true-positive case resulted in a laparotomy that revealed a lesion requiring operation. A true-nega-
tive case did not require an operation at one-week follow-up evaluation. At the close of the study,
they found no significant difference in the hospital length of stay for the two treatment groups.

34. Recall the study reported in Exercise 7.8.2 in which Nagy et al. (A-32) studied 50 stable patients
admitted for a gunshot wound that traversed the mediastinum. They found that eight of the sub-
jects had a mediastinal injury, while 42 did not have such an injury. They performed a student’s t
test to determine if there was a difference in mean age (years) between the two groups. The
reported p value was .59.

35. Dykstra et al. (A-41) studied 15 female patients with urinary frequency with or without incon-
tinence. The women were treated with botulinum toxin type B (BTX-B). A t test of the

a = .05
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pre / post-difference in frequency indicated that these 15 patients experienced an average of 5.27
fewer frequency episodes per day after treatment with BTX-B. The p value for the test was
less than 0.001.

36. Recall the study reported in Exercise 6.10.2 in which Horesh et al. (A-42) investigated suicidal
behavior among adolescents. In addition to impulsivity, the researchers studied hopelessness among
the 33 subjects in the suicidal group and the 32 subjects in the nonsuicidal group. The means for
the two groups on the Beck Hopelessness Scale were 11.6 and 5.2, respectively, and the t value
for the test was 5.13.

37. Mauksch et Al. (A-43) surveyed 500 consecutive patients (ages 18 to 64 years) in a primary care
clinic serving only uninsured, low-income patients. They used self-report questions about why
patients were coming to the clinic, and other tools to classify subjects as either having or not hav-
ing major mental illness. Compared with patients without current major mental illness, patients
with a current major mental illness reported significantly more concerns, chronic ill-
nesses, stressors, forms of maltreatment, and physical symptoms.

38. A study by Hosking et al. (A-44) was designed to compare the effects of alendronate and rise-
dronate on bone mineral density (BMD). One of the outcome measures was the percent increase
in BMD at 12 months. Alendronate produced a significantly higher percent change (4.8 percent)
in BMD than risedronate (2.8 percent) with a p value .

39. For each of the following situations, identify the type I and type II errors and the correct actions.

(a) A new treatment is not more effective than the traditional one.
(1) Adopt the new treatment when the new one is more effective.
(2) Continue with the traditional treatment when the new one is more effective.
(3) Continue with the traditional treatment when the new one is not more effective.
(4) Adopt the new treatment when the new one is not more effective.

(b) A new physical therapy procedure is satisfactory.
(1) Employ a new procedure when it is unsatisfactory.
(2) Do not employ a new procedure when it is unsatisfactory.
(3) Do not employ a new procedure when it is satisfactory.
(4) Employ a new procedure when it is satisfactory.

(c) A production run of a drug is of satisfactory quality.
(1) Reject a run of satisfactory quality.
(2) Accept a run of satisfactory quality.
(3) Reject a run of unsatisfactory quality.
(4) Accept a run of unsatisfactory quality.

For each of the studies described in Exercises 40 through 55, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence interval
construction) that you think would yield useful information for the researchers.

(b) State all assumptions that are necessary to validate your analysis.

(c) Find p values for all computed test statistics.

(d) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

40. A study by Bell (A-45) investigated the hypothesis that alteration of the vitamin D–endocrine sys-
tem in blacks results from reduction in serum 25-hydroxyvitamin D and that the alteration is reversed
by oral treatment with 25-hydroxyvitamin D3. The eight subjects (three men and five women) were
studied while on no treatment (control) and after having been given 25-hydroxyvitamin D3 for 7 days

H0:

H0:

H0:

6 .001

1p 6 .0012
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(25-OHD3). The following are the urinary calcium (mg/d) determinations for the eight subjects under
the two conditions.

Subject Control 25-OHD3

A 66 98
B 115 142
C 54 78
D 88 101
E 82 134
F 115 158
G 176 219
H 46 60

41. Montner et al. (A-46) conducted studies to test the effects of glycerol-enhanced hyperhydration
(GEH) on endurance in cycling performance. The 11 subjects, ages 22–40 years, regularly cycled
at least 75 miles per week. The following are the pre-exercise urine output volumes (ml) following
ingestion of glycerol and water:

Experimental, ml Control, ml
Subject # (Glycerol) (Placebo)

1 1410 2375
2 610 1610
3 1170 1608
4 1140 1490
5 515 1475
6 580 1445
7 430 885
8 1140 1187
9 720 1445

10 275 890
11 875 1785

42. D’Alessandro et al. (A-47) wished to know if preexisting airway hyperresponsiveness (HR) predis-
poses subjects to a more severe outcome following exposure to chlorine. Subjects were healthy vol-
unteers between the ages of 18 and 50 years who were classified as with and without HR. The
following are the FEV1 and specific airway resistance (Sraw) measurements taken on the subjects
before and after exposure to appropriately diluted chlorine gas:

Hyperreactive Subjects

Pre-Exposure Post-Exposure
Subject FEV1 Sraw FEV1 Sraw

1 3.0 5.80 1.8 21.4
2 4.1 9.56 3.7 12.5
3 3.4 7.84 3.0 14.3
4 3.3 6.41 3.0 10.9
5 3.3 9.12 3.0 17.1
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Normal Subjects

Pre-Exposure Post-Exposure
Subject FEV1 Sraw FEV1 Sraw

1 4.3 5.52 4.2 8.70
2 3.9 6.43 3.7 6.94
3 3.6 5.67 3.3 10.00
4 3.6 3.77 3.5 4.54
5 5.1 5.53 4.9 7.37

43. Noting the paucity of information on the effect of estrogen on platelet membrane fatty acid compo-
sition, Ranganath et al. (A-48) conducted a study to examine the possibility that changes may be pres-
ent in postmenopausal women and that these may be reversible with estrogen treatment. The 31 women
recruited for the study had not menstruated for at least 3 months or had symptoms of the menopause.
No woman was on any form of hormone replacement therapy (HRT) at the time she was recruited.
The following are the platelet membrane linoleic acid values before and after a period of HRT:

Subject Before After Subject Before After Subject Before After

1 6.06 5.34 12 7.65 5.55 23 5.04 4.74
2 6.68 6.11 13 4.57 4.25 24 7.89 7.48
3 5.22 5.79 14 5.97 5.66 25 7.98 6.24
4 5.79 5.97 15 6.07 5.66 26 6.35 5.66
5 6.26 5.93 16 6.32 5.97 27 4.85 4.26
6 6.41 6.73 17 6.12 6.52 28 6.94 5.15
7 4.23 4.39 18 6.05 5.70 29 6.54 5.30
8 4.61 4.20 19 6.31 3.58 30 4.83 5.58
9 6.79 5.97 20 4.44 4.52 31 4.71 4.10

10 6.16 6.00 21 5.51 4.93
11 6.41 5.35 22 8.48 8.80

Source: Dr. L. Ranganath. Used with permission.

44. The purpose of a study by Goran et al. (A-49) was to examine the accuracy of some widely used
body-composition techniques for children through the use of the dual-energy X-ray absorptiometry
(DXA) technique. Subjects were children between the ages of 4 and 10 years. The following are fat
mass measurements taken on the children by three techniques—DXA, skinfold thickness (ST), and
bioelectrical resistance (BR):

Sex
DXA ST BR (1 � Male, 0 � Female)

3.6483 4.5525 4.2636 1
2.9174 2.8234 6.0888 0
7.5302 3.8888 5.1175 0
6.2417 5.4915 8.0412 0

10.5891 10.4554 14.1576 0
9.5756 11.1779 12.4004 0
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Sex
DXA ST BR (1 � Male, 0 � Female)

2.4424 3.5168 3.7389 1
3.5639 5.8266 4.3359 1
1.2270 2.2467 2.7144 1
2.2632 2.4499 2.4912 1
2.4607 3.1578 1.2400 1
4.0867 5.5272 6.8943 0
4.1850 4.0018 3.0936 1
2.7739 5.1745 * 1
4.4748 3.6897 4.2761 0
4.2329 4.6807 5.2242 0
2.9496 4.4187 4.9795 0
2.9027 3.8341 4.9630 0
5.4831 4.8781 5.4468 0
3.6152 4.1334 4.1018 1
5.3343 3.6211 4.3097 0
3.2341 2.0924 2.5711 1
5.4779 5.3890 5.8418 0
4.6087 4.1792 3.9818 0
2.8191 2.1216 1.5406 1
4.1659 4.5373 5.1724 1
3.7384 2.5182 4.6520 1
4.8984 4.8076 6.5432 1
3.9136 3.0082 3.2363 1

12.1196 13.9266 16.3243 1
15.4519 15.9078 18.0300 0
20.0434 19.5560 21.7365 0
9.5300 8.5864 4.7322 1
2.7244 2.8653 2.7251 1
3.8981 5.1352 5.2420 0
4.9271 8.0535 6.0338 0
3.5753 4.6209 5.6038 1
6.7783 6.5755 6.6942 1
3.2663 4.0034 3.2876 0
1.5457 2.4742 3.6931 0
2.1423 2.1845 2.4433 1
4.1894 3.0594 3.0203 1
1.9863 2.5045 3.2229 1
3.3916 3.1226 3.3839 1
2.3143 2.7677 3.7693 1
1.9062 3.1355 12.4938 1
3.7744 4.0693 5.9229 1
2.3502 2.7872 4.3192 0
4.6797 4.4804 6.2469 0
4.7260 5.4851 7.2809 0
4.2749 4.4954 6.6952 0
2.6462 3.2102 3.8791 0
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Sex
DXA ST BR (1 � Male, 0 � Female)

2.7043 3.0178 5.6841 0
4.6148 4.0118 5.1399 0
3.0896 3.2852 4.4280 0
5.0533 5.6011 4.3556 0
6.8461 7.4328 8.6565 1

11.0554 13.0693 11.7701 1
4.4630 4.0056 7.0398 0
2.4846 3.5805 3.6149 0
7.4703 5.5016 9.5402 0
8.5020 6.3584 9.6492 0
6.6542 6.8948 9.3396 1
4.3528 4.1296 6.9323 0
3.6312 3.8990 4.2405 1
4.5863 5.1113 4.0359 1
2.2948 2.6349 3.8080 1
3.6204 3.7307 4.1255 1
2.3042 3.5027 3.4347 1
4.3425 3.7523 4.3001 1
4.0726 3.0877 5.2256 0
1.7928 2.8417 3.8734 1
4.1428 3.6814 2.9502 1
5.5146 5.2222 6.0072 0
3.2124 2.7632 3.4809 1
5.1687 5.0174 3.7219 1
3.9615 4.5117 2.7698 1
3.6698 4.9751 1.8274 1
4.3493 7.3525 4.8862 0
2.9417 3.6390 3.4951 1
5.0380 4.9351 5.6038 0
7.9095 9.5907 8.5024 0
1.7822 3.0487 3.0028 1
3.4623 3.3281 2.8628 1

11.4204 14.9164 10.7378 1
1.2216 2.2942 2.6263 1
2.9375 3.3124 3.3728 1
4.6931 5.4706 5.1432 0
8.1227 7.7552 7.7401 0

10.0142 8.9838 11.2360 0
2.5598 2.8520 4.5943 0
3.7669 3.7342 4.7384 0
4.2059 2.6356 4.0405 0
6.7340 6.6878 8.1053 0
3.5071 3.4947 4.4126 1
2.2483 2.8100 3.6705 0
7.1891 5.4414 6.6332 0
6.4390 3.9532 5.1693 0
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45. Hartard et al. (A-50) conducted a study to determine whether a certain training regimen can coun-
teract bone density loss in women with postmenopausal osteopenia. The following are strength
measurements for five muscle groups taken on 15 subjects before (B) and after (A) 6 months of
training:

Leg Press Hip Flexor Hip Extensor

Subject (B) (A) (B) (A) (B) (A)

1 100 180 8 15 10 20
2 l55 195 10 20 12 25
3 115 150 8 13 12 19
4 130 170 10 14 12 20
5 120 150 7 12 12 15
6 60 140 5 12 8 16
7 60 100 4 6 6 9
8 140 215 12 18 14 24
9 110 150 10 13 12 19

10 95 120 6 8 8 14
11 110 130 10 12 10 14
12 150 220 10 13 15 29
13 120 140 9 20 14 25
14 100 150 9 10 15 29
15 110 130 6 9 8 12

Arm Abductor Arm Adductor

Subject (B) (A) (B) (A)

1 10 12 12 19
2 7 20 10 20
3 8 14 8 14
4 8 15 6 16
5 8 13 9 13
6 5 13 6 13
7 4 8 4 8
8 12 15 14 19
9 10 14 8 14

10 6 9 6 10
11 8 11 8 12
12 8 14 13 15
13 8 19 11 18
14 4 7 10 22
15 4 8 8 12

Source: Dr. Manfred Hartard. Used with permission.

46. Vitacca et al. (A-51) conducted a study to determine whether the supine position or sitting position
worsens static, forced expiratory flows and measurements of lung mechanics. Subjects were aged
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persons living in a nursing home who were clinically stable and without clinical evidence of car-
diorespiratory diseases. Among the data collected were the following FEV1 percent values for sub-
jects in sitting and supine postures:

Sitting Supine Sitting Supine

64 56 103 94
44 37 109 92
44 39 �99 �99
40 43 169 165
32 32 73 66
70 61 95 94
82 58 �99 �99
74 48 73 58
91 63

Source: Dr. M. Vitacca. Used with permission.

47. The purpose of an investigation by Young et al. (A-52) was to examine the efficacy and safety of
a particular suburethral sling. Subjects were women experiencing stress incontinence who also met
other criteria. Among the data collected were the following pre- and postoperative cystometric
capacity (ml) values:

Pre Post Pre Post Pre Post Pre Post

350 321 340 320 595 557 475 344
700 483 310 336 315 221 427 277
356 336 361 333 363 291 405 514
362 447 339 280 305 310 312 402
361 214 527 492 200 220 385 282
304 285 245 330 270 315 274 317
675 480 313 310 300 230 340 323
367 330 241 230 792 575 524 383
387 325 313 298 275 140 301 279
535 325 323 349 307 192 411 383
328 250 438 345 312 217 250 285
557 410 497 300 375 462 600 618
569 603 302 335 440 414 393 355
260 178 471 630 300 250 232 252
320 362 540 400 379 335 332 331
405 235 275 278 682 339 451 400
351 310 557 381

Source: Dr. Stephen B. Young. Used with permission.

48. Diamond et al. (A-53) wished to know if cognitive screening should be used to help select appro-
priate candidates for comprehensive inpatient rehabilitation. They studied a sample of geriatric
rehabilitation patients using standardized measurement strategies. Among the data collected were
the following admission and discharge scores made by the subjects on the Mini Mental State Exam-
ination (MMSE):
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Admission Discharge Admission Discharge

9 10 24 26
11 11 24 30
14 19 24 28
15 15 25 26
16 17 25 22
16 15 26 26
16 17 26 28
16 17 26 26
17 14 27 28
17 18 27 28
17 21 27 27
18 21 27 27
18 21 27 27
19 21 28 28
19 25 28 29
19 21 28 29
19 22 28 29
19 19 29 28
20 22 29 28
21 23 29 30
22 22 29 30
22 19 29 30
22 26 29 30
23 21 29 30
24 21 30 30
24 20

Source: Dr. Stephen N. Macciocchi. Used with permission.

49. In a study to explore the possibility of hormonal alteration in asthma, Weinstein et al. (A-54) col-
lected data on 22 postmenopausal women with asthma and 22 age-matched, postmenopausal,
women without asthma. The following are the dehydroepiandrosterone sulfate (DHEAS) values
collected by the investigators:

Without Asthma With Asthma Without Asthma With Asthma

20.59 87.50 15.90 166.02
37.81 111.52 49.77 129.01
76.95 143.75 25.86 31.02
77.54 25.16 55.27 47.66
19.30 68.16 33.83 171.88
35.00 136.13 56.45 241.88

146.09 89.26 19.91 235.16
166.02 96.88 24.92 25.16
96.58 144.34 76.37 78.71
24.57 97.46 6.64 111.52
53.52 82.81 115.04 54.69

Source: Dr. Robert E. Weinstein. Used with permission.
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50. The motivation for a study by Gruber et al. (A-55) was a desire to find a potentially useful serum
marker in rheumatoid arthritis (RA) that reflects underlying pathogenic mechanisms. They meas-
ured, among other variables, the circulating levels of gelatinase B in the serum and synovial fluid
(SF) of patients with RA and of control subjects. The results were as follows:

Serum Synovial Fluid Serum Synovial Fluid

RA Control RA Control RA Control RA Control

26.8 23.4 71.8 3.0 36.7
19.1 30.5 29.4 4.0 57.2

249.6 10.3 185.0 3.9 71.3
53.6 8.0 114.0 6.9 25.2
66.1 7.3 69.6 9.6 46.7
52.6 10.1 52.3 22.1 30.9
14.5 17.3 113.1 13.4 27.5
22.7 24.4 104.7 13.3 17.2
43.5 19.7 60.7 10.3
25.4 8.4 116.8 7.5
29.8 20.4 84.9 31.6
27.6 16.3 215.4 30.0

106.1 16.5 33.6 42.0
76.5 22.2 158.3 20.3

Source: Dr. Darius Sorbi. Used with permission.

51. Benini et al. (A-56) conducted a study to evaluate the severity of esophageal acidification in achala-
sia following successful dilatation of the cardias and to determine which factors are associated with
pathological esophageal acidification in such patients. Twenty-two subjects, of whom seven were
males; ranged in ages from 28 to 78 years. On the basis of established criteria they were classified as
refluxers or nonrefluxers. The following are the acid clearance values (min/reflux) for the 22 subjects:

Refluxers Nonrefluxers

8.9 2.3
30.0 0.2
23.0 0.9
6.2 8.3

11.5 0.0
0.9
0.4
2.0
0.7
3.6
0.5
1.4
0.2
0.7

17.9
2.1
0.0
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Source: Dr. Luigi Benini.
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52. The objective of a study by Baker et al. (A-57) was to determine whether medical deformation alters
in vitro effects of plasma from patients with preeclampsia on endothelial cell function to produce a
paradigm similar to the in vivo disease state. Subjects were 24 nulliparous pregnant women before
delivery, of whom 12 had preeclampsia and 12 were normal pregnant patients. Among the data col-
lected were the following gestational ages (weeks) at delivery:

Preeclampsia Normal Pregnant

38 40
32 41
42 38
30 40
38 40
35 39
32 39
38 41
39 41
29 40
29 40
32 40

53. Zisselman et al. (A-58) conducted a study to assess benzodiazepine use and the treatment of depres-
sion before admission to an inpatient geriatric psychiatry unit in a sample of elderly patients.
Among the data collected were the following behavior disorder scores on 27 patients treated with
benzodiazepines (W) and 28 who were not (WO).

W WO

.00 1.00 .00 .00

.00 1.00 .00 10.00

.00 .00 .00 .00

.00 .00 .00 18.00

.00 10.00 .00 .00

.00 2.00 .00 2.00

.00 .00 5.00

.00 .00

.00 4.00

.00 1.00
4.00 2.00
3.00 .00
2.00 6.00
.00 .00

10.00 .00
2.00 1.00
.00 2.00

9.00 1.00
.00 22.00

1.00 .00
16.00 .00
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Source: Dr. Yochi Shmuely.
Used with permission.

Source: Dr. James M. Roberts. 
Used with permission.



54. The objective of a study by Reinecke et al. (A-59) was to investigate the functional activity and expres-
sion of the sarcolemmal exchange in the failing human heart. The researchers obtained left
ventricular samples from failing human hearts of 11 male patients (mean age 51 years) undergoing
cardiac transplantation. Nonfailing control hearts were obtained from organ donors (four females, two
males, mean age 41 years) whose hearts could not be transplanted for noncardiac reasons. The
following are the exchanger activity measurements for the patients with end-stage heart
failure (CHF) and nonfailing controls (NF).

NF CHF

0.075 0.221
0.073 0.231
0.167 0.145
0.085 0.112
0.110 0.170
0.083 0.207

0.112
0.291
0.164
0.195
0.185

Source: Dr. Hans Reinecke. Used with permission.

55. Reichman et al. (A-60) conducted a study with the purpose of demonstrating that negative symp-
toms are prominent in patients with Alzheimer’s disease and are distinct from depression. The
following are scores made on the Scale for the Assessment of Negative Symptoms in Alzheimer’s
Disease by patients with Alzheimer’s disease (PT) and normal elderly, cognitively intact, comparison
subjects (C).

PT C

19 6
5 5

36 10
22 1
1 1

18 0
24 5
17 5
7 4

19 6
5 6
2 7

14 5
9 3

34 5
13 12

Na+ /Ca2+

Na+ /Ca2+
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PT C

0 0
21 5
30 1
43 2
19 3
31 19
21 3
41 5

24
3

Exercises for Use with Large Data Sets Available on the Following Website: 
www.wiley.com/college/daniel

1. Refer to the creatine phosphokinase data on 1005 subjects (PCKDATA). Researchers would like
to know if psychologically stressful situations cause an increase in serum creatine phosphokinase
(CPK) levels among apparently healthy individuals. To help the researchers reach a decision, select
a simple random sample from this population, perform an appropriate analysis of the sample data,
and give a narrative report of your findings and conclusions. Compare your results with those of
your classmates.

2. Refer to the prothrombin time data on 1000 infants (PROTHROM). Select a simple random sample
of size 16 from each of these populations and conduct an appropriate hypothesis test to determine
whether one should conclude that the two populations differ with respect to mean prothrombin time.
Let . Compare your results with those of your classmates. What assumptions are necessary
for the validity of the test?

3. Refer to the head circumference data of 1000 matched subjects (HEADCIRC). Select a simple
random sample of size 20 from the population and perform an appropriate hypothesis test to deter-
mine if one can conclude that subjects with the sex chromosome abnormality tend to have smaller
heads than normal subjects. Let . Construct a 95 percent confidence interval for the pop-
ulation mean difference. What assumptions are necessary? Compare your results with those of your
classmates.

4. Refer to the hemoglobin data on 500 children with iron deficiency anemia and 500 apparently
healthy children (HEMOGLOB). Select a simple random sample of size 16 from population A
and an independent simple random sample of size 16 from population B. Does your sample
data provide sufficient evidence to indicate that the two populations differ with respect to mean
Hb value? Let . What assumptions are necessary for your procedure to be valid? Com-
pare your results with those of your classmates.

5. Refer to the manual dexterity scores of 500 children with learning disabilities and 500 children
with no known learning disabilities (MANDEXT). Select a simple random sample of size 10 from
population A and an independent simple random sample of size 15 from population B. Do your
samples provide sufficient evidence for you to conclude that learning-disabled children, on the aver-
age, have lower manual dexterity scores than children without a learning disability? Let 
What assumptions are necessary in order for your procedure to be valid? Compare your results
with those of your classmates.

a = .05.

a = .05

a = .05

a = .05
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Source: Dr. Andrew C. Coyne.
Used with permission.
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CHAPTER OVERVIEW

The topic of this chapter, analysis of variance, provides a methodology for
partitioning the total variance computed from a data set into components,
each of which represents the amount of the total variance that can be attrib-
uted to a specific source of variation. The results of this partitioning can then
be used to estimate and test hypotheses about population variances and
means. In this chapter we focus our attention on hypothesis testing of means.
Specifically, we discuss the testing of differences among means when there
is interest in more than two populations or two or more variables. The tech-
niques discussed in this chapter are widely used in the health sciences.

TOPICS

8.1 INTRODUCTION

8.2 THE COMPLETELY RANDOMIZED DESIGN

8.3 THE RANDOMIZED COMPLETE BLOCK DESIGN

8.4 THE REPEATED MEASURES DESIGN

8.5 THE FACTORIAL EXPERIMENT

8.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how the total variation in a data set can be partitioned into different 

components.
2. be able to compare the means of more than two samples simultaneously.
3. understand multiple comparison tests and when their use is appropriate.
4. understand commonly used experimental designs.

CHAPTER 8
ANALYSIS OF VARIANCE



8.1 INTRODUCTION

In the preceding chapters the basic concepts of statistics have been examined, and they
provide a foundation for the present and succeeding chapters.

This chapter is concerned with analysis of variance, which may be defined as a
technique whereby the total variation present in a set of data is partitioned into two or
more components. Associated with each of these components is a specific source of vari-
ation, so that in the analysis it is possible to ascertain the magnitude of the contribu-
tions of each of these sources to the total variation.

The development of analysis of variance (ANOVA) is due mainly to the work of
R. A. Fisher (1), whose contributions to statistics, spanning the years 1912 to 1962, have
had a tremendous influence on modern statistical thought (2, 3).

Applications Analysis of variance finds its widest application in the analysis of
data derived from experiments. The principles of the design of experiments are well cov-
ered in many books, including those by Hinkelmann and Kempthorne (4), Montgomery
(5), and Myers and Well (6). We do not study this topic in detail, since to do it justice
would require a minimum of an additional chapter. Some of the important concepts in
experimental design, however, will become apparent as we discuss analysis of variance.

Analysis of variance is used for two different purposes: (1) to estimate and test
hypotheses about population variances, and (2) to estimate and test hypotheses about pop-
ulation means. We are concerned here with the latter use. However, as we will see, our
conclusions regarding the means will depend on the magnitudes of the observed variances.

As we shall see, the concepts and techniques that we cover under the heading of
analysis of variance are extensions of the concepts and techniques covered in Chapter 7.
In Chapter 7 we learned to test the null hypothesis that two means are equal. In this
chapter we learn to test the null hypothesis that three or more means are equal. Whereas,
for example, what we learned in Chapter 7 enables us to determine if we can conclude
that two treatments differ in effectiveness, what we learn in this chapter enables us to
determine if we can conclude that three or more treatments differ in effectiveness. The
following example illustrates some basic ideas involved in the application of analysis of
variance. These will be extended and elaborated on later in this chapter.

EXAMPLE 8.1.1

Suppose we wish to know if three drugs differ in their effectiveness in lowering serum
cholesterol in human subjects. Some subjects receive drug A, some drug B, and some
drug C. After a specified period of time measurements are taken to determine the extent
to which serum cholesterol was reduced in each subject. We find that the amount by which
serum cholesterol was lowered is not the same in all subjects. In other words, there is
variability among the measurements. Why, we ask ourselves, are the measurements not
all the same? Presumably, one reason they are not the same is that the subjects received
different drugs. We now look at the measurements of those subjects who received drug
A. We find that the amount by which serum cholesterol was lowered is not the same
among these subjects. We find this to be the case when we look at the measurements for
subjects who received drug B and those subjects who received drug C. We see that there
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is variability among the measurements within the treatment groups. Why, we ask our-
selves again, are these measurements not the same? Among the reasons that come to mind
are differences in the genetic makeup of the subjects and differences in their diets.
Through an analysis of the variability that we have observed, we will be able to reach a
conclusion regarding the equality of the effectiveness of the three drugs. To do this we
employ the techniques and concepts of analysis of variance. ■

Variables In our example we allude to three kinds of variables. We find these vari-
ables to be present in all situations in which the use of analysis of variance is appropriate.
First we have the treatment variable, which in our example was “drug.” We had three “val-
ues” of this variable, drug A, drug B, and drug C. The second kind of variable we refer
to is the response variable. In the example it is change in serum cholesterol. The response
variable is the variable that we expect to exhibit different values when different “values” of
the treatment variable are employed. Finally, we have the other variables that we mention—
genetic composition and diet. These are called extraneous variables. These variables may
have an effect on the response variable, but they are not the focus of our attention in the
experiment. The treatment variable is the variable of primary concern, and the question to
be answered is: Do the different “values” of the treatment variable result in differences,
on the average, in the response variable?

Assumptions Underlying the valid use of analysis of variance as a tool of statis-
tical inference are a set of fundamental assumptions. Although an experimenter must not
expect to find all the assumptions met to perfection, it is important that the user of analy-
sis of variance techniques be aware of the underlying assumptions and be able to recog-
nize when they are substantially unsatisfied. Because experiments in which all the
assumptions are perfectly met are rare, analysis of variance results should be considered
as approximate rather than exact. These assumptions are pointed out at appropriate points
in the following sections.

We discuss analysis of variance as it is used to analyze the results of two different
experimental designs, the completely randomized and the randomized complete block
designs. In addition to these, the concept of a factorial experiment is given through its use
in a completely randomized design. These do not exhaust the possibilities. A discussion of
additional designs may be found in the references (4–6).

The ANOVA Procedure In our presentation of the analysis of variance for the
different designs, we follow the ten-step procedure presented in Chapter 7. The follow-
ing is a restatement of the steps of the procedure, including some new concepts neces-
sary for its adaptation to analysis of variance.

1. Description of data. In addition to describing the data in the usual way, we dis-
play the sample data in tabular form.

2. Assumptions. Along with the assumptions underlying the analysis, we present the
model for each design we discuss. The model consists of a symbolic representa-
tion of a typical value from the data being analyzed. 

3. Hypotheses.
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4. Test statistic.

5. Distribution of test statistic.

6. Decision rule.

7. Calculation of test statistic. The results of the arithmetic calculations will be sum-
marized in a table called the analysis of variance (ANOVA) table. The entries in
the table make it easy to evaluate the results of the analysis. 

8. Statistical decision.

9. Conclusion.

10. Determination of p value.

We discuss these steps in greater detail in Section 8.2.

The Use of Computers The calculations required by analysis of variance are
lengthier and more complicated than those we have encountered in preceding chapters.
For this reason the computer assumes an important role in analysis of variance. All the
exercises appearing in this chapter are suitable for computer analysis and may be used
with the statistical packages mentioned in Chapter 1. The output of the statistical pack-
ages may vary slightly from that presented in this chapter, but this should pose no major
problem to those who use a computer to analyze the data of the exercises. The basic
concepts of analysis of variance that we present here should provide the necessary back-
ground for understanding the description of the programs and their output in any of the
statistical packages.

8.2 THE COMPLETELY RANDOMIZED DESIGN

We saw in Chapter 7 how it is possible to test the null hypothesis of no difference
between two population means. It is not unusual for the investigator to be interested in
testing the null hypothesis of no difference among several population means. The stu-
dent first encountering this problem might be inclined to suggest that all possible pairs
of sample means be tested separately by means of the Student t test. Suppose there are
five populations involved. The number of possible pairs of sample means is 
As the amount of work involved in carrying out this many t tests is substantial, it would
be worthwhile if a more efficient alternative for analysis were available. A more impor-
tant consequence of performing all possible t tests, however, is that it is very likely to
lead to a false conclusion.

Suppose we draw five samples from populations having equal means. As we have
seen, there would be 10 tests if we were to do each of the possible tests separately. If we
select a significance level of for each test, the probability of failing to reject a
hypothesis of no difference in each case would be .95. By the multiplication rule of prob-
ability, if the tests were independent of one another, the probability of failing to reject a
hypothesis of no difference in all 10 cases would be The probability of
rejecting at least one hypothesis of no difference, then, would be 
Since we know that the null hypothesis is true in every case in this illustrative example,
rejecting the null hypothesis constitutes the committing of a type I error. In the long run,

1 - .5987 = .4013.
1.95210 = .5987.

a = .05

5C 2 = 10.
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then, in testing all possible pairs of means from five samples, we would commit a type I
error 40 percent of the time. The problem becomes even more complicated in practice,
since three or more t tests based on the same data would not be independent of one
another.

It becomes clear, then, that some other method for testing for a significant differ-
ence among several means is needed. Analysis of variance provides such a method.

One-Way ANOVA The simplest type of analysis of variance is that known as
one-way analysis of variance, in which only one source of variation, or factor, is
investigated. It is an extension to three or more samples of the t test procedure (discussed
in Chapter 7) for use with two independent samples. Stated another way, we can say that
the t test for use with two independent samples is a special case of one-way analysis of
variance.

In a typical situation we want to use one-way analysis of variance to test the null
hypothesis that three or more treatments are equally effective. The necessary experiment
is designed in such a way that the treatments of interest are assigned completely at ran-
dom to the subjects or objects on which the measurements to determine treatment effec-
tiveness are to be made. For this reason the design is called the completely randomized
experimental design.

We may randomly allocate subjects to treatments as follows. Suppose we have 16
subjects available to participate in an experiment in which we wish to compare four
drugs. We number the subjects from 01 through 16. We then go to a table of random
numbers and select 16 consecutive, unduplicated numbers between 01 and 16. To illus-
trate, let us use Appendix Table A and a random starting point that, say, is at the inter-
section of Row 4 and Columns 11 and 12. The two-digit number at this intersection is
98. The succeeding (moving downward) 16 consecutive two-digit numbers between 01
and 16 are 16, 09, 06, 15, 14, 11, 02, 04, 10, 07, 05, 13, 03, 12, 01, and 08. We allo-
cate subjects 16, 09, 06, and 15 to drug A; subjects 14, 11, 02, and 04 to drug B;
subjects 10, 07, 05, and 13 to drug C; and subjects 03, 12, 01, and 08 to drug D. We
emphasize that the number of subjects in each treatment group does not have to be the
same. Figure 8.2.1 illustrates the scheme of random allocation.
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FIGURE 8.2.1 Allocation of subjects to treatments, completely randomized design.



Hypothesis Testing Steps Once we decide that the completely randomized
design is the appropriate design, we may proceed with the hypothesis testing steps. We
discuss these in detail first, and follow with an example.

1. Description of data. The measurements (or observations) resulting from a com-
pletely randomized experimental design, along with the means and totals that can
be computed from them, may be displayed for convenience as in Table 8.2.1. The
symbols used in Table 8.2.1 are defined as follows:

(there are a total of k treatments)

2. Assumptions. Before stating the assumptions, let us specify the model for the
experiment described here.

The Model As already noted, a model is a symbolic representation of a typical value
of a data set. To write down the model for the completely randomized experimental design,
let us begin by identifying a typical value from the set of data represented by the sample
displayed in Table 8.2.1. We use the symbol to represent this typical value.x ij

x.. =
T..
N

, N = a
k

j=1
nj

T.. = a
k

j=1
T.j = a

k

j=1
a
nj

i=1
x ij = total of all observations

x.j =
T.j

n j
= mean of the j th treatment

T.j = a
nj

i=1
x ij = total of the j th treatment

j = 1, 2, Á , ki = 1, 2, Á , nj,

x ij = the i th observation resulting from the j th treatment
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TABLE 8.2.1 Table of Sample Values for the
Completely Randomized Design

Treatment

1 2 3 . . . k

Total

Mean x..x.k. . .x.3x.2x.1

T..T.k. . .T.3T.2T.1

xnkk
. . .xn33xn22xn11

ooooo

x3k
. . .x33x32x31

x2k
. . .x23x22x21

x1k
. . .x13x12x11



The one-way analysis of variance model may be written as follows:

(8.2.1)

The terms in this model are defined as follows:

1. represents the mean of all the k population means and is called the grand mean.

2. represents the difference between the mean of the j th population and the grand
mean and is called the treatment effect.

3. represents the amount by which an individual measurement differs from the
mean of the population to which it belongs and is called the error term.

Components of the Model By looking at our model we can see that a typ-
ical observation from the total set of data under study is composed of (1) the grand mean,
(2) a treatment effect, and (3) an error term representing the deviation of the observa-
tion from its group mean.

In most situations we are interested only in the k treatments represented in our
experiment. Any inferences that we make apply only to these treatments. We do not
wish to extend our inference to any larger collection of treatments. When we place
such a restriction on our inference goals, we refer to our model as the fixed-effects
model, or model 1. The discussion in this book is limited to this model.

Assumptions of the Model The assumptions for the fixed-effects model are as
follows:

(a) The k sets of observed data constitute k independent random samples from the
respective populations. 

(b) Each of the populations from which the samples come is normally distributed with
mean and variance 

(c) Each of the populations has the same variance. That is, 
the common variance. 

(d) The are unknown constants and since the sum of all deviations of the
from their mean, is zero. 

(e) The have a mean of 0, since the mean of is 

(f) The have a variance equal to the variance of the since the and differ
only by a constant; that is, the error variance is equal to the common variance
specified in assumption c. 

(g) The are normally (and independently) distributed.

3. Hypotheses. We test the null hypothesis that all population or treatment means are
equal against the alternative that the members of at least one pair are not equal.
We may state the hypotheses formally as follows:

HA:not all mj are equal

H0:m1 = m2 = . . . = mk

Pij

s2,
x ijPijx ij ,Pij

mj .x ijPij

m,mj

gtj = 0tj

s2
k = s2s2

1 = s2
2 = . . . =

s2
j .mj

Pij

tj

m

j = 1, 2, Á , ki = 1, 2, Á , nj ,x ij = m + tj + Pij ;
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If the population means are equal, each treatment effect is equal to zero, so that, alter-
natively, the hypotheses may be stated as

If is true and the assumptions of equal variances and normally distributed pop-
ulations are met, a picture of the populations will look like Figure 8.2.2. When is
true the population means are all equal, and the populations are centered at the same
point (the common mean) on the horizontal axis. If the populations are all normally dis-
tributed with equal variances the distributions will be identical, so that in drawing their
pictures each is superimposed on each of the others, and a single picture sufficiently rep-
resents them all.

When is false it may be false because one of the population means is different
from the others, which are all equal. Or, perhaps, all the population means are different.
These are only two of the possibilities when is false. There are many other possible
combinations of equal and unequal means. Figure 8.2.3 shows a picture of the popula-
tions when the assumptions are met, but is false because no two population means
are equal.

4. Test statistic. The test statistic for one-way analysis of variance is a computed vari-
ance ratio, which we designate by V.R. as we did in Chapter 7. The two variances

H0

H0

H0

H0

H0

HA:not all tj = 0

H0:tj = 0,  j = 1, 2, Á , k
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m1 = m2 = ... = mk

s 2 =1 2 s 2
ks 2 = ... =

FIGURE 8.2.2 Picture of the populations represented in
a completely randomized design when is true and the
assumptions are met.

H0

m1 m2 mk

FIGURE 8.2.3 Picture of the populations represented in a
completely randomized design when the assumptions of equal
variances and normally distributed populations are met, but 
is false because none of the population means are equal.

H0



from which V.R. is calculated are themselves computed from the sample data. The
methods by which they are calculated will be given in the discussion that follows. 

5. Distribution of test statistic. As discussed in Section 7.8, V.R. is distributed as
the F distribution when is true and the assumptions are met. 

6. Decision rule. In general, the decision rule is: reject the null hypothesis if the
computed value of V.R. is equal to or greater than the critical value of F for the
chosen level. 

7. Calculation of test statistic. We have defined analysis of variance as a process
whereby the total variation present in a set of data is partitioned into components
that are attributable to different sources. The term variation used in this context
refers to the sum of squared deviations of observations from their mean, or sum of
squares for short.

The initial computations performed in one-way ANOVA consist of the partitioning
of the total variation present in the observed data into its basic components, each of
which is attributable to an identifiable source.

Those who use a computer for calculations may wish to skip the following discus-
sion of the computations involved in obtaining the test statistic.

The Total Sum of Squares Before we can do any partitioning, we must first
obtain the total sum of squares. The total sum of squares is the sum of the squares of
the deviations of individual observations from the mean of all the observations taken
together. This total sum of squares is defined as

(8.2.2)

where tells us to sum the squared deviations for each treatment group, and
tells us to add the k group totals obtained by applying The reader will recognize
Equation 8.2.2 as the numerator of the variance that may be computed from the com-
plete set of observations taken together.

The Within Groups Sum of Squares Now let us show how to compute
the first of the two components of the total sum of squares.

The first step in the computation calls for performing certain calculations within
each group. These calculations involve computing within each group the sum of the
squared deviations of the individual observations from their mean. When these calcula-
tions have been performed within each group, we obtain the sum of the individual group
results. This component of variation is called the within groups sum of squares and may
be designated SSW. This quantity is sometimes referred to as the residual or error sum
of squares. The expression for these calculations is written as follows:

(8.2.3)SSW = a
k

j=1
a
nj

i=1
1x ij - x .j22

gnj
i=1.

g k
j=1gnj

i=1

SST = a
k

j=1
a
nj

i=1
1x ij - x..22

a

H0
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The Among Groups Sum of Squares To obtain the second component
of the total sum of squares, we compute for each group the squared deviation of the
group mean from the grand mean and multiply the result by the size of the group. Finally,
we add these results over all groups. This quantity is a measure of the variation among
groups and is referred to as the sum of squares among groups or SSA. The formula for
calculating this quantity is as follows:

(8.2.4)

In summary, then, we have found that the total sum of squares is equal to the sum
of the among and the within sum of squares. We express this relationship as follows:

From the sums of squares that we have now learned to compute, it is possible to obtain
two estimates of the common population variance, It can be shown that when the
assumptions are met and the population means are all equal, both the among sum of
squares and the within sum of squares, when divided by their respective degrees of free-
dom, yield independent and unbiased estimates of 

The First Estimate of Within any sample,

provides an unbiased estimate of the true variance of the population from which the sam-
ple came. Under the assumption that the population variances are all equal, we may pool
the k estimates to obtain

(8.2.5)

This is our first estimate of and may be called the within groups variance, since it is
the within groups sum of squares of Equation 8.2.3 divided by the appropriate degrees
of freedom. The student will recognize this as an extension to k samples of the pooling
of variances procedure encountered in Chapters 6 and 7 when the variances from two
samples were pooled in order to use the t distribution. The quantity in Equation 8.2.5 is
customarily referred to as the within groups mean square rather than the within groups
variance.

s2

MSW =
a

k

j=1
a
nj

i=1
1x ij - x.j22

a
k

j=1
1nj - 12

a
nj

i=1
1x ij - x.j22
nj - 1

S2

s2.

s2.

SST = SSA + SSW

SSA = a
k

j=1
nj1x.j - x ..22
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The within groups mean square is a valid estimate of only if the population
variances are equal. It is not necessary, however, for to be true in order for the within
groups mean square to be a valid estimate of that is, the within groups mean square
estimates regardless of whether is true or false, as long as the population vari-
ances are equal.

The Second Estimate of The second estimate of may be obtained
from the familiar formula for the variance of sample means, If we solve this
equation for the variance of the population from which the samples were drawn, we
have

(8.2.6)

An unbiased estimate of computed from sample data is provided by

If we substitute this quantity into Equation 8.2.6, we obtain the desired estimate of , 

(8.2.7)

The reader will recognize the numerator of Equation 8.2.7 as the among groups
sum of squares for the special case when all sample sizes are equal. This sum of squares
when divided by the associated degrees of freedom is referred to as the among
groups mean square.

When the sample sizes are not all equal, an estimate of based on the variabil-
ity among sample means is provided by

(8.2.8)

If, indeed, the null hypothesis is true we would expect these two estimates of 
to be fairly close in magnitude. If the null hypothesis is false, that is, if all population
means are not equal, we would expect the among groups mean square, which is com-
puted by using the squared deviations of the sample means from the overall mean, to be
larger than the within groups mean square.

In order to understand analysis of variance we must realize that the among groups
mean square provides a valid estimate of when the assumption of equal populations2

s2
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nj 1x.j - x..22
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k - 1

s2

a
k

j=1
1x.j - x. .22
k - 1

sx
2

s2 = nsx
2

s2,
sx

2 = s2>n.
s2S2

H0s2
s2;

H0

s2

8.2 THE COMPLETELY RANDOMIZED DESIGN 315



variances is met and when is true. Both conditions, a true null hypothesis and equal
population variances, must be met in order for the among groups mean square to be a
valid estimate of 

The Variance Ratio What we need to do now is to compare these two estimates
of and we do this by computing the following variance ratio, which is the desired
test statistic:

If the two estimates are about equal, V.R. will be close to 1. A ratio close to 1 tends to
support the hypothesis of equal population means. If, on the other hand, the among
groups mean square is considerably larger than the within groups mean square, V.R. will
be considerably greater than 1. A value of V.R. sufficiently greater than 1 will cast doubt
on the hypothesis of equal population means.

We know that because of the vagaries of sampling, even when the null hypothesis
is true, it is unlikely that the among and within groups mean squares will be equal. We
must decide, then, how big the observed difference has to be before we can conclude
that the difference is due to something other than sampling fluctuation. In other words,
how large a value of V.R. is required for us to be willing to conclude that the observed
difference between our two estimates of is not the result of chance alone?

The F Test To answer the question just posed, we must consider the sampling dis-
tribution of the ratio of two sample variances. In Chapter 6 we learned that the quantity

follows a distribution known as the F distribution when the sample vari-
ances are computed from random and independently drawn samples from normal popu-
lations. The F distribution, introduced by R. A. Fisher in the early 1920s, has become
one of the most widely used distributions in modern statistics. We have already become
acquainted with its use in constructing confidence intervals for, and testing hypotheses
about, population variances. In this chapter, we will see that it is the distribution funda-
mental to analysis of variance. For this reason the ratio that we designate V.R. is fre-
quently referred to as F, and the testing procedure is frequently called the F test. It is of
interest to note that the F distribution is the ratio of two Chi-square distributions.

In Chapter 7 we learned that when the population variances are the same, they can-
cel in the expression , leaving , which is itself distributed as F. The
F distribution is really a family of distributions, and the particular F distribution we use
in a given situation depends on the number of degrees of freedom associated with the
sample variance in the numerator (numerator degrees of freedom) and the number of
degrees of freedom associated with the sample variance in the denominator (denomina-
tor degrees of freedom).

Once the appropriate F distribution has been determined, the size of the observed
V.R. that will cause rejection of the hypothesis of equal population variances depends
on the significance level chosen. The significance level chosen determines the critical
value of F, the value that separates the nonrejection region from the rejection region.

s 2
1>s 2

21s 2
1>s2

12>1s 2
2>s2

22

1s2
1>s2

12>1s2
2>s2

22
s2

V.R. =
among groups mean square

within groups means square
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As we have seen, we compute V.R. in situations of this type by placing the among
groups mean square in the numerator and the within groups mean square in the denom-
inator, so that the numerator degrees of freedom is equal to the number of
groups minus 1, and the denominator degrees of freedom value is equal to

The ANOVA Table The calculations that we perform may be summarized and
displayed in a table such as Table 8.2.2, which is called the ANOVA table.

8. Statistical decision. To reach a decision we must compare our computed V.R. with
the critical value of F, which we obtain by entering Appendix Table G with 
numerator degrees of freedom and denominator degrees of freedom.

If the computed V.R. is equal to or greater than the critical value of F, we reject the null
hypothesis. If the computed value of V.R. is smaller than the critical value of F, we do
not reject the null hypothesis.

Explaining a Rejected Null Hypothesis There are two possible expla-
nations for a rejected null hypothesis. If the null hypothesis is true, that is, if the two
sample variances are estimates of a common variance, we know that the probability of
getting a value of V.R. as large as or larger than the critical F is equal to our chosen
level of significance. When we reject we may, if we wish, conclude that the null
hypothesis is true and assume that because of chance we got a set of data that gave rise
to a rare event. On the other hand, we may prefer to take the position that our large com-
puted V.R. value does not represent a rare event brought about by chance but, instead,
reflects the fact that something other than chance is operative. This other something we
conclude to be a false null hypothesis.

It is this latter explanation that we usually give for computed values of V.R. that
exceed the critical value of F. In other words, if the computed value of V.R. is greater
than the critical value of F, we reject the null hypothesis.

H0

N - k
k - 1

a
k
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TABLE 8.2.2 Analysis of Variance Table for the Completely Randomized Design

Source of Degrees Variance 

Variation Sum of Squares of Freedom Mean Square Ratio

Among samples

Within samples

Total N - 1SST = a
k

j=1
a
nj

i=1
1xij - x..22

MSW = SSW>1N - k2N - kSSW = a
k

j=1
a
nj

i=1
1xij - x.j22

V.R. =
MSA
MSW

MSA = SSA>1k - 12k - 1SSA = a
k

j=1
nj 1x.j - x..22



It will be recalled that the original hypothesis we set out to test was

Does rejection of the hypothesis about variances imply a rejection of the hypothesis of
equal population means? The answer is yes. A large value of V.R. resulted from the fact
that the among groups mean square was considerably larger than the within groups mean
square. Since the among groups mean square is based on the dispersion of the sample
means about their mean (called the grand mean), this quantity will be large when there
is a large discrepancy among the sizes of the sample means. Because of this, then, a sig-
nificant value of V.R. tells us to reject the null hypothesis that all population means are
equal.

9. Conclusion. When we reject we conclude that not all population means are
equal. When we fail to reject we conclude that the population means may all
be equal.

10. Determination of p value.

EXAMPLE 8.2.1

Game meats, including those from white-tailed deer and eastern gray squirrels, are
used as food by families, hunters, and other individuals for health, cultural, or per-
sonal reasons. A study by David Holben (A-1) assessed the selenium content of meat
from free-roaming white-tailed deer (venison) and gray squirrel (squirrel) obtained
from a low selenium region of the United States. These selenium content values were
also compared to those of beef produced within and outside the same region. We want
to know if the selenium levels are different in the four meat groups.

Solution:

1. Description of data. Selenium content of raw venison (VEN), squirrel
meat (SQU), region-raised beef (RRB), and nonregion-raised beef (NRB),
in of dry weight, are shown in Table 8.2.3. A graph of the data
in the form of a dotplot is shown in Figure 8.2.4. Such a graph highlights
mg>100 g

H0,
H0,

H0: m1 = m2 = Á = mk
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TABLE 8.2.3 Selenium Content, in of Four Different Meat Types

Meat Type

VEN SQU RRB NRB

26.72 14.86 37.42 37.57 11.23 15.82 44.33

28.58 16.47 56.46 25.71 29.63 27.74 76.86

29.71 25.19 51.91 23.97 20.42 22.35 4.45

26.95 37.45 62.73 13.82 10.12 34.78 55.01

10.97 45.08 4.55 42.21 39.91 35.09 58.21

21.97 25.22 39.17 35.88 32.66 32.60 74.72

14.35 22.11 38.44 10.54 38.38 37.03 11.84

Mg/100 g,

(Continued)
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Meat Type

VEN SQU RRB NRB

32.21 33.01 40.92 27.97 36.21 27.00 139.09

19.19 31.20 58.93 41.89 16.39 44.20 69.01

30.92 26.50 61.88 23.94 27.44 13.09 94.61

10.42 32.77 49.54 49.81 17.29 33.03 48.35

35.49 8.70 64.35 30.71 56.20 9.69 37.65

36.84 25.90 82.49 50.00 28.94 32.45 66.36

25.03 29.80 38.54 87.50 20.11 37.38 72.48

33.59 37.63 39.53 68.99 25.35 34.91 87.09

33.74 21.69 21.77 27.99 26.34

18.02 21.49 31.62 22.36 71.24

22.27 18.11 32.63 22.68 90.38

26.10 31.50 30.31 26.52 50.86

20.89 27.36 46.16 46.01

29.44 21.33 56.61 38.04

24.47 30.88

29.39 30.04

40.71 25.91

18.52 18.54

27.80 25.51

19.49

Source: David H. Holben, Ph.D. Used with permission.

the main features of the data and brings into clear focus differences in sele-
nium levels among the different meats.

2. Assumptions. We assume that the four sets of data constitute independ-
ent simple random samples from the four indicated populations. We
assume that the four populations of measurements are normally distrib-
uted with equal variances.

FIGURE 8.2.4 Selenium content of four meat types. VEN � venison,
and NRB = nonregion-raised beef.RRB = region-raised beef,

SQU = squirrel,
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3. Hypotheses.
(On average the four meats have the same

selenium content.) 

Not all are equal (At least one meat yields an average selenium
content different from the average selenium content of at least one other
meat.)

4. Test statistic. The test statistic is 

5. Distribution of test statistic. If is true and the assumptions are met,
the V.R. follows the F distribution with numerator degrees of
freedom and denominator degrees of freedom.

6. Decision rule. Suppose we let The critical value of F from
Appendix Table G is The decision rule, then, is reject if the
computed V.R. statistic is equal to or greater than 3.95.

7. Calculation of test statistic. By Equation 8.2.2 we compute

By Equation 8.2.4 we compute

The results of our calculations are displayed in Table 8.2.4.

8. Statistical decision. Since our computed F of 27.00 is greater than 3.95
we reject 

9. Conclusion. Since we reject we conclude that the alternative
hypothesis is true. That is, we conclude that the four meat types do not
all have the same average selenium content.

10. p value. Since for this test. ■

A Word of Caution The completely randomized design is simple and, therefore,
widely used. It should be used, however, only when the units receiving the treatments are
homogeneous. If the experimental units are not homogeneous, the researcher should con-
sider an alternative design such as one of those to be discussed later in this chapter.

In our illustrative example the treatments are treatments in the usual sense of the
word. This is not always the case, however, as the term “treatment” as used in experi-
mental design is quite general. We might, for example, wish to study the response to the

27.00 7 3.95, p 6 .01

H0,

H0.

SSW = 58009.05560 - 21261.82886 = 36747.22674

SSA = 21261.82886

SST = 58009.05560

H06 3.95.
a = .01.

144 - 4 = 140
4 - 1 = 3

H0

V.R. = MSA>MSW.

m’sHA:

H0: m1 = m2 = m3 = m4
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TABLE 8.2.4 ANOVA Table for Example 8.2.1

Source SS df MS F

Among samples 21261.82886 3 7087.27629 27.00

Within samples 36747.22674 140 262.48019

Total 58009.05560 143 



same treatment (in the usual sense of the word) of several breeds of animals. We would,
however, refer to the breed of animal as the “treatment.”

We must also point out that, although the techniques of analysis of variance are
more often applied to data resulting from controlled experiments, the techniques also
may be used to analyze data collected by a survey, provided that the underlying assump-
tions are reasonably well met.

Computer Analysis Figure 8.2.5 shows the computer procedure and output for
Example 8.2.1 provided by a one-way analysis of variance program found in the
MINITAB package. The data were entered into Columns 1 through 4. When you com-
pare the ANOVA table on this printout with the one given in Table 8.2.4, you see that the
printout uses the label “factor” instead of “among samples.” The different treatments are
referred to on the printout as levels. Thus level 
and so on. The printout gives the four sample means and standard deviations as well as

level 2 = treatment 2,1 = treatment 1,
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FIGURE 8.2.5 MINITAB procedure and output for Example 8.2.1.

Dialog box: Session command:

Stat ➤ ANOVA ➤ Oneway (Unstacked) MTB>AOVONEWAY C1-C4

Type C1-C4 in responses (in separate columns)
Click OK.

Output:

One-way ANOVA: NRB, RRB, SQU, VEN

Analysis of Variance for Selenium

Source DF SS MS F P
Meat Typ 3 21262 7087 27.00 0.000
Error 140 36747 262
Total 143 58009

Individual 95% CIs For Mean

Based on Pooled StDev
Level N Mean StDev -------+---------+--------+----------
NRB 19 62.05 31.15 (----*----)
RRB 53 29.08 10.38 (--*--)
SQU 30 43.25 19.51 (---*---)
VEN 42 25.88 8.03 (--*---)

-------+---------+--------+----------
Pooled StDeV = 16.20 30 45 60



the pooled standard deviation. This last quantity is equal to the square root of the error
mean square shown in the ANOVA table. Finally, the computer output gives graphic rep-
resentations of the 95 percent confidence intervals for the mean of each of the four pop-
ulations represented by the sample data.

Figure 8.2.6 contains a partial SAS® printout resulting from analysis of the data
of Example 8.2.1 through use of the SAS® statement PROC ANOVA. SAS® computes
some additional quantities as shown in the output. This quan-
tity tells us what proportion of the total variability present in the observations is
accounted for by differences in response to the treatments. (root MSE/selen
mean). Root MSE is the square root of MSW, and selen mean is the mean of the 18
observations.

Note that the test statistic V.R. is labeled differently by different statistical soft-
ware programs. MINITAB, for example, uses F rather than V.R. SAS® uses the label
F Value.

A useful device for displaying important characteristics of a set of data analyzed
by one-way analysis of variance is a graph consisting of side-by-side boxplots. For each
sample a boxplot is constructed using the method described in Chapter 2. Figure 8.2.7
shows the side-by-side boxplots for Example 8.2.1. Note that in Figure 8.2.7 the vari-
able of interest is represented by the vertical axis rather than the horizontal axis.

Alternatives If the data available for analysis do not meet the assumptions for one-
way analysis of variance as discussed here, one may wish to consider the use of the
Kruskal-Wallis procedure, a nonparametric technique discussed in Chapter 13.

Testing for Significant Differences Between Individual Pairs
of Means When the analysis of variance leads to a rejection of the null hypothe-
sis of no difference among population means, the question naturally arises regarding just
which pairs of means are different. In fact, the desire, more often than not, is to carry

C.V. = 100

R-Square = SSA>SST.
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FIGURE 8.2.6 Partial SAS® printout for Example 8.2.1.

The SAS System

Analysis of Variance Procedure

Dependent Variable: selen

Sum of 
Source DF Squares Mean Square F Value Pr > F
Model 3 21261.82886 7087.27629 27.00 <.0001
Error 140 36747.22674 262.48019
Corrected Total 143 58009.05560

R-Square Coeff Var Root MSE selen Mean
0.366526 45.70507 16.20124 35.44736



out a significance test on each and every pair of treatment means. For instance, in Exam-
ple 8.2.1, where there are four treatments, we may wish to know, after rejecting

which of the six possible individual hypotheses should be
rejected. The experimenter, however, must exercise caution in testing for significant dif-
ferences between individual means and must always make certain that the procedure is
valid. The critical issue in the procedure is the level of significance. Although the prob-
ability, of rejecting a true null hypothesis for the test as a whole is made small, the
probability of rejecting at least one true hypothesis when several pairs of means are tested
is, as we have seen, greater than There are several multiple comparison procedures
commonly used in practice.  Below we illustrate two popular procedures, namely Tukey’s
HSD test and Bonferroni’s method. The interested student is referred to the books by
Hsu (7) and Westfall et al. (8) for additional techniques.

Tukey’s HSD Test Over the years several procedures for making multiple com-
parisons have been suggested. A multiple comparison procedure developed by Tukey (9)
is frequently used for testing the null hypothesis that all possible pairs of treatment means
are equal when the samples are all of the same size. When this test is employed we select
an overall significance level of The probability is then, that one or more of the null
hypotheses is false.

Tukey’s test, which is usually referred to as the HSD (honestly significant differ-
ence) test, makes use of a single value against which all differences are compared. This
value, called the HSD, is given by

(8.2.9)

where is the chosen level of significance, k is the number of means in the experiment,
N is the total number of observations in the experiment, n is the number of observations
in a treatment, MSE is the error or within mean square from the ANOVA table, and q is
obtained by entering Appendix Table H with and N - k.a, k,

a

HSD = qa,k,N-kAMSE

n

a,a.

a.

a,

H0: m1 = m2 = m3 = m4,
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FIGURE 8.2.7 Side-by-side boxplots for Example 8.2.1.
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The statistic q, tabulated in Appendix Table H, is known as the studentized range
statistic. It is defined as the difference between the largest and smallest treatment means
from an ANOVA (that is, it is the range of the treatment means) divided by the error
mean square over n, the number of observations in a treatment. The studentized range
is discussed in detail by Winer (10).

All possible differences between pairs of means are computed, and any differ-
ence that yields an absolute value that exceeds HSD is declared significant.

Tukey’s Test for Unequal Sample Sizes When the samples are not all
the same size, as is the case in Example 8.2.1, Tukey’s HSD test given by Equation
8.2.9 is not applicable. Tukey himself (9) and Kramer (11), however, have extended the
Tukey procedure to the case where the sample sizes are different. Their procedure,
which is sometimes called the Tukey-Kramer method, consists of replacing MSE/n in
Equation 8.2.9 with where and are the sample sizes of
the two groups to be compared. If we designate the new quantity by HSD*, we have
as the new test criterion

(8.2.10)

Any absolute value of the difference between two sample means that exceeds
HSD* is declared significant.

Bonferroni’s Method Another very commonly used multiple comparison
test is based on a method developed by C. E. Bonferroni. As with Tukey’s method,
we desire to maintain an overall significance level of for the total of all pair-wise
tests. In the Bonferroni method, we simply divide the desired significance level by
the number of individual pairs that we are testing. That is, instead of testing at a sig-
nificance level of , we test at a significance level of where k is the number of
paired comparisons. The sum of all terms cannot, then, possibly exceed our stated
level of . For example, if one has three samples, A, B, and C, then there are 
pair-wise comparisons.  These are and If we choose a
significance level of then we would proceed with the comparisons and use
a Bonferroni-corrected significance level of Therefore, our p value must
be no greater then .017 in order to reject the null hypothesis and conclude that two
means differ.

Most computer packages compute values using the Bonferroni method and pro-
duce an output similar to the Tukey’s HSD or other multiple comparison procedures. In
general, these outputs report the actual corrected p value using the Bonferroni method.
Given the basic relationship that then algebraically we can multiply both sides
of the equation by k to obtain In other words, the total is simply the sum of
all of the pk values, and the actual corrected p value is simply the calculated p value
multiplied by the number of tests that were performed.

aa = pk.
p = a>k,

a>3 = .017
a = .05,

mB = mC.mA = mB, mA = mC,
k = 3a

a>k a>k,a

a

HSD* = qa,k,N-kAMSE

2
a 1

ni
+

1
nj
b
njn i1MSE >2211>ni + 1>nj2,
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EXAMPLE 8.2.2

Let us illustrate the use of the HSD test with the data from Example 8.2.1.

Solution: The first step is to prepare a table of all possible (ordered) differences
between means. The results of this step for the present example are dis-
played in Table 8.2.5.

Suppose we let Entering Table H with and we
find that The actual value is which can be obtained from SAS®.
In Table 8.2.4 we have 

The hypotheses that can be tested, the value of HSD*, and the statistical decision
for each test are shown in Table 8.2.6.

SAS® uses Tukey’s procedure to test the hypothesis of no difference between
population means for all possible pairs of sample means. The output also contains

MSE = 262.4802.
q = 3.667,q 6 3.68.

N - k = 140,a = .05, k = 4,a = .05.
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TABLE 8.2.5 Differences Between Sample
Means (Absolute Value) for Example 8.2.2

VEN RRB SQR NRB

VEN — 3.208 17.37 36.171

RRB — 14.163 32.963

SQU — 18.801

NRB — 

Table 8.2.6 Multiple Comparison Tests Using Data of Example 8.2.1 and HSD*

Hypotheses HSD* Statistical Decision

HSD* = 3.677A262.4802
2

a 1
30

+
1
19
b = 12.32H0:mSQU = mNRB

HSD* = 3.677A262.4802
2

a 1
53

+
1
19
b = 11.23H0:mRRB = mNRB

HSD* = 3.677A262.4802
2

a 1
53

+
1
30
b = 9.60H0:mRRB = mSQU

HSD* = 3.677A262.4802
2

a 1
42

+
1
19
b = 11.61H0:mVEN = mNRB

HSD* = 3.677A262.4802
2

a 1
42

+
1
30
b = 10.04H0:mVEN = mSQU

HSD* = 3.677A262.4802
2

a 1
42

+
1
53
b = 8.68H0:mVEN = mRRB Do not reject 

since 3.208 6 8.68
H0

Reject since
17.37 7 10.04

H0

Reject since
36.171 7 11.61

H0

Reject since
14.163 7 9.60

H0

Reject since
32.963 7 11.23

H0

Reject since
18.801 7 12.32

H0



confidence intervals for the difference between all possible pairs of population means.
This SAS output for Example 8.2.1 is displayed in Figure 8.2.8.

One may also use SPSS to perform multiple comparisons by a variety of meth-
ods, including Tukey’s. The SPSS outputs for Tukey’s HSD and Bonferroni’s method
for the data for Example 8.2.1 are shown in Figures 8.2.9 and 8.2.10. The outputs con-
tain an exhaustive comparison of sample means, along with the associated standard
errors, p values, and 95% confidence intervals. ■
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FIGURE 8.2.8 SAS® multiple comparisons for Example 8.2.1.

The SAS System

Analysis of Variance Procedure

Tukey’s Studentized Range (HSD) Test for selen

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 140
Error Mean Square 262.4802
Critical Value of Studentized Range 3.67719

Comparisons significant at the 0.05 level are indicated by ***.

Difference
type Between Simultaneous 95% 

Comparison Means Confidence Limits

NRB - SQU 18.801 6.449 31.152 ***
NRB - RRB 32.963 21.699 44.228 ***
NRB - VEN 36.171 24.524 47.818 ***
SQU - NRB -18.801 -31.152 -6.449 ***
SQU - RRB 14.163 4.538 23.787 ***
SQU - VEN 17.370 7.300 27.440 ***
RRB - NRB -32.963 -44.228 -21.699 ***
RRB - SQU -14.163 -23.787 -4.538 ***
RRB - VEN 3.208 -5.495 11.910
VEN - NRB -36.171 -47.818 -24.524 ***
VEN - SQU -17.370 -27.440 -7.300 ***
VEN - RRB -3.208 -11.910 5.495
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FIGURE 8.2.9 SPSS output for Tukey’s HSD using data from Example 8.2.1.

FIGURE 8.2.10 SPSS output for Bonferroni’s method using data from Example 8.2.1.

Multiple Comparisons

Dependent Variable: Selenium
Tukey HSD

Mean 95% Confidence Interval 
Difference

(I) Meat_type (J) Meat_type (I–J) Std. Error Sig. Lower Bound Upper Bound

VEN SQU �17.370190* 3.872837210 .000 �27.44017302 �7.30020793
RRB �3.2075427 3.346936628 .773 �11.91010145 5.49501609
NRB �36.170840* 4.479316382 .000 �47.81776286 �24.52391634

SQU VEN 17.370190* 3.872837210 .000 7.30020793 27.44017302
RRB 14.162648* 3.701593729 .001 4.53792509 23.78737051
NRB �18.800649* 4.750167007 .001 �31.15182638 �6.44947187

RRB VEN 3.2075427 3.346936628 .773 �5.49501609 11.91010145
SQU �14.162648* 3.701593729 .001 �23.78737051 �4.53792509
NRB �32.963297* 4.332113033 .000 �44.22746845 �21.69912540

NRB VEN 36.170840* 4.479316382 .000 24.52391634 47.81776286
SQU 18.800649* 4.750167007 .001 6.44947187 31.15182638
RRB 32.963297* 4.332113033 .000 21.69912540 44.22746845

* The mean difference is significant at the .05 level.

Multiple Comparisons

Dependent Variable: Selenium
Bonferroni

Mean 95% Confidence Interval
Difference

(I) Meat_type (J) Meat_type (I–J) Std. Error Sig. Lower Bound Upper Bound

VEN RRB �3.20754 3.34694 1.000 �12.1648 5.7497
SQU �17.37019* 3.87284 .000 �27.7349 �7.0055
NRB �36.17084* 4.47932 .000 �48.1587 �24.1830

RRB VEN 3.20754 3.34694 1.000 �5.7497 12.1648
SQU �14.16265* 3.70159 .001 �24.0691 �4.2562
NRB �32.96330* 4.33211 .000 �44.5572 �21.3694

SQU VEN 17.37019* 3.87284 .000 7.0055 27.7349
RRB 14.16265* 3.70159 .001 4.2562 24.0691
NRB �18.80065* 4.75017 .001 �31.5134 �6.0879

NRB VEN 36.17084* 4.47932 .000 24.1830 48.1587
RRB 32.96330* 4.33211 .000 21.3694 44.5572
SQU 18.80065* 4.75017 .001 6.0879 31.5134

* The mean difference is significant at the .05 level.



EXERCISES

In Exercises 8.2.1 to 8.2.7, go through the ten steps of analysis of variance hypothesis testing to
see if you can conclude that there is a difference among population means. Let for each
test. Use Tukey’s HSD procedure to test for significant differences among individual pairs of means
(if appropriate). Use the same value for the F test. Construct a dot plot and side-by-side box-
plots of the data.

8.2.1 Researchers at Case Western Reserve University (A-2) wanted to develop and implement a trans-
ducer, manageable in a clinical setting, for quantifying isometric moments produced at the elbow
joint by individuals with tetraplegia (paralysis or paresis of all four limbs). The apparatus, called
an elbow moment transducer (EMT), measures the force the elbow can exert when flexing. The
output variable is voltage. The machine was tested at four different elbow extension angles, 30,
60, 90, and 120 degrees, on a mock elbow consisting of two hinged aluminum beams. The data
are shown in the following table.

Elbow Angle (Degrees)

30 60 90 120

1.094 0.000 0.000 0.558 0.003
0.050 1.061 0.053 0.010 0.006 0.012 0.529 0.062
0.272 1.040 0.269 0.028 0.026 0.524 0.287
0.552 1.097 0.555 0.055 0.053 0.555 0.555
1.116 1.080 1.103 0.105 0.108 0.539 1.118
2.733 1.051 2.727 0.272 0.278 0.536 2.763
0.000 1.094 0.553 0.555 0.557 0.006
0.056 1.075 0.052 0.840 0.834 0.544 0.050
0.275 1.035 0.271 1.100 1.106 0.539 0.277
0.556 1.096 0.550 1.647 1.650 1.109 0.557
1.100 1.100 1.097 2.728 2.729 0.003 1.085 1.113
2.723 1.096 2.725 0.005 0.003 1.070 2.759

1.108 0.003 0.014 1.110 0.010
0.055 1.099 0.052 0.027 1.069 0.060
0.273 1.089 0.270 0.057 1.045 0.286
0.553 1.107 0.553 0.111 1.110 0.564
1.100 1.094 1.100 0.276 1.066 1.104
2.713 1.092 2.727 0.555 1.037 2.760
0.007 1.092 0.022 0.832 2.728

1.104 1.099 2.694
1.121 1.651 0.004 2.663
1.106 2.736 0.566 2.724
1.135 0.564 0.000 1.116 2.693

0.008 1.143 0.017 0.556 0.245 2.762 2.670 0.000
1.106 0.555 0.497 0.563 2.720
1.135 0.567 0.001 0.551 2.688
1.156 0.559 0.248 0.551 2.660
1.112 0.551 0.498 0.561 0.556
1.104 0.019 1.107 0.001 0.555 0.560 -0.019-0.004

-1.165-1.187-1.143
-0.579-0.548-0.604
-0.295-0.258-0.274
-0.034-0.052-0.045

-1.180-1.168-1.162
-0.585-2.862-0.585-0.581
-0.289-1.755-0.298-0.258
-0.060-1.760-1.157-0.075-0.066
-0.003-1.168-0.876

-0.840-0.589
-0.593-0.297
-0.320-0.134
-0.097-0.046
-0.060-0.037
-0.011-0.023-0.003

-0.001

-1.725
-1.176
-0.884
-0.602-0.002
-0.291
-0.118
-0.080
-0.039

-0.007-0.001-0.003

a

a = .05
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Elbow Angle (Degrees)

30 60 90 120

1.107 1.104 0.246 0.558 0.557
1.107 1.102 0.491 0.551 0.551
1.104 1.112 0.001 0.566 0.564
1.117 1.103 0.262 0.560 0.555

1.105 1.101 1.104 0.527 1.107 0.551
1.103 1.114 0.001 1.104 0.563

1.095 0.260 1.109 0.559
1.100 0.523 1.108 1.113
2.739 1.106 1.114
2.721 0.261 1.102 1.101
2.687 0.523 1.111 1.113
2.732 2.696 1.102 1.113
2.702 2.664 1.107 1.097
2.660 2.722 2.735 1.116
2.743 2.686 2.733 1.112
2.687 2.661 2.659 1.098
2.656 0.548 2.727 2.732
2.733 2.739 0.542 2.722
2.731 2.742 0.556 2.734

2.728 2.747

Source: S. A. Snyder, M.S. Used with permission.

8.2.2 Patients suffering from rheumatic diseases or osteoporosis often suffer critical losses in bone min-
eral density (BMD). Alendronate is one medication prescribed to build or prevent further loss of
BMD. Holcomb and Rothenberg (A-3) looked at 96 women taking alendronate to determine if a
difference existed in the mean percent change in BMD among five different primary diagnosis
classifications. Group 1 patients were diagnosed with rheumatoid arthritis (RA). Group 2 patients
were a mixed collection of patients with diseases including lupus, Wegener’s granulomatosis and
polyarteritis, and other vasculitic diseases (LUPUS). Group 3 patients had polymyalgia rheumat-
ica or temporal arthritis (PMRTA). Group 4 patients had osteoarthritis (OA) and group 5 patients
had osteoporosis (O) with no other rheumatic diseases identified in the medical record. Changes
in BMD are shown in the following table.

Diagnosis

RA LUPUS PMRTA OA O

11.091 7.412 2.961 11.146 2.937
24.414 5.559 0.293 15.968
10.025 4.761 8.394 4.563 4.082 5.349

2.832 6.645 1.719
6.835 4.839 4.329 6.445
3.321 1.850 11.288 1.302 1.234 20.243
1.493 3.997 5.299 3.290-2.817-3.933

-0.185-1.369
-0.093-3.527-3.156

-0.838-7.816
-3.669

-0.005

-1.162-1.189-1.164
-0.579-0.542-0.607
-0.270-0.292-0.290
-0.056-0.044-0.050
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Age Groups (Years) Age Groups (Years)

A B C D A B C D

1820 191 724 1652 1020 775
2588 1098 613 1309 805 1393
2670 644 918 1002 631 533
1022 136 949 966 641 734
1555 1605 877 788 760 485
222 1247 1368 472 449

1197 1529 1692 471 236
1249 1422 697 771 831
1520 445 849 869 698
489 990 1199 513 167

2575 489 429 731 824
1426 2408 798 1130 448
1846 1064 631 1034 991
1088 629 1016 1261 590
912 1025 42 994

1383 948 767 1781

Diagnosis

RA LUPUS PMRTA OA O

9.669 7.260 10.734 3.544 8.992
5.386 4.659 5.546 1.399 4.160 6.120
3.868 1.137 0.497 1.160 25.655
6.209 7.521 0.592

0.073 3.950 5.372
3.514 0.674 6.721

9.354 9.950
15.981 21.311 2.610 10.820

10.831 5.682 7.280
5.188 3.351 6.605

9.557 7.507
16.553 5.075

0.163
12.767
3.481
0.917

15.853

Source: John P. Holcomb, Ph.D. and Ralph J. Rothenberg, M.D. Used with permission.

8.2.3 Ilich-Ernst et al. (A-4) investigated dietary intake of calcium among a cross section of 113 healthy
women ages 20–88. The researchers formed four age groupings as follows: Group A, 20.0–45.9
years; group B, 46.0–55.9 years; group C, 56.0–65.9 years; and group D, over 66 years. Calcium
from food intake was measured in mg/day. The data below are consistent with summary statistics
given in the paper.

-1.892

-9.646

-0.372-2.308
-8.684

-5.640
-0.247

-1.864
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Age Groups (Years) Age Groups (Years)

A B C D A B C D

1483 1085 752 937
1723 775 804 1022
727 1307 1182 1073

1463 344 1243 948
1777 961 985 222
1129 239 1295 721

944 1676 375
1096 754 1187

8.2.4 Gold et al. (A-5) investigated the effectiveness on smoking cessation of a nicotine patch, bupro-
pion SR, or both, when co-administered with cognitive-behavioral therapy. Consecutive consent-
ing patients assigned themselves to one of three treatments according to personal
preference: nicotine patch bupropion SR and bupropion SR plus
nicotine patch At their first smoking cessation class, patients estimated the num-
ber of packs of cigarettes they currently smoked per day and the numbers of years they smoked.
The “pack years” is the average number of packs the subject smoked per day multiplied by the
number of years the subject had smoked. The results are shown in the following table.

1BNTP, n = 592. 1B; n = 922,1NTP, n = 132,1n = 1642

Pack Years

NTP B BNTP

15 8 60 90 8 80
17 10 60 90 15 80
18 15 60 90 25 82
20 20 60 95 25 86
20 22 60 96 25 87
20 24 60 98 26 90
30 25 60 98 30 90
37 26 66 99 34 90
43 27 66 100 35 90
48 29 67 100 36 90
60 30 68 100 40 95

100 30 68 100 45 99
100 35 70 100 45 100

35 70 100 45 102
39 70 105 45 105
40 75 110 48 105
40 75 110 48 105
40 75 120 49 111
40 75 120 52 113
40 76 123 60 120
40 80 125 60 120
45 80 125 60 125

(Continued )



Pack Years

NTP B BNTP

45 80 126 64 125
45 80 130 64 129
50 80 130 70 130
51 80 132 70 133
52 80 132 70 135
55 84 142 75 140
58 84 157 75 154
60 84 180 76
60 90

Source: Paul B. Gold, Ph.D. Used with Permission.
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8.2.5 In a study by Wang et al. (A-6), researchers examined bone strength. They collected 10 cadaveric
femurs from subjects in three age groups: young (19–49 years), middle-aged (50–69 years), and
elderly (70 years or older) [Note: one value was missing in the middle-aged group]. One of the
outcome measures (W ) was the force in newtons required to fracture the bone. The following table
shows the data for the three age groups.

Young (Y) Middle-aged (MA) Elderly (E)

193.6 125.4 59.0
137.5 126.5 87.2
122.0 115.9 84.4
145.4 98.8 78.1
117.0 94.3 51.9
105.4 99.9 57.1
99.9 83.3 54.7
74.0 72.8 78.6
74.4 83.5 53.7

112.8 96.0

Source: Xiaodu Wang, Ph.D. Used with permission.

8.2.6 In a study of 90 patients on renal dialysis, Farhad Atassi (A-7) assessed oral home care practices.
He collected data from 30 subjects who were in (1) dialysis for less than 1 year, (2) dialysis for
1 to 3 years, and (3) dialysis for more than 3 years. The following table shows plaque index scores
for these subjects. A higher score indicates a greater amount of plaque.

Group 1 Group 2 Group 3

2.00 2.67 2.83 2.83 1.83 1.83
1.00 2.17 2.00 1.83 2.00 2.67
2.00 1.00 2.67 2.00 1.83 1.33
1.50 2.00 2.00 1.83 1.83 2.17
2.00 2.00 2.83 2.00 2.83 3.00

(Continued )



Group 1 Group 2 Group 3

1.00 2.00 2.17 2.17 2.17 2.33
1.00 2.33 2.17 1.67 2.83 2.50
1.00 1.50 2.00 2.33 2.50 2.83
1.00 1.00 2.00 2.00 2.17 2.83
1.67 2.00 1.67 2.00 1.67 2.33
1.83 .83 2.33 2.17 2.17 2.33
2.17 .50 2.00 3.00 1.83 2.67
1.00 2.17 1.83 2.50 2.83 2.00
2.17 2.33 1.67 2.17 2.33 2.00
2.83 2.83 2.17 2.00 2.00 2.00

Source: Farhad Atassi, DDS, MSC, FICOI. Used with permission.
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8.2.7 Thrombocytopaenia is a condition of abnormally low platelets that often occurs during necrotizing
enterocolitis (NEC)—a serious illness in infants that can cause tissue damage to the intestines.
Ragazzi et al. (A-8) investigated differences in the of platelet counts in 178 infants with NEC.
Patients were grouped into four categories of NEC status. Group 0 referred to infants with no gan-
grene, group 1 referred to subjects in whom gangrene was limited to a single intestinal segment,
group 2 referred to patients with two or more intestinal segments of gangrene, and group 3 referred
to patients with the majority of small and large bowel involved. The following table gives the 
platelet counts for these subjects.

log10

log10

Gangrene Grouping

0 1 2 3

1.97 2.33 2.48 1.38 2.45 1.87 2.37 1.77
0.85 2.60 2.23 1.86 2.60 1.90 1.75 1.68
1.79 1.88 2.51 2.26 1.83 2.43 2.57 1.46
2.30 2.33 2.38 1.99 2.47 1.32 1.51 1.53
1.71 2.48 2.31 1.32 1.92 2.06 1.08 1.36
2.66 2.15 2.08 2.11 2.51 1.04 2.36 1.65
2.49 1.41 2.49 2.54 1.79 1.99 1.58 2.12
2.37 2.03 2.21 2.06 2.17 1.52 1.83 1.73
1.81 2.59 2.45 2.41 2.18 1.99 2.55 1.91
2.51 2.23 1.96 2.23 2.53 2.52 1.80 1.57
2.38 1.61 2.29 2.00 1.98 1.93 2.44 2.27
2.58 1.86 2.54 2.74 1.93 2.29 2.81 1.00
2.58 2.33 2.23 2.00 2.42 1.75 2.17 1.81
2.84 2.34 2.78 2.51 0.79 2.16 2.72 2.27
2.55 1.38 2.36 2.08 1.38 1.81 2.44 2.43
1.90 2.52 1.89 2.46 1.98 1.74
2.28 2.35 2.26 1.66 1.57 1.60
2.33 2.63 1.79 2.51 2.05 2.08
1.77 2.03 1.87 1.76 2.30 2.34
1.83 1.08 2.51 1.72 1.36 1.89
1.67 2.40 2.29 2.57 2.48 1.75

(Continued )
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Gangrene Grouping

0 1 2 3

2.67 1.77 2.38 2.30 1.40 1.69
1.80 0.70 1.75 2.49

2.16 2.67 1.75
2.17 2.37 1.86
2.12 1.46 1.26
2.27 1.91 2.36

Source: Simon Eaton, M.D. Used with permission.

8.2.8 The objective of a study by Romito et al. (A-9) was to determine whether there is a different
response to different calcium channel blockers. Two hundred and fifty patients with mild-to-
moderate hypertension were randomly assigned to 4 weeks of treatment with once-daily doses of
(1) lercanidipine, (2) felodipine, or (3) nifedipine. Prior to treatment and at the end of 4 weeks,
each of the subjects had his or her systolic blood pressure measured. Researchers then calculated
the change in systolic blood pressure. What is the treatment variable in this study? The response
variable? What extraneous variables can you think of whose effects would be included in the error
term? What are the “values” of the treatment variable? Construct an analysis of variance table in
which you specify for this study the sources of variation and the degrees of freedom.

8.2.9 Kosmiski et al. (A-10) conducted a study to examine body fat distributions of men infected and not
infected with HIV, taking and not taking protease inhibitors (PI), and having been diagnosed and not
diagnosed with lipodystrophy. Lipodystrophy is a syndrome associated with HIV/PI treatment that
remains controversial. Generally, it refers to fat accumulation in the abdomen or viscera accompanied
by insulin resistance, glucose intolerance, and dyslipidemia. In the study, 14 subjects were taking pro-
tease inhibitors and were diagnosed with lipodystrophy, 12 were taking protease inhibitors, but were
not diagnosed with lipodystrophy, five were HIV positive, not taking protease inhibitors, nor had
diagnosed lypodystrophy, and 43 subjects were HIV negative and not diagnosed with lipodystrophy.
Each of the subjects underwent body composition and fat distribution analyses by dual-energy X-ray
absorptiometry and computed tomography. Researchers were able to then examine the percent of body
fat in the trunk. What is the treatment variable? The response variable? What are the “values” of the
treatment variable? Who are the subjects? What extraneous variables can you think of whose effects
would be included in the error term? What was the purpose of including HIV-negative men in the
study? Construct an ANOVA table in which you specify the sources of variation and the degrees of
freedom for each. The authors reported a computed V.R. of 11.79. What is the p value for the test?

8.3 THE RANDOMIZED COMPLETE 
BLOCK DESIGN

The randomized complete block design was developed about 1925 by R. A. Fisher, who
was seeking methods of improving agricultural field experiments. The randomized com-
plete block design is a design in which the units (called experimental units) to which
the treatments are applied are subdivided into homogeneous groups called blocks, so
that the number of experimental units in a block is equal to the number (or some mul-
tiple of the number) of treatments being studied. The treatments are then assigned at
random to the experimental units within each block. It should be emphasized that each
treatment appears in every block, and each block receives every treatment.
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Objective The objective in using the randomized complete block design is to iso-
late and remove from the error term the variation attributable to the blocks, while assur-
ing that treatment means will be free of block effects. The effectiveness of the design
depends on the ability to achieve homogeneous blocks of experimental units. The abil-
ity to form homogeneous blocks depends on the researcher’s knowledge of the experi-
mental material. When blocking is used effectively, the error mean square in the ANOVA
table will be reduced, the V.R. will be increased, and the chance of rejecting the null
hypothesis will be improved.

In animal experiments, the breed of animal may be used as a blocking factor. Lit-
ters may also be used as blocks, in which case an animal from each litter receives a
treatment. In experiments involving human beings, if it is desired that differences result-
ing from age be eliminated, then subjects may be grouped according to age so that one
person of each age receives each treatment. The randomized complete block design also
may be employed effectively when an experiment must be carried out in more than one
laboratory (block) or when several days (blocks) are required for completion.

The random allocation of treatments to subjects is restricted in the randomized
complete block design. That is, each treatment must be represented an equal number of
times (one or more times) within each blocking unit. In practice this is generally accom-
plished by assigning a random permutation of the order of treatments to subjects within
each block. For example, if there are four treatments representing three drugs and a
placebo (drug A, drug B, drug C, and placebo [p]), then there are 4! � 24 possible per-
mutations of the four treatments: (A, B, C, P) or (A, C, B, P) or (C, A, P, B), and so
on. One permutation is then randomly assigned to each block.

Advantages One of the advantages of the randomized complete block design is
that it is easily understood. Furthermore, certain complications that may arise in the
course of an experiment are easily handled when this design is employed.

It is instructive here to point out that the paired comparisons analysis presented in
Chapter 7 is a special case of the randomized complete block design. Example 7.4.1, for
example, may be treated as a randomized complete block design in which the two points
in time (Pre-op and Post-op) are the treatments and the individuals on whom the meas-
urements were taken are the blocks.

Data Display In general, the data from an experiment utilizing the randomized
complete block design may be displayed in a table such as Table 8.3.1. The following
new notation in this table should be observed:

 grand total = T.. = a
k

j=1
T.j = a

n

i=1
Ti.

 mean of the i th  block = x i. =
a

k

j=1
x ij

k
=

Ti.
k

total of the i th  block = Ti. = a
k

j=1
x ij



indicating that the grand total may be obtained either by adding row totals or by adding
column totals.

Two-Way ANOVA The technique for analyzing the data from a randomized com-
plete block design is called two-way analysis of variance since an observation is
categorized on the basis of two criteria—the block to which it belongs as well as the treat-
ment group to which it belongs.

The steps for hypothesis testing when the randomized complete block design is
used are as follows:

1. Data. After identifying the treatments, the blocks, and the experimental units, the
data, for convenience, may be displayed as in Table 8.3.1.

2. Assumptions. The model for the randomized complete block design and its under-
lying assumptions are as follows:

The Model

(8.3.1)

In this model

is a typical value from the overall population.

is an unknown constant.

represents a block effect reflecting the fact that the experimental unit fell
in the ith block.

represents a treatment effect, reflecting the fact that the experimental unit
received the j th treatment.

is a residual component representing all sources of variation other than
treatments and blocks.

Pij

tj

bi

m

x ij

j = 1, 2, Á , ki = 1, 2, Á , n;

x ij = m + bi + tj + Pij
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TABLE 8.3.1 Table of Sample Values for the Randomized 
Complete Block Design

Treatments

Blocks 1 2 3 . . . k Total Mean

1
2
3

n

Total

Mean x..x.k. . .x.3x.2x.1

T..T.k. . .T.3T.2T.1

xn.Tn.xnk
. . .xn3xn2xn1

oooooooo

x3.T3.x3k
. . .x33x32x31

x2.T2.x2k
. . .x23x22x21

x1.T1.x1k
. . .x13x12x11



Assumptions of the Model

(a) Each that is observed constitutes a random independent sample of size 1 from
one of the kn populations represented.

(b) Each of these kn populations is normally distributed with mean and the same
variance This implies that the are independently and normally distributed
with mean 0 and variance 

(c) The block and treatment effects are additive. This assumption may be interpreted
to mean that there is no interaction between treatments and blocks. In other words,
a particular block-treatment combination does not produce an effect that is greater
or less than the sum of their individual effects. It can be shown that when this
assumption is met,

The consequences of a violation of this assumption are misleading results. One need
not become concerned with the violation of the additivity assumption unless the
largest mean is more than 50 percent greater than the smallest.

When these assumptions hold true, the and are a set of fixed constants, and we
have a situation that fits the fixed-effects model.

3. Hypotheses. We may test

against the alternative

A hypothesis test regarding block effects is not usually carried out under the
assumptions of the fixed-effects model for two reasons. First, the primary interest is in
treatment effects, the usual purpose of the blocks being to provide a means of eliminat-
ing an extraneous source of variation. Second, although the experimental units are ran-
domly assigned to the treatments, the blocks are obtained in a nonrandom manner.

4. Test statistic. The test statistic is V.R.

5. Distribution of test statistic. When is true and the assumptions are met, V.R.
follows an F distribution.

6. Decision rule. Reject the null hypothesis if the computed value of the test statis-
tic V.R. is equal to or greater than the critical value of F.

7. Calculation of test statistic. It can be shown that the total sum of squares for the
randomized complete block design can be partitioned into three components, one
each attributable to treatments (SSTr ), blocks (SSBl ), and error (SSE ). That is,

(8.3.2)SST = SSBl + SSTr + SSE

H0

HA: not all tj = 0

H0 : tj = 0, j = 1, 2, Á , k

bitj

a
k

j=1
tj = a

n

i=1
bi = 0

s2.
Pijs2.

mij

x ij
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The formulas for the quantities in Equation 8.3.2 are as follows:

(8.3.3)

(8.3.4)

(8.3.5)

(8.3.6)

The appropriate degrees of freedom for each component of Equation 8.3.2
are

total blocks treatments residual (error)

The residual degrees of freedom, like the residual sum of squares, may be
obtained by subtraction as follows:

The ANOVA Table The results of the calculations for the randomized complete
block design may be displayed in an ANOVA table such as Table 8.3.2.

8. Statistical decision. It can be shown that when the fixed-effects model applies and
the null hypothesis of no treatment effects is true, both the error, or
residual, mean square and the treatments mean square are estimates of the com-
mon variance When the null hypothesis is true, therefore, the quantity

MSTr�MSE

is distributed as F with numerator degrees of freedom and 
denominator degrees of freedom. The computed variance ratio, therefore,

is compared with the critical value of F.
1k - 12 1n - 12 *k - 1

s2.

1all ti = 02

= n1k - 12 - 11k - 12 = 1n - 121k - 121kn - 12 - 1n - 12 - 1k - 12 = kn - 1 - n + 1 - k + 1

kn - 1 = 1n - 12 +  1k - 12 +  1n - 121k - 12

SSE = SST - SSBl - SSTr

SSTr = a
k

j=1
a

n

i=1
1x j. - x..22

SSBl = a
k

j=1
a

n

i=1
1xi. - x..22

SST = a
k

j=1
a

n

i=1
1x ij - x..22
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TABLE 8.3.2 ANOVA Table for the Randomized Complete Block Design

Source SS d.f. MS V.R.

Treatments SSTr MSTr�MSE
Blocks SSBl
Residual SSE

Total SST kn - 1

MSE = SSE>1n - 121k - 121n - 121k - 12 MSBl = SSBl>1n - 121n - 12 MSTr = SSTr>1k - 121k - 12



9. Conclusion. If we reject we conclude that the alternative hypothesis is true.
If we fail to reject we conclude that may be true.

10. p value.

The following example illustrates the use of the randomized complete block
design.

EXAMPLE 8.3.1

A physical therapist wished to compare three methods for teaching patients to use a cer-
tain prosthetic device. He felt that the rate of learning would be different for patients of
different ages and wished to design an experiment in which the influence of age could
be taken into account.

Solution: The randomized complete block design is the appropriate design for this
physical therapist.

1. Data. Three patients in each of five age groups were selected to partici-
pate in the experiment, and one patient in each age group was randomly
assigned to each of the teaching methods. The methods of instruction con-
stitute our three treatments, and the five age groups are the blocks. The
data shown in Table 8.3.3 were obtained.

2. Assumptions. We assume that each of the 15 observations constitutes
a simple random of size 1 from one of the 15 populations defined by a
block-treatment combination. For example, we assume that the number
7 in the table constitutes a randomly selected response from a popula-
tion of responses that would result if a population of subjects under 
the age of 20 received teaching method A. We assume that the responses
in the 15 represented populations are normally distributed with equal
variances.

H0H0,
H0,
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TABLE 8.3.3 Time (in Days) Required to Learn the Use
of a Certain Prosthetic Device

Teaching Method

Age Group A B C Total Mean

Under 20 7 9 10 26 8.67

20 to 29 8 9 10 27 9.00

30 to 39 9 9 12 30 10.00

40 to 49 10 9 12 31 10.33

50 and over 11 12 14 37 12.33

Total 45 48 58 151

Mean 9.0 9.6 11.6 10.07 



3. Hypotheses.

Let

4. Test statistic. The test statistic is 

5. Distribution of test statistic. When is true and the assumptions are
met, V.R. follows an F distribution with 2 and 8 degrees of freedom.

6. Decision rule. Reject the null hypothesis if the computed V.R. is equal
to or greater than the critical F, which we find in Appendix Table G to
be 4.46.

7. Calculation of test statistic. We compute the following sums of squares:

The degrees of freedom are total blocks �
treatments and residual

The results of the calculations may be displayed in an ANOVA table
as in Table 8.3.4.

8. Statistical decision. Since our computed variance ratio, 20.91, is greater
than 4.46, we reject the null hypothesis of no treatment effects on the
assumption that such a large V.R. reflects the fact that the two sample
mean squares are not estimating the same quantity. The only other expla-
nation for this large V.R. would be that the null hypothesis is really true,
and we have just observed an unusual set of results. We rule out the sec-
ond explanation in favor of the first.

8.
= 15 - 1213 -  12 == 3 - 1 = 2,5 - 1 = 4,

= 132152 - 1 = 14,

SSE = 46.9335 - 24.855 - 18.5335 = 3.545

SSTr = 5 C 19 - 10.0722 + 19.6 - 10.0722 + 111.6 - 10.0722 D = 18.5335

SSBl = 3 C 18.67 - 10.0722 + 19.00 - 10.0722 + Á + 112.33 - 10.0722 D = 24.855

SST = 17 - 10.0722 + 18 - 10.0722 + Á + 114 - 10.0722 = 46.9335

H0

V.R. = MSTr/MSE.

a = .05.

HA: not all tj = 0

H0: tj = 0 j = 1, 2, 3
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TABLE 8.3.4 ANOVA Table for Example 8.3.1

Source SS d.f. MS V.R.

Treatments 18.5335 2 9.26675 20.91

Blocks 24.855 4 6.21375

Residual 3.545 8 .443125

Total 46.9335 14 



9. Conclusion. We conclude that not all treatment effects are equal to zero,
or equivalently, that not all treatment means are equal.

10. p value. For this test ■

Computer Analysis Most statistics software packages will analyze data from a
randomized complete block design. We illustrate the input and output for MINITAB. We
use the data from the experiment to set up a MINITAB worksheet consisting of three
columns. Column 1 contains the observations, Column 2 contains numbers that identify
the block to which each observation belongs, and Column 3 contains numbers that iden-
tify the treatment to which each observation belongs. Figure 8.3.1 shows the MINITAB
worksheet for Example 8.3.1. Figure 8.3.2 contains the MINITAB dialog box that initi-
ates the analysis and the resulting ANOVA table.

The ANOVA table from the SAS® output for the analysis of Example 8.3.1 is
shown in Figure 8.3.3. Note that in this output the model SS is equal to the sum of SSBl
and SSTr.

Alternatives When the data available for analysis do not meet the assumptions
of the randomized complete block design as discussed here, the Friedman procedure
discussed in Chapter 13 may prove to be a suitable nonparametric alternative.

p 6 .005.
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ROW C1 C2 C3

1 7 1 1

2 9 1 2

3 10 1 3

4 8 2 1

5 9 2 2

6 10 2 3

7 9 3 1

8 9 3 2

9 12 3 3

10 10 4 1

11 9 4 2

12 12 4 3

13 11 5 1

14 12 5 2

15 14 5 3

FIGURE 8.3.1 MINITAB worksheet for the data in Figure 8.3.2.
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Dialog box: Session command:

Stat ➤ ANOVA ➤ Twoway MTB > TWOWAY C1 C2 C3;
SUBC > MEANS C2 C3.

Type C1 in Response. Type C2 in Row factor and
check Display means. Type C3 in Column factor and
check Display means. Click OK.

Output:

Two-Way ANOVA: C1 versus C2, C3

Analysis of Variance for C1
Source DF SS MS F P
C2 4 24.933 6.233 14.38 0.001
C3 2 18.533 9.267 21.38 0.001
Error 8 3.467 0.433
Total 14 46.933

Individual 95% CI
C2 Mean ---+---------+----------+---------+--
1 8.67 (-----*-----)
2 9.00 (-----*-----)
3 10.00 (-----*-----)
4 10.33 (-----*-----)
5 12.33 (-----*-----)

---+---------+----------+---------+--
9.00 10.50 12.00 13.50

Individual 95% CI
C3 Mean ---+---------+----------+---------+--
1 9.00 (-----*-----)
2 9.60 (-----*-----)
3 11.60 (----*----)

---+---------+----------+---------+--
9.00 10.00 11.00 12.00

FIGURE 8.3.2 MINITAB dialog box and output for two-way analysis of variance, 
Example 8.3.1.

EXERCISES

For Exercises 8.3.1 to 8.3.5 perform the ten-step hypothesis testing procedure for analysis of variance.

8.3.1 The objective of a study by Brooks et al. (A-11) was to evaluate the efficacy of using a virtual
kitchen for vocational training of people with learning disabilities. Twenty-four students participated
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in the study. Each participant performed four food preparation tasks and they were scored on the
quality of the preparation. Then each participant received regular vocational training in food prepa-
ration (real training), virtual training using a TV and computer screen of a typical kitchen, work-
book training with specialized reading materials, and no training (to serve as a control). After each
of these trainings, the subjects were tested on food preparation. Improvement scores for each of the
four training methods are shown in the following table.

FIGURE 8.3.3 Partial SAS® output for analysis of Example 8.3.1.

The SAS System

Analysis of Variance Procedure

Dependent Variable: DAYS

Source DF Sum of Squares Mean Square F Value Pr > F

Model 6 43.46666667 7.24444444 16.72 0.0004

Error 8 3.46666667 0.43333333

Corrected Total 14 46.93333333

R-Square C.V. Root MSE DAYS Mean

0.926136 6.539211 0.65828059 10.06666667

Source DF Anova SS Mean Square F Value Pr > F

GROUP 2 18.53333333 9.26666667 21.38 0.0006
AGE 4 24.93333333 6.23333333 14.38 0.0010

Subject Real Virtual Workbook No 
No. Training Training Training Training

1 2 10 2 �4
2 4 3 2 1
3 4 13 0 1
4 6 11 2 1
5 5 13 5 1
6 2 0 1 4
7 10 17 2 6
8 5 5 2 2
9 10 4 5 2

10 3 6 9 3
11 11 9 8 7
12 10 9 6 10
13 5 8 4 1

(Continued )



Subject Real Virtual Workbook No 
No. Training Training Training Training

14 8 11 1 1
15 4 8 5 2
16 11 8 10 2
17 6 11 1 3
18 2 5 1 2
19 3 1 0 �3
20 7 5 0 �6
21 7 10 4 4
22 8 7 �2 8
23 4 9 3 0
24 9 6 3 5

Source: B. M. Brooks, Ph.D. Used with permission.
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After eliminating subject effects, can we conclude that the improvement scores differ among meth-
ods of training? Let 

8.3.2 McConville et al. (A-12) report the effects of chewing one piece of nicotine gum (containing 2 mg
nicotine) on tic frequency in patients whose Tourette’s disorder was inadequately controlled by
haloperidol. The following are the tic frequencies under four conditions:

a = .05.

Number of Tics During 30-Minute Period

After End of Chewing

Gum 0–30 30–60 
Patient Baseline Chewing Minutes Minutes

1 249 108 93 59
2 1095 593 600 861
3 83 27 32 61
4 569 363 342 312
5 368 141 167 180
6 326 134 144 158
7 324 126 312 260
8 95 41 63 71
9 413 365 282 321

10 332 293 525 455

Source: Brian J. McConville, M. Harold Fogelson, Andrew B. Norman, 
William M. Klykylo, Pat Z. Manderscheid, Karen W. Parker, and Paul R. 
Sanberg. “Nicotine Potentiation of Haloperidol in Reducing Tic Frequency 
in Tourette’s Disorder,” American Journal of Psychiatry, 148 (1991),
793–794. Copyright© 1991, American Psychiatric Association. Reprinted 
by permission.

After eliminating patient effects, can we conclude that the mean number of tics differs among the
four conditions? Let a = .01.



Level of Remotivation Method
Initial
Motivation A B C D E

Nil 58 68 60 68 64
Very low 62 70 65 80 69
Low 67 78 68 81 70
Average 70 81 70 89 74

Do these data provide sufficient evidence to indicate a difference in mean scores among methods?
Let

8.3.4 The nursing supervisor in a local health department wished to study the influence of time of day
on length of home visits by the nursing staff. It was thought that individual differences among
nurses might be large, so the nurse was used as a blocking factor. The nursing supervisor collected
the following data:

Length of Home Visit by Time of Day

Early Late Early Late
Nurse Morning Morning Afternoon Afternoon

A 27 28 30 23
B 31 30 27 20
C 35 38 34 30
D 20 18 20 14

Do these data provide sufficient evidence to indicate a difference in length of home visit among
the different times of day? Let 

8.3.5 Four subjects participated in an experiment to compare three methods of relieving stress. Each
subject was placed in a stressful situation on three different occasions. Each time a different method
for reducing stress was used with the subject. The response variable is the amount of decrease in
stress level as measured before and after treatment application. The results were as follows:

Treatment

Subject A B C

1 16 26 22
2 16 20 23
3 17 21 22
4 28 29 36

Can we conclude from these data that the three methods differ in effectiveness? Let a = .05.

a = .05.

a = .05.
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8.3.3 A remotivation team in a psychiatric hospital conducted an experiment to compare five methods for
remotivating patients. Patients were grouped according to level of initial motivation. Patients in each
group were randomly assigned to the five methods. At the end of the experimental period the patients
were evaluated by a team composed of a psychiatrist, a psychologist, a nurse, and a social worker,
none of whom was aware of the method to which patients had been assigned. The team assigned each
patient a composite score as a measure of his or her level of motivation. The results were as follows:
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8.3.6 In a study by Valencia et al. (A-13), the effects of environmental temperature and humidity on 24-
hour energy expenditure were measured using whole-body indirect calorimetry in eight normal-
weight young men who wore standardized light clothing and followed a controlled activity regi-
men. Temperature effects were assessed by measurements at 20, 23, 26, and 30 degrees Celsius
at ambient humidity and at 20 and 30 degrees Celsius with high humidity. What is the blocking
variable? The treatment variable? How many blocks are there? How many treatments? Construct
an ANOVA table in which you specify the sources of variability and the degrees of freedom for
each. What are the experimental units? What extraneous variables can you think of whose effects
would be included in the error term?

8.3.7 Hodgson et al. (A-14) conducted a study in which they induced gastric dilatation in six anes-
thetized dogs maintained with constant-dose isoflurane in oxygen. Cardiopulmonary measurements
prior to stomach distension (baseline) were compared with measurements taken during .1, .5, 1.0,
1.5, 2.5, and 3.5 hours of stomach distension by analyzing the change from baseline. After dis-
tending the stomach, cardiac index increased from 1.5 to 3.5 hours. Stroke volume did not change.
During inflation, increases were observed in systemic arterial, pulmonary arterial, and right atrial
pressure. Respiratory frequency was unchanged. PaO2 tended to decrease during gastric dilatation.
What are the experimental units? The blocks? Treatment variable? Response variable(s)? Can you
think of any extraneous variable whose effect would contribute to the error term? Construct an
ANOVA table for this study in which you identify the sources of variability and specify the degrees
of freedom.

8.4 THE REPEATED MEASURES DESIGN

One of the most frequently used experimental designs in the health sciences field is the
repeated measures design.

DEFINITION
A repeated measures design is one in which measurements of the same
variable are made on each subject on two or more different occasions.

The different occasions during which measurements are taken may be either points
in time or different conditions such as different treatments.

When to Use Repeated Measures The usual motivation for using a
repeated measures design is a desire to control for variability among subjects. In such
a design each subject serves as its own control. When measurements are taken on only
two occasions, we have the paired comparisons design that we discussed in Chapter 7.
One of the most frequently encountered situations in which the repeated measures
design is used is the situation in which the investigator is concerned with responses over
time.

Advantages The major advantage of the repeated measures design is, as previ-
ously mentioned, its ability to control for extraneous variation among subjects. An addi-
tional advantage is the fact that fewer subjects are needed for the repeated measures



design than for a design in which different subjects are used for each occasion on which
measurements are made. Suppose, for example, that we have four treatments (in the usual
sense) or four points in time on each of which we would like to have 10 measurements.
If a different sample of subjects is used for each of the four treatments or points in time,
40 subjects would be required. If we are able to take measurements on the same sub-
ject for each treatment or point in time—that is, if we can use a repeated measures
design—only 10 subjects would be required. This can be a very attractive advantage if
subjects are scarce or expensive to recruit.

Disadvantages A major potential problem to be on the alert for is what is known
as the carry-over effect. When two or more treatments are being evaluated, the investi-
gator should make sure that a subject’s response to one treatment does not reflect a resid-
ual effect from previous treatments. This problem can frequently be solved by allowing
a sufficient length of time between treatments.

Another possible problem is the position effect. A subject’s response to a treatment
experienced last in a sequence may be different from the response that would have
occurred if the treatment had been first in the sequence. In certain studies, such as those
involving physical participation on the part of the subjects, enthusiasm that is high at the
beginning of the study may give way to boredom toward the end. A way around this
problem is to randomize the sequence of treatments independently for each subject.

Single-Factor Repeated Measures Design The simplest repeated
measures design is the one in which, in addition to the treatment variable, one additional
variable is considered. The reason for introducing this additional variable is to measure
and isolate its contribution to the total variability among the observations. We refer to
this additional variable as a factor.

DEFINITION
The repeated measures design in which one additional factor 
is introduced into the experiment is called a single-factor repeated
measures design.

We refer to the additional factor as subjects. In the single-factor repeated measures
design, each subject receives each of the treatments. The order in which the subjects are
exposed to the treatments, when possible, is random, and the randomization is carried
out independently for each subject.

Assumptions The following are the assumptions of the single-factor repeated
measures design that we consider in this text. A design in which these assumptions are
met is called a fixed-effects additive design.

1. The subjects under study constitute a simple random sample from a population of
similar subjects.

2. Each observation is an independent simple random sample of size 1 from each of
kn populations, where n is the number of subjects and k is the number of treat-
ments to which each subject is exposed.
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3. The kn populations have potentially different means, but they all have the same
variance.

4. The k treatments are fixed; that is, they are the only treatments about which we
have an interest in the current situation. We do not wish to make inferences to
some larger collection of treatments.

5. There is no interaction between treatments and subjects; that is, the treatment and
subject effects are additive.

Experimenters may find frequently that their data do not conform to the assumptions of
fixed treatments and/or additive treatment and subject effects. For such cases the refer-
ences at the end of this chapter may be consulted for guidance.

In addition to the assumptions just listed, it should be noted that in a repeated-
measures experiment there is a presumption that correlations should exist among the
repeated measures. That is, measurements at time 1 and 2 are likely correlated, as are
measurements at time 1 and 3, 2 and 3, and so on. This is expected because the meas-
urements are taken on the same individuals through time.

An underlying assumption of the repeated-measures ANOVA design is that all of
these correlations are the same, a condition referred to as compound symmetry. This
assumption, coupled with assumption 3 concerning equal variances, is referred to as
sphericity. Violations of the sphericity assumption can result in an inflated type I error.
Most computer programs provide a formal test for the sphericity assumption along with
alternative estimation methods if the sphericity assumption is violated.

The Model The model for the fixed-effects additive single-factor repeated meas-
ures design is

(8.4.1)

The reader will recognize this model as the model for the randomized complete block
design discussed in Section 8.3. The subjects are the blocks. Consequently, the notation,
data display, and hypothesis testing procedure are the same as for the randomized com-
plete block design as presented earlier. The following is an example of a repeated meas-
ures design.

EXAMPLE 8.4.1

Licciardone et al. (A-15) examined subjects with chronic, nonspecific low back pain.
In this study, 18 of the subjects completed a survey questionnaire assessing physi-
cal functioning at baseline, and after 1, 3, and 6 months. Table 8.4.1 shows the data
for these subjects who received a sham treatment that appeared to be genuine osteo-
pathic manipulation. Higher values indicate better physical functioning. The goal of
the experiment was to determine if subjects would report improvement over time
even though the treatment they received would provide minimal improvement. We
wish to know if there is a difference in the mean survey values among the four points
in time.

j = 1, 2, Á , ki = 1, 2, Á , n;

x ij = m + bi + tj + Pij
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Solution:

1. Data. See Table 8.4.1.

2. Assumptions. We assume that the assumptions for the fixed-effects,
additive single-factor repeated measures design are met.

3. Hypotheses.

not all are equal

4. Test statistic.

5. Distribution of test statistic. F with numerator degrees of
freedom and denominator degrees of freedom.

6. Decision rule. Let . The critical value of F is 2.80 (obtained
by interpolation). Reject if computed V.R. is equal to or greater
than 2.80.

7. Calculation of test statistic. We use MINITAB to perform the calcula-
tions. We first enter the measurements in Column 1, the row (subject)
codes in Column 2, the treatment (time period) codes in Column 3, and
proceed as shown in Figure 8.4.1.

H0

a = .05

71 - 3 - 17 = 51
4 - 1 = 3

V.R. = treatment MS>error MS.

m’sHA:

H0 : mB = mM1 = mM3 = mM6
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TABLE 8.4.1 SF-36 Health Scores at Four Different
Points in Time

Subject Baseline Month 1 Month 3 Month 6

1 80 60 95 100

2 95 90 95 95

3 65 55 50 45

4 50 45 70 70

5 60 75 80 85

6 70 70 75 70

7 80 80 85 80

8 70 60 75 65

9 80 80 70 65

10 65 30 45 60

11 60 70 95 80

12 50 50 70 60

13 50 65 80 65

14 85 45 85 80

15 50 65 90 70

16 15 30 20 25

17 10 15 55 75

18 80 85 90 70

Source: John C. Licciardone. Used with permission.



8. Statistical decision. Since is greater than 2.80, we are able
to reject the null hypothesis.

9. Conclusion. We conclude that there is a difference in the four popula-
tion means.

10. p value. Since 5.50 is greater than 4.98, the F value for and
the p value is less than .005.

Figure 8.4.2. shows the SAS® output for the analysis of Example 8.4.1 and Figure 8.4.3
shows the SPSS output for the same example. Note that SPSS provides four potential
tests. The first test is used under an assumption of sphericity and matches the outputs in
Figures 8.4.1 and 8.4.2. The next three tests are modifications if the assumption of
sphericity is violated. Note that SPSS modifies the degrees of freedom for these three
tests, which changes the mean squares and the p values, but not the V. R. Note that the
assumption of sphericity was violated for these data, but that the decision rule did not
change, since all of the p values were less than 

EXERCISES

For Exercises 8.4.1 to 8.4.3 perform the ten-step hypothesis testing procedure. Let 

8.4.1 One of the purposes of a study by Liu et al. (A-16) was to determine the effects of MRZ 2�579
on neurological deficit in Sprague-Dawley rats. In this study, 10 rats were measured at four time

a = .05.

a = .05.

df = 40,
a = .005

V.R. = 5.50
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Dialog box: Session command:

Stat ➤ ANOVA ➤ Twoway MTB > TWOWAY C1 C2 C3;
SUBC> MEANS C2 C3.

Type C1 in Response. Type C2 in Row factor and
Check Display means. Type C3 in Column factor and
Check Display means. Click OK.

Output:

Two-way ANOVA: C1 versus C2, C3

Analysis of Variance for C1
Source DF SS MS F P
C2 17 20238 1190 8.20 0.000
C3 3 2396 799 5.50 0.002
Error 51 7404 145
Total 71 30038

FIGURE 8.4.1 MINITAB procedure and output (ANOVA table) for Example 8.4.1.

■
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The ANOVA Procedure

Dependent Variable: sf36

Source DF Sum of Squares Mean Square F Value Pr > F

Model 20 22633.33333 1131.66667 7.79 <.0001

Error 51 7404.16667 145.17974

Corrected Total 71 30037.50000

R-Square Coeff Var Root MSE sf36 Mean

0.753503 18.18725 12.04906 66.25000

Source DF Anova SS Mean Square F Value Pr > F

subj 17 20237.50000 1190.44118 8.20 <.0001

time 3 2395.83333 798.61111 5.50 0.0024

FIGURE 8.4.2 SAS® output for analysis of Example 8.4.1.

FIGURE 8.4.3 SPSS output for the analysis of Example 8.4.1.

Tests of Within-Subjects Effects

Measure: MEASURE_1

Type III Sum Mean
Source of Squares df Square F Sig.

factor 1 Sphericity Assumed 2395.833 3 798.611 5.501 .002
Greenhouse-Geisser 2395.833 2.216 1080.998 5.501 .006
Huynh-Feldt 2395.833 2.563 934.701 5.501 .004
Lower-bound 2395.833 1.000 2395.833 5.501 .031

Error (factor 1) Sphericity Assumed 7404.167 51 145.180
Greenhouse-Geisser 7404.167 37.677 196.515
Huynh-Feldt 7404.167 43.575 169.919
Lower-bound 7404.167 17.000 435.539

periods following occlusion of the middle carotid artery and subsequent treatment with the
uncompetitive N-methly-D-aspartate antagonist MRZ 2�579, which previous studies had sug-
gested provides neuroprotective activity. The outcome variable was a neurological function vari-
able measured on a scale of 0–12. A higher number indicates a higher degree of neurological
impairment.



Rat 60 Minutes 24 Hours 48 Hours 72 Hours

1 11 9 8 4
2 11 7 5 3
3 11 10 8 6
4 11 4 3 2
5 11 10 9 9
6 11 6 5 5
7 11 6 6 6
8 11 7 6 5
9 11 7 5 5

10 11 9 7 7

Source: Ludmila Belayev, M.D. Used with permission.

8.4.2 Starch et al. (A-17) wanted to show the effectiveness of a central four-quadrant sleeve and screw
in anterior cruciate ligament reconstruction. The researchers performed a series of reconstructions
on eight cadaveric knees. The following table shows the loads (in newtons) required to achieve
different graft laxities (mm) for seven specimens (data not available for one specimen) using five
different load weights. Graft laxity is the separation (in mm) of the femur and the tibia at the
points of graft fixation. Is there sufficient evidence to conclude that different loads are required to
produce different levels of graft laxity? Let 

Graft Laxity (mm)

Loads

Specimen 1 2 3 4 5

1 297.1 297.1 297.1 297.1 297.1
2 264.4 304.6 336.4 358.2 379.3
3 188.8 188.8 188.8 188.8 188.8
4 159.3 194.7 211.4 222.4 228.1
5 228.2 282.1 282.1 334.8 334.8
6 100.3 105.0 106.3 107.7 108.7
7 116.9 140.6 182.4 209.7 215.4

Source: David W. Starch, Jerry W. Alexander, Philip C. Noble, Suraj Reddy, and David M. 
Lintner, “Multistranded Hamstring Tendon Graft Fixation with a Central Four-Quadrant or a 
Standard Tibial Interference Screw for Anterior Cruciate Ligament Reconstruction,” American
Journal of Sports Medicine, 31 (2003), 338–344.

8.4.3 Holben et al. (A-18) designed a study to evaluate selenium intake in young women in the years
of puberty. The researchers studied a cohort of 16 women for three consecutive summers. One of
the outcome variables was the selenium intake per day. The researchers examined dietary journals
of the subjects over the course of 2 weeks and then computed the average daily selenium intake.
The following table shows the average daily selenium intake values for the 16 women
in years 1, 2, and 3 of the study.

1in mg>d2

a = .05.
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Subject Year 1 Year 2 Year 3 Subject Year 1 Year 2 Year 3

1 112.51 121.28 94.99 9 95.05 93.89 73.26
2 106.20 121.14 145.69 10 112.65 100.47 145.69
3 102.00 121.14 130.37 11 103.74 121.14 123.97
4 103.74 90.21 135.91 12 103.74 121.14 135.91
5 103.17 121.14 145.69 13 112.67 104.66 136.87
6 112.65 98.11 145.69 14 106.20 121.14 126.42
7 106.20 121.14 136.43 15 103.74 121.14 136.43
8 83.57 102.87 144.35 16 106.20 100.47 135.91

Source: David H. Holben, Ph.D. and John P. Holcomb, Ph.D. Used with permission.

8.4.4 Linke et al. (A -19) studied seven male mongrel dogs. They induced diabetes by injecting the ani-
mals with alloxan monohydrate. The researchers measured the arterial glucose (mg/gl), arterial
lactate (mmol/L), arterial free fatty acid concentration, and arterial -hydroxybutyric acid concen-
tration prior to the alloxan injection, and again in weeks 1, 2, 3, and 4 post-injection. What is the
response variable(s)? Comment on carryover effect and position effect as they may or may not be
of concern in this study. Construct an ANOVA table for this study in which you identify the sources
of variability and specify the degrees of freedom for each.

8.4.5 Werther et al. (A-20) examined the vascular endothelial growth factor (VEGF) concentration in
blood from colon cancer patients. Research suggests that inhibiting VEGF may disrupt tumor
growth. The researchers measured VEGF concentration (ng/L) for 10 subjects and found an
upward trend in VEGF concentrations during the clotting time measured at baseline, and hours
1 and 2. What is the response variable? What is the treatment variable? Construct an ANOVA
table for this study in which you identify the sources of variability and specify the degrees of
freedom for each.

8.5 THE FACTORIAL EXPERIMENT

In the experimental designs that we have considered up to this point, we have been
interested in the effects of only one variable—the treatments. Frequently, however, we
may be interested in studying, simultaneously, the effects of two or more variables.
We refer to the variables in which we are interested as factors. The experiment 
in which two or more factors are investigated simultaneously is called a factorial
experiment.

The different designated categories of the factors are called levels. Suppose, for
example, that we are studying the effect on reaction time of three dosages of some drug.
The drug factor, then, is said to occur at three levels. Suppose the second factor of inter-
est in the study is age, and it is thought that two age groups, under 65 years and 65 years
and older, should be included. We then have two levels of the age factor. In general, we
say that factor A occurs at a levels and factor B occurs at b levels.

In a factorial experiment we may study not only the effects of individual factors
but also, if the experiment is properly conducted, the interaction between factors. To
illustrate the concept of interaction let us consider the following example.

b



EXAMPLE 8.5.1

Suppose, in terms of effect on reaction time, that the true relationship between three dosage
levels of some drug and the age of human subjects taking the drug is known. Suppose fur-
ther that age occurs at two levels—“young” (under 65) and “old” (65 and older). If the
true relationship between the two factors is known, we will know, for the three dosage lev-
els, the mean effect on reaction time of subjects in the two age groups. Let us assume that
effect is measured in terms of reduction in reaction time to some stimulus. Suppose these
means are as shown in Table 8.5.1.

The following important features of the data in Table 8.5.1 should be noted.

1. For both levels of factor A the difference between the means for any two levels of
factor B is the same. That is, for both levels of factor A, the difference between means
for levels 1 and 2 is 5, for levels 2 and 3 the difference is 10, and for levels 1 and 3
the difference is 15.

2. For all levels of factor B the difference between means for the two levels of factor A
is the same. In the present case the difference is 5 at all three levels of factor B.

3. A third characteristic is revealed when the data are plotted as in Figure 8.5.1. We note
that the curves corresponding to the different levels of a factor are all parallel.

When population data possess the three characteristics listed above, we say that there is
no interaction present.

The presence of interaction between two factors can affect the characteristics of
the data in a variety of ways depending on the nature of the interaction. We illustrate

354 CHAPTER 8 ANALYSIS OF VARIANCE

TABLE 8.5.1 Mean Reduction in Reaction Time 
(milliseconds) of Subjects in Two Age Groups at Three
Drug Dosage Levels

Factor B—Drug Dosage

Factor A—Age

Young 

Old m23 = 25m22 = 15m21 = 101i = 22 m13 = 20m12 = 10m11 = 51i = 12 j � 3j � 2j � 1

30

25

20

15

10

5

0

R
ed

u
ct

io
n

 in
 r

ea
ct

io
n

 t
im

e

30

25

20

15

10

5

0

R
ed

u
ct

io
n

 in
 r

ea
ct

io
n

 t
im

e

b1 b2 b3

a1

a2

Drug dosage

a1 a2

Age

Age

b3

b2

b1

Drug dosage

FIGURE 8.5.1 Age and drug effects, no interaction present.



the effect of one type of interaction by altering the data of Table 8.5.1 as shown in
Table 8.5.2.

The important characteristics of the data in Table 8.5.2 are as follows.

1. The difference between means for any two levels of factor B is not the same for
both levels of factor A. We note in Table 8.5.2, for example, that the difference
between levels 1 and 2 of factor B is for the young age group and for the
old age group.

2. The difference between means for both levels of factor A is not the same at all levels
of factor B. The differences between factor A means are 0, and 15 for levels 1,
2, and 3, respectively, of factor B.

3. The factor level curves are not parallel, as shown in Figure 8.5.2.

When population data exhibit the characteristics illustrated in Table 8.5.2 and Fig-
ure 8.5.2, we say that there is interaction between the two factors. We emphasize that
the kind of interaction illustrated by the present example is only one of many types of
interaction that may occur between two factors. ■

In summary, then, we can say that there is interaction between two factors if a
change in one of the factors produces a change in response at one level of the other fac-
tor different from that produced at other levels of this factor.

Advantages The advantages of the factorial experiment include the following.

1. The interaction of the factors may be studied.

2. There is a saving of time and effort.

-10,

+5-5
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TABLE 8.5.2 Data of Table 8.5.1 Altered to Show the
Effect of One Type of Interaction

Factor B—Drug Dosage

Factor A—Age

Young 

Old m23 = 5m22 = 10m21 = 151i = 22 m13 = 20m12 = 10m11 = 51i = 12 j � 3j � 2j � 1
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FIGURE 8.5.2 Age and drug effects, interaction present.



In the factorial experiment all the observations may be used to study the effects of each
of the factors under investigation. The alternative, when two factors are being investigated,
would be to conduct two different experiments, one to study each of the two factors. If this
were done, some of the observations would yield information only on one of the factors, and
the remainder would yield information only on the other factor. To achieve the level of accu-
racy of the factorial experiment, more experimental units would be needed if the factors were
studied through two experiments. It is seen, then, that 1 two-factor experiment is more eco-
nomical than 2 one-factor experiments.

3. Because the various factors are combined in one experiment, the results have a
wider range of application.

The Two-Factor Completely Randomized Design A factorial
arrangement may be studied with either of the designs that have been discussed. We illus-
trate the analysis of a factorial experiment by means of a two-factor completely random-
ized design.

1. Data. The results from a two-factor completely randomized design may be pre-
sented in tabular form as shown in Table 8.5.3.

Here we have a levels of factor A, b levels of factor B, and n observations for
each combination of levels. Each of the ab combinations of levels of factor A with
levels of factor B is a treatment. In addition to the totals and means shown in Table
8.5.3, we note that the total and mean of the ij th cell are

and x ij # = Tij #>nTij . = a
n

k=1
x ijk
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TABLE 8.5.3 Table of Sample Data from a Two-Factor Completely 
Randomized Experiment

Factor B

Factor A 1 2 b Totals Means

1

2

a

Totals

Means x . . .x.b.
Áx .2.x .1.

T. . .T.b.
ÁT.2.T.1.

xabn
Áxa2nxa1n

xa. .Ta. .oooo

xab1
Áxa21xa11

ooooooo

x2bn
Áx22nx21n

x2. .T2. .oooo

x2b1
Áx221x211

x1bn
Áx12nx11n

x1. .T1. .oooo

x1b1
Áx121x111

Á



respectively. The subscript i runs from 1 to a and j runs from 1 to b. The total num-
ber of observations is nab.

To show that Table 8.5.3 represents data from a completely randomized
design, we consider that each combination of factor levels is a treatment and that
we have n observations for each treatment. An alternative arrangement of the
data would be obtained by listing the observations of each treatment in a sepa-
rate column. Table 8.5.3 may also be used to display data from a two-factor
randomized block design if we consider the first observation in each cell as
belonging to block 1, the second observation in each cell as belonging to block
2, and so on to the nth observation in each cell, which may be considered as
belonging to block n.

Note the similarity of the data display for the factorial experiment as shown
in Table 8.5.3 to the randomized complete block data display of Table 8.3.1. The
factorial experiment, in order that the experimenter may test for interaction, requires
at least two observations per cell, whereas the randomized complete block design
requires only one observation per cell. We use two-way analysis of variance to ana-
lyze the data from a factorial experiment of the type presented here.

2. Assumptions. We assume a fixed-effects model and a two-factor completely ran-
domized design. For a discussion of other designs, consult the references at the
end of this chapter.

The Model The fixed-effects model for the two-factor completely randomized design
may be written as

(8.5.1)

where is a typical observation, is a constant, represents an effect due to factor A,
represents an effect due to factor B, represents an effect due to the interaction of fac-
tors A and B, and represents the experimental error.

Assumptions of the Model

a. The observations in each of the ab cells constitute a random independent sam-
ple of size n drawn from the population defined by the particular combination
of the levels of the two factors.

b. Each of the ab populations is normally distributed.

c. The populations all have the same variance.

3. Hypotheses. The following hypotheses may be tested:

a.
not all 

b.
not all 

c.
not all 1ab2ij = 0HA:

i = 1, 2, Á , a; j = 1, 2, Á , bH0: 1ab2ij = 0

bj = 0HA:
j = 1, 2, Á , bH0: bj = 0

ai = 0HA:
i = 1, 2, Á , aH0: ai = 0

Pijk

1ab2 bamx ijk

k = 1, 2, Á , nj = 1, 2, Á , b ;i = 1, 2, Á , a ;

x ijk = m + ai + bj + 1ab2ij + Pijk
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Before collecting data, the researchers may decide to test only one of the possible
hypotheses. In this case they select the hypothesis they wish to test, choose a signifi-
cance level and proceed in the familiar, straightforward fashion. This procedure is free
of the complications that arise if the researchers wish to test all three hypotheses.

When all three hypotheses are tested, the situation is complicated by the fact that
the three tests are not independent in the probability sense. If we let be the signifi-
cance level associated with the test as a whole, and and the significance lev-
els associated with hypotheses 1, 2, and 3, respectively, we find

(8.5.2)

If then or This means that the
probability of rejecting one or more of the three hypotheses is something less than .143
when a significance level of .05 has been chosen for the hypotheses and all are true.
To demonstrate the hypothesis testing procedure for each case, we perform all three
tests. The reader, however, should be aware of the problem involved in interpreting the
results.

4. Test statistic. The test statistic for each hypothesis set is V.R.

5. Distribution of test statistic. When is true and the assumptions are met, each
of the test statistics is distributed as F.

6. Decision rule. Reject if the computed value of the test statistic is equal to or
greater than the critical value of F.

7. Calculation of test statistic. By an adaptation of the procedure used in partition-
ing the total sum of squares for the completely randomized design, it can be shown
that the total sum of squares under the present model can be partitioned into two
parts as follows:

(8.5.3)

or

(8.5.4)

The sum of squares for treatments can be partitioned into three parts as follows:

(8.5.5)

+a
a

i=1
a

b

j=1
a

n

k=1
1x ij # - x i # # - x # j # + x # # #22

+a
a

i=1
a

b

j=1
a

n

k=1
1x # j # - x # # # 22

a
a

i=1
a

b

j=1
a

n

k=1
1x ij. - x...22 = a

a

i=1
a

b

j=1
a

n

k=1
1x i.. - x...22

SST = SSTr + SSE

a
a

i=1
a

b

j=1
a

n

k=1
1x ijk - x...22 = a

a

i=1
a

b

j=1
a

n

k=1
1x ij. - x...22 + a

a

i=1
a

b

j=1
a

n

k=1
1x ijk - x ij.22

H0

H0

a 6 .143.a 6 1 - 1.9523,a¿ = a– = a‡ = .05,

a 6 1 - 11 - a¿211 - a–211 - a‡2
a‡a–,a¿,

a

a,
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or

The ANOVA Table The results of the calculations for the fixed-effects model for
a two-factor completely randomized experiment may, in general, be displayed as shown
in Table 8.5.4.

8. Statistical decision. If the assumptions stated earlier hold true, and if each
hypothesis is true, it can be shown that each of the variance ratios shown in Table
8.5.4 follows an F distribution with the indicated degrees of freedom. We reject

if the computed V.R. values are equal to or greater than the corresponding crit-
ical values as determined by the degrees of freedom and the chosen significance
levels.

9. Conclusion. If we reject we conclude that is true. If we fail to reject 
we conclude that may be true.

10. p value.

EXAMPLE 8.5.2

In a study of length of time spent on individual home visits by public health nurses,
data were reported on length of home visit, in minutes, by a sample of 80 nurses. A
record was made also of each nurse’s age and the type of illness of each patient vis-
ited. The researchers wished to obtain from their investigation answers to the follow-
ing questions:

1. Does the mean length of home visit differ among different age groups of nurses?

2. Does the type of patient affect the mean length of home visit?

3. Is there interaction between nurse’s age and type of patient?

Solution:

1. Data. The data on length of home visit that were obtained during the
study are shown in Table 8.5.5.

H0

H0,HAH0,

H0

SSTr = SSA + SSB + SSAB
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TABLE 8.5.4 Analysis of Variance Table for a Two-Factor Completely Randomized
Experiment (Fixed-Effects Model)

Source SS d.f. MS V.R.

A SSA
B SSB
AB SSAB
Treatments SSTr
Residual SSE

Total SST abn - 1

MSE = SSE>ab1n - 12ab1n - 12ab - 1

MSAB>MSEMSAB = SSAB>1a - 121b - 121a - 121b - 12 MSB>MSEMSB = SSB>1b - 12b - 1

MSA>MSEMSA = SSA>1a - 12a - 1



2. Assumptions. To analyze these data, we assume a fixed-effects model
and a two-factor completely randomized design.

For our illustrative example we may test the following hypotheses subject
to the conditions mentioned above.

a. not all 

b. not all 

c. all  not all 

Let

3. Test statistic. The test statistic for each hypothesis set is V.R.

4. Distribution of test statistic. When is true and the assumptions are
met, each of the test statistics is distributed as F.

H0

a = .05

1ab2ij = 0HA:1ab2ij = 0H0:

bj = 0HA:H0: b1 = b2 = b3 = b4 = 0

ai = 0HA:H0: a1 = a2 = a3 = a4 = 0
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TABLE 8.5.5 Length of Home Visit in Minutes by Public Health Nurses by
Nurse’s Age Group and Type of Patient

Factor B (Nurse’s Age Group) Levels

Factor A

(Type of Patient) 1 2 3 4 

Levels (20 to 29) (30 to 39) (40 to 49) (50 and Over)

1 (Cardiac) 20 25 24 28

25 30 28 31

22 29 24 26

27 28 25 29

21 30 30 32

2 (Cancer) 30 30 39 40

45 29 42 45

30 31 36 50

35 30 42 45

36 30 40 60

3 (C.V.A.) 31 32 41 42

30 35 45 50

40 30 40 40

35 40 40 55

30 30 35 45

4 (Tuberculosis) 20 23 24 29

21 25 25 30

20 28 30 28

20 30 26 27

19 31 23 30 



5. Decision rule. Reject if the computed value of the test statistic is
equal to or greater than the critical value of F. The critical values of F
for testing the three hypotheses of our illustrative example are 2.76,
2.76, and 2.04, respectively. Since denominator degrees of freedom
equal to 64 are not shown in Appendix Table G, 60 was used as the
denominator degrees of freedom.

6. Calculation of test statistic. We use MINITAB to perform the calcu-
lations. We put the measurements in Column 1, the row (factor A) codes
in Column 2, and the column (factor B) codes in Column 3. The result-
ing column contents are shown in Table 8.5.6. The MINITAB output is
shown in Figure 8.5.3.

H0
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TABLE 8.5.6 Column Contents for MINITAB Calculations, 
Example 8.5.2

Row C1 C2 C3 Row C1 C2 C3

1 20 1 1 41 31 3 1

2 25 1 1 42 30 3 1

3 22 1 1 43 40 3 1

4 27 1 1 44 35 3 1

5 21 1 1 45 30 3 1

6 25 1 2 46 32 3 2

7 30 1 2 47 35 3 2

8 29 1 2 48 30 3 2

9 28 1 2 49 40 3 2

10 30 1 2 50 30 3 2

11 24 1 3 51 41 3 3

12 28 1 3 52 45 3 3

13 24 1 3 53 40 3 3

14 25 1 3 54 40 3 3

15 30 1 3 55 35 3 3

16 28 1 4 56 42 3 4

17 31 1 4 57 50 3 4

18 26 1 4 58 40 3 4

19 29 1 4 59 55 3 4

20 32 1 4 60 45 3 4

21 30 2 1 61 20 4 1

22 45 2 1 62 21 4 1

23 30 2 1 63 20 4 1

24 35 2 1 64 20 4 1

25 36 2 1 65 19 4 1

26 30 2 2 66 23 4 2

27 29 2 2 67 25 4 2

28 31 2 2 68 28 4 2

29 30 2 2 69 30 4 2

(Continued)
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Row C1 C2 C3 Row C1 C2 C3

30 30 2 2 70 31 4 2

31 39 2 3 71 24 4 3

32 42 2 3 72 25 4 3

33 36 2 3 73 30 4 3

34 42 2 3 74 26 4 3

35 40 2 3 75 23 4 3

36 40 2 4 76 29 4 4

37 45 2 4 77 30 4 4

38 50 2 4 78 28 4 4

39 45 2 4 79 27 4 4

40 60 2 4 80 30 4 4 

7. Statistical decision. The variance ratios are 
14.7 � 67.86, and 
14.7 � 4.60. Since the three computed values of V.R. are all greater
than the corresponding critical values, we reject all three null
hypotheses.

8. Conclusion. When is rejected, we conclude
that there are differences among the levels of A, that is, differences in
the average amount of time spent in home visits with different types of
patients. Similarly, when is rejected, we con-
clude that there are differences among the levels of B, or differences in
the average amount of time spent on home visits among the different
nurses when grouped by age. When is rejected, we con-
clude that factors A and B interact; that is, different combinations of lev-
els of the two factors produce different effects.

9. p value. Since 67.86, 27.24, and 4.60 are all greater than the criti-
cal values of for the appropriate degrees of freedom, the p value
for each of the tests is less than .005. When the hypothesis of no
interaction is rejected, interest in the levels of factors A and B usu-
ally become subordinate to interest in the interaction effects. In other
words, we are more interested in learning what combinations of lev-
els are significantly different.

Figure 8.5.4 shows the SAS® output for the analysis of Example 8.5.2. ■

We have treated only the case where the number of observations in each cell is the same.
When the number of observations per cell is not the same for every cell, the analysis
becomes more complex.

In such cases the design is said to be unbalanced. To analyze these designs with
MINITAB we use the general linear (GLM) procedure. Other software packages such as
SAS® also will accommodate unequal cell sizes.

F.995

H0: 1ab2ij = 0

H0: b1 = b2 = b3 = b4

H0: a1 = a2 = a3 = a4

V.R.1AB2 = 67.6>V.R.1B2 = 400.4>14.7 = 27.24,
V.R. 1A2 = 997.5>
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Dialog box: Session command:

Stat ➤ ANOVA ➤ Twoway MTB > TWOWAY C1 C2 C3;
SUBC > MEANS C2 C3.

Type C1 in Response. Type C2 in Row factor and
check Display means. Type C3 in Column factor and
check Display means. Click OK.

Output:

Two-Way ANOVA: C1 versus C2, C3

Analysis of Variance for C1
Source DF SS MS F P
C2 3 2992.4 997.483 67.94 0.000
C3 3 1201.1 400.350 27.27 0.000
Interaction 9 608.5 67.606 4.60 0.000
Error 64 939.6 14.681
Total 79 5741.5

Individual 95% CI
C2 Mean -+---------+---------+---------+---------+
1 26.70 (----*---)
2 38.25 (----*---)
3 38.30 (----*---)
4 25.45 (----*---)

-+---------+---------+---------+---------+
24.00 28.00 32.00 36.00 40.00

Individual 95% CI
C3 Mean ------+---------+---------+---------+-----
1 27.85 (----*---)
2 29.80 (----*---)
3 32.95 (----*---)
4 38.10 (----*---)

------+---------+---------+---------+-----
28.00 31.50 35.00 38.50

FIGURE 8.5.3 MINITAB procedure and ANOVA table for Example 8.5.2.



EXERCISES

For Exercises 8.5.1 to 8.5.4, perform the analysis of variance, test appropriate hypotheses at the
.05 level of significance, and determine the p value associated with each test.

8.5.1 Uryu et al. (A-21) studied the effect of three different doses of troglitazone on neuro cell
death. Cell death caused by stroke partially results from the accumulation of high concentrations
of glutamate. The researchers wanted to determine if different doses of troglitazone (1.3, 4.5, and

and different ion forms of LY294002, a PI3-kinase inhibitor, would give dif-
ferent levels of neuroprotection. Four rats were studied at each dose and ion level, and the meas-
ured variable is the percent of cell death as compared to glutamate. Therefore, a higher value
implies less neuroprotection. The results are in the table below.

1- and + 213.5 mM2
1mM2
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The SAS System

Analysis of Variance Procedure

Dependent Variable: TIME

Source DF Sum of Squares Mean Square F Value Pr � F

Model 15 4801.95000000 320.13000000 21.81 0.0001

Error 64 939.60000000 14.68125000

Corrected Total 79 5741.55000000

R-Square C.V. Root MSE TIME Mean

0.836351 11.90866 3.83161193 32.17500000

Source DF Anova SS Mean Square F Value Pr � F

FACTORB 3 1201.05000000 400.35000000 27.27 0.0001
FACTORA 3 2992.45000000 997.48333333 67.94 0.0001
FACTORB*FACTORA 9 608.450000000 67.60555556 4.60 0.0001

FIGURE 8.5.4 SAS® output for analysis of Example 8.5.2.

Percent Compared to Troglitazone 
Glutamate Dose ( )

73.61 Negative 1.3
130.69 Negative 1.3
118.01 Negative 1.3
140.20 Negative 1.3

MM-LY294002 vs +LY294002

(Continued )



8.5.2 Researchers at a trauma center wished to develop a program to help brain-damaged trauma vic-
tims regain an acceptable level of independence. An experiment involving 72 subjects with the
same degree of brain damage was conducted. The objective was to compare different combi-
nations of psychiatric treatment and physical therapy. Each subject was assigned to one of 24
different combinations of four types of psychiatric treatment and six physical therapy programs.
There were three subjects in each combination. The response variable is the number of months
elapsing between initiation of therapy and time at which the patient was able to function inde-
pendently. The results were as follows:
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Percent Compared to Troglitazone 
Glutamate Dose ( )

97.11 Positive 1.3
114.26 Positive 1.3
120.26 Positive 1.3
92.39 Positive 1.3
26.95 Negative 4.5
53.23 Negative 4.5
59.57 Negative 4.5
53.23 Negative 4.5
28.51 Positive 4.5
30.65 Positive 4.5
44.37 Positive 4.5
36.23 Positive 4.5

Negative 13.5
25.14 Negative 13.5
20.16 Negative 13.5
34.65 Negative 13.5

Positive 13.5
Positive 13.5
Positive 13.5

5.36 Positive 13.5

Source: Shigeko Uryu. Used with permission.

-19.08
-7.93

-35.80

-8.83

MM-LY294002 vs +LY294002

Physical Psychiatric Treatment
Therapy
Program A B C D

11.0 9.4 12.5 13.2
I 9.6 9.6 11.5 13.2

10.8 9.6 10.5 13.5

10.5 10.8 10.5 15.0
II 11.5 10.5 11.8 14.6

12.0 10.5 11.5 14.0

12.0 11.5 11.8 12.8
III 11.5 11.5 11.8 13.7

11.8 12.3 12.3 13.1
(Continued )



Can one conclude on the basis of these data that the different psychiatric treatment programs have
different effects? Can one conclude that the physical therapy programs differ in effectiveness? Can
one conclude that there is interaction between psychiatric treatment programs and physical ther-
apy programs? Let for each test.

Exercises 8.5.3 and 8.5.4 are optional since they have unequal cell sizes. It is recommended that
the data for these be analyzed using SAS® or some other software package that will accept unequal
cell sizes.

8.5.3 Main et al. (A-22) state, “Primary headache is a very common condition and one that nurses
encounter in many different care settings. Yet there is a lack of evidence as to whether advice
given to sufferers is effective and what improvements may be expected in the conditions.” The
researchers assessed frequency of headaches at the beginning and end of the study for 19 sub-
jects in an intervention group (treatment 1) and 25 subjects in a control group (treatment 2).
Subjects in the intervention group received health education from a nurse, while the control
group did not receive education. In the 6 months between pre- and post-evaluation, the sub-
jects kept a headache diary. The following table gives as the response variable the difference
(pre�post) in frequency of headaches over the 6 months for two factors: (1) treatment with two
levels (intervention and control), and (2) migraine status with two levels (migraine sufferer and
nonmigraine sufferer).

a = .05
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Physical Psychiatric Treatment
Therapy
Program A B C D

11.5 9.4 13.7 14.0
IV 11.8 9.1 13.5 15.0

10.5 10.8 12.5 14.0

11.0 11.2 14.4 13.0
V 11.2 11.8 14.2 14.2

10.0 10.2 13.5 13.7

11.2 10.8 11.5 11.8
VI 10.8 11.5 10.2 12.8

11.8 10.2 11.5 12.0 

Change in Change in 
Frequency of Migraine Sufferer Frequency of Migraine Sufferer 
Headaches ( ) Treatment Headaches ( ) Treatment

1 1 2 2
2 2 1 2 2

33 1 1 11 1 2
2 1 64 1 2

6 2 1 65 1 2
98 1 1 14 1 2
2 2 1 8 1 2
6 2 1 6 2 2

-6

-6
-3-2

1 � No, 2 � Yes1 � No, 2 � Yes

(Continued )



Can one conclude on the basis of these data that there is a difference in the reduction of headache
frequency between the control and treatment groups? Can one conclude that there is a difference
in the reduction of headache frequency between migraine and non-migraine sufferers? Can one
conclude that there is interaction between treatments and migraine status? Let for each
test.

8.5.4 The purpose of a study by Porcellini et al. (A-23) was to study the difference in CD4 cell response
in patients taking highly active antiretroviral therapy (HAART, treatment 1) and patients taking
HAART plus intermittent interleukin (IL-2, treatment 2). Another factor of interest was the HIV-
RNA plasma count at baseline of study. Subjects were classified as having fewer than 50 copies/ml
(plasma 1) or having 50 or more copies/ml (plasma 2). The outcome variable is the percent change
in CD4 T cell count from baseline to 12 months of treatment. Can one conclude that there is a dif-
ference in the percent change in CD4 T cell count between the two treatments? The results are shown
in the following table. Can one conclude that there is a difference in the percent change in CD4 T
cell count between those who have fewer than 50/ml plasma copies of HIV-RNA and those who do
not? Can one conclude that there is interaction between treatments and plasma levels? Let 
for each test.

a = .05

a = .05
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Change in Change in 
Frequency of Migraine Sufferer Frequency of Migraine Sufferer 
Headaches ( ) Treatment Headaches ( ) Treatment

33 1 1 14 1 2
2 1 2 2
2 1 53 1 2
2 1 26 2 2

12 1 1 3 1 2
64 1 1 15 1 2
36 2 1 3 1 2
6 2 1 41 1 2
4 2 1 16 1 2

11 2 1 2 2
0 2 1 2 2

9 1 2
9 2 2

2 2
9 2 2
3 1 2
4 2 2

Source: A. Main, H. Abu-Saad, R. Salt, l. Vlachonikolis, and A. Dowson, “Management by Nurses of Primary 
Headache: A Pilot Study,” Current Medical Research Opinion, 18 (2002), 471–478. Used with Permission.

-3

-6
-4

-12
-1

-11-7

1 � No, 2 � Yes1 � No, 2 � Yes

(Continued )

Percent Change in CD4 T Cell Treatment Plasma

1 1

2 1

28.10 2 1

-14.60

-12.60



8.5.5 A study by Górecka et al. (A-24) assessed the manner in which among middle-aged smokers the
diagnosis of airflow limitation (AL) combined with advice to stop smoking influences the smok-
ing cessation rate. Their concerns were whether having AL, whether the subject successfully quit
smoking, and whether interaction between AL and smoking status were significant factors in regard
to baseline variables and lung capacity variables at the end of the study. Some of the variables of
interest were previous years of smoking (pack years), age at which subject first began smoking,
forced expiratory volume in one second (FEV1), and forced vital capacity (FVC). There were 368
subjects in the study. What are the factors in this study? At how many levels does each occur?
Who are the subjects? What is (are) the response variable(s)? Can you think of any extraneous
variables whose effects are included in the error term?

8.5.6 A study by Meltzer et al. (A-25) examined the response to 5 mg desloratadine, an H1-receptor
antagonist, in patients with seasonal allergies. During the fall allergy season, 172 subjects were
randomly assigned to receive treatments of desloratadine and 172 were randomly assigned to
receive a placebo. Subjects took the medication for 2 weeks after which changes in the nasal symp-
tom score were calculated. A significant reduction was noticed in the treatment group compared
to the placebo group, but gender was not a significant factor. What are the factors in the study?
At how many levels does each occur? What is the response variable?

8.6 SUMMARY

The purpose of this chapter is to introduce the student to the basic ideas and techniques
of analysis of variance. Two experimental designs, the completely randomized and the
randomized complete block, are discussed in considerable detail. In addition, the con-
cept of repeated measures designs and a factorial experiment as used with the completely
randomized design are introduced. Individuals who wish to pursue further any aspect of
analysis of variance will find the methodology references at the end of the chapter most
helpful.
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Percent Change in CD4 T Cell Treatment Plasma

77.30 1 1

1 1

50.20 1 1

48.60 2 2

86.20 2 2

205.80 1 2

100.00 1 2

34.30 1 2

82.40 1 2

118.30 1 2

Source: Simona Porcellini, Guiliana Vallanti, Silvia Nozza, Guido Poli, 
Adriano Lazzarin, Guiseppe Tabussi, and Antonio Grassia, “Improved 
Thymopoietic Potential in Aviremic HIV Infected Individuals with HAART 
by Intermittent IL-2 Administration,” AIDS, 17 (2003), 1621–1630. 
Used with permission.

-0.44



SUMMARY OF FORMULAS FOR CHAPTER 8 369

SUMMARY OF FORMULAS FOR CHAPTER 8

Formula 
Number Name Formula

8.2.1 One-way ANOVA
model

8.2.2 Total sum-of-squares

8.2.3 Within-group
sum-of-squares

8.2.4 Among-group
sum-of-squares

8.2.5 Within-group
variance 

8.2.6 Among-group
variance I

8.2.7 Among-group
variance II 
(equal sample sizes)

8.2.8 Among-group
variance III (unequal 
sample sizes)

8.2.9 Tukey’s HSD
(equal sample sizes)

8.2.10 Tukey’s HSD
(unequal sample 
sizes)

8.3.1 Two-way ANOVA
model

8.3.2 Sum-of-squares SST � SSBl � SSTr � SSE
representation

Xij = m + bi + ti + Pij

HSD* = qa,k,N-kAMSE

n
a 1

ni
+

1
nj
b

HSD = qa,k,N-kAMSE

n

MSA =
a

k

j=1
nj1x # j - x # #221k - 12

MSA =

na
k

j=1
1x # j - x # #221k - 12

s2 = nsx
2

MSW =
a

k

j=1
a
nj

i=1
1x ij - x # j22

a
k

j=1
1nj - 12

SSA = a
k

j=1
nj1x # j - x # #22

SSW = a
k

j=1
a
nj

i=1
1x ij - x # j22

SST = a
k

j=1
a
nj

i=1
1x ij - x # #22

Xij = m + ti + Pij
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8.3.3 Sum-of-squares total

8.3.4 Sum-of-squares block

8.3.5 Sum-of-squares
treatments

8.3.6 Sum-of-squares error SSE � SST � SSBl � SSTr 

8.4.1 Fixed-effects, additive 
single-factor, 
repeated-measures
ANOVA model

8.5.1 Two-factor completely
randomized fixed- 
effects factorial model

8.5.2 Probabilistic
representation of 

8.5.3 Sum-of-squares
total I 

8.5.4 Sum-of-squares SST � SSTr � SSE
total II

8.5.5 Sum-of-squares
treatment partition

Symbol Key • � probability of type I error
• � treatment A effect
• � treatment B effect
• � block effect
• � interaction effect
• � error term
• HSD � honestly significant difference
• k � number of treatments

Pij

1ab2ijbi

bj

ai

a

+ a
a

i=1
a

b

j=1
a

n

k=1
1x ij # - x i # # - x # j # + x # # #22

+ a
a

i=1
a

b

j=1
a

n

k=1
1x # j # - x # # #22

a
a

i=1
a

b

j=1
a

n

k=1
1x ij # - x # # #22 = a

a

i=1
a

b

j=1
a

n

k=1
1x i # # - x # # #22

+ a
a

i=1
a

b

j=1
a

n

k=1
1x ijk - x ij #2
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REVIEW QUESTIONS AND EXERCISES

1. Define analysis of variance.

2. Describe the completely randomized design.

3. Describe the randomized block design.

4. Describe the repeated measures design.

5. Describe the factorial experiment as used in the completely randomized design.

6. What is the purpose of Tukey’s HSD test?

7. What is an experimental unit?

8. What is the objective of the randomized complete block design?

9. What is interaction?

10. What is a mean square?

11. What is an ANOVA table?

12. For each of the following designs describe a situation in your particular field of interest where the
design would be an appropriate experimental design. Use real or realistic data and do the appro-
priate analysis of variance for each one:

(a) Completely randomized design

(b) Randomized complete block design

(c) Completely randomized design with a factorial experiment

(d) Repeated measures designs

13. Werther et al. (A-26) examined the -leucocyte count in 51 subjects with colorectal can-
cer and 19 healthy controls. The cancer patients were also classified into Dukes’s classification (A,
B, C) for colorectal cancer that gives doctors a guide to the risk, following surgery, of the cancer
coming back or spreading to other parts of the body. An additional category (D) identified patients
with disease that had not been completely resected. The results are displayed in the following table.
Perform an analysis of these data in which you identify the sources of variability and specify the
degrees of freedom for each. Do these data provide sufficient evidence to indicate that, on the aver-
age, leucocyte counts differ among the five categories? Let and find the p value. Use
Tukey’s procedure to test for significant differences between individual pairs of sample means.

a = .01

1*109>L2b

• � mean of population (or the grand mean)
• n � number of blocks
• nx � sample size
• � variance
• SSX � sum-of-squares (where X: A � among,

Bl � block, T � total, Tr � treatment, W � within)
• � treatment effect
• Xxxx � measurement
ti

s2

m
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Healthy A B C D

6.0 7.7 10.4 8.0 9.5
6.3 7.8 5.6 6.7 7.8
5.1 6.1 7.0 9.3 5.7
6.2 9.6 8.2 6.6 8.0

10.4 5.5 9.0 9.3 9.6
4.4 5.8 8.4 7.2 13.7
7.4 4.0 8.1 5.2 6.3
7.0 5.4 8.0 9.8 7.3
5.6 6.5 6.2 6.2
5.3 9.1 10.1
2.6 11.0 9.3
6.3 10.9 9.4
6.1 10.6 6.5
5.3 5.2 5.4
5.4 7.9 7.6
5.2 7.6 9.2
4.3 5.8
4.9 7.0
7.3
4.9
6.9
4.3
5.6
5.1

Source: Kim Werther, M.D., Ph.D. Used with permission.

14. In Example 8.4.1, we examined data from a study by Licciardone et al. (A-15) on osteopathic manip-
ulation as a treatment for chronic back pain. At the beginning of that study, there were actually 91
subjects randomly assigned to one of three treatments: osteopathic manipulative treatment (OMT),
sham manipulation (SHAM), or non-intervention (CONTROL). One important outcome variable was
the rating of back pain at the beginning of the study. The researchers wanted to know if the treat-
ment had essentially the same mean pain level at the start of the trial. The results are displayed in
the following table. The researchers used a visual analog scale from 0 to 10 cm where 10 indi-
cated “worst pain possible.” Can we conclude, on the basis of these data, that, on the average, pain
levels differ in the three treatment groups? Let and find the p value. If warranted, use
Tukey’s procedure to test for differences between individual pairs of sample means.

a = .05

CONTROL SHAM OMT

2.6 5.8 7.8 3.5
5.6 1.3 4.1 3.4
3.3 2.4 1.7 1.1
4.6 1.0 3.3 0.5
8.4 3.2 4.3 5.1
0.0 0.4 6.5 1.9
2.5 5.4 5.4 2.0
5.0 4.5 4.0 2.8

(Continued )
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15. The goal of a study conducted by Meshack and Norman (A-27) was to evaluate the effects of weights
on postural hand tremor related to self-feeding in subjects with Parkinson’s disease (PD). Each of the
16 subjects had the tremor amplitude measured (in mm) under three conditions: holding a built-up
spoon (108 grams), holding a weighted spoon (248 grams), and holding the built-up spoon while wear-
ing a weighted wrist cuff (470 grams). The data are displayed in the following table.

CONTROL SHAM OMT

1.7 1.5 4.1 3.7
3.8 0.0 2.6 1.6
2.4 0.6 3.2 0.0
1.1 0.0 2.8 0.2
0.7 7.6 3.4 7.3
2.4 3.5 6.7 1.7
3.3 3.9 7.3 7.5
6.6 7.0 2.1 1.6
0.4 7.4 3.7 3.0
0.4 6.5 2.3 6.5
0.9 1.6 4.4 3.0
6.0 1.3 2.8 3.3

6.6 0.4 7.3
6.3 0.7 4.6
7.0 7.9 4.8

1.3 4.9

Source: J. C. Licciardone, D.O. Used with permission.

Tremor Amplitude (mm)

Subject Built-Up Spoon Weighted Spoon Built-Up Spoon � Wrist Cuff

1 .77 1.63 1.02
2 .78 .88 1.11
3 .17 .14 .14
4 .30 .27 .26
5 .29 .27 .28
6 1.60 1.49 1.73
7 .38 .39 .37
8 .24 .24 .24
9 .17 .17 .16

10 .38 .29 .27
11 .93 1.21 .90
12 .63 .52 .66
13 .49 .73 .76
14 .42 .60 .29
15 .19 .21 .21
16 .19 .20 .16

Source: Rubia P. Meshack and Kathleen E. Norman, “A Randomized Controlled Trial of the Effects of
Weights on Amplitude and Frequency of Postural Hand Tremor in People with Parkinson’s Disease,” 
Clinical Rehabilitation, 16 (2003), 481– 492.
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Can one conclude on the basis of these data that the three experimental conditions, on the aver-
age, have different effects on tremor amplitude? Let Determine the p value.

16. In a study of pulmonary effects on guinea pigs, Lacroix et al. (A-28) exposed 18 ovalbumin-
sensitized guinea pigs and 18 nonsensitized guinea pigs to regular air, benzaldehyde, and
acetaldehyde. At the end of exposure, the guinea pigs were anesthetized and allergic responses
were assessed in bronchoalveolar lavage (BAL). The following table shows the alveolar cell
count by treatment group for the ovalbumin-sensitized and nonsensitized guinea 
pigs.

1*1062

a = .05.

Ovalbumin-Sensitized Treatment Alveolar Count

no acetaldehyde 49.90
no acetaldehyde 50.60
no acetaldehyde 50.35
no acetaldehyde 44.10
no acetaldehyde 36.30
no acetaldehyde 39.15
no air 24.15
no air 24.60
no air 22.55
no air 25.10
no air 22.65
no air 26.85
no benzaldehyde 31.10
no benzaldehyde 18.30
no benzaldehyde 19.35
no benzaldehyde 15.40
no benzaldehyde 27.10
no benzaldehyde 21.90
yes acetaldehyde 90.30
yes acetaldehyde 72.95
yes acetaldehyde 138.60
yes acetaldehyde 80.05
yes acetaldehyde 69.25
yes acetaldehyde 31.70
yes air 40.20
yes air 63.20
yes air 59.10
yes air 79.60
yes air 102.45
yes air 64.60
yes benzaldehyde 22.15
yes benzaldehyde 22.75
yes benzaldehyde 22.15
yes benzaldehyde 37.85
yes benzaldehyde 19.35
yes benzaldehyde 66.70

Source: G. Lacroix, Docteur en Toxicologie. Used with permission.

: 106



REVIEW QUESTIONS AND EXERCISES 375

Test for differences (a) between ovalbumin-sensitized and nonsensitized outcomes, (b) among the three
different exposures, and (c) interaction. Let for all tests.

17. Watanabe et al. (A-29) studied 52 healthy middle-aged male workers. The researchers used the
Masstricht Vital Exhaustion Questionnaire to assess vital exhaustion. Based on the resultant scores,
they assigned subjects into three groups: VE1, VE2, and VE3. VE1 indicates the fewest signs of
exhaustion, and VE3 indicates the most signs of exhaustion. The researchers also asked subjects
about their smoking habits. Smoking status was categorized as follows: SMOKE1 are nonsmok-
ers, SMOKE2 are light smokers (20 cigarettes or fewer per day), SMOKE3 are heavy smokers
(more than 20 cigarettes per day). One of the outcome variables of interest was the amplitude of
the high-frequency spectral analysis of heart rate variability observed during an annual health
checkup. This variable, HF-amplitude, was used as an index of parasympathetic nervous function.
The data are summarized in the following table:

a = .05

HF-Amplitude

Smoking Status

Vital Exhaustion
Group SMOKE1 SMOKE2 SMOKE3

VE1 23.33 13.37 16.14 16.83
31.82 9.76 20.80 29.40
10.61 22.24 15.44 6.50
42.59 8.77 13.73 10.18
23.15 20.28 13.86
17.29

VE2 20.69 11.67 44.92 27.91
16.21 30.17 36.89
28.49 29.20 16.80
25.67 8.73 17.08
15.29 9.08 18.77
7.51 22.53 18.33

22.03 17.19
10.27

VE3 9.44 17.59 5.57
19.16 18.90 13.51
14.46 17.37

10.63
13.83

Source: Takemasa Watanabe, M.D., Ph.D. Used with permission.

Perform an analysis of variance on these data and test the three possible hypotheses. Let
Determine the p values.a¿ = a– = a‡ = .05.
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19. Eleftherios Kellis (A-31) conducted an experiment on 18 pubertal males. He recorded the elec-
tromyographic (EMG) activity at nine different angular positions of the biceps femoris muscle.
The EMG values are expressed as a percent (0–100 percent) of the maximal effort exerted with
the muscle and represent an average in a range of flexion angles. The nine positions correspond
to testing knee flexion angles of 

and The results are displayed in the following table. For subject 1, for exam-
ple, the value of 30.96 percent represents the average maximal percent of effort in angular posi-
tions from 1 to 10 degrees.

81– 90°.71– 80°,
61–70°,51– 60°,41–50°,31– 40°,21–30°,11–20°,1–10°,

Location 1 Location 2 Location 3

Length Width Height Length Width Height Length Width Height

7.20 6.10 4.45 7.25 6.25 4.65 5.95 4.75 3.20
7.50 5.90 4.65 7.23 5.99 4.20 7.60 6.45 4.56
6.89 5.45 4.00 6.85 5.61 4.01 6.15 5.05 3.50
6.95 5.76 4.02 7.07 5.91 4.31 7.00 5.80 4.30
6.73 5.36 3.90 6.55 5.30 3.95 6.81 5.61 4.22
7.25 5.84 4.40 7.43 6.10 4.60 7.10 5.75 4.10
7.20 5.83 4.19 7.30 5.95 4.29 6.85 5.55 3.89
6.85 5.75 3.95 6.90 5.80 4.33 6.68 5.50 3.90
7.52 6.27 4.60 7.10 5.81 4.26 5.51 4.52 2.70
7.01 5.65 4.20 6.95 5.65 4.31 6.85 5.53 4.00
6.65 5.55 4.10 7.39 6.04 4.50 7.10 5.80 4.45
7.55 6.25 4.72 6.54 5.89 3.65 6.81 5.45 3.51
7.14 5.65 4.26 6.39 5.00 3.72 7.30 6.00 4.31
7.45 6.05 4.85 6.08 4.80 3.51 7.05 6.25 4.71
7.24 5.73 4.29 6.30 5.05 3.69 6.75 5.65 4.00
7.75 6.35 4.85 6.35 5.10 3.73 6.75 5.57 4.06
6.85 6.05 4.50 7.34 6.45 4.55 7.35 6.21 4.29
6.50 5.30 3.73 6.70 5.51 3.89 6.22 5.11 3.35
6.64 5.36 3.99 7.08 5.81 4.34 6.80 5.81 4.50
7.19 5.85 4.05 7.09 5.95 4.39 6.29 4.95 3.69
7.15 6.30 4.55 7.40 6.25 4.85 7.55 5.93 4.55
7.21 6.12 4.37 6.00 4.75 3.37 7.45 6.19 4.70
7.15 6.20 4.36 6.94 5.63 4.09 6.70 5.55 4.00
7.30 6.15 4.65 7.51 6.20 4.74
6.35 5.25 3.75 6.95 5.69 4.29

7.50 6.20 4.65

Source: John Brooker, M.S. and the Wright State University Statistical Consulting Center. Used with
permission.

18. The effects of thermal pollution on Corbicula fluminea (Asiatic clams) at three different geograph-
ical locations were analyzed by John Brooker (A-30). Sample data on clam shell length, width,
and height are displayed in the following table. Determine if there is a significant difference in
mean length, height, or width (measured in mm) of the clam shell at the three different locations
by performing three analyses. What inferences can be made from your results? What are the
assumptions underlying your inferences? What are the target populations?
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Can we conclude on the basis of these data that the average EMG values differ among the nine
angular locations? Let 

20. In a study of Marfan syndrome, Pyeritz et al. (A-32) reported the following severity scores of
patients with no, mild, and marked dural ectasia. May we conclude, on the basis of these data,
that mean severity scores differ among the three populations represented in the study? Let 
and find the p value. Use Tukey’s procedure to test for significant differences among individual
pairs of sample means.

No dural ectasia: 18, 18, 20, 21, 23, 23, 24, 26, 26, 27, 28, 29, 29, 29, 30, 30, 30, 
30, 32, 34, 34, 38

Mild dural ectasia: 10, 16, 22, 22, 23, 26, 28, 28, 28, 29, 29, 30, 31, 32, 32, 33, 33, 
38, 39, 40, 47

Marked dural ectasia: 17, 24, 26, 27, 29, 30, 30, 33, 34, 35, 35, 36, 39
Source: Reed E. Pyeritz, M.D., Ph.D. Used with permission.

21. The following table shows the arterial plasma epinephrine concentrations (nanograms per milli-
liter) found in 10 laboratory animals during three types of anesthesia:

Animal

Anesthesia 1 2 3 4 5 6 7 8 9 10

A .28 .50 .68 .27 .31 .99 .26 .35 .38 .34
B .20 .38 .50 .29 .38 .62 .42 .87 .37 .43
C 1.23 1.34 .55 1.06 .48 .68 1.12 1.52 .27 .35

Can we conclude from these data that the three types of anesthesia, on the average, have differ-
ent effects? Let a = .05.

a = .05

a = .05.

Subject 1–10° 11–20° 21–30° 31–40° 41–50° 51–60° 61–70° 71–80° 81–90°

1 30.96 11.32 4.34 5.99 8.43 10.50 4.49 10.93 33.26
2 3.61 1.47 3.50 10.25 3.30 3.62 10.14 11.05 8.78
3 8.46 2.94 1.83 5.80 11.59 15.17 13.04 10.57 8.22
4 0.69 1.06 1.39 1.08 0.96 2.52 2.90 3.27 5.52
5 4.40 3.02 3.74 3.83 3.73 10.16 9.31 12.70 11.45
6 4.59 9.80 10.71 11.64 9.78 6.91 8.53 8.30 11.75
7 3.31 3.31 4.12 12.56 4.60 1.88 2.42 2.46 2.19
8 1.98 6.49 2.61 3.28 10.29 7.56 16.68 14.52 13.49
9 10.43 4.96 12.37 24.32 17.16 34.71 35.30 37.03 45.65

10 20.91 20.72 12.70 15.06 12.03 11.31 28.47 26.81 25.08
11 5.59 3.13 2.83 4.31 6.37 13.95 13.48 11.15 30.97
12 8.67 4.32 2.29 6.20 13.01 19.30 9.33 12.30 12.20
13 2.11 1.59 2.40 2.56 2.83 2.55 5.84 5.23 8.84
14 3.82 5.04 6.81 10.74 10.10 13.14 19.39 13.31 12.02
15 39.51 62.34 70.46 20.48 17.38 54.04 25.76 50.32 46.84
16 3.31 4.95 12.49 9.18 14.00 16.17 25.75 11.82 13.17
17 11.42 7.53 4.65 4.70 7.57 9.86 5.30 4.47 3.99
18 2.97 2.18 2.36 4.61 7.83 17.49 42.55 61.84 39.70

Source: Eleftherios Kellis, Ph.D. Used with permission.
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22. The aim of a study by Hartman-Maeir et al. (A-33) was to evaluate the awareness of deficit profiles
among stroke patients undergoing rehabilitation. She studied 35 patients with a stroke lesion in the
right hemisphere and 19 patients with a lesion on the left hemisphere. She also grouped lesion size as

and

One of the outcome variables was a measure of each patient’s total unawareness of their own limi-
tations. Scores ranged from 8 to 24, with higher scores indicating more unawareness.

4 = 5 cm or greater.3 = 3 – 5 cm,2 = 1–3 cm,

Unawareness Score

Lesion Size Left
Group Hemisphere Right Hemisphere

2 11 10 8
13 11 10
10 13 9
11 10 9
9 13 9

10 10
9 10
8 9

10 8

3 13 11 10
8 10 11

10 10 12
10 14 11
10 8

4 11 10 11
13 13 9
14 10 19
13 10 10
14 15 9

8 10 

Test for a difference in lesion size, hemisphere, and interaction. Let for all tests.

23. A random sample of the records of single births was selected from each of four populations. The
weights (grams) of the babies at birth were as follows:

a = .05

Sample

A B C D

2946 3186 2300 2286
2913 2857 2903 2938
2280 3099 2572 2952
3685 2761 2584 2348
2310 3290 2675 2691

Source: Adina Hartman-Maeir, Ph.D.,
O.T.R. Used with permission.

(Continued )
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Sample

A B C D

2582 2937 2571 2858
3002 3347 2414
2408 2008

2850
2762

Do these data provide sufficient evidence to indicate, at the .05 level of significance, that the four
populations differ with respect to mean birth weight? Test for a significant difference between all
possible pairs of means.

24. The following table shows the aggression scores of 30 laboratory animals reared under three dif-
ferent conditions. One animal from each of 10 litters was randomly assigned to each of the three
rearing conditions.

Rearing Condition

Extremely Moderately Not
Litter Crowded Crowded Crowded

1 30 20 10
2 30 10 20
3 30 20 10
4 25 15 10
5 35 25 20
6 30 20 10
7 20 20 10
8 30 30 10
9 25 25 10

10 30 20 20 

Do these data provide sufficient evidence to indicate that level of crowding has an effect on aggres-
sion? Let 

25. The following table shows the vital capacity measurements of 60 adult males classified by occu-
pation and age group:

a = .05.

Occupation
Age
Group A B C D

1 4.31 4.68 4.17 5.75
4.89 6.18 3.77 5.70
4.05 4.48 5.20 5.53
4.44 4.23 5.28 5.97
4.59 5.92 4.44 5.52

(Continued )



Test for differences among occupations, for differences among age groups, and for interaction. Let
for all tests.

26. Complete the following ANOVA table and state which design was used.

a = .05
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Occupation

Age

Group A B C D

2 4.13 3.41 3.89 4.58
4.61 3.64 3.64 5.21
3.91 3.32 4.18 5.50
4.52 3.51 4.48 5.18
4.43 3.75 4.27 4.15

3 3.79 4.63 5.81 6.89
4.17 4.59 5.20 6.18
4.47 4.90 5.34 6.21
4.35 5.31 5.94 7.56
3.59 4.81 5.56 6.73 

Source SS d.f. MS V.R. p

Treatments 154.9199 4
Error

Total 200.4773 39 

27. Complete the following ANOVA table and state which design was used.

Source SS d.f. MS V.R. p

Treatments 3
Blocks 183.5 3
Error 26.0

Total 709.0 15 

28. Consider the following ANOVA table.

Source SS d.f. MS V.R. p

A 12.3152 2 6.15759 29.4021 �.005
B 19.7844 3 6.59481 31.4898 �.005
AB 8.94165 6 1.49027 7.11596 �.005
Treatments 41.0413 11
Error 10.0525 48 0.209427

Total 51.0938 59 
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(a) What sort of analysis was employed?

(b) What can one conclude from the analysis? Let 

29. Consider the following ANOVA table.

a = .05.

(a) What design was employed?

(b) How many treatments were compared?

(c) How many observations were analyzed?

(d) At the .05 level of significance, can one conclude that there is a difference among treatments?
Why?

30. Consider the following ANOVA table.

Source SS d.f. MS V.R.

Treatments 5.05835 2 2.52917 1.0438
Error 65.42090 27 2.4230 

Source SS d.f. MS V.R.

Treatments 231.5054 2 115.7527 2.824
Blocks 98.5000 7 14.0714
Error 573.7500 14 40.9821 

(a) What design was employed?

(b) How many treatments were compared?

(c) How many observations were analyzed?

(d) At the .05 level of significance, can one conclude that the treatments have different effects?
Why?

31. In a study of the relationship between smoking and serum concentrations of high-density lipopro-
tein cholesterol (HDL-C), the following data (coded for ease of calculation) were collected from
samples of adult males who were nonsmokers, light smokers, moderate smokers, and heavy
smokers. We wish to know if these data provide sufficient evidence to indicate that the four pop-
ulations differ with respect to mean serum concentration of HDL-C. Let the probability of com-
mitting a type I error be .05. If an overall significant difference is found, determine which pairs
of individual sample means are significantly different.

Smoking Status

Nonsmokers Light Moderate Heavy

12 9 5 3
10 8 4 2
11 5 7 1
13 9 9 5
9 9 5 4
9 10 7 6

12 8 6 2 



Subject No. Pre-op 3 Months 6 Months 12 Months

1 108.0 200.0 94.3 92.0
2 96.7 119.0 84.0 93.0
3 77.0 130.0 76.0 74.0
4 92.0 181.0 82.5 80.5
5 97.0 134.0 81.0 76.0
6 94.0 163.0 96.0 71.0
7 76.0 125.0 74.0 75.5
8 100.0 189.0 97.0 88.5
9 82.0 282.0 91.0 93.0

10 103.5 226.0 86.0 80.5
11 85.5 145.0 83.5 83.0
12 74.5 156.0 71.0 87.0

Source: Theodore K. Alexandrides, M.D. Used with permission.
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32. Polyzogopoulou et al. (A-34) report the effects of bariatric surgery on fasting glucose levels
(mmol/L) on 12 obese subjects with type 2 diabetes at four points in time: pre-operation, at 3
months, 6 months, and 12 months. Can we conclude, after eliminating subject effects, that fasting
glucose levels differ over time after surgery? Let a = .05.

33. Refer to Review Exercise 32. In addition to studying the 12 type 2 diabetes subjects (group 1),
Polyzogopoulou et al. (A-34) studied five subjects with impaired glucose tolerance (group 2), and
eight subjects with normal glucose tolerance (group 3). The following data are the 12-month post-
surgery fasting glucose levels for the three groups.

Group

1.0 92.0
1.0 93.0
1.0 74.0
1.0 80.5
1.0 76.0
1.0 71.0
1.0 75.5
1.0 88.5
1.0 93.0
1.0 80.5
1.0 83.0
1.0 87.0
2.0 79.0
2.0 78.0
2.0 100.0
2.0 76.5
2.0 68.0
3.0 81.5
3.0 75.0
3.0 76.5

(Continued )
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Group

3.0 70.5
3.0 69.0
3.0 73.8
3.0 74.0
3.0 80.0 

Source: Theodore K. Alexandrides,
M.D. Used with permission.

Can we conclude that there is a difference among the means of the three groups? If so, which
pairs of means differ? Let for all tests.

For exercises 34 to 38 do the following:

(a) Indicate which technique studied in this chapter (the completely randomized design, the ran-
domized block design, the repeated measures design, or the factorial experiment) is appropriate.

(b) Identify the response variable and treatment variables.

(c) As appropriate, identify the factors and the number of levels of each, the blocking variables,
and the subjects.

(d) List any extraneous variables whose effects you think might be included in the error term.

(e) As appropriate, comment on carry-over and position effects.

(f) Construct an ANOVA table in which you indicate the sources of variability and the number
of degrees of freedom for each.

34. Johnston and Bowling (A-35) studied the ascorbic acid content (vitamin C) in several orange juice
products. One of the products examined was ready-to-drink juice packaged in a re-sealable, screw-
top container. One analysis analyzed the juice for reduced and oxidized vitamin C content at time
of purchase and reanalyzed three times weekly for 4 to 5 weeks.

35. A study by Pittini et al. (A-36) assessed the effectiveness of a simulator-based curriculum on 30
trainees learning the basic practice of amniocentesis. Pre- and post-training performance were eval-
uated with the same instrument. The outcome variable was the post-training score�pretraining
score. Trainees were grouped by years of postgraduate experience: PGY 0–2, PGY 3–5, Fellows,
and Faculty.

36. Anim-Nyame et al. (A-37) studied three sets of women in an effort to understand factors related
to pre-eclampsia. Enrolled in the study were 18 women with pre-eclampsia, 18 normal pregnant
women, and 18 nonpregnant female matched controls. Blood samples were obtained to measure
plasma levels of vascular endothelial growth factor, leptin, - plasma protein concentrations,
and full blood count.

37. In a study by lwamoto et al. (A-38) 26 women were randomly assigned to the medication alfacal-
cidol for treatment of lumbar bone mineral density (BMD). BMD of the lumbar spine was meas-
ured at baseline and every year for 5 years.

38. Inoue et al. (A-39) studied donor cell type and genotype on the efficiency of mouse somatic cell
cloning. They performed a factorial experiment with two donor cell types (Sertoli cells or cumu-
lus) and six genotypes. Outcome variables were the cleavage rate and the birth rate of pups in each
treatment combination.

aTNF

a = .05
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For the studies described in Exercises 39 through 66, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence inter-
val construction) that you think would yield useful information for the researchers.

(b) Determine p values for each computed test statistic.

(c) State all assumptions that are necessary to validate your analysis.

(d) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

39. Shirakami et al. (A-40) investigated the clinical significance of endothelin (ET), natriuretic peptides,
and the renin-angiotensin-aldosterone system in pediatric liver transplantation. Subjects were chil-
dren ages 6 months to 12 years undergoing living-related liver transplantation due to congenital 
biliary atresia and severe liver cirrhosis. Among the data collected were the following serum total
bilirubin (mg/dl) levels after transplantation (h–hours, d–days):

Time After Reperfusion of Donor Liver
Liver Anhepatic

Preoperative Transection Phase 1 h 2 h 4 h 8 h 1 d 2 d 3 d

6.2 1.2 0.9 0.8 1.1 1.5 2 1.4 1.6 1.3
17.6 11.9 9.3 3.5 3 6.1 9 6.3 6.4 6.2
13.2 10.2 7.9 5.3 4.9 3.3 3.6 2.8 1.9 1.9
3.9 3.3 3 2.9 2.3 1.4 1.2 0.8 0.8 0.9

20.8 19.4 * 9.4 8.4 6.8 7.1 3.7 3.8 3.2
1.8 1.8 1.6 1.4 1.4 1.1 1.9 0.7 0.8 0.7
8.6 6.5 4.8 3.1 2.1 1 1.3 1.5 1.6 3.2

13.4 12 10.1 5.8 5.6 4.5 4.1 3 3.1 3.6
16.8 13.9 8.3 3.7 3.7 2.2 2.1 1.9 3.1 4.1
20.4 17.8 17 10.8 9.3 8.9 7 2.8 3.8 4.8
25 21.5 13.8 7.6 7 5 11.5 12.3 10.1 11.4
9.2 6.3 6.8 5.3 4.8 0.2 4 4.2 3.7 3.5
8 6.5 6.4 4.1 3.8 3.8 3.5 3.1 2.9 2.8
2.9 3 4.1 3.4 3.4 3.7 4.2 3.3 2 1.9

21.3 17.3 13.6 9.2 7.9 7.9 9.8 8.6 4.7 5.5
25 25 24 20.1 19.3 18.6 23.6 25 14.4 20.6
23.3 23.7 15.7 13.2 11 9.6 9.3 7.2 6.3 6.3
17.5 16.2 14.4 12.6 12.7 11.5 10 7.8 5.5 4.9

*Missing observation.
Source: Dr. Gotaro Shirakami. Used with permission.

Note that there is a missing observation in the data set. You may handle this problem in at least
three ways.

(a) Omit the subject whose datum is missing, and analyze the data of the remaining 17 subjects.

(b) Use a computer package that automatically deals with missing data.

(c) Analyze the data using a missing data procedure. For such a procedure, see Jerome L. Myers
and Arnold D. Well, Research Design and Statistical Analysis, Erlbaum Associates, Hillsdale, NJ,
1995, pp. 256–258.



REVIEW QUESTIONS AND EXERCISES 385

40. The purpose of a study by Sakakibara and Hayano (A-41) was to examine the effect of volun-
tarily slowed respiration on the cardiac parasympathetic response to a threat (the anticipation
of an electric shock). Subjects were 30 healthy college students whose mean age was 23 years
with a standard deviation of 1.5 years. An equal number of subjects were randomly assigned
to slow (six males, four females), fast (seven males, three females), and nonpaced (five males,
five females) breathing groups. Subjects in the slow- and fast-paced breathing groups regulated
their breathing rate to 8 and 30 cpm, respectively. The nonpaced group breathed spontaneously.
The following are the subjects’ scores on the State Anxiety Score of State-Trait Anxiety Inven-
tory after baseline and period of threat:

Slow Paced Fast Paced Nonpaced

Baseline Threat Baseline Threat Baseline Threat

39 59 37 49 36 51
44 47 40 42 34 71
48 51 39 48 50 37
50 61 47 57 49 53
34 48 45 49 38 52
54 69 43 44 39 56
34 43 32 45 66 67
38 52 27 54 39 49
44 48 44 44 45 65
39 65 41 61 42 57 

41. Takahashi et al. (A-42) investigated the correlation of magnetic resonance signal intensity with
spinal cord evoked potentials and spinal cord morphology after 5 hours of spinal cord compres-
sion in cats. Twenty-four adult cats were divided into four groups on the basis of a measure of
spinal cord function plus a control group that did not undergo spinal compression. Among the data
collected were the following compression ratio [(sagittal diameter/transverse diameter) ] val-
ues after 5 hours of compression:

* 100

Control 80.542986 Group III 36.923077

79.111111 31.304348
70.535714 53.333333
87.323944 55.276382
80.000000 40.725806

82.222222
Group IV 66.666667

Group I 83.928571 29.565217
84.183673 12.096774
48.181818 34.274194
98.461538 24.000000

Group II 30.263158
34.865900
43.775100
82.439024 Source: Dr. Toshiaki Takahashi.

Used with permission.

Source: Dr. Masahito
Sakakibara. Used
with permission.
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42. The objective of a study by Yamashita et al. (A-43) was to investigate whether pentoxifylline admin-
istered in the flush solution or during reperfusion would reduce ischemia-reperfusion lung injury in
preserved canine lung allografts. Three groups of animals were studied. Pentoxifylline was not admin-
istered to animals in group 1 (C), was administered only during the reperfusion period (P) to animals
in group 2, and was administered only in the flush solution to animals in group 3 (F). A total of 14
left lung allotransplantations were performed. The following are the aortic pressure readings for each
animal during the 6-hour assessment period:

43. In a study investigating the relative bioavailability of beta-carotene (BC) and alpha-carotene (AC)
from different sources of carrots, Zhou et al. (A-44) used ferrets as experimental animals. Among
the data collected were the following concentrations of BC, AC, and AC/BC molar ratios in the
sera of 24 ferrets provided with different sources of carotenoids for 3 days in their drinking water:

0 60 120 180 240 300 360
Group min min min min min min min

C 85.0 100.0 120.0 80.0 72.0 75.0 *
C 85.0 82.0 80.0 80.0 85.0 80.0 80.0
C 100.0 75.0 85.0 98.0 85.0 80.0 82.0
C 57.0 57.0 57.0 30.0 * * *
C 57.0 75.0 52.0 56.0 65.0 95.0 75.0
P 112.0 67.0 73.0 90.0 71.0 70.0 66.0
P 92.0 70.0 90.0 80.0 75.0 80.0 *
P 105.0 62.0 73.0 75.0 70.0 55.0 50.0
P 80.0 73.0 50.0 35.0 * * *
F 70.0 95.0 105.0 115.0 110.0 105.0 100.0
F 60.0 63.0 140.0 135.0 125.0 130.0 120.0
F 67.0 65.0 75.0 75.0 80.0 80.0 80.0
F 115.0 107.0 90.0 103.0 110.0 112.0 95.0
F 90.0 99.0 102.0 110.0 117.0 118.0 103.0

*Missing observation.
Source: Dr. Motohiro Yamashita. Used with permission.

BC AC AC/BC 

Unheated Juice

0.637 0.506 0.795
0.354 0.297 0.840
0.287 0.249 0.869
0.533 0.433 0.813
0.228 0.190 0.833
0.632 0.484 0.767

Heated Juice

0.303 0.266 0.878
0.194 0.180 0.927

(mol>mol)(Mmol>g)(Mmol>g)

(Continued )
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44. Potteiger et al. (A-45) wished to determine if sodium citrate ingestion would improve cycling per-
formance and facilitate favorable metabolic conditions during the cycling ride. Subjects were eight
trained male competitive cyclists whose mean age was 25.4 years with a standard deviation of 6.5.
Each participant completed a 30-km cycling time trial under two conditions, following ingestion
of sodium citrate and following ingestion of a placebo. Blood samples were collected prior to treat-
ment ingestion (PRE-ING); prior to exercising (PRE-EX); during the cycling ride at completion
of 10, 20, and 30 km; and 15 minutes after cessation of exercise (POST-EX). The following are
the values of partial pressures of oxygen (PO2) and carbon dioxide (PCO2) for each subject, under
each condition, at each measurement time:

BC AC AC/BC 

Heated Juice

0.293 0.253 0.864
0.276 0.238 0.859
0.226 0.207 0.915
0.395 0.333 0.843

Unheated Chromoplast

0.994 0.775 0.780
0.890 0.729 0.819
0.809 0.661 0.817
0.321 0.283 0.882
0.712 0.544 0.763
0.949 0.668 0.704

Heated Chromoplast

0.933 0.789 0.845

0.280 0.289 1.031

0.336 0.307 0.916

0.678 0.568 0.837

0.714 0.676 0.947

0.757 0.653 0.862 

(mol>mol)(Mmol>g)(Mmol>g)

PO2 (mm Hg)

Measurement Times

Subject Treatmenta PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

1 1 42.00 20.00 53.00 51.00 56.00 41.00
1 2 43.00 29.00 58.00 49.00 55.00 56.00
2 1 44.00 38.00 66.00 66.00 76.00 58.00
2 2 40.00 26.00 57.00 47.00 46.00 45.00

(Continued)

Source: Dr. Jin-R. Zhou.
Used with permission.



45. Teitge et al. (A-46) describe a radiographic method to demonstrate patellar instability. The 90
subjects ranged in age from 13 to 52 years and were divided into the following four groups on
the basis of clinical findings regarding the nature of instability of the knee: normal (no symp-
toms or signs related to the knee), lateral, medial, and multidirectional instability. Among the
data collected were the following radiographic measurements of the congruence angle
(degrees):
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PO2 (mm Hg)

Measurement Times

Subject Treatmenta PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

3 1 37.00 22.00 59.00 58.00 56.00 52.00
3 2 36.00 30.00 52.00 65.00 65.00 36.00
4 1 34.00 21.00 65.00 62.00 62.00 59.00
4 2 46.00 36.00 65.00 72.00 72.00 66.00
5 1 36.00 24.00 41.00 43.00 50.00 46.00
5 2 41.00 25.00 52.00 60.00 67.00 54.00
6 1 28.00 31.00 52.00 60.00 53.00 46.00
6 2 34.00 21.00 57.00 58.00 57.00 41.00
7 1 39.00 28.00 72.00 69.00 65.00 72.00
7 2 40.00 27.00 64.00 61.00 57.00 60.00
8 1 49.00 27.00 67.00 61.00 51.00 49.00
8 2 27.00 22.00 56.00 64.00 49.00 34.00

PCO2 (mm Hg)

Measurement Times

Subject Treatmenta PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

1 1 31.70 30.20 28.20 29.80 28.20 30.10
1 2 24.60 24.40 34.40 35.20 30.90 34.00
2 1 27.10 35.90 31.30 35.40 34.10 42.00
2 2 21.70 37.90 31.90 39.90 45.10 48.00
3 1 37.40 49.60 39.90 39.70 39.80 42.80
3 2 38.40 42.10 40.90 37.70 37.70 45.60
4 1 36.60 45.50 34.80 33.90 34.00 40.50
4 2 39.20 40.20 31.90 32.30 33.70 45.90
5 1 33.70 39.50 32.90 30.50 28.50 37.20
5 2 31.50 37.30 32.40 31.90 30.20 31.70
6 1 35.00 41.00 38.70 37.10 35.80 40.00
6 2 27.20 36.10 34.70 36.30 34.10 40.60
7 1 28.00 36.50 30.70 34.60 34.30 38.60
7 2 28.40 31.30 48.10 43.70 35.10 34.70
8 1 22.90 28.40 25.70 28.20 32.30 34.80
8 2 41.40 41.80 29.50 29.90 31.30 39.00

Sodium citrate; 
Source: Dr. Jeffrey A. Potteiger. Used with permission.

2 = placebe.a1 =
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Normal Lateral Medial Multidirectional
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Source: Dr. Robert A. Teitge. Used with permission.
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46. A study by Ikeda et al. (A-47) was designed to determine the dose of ipratropium bromide aerosol
that improves exercise performance using progressive cycle ergometry in patients with stable
chronic obstructive pulmonary disease. The mean age of the 20 male subjects was 69.2 years with
a standard deviation of 4.6 years. Among the data collected were the following maximum venti-
lation values at maximum achieved exercise for different ipratropium bromide
dosage levels 1mg2:1VEmax, L /min2
Placebo 40 80 160 240

26 24 23 25 28
38 39 43 43 37
49 46 54 57 52
37 39 39 38 38
34 33 37 37 41
42 38 44 44 42
23 26 28 27 22
38 41 44 37 40
37 37 36 38 39
33 35 34 38 36
40 37 40 46 40
52 58 48 58 63
45 48 47 51 38

(Continued )



48. A study for the development and validation of a sensitive and specific method for quantifying total
activin-A concentrations has been reported on by Knight et al. (A-49). As part of the study they
collected the following peripheral serum concentrations of activin-A in human subjects of differ-
ing reproductive status: normal follicular phase (FP), normal luteal phase (LP), pregnant (PREG),
ovarian hyperstimulated for in vivo fertilization (HYP), postmenopausal (PM), and normal adult
males. Hint: Convert responses to logarithms before performing analysis.
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47. Pertovaara et al. (A-48) compared the effect of skin temperature on the critical threshold temper-
ature eliciting heat pain with the effect of skin temperature on the response latency to the first heat
pain sensation. Subjects were healthy adults between the ages of 23 and 54 years. Among the data
collected were the following latencies (seconds) to the first pain response induced by radiant heat
stimulation at three different skin temperatures:

Placebo 40 80 160 240

24 30 23 27 30
41 37 39 46 42
56 54 51 58 58
35 51 49 51 46
28 41 37 33 38
28 34 34 35 35
38 40 43 39 45

Source: Dr. Akihiko Ikeda. Used with 
permission.

Subject

1 6.4 4.5 3.6
2 8.1 5.7 6.3
3 9.4 6.8 3.2
4 6.75 4.6 3.9
5 10 6.2 6.2
6 4.5 4.2 3.4

Source: Dr. Antti Pertovaara. Used with
permission.

35°C30°C25°C

FP LP PREG HYP PM Male

134.5 78.0 2674.0 253.1 793.1 196.7
159.2 130.4 945.6 294.3 385.1 190.6
133.2 128.3 5507.6 170.2 270.9 185.3
225.0 166.4 7796.5 219.8 640.3 335.4
146.4 115.2 5077.5 165.8 459.8 214.6
180.5 148.9 4541.9 159.0

Source: Dr. Philip G. Knight. Used with permission.
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49. The purpose of a study by Maheux et al. (A-50) was to evaluate the effect of labor on glucose
production and glucose utilization. Subjects were six normal pregnant women. Among the data
collected were the following glucose concentrations during four stages of labor: latent (A1) and
active (A2) phases of cervical dilatation, fetal expulsion (B), and placental expulsion (C).

A1 A2 B C

3.60 4.40 5.30 6.20
3.53 3.70 4.10 3.80
4.02 4.80 5.40 5.27
4.90 5.33 6.30 6.20
4.06 4.65 6.10 6.90
3.97 5.20 4.90 4.60

Source: Dr. Pierre C. Maheux.
Used with permission.

50. Trachtman et al. (A-51) conducted studies (1) to assess the effect of recombinant human (rh) IGF-I on
chronic puromycin aminonucleoside (PAN) nephropathy and (2) to compare the results of rhIGF-I ver-
sus rhGH treatment in a model of focal segmental glomerulosclerosis. As part of the studies, male
Sprague-Dawley rats were divided into four groups: PAN (IA), PAN rhIGF-I (IB), normal (IIA),
and normal rhIGF-I (IIB). The animals yielded the following data on creatinine levels before (pre)
and after 4, 8, and 12 weeks of treatment:

+
+

Group

IA IB IIA IIB

Pre

44 44 44 35
44 44 44 44
44 44 44 44
53 44 44 35
44 44
44 53

4 Weeks

97 44 53 44
88 35 44 53
62 44 44 53
53 35 53 44
62 62
53 53

8 Weeks

53 53 62 44
53 53 53 62

(Continued)



52. To determine the nature and extent to which neurobehavioral changes occur in association with the
toxicity resulting from exposure to excess dietary iron (Fe), Sobotka et al. (A-53) used weanling
male Sprague-Dawley rats as experimental subjects. The researchers randomly assigned the animals,
according to ranked body weights, to one of five diet groups differentiated on the basis of amount
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51. Twelve healthy men, ages 22 through 35 years, yielded the following serum (nmol/L) levels at
0800 hours after 8 (day 1), 32 (day 2), and 56 (day 3) hours of fasting, respectively. Subjects were
participants in a study of fasting-induced alterations in pulsatile glycoprotein secretion conducted
by Samuels and Kramer (A-52).

T3

Group

IA IB IIA IIB

8 Weeks

44 53 62 44
53 44 53 44
62 53
70 62

12 Weeks

88 79 53 53
70 79 62 62
53 79 53 53
70 62 62 53
88 79
88 70

Source: Dr. Howard Trachtman. Used with
permission.

Subject Day Subject Day Subject Day Subject Day

1 88 1 2 115 1 3 119 1 4 164 1
1 73 2 2 77 2 3 93 2 4 120 2
1 59 3 2 75 3 3 65 3 4 86 3

Subject Day Subject Day Subject Day Subject Day

5 93 1 6 119 1 7 152 1 8 121 1
5 91 2 6 57 2 7 70 2 8 107 2
5 113 3 6 44 3 7 74 3 8 133 3

Subject Day Subject Day Subject Day Subject Day

9 108 1 10 124 1 11 102 1 12 131 1
9 93 2 10 97 2 11 56 2 12 83 2
9 75 3 10 74 3 11 58 3 12 66 3

Source: Dr. Mary H. Samuels. Used with permission.

T3T3T3T3

T3T3T3T3

T3T3T3T3
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of Fe present: Control—35 (1), 350 (2), 3500 (3), 4 (iron deficient) (4), and 20,000 (5) ppm, respec-
tively. The following are the body weights of the animals (grams) at the end of 10 weeks.

Diet Weight Diet Weight Diet Weight

1 396 1 335 1 373
2 368 2 349 4 292
3 319 3 302 5 116
4 241 4 220 4 291
5 138 5 118 5 154
1 331 1 394 4 281
2 325 2 300 5 118
3 331 3 285 4 250
4 232 4 237 5 119
5 116 5 113 4 242
1 349 1 377 5 118
2 364 2 366 4 277
3 392 3 269 5 104
4 310 4 344 5 120
5 131 5 Dead 5 102
1 341 1 336
2 399 2 379

3 274 3 195
4 319 4 277
5 131 5 148
1 419 1 301
2 373 2 368
3 Dead 3 308
4 220 4 299
5 146 5 Dead

Source: Dr. Thomas J. Sobotka. Used with permission.

53. Hansen (A-54) notes that brain bilirubin concentrations are increased by hyperosmolality and
hypercarbia, and that previous studies have not addressed the question of whether increased brain
bilirubin under different conditions is due to effects on the entry into or clearance of bilirubin from
brain. In a study, he hypothesized that the kinetics of increased brain bilirubin concentration would
differ in respiratory acidosis (hypercarbia) and hyperosmolality. Forty-four young adult male
Sprague-Dawley rats were sacrificed at various time periods following infusion with bilirubin. The
following are the blood bilirubin levels of 11 animals just prior to sacrifice 60 minutes
after the start of bilirubin infusion:

1mmol /L2
Controls Hypercarbia Hyperosmolality

30 48 102
94 20 118
78 58 74
52 74

Source: Dr. Thor Willy Ruud Hansen. Used with permission.



55. The objective of a study by Strijbos et al. (A-56) was to compare the results of a 12-week 
hospital-based outpatient rehabilitation program (group 1) with those of a 12-week home-care reha-
bilitation program (group 2) in chronic obstructive pulmonary disease with moderate to severe air-
flow limitation. A control group (group 3) did not receive rehabilitation therapy. Among the data
collected were the following breathing frequency scores of subjects 18 months after rehabilitation:
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54. Johansson et al. (A-55) compared the effects of short-term treatments with growth hormone (GH)
and insulin-like growth factor I (IGF-I) on biochemical markers of bone metabolism in men with
idiopathic osteoporosis. Subjects ranged in age from 32 to 57 years. Among the data collected were
the following serum concentrations of IGF binding protein-3 at 0 and 7 days after first injection and
1, 4, 8, and 12 weeks after last injection with GH and IGF-I.

Patient 0 7 1 4 8 12 
No. Treatment Day Days Week Weeks Weeks Weeks

1 GH 4507 4072 3036 2484 3540 3480
1 IGF-I 3480 3515 4003 3667 4263 4797
2 GH 2055 4095 2315 1840 2483 2354
2 IGF-I 2354 3570 3630 3666 2700 2782
3 GH 3178 3574 3196 2365 4136 3088
3 IGF-I 3088 3405 3309 3444 2357 3831
4 IGF-I 2905 2888 2797 3083 3376 3464
4 GH 3464 5874 2929 3903 3367 2938
5 GH 4142 4465 3967 4213 4321 4990
5 IGF-I 4990 4590 2989 4081 4806 4435
6 IGF-I 3504 3529 4093 4114 4445 3622
6 GH 3622 6800 6185 4247 4450 4199
7 IGF-I 5130 4784 4093 4852 4943 5390
7 GH 5390 5188 4788 4602 4926 5793
8 IGF-I 3074 2691 2614 3003 3145 3161
8 GH 3161 4942 3222 2699 3514 2963
9 GH 3228 5995 3315 2919 3235 4379
9 IGF-I 4379 3548 3339 2379 2783 3000

10 IGF-I 5838 5025 4137 5777 5659 5628
10 GH 5628 6152 4415 5251 3334 3910
11 GH 2304 4721 3700 3228 2440 2698
11 IGF-I 2698 2621 3072 2383 3075 2822

Source: Dr. Anna G. Johansson. Used with permission.

Group Group

1 2 3 1 2 3

12 16 24 12 16 24
16 14 16 12 12 14
16 12 18 14 12 15
14 12 18 16 12 16

(Continued)
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56. Seven healthy males (mean age 27.4 years with a standard deviation of 4.4) participated in a study
by Lambert et al. (A-57), who measured intestinal absorption following oral ingestion and intestinal
perfusion of a fluid. As part of the study the researchers recorded the following percent changes
in plasma volume at six points during 85 minutes of cycle exercise in the drinking and infusion
experiments:

Group Group

1 2 3 1 2 3

12 18 24 12 12 16
12 12 24 12 15 18
12 10 18 20 16

Source: Dr. Jaap H. Strijbos. Used with permission.

Subject 1 2 3

1

2

3
Drinking

4

5

6

7

8

9

10

Infusion 11

12 1.77828157

13

14

Subject 4 5 6

1

2 5.13333985

3

Drinking 4

5

6

7 -6.34285620-5.21535350-5.94416340

-7.51168220-7.86923080-4.22938570

-6.26313790-5.12242600-5.50433470

-14.43982000-17.63314100-15.36239700

-5.65380700-3.33795970-4.19974130

-9.02789810-8.40517240

-7.84726700-7.89172340-7.35202650

-5.18045500-5.7725485-7.0497788

-7.07086340-5.4111706-7.1160660

-2.9830660-6.9487760

-11.12140900-9.7651132-10.7192870

-2.49740390-1.3448910-4.2410016

-6.38160030-8.9029745-8.8259516

-10.77312900-11.7186910-13.5391010

-5.07020210-6.5752716-6.9787024

-3.52995560-7.5700000-9.7100000

-3.57781750-5.8845683-5.8845683

-16.61268200-14.4165470-15.0291920

-7.06516950-5.9062747-9.7418719

-10.46486300-5.1496679-12.1966790

-8.02277330-7.4902674-8.4151514

(Continued)



57. Roemer et al. (A-58) developed a self-report measure of generalized anxiety disorder (GAD) for
use with undergraduate populations. In reliability studies the undergraduate subjects completed the
GAD questionnaire (GAD-Q) as well as the Penn State Worry Questionnaire (PSWQ). The fol-
lowing are the PSWQ scores made by four groups of subjects determined by their GAD status:
GAD by questionnaire, Study II (group 1); non-GAD by questionnaire, Study II (group 2); GAD
by questionnaire, Study I (group 3); and clinical GAD (group 4).
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Subject 4 5 6

8

9

10

Infusion 11

12 2.28844839 2.59034233 1.56622058

13

14

Source: Dr. C. V. Gisolfi. Used with permission.

-8.44542770-8.38462720-7.92841880

-9.45689580-10.60663700-8.35430040

-12.64667500-15.98360700-12.13053100

-2.81811090-5.58572150-1.01234570

-7.37350920-6.38160030-5.69396590

-8.26411320-12.40814000-11.64145400

Group

1 2 3 4

59.0 50.0 46.0 65.0 65.0
51.0 28.0 77.0 62.0 66.0
58.0 43.0 80.0 76.0 69.0
61.0 36.0 60.0 66.0 73.0
64.0 36.0 59.0 78.0 67.0
68.0 30.0 56.0 76.0 78.0
64.0 24.0 44.0 74.0 76.0
67.0 39.0 71.0 73.0 66.0
56.0 29.0 54.0 61.0 55.0
78.0 48.0 64.0 63.0 59.0
48.0 36.0 66.0 75.0 44.0
62.0 38.0 59.0 63.0 68.0
77.0 42.0 68.0 55.0 64.0
72.0 26.0 59.0 67.5 41.0
59.0 35.0 61.0 70.0 54.0

32.0 78.0 70.0 72.0
43.0 70.0 55.0 74.0
55.0 74.0 73.0 59.0
42.0 73.0 80.0 63.0
37.0 79.0 51.0
36.0 79.0 72.0
41.0 61.0 63.0
36.0 61.0 58.0
34.0 72.0 71.0

(Continued)
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Group

1 2 3 4

42.0 67.0
35.0 74.0
51.0 65.0
37.0 68.0
50.0 72.0
39.0 75.0

56.0

Source: Dr. T. D. Borkovec. Used with permission.

58. Noting that non-Hodgkin’s lymphomas (NHL) represent a heterogeneous group of diseases in
which prognosis is difficult to predict, Christiansen et al. (A-59) report on the prognostic aspects
of soluble intercellular adhesion molecule-1 (sICAM-1) in NHL. Among the data collected were
the following serum sICAM-1 (ng/ml) levels in four groups of subjects: healthy controls (C), high-
grade NHL (hNHL), low-grade NHL (lNHL), and patients with hairy cell leukemia (HCL).

C hNHL lNHL HCL

309 460 844 824 961 581 382
329 222 503 496 1097 601 975
314 663 764 656 1099 572 663
254 1235 1088 1038 625 439 429
304 500 470 1050 473 1135 1902
335 739 806 446 654 590 1842
381 1847 482 1218 508 404 314
456 477 734 511 454 382 430
294 818 616 317 889 692 645
450 585 836 334 805 484 637
422 1837 1187 1026 541 438 712
528 362 581 534 655 787 581
461 671 381 292 654 77 860
286 375 699 782 1859 478 448
309 543 1854 1136 619 602 735
226 352 769 476 1837 802
388 443 510 534 568
377 359 571 424 665
310 383 1248 571
261 587 784 420
350 648 514 408
405 782 678 391
319 472 1264 493
289 506 618 1162
310 663 1123 460
227 873 912 1113

(Continued)



59. Cossette et al. (A-60) examined gender and kinship with regard to caregivers’ use of informal and
formal support and to two models of support. Among the data collected were the following ages
of three groups of caregivers of a demented relative living at home: husbands, wives, and adult
daughters.
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C hNHL lNHL HCL

206 987 520 572
226 859 1867 653
309 1193 485 1340
382 1836 287 656
325 691 455

522

Source: Dr. Ilse Christiansen. Used with permission.

Husband Wife Daughter

64 66 73 59 67 40 50
70 58 71 66 67 47 58
55 81 70 80 57 46 46
67 77 71 76 53 45 47
79 76 56 68 50 69 50
67 64 68 53 70 48 53
77 82 76 78 70 53 57
68 85 67 75 50 65
72 63 66 74 47 50
67 72 67 86 62 43
77 77 72 63 55 59
70 79 72 52 49 44
65 63 70 55 43 45
65 80 66 71 44 41
74 70 73 67 47 50
86 85 78 78 57 58
72 76 64 70 49 35
71 67 78 68 50
78 72 59 78 59
71 60 71 59 45
88 74 70 72 50
77 65 67 73 48
75 53 78 75 51
66 70 67 54 46
80 72 55 65 62
76 74 64 67 55
67 79 69 83 50
65 63 59 70 43
62 77 55 72 39
82 78 75 71 50

(Continued)
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60. Tasaka et al. (A-61) note that Corynebacterium parvum (CP) increases susceptibility to endo-
toxin, which is associated with increased production of tumor necrosis factor (TNF). They inves-
tigated the effect of CP-priming on the pathogenesis of acute lung injury caused by intratracheal
Escherichia coli endotoxin (lipopolysaccharide [LPS]). Experimental animals consisted of
female guinea pigs divided into four groups. Animals in two groups received a 4-mg/kg treat-
ment of CP 7 days before the study. Subsequently, nonpretreated animals received either saline
alone (Control) or endotoxin (LPS-alone). The pretreated groups received either saline (CP-
alone) or LPS Among the data collected were the following values of lung tissue-
to-plasma ratio of radio-iodized serum albumin assay:

1CP + LPS2.

Husband Wife Daughter

75 69 68 76 50
80 65 74 43
74 81 68 28
70 79 69

75 72

Source: Sylvie Cossette, M.Sc., R.N. Used with permission.

Control CP-alone LPS-alone

0.12503532 0.18191647 0.17669093 0.3651166
0.10862729 0.30887462 0.25344761 0.64062964
0.10552931 0.25011885 0.17372285 0.39208734
0.15587316 0.23858085 0.1786867 0.49942059
0.13672624 0.26558231 0.22209666 0.85718475
0.11290446 0.32298454 0.27064831 0.93030465

Source: Dr. Sadatomo Tasaka. Used with permission.

CP � LPS

61. According to Takahashi et al. (A-62) research indicates that there is an association between alter-
ations in calcium metabolism and various bone diseases in patients with other disabilities. Using
subjects with severe mental retardation (mean age 16 years) who had been living in institutions
for most of their lives, Takahashi et al. examined the relationship between bone change and other
variables. Subjects were divided into groups on the basis of severity of bone change. Among the
data collected were the following serum alkaline phosphatase (IU/L) values:

Grade I: 109, 86, 79, 103, 47, 105, 188, 96, 249

Grade II: 86, 106, 164, 146, 111, 263, 162, 111

Grade III: 283, 201, 208, 301, 135, 192, 135, 83, 193, 175, 174, 193, 224, 
192, 233

Source: Dr. Mitsugi Takahashi. Used with permission.

62. Research indicates that dietary copper deficiency reduces growth rate in rats. In a related study,
Allen (A-63) assigned weanling male Sprague-Dawley rats to one of three food groups: cop-
per-deficient (CuD), copper-adequate (CuA), and pair-fed (PF). Rats in the PF group were ini-
tially weight-matched to rats of the CuD group and then fed the same weight of the CuA diet
as that consumed by their CuD counterparts. After 20 weeks, the rats were anesthetized, blood



Body Heart Liver Kidney Spleen
Weight Weight Weight Weight Weight

Rat Diet (BW)(g) (HW)(g) (LW)(g) (KW)(g) (SW)(g)

1 253.66 0.89 2.82 1.49 0.41
2 400.93 1.41 3.98 2.15 0.76
3 CuD 355.89 1.24 5.15 2.27 0.69
4 404.70 2.18 4.77 2.99 0.76

6 397.28 0.99 2.34 1.84 0.50
7 421.88 1.20 3.26 2.32 0.79
8 PF 386.87 0.88 3.05 1.86 0.84
9 401.74 1.02 2.80 2.06 0.76

10 437.56 1.22 3.94 2.25 0.75

11 490.56 1.21 4.51 2.30 0.78
12 528.51 1.34 4.38 2.75 0.76
13 CuA 485.51 1.36 4.40 2.46 0.82
14 509.50 1.27 4.67 2.50 0.79
15 489.62 1.31 5.83 2.74 0.81

HW/BW LW/BW KW/BW SW/BW Ceruloplasmin 
Rat Diet (g/100 g) (g/100 g) (g/100 g) (g/100 g) (mg/dl)

1 0.00351 0.01112 0.00587 0.00162 nd
2 0.00352 0.00993 0.00536 0.00190 5.27
3 CuD 0.00348 0.01447 0.00638 0.00194 4.80
4 0.00539 0.01179 0.00739 0.00188 4.97

6 0.00249 0.00589 0.00463 0.00126 35.30

7 0.00284 0.00773 0.00550 0.00187 39.00

8 PF 0.00227 0.00788 0.00481 0.00217 28.00

9 0.00254 0.00697 0.00513 0.00189 34.20

10 0.00279 0.00900 0.00514 0.00171 45.20

11 0.00247 0.00919 0.00469 0.00159 34.60

12 0.00254 0.00829 0.00520 0.00144 39.00

13 CuA 0.00280 0.00906 0.00507 0.00169 37.10

14 0.00249 0.00917 0.00491 0.00155 33.40

15 0.00268 0.01191 0.00560 0.00165 37.30

nd, no data.
Source: Corrie B. Allen. Used with permission.
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samples were drawn, and organs were harvested. As part of the study the following data were
collected:

63. Hughes et al. (A-64) point out that systemic complications in acute pancreatitis are largely respon-
sible for mortality associated with the disease. They note further that proinflammatory cytokines, par-
ticularly TNF , may play a central role in acute pancreatitis by mediating the systemic sequelae. Ina



REVIEW QUESTIONS AND EXERCISES 401

their research they used a bile-infusion model of acute pancreatitis to show amelioration of disease
severity as well as an improvement in overall survival by TNF inhibition. Experimental material
consisted of adult male Sprague-Dawley rats weighing between 250 and 300 grams divided into three
groups: untreated (bile solution infused without treatment); treated (bile solution infused preceded by
treatment with polyclonal anti-TNF antibody); and sham (saline infused). Among the data collected
were the following hematocrit (%) values for animals surviving more than 48 hours:

a

a

Sham Untreated Treated

38 56 40
40 60 42
32 50 38
36 50 46
40 50 36
40 35
38 40
40 40
38 55
40 35

36
40
40
35
45

Source: Dr. A. Osama Gaber. Used 
with permission.

64. A study by Smárason et al. (A-65) was motivated by the observations of other researchers that sera
from pre-eclamptic women damaged cultured human endothelial cells. Subjects for the present study
were women with pre-eclampsia, matched control women with normal pregnancies, and nonpreg-
nant women of childbearing age. Among the data collected were the following observations on a
relevant variable measured on subjects in the three groups.

Pre-Eclampsia Pregnant Controls Nonpregnant Controls

113.5 91.4 94.5
106.6 95.6 115.9
39.1 113.1 107.2
95.5 100.8 103.2
43.5 88.2 104.7
49.2 92.2 94.9
99.5 78.6 93.0

102.9 96.9 100.4
101.2 91.6 107.1
104.9 108.6 105.5
75.4 77.3 119.3
71.1 100.0 88.2
73.9 61.7 82.2

(Continued)
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65. The objective of a study by LeRoith et al. (A-66) was to evaluate the effect of a 7-week adminis-
tration of recombinant human GH (rhGH) and recombinant human insulin-like growth factor
(rhIGF-I) separately and in combination on immune function in elderly female rhesus monkeys. The
assay for the in vivo function of the immune system relied on the response to an immunization with
tetanus toxoid. The following are the responses for the three treatment groups and a control group:

Saline rhIGF-I rhGH rhIGF-I � rhGH

11.2 12.2 12.15 11.5
9.0 9.4 11.20 12.4

10.8 10.7 10.60 10.8
10.0 10.8 11.30 11.9

9.1 11.00 11.0
12.6

Source: Dr. Jack A. Yanowski. Used with permission.

66. Hampl et al. (A-67) note that inhaled nitric oxide (NO) is a selective pulmonary vasodilator. They
hypothesized that a nebulized diethylenetriamine/NO (DETA/NO) would stay in the lower air-
ways and continuously supply sufficient NO to achieve sustained vasodilation in chronic pulmonary
hypertension. Experimental material consisted of adult, male, specific pathogen-free Sprague-
Dawley rats randomly divided into four groups: untreated, pulmonary normotensive controls;
monocrotaline-injected (to induce hypertension) with no treatment (MCT); monocrotaline-injected
treated with either a 5- dose or a 50- dose of DETA/NO. Nineteen days after inducing
pulmonary hypertension in the two groups of rats, the researchers began the treatment procedure,
which lasted for 4 days. They collected, among other data, the following measurements on car-
diac output for the animals in the four groups:

MCT � DETA/NO

Control MCT 5 mol 50 mol

71.8 42.8 72.5 47.1
66.1 53.2 62.9 86.6
67.6 56.1 58.9 56.0
66.4 56.5 69.3

Source: Dr. Stephen L. Archer. Used with permission.

MM

mmolmmol

Pre-Eclampsia Pregnant Controls Nonpregnant Controls

76.0 83.3 125.0
81.3 103.6 126.1
72.7 92.3 129.1
75.3 98.6 106.9
55.2 85.0 110.0
90.5 128.2 127.3
55.8 88.3 128.6

Source: Dr. Alexander Smárason. Used with permission.
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Exercises for Use with Large Data Sets Available on the Following Website: 
www.wiley.com/college/daniel

1. In Kreiter et al. (A-68) medical school exams were delivered via computer format. Because there
were not enough computer stations to test the entire class simultaneously, the exams were admin-
istered over 2 days. Both students and faculty wondered if students testing on day 2 might have
an advantage due to extra study time or a breach in test security. Thus, the researchers examined
a large medical class tested over 2 days with three 2-hour 80-item multiple-choice
exams. Students were assigned testing days via pseudorandom assignment. Of interest was whether
taking a particular exam on day 1 or day 2 had a significant impact on scores. Use the data set
MEDSCORES to determine if test, day, or interaction has significant impact on test scores. Let

2. Refer to the serum lipid-bound sialic acid data on 1400 subjects (LSADATA). We wish to con-
duct a study to determine if the measurement of serum lipid-bound sialic acid (LSA) might be
of use in the detection of breast cancer. The LSA measurements (mg/dl) are for four populations
of subjects: normal controls, A; patients with benign breast disease, B; patients with primary
breast cancer, C; and patients with recurrent metastatic breast cancer, D. Select a simple random
sample of size 10 from each population and perform an appropriate analysis to determine if we
may conclude that the four population means are different. Let and determine the p value.
Test all possible pairs of sample means for significance. What conclusions can one draw from
the analysis? Prepare a verbal report of the findings. Compare your results with those of your
classmates.

3. Refer to the serum angiotensin-converting enzyme data on 1600 subjects (SACEDATA). Sarcoido-
sis, found throughout the world, is a systemic granulomatous disease of unknown cause. The assay
of serum angiotensin-converting enzyme (SACE) is helpful in the diagnosis of active sarcoidosis.
The activity of SACE is usually increased in patients with the disease, while normal levels occur
in subjects who have not had the disease, those who have recovered, and patients with other gran-
ulomatous disorders. The data are the SACE values for four populations of subjects classified
according to status regarding sarcoidosis: never had, A; active, B; stable, C; recovered, D. Select
a simple random sample of 15 subjects from each population and perform an analysis to deter-
mine if you can conclude that the population means are different. Let Use Tukey’s test
to test for significant differences among individual pairs of means. Prepare a written report on your
findings. Compare your results with those of your classmates.

4. Refer to the urinary colony-stimulating factor data on 1500 subjects (CSFDATA). The data are the
urinary colony-stimulating factor (CSF) levels in five populations: normal subjects and subjects
with four different diseases. Each observation represents the mean colony count of four plates from
a single urine specimen from a given subject. Select a simple random sample of size 15 from each
of the five populations and perform an analysis of variance to determine if one may conclude that
the population means are different. Let Use Tukey’s HSD statistic to test for significant
differences among all possible pairs of sample means. Prepare a narrative report on the results of
your analysis. Compare your results with those of your classmates.

5. Refer to the red blood cell data on 1050 subjects (RBCDATA). Suppose that you are a statistical
consultant to a medical researcher who is interested in learning something about the relationship
between blood folate concentrations in adult females and the quality of their diet. The researcher
has available three populations of subjects: those whose diet quality is rated as good, those whose
diets are fair, and those with poor diets. For each subject there is also available her red blood cell
(RBC) folate value (in of red cells). Draw a simple random sample of size 10 from each
population and determine whether the researcher can conclude that the three populations differ

mg/ liter

a = .05.

a = .05.

a = .05

a = .05.

1n = 1932

www.wiley.com/college/daniel
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with respect to mean RBC folate value. Use Tukey’s test to make all possible comparisons. Let
and find the p value for each test. Compare your results with those of your classmates.

6. Refer to the serum cholesterol data on 350 subjects under three diet regimens (SERUMCHO).
Three-hundred-fifty adult males between the ages of 30 and 65 participated in a study to inves-
tigate the relationship between the consumption of meat and serum cholesterol levels. Each sub-
ject ate beef as his only meat for a period of 20 weeks, pork as his only meat for another period
of 20 weeks, and chicken or fish as his only meat for another 20-week period. At the end of
each period serum cholesterol determinations (mg /100 ml) were made on each subject. Select
a simple random sample of 10 subjects from the population of 350. Use two-way analysis of
variance to determine whether one should conclude that there is a difference in population mean
serum cholesterol levels among the three diets. Let Compare your results with those
of your classmates.
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CHAPTER OVERVIEW

This chapter provides an introduction and overview of two common tech-
niques for exploring the strength of the relationship between two variables.
The first technique, linear regression, will help us find an objective way to pre-
dict or estimate the value of one variable given a value of another variable.
The second technique, correlation, will help us find an objective measure of
the strength of the relationship between two variables.

TOPICS

9.1 INTRODUCTION

9.2 THE REGRESSION MODEL

9.3 THE SAMPLE REGRESSION EQUATION

9.4 EVALUATING THE REGRESSION EQUATION

9.5 USING THE REGRESSION EQUATION

9.6 THE CORRELATION MODEL

9.7 THE CORRELATION COEFFICIENT

9.8 SOME PRECAUTIONS

9.9 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. be able to obtain a simple linear regression model and use it to make predictions.
2. be able to calculate the coefficient of determination and to interpret tests of

regression coefficients.
3. be able to calculate correlations among variables.
4. understand how regression and correlation differ and when the use of each is

appropriate.

CHAPTER 9
SIMPLE LINEAR REGRESSION
AND CORRELATION



9.1 INTRODUCTION

In analyzing data for the health sciences disciplines, we find that it is frequently desir-
able to learn something about the relationship between two numeric variables. We may,
for example, be interested in studying the relationship between blood pressure and age,
height and weight, the concentration of an injected drug and heart rate, the consumption
level of some nutrient and weight gain, the intensity of a stimulus and reaction time, or
total family income and medical care expenditures. The nature and strength of the rela-
tionships between variables such as these may be examined by regression and correla-
tion analysis, two statistical techniques that, although related, serve different purposes.

Regression Regression analysis is helpful in assessing specific forms of the relation-
ship between variables, and the ultimate objective when this method of analysis is
employed usually is to predict or estimate the value of one variable corresponding to a
given value of another variable. The ideas of regression were first elucidated by the Eng-
lish scientist Sir Francis Galton (1822–1911) in reports of his research on heredity—first
in sweet peas and later in human stature. He described a tendency of adult offspring, hav-
ing either short or tall parents, to revert back toward the average height of the general pop-
ulation. He first used the word reversion, and later regression, to refer to this phenomenon.

Correlation Correlation analysis, on the other hand, is concerned with measuring the
strength of the relationship between variables. When we compute measures of correlation
from a set of data, we are interested in the degree of the correlation between variables.
Again, the concepts and terminology of correlation analysis originated with Galton, who
first used the word correlation in 1888.

In this chapter our discussion is limited to the exploration of the linear relation-
ship between two variables. The concepts and methods of regression are covered first,
beginning in the next section. In Section 9.6 the ideas and techniques of correlation are
introduced. In the next chapter we consider the case where there is an interest in the
relationships among three or more variables.

Regression and correlation analysis are areas in which the speed and accuracy of
a computer are most appreciated. The data for the exercises of this chapter, therefore,
are presented in a way that makes them suitable for computer processing. As is always
the case, the input requirements and output features of the particular programs and
software packages to be used should be studied carefully.

9.2 THE REGRESSION MODEL

In the typical regression problem, as in most problems in applied statistics, researchers
have available for analysis a sample of observations from some real or hypothetical
population. Based on the results of their analysis of the sample data, they are interested
in reaching decisions about the population from which the sample is presumed to have
been drawn. It is important, therefore, that the researchers understand the nature of the
population in which they are interested. They should know enough about the population
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to be able either to construct a mathematical model for its representation or to determine
if it reasonably fits some established model. A researcher about to analyze a set of data
by the methods of simple linear regression, for example, should be secure in the knowledge
that the simple linear regression model is, at least, an approximate representation of the
population. It is unlikely that the model will be a perfect portrait of the real situation,
since this characteristic is seldom found in models of practical value. A model con-
structed so that it corresponds precisely with the details of the situation is usually too
complicated to yield any information of value. On the other hand, the results obtained
from the analysis of data that have been forced into a model that does not fit are also
worthless. Fortunately, however, a perfectly fitting model is not a requirement for obtaining
useful results. Researchers, then, should be able to distinguish between the occasion
when their chosen models and the data are sufficiently compatible for them to proceed and
the case where their chosen model must be abandoned.

Assumptions Underlying Simple Linear Regression In the sim-
ple linear regression model two variables, usually labeled X and Y, are of interest. The
letter X is usually used to designate a variable referred to as the independent variable,
since frequently it is controlled by the investigator; that is, values of X may be selected
by the investigator and, corresponding to each preselected value of X, one or more values
of another variable, labeled Y, are obtained. The variable, Y, accordingly, is called
the dependent variable, and we speak of the regression of Y on X. The following are the
assumptions underlying the simple linear regression model.

1. Values of the independent variable X are said to be “fixed.” This means that the
values of X are preselected by the investigator so that in the collection of the data
they are not allowed to vary from these preselected values. In this model, X is
referred to by some writers as a nonrandom variable and by others as a mathemat-
ical variable. It should be pointed out at this time that the statement of this assump-
tion classifies our model as the classical regression model. Regression analysis also
can be carried out on data in which X is a random variable.

2. The variable X is measured without error. Since no measuring procedure is perfect,
this means that the magnitude of the measurement error in X is negligible.

3. For each value of X there is a subpopulation of Y values. For the usual inferential
procedures of estimation and hypothesis testing to be valid, these subpopulations
must be normally distributed. In order that these procedures may be presented it
will be assumed that the Y values are normally distributed in the examples and
exercises that follow.

4. The variances of the subpopulations of Y are all equal and denoted by .

5. The means of the subpopulations of Y all lie on the same straight line. This is known
as the assumption of linearity. This assumption may be expressed symbolically as

(9.2.1)

where is the mean of the subpopulation of Y values for a particular value of
X, and and are called the population regression coefficients. Geometrically,

and represent the y-intercept and slope, respectively, of the line on which
all of the means are assumed to lie.

b1b0

b1b0

my|x

my|x = b0 + b1x

s2
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6. The Y values are statistically independent. In other words, in drawing the sample,
it is assumed that the values of Y chosen at one value of X in no way depend on
the values of Y chosen at another value of X.

These assumptions may be summarized by means of the following equation, which
is called the regression model:

(9.2.2)

where y is a typical value from one of the subpopulations of Y, and are as defined
for Equation 9.2.1, and is called the error term. If we solve 9.2.2 for , we have

(9.2.3)

and we see that shows the amount by which y deviates from the mean of the subpop-
ulation of Y values from which it is drawn. As a consequence of the assumption that the
subpopulations of Y values are normally distributed with equal variances, the ’s for each
subpopulation are normally distributed with a variance equal to the common variance of
the subpopulations of Y values.

The following acronym will help the reader remember most of the assumptions
necessary for inference in linear regression analysis:

LINE [Linear (assumption 5), Independent (assumption 6), Normal (assumption 3),
Equal variances (assumption 4)]

A graphical representation of the regression model is given in Figure 9.2.1.

P

P

= y - my ƒx

P = y - 1b0 + b1x2 PP
b1b0

y = b0 + b1x + P
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9.3 THE SAMPLE REGRESSION EQUATION

In simple linear regression the object of the researcher’s interest is the population regres-
sion equation—the equation that describes the true relationship between the dependent
variable Y and the independent variable X. The variable designated by Y is sometimes
called the response variable and X is sometimes called the predictor variable.

In an effort to reach a decision regarding the likely form of this relationship, the
researcher draws a sample from the population of interest and using the resulting data,
computes a sample regression equation that forms the basis for reaching conclusions
regarding the unknown population regression equation.

Steps in Regression Analysis In the absence of extensive information
regarding the nature of the variables of interest, a frequently employed strategy is to
assume initially that they are linearly related. Subsequent analysis, then, involves the fol-
lowing steps.

1. Determine whether or not the assumptions underlying a linear relationship are met
in the data available for analysis.

2. Obtain the equation for the line that best fits the sample data.

3. Evaluate the equation to obtain some idea of the strength of the relationship and
the usefulness of the equation for predicting and estimating.

4. If the data appear to conform satisfactorily to the linear model, use the equation
obtained from the sample data to predict and to estimate.

When we use the regression equation to predict, we will be predicting the value
Y is likely to have when X has a given value. When we use the equation to estimate,
we will be estimating the mean of the subpopulation of Y values assumed to exist at
a given value of X. Note that the sample data used to obtain the regression equation
consist of known values of both X and Y. When the equation is used to predict and
to estimate Y, only the corresponding values of X will be known. We illustrate
the steps involved in simpler linear regression analysis by means of the following
example.

EXAMPLE 9.3.1

Després et al. (A-1) point out that the topography of adipose tissue (AT) is associated
with metabolic complications considered as risk factors for cardiovascular disease. It
is important, they state, to measure the amount of intraabdominal AT as part of the
evaluation of the cardiovascular-disease risk of an individual. Computed tomography
(CT), the only available technique that precisely and reliably measures the amount of
deep abdominal AT, however, is costly and requires irradiation of the subject. In addi-
tion, the technique is not available to many physicians. Després and his colleagues con-
ducted a study to develop equations to predict the amount of deep abdominal AT from
simple anthropometric measurements. Their subjects were men between the ages of 18
and 42 years who were free from metabolic disease that would require treatment.
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Among the measurements taken on each subject were deep abdominal AT obtained by
CT and waist circumference as shown in Table 9.3.1. A question of interest is how
well one can predict and estimate deep abdominal AT from knowledge of the waist
circumference. This question is typical of those that can be answered by means of
regression analysis. Since deep abdominal AT is the variable about which we wish to
make predictions and estimations, it is the dependent variable. The variable waist meas-
urement, knowledge of which will be used to make the predictions and estimations, is
the independent variable.
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TABLE 9.3.1 Waist Circumference (cm), X, and Deep Abdominal AT, Y, of 109 Men

Subject X Y Subject X Y Subject X Y

1 74.75 25.72
2 72.60 25.89
3 81.80 42.60
4 83.95 42.80
5 74.65 29.84
6 71.85 21.68
7 80.90 29.08
8 83.40 32.98
9 63.50 11.44

10 73.20 32.22
11 71.90 28.32
12 75.00 43.86
13 73.10 38.21
14 79.00 42.48
15 77.00 30.96
16 68.85 55.78
17 75.95 43.78
18 74.15 33.41
19 73.80 43.35
20 75.90 29.31
21 76.85 36.60
22 80.90 40.25
23 79.90 35.43
24 89.20 60.09
25 82.00 45.84
26 92.00 70.40
27 86.60 83.45
28 80.50 84.30
29 86.00 78.89
30 82.50 64.75
31 83.50 72.56
32 88.10 89.31
33 90.80 78.94
34 89.40 83.55
35 102.00 127.00
36 94.50 121.00
37 91.00 107.00

38 103.00 129.00
39 80.00 74.02
40 79.00 55.48
41 83.50 73.13
42 76.00 50.50
43 80.50 50.88
44 86.50 140.00
45 83.00 96.54
46 107.10 118.00
47 94.30 107.00
48 94.50 123.00
49 79.70 65.92
50 79.30 81.29
51 89.80 111.00
52 83.80 90.73
53 85.20 133.00
54 75.50 41.90
55 78.40 41.71
56 78.60 58.16
57 87.80 88.85
58 86.30 155.00
59 85.50 70.77
60 83.70 75.08
61 77.60 57.05
62 84.90 99.73
63 79.80 27.96
64 108.30 123.00
65 119.60 90.41
66 119.90 106.00
67 96.50 144.00
68 105.50 121.00
69 105.00 97.13
70 107.00 166.00
71 107.00 87.99
72 101.00 154.00
73 97.00 100.00
74 100.00 123.00

75 108.00 217.00
76 100.00 140.00
77 103.00 109.00
78 104.00 127.00
79 106.00 112.00
80 109.00 192.00
81 103.50 132.00
82 110.00 126.00
83 110.00 153.00
84 112.00 158.00
85 108.50 183.00
86 104.00 184.00
87 111.00 121.00
88 108.50 159.00
89 121.00 245.00
90 109.00 137.00
91 97.50 165.00
92 105.50 152.00
93 98.00 181.00
94 94.50 80.95
95 97.00 137.00
96 105.00 125.00
97 106.00 241.00
98 99.00 134.00
99 91.00 150.00

100 102.50 198.00
101 106.00 151.00
102 109.10 229.00
103 115.00 253.00
104 101.00 188.00
105 100.10 124.00
106 93.30 62.20
107 101.80 133.00
108 107.90 208.00
109 108.50 208.00

Source: Jean-Pierre Després, Ph.D. Used with permission.



The Scatter Diagram

A first step that is usually useful in studying the relationship between two variables is to
prepare a scatter diagram of the data such as is shown in Figure 9.3.1. The points are
plotted by assigning values of the independent variable X to the horizontal axis and val-
ues of the dependent variable Y to the vertical axis.

The pattern made by the points plotted on the scatter diagram usually suggests the
basic nature and strength of the relationship between two variables. As we look at Figure
9.3.1, for example, the points seem to be scattered around an invisible straight line. The
scatter diagram also shows that, in general, subjects with large waist circumferences also
have larger amounts of deep abdominal AT. These impressions suggest that the relationship
between the two variables may be described by a straight line crossing the Y-axis below the
origin and making approximately a 45-degree angle with the X-axis. It looks as if it would
be simple to draw, freehand, through the data points the line that describes the relationship
between X and Y. It is highly unlikely, however, that the lines drawn by any two people
would be exactly the same. In other words, for every person drawing such a line by eye, or
freehand, we would expect a slightly different line. The question then arises as to which
line best describes the relationship between the two variables. We cannot obtain an answer
to this question by inspecting the lines. In fact, it is not likely that any freehand line drawn
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through the data will be the line that best describes the relationship between X and Y, since
freehand lines will reflect any defects of vision or judgment of the person drawing the line.
Similarly, when judging which of two lines best describes the relationship, subjective eval-
uation is liable to the same deficiencies.

What is needed for obtaining the desired line is some method that is not fraught
with these difficulties.

The Least-Squares Line

The method usually employed for obtaining the desired line is known as the method of
least squares, and the resulting line is called the least-squares line. The reason for call-
ing the method by this name will be explained in the discussion that follows.

We recall from algebra that the general equation for a straight line may be written as

(9.3.1)

where y is a value on the vertical axis, x is a value on the horizontal axis, a is the point
where the line crosses the vertical axis, and b shows the amount by which y changes for
each unit change in x. We refer to a as the y-intercept and b as the slope of the line. To
draw a line based on Equation 9.3.1, we need the numerical values of the constants a
and b. Given these constants, we may substitute various values of x into the equation to
obtain corresponding values of y. The resulting points may be plotted. Since any two
such coordinates determine a straight line, we may select any two, locate them on a
graph, and connect them to obtain the line corresponding to the equation.

Obtaining the Least-Square Line

The least-squares regression line equation may be obtained from sample data by simple
arithmetic calculations that may be carried out by hand using the following equations

(9.3.2)

(9.3.3)

where xi and yi are the corresponding values of each data point (X, Y ), and are the
means of the X and Y sample data values, respectively, and and are the estimates
of the intercept and slope , respectively, of the population regression line. Since
the necessary hand calculations are time consuming, tedious, and subject to error, the regres-
sion line equation is best obtained through the use of a computer software package. Although
the typical researcher need not be concerned with the arithmetic involved, the interested
reader will find them discussed in references listed at the end of this chapter.

For the data in Table 9.3.1 we obtain the least-squares regression equation by means
of MINITAB. After entering the X values in Column 1 and the Y values in Column 2 we
proceed as shown in Figure 9.3.2.

For now, the only information from the output in Figure 9.3.2 that we are interested
in is the regression equation. Other information in the output will be discussed later.

b1b0

Nb1
Nb0

yx

Nb0 = y - Nb1x

Nb1 =
a

n

i=1
1x i - x21y1 - y2
a

n

i=1
1x i - x22

y = a + bx
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FIGURE 9.3.2 MINITAB procedure and output for obtaining the least-squares regression
equation from the data in Table 9.3.1.

Dialog box: Session command:

Stat ➤ Regression ➤ Regression MTB > Name C3 = ‘FITS1’ C4 = ‘RESI1’
Type y in Response and x in Predictors. MTB > Regress ‘y’ 1 ‘x’;
Click Storage. Check Residuals and Fits. SUBC> Fits ‘FITS1’;
Click OK. SUBC> Constant;

SUBC> Residuals ‘RESI1’.

Output:

Regression Analysis: y versus x
The regression equation is
y = -216 + 3.46 x

Predictor Coef Stdev t-ratio p
Constant -215.98 21.80 -9.91 0.000
x 3.4589 0.2347 14.74 0.000

s = 33.06  R-sq = 67.0%  R-sq(adj) = 66.7%

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 237549 237549 217.28 0.000
Error 107 116982 1093
Total 108 354531

Unusual Observations
Obs. x y Fit Stdev.Fit Residual St.Resid
58 86 155.00 82.52 3.43 72.48 2.20R
65 120 90.41 197.70 7.23 -107.29 -3.33R
66 120 106.00 198.74 7.29 -92.74 -2.88R
71 107 87.99 154.12 4.75 -66.13 -2.02R
97 106 241.00 150.66 4.58 90.34 2.76R
102 109 229.00 161.38 5.13 67.62 2.07R
103 115 253.00 181.79 6.28 71.21 2.19R

R denotes an obs. with a large st. resid.



From Figure 9.3.2 we see that the linear equation for the least-squares line that
describes the relationship between waist circumference and deep abdominal AT may be
written, then, as

This equation tells us that since is negative, the line crosses the Y-axis below the
origin, and that since the slope, is positive, the line extends from the lower left-hand cor-
ner of the graph to the upper right-hand corner. We see further that for each unit increase
in x, y increases by an amount equal to 3.46. The symbol y denotes a value of y computed
from the equation, rather than an observed value of Y.

By substituting two convenient values of X into Equation 9.3.2, we may obtain the
necessary coordinates for drawing the line. Suppose, first, we let and obtain

If we let we obtain

The line, along with the original data, is shown in Figure 9.3.3.

yN = -216 + 3.4611102 = 164

X = 110

yN = -216 + 3.461702 = 26.2

X = 70

Nb1

Nb0

yN = -216 + 3.46x
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The Least-Squares Criterion Now that we have obtained what we call the
“best fit” line for describing the relationship between our two variables, we need to deter-
mine by what criterion it is considered best. Before the criterion is stated, let us exam-
ine Figure 9.3.3. We note that generally the least-squares line does not pass through the
observed points that are plotted on the scatter diagram. In other words, most of the
observed points deviate from the line by varying amounts.

The line that we have drawn through the points is best in this sense:

The sum of the squared vertical deviations of the observed data points ( ) from the
least-squares line is smaller than the sum of the squared vertical deviations of the data
points from any other line.

In other words, if we square the vertical distance from each observed point ( )
to the least-squares line and add these squared values for all points, the resulting total
will be smaller than the similarly computed total for any other line that can be drawn
through the points. For this reason the line we have drawn is called the least-squares
line.

EXERCISES

9.3.1 Plot each of the following regression equations on graph paper and state whether X and Y are
directly or inversely related.

(a)

(b)

(c)

9.3.2 The following scores represent a nurse’s assessment (X ) and a physician’s assessment (Y ) of the
condition of 10 patients at time of admission to a trauma center.

X: 18 13 18 15 10 12 8 4 7 3
Y: 23 20 18 16 14 11 10 7 6 4

(a) Construct a scatter diagram for these data.

(b) Plot the following regression equations on the scatter diagram and indicate which one you
think best fits the data. State the reason for your choice.

(1)
(2)
(3)

For each of the following exercises (a) draw a scatter diagram and (b) obtain the regression
equation and plot it on the scatter diagram.

9.3.3 Methadone is often prescribed in the treatment of opioid addiction and chronic pain. Krantz et al.
(A-2) studied the relationship between dose of methadone and the corrected QT (QTc) interval for
17 subjects who developed torsade de pointes (ventricular tachycardia nearly always due to med-
ications). QTc is calculated from an electrocardiogram and is measured in mm/sec. A higher QTc
value indicates a higher risk of cardiovascular mortality. A question of interest is how well one
can predict and estimate the QTc value from a knowledge of methadone dose. This question is
typical of those that can be answered by means of regression analysis. Since QTc is the variable

yN = 1 + 1x
yN = -10 + 2x
yN = 8 + 0.5x

yN = 10 - 0.75x

yN = 3 + 0.5x

yN = -3 + 2x

yi

yi
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about which we wish to make predictions and estimations, it is the dependent variable. The 
variable methadone dose, knowledge of which will be used to make the predictions and estima-
tions, is the independent variable.

Methadone Dose Methadone Dose
(mg/day) QTc (mm/sec) (mg/day) QTc (mm/sec)

1000 600 650 785
550 625 600 765
97 560 660 611
90 585 270 600
85 590 680 625

126 500 540 650
300 700 600 635
110 570 330 522
65 540

Source: Mori J. Krantz, Ilana B. Kutinsky, Alastair D. Roberston, and Philip 
S. Mehler, “Dose-Related Effects of Methadone on QT Prolongation in a Series of
Patients with Torsade de Pointes,” Pharmacotherapy, 23 (2003), 802–805.

9.3.4 Reiss et al. (A-3) compared point-of-care and standard hospital laboratory assays for monitoring
patients receiving a single anticoagulant or a regimen consisting of a combination of anticoagulants.
It is quite common when comparing two measuring techniques, to use regression analysis in which
one variable is used to predict another. In the present study, the researchers obtained measures of
international normalized ratio (INR) by assay of capillary and venous blood samples collected from
90 subjects taking warfarin. INR, used especially when patients are receiving warfarin, measures the
clotting ability of the blood. Point-of-care testing for INR was conducted with the CoaguChek assay
product. Hospital testing was done with standard hospital laboratory assays. The authors used the
hospital assay INR level to predict the CoaguChek INR level. The measurements are given in the
following table.

CoaguChek Hospital CoaguChek Hospital CoaguChek Hospital
(Y) (X) (Y) (X ) (Y) (X)

1.8 1.6 2.4 1.2 3.1 2.4
1.6 1.9 2.3 2.3 1.7 1.8
2.5 2.8 2.0 1.6 1.8 1.6
1.9 2.4 3.3 3.8 1.9 1.7
1.3 1.5 1.9 1.6 5.3 4.2
2.3 1.8 1.8 1.5 1.6 1.6
1.2 1.3 2.8 1.8 1.6 1.4
2.3 2.4 2.5 1.5 3.3 3.3
2.0 2.1 0.8 1.0 1.5 1.5
1.5 1.5 1.3 1.2 2.2 2.8
2.1 2.4 3.7 1.4 1.1 1.6
1.5 1.5 2.4 1.6 2.6 2.6
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CoaguChek Hospital CoaguChek Hospital CoaguChek Hospital
(Y) (X) (Y) (X ) (Y) (X)

1.5 1.7 4.1 3.2 6.4 5.0
1.8 2.1 2.4 1.2 1.5 1.4
1.0 1.2 2.3 2.3 3.0 2.8
2.1 1.9 3.1 1.6 2.6 2.3
1.6 1.6 1.5 1.4 1.2 1.2
1.7 1.6 3.6 2.1 2.1 1.9
2.0 1.9 2.5 1.7 1.1 1.1
1.8 1.6 2.1 1.7 1.0 1.0
1.3 4.1 1.8 1.2 1.4 1.5
1.5 1.9 1.5 1.3 1.7 1.3
3.6 2.1 2.5 1.1 1.2 1.1
2.4 2.2 1.5 1.2 2.5 2.4
2.2 2.3 1.5 1.1 1.2 1.3
2.7 2.2 1.6 1.2 2.5 2.9
2.9 3.1 1.4 1.4 1.9 1.7
2.0 2.2 4.0 2.3 1.8 1.7
1.0 1.2 2.0 1.2 1.2 1.1
2.4 2.6 2.5 1.5 1.3 1.1

Source: Curtis E. Haas, Pharm.D. Used with permission.

9.3.5 Digoxin is a drug often prescribed to treat heart ailments. The purpose of a study by Parker et al. (A-4)
was to examine the interactions of digoxin with common grapefruit juice. In one experiment, subjects
took digoxin with water for 2 weeks, followed by a 2-week period during which digoxin was with-
held. During the next 2 weeks subjects took digoxin with grapefruit juice. For seven subjects, the
average peak plasma digoxin concentration (Cmax) when taking water is given in the first column of
the following table. The second column contains the percent change in Cmax concentration when
subjects were taking the digoxin with grapefruit juice [GFJ (%) change]. Use the Cmax level when
taking digoxin with water to predict the percent change in Cmax concentration when taking digoxin
with grapefruit juice.

Cmax (ngl/ml) with Water Change in Cmax with GFJ (%)

2.34 29.5
2.46 40.7
1.87 5.3
3.09 23.3
5.59 �45.1
4.05 �35.3
6.21 �44.6
2.34 29.5

Source: Robert B. Parker, Pharm.D. Used with permission.

9.3.6 Evans et al. (A-5) examined the effect of velocity on ground reaction forces (GRF) in dogs with
lameness from a torn cranial cruciate ligament. The dogs were walked and trotted over a force
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platform and the GRF recorded (in newtons) during the stance phase. The following table contains
22 measurements of force expressed as the mean of five force measurements per dog when walk-
ing and the mean of five force measurements per dog when trotting. Use the GRF value when
walking to predict the GRF value when trotting.

GRF-Walk GRF-Trot GRF-Walk GRF-Trot

31.5 50.8 24.9 30.2
33.3 43.2 33.6 46.3
32.3 44.8 30.7 41.8
28.8 39.5 27.2 32.4
38.3 44.0 44.0 65.8
36.9 60.1 28.2 32.2
14.6 11.1 24.3 29.5
27.0 32.3 31.6 38.7
32.8 41.3 29.9 42.0
27.4 38.2 34.3 37.6
31.5 50.8 24.9 30.2

Source: Richard Evans, Ph.D. Used with permission.

9.3.7 Glomerular filtration rate (GFR) is the most important parameter of renal function assessed in renal
transplant recipients. Although inulin clearance is regarded as the gold standard measure of GFR,
its use in clinical practice is limited. Krieser et al. (A-6) examined the relationship between the
inverse of Cystatin C (a cationic basic protein measured in mg/L) and inulin GFR as measured by
technetium radionuclide labeled diethylenetriamine penta-acetic acid) (DTPA GFR) clearance
(ml/min/1.73 ). The results of 27 tests are shown in the following table. Use DTPA GFR as the
predictor of inverse Cystatin C.

DTPA GFR 1/Cystatin C DTPA GFR 1/Cystatin C

18 0.213 42 0.485
21 0.265 42 0.427
21 0.446 43 0.562
23 0.203 43 0.463
27 0.369 48 0.549
27 0.568 48 0.538
30 0.382 51 0.571
32 0.383 55 0.546
32 0.274 58 0.402
32 0.424 60 0.592
36 0.308 62 0.541
37 0.498 67 0.568
41 0.398 68 0.800

88 0.667

Source: David Krieser, M.D. Used with permission.

m2
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9.4 EVALUATING THE REGRESSION EQUATION

Once the regression equation has been obtained it must be evaluated to determine
whether it adequately describes the relationship between the two variables and whether
it can be used effectively for prediction and estimation purposes.

When Is Not Rejected If in the population the relationship
between X and Y is linear, , the slope of the line that describes this relationship, will
be either positive, negative, or zero. If is zero, sample data drawn from the popu-
lation will, in the long run, yield regression equations that are of little or no value for
prediction and estimation purposes. Furthermore, even though we assume that the rela-
tionship between X and Y is linear, it may be that the relationship could be described
better by some nonlinear model. When this is the case, sample data when fitted to a
linear model will tend to yield results compatible with a population slope of zero. Thus,
following a test in which the null hypothesis that equals zero is not rejected, we
may conclude (assuming that we have not made a type II error by accepting a false
null hypothesis) either (1) that although the relationship between X and Y may be lin-
ear it is not strong enough for X to be of much value in predicting and estimating Y,
or (2) that the relationship between X and Y is not linear; that is, some curvilinear
model provides a better fit to the data. Figure 9.4.1 shows the kinds of relationships
between X and Y in a population that may prevent rejection of the null hypothesis that

When Is Rejected Now let us consider the situations in a pop-
ulation that may lead to rejection of the null hypothesis that . Assuming that
we do not commit a type I error, rejection of the null hypothesis that may be
attributed to one of the following conditions in the population: (1) the relationship is
linear and of sufficient strength to justify the use of sample regression equations to
predict and estimate Y for given values of X; and (2) there is a good fit of the data
to a linear model, but some curvilinear model might provide an even better fit. Fig-
ure 9.4.2 illustrates the two population conditions that may lead to rejection of

Thus, we see that before using a sample regression equation to predict and esti-
mate, it is desirable to test We may do this either by using analysis of vari-
ance and the F statistic or by using the t statistic. We will illustrate both methods. Before
we do this, however, let us see how we may investigate the strength of the relationship
between X and Y.

The Coefficient of Determination One way to evaluate the strength of
the regression equation is to compare the scatter of the points about the regression line
with the scatter about the mean of the sample values of Y. If we take the scatter dia-
gram for Example 9.3.1 and draw through the points a line that intersects the Y-axis at

and is parallel to the X-axis, we may obtain a visual impression of the relative mag-
nitudes of the scatter of the points about this line and the regression line. This has been
done in Figure 9.4.3.

y

y,

H0 : b1 = 0.

H0 : b1 = 0.

b1 = 0
b1 = 0

H0 : B1 � 0

b1 = 0.

b1

b1

b1

H0 : B1 � 0
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It appears rather obvious from Figure 9.4.3 that the scatter of the points about
the regression line is much less than the scatter about the line. We would not wish,
however, to decide on this basis alone that the equation is a useful one. The situation
may not be always this clear-cut, so that an objective measure of some sort would be
much more desirable. Such an objective measure, called the coefficient of determina-
tion, is available.

The Total Deviation Before defining the coefficient of determination, let us justify
its use by examining the logic behind its computation. We begin by considering the point
corresponding to any observed value, and by measuring its vertical distance from the 
line. We call this the total deviation and designate it .

The Explained Deviation If we measure the vertical distance from the regres-
sion line to the line, we obtain , which is called the explained deviation, since
it shows by how much the total deviation is reduced when the regression line is fitted to
the points.

1yN i - y2y

1yi - y2 yyi,

y
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X

Y

Y

X

(a)

(b)

FIGURE 9.4.1 Conditions in a population that may prevent rejection of the null hypothe-
sis that (a) The relationship between X and Y is linear, but is so close to zero that
sample data are not likely to yield equations that are useful for predicting Y when X is
given. (b) The relationship between X and Y is not linear; a curvilinear model provides a
better fit to the data; sample data are not likely to yield equations that are useful for pre-
dicting Y when X is given.

b1b1 = 0.



Unexplained Deviation Finally, we measure the vertical distance of the
observed point from the regression line to obtain , which is called the unex-
plained deviation, since it represents the portion of the total deviation not “explained”
or accounted for by the introduction of the regression line. These three quantities are
shown for a typical value of Y in Figure 9.4.4. The difference between the observed value
of Y and the predicted value of Y, is also referred to as a residual. The set of
residuals can be used to test the underlying linearity and equal-variances assumptions 
of the regression model described in Section 9.2. This procedure is illustrated at the end
of this section.

It is seen, then, that the total deviation for a particular yi is equal to the sum of
the explained and unexplained deviations. We may write this symbolically as

(9.4.1)

total explained unexplained
deviation deviation deviation

1yi - y2 = 1yN i - y2 + 1yi - yN i2

1yi - yiN 2,
1yi - yN i2
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X

Y

Y

X

(a)

(b)

FIGURE 9.4.2 Population conditions relative to X and Y that may cause rejection of the null
hypothesis that (a) The relationship between X and Y is linear and of sufficient strength
to justify the use of a sample regression equation to predict and estimate Y for given values 
of X. (b) A linear model provides a good fit to the data, but some curvilinear model would
provide an even better fit.

b1 = 0.



If we measure these deviations for each value of yi and , square each deviation,
and add up the squared deviations, we have

(9.4.2)

total explained unexplained
sum sum sum

of squares of squares of squares

These quantities may be considered measures of dispersion or variability.

Total Sum of Squares The total sum of squares (SST), for example, is a mea-
sure of the dispersion of the observed values of Y about their mean ; that is, this term is
a measure of the total variation in the observed values of Y. The reader will recognize this
term as the numerator of the familiar formula for the sample variance.

Explained Sum of Squares The explained sum of squares measures the
amount of the total variability in the observed values of Y that is accounted for by the
linear relationship between the observed values of X and Y. This quantity is referred to
also as the sum of squares due to linear regression (SSR).

y

g 1yi - y22 = g 1yN i - y22 + g 1yi - yN i22
yNi
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Unexplained Sum of Squares The unexplained sum of squares is a mea-
sure of the dispersion of the observed Y values about the regression line and is sometimes
called the error sum of squares, or the residual sum of squares (SSE). It is this quantity
that is minimized when the least-squares line is obtained.

We may express the relationship among the three sums of squares values as

The numerical values of these sums of squares for our illustrative example appear in
the analysis of variance table in Figure 9.3.2. Thus, we see that 

and

Calculating It is intuitively appealing to speculate that if a regression equa-
tion does a good job of describing the relationship between two variables, the explained
or regression sum of squares should constitute a large proportion of the total sum of

r 2

 354531 = 354531

 354531 = 237549 + 116982

SSE = 116982,SSR = 237549,
SST = 354531,

SST = SSR + SSE
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FIGURE 9.4.4 Scatter diagram showing the total, explained, and unexplained
deviations for a selected value of Y, Example 9.3.1.



squares. It would be of interest, then, to determine the magnitude of this proportion by
computing the ratio of the explained sum of squares to the total sum of squares. This is
exactly what is done in evaluating a regression equation based on sample data, and the
result is called the sample coefficient of determination, That is,

In our present example we have, using the sums of squares values from Figure 9.3.2,

The sample coefficient of determination measures the closeness of fit of the sample
regression equation to the observed values of Y. When the quantities the vertical
distances of the observed values of Y from the equations, are small, the unexplained sum
of squares is small. This leads to a large explained sum of squares that leads, in turn, to a
large value of This is illustrated in Figure 9.4.5.

In Figure 9.4.5(a) we see that the observations all lie close to the regression line,
and we would expect to be large. In fact, the computed for these data is .986, indi-
cating that about 99 percent of the total variation in the is explained by the regression.

In Figure 9.4.5(b) we illustrate a case in which the are widely scattered about
the regression line, and there we suspect that is small. The computed for the data
is .403; that is, less than 50 percent of the total variation in the is explained by the
regression.

The largest value that can assume is 1, a result that occurs when all the varia-
tion in the is explained by the regression. When all the observations fall on
the regression line. This situation is shown in Figure 9.4.5(c).

The lower limit of is 0. This result is obtained when the regression line and the
line drawn through coincide. In this situation none of the variation in the is explained
by the regression. Figure 9.4.5(d) illustrates a situation in which is close to zero.

When is large, then, the regression has accounted for a large proportion of the
total variability in the observed values of Y, and we look with favor on the regression
equation. On the other hand, a small which indicates a failure of the regression to
account for a large proportion of the total variation in the observed values of Y, tends
to cast doubt on the usefulness of the regression equation for predicting and estimat-
ing purposes. We do not, however, pass final judgment on the equation until it has
been subjected to an objective statistical test.

Testing with the F Statistic The following example illus-
trates one method for reaching a conclusion regarding the relationship between X and Y.

EXAMPLE 9.4.1

Refer to Example 9.3.1. We wish to know if we can conclude that, in the population
from which our sample was drawn, X and Y are linearly related.

H0 : B1 � 0

r 2

r 2
r 2

yiy
r 2

r 2 = 1yi

r 2

yi

r 2r 2
yi

yi

r 2r 2

r 2.

1yi - yN i2,
r 2 =

237549

354531
= .67

r 2 =
g1yN i - y22
g1yi - y22 =

SSR

SST

r 2.
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Solution: The steps in the hypothesis testing procedure are as follows:

1. Data. The data were described in the opening statement of Example
9.3.1.

2. Assumptions. We presume that the simple linear regression model and
its underlying assumptions as given in Section 9.2 are applicable.

3. Hypotheses.

a = .05

HA : b1 Z 0

H0 : b1 = 0
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(a)

Close fit, large r2

(c)

r2 = 1
(d)

r2  0

(b)

Poor fit, small r2

← 

FIGURE 9.4.5 as a measure of closeness-of-fit of the sample regression line to
the sample observations.

r 2



4. Test statistic. The test statistic is V.R. as explained in the discussion
that follows.

From the three sums-of-squares terms and their associated degrees
of freedom the analysis of variance table of Table 9.4.1 may be constructed.

In general, the degrees of freedom associated with the sum of
squares due to regression is equal to the number of constants in the regres-
sion equation minus 1. In the simple linear case we have two estimates,

and ; hence the degrees of freedom for regression are 

5. Distribution of test statistic. It can be shown that when the hypothesis
of no linear relationship between X and Y is true, and when the assump-
tions underlying regression are met, the ratio obtained by dividing the
regression mean square by the residual mean square is distributed as F
with 1 and degrees of freedom.

6. Decision rule. Reject if the computed value of V.R. is equal to or
greater than the critical value of F.

7. Calculation of test statistic. As shown in Figure 9.3.2, the computed
value of F is 217.28.

8. Statistical decision. Since 217.28 is greater than 3.94, the critical value
of F (obtained by interpolation) for 1 and 107 degrees of freedom, the
null hypothesis is rejected.

9. Conclusion. We conclude that the linear model provides a good fit to
the data.

10. p value. For this test, since we have ■

Estimating the Population Coefficient of Determination The
sample coefficient of determination provides a point estimate of the population coef-
ficient of determination. The population coefficient of determination, has the same
function relative to the population as has to the sample. It shows what proportion of
the total population variation in Y is explained by the regression of Y on X. When the
number of degrees of freedom is small, is positively biased. That is, tends to be
large. An unbiased estimator of is provided by

(9.4.3)r~ 2 = 1 -
g1yi - yN i22>1n - 22
g1yi - y22>1n - 12

r2
r 2r 2

r 2
r2

r2

p 6 .005.217.28 7 8.25,

H0

n - 2

2 - 1 = 1.b1b0
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TABLE 9.4.1 ANOVA Table for Simple Linear Regression

Source of

Variation SS d.f. MS V.R.

Linear regression SSR 1 MSR � SSR/1 MSR/MSE
Residual SSE n � 2 MSE � SSE/(n � 2)

Total SST n � 1



Observe that the numerator of the fraction in Equation 9.4.3 is the unexplained mean square
and the denominator is the total mean square. These quantities appear in the analysis of
variance table. For our illustrative example we have, using the data from Figure 9.3.2,

This quantity is labeled R-sq(adj) in Figure 9.3.2 and is reported as 66.7 percent. We see
that this value is less than

We see that the difference in and is due to the factor When n is
large, this factor will approach 1 and the difference between and will approach zero.

Testing with the t Statistic When the assumptions stated
in Section 9.2 are met, and are unbiased point estimators of the corresponding
parameters and Since, under these assumptions, the subpopulations of Y values
are normally distributed, we may construct confidence intervals for and test hypotheses
about and . When the assumptions of Section 9.2 hold true, the sampling distri-
butions of and are each normally distributed with means and variances as follows:

(9.4.4)

(9.4.5)

(9.4.6)

and

(9.4.7)

In Equations 9.4.5 and 9.4.7 is the unexplained variance of the subpopulations of Y
values.

With knowledge of the sampling distributions of and we may construct
confidence intervals and test hypotheses relative to and in the usual manner.
Inferences regarding are usually not of interest. On the other hand, as we have seen,
a great deal of interest centers on inferential procedures with respect to . The rea-
son for this is the fact that tells us so much about the form of the relationship
between X and Y. When X and Y are linearly related a positive indicates that, in gen-
eral, Y increases as X increases, and we say that there is a direct linear relationship
between X and Y. A negative indicates that values of Y tend to decrease as values
of X increase, and we say that there is an inverse linear relationship between X and
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N

b1
N

b1

b1
N
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b1b0
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NbN 0
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y>x

s2
bN1
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s2
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bN0
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b1.b0
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H0 : B1 � 0

r~2r 2
1n - 12>1n - 22.r~2r 2

r 2 = 1 -
116982

354531
= .67004

r~ 2 = 1 -
116982>107

354531>108
= .66695
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Y. When there is no linear relationship between X and Y, is equal to zero. These
three situations are illustrated in Figure 9.4.6.

The Test Statistic For testing hypotheses about the test statistic when 
is known is

(9.4.8)

where is the hypothesized value of . The hypothesized value of does not
have to be zero, but in practice, more often than not, the null hypothesis of interest is
that

As a rule is unknown. When this is the case, the test statistic is

(9.4.9)

where is an estimate of and t is distributed as Student’s t with degrees of
freedom.

If the probability of observing a value as extreme as the value of the test statistic
computed by Equation 9.4.9 when the null hypothesis is true is less than (since we
have a two-sided test), the null hypothesis is rejected.

EXAMPLE 9.4.2

Refer to Example 9.3.1. We wish to know if we can conclude that the slope of the
population regression line describing the relationship between X and Y is zero.

Solution:

1. Data. See Example 9.3.1.

2. Assumptions. We presume that the simple linear regression model and
its underlying assumptions are applicable.

a>2
n - 2sbN 1

sbN1

t =
Nb1 - 1b120

sb1N

s2
y|x

b1 = 0.

b1b11b120
z =

Nb1 - 1b120
sbN 1

s2
y>xb1

b1
N
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X

Y

X

Y

X

Y

(a) (b) (c)

FIGURE 9.4.6 Scatter diagrams showing (a) direct linear relationship, (b) inverse
linear relationship, and (c) no linear relationship between X and Y.



3. Hypotheses.

4. Test statistic. The test statistic is given by Equation 9.4.9.

5. Distribution of test statistic. When the assumptions are met and is
true, the test statistic is distributed as Student’s t with degrees of
freedom.

6. Decision rule. Reject if the computed value of t is either greater
than or equal to 1.9826 or less than or equal to 

7. Calculation of statistic. The output in Figure 9.3.2 shows that
and

8. Statistical decision. Reject because 

9. Conclusion. We conclude that the slope of the true regression line is
not zero.

10. p value. The p value for this test is less than .01, since, when H0 is true,
the probability of getting a value of t as large as or larger than 2.6230
(obtained by interpolation) is .005, and the probability of getting a value
of t as small as or smaller than is also .005. Since 14.74 is greater
than 2.6230, the probability of observing a value of t as large as or larger
than 14.74 (when the null hypothesis is true) is less than .005. We double
this value to obtain 

Either the F statistic or the t statistic may be used for testing
The value of the variance ratio is equal to the square of

the value of the t statistic i.e., and, therefore, both statistics
lead to the same conclusion.  For the current example, we see that

the value obtained by using the F statistic in Exam-
ple 9.4.1.

The practical implication of our results is that we can expect to get
better predictions and estimates of Y if we use the sample regression
equation than we would get if we ignore the relationship between X and
Y. The fact that b is positive leads us to believe that is positive and
that the relationship between X and Y is a direct linear relationship. ■

As has already been pointed out, Equation 9.4.9 may be used to test the null hypothe-
sis that is equal to some value other than 0. The hypothesized value for is
substituted into Equation 9.4.9. All other quantities, as well as the computations, are the
same as in the illustrative example. The degrees of freedom and the method of deter-
mining significance are also the same.

1b120b1,b1

b1

114.7422 = 217.27,

t 2 = F21H0:b1 = 0.

21.0052 = .01.

-2.6230

14.74 7  1.9826.H0

t =
3.4589 - 0

.2347
= 14.74

sb1
N = .2347,b1

N = 3.4589,

-1.9826.
H0

n - 2
H0

a = .05

HA : b1 Z 0

H0 : b1 = 0
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A Confidence Interval for Once we determine that it is unlikely, in light
of sample evidence, that is zero, we may be interested in obtaining an interval esti-
mate of The general formula for a confidence interval,

may be used. When obtaining a confidence interval for , the estimator is , the reli-
ability factor is some value of z or t (depending on whether or not is known), and
the standard error of the estimator is

When is unknown, is estimated by

where
In most practical situations our percent confidence interval for is

(9.4.10)

For our illustrative example we construct the following 95 percent confidence
interval for :

We interpret this interval in the usual manner. From the probabilistic point of view we
say that in repeated sampling 95 percent of the intervals constructed in this way will
include The practical interpretation is that we are 95 percent confident that the sin-
gle interval constructed includes 

Using the Confidence Interval to Test H0: It is instructive
to note that the confidence interval we constructed does not include zero, so that zero is
not a candidate for the parameter being estimated. We feel, then, that it is unlikely that

This is compatible with the results of our hypothesis test in which we rejected
the null hypothesis that Actually, we can always test at the sig-
nificance level by constructing the percent confidence interval for and
we can reject or fail to reject the hypothesis on the basis of whether or not the interval
includes zero. If the interval contains zero, the null hypothesis is not rejected; and if zero
is not contained in the interval, we reject the null hypothesis.

Interpreting the Results It must be emphasized that failure to reject the null
hypothesis that does not mean that X and Y are not related. Not only is it pos-
sible that a type II error may have been committed but it may be true that X and Y are
related in some nonlinear manner. On the other hand, when we reject the null hypothe-
sis that we cannot conclude that the true relationship between X and Y isb1 = 0,

b1 = 0

b1,10011 - a2 aH0: b1 = 0b1 = 0.
b1 = 0.

B1 � 0

b1.
b1.

2.99, 3.92

3.4589 ; 1.98261.23472b

b1
N ; t 11-a>22sbN 1

b10011 - a2s2
y ƒx = MSE

sbN1
= C s 2

y ƒx

g1x i - x22
sbs2
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y ƒx
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estimator ; 1reliability factor21standard error of the estimate2b1.
b1
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linear. Again, it may be that although the data fit the linear regression model fairly well
(as evidenced by the fact that the null hypothesis that is rejected), some nonlin-
ear model would provide an even better fit. Consequently, when we reject that

the best we can say is that more useful results (discussed below) may be
obtained by taking into account the regression of Y on X than in ignoring it.

Testing the Regression Assumptions The values of the set of residu-
als, for a data set are often used to test the linearity and equal-variances
assumptions (assumptions 4 and 5 of Section 9.2) underlying the regression model. This
is done by plotting the values of the residuals on the y-axis and the predicted values of
y on the x-axis. If these plots show a relatively random scatter of points above and below
a horizontal line at , these assumptions are assumed to have been met for
a given set of data.  A non-random pattern of points can indicate violation of the linear-
ity assumption, and a funnel-shaped pattern of the points can indicate violation of the
equal-variances assumption.  Examples of these patterns are shown in Figure 9.4.7. Many

1yi - yiN 2 = 0

1yi - yiN 2,
b1 = 0,

H0

b1 = 0

9.4 EVALUATING THE REGRESSION EQUATION 435

FIGURE 9.4.7 Residual plots useful for testing the linearity and equal-variances assump-
tions of the regression model. (a) A random pattern of points illustrating non-violation of the
assumptions. (b) A non-random pattern illustrating a likely violation of the linearity assump-
tion. (c) A funneling pattern illustrating a likely violation of the equal-variances assumption.



computer packages will provide residual plots automatically. These plots often use stan-
dardized values i.e., of the residuals and predicted values, but are interpreted
in the same way as are plots of unstandardized values.

EXAMPLE 9.4.3

Refer to Example 9.3.1. We wish to use residual plots to test the assumptions of linear-
ity and equal variances in the data.

Solution: A residual plot is shown in Figure 9.4.8.
Since there is a relatively equal and random scatter of points above

and below the residual line, the linearity assumption is pre-
sumed to be valid. However, the funneling tendency of the plot suggests
that as the predicted value of deep abdominal AT area increases, so does
the amount of error. This indicates that the assumption of equal variances
may not be valid for these data. ■

EXERCISES

9.4.1 to 9.4.5 Refer to Exercises 9.3.3 to 9.3.7, and for each one do the following:

(a) Compute the coefficient of determination.

(b) Prepare an ANOVA table and use the F statistic to test the null hypothesis that Let

(c) Use the t statistic to test the null hypothesis that at the .05 level of significance.

(d) Determine the p value for each hypothesis test.

(e) State your conclusions in terms of the problem.

(f) Construct the 95 percent confidence interval for b1.

b1 = 0

a = .05.
b1 = 0.

1yi - yi2N = 0

ei>1MSE21
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FIGURE 9.4.8 Residual plot of data from Example 9.3.1.
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9.5 USING THE REGRESSION EQUATION

If the results of the evaluation of the sample regression equation indicate that there is a
relationship between the two variables of interest, we can put the regression equation to
practical use. There are two ways in which the equation can be used. It can be used to
predict what value Y is likely to assume given a particular value of X. When the nor-
mality assumption of Section 9.2 is met, a prediction interval for this predicted value of
Y may be constructed.

We may also use the regression equation to estimate the mean of the subpopu-
lation of Y values assumed to exist at any particular value of X. Again, if the assump-
tion of normally distributed populations holds, a confidence interval for this parame-
ter may be constructed. The predicted value of Y and the point estimate of the mean
of the subpopulation of Y will be numerically equivalent for any particular value 
of X but, as we will see, the prediction interval will be wider than the confidence
interval.

Predicting Y for a Given X If it is known, or if we are willing to assume
that the assumptions of Section 9.2 are met, and when is unknown, then the

percent prediction interval for Y is given by

(9.5.1)

where is the particular value of x at which we wish to obtain a prediction interval for
Y and the degrees of freedom used in selecting t are

Estimating the Mean of Y for a Given X The percent
confidence interval for when is unknown, is given by

(9.5.2)

We use MINITAB to illustrate, for a specified value of X, the calculation of a 95 per-
cent confidence interval for the mean of Y and a 95 percent prediction interval for an
individual Y measurement.

Suppose, for our present example, we wish to make predictions and estimates about
AT for a waist circumference of 100 cm. In the regression dialog box click on “Options.”
Enter 100 in the “Prediction interval for new observations” box. Click on “Confidence
limits,” and click on “Prediction limits.”

We obtain the following output:

Fit Stdev.Fit 95.0% C.I. 95.0% P.I.
129.90 3.69 (122.58, 137.23) (63.93, 195.87)

yN ; t11-a>22sy ƒ xC1
n

+
1xp - x22
g1x i - x22

s2
y ƒ xmy ƒ x,

10011 - a2n - 2.
xp

yN ; t11-a>22sy ƒ x C1 +
1
n

+
1xp - x22
g1x i - x22

10011 - a2 s2
y ƒ x



We interpret the 95 percent confidence interval (C.I.) as follows.
If we repeatedly drew samples from our population of men, performed a regres-

sion analysis, and estimated with a similarly constructed confidence interval,
about 95 percent of such intervals would include the mean amount of deep abdominal
AT for the population. For this reason we are 95 percent confident that the single inter-
val constructed contains the population mean and that it is somewhere between 122.58
and 137.23.

Our interpretation of a prediction interval (P.I.) is similar to the interpretation of a
confidence interval. If we repeatedly draw samples, do a regression analysis, and con-
struct prediction intervals for men who have a waist circumference of 100 cm, about 95
percent of them will include the man’s deep abdominal AT value. This is the probabilis-
tic interpretation. The practical interpretation is that we are 95 percent confident that a
man who has a waist circumference of 100 cm will have a deep abdominal AT area of
somewhere between 63.93 and 195.87 square centimeters.

Simultaneous confidence intervals and prediction intervals can be calculated for all
possible points along a fitted regression line. Plotting lines through these points will then
provide a graphical representation of these intervals. Since the mean data point is
always included in the regression equation, as illustrated by equations 9.3.2 and 9.3.3,
plots of the simultaneous intervals will always provide the best estimates at the middle
of the line and the error will increase toward the ends of the line. This illustrates the fact
that estimation within the bounds of the data set, called interpolation, is acceptable, but
that estimation outside of the bounds of the data set, called extrapolation, is not advis-
able since the pridiction error can be quite large. See Figure 9.5.1.

Figure 9.5.2 contains a partial printout of the SAS® simple linear regression analy-
sis of the data of Example 9.3.1.

Resistant Line Frequently, data sets available for analysis by linear regression
techniques contain one or more “unusual” observations; that is, values of x or y, or
both, may be either considerably larger or considerably smaller than most of the other
measurements. In the output of Figure 9.3.2, we see that the computer detected seven

1X, Y2

my ƒx=100
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FIGURE 9.5.1 Simultaneous confidence intervals (a) and prediction intervals (b) for the
data in Example 9.3.1.
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FIGURE 9.5.2 Partial printout of the computer analysis of the data given in Example 9.3.1,
using the SAS® software package.

The SAS System

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 237548.51620 237548.51620 217.279 0.0001
Error 107 116981.98602 1093.28959
C Total 108 354530.50222

Root MSE 33.06493 R-square 0.6700
Dep Mean 101.89404 Adj R-sq 0.6670
C.V. 32.45031

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter =0 Prob > |T|

INTERCEP 1 -215.981488 21.79627076 -9.909 0.0001
X 1 3.458859 0.23465205 14.740 0.0001

unusual observations in the waist circumference and deep abdominal AT data shown
in Table 9.3.1.

The least-squares method of fitting a straight line to data is sensitive to unusual
observations, and the location of the fitted line can be affected substantially by them.
Because of this characteristic of the least-squares method, the resulting least-squares line
is said to lack resistance to the influence of unusual observations. Several methods have
been devised for dealing with this problem, including one developed by John W. Tukey.
The resulting line is variously referred to as Tukey’s line and the resistant line.

Based on medians, which, as we have seen, are descriptive measures that are
themselves resistant to extreme values, the resistant line methodology is an exploratory
data analysis tool that enables the researcher to quickly fit a straight line to a set of
data consisting of paired x, y measurements. The technique involves partitioning, on
the basis of the independent variable, the sample measurements into three groups of
as near equal size as possible: the smallest measurements, the largest measurements,
and those in between. The resistant line is the line fitted in such a way that there are



an equal number of values above and below it in both the smaller group and the larger
group. The resulting slope and y -intercept estimates are resistant to the effects of either
extreme y values, extreme x values, or both. To illustrate the fitting of a resistant line,
we use the data of Table 9.3.1 and MINITAB. The procedure and output are shown in
Figure 9.5.3.

We see from the output in Figure 9.5.3 that the resistant line has a slope of 3.2869
and a y-intercept of The half-slope ratio, shown in the output as equal to .690,
is an indicator of the degree of linearity between x and y. A slope, called a half-slope, is
computed for each half of the sample data. The ratio of the right half-slope, and the
left half-slope, is equal to . If the relationship between x and y is straight, the
half-slopes will be equal, and their ratio will be 1. A half-slope ratio that is not close to 1
indicates a lack of linearity between x and y.

The resistant line methodology is discussed in more detail by Hartwig and Dearing
(1), Johnstone and Velleman (2), McNeil (3), and Velleman and Hoaglin (4).

EXERCISES

In each exercise refer to the appropriate previous exercise and, for the value of X indicated,
(a) construct the 95 percent confidence interval for and (b) construct the 95 percent predic-
tion interval for Y.

9.5.1 Refer to Exercise 9.3.3 and let 

9.5.2 Refer to Exercise 9.3.4 and let 

9.5.3 Refer to Exercise 9.3.5 and let 

9.5.4 Refer to Exercise 9.3.6 and let 

9.5.5 Refer to Exercise 9.3.7 and let X = 35.

X = 29.4.

X = 4.16.

X = 1.6.

X = 400.

my ƒx

b R>b Lb L,
b R,

-203.7868.
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FIGURE 9.5.3 MINITAB resistant line procedure and output for the data of Table 9.3.1.

Dialog box: Session command:

Stat ➤ EDA ➤ Resistant Line MTB > Name C3 � ’RESI1’ C4 � ’FITS1’
MTB > RLine C2 C1 ’RESI1’ ’FITS1’;
SUBC> MaxIterations 10.

Type C2 in Response and C1 in Predictors.
Check Residuals and Fits. Click OK.

Output:

Resistant Line Fit: C2 versus C1

Slope = 3.2869 Level = -203.7868 Half-slope ratio = 0.690



9.6 THE CORRELATION MODEL

In the classic regression model, which has been the underlying model in our discussion up
to this point, only Y, which has been called the dependent variable, is required to be ran-
dom. The variable X is defined as a fixed (nonrandom or mathematical) variable and is
referred to as the independent variable. Recall, also, that under this model observations are
frequently obtained by preselecting values of X and determining corresponding values of Y.

When both Y and X are random variables, we have what is called the correlation
model. Typically, under the correlation model, sample observations are obtained by
selecting a random sample of the units of association (which may be persons, places,
animals, points in time, or any other element on which the two measurements are taken)
and taking on each a measurement of X and a measurement of Y. In this procedure, val-
ues of X are not preselected but occur at random, depending on the unit of association
selected in the sample.

Although correlation analysis cannot be carried out meaningfully under the clas-
sic regression model, regression analysis can be carried out under the correlation
model. Correlation involving two variables implies a co-relationship between variables
that puts them on an equal footing and does not distinguish between them by refer-
ring to one as the dependent and the other as the independent variable. In fact, in the
basic computational procedures, which are the same as for the regression model, we
may fit a straight line to the data either by minimizing or by minimizing

. In other words, we may do a regression of X on Y as well as a regres-
sion of Y on X. The fitted line in the two cases in general will be different, and a log-
ical question arises as to which line to fit.

If the objective is solely to obtain a measure of the strength of the relationship
between the two variables, it does not matter which line is fitted, since the measure usu-
ally computed will be the same in either case. If, however, it is desired to use the equa-
tion describing the relationship between the two variables for the purposes discussed in
the preceding sections, it does matter which line is fitted. The variable for which we wish
to estimate means or to make predictions should be treated as the dependent variable;
that is, this variable should be regressed on the other variable.

The Bivariate Normal Distribution Under the correlation model, X and
Y are assumed to vary together in what is called a joint distribution. If this joint distri-
bution is a normal distribution, it is referred to as a bivariate normal distribution. Infer-
ences regarding this population may be made based on the results of samples properly
drawn from it. If, on the other hand, the form of the joint distribution is known to be
nonnormal, or if the form is unknown and there is no justification for assuming normal-
ity, inferential procedures are invalid, although descriptive measures may be computed.

Correlation Assumptions The following assumptions must hold for infer-
ences about the population to be valid when sampling is from a bivariate distribution.

1. For each value of X there is a normally distributed subpopulation of Y values.

2. For each value of Y there is a normally distributed subpopulation of X values.

3. The joint distribution of X and Y is a normal distribution called the bivariate nor-
mal distribution.

g1x i - xN i22 g1yi - yNi22

9.6 THE CORRELATION MODEL 441



4. The subpopulations of Y values all have the same variance.

5. The subpopulations of X values all have the same variance.

The bivariate normal distribution is represented graphically in Figure 9.6.1. In this
illustration we see that if we slice the mound parallel to Y at some value of X , the cut-
away reveals the corresponding normal distribution of Y. Similarly, a slice through the
mound parallel to X at some value of Y reveals the corresponding normally distributed
subpopulation of X.

9.7 THE CORRELATION COEFFICIENT

The bivariate normal distribution discussed in Section 9.6 has five parameters, 
and The first four are, respectively, the standard deviations and means asso-

ciated with the individual distributions. The other parameter, is called the populationr,
r.my,mx ,

sy,sx ,
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f(X, Y) f(X, Y)

f(X, Y)

Y X

Y X

Y X

(a) (b)

(c)

FIGURE 9.6.1 A bivariate normal distribution. (a) A bivariate normal distribution.
(b) A cutaway showing normally distributed subpopulation of Y for given X. (c) A
cutaway showing normally distributed subpopulation of X for given Y.



correlation coefficient and measures the strength of the linear relationship between X
and Y.

The population correlation coefficient is the positive or negative square root of 
the population coefficient of determination previously discussed, and since the coefficient
of determination takes on values between 0 and 1 inclusive, may assume any value
between and If there is a perfect direct linear correlation between the two
variables, while indicates perfect inverse linear correlation. If the two
variables are not linearly correlated. The sign of will always be the same as the sign
of the slope of the population regression line for X and Y.

The sample correlation coefficient, r, describes the linear relationship between the
sample observations on two variables in the same way that describes the relationship
in a population. The sample correlation coefficient is the square root of the sample coef-
ficient of determination that was defined earlier.

Figures 9.4.5(d) and 9.4.5(c), respectively, show typical scatter diagrams where
and Figure 9.7.1 shows a typical scatter diagram

where
We are usually interested in knowing if we may conclude that that is,

that X and Y are linearly correlated. Since is usually unknown, we draw a random
sample from the population of interest, compute r, the estimate of and test

against the alternative The procedure will be illustrated in the fol-
lowing example.

EXAMPLE 9.7.1

The purpose of a study by Kwast-Rabben et al. (A-7) was to analyze somatosensory
evoked potentials (SEPs) and their interrelations following stimulation of digits I, III,
and V in the hand. The researchers wanted to establish reference criteria in a control
population. Thus, healthy volunteers were recruited for the study. In the future this infor-
mation could be quite valuable as SEPs may provide a method to demonstrate functional
disturbances in patients with suspected cervical root lesion who have pain and sensory
symptoms. In the study, stimulation below-pain-level intensity was applied to the fingers.

r Z 0.H0 : r = 0
r,

r

r Z 0,
r = -1.

r = +1 1r 2 = 12.r :  0 1r 2 : 02
r

b1,
r

r = 0r = -1
r = 1+1.-1

r

r2,
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FIGURE 9.7.1 Scatter diagram 
for r = -1.



Recordings of spinal responses were made with electrodes fixed by adhesive electrode
cream to the subject’s skin. One of the relationships of interest was the correlation
between a subject’s height (cm) and the peak spinal latency (Cv) of the SEP. The data
for 155 measurements are shown in Table 9.7.1.

444 CHAPTER 9 SIMPLE LINEAR REGRESSION AND CORRELATION

TABLE 9.7.1 Height and Spine SEP Measurements (Cv)
from Stimulation of Digit I for 155 Subjects Described
in Example 9.7.1

Height Cv Height Cv Height Cv

149 14.4 168 16.3 181 15.8

149 13.4 168 15.3 181 18.8

155 13.5 168 16.0 181 18.6

155 13.5 168 16.6 182 18.0

156 13.0 168 15.7 182 17.9

156 13.6 168 16.3 182 17.5

157 14.3 168 16.6 182 17.4

157 14.9 168 15.4 182 17.0

158 14.0 170 16.6 182 17.5

158 14.0 170 16.0 182 17.8

160 15.4 170 17.0 184 18.4

160 14.7 170 16.4 184 18.5

161 15.5 171 16.5 184 17.7

161 15.7 171 16.3 184 17.7

161 15.8 171 16.4 184 17.4

161 16.0 171 16.5 184 18.4

161 14.6 172 17.6 185 19.0

161 15.2 172 16.8 185 19.6

162 15.2 172 17.0 187 19.1

162 16.5 172 17.6 187 19.2

162 17.0 173 17.3 187 17.8

162 14.7 173 16.8 187 19.3

163 16.0 174 15.5 188 17.5

163 15.8 174 15.5 188 18.0

163 17.0 175 17.0 189 18.0

163 15.1 175 15.6 189 18.8

163 14.6 175 16.8 190 18.3

163 15.6 175 17.4 190 18.6

163 14.6 175 17.6 190 18.8

164 17.0 175 16.5 190 19.2

164 16.3 175 16.6 191 18.5

164 16.0 175 17.0 191 18.5

164 16.0 176 18.0 191 19.0

165 15.7 176 17.0 191 18.5

165 16.3 176 17.4 194 19.8

(Continued)
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Height Cv Height Cv Height Cv

165 17.4 176 18.2 194 18.8

165 17.0 176 17.3 194 18.4

165 16.3 177 17.2 194 19.0

166 14.1 177 18.3 195 18.0

166 14.2 179 16.4 195 18.2

166 14.7 179 16.1 196 17.6

166 13.9 179 17.6 196 18.3

166 17.2 179 17.8 197 18.9

167 16.7 179 16.1 197 19.2

167 16.5 179 16.0 200 21.0

167 14.7 179 16.0 200 19.2

167 14.3 179 17.5 202 18.6

167 14.8 179 17.5 202 18.6

167 15.0 180 18.0 182 20.0

167 15.5 180 17.9 190 20.0

167 15.4 181 18.4 190 19.5

168 17.3 181 16.4

Source: Olga Kwast-Rabben, Ph.D. Used with permission.

Solution: The scatter diagram and least-squares regression line are shown in Figure 9.7.2.
Let us assume that the investigator wishes to obtain a regression

equation to use for estimating and predicting purposes. In that case the
sample correlation coefficient will be obtained by the methods discussed
under the regression model.
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FIGURE 9.7.2 Height and cervical (spine) potentials in digit I 
stimulation for the data described in Example 9.7.1.



The Regression Equation

Let us assume that we wish to predict Cv levels from knowledge of heights. In that case
we treat height as the independent variable and Cv level as the dependent variable and
obtain the regression equation and correlation coefficient with MINITAB as shown in
Figure 9.7.3. For this example We know that r is positive because
the slope of the regression line is positive. We may also use the MINITAB correlation
procedure to obtain r as shown in Figure 9.7.4.

The printout from the SAS® correlation procedure is shown in Figure 9.7.5. Note
that the SAS® procedure gives descriptive measures for each variable as well as the p
value for the correlation coefficient.

When a computer is not available for performing the calculations, r may be
obtained by means of the following formulas:

(9.7.1)r = Cb 1
N

23g x 2
i - 1g x i22>n4

g y2
i - 1g yi22>n

r = 1.719 = .848.
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FIGURE 9.7.3 MINITAB output for Example 9.7.1 using the simple regression procedure.

The regression equation is
Cv = -3.20 + 0.115 Height

Predictor Coef SE Coef T P
Constant -3.198 1.016 -3.15 0.002
Height 0.114567 0.005792 19.78 0.000

S = 0.8573 R-Sq = 71.9% R-Sq(adj) = 71.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 287.56 287.56 391.30 0.000
Residual Error 153 112.44 0.73
Total 154 400.00

Unusual Observations
Obs Height Cv Fit SE Fit Residual St Resid
39 166 14.1000 15.8199 0.0865 -1.7199 -2.02R
42 166 13.9000 15.8199 0.0865 -1.9199 -2.25R
105 181 15.8000 17.5384 0.0770 -1.7384 -2.04R
151 202 18.6000 19.9443 0.1706 -1.3443 -1.60 X
152 202 18.6000 19.9443 0.1706 -1.3443 -1.60 X
153 182 20.0000 17.6529 0.0798 2.3471 2.75R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.
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FIGURE 9.7.4 MINITAB procedure for Example 9.7.1 using the correlation command.

Data:

C1: Height
C2: Cv

Dialog Box: Session command:

Stat ➤ Basic Statistics ➤ Correlation MTB > Correlation C1 C2.

Type C1 C2 in Variables. Click OK.

OUTPUT:

Correlations: Height, Cv

Pearson correlation of Height and Cv = 0.848
P-Value = 0.000

FIGURE 9.7.5 SAS® printout for Example 9.7.1.

The CORR Procedure
2 Variables: HEIGHT CV

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
HEIGHT 155 175.04516 11.92745 27132 149.00000 202.00000
CV 155 16.85613 1.61165 2613 13.00000 21.00000

Pearson Correlation Coefficients, N = 155
Prob > |r| under H0: Rho=0

HEIGHT CV
HEIGHT 1.00000 0.84788

<.0001
CV 0.84788 1.00000

<.0001



An alternative formula for computing r is given by

(9.7.2)

An advantage of this formula is that r may be computed without first computing
b. This is the desirable procedure when it is not anticipated that the regression equation
will be used.

Remember that the sample correlation coefficient, r, will always have the same
sign as the sample slope, b. ■

EXAMPLE 9.7.2

Refer to Example 9.7.1. We wish to see if the sample value of is of sufficient
magnitude to indicate that, in the population, height and Cv SEP levels are correlated.

Solution: We conduct a hypothesis test as follows.

1. Data. See the initial discussion of Example 9.7.1.

2. Assumptions. We presume that the assumptions given in Section 9.6
are applicable.

3. Hypotheses.

4. Test statistic. When it can be shown that the appropriate test
statistic is

(9.7.3)

5. Distribution of test statistic. When is true and the assumptions are
met, the test statistic is distributed as Student’s t distribution with 
degrees of freedom.

6. Decision rule. If we let the critical values of t in the present
example are (by interpolation). If, from our data, we com-
pute a value of t that is either greater than or equal to or less
than or equal to we will reject the null hypothesis.

7. Calculation of test statistic. Our calculated value of t is

8. Statistical decision. Since the computed value of the test statistic does
exceed the critical value of t, we reject the null hypothesis.

t = .848 A 153

1 - .719
= 19.787

-1.9754,
+1.9754

; 1.9754
a = .05,

n - 2
H0

t = r A n - 2

1 - r 2

r = 0,

HA : r Z 0

H0 : r = 0

r = .848

r =
ng x iyi - 1g x i21g yi22ng x 2
i - 1g x i222ng y 2

i - 1g yi22
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9. Conclusion. We conclude that, in the population, height and SEP lev-
els in the spine are linearly correlated.

10. p value. Since (interpolated value of t for 153,
.995), we have for this test, ■

A Test for Use When the Hypothesized Is a Nonzero Value
The use of the t statistic computed in the above test is appropriate only for testing

If it is desired to test where is some value other than zero,
we must use another approach. Fisher (5) suggests that r be transformed to as follows:

(9.7.4)

where ln is a natural logarithm. It can be shown that is approximately normally distrib-
uted with a mean of and estimated standard deviation of

(9.7.5)

To test the null hypothesis that is equal to some value other than zero, the test
statistic is

(9.7.6)

which follows approximately the standard normal distribution.
To determine for an observed r and for a hypothesized we consult Table I,

thereby avoiding the direct use of natural logarithms.
Suppose in our present example we wish to test

against the alternative

at the .05 level of significance. By consulting Table I (and interpolating), we find that
for

and for

Our test statistic, then, is

Z =
1.24726 - 1.09861

1>1155 - 3
= 1.83

r = .80,  zr = 1.09861

r = .848,  z r = 1.24726

HA : r Z .80

H0 : r = .80

r,z rz r

Z =
z r - z r

1>1n - 3

r

szp
=

11n - 3

zr = 1
2 ln511 + r2>11 - r26 z r

z r =
1

2
 ln 

1 + r

1 - r

z r

r0H0 : r = r0,H0 : r = 0.

R

p 6 .005.
t = 19.787 7 2.6085



Since 1.83 is less than the critical value of we are unable to reject We
conclude that the population correlation coefficient may be .80.

For sample sizes less than 25, Fisher’s Z transformation should be used with cau-
tion, if at all. An alternative procedure from Hotelling (6) may be used for sample sizes
equal to or greater than 10. In this procedure the following transformation of r is employed:

(9.7.7)

The standard deviation of is

(9.7.8)

The test statistic is

(9.7.9)

where

Critical values for comparison purposes are obtained from the standard normal
distribution.

In our present example, to test against using the
Hotelling transformation and we have

Since 1.7609 is less than 1.96, the null hypothesis is not rejected, and the same conclu-
sion is reached as when the Fisher transformation is used.

Alternatives In some situations the data available for analysis do not meet the assump-
tions necessary for the valid use of the procedures discussed here for testing hypotheses about
a population correlation coefficient. In such cases it may be more appropriate to use the Spear-
man rank correlation technique discussed in Chapter 13.

Confidence Interval for Fisher’s transformation may be used to construct
percent confidence intervals for The general formula for a confidence

interval

estimator (reliability factor)(standard error);

r.10011 - a2 R

Z* = 11.2339 - 1.092021155 - 1 = 1.7609

z* = 1.09861 -
311.098612 + .8

411552 = 1.0920

z* = 1.24726 -
311.247262 + .848

411552 = 1.2339

a = .05,
HA : r Z .80H0 : r = .80

z*1pronounced zeta2 = zr -
13zr + r2

4n

Z* =
z* - z*

1>1n - 1
= 1z* - z*21n - 1

sz* =
11n - 1

z*

z* = z r -
3z r + r

4n

H0.z = 1.96,
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is employed. We first convert our estimator, r, to zr , construct a confidence interval about
and then reconvert the limits to obtain a percent confidence interval

about The general formula then becomes

(9.7.10)

For our present example the 95 percent confidence interval for is given by

Converting these limits (by interpolation in Appendix Table I), which are values
of into values of r gives

zr r

1.08828 .7962
1.40624 .8866

We are 95 percent confident, then, that is contained in the interval .7962 to .88866.
Because of the limited entries in the table, these limits must be considered as only
approximate.

EXERCISES

In each of the following exercises:

(a) Prepare a scatter diagram.

(b) Compute the sample correlation coefficient.

(c) Test at the .05 level of significance and state your conclusions.

(d) Determine the p value for the test.

(e) Construct the 95 percent confidence interval for 

9.7.1 The purpose of a study by Brown and Persley (A-8) was to characterize acute hepatitis A in
patients more than 40 years old. They performed a retrospective chart review of 20 subjects who
were diagnosed with acute hepatitis A, but were not hospitalized. Of interest was the use of age
(years) to predict bilirubin levels (mg/dl). The following data were collected.

Age (Years) Bilirubin (mg/dl) Age (Years) Bilirubin (mg/dl)

78 7.5 44 7.0
72 12.9 42 1.8
81 14.3 45 .8
59 8.0 78 3.8
64 14.1 47 3.5
48 10.9 50 5.1
46 12.3 57 16.5

r.

H0 : r = 0

r

z r,

1.08828, 1.40624

1.24726 ; 1.9611>1155 - 32 zr

z r ; z11>1n - 32r.
10011 - a2zr,
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Age (Years) Bilirubin (mg/dl) Age (Years) Bilirubin (mg/dl)

42 1.0 52 3.5
58 5.2 58 5.6
52 5.1 45 1.9

Source: Geri R. Brown, M.D. Used with permission.

9.7.2 Another variable of interest in the study by Reiss et al. (A-3) (see Exercise 9.3.4) was partial
thromboplastin (aPTT), the standard test used to monitor heparin anticoagulation. Use the data in
the following table to examine the correlation between aPTT levels as measured by the
CoaguCheck point-of-care assay and standard laboratory hospital assay in 90 subjects receiving
heparin alone, heparin with warfarin, and warfarin and exoenoxaparin.

Warfarin and
Heparin Warfarin Exoenoxaparin

CoaguCheck Hospital CoaguCheck Hospital CoaguCheck Hospital
aPTT aPTT aPTT aPTT aPTT aPTT

49.3 71.4 18.0 77.0 56.5 46.5
57.9 86.4 31.2 62.2 50.7 34.9
59.0 75.6 58.7 53.2 37.3 28.0
77.3 54.5 75.2 53.0 64.8 52.3
42.3 57.7 18.0 45.7 41.2 37.5
44.3 59.5 82.6 81.1 90.1 47.1
90.0 77.2 29.6 40.9 23.1 27.1
55.4 63.3 82.9 75.4 53.2 40.6
20.3 27.6 58.7 55.7 27.3 37.8
28.7 52.6 64.8 54.0 67.5 50.4
64.3 101.6 37.9 79.4 33.6 34.2
90.4 89.4 81.2 62.5 45.1 34.8
64.3 66.2 18.0 36.5 56.2 44.2
89.8 69.8 38.8 32.8 26.0 28.2
74.7 91.3 95.4 68.9 67.8 46.3

150.0 118.8 53.7 71.3 40.7 41.0
32.4 30.9 128.3 111.1 36.2 35.7
20.9 65.2 60.5 80.5 60.8 47.2
89.5 77.9 150.0 150.0 30.2 39.7
44.7 91.5 38.5 46.5 18.0 31.3
61.0 90.5 58.9 89.1 55.6 53.0
36.4 33.6 112.8 66.7 18.0 27.4
52.9 88.0 26.7 29.5 18.0 35.7
57.5 69.9 49.7 47.8 78.3 62.0
39.1 41.0 85.6 63.3 75.3 36.7
74.8 81.7 68.8 43.5 73.2 85.3
32.5 33.3 18.0 54.0 42.0 38.3

125.7 142.9 92.6 100.5 49.3 39.8
77.1 98.2 46.2 52.4 22.8 42.3

143.8 108.3 60.5 93.7 35.8 36.0

Source: Curtis E. Haas, Pharm. D. Used with permission.
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9.7.3 In the study by Parker et al. (A-4) (see Exercise 9.3.5), the authors also looked at the change in
AUC (area under the curve of plasma concentration of digoxin) when comparing digoxin levels
taken with and without grapefruit juice. The following table gives the AUC when digoxin was
consumed with water and the change in AUC compared to the change in AUC when
digoxin is taken with grapefruit juice (GFJ, %).

Water AUC Level Change in AUC
(ng hr/ml) with GFJ (%)

6.96 17.4
5.59 24.5
5.31 8.5
8.22 20.8

11.91 �26.7
9.50 �29.3

11.28 �16.8

Source: Robert B. Parker, Pharm. D. Used 
with permission.

9.7.4 An article by Tuzson et al. (A-9) in Archives of Physical Medicine and Rehabilitation reported the
following data on peak knee velocity in walking (measured in degrees per second) at flexion and
extension for 18 subjects with cerebral palsy.

Flexion (°/ ) Extension (°/ )

100 100
150 150
210 180
255 165
200 210
185 155
440 440
110 180
400 400
160 140
150 250
425 275
375 340
400 400
400 450
300 300
300 300
320 275

Source: Ann E. Tuzson, Kevin P. 
Granata, and Mark F. Abel, “Spastic 
Velocity Threshold Constrains Functional 
Performance in Cerebral Palsy,” Archives 
of Physical Medicine and Rehabilitation, 
84 (2003), 1363–1368.

ss

#

1ng # hr>ml2
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9.7.5 Amyotrophic lateral sclerosis (ALS) is characterized by a progressive decline of motor function.
The degenerative process affects the respiratory system. Butz et al. (A-10) investigated the longi-
tudinal impact of nocturnal noninvasive positive-pressure ventilation on patients with ALS. Prior
to treatment, they measured partial pressure of arterial oxygen ( ) and partial pressure of arte-
rial carbon dioxide ( ) in patients with the disease. The results were as follows:

40.0 101.0
47.0 69.0
34.0 132.0
42.0 65.0
54.0 72.0
48.0 76.0
53.6 67.2
56.9 70.9
58.0 73.0
45.0 66.0
54.5 80.0
54.0 72.0
43.0 105.0
44.3 113.0
53.9 69.2
41.8 66.7
33.0 67.0
43.1 77.5
52.4 65.1
37.9 71.0
34.5 86.5
40.1 74.7
33.0 94.0
59.9 60.4
62.6 52.5
54.1 76.9
45.7 65.3
40.6 80.3
56.6 53.2
59.0 71.9

9.7.6 A simple random sample of 15 apparently healthy children between the ages of 6 months and 15
years yielded the following data on age, X , and liver volume per unit of body weight (ml/kg), Y:

X Y X Y

.5 41 10.0 26

.7 55 10.1 35
2.5 41 10.9 25
4.1 39 11.5 31

Pao2Paco2

Paco2

Pao2
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Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu,
A. Sperfeld, S. Winter, H. H. Mehrkens, A. C. Ludolph, and
H. Schreiber, “Longitudinal Effects of Noninvasive Positive-
Pressure Ventilation in Patients with Amyotrophic Lateral
Sclerosis,” American Journal of Medical Rehabilitation, 82
(2003) 597–604.
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X Y X Y

5.9 50 12.1 31
6.1 32 14.1 29
7.0 41 15.0 23
8.2 42

9.8 SOME PRECAUTIONS

Regression and correlation analysis are powerful statistical tools when properly
employed. Their inappropriate use, however, can lead only to meaningless results. To
aid in the proper use of these techniques, we make the following suggestions:

1. The assumptions underlying regression and correlation analysis should be reviewed
carefully before the data are collected. Although it is rare to find that assumptions
are met to perfection, practitioners should have some idea about the magnitude of
the gap that exists between the data to be analyzed and the assumptions of the pro-
posed model, so that they may decide whether they should choose another model;
proceed with the analysis, but use caution in the interpretation of the results; or
use the chosen model with confidence.

2. In simple linear regression and correlation analysis, the two variables of interest are
measured on the same entity, called the unit of association. If we are interested in
the relationship between height and weight, for example, these two measurements
are taken on the same individual. It usually does not make sense to speak of the
correlation, say, between the heights of one group of individuals and the weights of
another group.

3. No matter how strong is the indication of a relationship between two variables, it
should not be interpreted as one of cause and effect. If, for example, a significant
sample correlation coefficient between two variables X and Y is observed, it can
mean one of several things:

a. X causes Y.

b. Y causes X.

c. Some third factor, either directly or indirectly, causes both X and Y.

d. An unlikely event has occurred and a large sample correlation coefficient has
been generated by chance from a population in which X and Y are, in fact,
not correlated.

e. The correlation is purely nonsensical, a situation that may arise when measure-
ments of X and Y are not taken on a common unit of association.

4. The sample regression equation should not be used to predict or estimate outside
the range of values of the independent variable represented in the sample. As illus-
trated in Section 9.5, this practice, called extrapolation, is risky. The true relation-
ship between two variables, although linear over an interval of the independent
variable, sometimes may be described at best as a curve outside this interval. If
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our sample by chance is drawn only from the interval where the relationship is lin-
ear, we have only a limited representation of the population, and to project the
sample results beyond the interval represented by the sample may lead to false con-
clusions. Figure 9.8.1 illustrates the possible pitfalls of extrapolation.

9.9 SUMMARY

In this chapter, two important tools of statistical analysis, simple linear regression and
correlation, are examined. The following outline for the application of these techniques
has been suggested.

1. Identify the model. Practitioners must know whether the regression model or the
correlation model is the appropriate one for answering their questions.

2. Review assumptions. It has been pointed out several times that the validity of the
conclusions depends on how well the analyzed data fit the chosen model.

3. Obtain the regression equation. We have seen how the regression equation is
obtained by the method of least squares. Although the computations, when done
by hand, are rather lengthy, involved, and subject to error, this is not the problem
today that it has been in the past. Computers are now in such widespread use that
the researcher or statistician without access to one is the exception rather than the
rule. No apology for lengthy computations is necessary to the researcher who has
a computer available.

4. Evaluate the equation. We have seen that the usefulness of the regression equa-
tion for estimating and predicting purposes is determined by means of the analysis
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of variance, which tests the significance of the regression mean square. The
strength of the relationship between two variables under the correlation model is
assessed by testing the null hypothesis that there is no correlation in the popula-
tion. If this hypothesis can be rejected we may conclude, at the chosen level of
significance, that the two variables are correlated.

5. Use the equation. Once it has been determined that it is likely that the regression
equation provides a good description of the relationship between two variables, X
and Y, it may be used for one of two purposes:

a. To predict what value Y is likely to assume, given a particular value of X, or

b. To estimate the mean of the subpopulation of Y values for a particular value
of X.

This necessarily abridged treatment of simple linear regression and correlation may
have raised more questions than it has answered. It may have occurred to the reader, for
example, that a dependent variable can be more precisely predicted using two or more inde-
pendent variables rather than one. Or, perhaps, he or she may feel that knowledge of the
strength of the relationship among several variables might be of more interest than knowl-
edge of the relationship between only two variables. The exploration of these possibilities
is the subject of the next chapter, and the reader’s curiosity along these lines should be at
least partially relieved.

For those who would like to pursue further the topic of regression analysis a num-
ber of excellent references are available, including those by Dielman (7), Hocking (8),
Mendenhall and Sincich (9), and Neter et al. (10).

SUMMARY OF FORMULAS FOR CHAPTER 9

Formula Name Formula 
Number

9.2.1 Assumption of 
linearity

9.2.2 Simple linear
regression model

9.2.3 Error (residual) term

9.3.1 Algebraic
representation
of a straight line 

9.3.2 Least square
estimate of the 
slope of a 
regression line

Nb1 =
a

n

i=1
1x i - x21yi - y2
a

n

i=1
1x i - x22

y = a + bx

P = y - 1b0 + b1x2 = y - my ƒ x

y = b0 + b1x + P

my ƒ x = b0 + b1x
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9.3.3 Least square estimate
of the intercept of a 
regression line

9.4.1 Deviation equation

9.4.2 Sum-of-squares
equation

9.4.3 Estimated
population
coefficient of 
determination

9.4.4–9.4.7 Means and 
variances of 
point estimators
a and b

9.4.8 z statistic for testing
hypotheses
about

9.4.9 t statistic for testing
hypotheses
about

9.5.1 Prediction
interval for Y
for a given X

9.5.2 Confidence
Interval for the 
mean of Y for 
a given X

9.7.1–9.7.2 Correlation coefficient 

Ny ; t(1-a>2) sy ƒ xD1
n

+
1xp - x2
a1x i - x2

Ny ; t(1-a>2) sy>xD1 +
1
n

+
1xp - x22
a1x i - x22

b

t =
Nb1 - 1b120

s
Nb0

b

z =
Nb1 - 1b120
s

Nb0

r 2 = 1 - a1yi - Nyi22>1n - 22
a1yi - y22>1n - 12

a 1yi - y22 = a 1 Nyi - y22 + a 1yi - Nyi22
1yi - y2 = 1 Nyi - y2 + 1yi - Nyi2

Nb0 = y - Nb1x
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9.7.3 t statistic for
correlation coefficient

9.7.4 z statistic for
correlation coefficient

9.7.5 Estimated standard
deviation for z
statistic

9.7.6 Z statistic for
correlation coefficient

9.7.7 Z statistic for
correlation coefficient 
when n � 25

9.7.8 Standard Deviation
for z*

9.7.9 Z* statistic 
for correlation 
coefficient

9.7.10 Confidence interval
for

Symbol Key • � regression intercept term
• � estimated regression intercept
• � probability of type I error or regression intercept
• � estimated regression slope
• � regression slope
• � error term
• � population mean of statistic/variable x
• n � sample size
• � population variance of statistic/variable x
• � population correlation coefficient
• r � sample correlation coefficient
• r2 � sample coefficient of determination
• t � t statistic
• xi � value of independent variable at i
• � sample mean of independent variable
• yi � value of dependent variable at i
• � sample mean of dependent variable
• � estimated y
• z � z statistic

Ny
y

x

r

sx
2

mx

P
b1

Nb1

a

Nb0

b0

r
Zr = Z A1>1n - 3 B

sz* =
11n - 3

z* = z r -
3z r + r

4n

Z =
z r - zp

1>1n - 3

szp
=

11n - 3

z r =
1

2
ln

1 + r

1 - r

t = rA n - 2

1 - r 2

j* = Zp -
13zp + r2

4n

Z* =
z* - j*

1>1n - 1
= 1z* - j*21n - 1, where
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REVIEW QUESTIONS AND EXERCISES

1. What are the assumptions underlying simple linear regression analysis when one of the objectives
is to make inferences about the population from which the sample data were drawn?

2. Why is the regression equation called the least-squares equation?

3. Explain the meaning of in the sample regression equation.

4. Explain the meaning of in the sample regression equation.

5. Explain the following terms:

(a) Total sum of squares

(b) Explained sum of squares

(c) Unexplained sum of squares

6. Explain the meaning of and the method of computing the coefficient of determination.

7. What is the function of the analysis of variance in regression analysis?

8. Describe three ways in which one may test the null hypothesis that .

9. For what two purposes can a regression equation be used?

10. What are the assumptions underlying simple correlation analysis when inference is an objective?

11. What is meant by the unit of association in regression and correlation analysis?

12. What are the possible explanations for a significant sample correlation coefficient?

13. Explain why it is risky to use a sample regression equation to predict or to estimate outside the
range of values of the independent variable represented in the sample.

14. Describe a situation in your particular area of interest where simple regression analysis would be
useful. Use real or realistic data and do a complete regression analysis.

15. Describe a situation in your particular area of interest where simple correlation analysis would be
useful. Use real or realistic data and do a complete correlation analysis.

In each of the following exercises, carry out the required analysis and test hypotheses at the indi-
cated significance levels. Compute the p value for each test.

16. A study by Scrogin et al. (A-11) was designed to assess the effects of concurrent manipulations of
dietary NaCl and calcium on blood pressure as well as blood pressure and catecholamine responses
to stress. Subjects were salt-sensitive, spontaneously hypertensive male rats. Among the analyses
performed by the investigators was a correlation between baseline blood pressure and plasma epi-
nephrine concentration (E). The following data on these two variables were collected. Let 

BP PlasmaE BP PlasmaE

163.90 248.00 143.20 179.00
195.15 339.20 166.00 160.40
170.20 193.20 160.40 263.50
171.10 307.20 170.90 184.70

a = .01.

b1 = 0

b1
N

b0
N
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BP PlasmaE BP PlasmaE

148.60 80.80 150.90 227.50
195.70 550.00 159.60 92.35
151.00 70.00 141.60 139.35
166.20 66.00 160.10 173.80
177.80 120.00 166.40 224.80
165.10 281.60 162.00 183.60
174.70 296.70 214.20 441.60
164.30 217.30 179.70 612.80
152.50 88.00 178.10 401.60
202.30 268.00 198.30 132.00
171.70 265.50

Source: Karie E. Scrogin. Used with permission.

17. Dean Parmalee (A-12) wished to know if the year-end grades assigned to Wright State University
Medical School students are predictive of their second-year board scores. The following table
shows, for 89 students, the year-end score (AVG, in percent of 100) and the score on the second-
year medical board examination (BOARD).

AVG BOARD AVG BOARD AVG BOARD

95.73 257 85.91 208 82.01 196
94.03 256 85.81 210 81.86 179
91.51 242 85.35 212 81.70 207
91.49 223 85.30 225 81.65 202
91.13 241 85.27 203 81.51 230
90.88 234 85.05 214 81.07 200
90.83 226 84.58 176 80.95 200
90.60 236 84.51 196 80.92 160
90.30 250 84.51 207 80.84 205
90.29 226 84.42 207 80.77 194
89.93 233 84.34 211 80.72 196
89.83 241 84.34 202 80.69 171
89.65 234 84.13 229 80.58 201
89.47 231 84.13 202 80.57 177
88.87 228 84.09 184 80.10 192
88.80 229 83.98 206 79.38 187
88.66 235 83.93 202 78.75 161
88.55 216 83.92 176 78.32 172
88.43 207 83.73 204 78.17 163
88.34 224 83.47 208 77.39 166
87.95 237 83.27 211 76.30 170
87.79 213 83.13 196 75.85 159
87.01 215 83.05 203 75.60 154
86.86 187 83.02 188 75.16 169
86.85 204 82.82 169 74.85 159
86.84 219 82.78 205 74.66 167
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AVG BOARD AVG BOARD AVG BOARD

86.30 228 82.57 183 74.58 154
86.13 210 82.56 181 74.16 148
86.10 216 82.45 173 70.34 159
85.92 212 82.24 185

Source: Dean Parmalee, M.D. and the Wright State University Statistical 
Consulting Center. Used with permission.

Perform a complete regression analysis with AVG as the independent variable. Let 
for all tests.

18. Maria Mathias (A-13) conducted a study of hyperactive children. She measured the children’s atti-
tude, hyperactivity, and social behavior before and after treatment. The following table shows for
31 subjects the age and improvement scores from pre-treatment to post-treatment for attitude
(ATT), social behavior (SOC), and hyperactivity (HYP). A negative score for HYP indicates an
improvement in hyperactivity; a positive score in ATT or SOC indicates improvement. Perform an
analysis to determine if there is evidence to indicate that age (years) is correlated with any of the
three outcome variables. Let for all tests.

Subject
No. AGE ATT HYP SOC

1 9 �1.2 �1.2 0.0
2 9 0.0 0.0 1.0
3 13 �0.4 0.0 0.2
4 6 �0.4 �0.2 1.2
5 9 1.0 �0.8 0.2
6 8 0.8 0.2 0.4
7 8 �0.6 �0.2 0.6
8 9 �1.2 �0.8 �0.6
9 7 0.0 0.2 0.8

10 12 0.4 �0.8 0.4
11 9 �0.8 0.8 �0.2
12 10 1.0 �0.8 1.2
13 12 1.4 �1.6 0.6
14 9 1.0 �0.2 �0.2
15 12 0.8 �0.8 1.0
16 9 1.0 0.4 0.4
17 10 0.4 �0.2 0.6
18 7 0.0 �0.4 0.6
19 12 1.1 �0.6 0.8
20 9 0.2 �0.4 0.2
21 7 0.4 �0.2 0.6
22 6 0.0 �3.2 1.0
23 11 0.6 �0.4 0.0
24 11 0.4 �0.4 0.0
25 11 1.0 �0.7 �0.6
26 11 0.8 �0.8 0.0

a = .05

a = .05
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Subject
No. AGE ATT HYP SOC

27 11 1.2 0.6 1.0
28 11 0.2 0.0 �0.2
29 11 0.8 �1.2 0.3
30 8 0.0 0.0 �0.4
31 9 0.4 �0.2 0.2

19. A study by Triller et al. (A-14) examined the length of time required for home health-care nurses
to repackage a patient’s medications into various medication organizers (i.e., pill boxes). For the
19 patients in the study, researchers recorded the time required for repackaging of medications.
They also recorded the number of problems encountered in the repackaging session.

Repackaging Repackaging
Patient No. No. of Problems Time (Minutes) Patient No. No. of Problems Time (Minutes)

1 9 38 11 1 10
2 2 25 12 2 15
3 0 5 13 1 17
4 6 18 14 0 18
5 5 15 15 0 23
6 3 25 16 10 29
7 3 10 17 0 5
8 1 5 18 1 22
9 2 10 19 1 20

10 0 15

Source: Darren M. Triller, Pharm.D. Used with permission.

Perform a complete regression analysis of these data using the number of problems to predict the
time it took to complete a repackaging session. Let for all tests. What conclusions can
be drawn from your analysis? How might your results be used by health-care providers?

20. The following are the pulmonary blood flow (PBF) and pulmonary blood volume (PBV) values
recorded for 16 infants and children with congenital heart disease:

Y X
PBV (ml/sqM) PBF (L/min/sqM)

168 4.31
280 3.40
391 6.20
420 17.30
303 12.30
429 13.99
605 8.73
522 8.90
224 5.87
291 5.00

a = .05
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Y X
PBV (ml/sqM) PBF (L/min/sqM)

233 3.51
370 4.24
531 19.41
516 16.61
211 7.21
439 11.60

Find the regression equation describing the linear relationship between the two variables, compute
and test by both the F test and the t test. Let 

21. Fifteen specimens of human sera were tested comparatively for tuberculin antibody by two methods.
The logarithms of the titers obtained by the two methods were as follows:

Method

A (X) B (Y)

3.31 4.09
2.41 3.84
2.72 3.65
2.41 3.20
2.11 2.97
2.11 3.22
3.01 3.96
2.13 2.76
2.41 3.42
2.10 3.38
2.41 3.28
2.09 2.93
3.00 3.54
2.08 3.14
2.11 2.76

Find the regression equation describing the relationship between the two variables, compute 
and test by both the F test and the t test.

22. The following table shows the methyl mercury intake and whole blood mercury values in 12 sub-
jects exposed to methyl mercury through consumption of contaminated fish:

X Y
Methyl Mercury in
Mercury Intake Whole Blood
( g Hg/day) (ng/g)

180 90
200 120
230 125
410 290

M

H0 : b1 = 0
r 2,

a = .05.H0 : b1 = 0r 2,
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X Y
Methyl Mercury in
Mercury Intake Whole Blood
( g Hg/day) (ng/g)

600 310
550 290
275 170
580 375
105 70
250 105
460 205
650 480

Find the regression equation describing the linear relationship between the two variables, compute
and test by both the F and t tests.

23. The following are the weights (kg) and blood glucose levels (mg/100 ml) of 16 apparently healthy
adult males:

Weight (X) Glucose (Y)

64.0 108
75.3 109
73.0 104
82.1 102
76.2 105
95.7 121
59.4 79
93.4 107
82.1 101
78.9 85
76.7 99
82.1 100
83.9 108
73.0 104
64.4 102
77.6 87

Find the simple linear regression equation and test using both ANOVA and the t
test. Test and construct a 95 percent confidence interval for What is the predicted
glucose level for a man who weighs 95 kg? Construct the 95 percent prediction interval for his
weight. Let for all tests.

24. The following are the ages (years) and systolic blood pressures of 20 apparently healthy adults:

Age (X) BP (Y) Age (X) BP (Y)

20 120 46 128
43 128 53 136

a = .05

r.H0 : r = 0
H0 : b1 = 0

H0 : b1 = 0r 2,

M
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Age (X) BP (Y) Age (X) BP (Y)

63 141 70 146
26 126 20 124
53 134 63 143
31 128 43 130
58 136 26 124
46 132 19 121
58 140 31 126
70 144 23 123

Find the simple linear regression equation and test using both ANOVA and the t test.
Test and construct a 95 percent confidence interval for Find the 95 percent prediction
interval for the systolic blood pressure of a person who is 25 years old. Let for all tests.

25. The following data were collected during an experiment in which laboratory animals were inocu-
lated with a pathogen. The variables are time in hours after inoculation and temperature in degrees
Celsius.

Time Temperature Time Temperature

24 38.8 44 41.1
28 39.5 48 41.4
32 40.3 52 41.6
36 40.7 56 41.8
40 41.0 60 41.9

Find the simple linear regression equation and test using both ANOVA and the t test.
Test and construct a 95 percent confidence interval for Construct the 95 percent pre-
diction interval for the temperature at 50 hours after inoculation. Let for all tests.

For each of the studies described in Exercises 26 through 28, answer as many of the following
questions as possible.

(a) Which is more relevant, regression analysis or correlation analysis, or are both techniques
equally relevant?

(b) Which is the independent variable?

(c) Which is the dependent variable?

(d) What are the appropriate null and alternative hypotheses?

(e) Do you think the null hypothesis was rejected? Explain why or why not.

(f) Which is the more relevant objective, prediction or estimation, or are the two equally 
relevant?

(g) What is the sampled population?

(h) What is the target population?

(i) Are the variables directly or inversely related?

26. Lamarre-Cliche et al. (A-15) state, “The QT interval corrected for heart rate (QTc) is believed to
reflect sympathovagal balance. It has also been established that -blockers influence the autonomic
nervous system.” The researchers performed correlation analysis to measure the association

b

a = .05
r.H0 : r = 0

H0 : b1 = 0

a = .05
r.H0 : r = 0

H0 : b1 = 0
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between QTc interval, heart rate, heart rate change, and therapeutic blood pressure response for
73 hypertensive subjects taking -blockers. The researchers found that QTc interval length, pre-
treatment heart rate, and heart rate change with therapy were not good predictors of blood pres-
sure response to 1-selective -blockers in hypertensive subjects.

27. Skinner et al. (A-16) conducted a cross-sectional telephone survey to obtain 24-hour dietary
recall of infants’ and toddlers’ food intakes, as reported by mothers or other primary caregivers.
One finding of interest was that among 561 toddlers ages 15–24 months, the age in weeks of
the child was negatively related to vitamin C density When predicting
calcium density, age in weeks of the child produced a slope coefficient of �1.47 with a p
of .09.

28. Park et al. (A-17) studied 29 male subjects with clinically confirmed cirrhosis. Among other vari-
ables, they measured whole blood manganese levels (MnB), plasma manganese (MnP), urinary
manganese (MnU), and pallidal index (PI), a measure of signal intensity in T1 weighted magnetic
resonance imaging (MRI). They found a correlation coefficient of .559, between MnB
and PI. However, there were no significant correlations between MnP and Pi or MnU and

respectively).

For the studies described in Exercises 29 through 46, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence interval
construction) that you think would yield useful information for the researchers.

(b) Construct graphs that you think would be helpful in illustrating the relationships among
variables.

(c) Where you think appropriate, use techniques learned in other chapters, such as analysis of vari-
ance and hypothesis testing and interval estimation regarding means and proportions.

(d) Determine p values for each computed test statistic.

(e) State all assumptions that are necessary to validate your analysis.

(f) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

(g) If available, consult the cited reference and compare your analyses and results with those of
the authors.

29. Moerloose et al. (A-18) conducted a study to evaluate the clinical usefulness of a new laboratory
technique (method A) for use in the diagnosis of pulmonary embolism (PE). The performance of
the new technique was compared with that of a standard technique (method B). Subjects consisted
of patients with clinically suspected PE who were admitted to the emergency ward of a European
university hospital. The following are the measurements obtained by the two techniques for 85
patients. The researchers performed two analyses: (1) on all 85 pairs of measurements and (2) on
those pairs of measurements for which the value for method B was less than 1000.

B A B A B A

9 119 703 599 2526 1830
84 115 725 610 2600 1880
86 108 727 3900 2770 2100

190 182 745 4050 3100 1780
208 294 752 785 3270 1870

Pi1r = .353, p 7 .05, r = .252, p 7 .05,

p 6 .01,

b1
N = - .43, p = .012.

bb

b
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B A B A B A

218 226 884 914 3280 2480
251 311 920 1520 3410 1440
252 250 966 972 3530 2190
256 312 985 913 3900 2340
264 403 994 556 4260 3490
282 296 1050 1330 4300 4960
294 296 1110 1410 4560 7180
296 303 1170 484 4610 1390
311 336 1190 867 4810 1600
344 333 1250 1350 5070 3770
371 257 1280 1560 5470 2780
407 424 1330 1290 5576 2730
418 265 1340 1540 6230 1260
422 347 1400 1710 6260 2870
459 412 1530 1333 6370 2210
468 389 1560 1250 6430 2210
481 414 1840 764 6500 2380
529 667 1870 1680 7120 5220
540 486 2070 1310 7430 2650
562 720 2120 1360 7800 4910
574 343 2170 1770 8890 4080
646 518 2270 2240 9930 3840
664 801 2490 1910
670 760 2520 2110

Source: Dr. Philippe de Moerloose. Used with permission.

30. Research by Huhtaniemi et al. (A-19) focused on the quality of serum luteinizing hormone (LH)
during pubertal maturation in boys. Subjects, consisting of healthy boys entering puberty (ages 11
years 5 months to 12 years), were studied over a period of 18 months. The following are the con-
centrations (IU/L) of bioactive LH (B-LH) and immunoreactive LH (I-LH) in serum samples taken
from the subjects. Only observations in which the subjects’ B/I ratio was greater than 3.5 are
reported here.

I-LH B-LH I-LH B-LH

.104 .37 .97 3.63

.041 .28 .49 2.26

.124 .64 1 4.55

.808 2.32 1.17 5.06

.403 1.28 1.46 4.81

.27 .9 1.97 8.18

.49 2.45 .88 2.48

.66 2.8 1.24 4.8

.82 2.6 1.54 3.12
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I-LH B-LH I-LH B-LH

1.09 4.5 1.71 8.4
1.05 3.2 1.11 6
.83 3.65 1.35 7.2
.89 5.25 1.59 7.6
.75 2.9

Source: Dr. Ilpo T. Huhtaniemi. Used with permission.

31. Tsau et al. (A-20) studied urinary epidermal growth factor (EGF) excretion in normal children and
those with acute renal failure (ARF). Random urine samples followed by 24-hour urine collection
were obtained from 25 children. Subjects ranged in age from 1 month to 15 years. Urinary EGF
excretion was expressed as a ratio of urinary EGF to urinary creatinine concentration (EGF/Cr).
The authors conclude from their research results that it is reasonable to use random urine tests for
monitoring EGF excretion. Following are the random (spot) and 24-hour urinary EGF/Cr concen-
trations (pmol/mmol) for the 25 subjects:

24-h Urine Spot Urine 24-h Urine Spot Urine
Subject EGF/Cr (x) EGF/Cr (y) Subject EGF/Cr (x) EGF/Cr (y)

1 772 720 14 254 333
2 223 271 15a 93 84
3 494 314 16 303 512
4 432 350 17 408 277
5a 79 79 18 711 443
6a 155 118 19 209 309
7 305 387 20 131 280
8 318 432 21 165 189
9a 174 97 22 151 101

10 1318 1309 23 165 221
11 482 406 24 125 228
12 436 426 25 232 157
13 527 595

aSubjects with ARF.

Source: Dr. Yong-Kwei Tsau. Used with permission.

32. One of the reasons for a study by Usaj and Starc (A-21) was an interest in the behavior of pH
kinetics during conditions of long-term endurance and short-term endurance among healthy run-
ners. The nine subjects participating in the study were marathon runners aged years. The
authors report that they obtained a good correlation between pH kinetics and both short-term and
long-term endurance. The following are the short- ( ) and long-term ( ) speeds and blood pH
measurements for the participating subjects.

VLE VSE pH Range

5.4 5.6 .083
4.75 5.1 .1
4.6 4.6 .021

VLEVSE

26 ; 5

REVIEW QUESTIONS AND EXERCISES 469

(Continued)



VLE VSE pH Range

4.6 5 .065
4.55 4.9 .056
4.4 4.6 .01
4.4 4.9 .058
4.2 4.4 .013
4.2 4.5 .03

33. Bean et al. (A-22) conducted a study to assess the performance of the isoelectric focusing/
immunoblotting/laser densitometry (IEF/IB/LD) procedure to evaluate carbohydrate-deficient
transferrin (CDT) derived from dry blood spots. The investigators evaluated paired serum (S)
and dry blood spot (DBS) specimens simultaneously for CDT. Assessment of CDT serves as a
marker for alcohol abuse. The use of dry blood spots as a source of CDT for analysis by
IEF/IB/LD results in simplified sampling, storage, and transportation of specimens. The follow-
ing are the IEF/ IB/LD values in densitometry units (DU) of CDT from 25 serum and dry blood
spot specimens:

Specimen No. S DBS Specimen No. S DBS

1 64 23 14 9 13
2 74 38 15 10 8
3 75 37 16 17 7
4 103 53 17 38 14
5 10 9 18 9 9
6 22 18 19 15 9
7 33 20 20 70 31
8 10 5 21 61 26
9 31 14 22 42 14

10 30 15 23 20 10
11 28 12 24 58 26
12 16 9 25 31 12
13 13 7

34. Kato et al. (A-23) measured the plasma concentration of adrenomedullin (AM) in patients with
chronic congestive heart failure due to various cardiac diseases. AM is a hypotensive peptide,
which, on the basis of other studies, the authors say, has an implied role as a circulating hor-
mone in regulation of the cardiovascular system. Other data collected from the subjects included
plasma concentrations of hormones known to affect the cardiovascular system. Following are
the plasma AM (fmol/ml) and plasma renin activity (PRA) ( ) values for 19 heart fail-
ure patients:

Patient Sex Age AM PRA
No. ( ) (Years) (fmol/ml) (ng/ )

1 1 70 12.11 .480594
2 1 44 7.306 .63894
3 1 72 6.906 1.219542

L Á s1 � M, 2 � F

ng/L Á s
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Patient Sex Age AM PRA
No. ( ) (Years) (fmol/ml) (ng/ )

4 1 62 7.056 .450036
5 2 52 9.026 .19446
6 2 65 10.864 1.966824
7 2 64 7.324 .29169
8 1 71 9.316 1.775142
9 2 61 17.144 9.33408

10 1 68 6.954 .31947
11 1 63 7.488 1.594572
12 2 59 10.366 .963966
13 2 55 10.334 2.191842
14 2 57 13 3.97254
15 2 68 6.66 .52782
16 2 51 8.906 .350028
17 1 69 8.952 1.73625
18 1 71 8.034 .102786
19 1 46 13.41 1.13898

Source: Dr. Johji Kato. Used with permission.

35. In a study reported on in Archives of Disease in Childhood, Golden et al. (A-24) tested the
hypothesis that plasma calprotectin (PCal) (a neutrophil cytosolic protein released during neu-
trophil activation or death) concentration is an early and sensitive indicator of inflammation
associated with bacterial infection in cystic fibrosis (CF). Subjects were children with con-
firmed CF and a control group of age- and sex-matched children without the disease. Among
the data collected were the following plasma calprotectin ( ) and plasma copper (PCu)
( mol/L) measurements. Plasma copper is an index of acute phase response in cystic fibrosis.
The authors reported a correlation coefficient of .48 between plasma calprotectin ( ) and
plasma copper.

CF CF CF
Subject Subject Subject
No. PCal PCu No. PCal PCu No. PCal PCu

1 452 17.46 12 1548 15.31 22 674 18.11
2 590 14.84 13 708 17.00 23 3529 17.42
3 1958 27.42 14 8050 20.00 24 1467 17.42
4 2015 18.51 15 9942 25.00 25 1116 16.73
5 417 15.89 16 791 13.10 26 611 18.11
6 2884 17.99 17 6227 23.00 27 1083 21.56
7 1862 21.66 18 1473 16.70 28 1432 21.56
8 10471 19.03 19 8697 18.11 29 4422 22.60
9 25850 16.41 20 621 18.80 30 3198 18.91

10 5011 18.51 21 1832 17.08 31 544 14.37
11 5128 22.70

log10

m

mg>L

L Á s1 � M, 2 � F
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Control Control
Subject Subject
No. PCal PCu No. PCal PCu

1 674 16.73 17 368 16.73
2 368 16.73 18 674 16.73
3 321 16.39 19 815 19.82
4 1592 14.32 20 598 16.1
5 518 16.39 21 684 13.63
6 815 19.82 22 684 13.63
7 684 17.96 23 674 16.73
8 870 19.82 24 368 16.73
9 781 18.11 25 1148 24.15

10 727 18.11 26 1077 22.30
11 727 18.11 27 518 9.49
12 781 18.11 28 1657 16.10
13 674 16.73 29 815 19.82
14 1173 20.53 30 368 16.73
15 815 19.82 31 1077 22.30
16 727 18.11

Source: Dr. Barbara E. Golden. Used with permission.

36. Gelb et al. (A-25) conducted a study in which they explored the relationship between moderate to
severe expiratory airflow limitation and the presence and extent of morphologic and CT scored
emphysema in consecutively seen outpatients with chronic obstructive pulmonary disease. Among
the data collected were the following measures of lung CT and pathology (PATH) for emphysema
scoring:

CT Score PATH CT Score PATH

5 15 45 50
90 70 45 40
50 20 85 75
10 25 7 0
12 25 80 85
35 10 15 5
40 35 45 40
45 30 37 35
5 5 75 45

25 50 5 5
60 60 5 20
70 60

Source: Dr. Arthur F. Gelb. Used with permission.

37. The objective of a study by Witteman et al. (A-26) was to investigate skin reactivity with purified
major allergens and to assess the relation with serum levels of immunoglobulin E (IgE) antibodies and
to determine which additional factors contribute to the skin test result. Subjects consisted of patients
with allergic rhinitis, allergic asthma, or both, who were seen in a European medical center. As part
of their study, the researchers collected, from 23 subjects, the following measurements on specific IgE
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(IU/ml) and skin test (ng/ml) in the presence of Lol p 5, a purified allergen from grass pollen. We
wish to know the nature and strength of the relationship between the two variables. (Note: The authors
converted the measurements to natural logarithms before investigating this relationship.)

IgE Skin Test

24.87 .055
12.90 .041034
9.87 .050909
8.74 .046
6.88 .039032
5.90 .050909
4.85 .042142
3.53 .055
2.25 4.333333
2.14 .55
1.94 .050909
1.29 .446153
.94 .4
.91 .475
.55 4.461538
.30 4.103448
.14 7.428571
.11 4.461538
.10 6.625
.10 49.13043
.10 36.47058
.10 52.85714
.10 47.5

Source: Dr. Jaring S. van der Zee. 
Used with permission.

38. Garland et al. (A-27) conducted a series of experiments to delineate the complex maternal-fetal
pharmacokinetics and the effects of zidovudine (AZT) in the chronically instrumented maternal
and fetal baboon (Papio species) during both steady-state intravenous infusion and oral bolus
dosage regimens. Among the data collected were the following measurements on dosage
(mg/kg/h) and steady-state maternal plasma AZT concentration (ng/ml):

AZT AZT
Dosage Concentration Dosage Concentration

2.5 832 2.0 771
2.5 672 1.8 757
2.5 904 0.9 213
2.5 554 0.6 394
2.5 996 0.9 391
1.9 878 1.3 430
2.1 815 1.1 440
1.9 805 1.4 352
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AZT AZT
Dosage Concentration Dosage Concentration

1.9 592 1.1 337
0.9 391 0.8 181
1.5 710 0.7 174
1.4 591 1.0 470
1.4 660 1.1 426
1.5 694 0.8 170
1.8 668 1.0 360
1.8 601 0.9 320

Source: Dr. Marianne Garland. Used with permission.

39. The purpose of a study by Halligan et al. (A-28) was to evaluate diurnal variation in blood pres-
sure (BP) in women who were normotensive and those with pre-eclampsia. The subjects were
similar in age, weight, and mean duration of gestation (35 weeks). The researchers collected the
following BP readings. As part of their analysis they studied the relationship between mean day
and night measurements and day/night differences for both diastolic and systolic BP in each group.

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 75 56 127 101 1 94 78 137 119
0 68 57 113 104 1 90 86 139 138
0 72 58 115 105 1 85 69 138 117
0 71 51 111 94 1 80 75 133 126
0 81 61 130 110 1 81 60 127 112
0 68 56 111 101 1 89 79 137 126
0 78 60 113 102 1 107 110 161 161
0 71 55 120 99 1 98 88 152 141
0 65 51 106 96 1 78 74 134 132
0 78 61 120 109 1 80 80 121 121
0 74 60 121 104 1 96 83 143 129
0 75 52 121 102 1 85 76 137 131
0 68 50 109 91 1 79 74 135 120
0 63 49 108 99 1 91 95 139 135
0 77 47 132 115 1 87 67 137 115
0 73 51 112 90 1 83 64 143 119
0 73 52 118 97 1 94 85 127 123
0 64 62 122 114 1 85 70 142 124
0 64 54 108 94 1 78 61 119 110
0 66 54 106 88 1 80 59 129 114
0 72 49 116 101 1 98 102 156 163
0 83 60 127 103 1 100 100 149 149
0 69 50 121 104 1 89 84 141 135
0 72 52 108 95 1 98 91 148 139

; diastolic; dias-
tolic; systolic; systolic.

Source: Dr. Aidan Halligan. Used with permission.

C5 = nightC4 = day
C3 = nightC2 = day1 = pre-eclamptic2C1 = group 10 = normotensive,
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40. Marks et al. (A-29) conducted a study to determine the effects of rapid weight loss on contraction
of the gallbladder and to evaluate the effects of ursodiol and ibuprofen on saturation, nucleation
and growth, and contraction. Subjects were obese patients randomly assigned to receive ursodiol,
ibuprofen, or placebo. Among the data collected were the following cholesterol saturation index
values (CSI) and nucleation times (NT) in days of 13 (six male, seven female) placebo-treated
subjects at the end of 6 weeks:

CSI NT

1.20 4.00
1.42 6.00
1.18 14.00
.88 21.00

1.05 21.00
1.00 18.00
1.39 6.00
1.31 10.00
1.17 9.00
1.36 14.00
1.06 21.00
1.30 8.00
1.71 2.00

Source: Dr. Jay W. Marks.
Used with permission.

41. The objective of a study by Peacock et al. (A-30) was to investigate whether spinal osteoarthritis
is responsible for the fact that lumbar spine bone mineral density (BMD) is greater when meas-
ured in the anteroposterior plane than when measured in the lateral plane. Lateral spine radiographs
were studied from women (age range 34 to 87 years) who attended a hospital outpatient depart-
ment for bone density measurement and underwent lumbar spine radiography. Among the data col-
lected were the following measurements on anteroposterior (A) and lateral (L) BMD (g/cm ):

ABMD LBMD ABMD LBMD ABMD LBMD

.879 .577 1.098 .534 1.091 .836

.824 .622 .882 .570 .746 .433

.974 .643 .816 .558 1.127 .732

.909 .664 1.017 .675 1.411 .766

.872 .559 .669 .590 .751 .397

.930 .663 .857 .666 .786 .515

.912 .710 .571 .474 1.031 .574

.758 .592 1.134 .711 .622 .506
1.072 .702 .705 .492 .848 .657
.847 .655 .775 .348 .778 .537

1.000 .518 .968 .579 .784 .419
.565 .354 .963 .665 .659 .429

1.036 .839 .933 .626 .948 .485
.811 .572 .704 .194 .634 .544
.901 .612 .624 .429 .946 .550

2
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ABMD LBMD ABMD LBMD ABMD LBMD

1.052 .663 1.119 .707 1.107 .458
.731 .376 .686 .508 1.583 .975
.637 .488 .741 .484 1.026 .550
.951 .747 1.028 .787
.822 .610 .649 .469
.951 .710 1.166 .796

1.026 .694 .954 .548
1.022 .580 .666 .545

1.047 .706
.737 .526

Source: Dr. Cyrus Cooper. Used with permission.

42. Sloan et al. (A-31) note that cardiac sympathetic activation and parasympathetic withdrawal result
in heart rate increases during psychological stress. As indicators of cardiac adrenergic activity,
plasma epinephrine (E) and norepinephrine (NE) generally increase in response to psychological
challenge. Power spectral analysis of heart period variability also provides estimates of cardiac
autonomic nervous system activity. The authors conducted a study to determine the relationship
between neurohumoral and two different spectral estimates of cardiac sympathetic nervous system
activity during a quiet resting baseline and in response to a psychologically challenging arithmetic
task. Subjects were healthy, medication-free male and female volunteers with a mean age of 37.8
years. None had a history of cardiac, respiratory, or vascular disease. Among the data collected
were the following measurements on E, NE, low-frequency (LF) and very-low-frequency (VLF)
power spectral indices, and low-frequency/high frequency ratios (LH/HF). Measurements are given
for three periods: baseline (B), a mental arithmetic task (MA), and change from baseline to task
(DELTA).

Patient No. E NE LF/HF LF Period VLF

5 3.55535 6.28040 0.66706 7.71886 B 7.74600
5 0.05557 0.13960 �0.48115 �0.99826 DELTA �2.23823
5 3.61092 6.41999 0.18591 6.72059 MA 5.50777
6 3.55535 6.24611 2.48308 7.33729 B 6.64353
6 0.10821 �0.05374 �2.03738 �0.77109 DELTA �1.27196
6 3.66356 6.19236 0.44569 6.56620 MA 5.37157
7 3.29584 4.91998 �0.15473 7.86663 B 7.99450
7 0.59598 0.53106 0.14086 �0.81345 DELTA �2.86401
7 3.89182 5.45104 �0.01387 7.05319 MA 5.13049
8 4.00733 5.97635 1.58951 8.18005 B 5.97126
8 0.29673 0.11947 �0.11771 �1.16584 DELTA �0.39078
8 4.30407 6.09582 1.47180 7.01421 MA 5.58048

12 3.87120 5.35659 0.47942 6.56488 B 5.94960
12 * * 0.19379 0.03415 DELTA 0.50134
12 * * 0.67321 6.59903 MA 6.45094
13 3.97029 5.85507 0.13687 6.27444 B 5.58500
13 �0.20909 0.10851 1.05965 �0.49619 DELTA �1.68911
13 3.76120 5.96358 1.19652 5.77825 MA 3.89589
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Patient No. E NE LF/HF LF Period VLF

14 3.63759 5.62040 0.88389 6.08877 B 6.12490
14 0.31366 0.07333 1.06100 1.37098 DELTA �1.07633
14 3.95124 5.69373 1.94489 7.45975 MA 5.04857
18 4.44265 5.88053 0.99200 7.52268 B 7.19376
18 0.35314 0.62824 �0.10297 �0.57142 DELTA �2.06150
18 4.79579 6.50877 0.88903 6.95126 MA 5.13226
19 * 5.03044 0.62446 6.90677 B 7.39854
19 * 0.69966 0.09578 0.94413 DELTA �0.88309
19 2.94444 5.73010 0.72024 7.85090 MA 6.51545
20 3.91202 5.86363 1.11825 8.26341 B 6.89497
20 �0.02020 0.21401 �0.60117 �1.13100 DELTA �1.12073
20 3.89182 6.07764 0.51708 7.13241 MA 5.77424
21 3.55535 6.21860 0.78632 8.74397 B 8.26111
21 0.31585 �0.52487 �1.92114 �2.38726 DELTA �2.08151
21 3.87120 5.69373 �1.13483 6.35671 MA 6.17960
22 4.18965 5.76832 �0.02785 8.66907 B 7.51529
22 0.16705 �0.05459 0.93349 �0.89157 DELTA �1.00414
22 4.35671 5.71373 0.90563 7.77751 MA 6.51115
23 3.95124 5.52545 �0.24196 6.75330 B 6.93020
23 0.26826 0.16491 �0.00661 0.18354 DELTA �1.18912
23 4.21951 5.69036 �0.24856 6.93684 MA 5.74108
24 3.78419 5.59842 �0.67478 6.26453 B 6.45268
24 0.32668 �0.17347 1.44970 0.52169 DELTA 0.39277
24 4.11087 5.42495 0.77493 6.78622 MA 6.84545
1 3.36730 6.13123 0.19077 6.75395 B 6.13708
1 0.54473 0.08538 0.79284 0.34637 DELTA �0.56569
1 3.91202 6.21661 0.98361 7.10031 MA 5.57139
3 2.83321 5.92158 1.89472 7.92524 B 6.30664
3 1.15577 0.64930 �0.75686 �1.58481 DELTA �1.95636
3 3.98898 6.57088 1.13786 6.34042 MA 4.35028
4 4.29046 5.73657 1.81816 7.02734 B 7.02882
4 0.14036 0.47000 �0.26089 �1.08028 DELTA �1.43858
4 4.43082 6.20658 1.55727 5.94705 MA 5.59024
5 3.93183 5.62762 1.70262 6.76859 B 6.11102
5 0.80437 0.67865 �0.26531 �0.29394 DELTA �0.94910
5 4.73620 6.30628 1.43731 6.47465 MA 5.16192
6 3.29584 5.47227 0.18852 6.49054 B 6.84279
6 �0.16034 0.27073 �0.16485 �1.12558 DELTA �1.84288
6 3.13549 5.74300 0.02367 5.36496 MA 4.99991
8 3.25810 5.37064 �0.09631 7.23131 B 7.16371
8 0.40547 �0.13953 0.97906 �0.62894 DELTA �2.15108
8 3.66356 5.23111 0.88274 6.60237 MA 5.01263
9 3.78419 5.94542 0.77839 5.86126 B 6.22910
9 0.64663 0.05847 �0.42774 �0.53530 DELTA �2.18430
9 4.43082 6.00389 0.35066 5.32595 MA 4.04480

10 4.07754 5.87493 2.32137 6.71736 B 6.59769
10 0.23995 �0.00563 �0.25309 �0.00873 DELTA �0.75357
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Patient No. E NE LF/HF LF Period VLF

10 4.31749 5.86930 2.06827 6.70863 MA 5.84412
11 4.33073 5.84064 2.89058 7.22570 B 5.76079
11 �3.63759 �0.01464 �1.22533 �1.33514 DELTA �0.55240
11 0.69315 5.82600 1.66525 5.89056 MA 5.20839
12 3.55535 6.04501 1.92977 8.50684 B 7.15797
12 0.13353 0.12041 �0.15464 �0.84735 DELTA 0.13525
12 3.68888 6.16542 1.77513 7.65949 MA 7.29322
13 3.33220 4.63473 �0.11940 6.35464 B 6.76285
13 1.16761 1.05563 0.85621 0.63251 DELTA �0.52121
13 4.49981 5.69036 0.73681 6.98716 MA 6.24164
14 3.25810 5.96358 1.10456 7.01270 B 7.49426
14 * * 0.26353 �1.20066 DELTA �3.15046
14 * * 1.36809 5.81204 MA 4.34381
15 5.42935 6.34564 2.76361 9.48594 B 7.05730
15 * * �1.14662 �1.58468 DELTA �0.08901
15 * * 1.61699 7.90126 MA 6.96829
16 4.11087 6.59441 �0.23319 6.68269 B 6.76872
16 �0.06782 �0.54941 0.34755 �0.29398 DELTA �1.80868
16 4.04305 6.04501 0.11437 6.38871 MA 4.96004
17 * 6.28040 1.40992 6.09671 B 4.82671
17 * �0.12766 �0.17490 �0.05945 DELTA 0.69993
17 * 6.15273 1.23501 6.03726 MA 5.52665
18 2.39790 6.03548 0.23183 6.39707 B 6.60421
18 1.06784 0.11299 0.27977 �0.38297 DELTA �1.92672
18 3.46574 6.14847 0.51160 6.01410 MA 4.67749
19 4.21951 6.35784 1.08183 5.54214 B 5.69070
19 0.21131 �0.00347 0.12485 �0.54440 DELTA �1.49802
19 4.43082 6.35437 1.20669 4.99774 MA 4.19268
20 4.14313 5.73334 0.89483 7.35045 B 6.93974
20 �0.11778 0.00000 0.17129 �0.58013 DELTA �1.72916
20 4.02535 5.73334 1.06612 6.77032 MA 5.21058
21 3.66356 6.06843 �0.87315 5.09848 B 6.02972
21 0.20764 �0.10485 0.41178 �0.33378 DELTA �2.00974
21 3.87120 5.96358 �0.46137 4.76470 MA 4.01998
22 3.29584 5.95324 2.38399 7.62877 B 7.54359
22 0.36772 0.68139 �0.75014 �0.89992 DELTA �1.25555
22 3.66356 6.63463 1.63384 6.72884 MA 6.28804

Source: Dr. Richard P. Sloan. Used with permission.

43. The purpose of a study by Chati et al. (A-32) was to ascertain the role of physical deconditioning in
skeletal muscle metabolic abnormalities in patients with chronic heart failure (CHF). Subjects included
ambulatory CHF patients (12 males, two females) ages 35 to 74 years. Among the data collected were
the following measurements, during exercise, of workload (WL) under controlled conditions, peak
oxygen consumption ( ), anaerobic ventilatory threshold (AT), both measured in ml/kg/min, and
exercise total time (ET) in seconds.

Vo2

* = missing data.
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WL Vo2 AT ET WL Vo2 AT ET

7.557 32.800 13.280 933.000 3.930 22.500 18.500 720.000
3.973 8.170 6.770 255.000 3.195 17.020 8.520 375.000
5.311 16.530 11.200 480.000 2.418 15.040 12.250 480.000
5.355 15.500 10.000 420.000 0.864 7.800 4.200 240.000
6.909 24.470 11.550 960.000 2.703 12.170 8.900 513.000
1.382 7.390 5.240 346.000 1.727 15.110 6.300 540.000
8.636 19.000 10.400 600.000 7.773 21.100 12.500 1200.000

Source: Dr. Zukaï Chati. Used with permission.

44. Czader et al. (A-33) investigated certain prognostic factors in patients with centroblastic-
centrocytic non-Hodgkin’s lymphomas (CB/CC NHL). Subjects consisted of men and women
between the ages of 20 and 84 years at time of diagnosis. Among the data collected were the
following measurements on two relevant factors, A and B. The authors reported a significant
correlation between the two.

A B A B A B

20.00 .154 22.34 .147 48.66 .569
36.00 .221 18.00 .132 20.00 .227
6.97 .129 18.00 .085 17.66 .125

13.67 .064 22.66 .577 14.34 .089
36.34 .402 45.34 .134 16.33 .051
39.66 .256 20.33 .246 18.34 .100
14.66 .188 16.00 .175 26.49 .202
27.00 .138 15.66 .105 13.33 .077
2.66 .078 23.00 .145 6.00 .206

22.00 .142 27.33 .129 15.67 .153
11.00 .086 6.27 .062 32.33 .549
20.00 .170 24.34 .147
22.66 .198 22.33 .769
7.34 .092 11.33 .130

29.67 .227 6.67 .099
11.66 .159
8.05 .223

22.66 .065

Source: Dr. Magdalena Czader and Dr. Anna Porwit-MacDonald. 
Used with permission.

45. Fleroxacin, a fluoroquinolone derivative with a broad antibacterial spectrum and potent activity in vitro
against gram-negative and many gram-positive bacteria, was the subject of a study by Reigner and
Welker (A-34). The objectives of their study were to estimate the typical values of clearance over sys-
temic availability (CL/F) and the volume of distribution over systemic availability (V/F) after the
administration of therapeutic doses of fleroxacin and to identify factors that influence the disposition
of fleroxacin and to quantify the degree to which they do so. Subjects were 172 healthy male and
female volunteers and uninfected patients representing a wide age range. Among the data analyzed
were the following measurements (ml/min) of CL/F and creatinine clearance (CLcr). According to
the authors, previous studies have shown that there is a correlation between the two variables.
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CL/F CLer CL/F CLer CL/F CLer CL/F CLer

137.000 96.000 77.000 67.700 152.000 109.000 132.000 111.000
106.000 83.000 57.000 51.500 100.000 82.000 94.000 118.000
165.000 100.000 69.000 52.400 86.000 88.000 90.000 111.000
127.000 101.000 69.000 65.900 69.000 67.000 87.000 124.000
139.000 116.000 76.000 60.900 108.000 68.700 48.000 10.600
102.000 78.000 77.000 93.800 77.000 83.200 26.000 9.280
72.000 84.000 66.000 73.800 85.000 72.800 54.000 12.500
86.000 81.000 53.000 99.100 89.000 82.300 36.000 9.860
85.000 77.000 26.000 110.000 105.000 71.100 26.000 4.740

122.000 102.000 89.000 99.900 66.000 56.000 39.000 7.020
76.000 80.000 44.000 73.800 73.000 61.000 27.000 6.570
57.000 67.000 27.000 65.800 64.000 79.500 36.000 13.600
62.000 41.000 96.000 109.000 26.000 9.120 15.000 7.600
90.000 93.000 102.000 76.800 29.000 8.540 138.000 100.000

165.000 88.000 159.000 125.000 39.100 93.700 127.000 108.000
132.000 64.000 115.000 112.000 75.500 65.600 203.000 121.000
159.000 92.000 82.000 91.600 86.000 102.000 198.000 143.000
148.000 114.000 96.000 83.100 106.000 105.000 151.000 126.000
116.000 59.000 121.000 88.800 77.500 67.300 113.000 111.000
124.000 67.000 99.000 94.000 87.800 96.200 139.000 109.000
76.000 56.000 120.000 91.500 25.700 6.830 135.000 102.000
40.000 61.000 101.000 83.800 89.700 74.800 116.000 110.000
23.000 35.000 118.000 97.800 108.000 84.000 148.000 94.000
27.000 38.000 116.000 100.000 58.600 79.000 221.000 110.000
64.000 79.000 116.000 67.500 91.700 68.500 115.000 101.000
44.000 64.000 87.000 97.500 48.900 20.600 150.000 110.000
59.000 94.000 59.000 45.000 53.500 10.300 135.000 143.000
47.000 96.000 96.000 53.500 41.400 11.800 201.000 115.000
17.000 25.000 163.000 84.800 24.400 7.940 164.000 103.000
67.000 122.000 39.000 73.700 42.300 3.960 130.000 103.000
25.000 43.000 73.000 87.300 34.100 12.700 162.000 169.000
24.000 22.000 45.000 74.800 28.300 7.170 107.000 140.000
65.000 55.000 94.000 100.000 47.000 6.180 78.000 87.100
69.000 42.500 74.000 73.700 30.500 9.470 87.500 134.000
55.000 71.000 70.000 64.800 38.700 13.700 108.000 108.000
39.000 34.800 129.000 119.000 60.900 17.000 126.000 118.000
58.000 50.300 34.000 30.000 51.300 6.810 131.000 109.000
37.000 38.000 42.000 65.900 46.100 24.800 94.400 60.000
32.000 32.000 48.000 34.900 25.000 7.200 87.700 82.900
66.000 53.500 58.000 55.900 29.000 7.900 94.000 99.600
49.000 60.700 30.000 40.100 25.000 6.600 157.000 123.000
40.000 66.500 47.000 48.200 40.000 8.600
34.000 22.600 35.000 14.800 28.000 5.500
87.000 61.800 20.000 14.400

Source: Dr. Bruno Reigner. Used with permission.
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46. Yasu et al. (A-35) used noninvasive magnetic resonance spectroscopy to determine the short- and
long-term effects of percutaneous transvenous mitral commissurotomy (PTMC) on exercise capac-
ity and metabolic responses of skeletal muscles during exercise. Data were collected on 11
patients (2 males, 9 females) with symptomatic mitral stenosis. Their mean age was 52 years with
a standard deviation of 11. Among the data collected were the following measurements on
changes in mitral valve area (d-MVA) and peak oxygen consumption (d-Vo2) 3, 30, and 90 days
post-PTMC:

Days d-Vo2

Subject Post-PTMC d-MVA (cm2) (ml/kg/min)

1 3 0.64 0.3
2 3 0.76 �0.9
3 3 0.3 1.9
4 3 0.6 �3.1
5 3 0.3 �0.5
6 3 0.4 �2.7
7 3 0.7 1.5
8 3 0.9 1.1
9 3 0.6 �7.4

10 3 0.4 �0.4
11 3 0.65 3.8

1 30 0.53 1.6
2 30 0.6 3.3
3 30 0.4 2.6
4 30 0.5 *
5 30 0.3 3.6
6 30 0.3 0.2
7 30 0.67 4.2
8 30 0.75 3
9 30 0.7 2

10 30 0.4 0.8
11 30 0.55 4.2

1 90 0.6 1.9
2 90 0.6 5.9
3 90 0.4 3.3
4 90 0.6 5
5 90 0.25 0.6
6 90 0.3 2.5
7 90 0.7 4.6
8 90 0.8 4
9 90 0.7 1

10 90 0.38 1.1
11 90 0.53 *
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Exercises for Use with Large Data Sets Available on the Following Website: 
www.wiley.com/college/daniel

1. Refer to the data for 1050 subjects with cerebral edema (CEREBRAL). Cerebral edema with con-
sequent increased intracranial pressure frequently accompanies lesions resulting from head injury
and other conditions that adversely affect the integrity of the brain. Available treatments for cere-
bral edema vary in effectiveness and undesirable side effects. One such treatment is glycerol,
administered either orally or intravenously. Of interest to clinicians is the relationship between
intracranial pressure and glycerol plasma concentration. Suppose you are a statistical consultant
with a research team investigating the relationship between these two variables. Select a simple
random sample from the population and perform the analysis that you think would be useful to
the researchers. Present your findings and conclusions in narrative form and illustrate with graphs
where appropriate. Compare your results with those of your classmates.

2. Refer to the data for 1050 subjects with essential hypertension (HYPERTEN). Suppose you are a
statistical consultant to a medical research team interested in essential hypertension. Select a sim-
ple random sample from the population and perform the analyses that you think would be useful
to the researchers. Present your findings and conclusions in narrative form and illustrate with
graphs where appropriate. Compare your results with those of your classmates. Consult with your
instructor regarding the size of sample you should select.

3. Refer to the data for 1200 patients with rheumatoid arthritis (CALCIUM). One hundred patients
received the medicine at each dose level. Suppose you are a medical researchers wishing to gain
insight into the nature of the relationship between dose level of prednisolone and total body cal-
cium. Select a simple random sample of three patients from each dose level group and do the
following.

(a) Use the total number of pairs of observations to obtain the least-squares equation describing the
relationship between dose level (the independent variable) and total body calcium.

(b) Draw a scatter diagram of the data and plot the equation.

(c) Compute r and test for significance at the .05 level. Find the p value.

(d) Compare your results with those of your classmates.
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CHAPTER OVERVIEW 

This chapter provides extensions of the simple linear regression and bivari-
ate correlation models discussed in Chapter 9. The concepts and techniques
discussed here are useful when the researcher wishes to consider simulta-
neously the relationships among more than two variables. Although the
concepts, computations, and interpretations associated with analysis of
multiple-variable data may seem complex, they are natural extensions of
material explored in previous chapters.

TOPICS

10.1 INTRODUCTION

10.2 THE MULTIPLE LINEAR REGRESSION MODEL

10.3 OBTAINING THE MULTIPLE REGRESSION EQUATION

10.4 EVALUATING THE MULTIPLE REGRESSION EQUATION

10.5 USING THE MULTIPLE REGRESSION EQUATION

10.6 THE MULTIPLE CORRELATION MODEL

10.7 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how to include more than one independent variable in a regression 

equation.
2. be able to obtain a multiple regression model and use it to make predictions.
3. be able to evaluate the multiple regression coefficients and the suitability of 

the regression model.
4. understand how to calculate and interpret multiple, bivariate, and partial 

correlation coefficients.

CHAPTER10
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10.1 INTRODUCTION

In Chapter 9 we explored the concepts and techniques for analyzing and making use of
the linear relationship between two variables. We saw that this analysis may lead to an
equation that can be used to predict the value of some dependent variable given the value
of an associated independent variable.

Intuition tells us that, in general, we ought to be able to improve our predict-
ing ability by including more independent variables in such an equation. For exam-
ple, a researcher may find that intelligence scores of individuals may be predicted
from physical factors such as birth order, birth weight, and length of gestation along
with certain hereditary and external environmental factors. Length of stay in a chronic
disease hospital may be related to the patient’s age, marital status, sex, and income,
not to mention the obvious factor of diagnosis. The response of an experimental ani-
mal to some drug may depend on the size of the dose and the age and weight of the
animal. A nursing supervisor may be interested in the strength of the relationship
between a nurse’s performance on the job, score on the state board examination,
scholastic record, and score on some achievement or aptitude test. Or a hospital
administrator studying admissions from various communities served by the hospital
may be interested in determining what factors seem to be responsible for differences
in admission rates.

The concepts and techniques for analyzing the associations among several vari-
ables are natural extensions of those explored in the previous chapters. The computa-
tions, as one would expect, are more complex and tedious. However, as is pointed out
in Chapter 9, this presents no real problem when a computer is available. It is not unusual
to find researchers investigating the relationships among a dozen or more variables. For
those who have access to a computer, the decision as to how many variables to include
in an analysis is based not on the complexity and length of the computations but on such
considerations as their meaningfulness, the cost of their inclusion, and the importance of
their contribution.

In this chapter we follow closely the sequence of the previous chapter. The regres-
sion model is considered first, followed by a discussion of the correlation model. In con-
sidering the regression model, the following points are covered: a description of the
model, methods for obtaining the regression equation, evaluation of the equation, and the
uses that may be made of the equation. In both models the possible inferential proce-
dures and their underlying assumptions are discussed.

10.2 THE MULTIPLE LINEAR
REGRESSION MODEL

In the multiple regression model we assume that a linear relationship exists between
some variable Y, which we call the dependent variable, and k independent variables,

The independent variables are sometimes referred to as explanatory vari-
ables, because of their use in explaining the variation in Y. They are also called predic-
tor variables, because of their use in predicting Y.

X1, X2, . . . , Xk.
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Assumptions The assumptions underlying multiple regression analysis are as
follows.

1. The are nonrandom (fixed) variables. This assumption distinguishes the multi-
ple regression model from the multiple correlation model, which will be presented
in Section 10.6. This condition indicates that any inferences that are drawn from
sample data apply only to the set of X values observed and not to some larger col-
lection of X’s. Under the regression model, correlation analysis is not meaningful.
Under the correlation model to be presented later, the regression techniques that
follow may be applied.

2. For each set of values there is a subpopulation of Y values. To construct certain
confidence intervals and test hypotheses, it must be known, or the researcher must
be willing to assume, that these subpopulations of Y values are normally distributed.
Since we will want to demonstrate these inferential procedures, the assumption of
normality will be made in the examples and exercises in this chapter.

3. The variances of the subpopulations of Y are all equal.

4. The Y values are independent. That is, the values of Y selected for one set of X
values do not depend on the values of Y selected at another set of X values.

The Model Equation The assumptions for multiple regression analysis may be
stated in more compact fashion as

(10.2.1)

where is a typical value from one of the subpopulations of Y values; the are called
the regression coefficients; are, respectively, particular values of the inde-
pendent variables and is a random variable with mean 0 and variance

the common variance of the subpopulations of Y values. To construct confidence
intervals for and test hypotheses about the regression coefficients, we assume that the 
are normally and independently distributed. The statements regarding are a conse-
quence of the assumptions regarding the distributions of Y values. We will refer to Equa-
tion 10.2.1 as the multiple linear regression model.

When Equation 10.2.1 consists of one dependent variable and two independent
variables, that is, when the model is written

(10.2.2)

a plane in three-dimensional space may be fitted to the data points as illustrated in Fig-
ure 10.2.1. When the model contains more than two independent variables, it is described
geometrically as a hyperplane.

In Figure 10.2.1 the observer should visualize some of the points as being located
above the plane and some as being located below the plane. The deviation of a point
from the plane is represented by

(10.2.3)

In Equation 10.2.2, represents the point where the plane cuts the Y-axis; that
is, it represents the Y-intercept of the plane. measures the average change in Y for ab1

b0

Pj = yj - b0 - b1x1j - b2x 2j

yj = b0 + b1x1j + b 2x 2j + Pj

Pj

Pj

s2,
PjX1, X2, Á Xk;

x1j, x2j, Á , xkj

biyj

yj = b0 + b1x1j + b2x 2j + . . . + bk x kj + Pj

Xi

Xi
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unit change in when remains unchanged, and measures the average change in
Y for a unit change in when remains unchanged. For this reason and are
referred to as partial regression coefficients.

10.3 OBTAINING THE MULTIPLE 
REGRESSION EQUATION

Unbiased estimates of the parameters of the model specified in Equation
10.2.1 are obtained by the method of least squares. This means that the sum of the
squared deviations of the observed values of Y from the resulting regression surface is
minimized. In the three-variable case, as illustrated in Figure 10.2.1, the sum of the
squared deviations of the observations from the plane are a minimum when and

are estimated by the method of least squares. In other words, by the method of least
squares, sample estimates of are selected in such a way that the quantity

is minimized. This quantity, referred to as the sum of squares of the residuals, may also
be written as

(10.3.1)

indicating the fact that the sum of squares of deviations of the observed values of Y from
the values of Y calculated from the estimated equation is minimized.

gPj
2 = g1yj - yN j22

gP 2
j = g1yj - b0 - b1x1j - b2x 2j - . . . - bkxkj22

b0, b1, . . . , bk

b2

b0, b1,

b0, b1, . . . , bk

b2b1X1X2

b2X2X1
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FIGURE 10.2.1 Multiple regression plane and scatter of points.



Estimates of the multiple regression parameters may be obtained by means of arith-
metic calculations performed on a handheld calculator. This method of obtaining the esti-
mates is tedious, time-consuming, subject to errors, and a waste of time when a computer is
available. Those interested in examining or using the arithmetic approach may consult ear-
lier editions of this text or those by Snedecor and Cochran (1) and Steel and Torrie (2), who
give numerical examples for four variables, and Anderson and Bancroft (3), who illustrate
the calculations involved when there are five variables. In the following example we use SPSS
software to illustrate an interesting graphical summary of sample data collected on three vari-
ables. We then use MINITAB to illustrate the application of multiple regression analysis.

EXAMPLE 10.3.1

Researchers Jansen and Keller (A-1) used age and education level to predict the capac-
ity to direct attention (CDA) in elderly subjects. CDA refers to neural inhibitory mech-
anisms that focus the mind on what is meaningful while blocking out distractions. The
study collected information on 71 community-dwelling older women with normal men-
tal status. The CDA measurement was calculated from results on standard visual and
auditory measures requiring the inhibition of competing and distracting stimuli. In this
study, CDA scores ranged from to 9.61 with higher scores corresponding with
better attentional functioning. The measurements on CDA, age in years, and education
level (years of schooling) for 71 subjects are shown in Table 10.3.1. We wish to obtain
the sample multiple regression equation.

-7.65
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(Continued)

TABLE 10.3.1 CDA Scores, Age, and Education Level
for 71 Subjects Described in Example 10.3.1

Age Ed-Level CDA Age Ed-Level CDA

72 20 4.57 79 12 3.17

68 12 �3.04 87 12 �1.19

65 13 1.39 71 14 0.99

85 14 �3.55 81 16 �2.94

84 13 �2.56 66 16 �2.21

90 15 �4.66 81 16 �0.75

79 12 �2.70 80 13 5.07

74 10 0.30 82 12 �5.86

69 12 �4.46 65 13 5.00

87 15 �6.29 73 16 0.63

84 12 �4.43 85 16 2.62

79 12 0.18 83 17 1.77

71 12 �1.37 83 8 �3.79

76 14 3.26 76 20 1.44

73 14 �1.12 77 12 �5.77

86 12 �0.77 83 12 �5.77

69 17 3.73 79 14 �4.62

66 11 �5.92 69 12 �2.03

65 16 5.74 66 14 �2.22



Prior to analyzing the data using multiple regression techniques, it is useful to con-
struct plots of the relationships among the variables. This is accomplished by making
separate plots of each pair of variables, (X1, X2), (X1, Y ), and (X2, Y ). A software pack-
age such as SPSS displays each combination simultaneously in a matrix format as
shown in Figure 10.3.1. From this figure it is apparent that we should expect a negative
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Age Ed-Level CDA Age Ed-Level CDA

71 14 2.83 75 12 0.80

80 18 �2.40 77 16 �0.75

81 11 �0.29 78 12 �4.60

66 14 4.44 83 20 2.68

76 17 3.35 85 10 �3.69

70 12 �3.13 76 18 4.85

76 12 �2.14 75 14 �0.08

67 12 9.61 70 16 0.63

72 20 7.57 79 16 5.92

68 18 2.21 75 18 3.63

102 12 �2.30 94 8 �7.07

67 12 1.73 76 18 6.39

66 14 6.03 84 18 �0.08

75 18 �0.02 79 17 1.07

91 13 �7.65 78 16 5.31

74 15 4.17 79 12 0.30

90 15 �0.68

Source: Debra A. Jansen, Ph.D., R.N. Used with permission.

FIGURE 10.3.1 SPSS matrix scatter plot of the
data in Table 10.3.1.
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Dialog box: Session command:

Stat ➤ Regression ➤ Regression MTB > Name C4 = `SRES1’
Type Y in Response and X1 X2 C5 = `FITS1’ C6 = `RESI1’
in Predictors. MTB > Regress `y’ 2 `x1’ `x2’;
Check Residuals. SUBC> SResiduals `SRES1’;
Check Standard resids. SUBC> Fits `FITS1’;
Check OK. SUBC> Constant;

SUBC> Residuals `RESI1’.
Output:

Regression Analysis: Y versus X1, X2

The regression equation is
Y = 5.49 - 0.184 X1 + 0.611 X2

Predictor Coef SE Coef T P
Constant 5.494 4.443 1.24 0.220
X1 -0.18412 0.04851 -3.80 0.000
X2 0.6108 0.1357 4.50 0.000

S = 3.134 R-Sq = 37.1% R-Sq (adj) = 35.2%

Analysis of Variance

Source DF SS MS F P
Regression 2 393.39 196.69 20.02 0.000
Residual Error 68 667.97 9.82
Total 70 1061.36

Source DF Seq SS
X1 1 194.24
X2 1 199.15

Unusual Observations
Obs X1 Y Fit SE Fit Residual St Resid
28 67 9.610 0.487 0.707 9.123 2.99R
31 102 -2.300 -5.957 1.268 3.657 1.28X
44 80 5.070 -1.296 0.425 6.366 2.05R
67 94 -7.070 -6.927 1.159 -0.143 -0.05X

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

FIGURE 10.3.2 MINITAB procedure and output for Example 10.3.1.
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The REG Procedure

Model: MODEL1
Dependent Variable: CDA

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 393.38832 196.69416 20.02 <.0001
Error 68 667.97084 9.82310
Corrected Total 70 1061.35915

Root MSE 3.13418 R-Square 0.3706
Dependent Mean 0.00676 Adj R-Sq 0.3521
Coeff Var 46360

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.49407 4.44297 1.24 0.2205
AGE 1 -0.18412 0.04851 -3.80 0.0003
EDUC 1 0.61078 0.13565 4.50 <.0001

FIGURE 10.3.3 SAS® output for Example 10.3.1.

relationship between CDA and Age and a positive relationship between CDA and Ed-
Level. We shall see that this is indeed the case when we use MINITAB to analyze the
data.

Solution: We enter the observations on age, education level, and CDA in c1 through
c3 and name them X1, X2, and Y, respectively. The MINITAB dialog box
and session command, as well as the output, are shown in Figure 10.3.2.
We see from the output that the sample multiple regression equation, in the
notation of Section 10.2, is

Other output entries will be discussed in the sections that follow.
The SAS output for Example 10.3.1 is shown in Figure 10.3.3. ■

After the multiple regression equation has been obtained, the next step involves its
evaluation and interpretation. We cover this facet of the analysis in the next section.

yNj = 5.49 - .184x1j + .611x2j



EXERCISES

Obtain the regression equation for each of the following data sets.

10.3.1 Machiel Naeije (A-2) studied the relationship between maximum mouth opening and measurements
of the lower jaw (mandible). He measured the dependent variable, maximum mouth opening (MMO,
measured in mm), as well as predictor variables, mandibular length (ML, measured in mm) and
angle of rotation of the mandible (RA, measured in degrees) of 35 subjects.

MMO (Y) ML (X1) RA (X2) MMO (Y) ML (X1) RA (X2)

52.34 100.85 32.08 50.82 90.65 38.33
51.90 93.08 39.21 40.48 92.99 25.93
52.80 98.43 33.74 59.68 108.97 36.78
50.29 102.95 34.19 54.35 91.85 42.02
57.79 108.24 35.13 47.00 104.30 27.20
49.41 98.34 30.92 47.23 93.16 31.37
53.28 95.57 37.71 41.19 94.18 27.87
59.71 98.85 44.71 42.76 89.56 28.69
53.32 98.32 33.17 51.88 105.85 31.04
48.53 92.70 31.74 42.77 89.29 32.78
51.59 88.89 37.07 52.34 92.58 37.82
58.52 104.06 38.71 50.45 98.64 33.36
62.93 98.18 43.89 43.18 83.70 31.93
57.62 91.01 41.06 41.99 88.46 28.32
65.64 96.98 41.92 39.45 94.93 24.82
52.85 97.85 35.25 38.91 96.81 23.88
64.43 96.89 45.11 49.10 93.13 36.17
57.25 98.35 39.44

Source: M. Naeije, D.D.S. Used with permission.

10.3.2 Family caregiving of older adults is more common in Korea than in the United States. Son et al.
(A-3) studied 100 caregivers of older adults with dementia in Seoul, South Korea. The dependent
variable was caregiver burden as measured by the Korean Burden Inventory (KBI). Scores ranged
from 28 to 140, with higher scores indicating higher burden. Explanatory variables were indexes
that measured the following:

ADL: total activities of daily living (low scores indicate that the elderly perform activities
independently).

MEM: memory and behavioral problems (higher scores indicate more problems).

COG: cognitive impairment (lower scores indicate a greater degree of cognitive impairment).

The reported data are as follows:

KBI (Y ) ADL (X1) MEM (X2) COG (X3) KBI (Y) ADL (X1) MEM (X2) COG (X3)

28 39 4 18 88 76 50 5
68 52 33 9 54 79 44 11
59 89 17 3 73 48 57 9
91 57 31 7 87 90 33 6
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KBI (Y ) ADL (X1) MEM (X2) COG (X3) KBI (Y) ADL (X1) MEM (X2) COG (X3)

70 28 35 19 47 55 11 20
38 34 3 25 60 83 24 11
46 42 16 17 65 50 21 25
57 52 6 26 57 44 31 18
89 88 41 13 85 79 30 20
48 90 24 3 28 24 5 22
74 38 22 13 40 40 20 17
78 83 41 11 87 35 15 27
43 30 9 24 80 55 9 21
76 45 33 14 49 45 28 17
72 47 36 18 57 46 19 17
61 90 17 0 32 37 4 21
63 63 14 16 52 47 29 3
77 34 35 22 42 28 23 21
85 76 33 23 49 61 8 7
31 26 13 18 63 35 31 26
79 68 34 26 89 68 65 6
92 85 28 10 67 80 29 10
76 22 12 16 43 43 8 13
91 82 57 3 47 53 14 18
78 80 51 3 70 60 30 16

103 80 20 18 99 63 22 18
99 81 20 1 53 28 9 27
73 30 7 17 78 35 18 14
88 27 27 27 112 37 33 17
64 72 9 0 52 82 25 13
52 46 15 22 68 88 16 0
71 63 52 13 63 52 15 0
41 45 26 18 49 30 16 18
85 77 57 0 42 69 49 12
52 42 10 19 56 52 17 20
68 60 34 11 46 59 38 17
57 33 14 14 72 53 22 21
84 49 30 15 95 65 56 2
91 89 64 0 57 90 12 0
83 72 31 3 88 88 42 6
73 45 24 19 81 66 12 23
57 73 13 3 104 60 21 7
69 58 16 15 88 48 14 13
81 33 17 21 115 82 41 13
71 34 13 18 66 88 24 14
91 90 42 6 92 63 49 5
48 48 7 23 97 79 34 3
94 47 17 18 69 71 38 17
57 32 13 15 112 66 48 13
49 63 32 15 88 81 66 1

Source: Gwi-Ryung Son, R.N., Ph.D. Used with permission.
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10.3.3 In a study of factors thought to be related to patterns of admission to a large general hospital, an
administrator obtained these data on 10 communities in the hospital’s catchment area:

Index of
Persons per 1000 Availability of

Population Admitted Other Health Index of
During Study Period Services Indigency

Community (Y) (X1) (X2)

1 61.6 6.0 6.3
2 53.2 4.4 5.5
3 65.5 9.1 3.6
4 64.9 8.1 5.8
5 72.7 9.7 6.8
6 52.2 4.8 7.9
7 50.2 7.6 4.2
8 44.0 4.4 6.0
9 53.8 9.1 2.8

10 53.5 6.7 6.7

Total 571.6 69.9 55.6

10.3.4 The administrator of a general hospital obtained the following data on 20 surgery patients during
a study to determine what factors appear to be related to length of stay:

Postoperative Preoperative
Length of Number of Current Length of
Stay in Days Medical Problems Stay in Days
(Y) (X1) (X2)

6 1 1
6 2 1

11 2 2
9 1 3

16 3 3
16 1 5
4 1 1
8 3 1

11 2 2
13 3 2
13 1 4
9 1 2

17 3 3
17 2 4
12 4 1
6 1 1
5 1 1
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Postoperative Preoperative
Length of Number of Current Length of
Stay in Days Medical Problems Stay in Days
(Y) (X1) (X2)

12 3 2
8 1 2
9 2 2

Total 208 38 43

10.3.5 A random sample of 25 nurses selected from a state registry yielded the following information on
each nurse’s score on the state board examination and his or her final score in school. Both scores
relate to the nurse’s area of affiliation. Additional information on the score made by each nurse
on an aptitude test, taken at the time of entering nursing school, was made available to the
researcher. The complete data are as follows:

State Board Score Final Score Aptitude Test Score
(Y ) (X1) (X2)

440 87 92
480 87 79
535 87 99
460 88 91
525 88 84
480 89 71
510 89 78
530 89 78
545 89 71
600 89 76
495 90 89
545 90 90
575 90 73
525 91 71
575 91 81
600 91 84
490 92 70
510 92 85
575 92 71
540 93 76
595 93 90
525 94 94
545 94 94
600 94 93
625 94 73

Total 13,425 2263 2053

496 CHAPTER 10 MULTIPLE REGRESSION AND CORRELATION



10.3.6 The following data were collected on a simple random sample of 20 patients with hypertension.
The variables are

Patient Y X1 X2 X3 X4 X5 X6

1 105 47 85.4 1.75 5.1 63 33
2 115 49 94.2 2.10 3.8 70 14
3 116 49 95.3 1.98 8.2 72 10
4 117 50 94.7 2.01 5.8 73 99
5 112 51 89.4 1.89 7.0 72 95
6 121 48 99.5 2.25 9.3 71 10
7 121 49 99.8 2.25 2.5 69 42
8 110 47 90.9 1.90 6.2 66 8
9 110 49 89.2 1.83 7.1 69 62

10 114 48 92.7 2.07 5.6 64 35
11 114 47 94.4 2.07 5.3 74 90
12 115 49 94.1 1.98 5.6 71 21
13 114 50 91.6 2.05 10.2 68 47
14 106 45 87.1 1.92 5.6 67 80
15 125 52 101.3 2.19 10.0 76 98
16 114 46 94.5 1.98 7.4 69 95
17 106 46 87.0 1.87 3.6 62 18
18 113 46 94.5 1.90 4.3 70 12
19 110 48 90.5 1.88 9.0 71 99
20 122 56 95.7 2.09 7.0 75 99

10.4 EVALUATING THE MULTIPLE 
REGRESSION EQUATION

Before one uses a multiple regression equation to predict and estimate, it is desirable to
determine first whether it is, in fact, worth using. In our study of simple linear regression
we have learned that the usefulness of a regression equation may be evaluated by a con-
sideration of the sample coefficient of determination and estimated slope. In evaluating a
multiple regression equation we focus our attention on the coefficient of multiple deter-
mination and the partial regression coefficients.

The Coefficient of Multiple Determination In Chapter 9 the coeffi-
cient of determination is discussed in considerable detail. The concept extends logically

X6 = measure of stress

X5 = basal pulse 1beatsthn /min2X4 = duration of hypertension 1years2X3 = body surface area 1sq m2X2 = weight 1kg2X1 = age 1years2Y = mean arterial blood pressure 1mm Hg2
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to the multiple regression case. The total variation present in the Y values may be par-
titioned into two components—the explained variation, which measures the amount of
the total variation that is explained by the fitted regression surface, and the unexplained
variation, which is that part of the total variation not explained by fitting the regression
surface. The measure of variation in each case is a sum of squared deviations. The total
variation is the sum of squared deviations of each observation of Y from the mean of the
observations and is designated by or SST. The explained variation, desig-
nated is the sum of squared deviations of the calculated values from the
mean of the observed Y values. This sum of squared deviations is called the sum of
squares due to regression (SSR). The unexplained variation, written as is
the sum of squared deviations of the original observations from the calculated values.
This quantity is referred to as the sum of squares about regression or the error sum of
squares (SSE). We may summarize the relationship among the three sums of squares with
the following equation:

(10.4.1)

The coefficient of multiple determination, is obtained by dividing the
explained sum of squares by the total sum of squares. That is,

(10.4.2)

The subscript indicates that in the analysis Y is treated as the dependent vari-
able and the X variables from through are treated as the independent variables. The
value of indicates what proportion of the total variation in the observed Y values
is explained by the regression of Y on In other words, we may say that

is a measure of the goodness of fit of the regression surface. This quantity is anal-
ogous to which was computed in Chapter 9.

EXAMPLE 10.4.1

Refer to Example 10.3.1. Compute 

Solution: For our illustrative example we have in Figure 10.3.1

R 2
y .12 =

393.39

1061.36
= .3706 L .371

SSE = 667.97

SSR = 393.39
SST = 1061.36

R 2
y .12.

r 2,
R 2

y.12 . . . k

X1, X2, . . . , Xk.
R 2

y.12 . . . k

XkX1

y.12 . . . k

R 2
y .12 . . . k =

g1yN j - y22
g1yj - y22 =

SSR

SST

R 2
y.12 . . . k

+  unexplained 1error2 sum of squares
 total sum of squares = explained 1regression2 sum of squares

SST = SSR + SSE

g1yj - y22 = g1yNj - y22 + g1yj - yN j22

g1yj - yN j22,g1yNj - y22, g1yj - y22
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We say that about 37.1 percent of the total variation in the Y values is
explained by the fitted regression plane, that is, by the linear relationship
with age and education level. ■

Testing the Regression Hypothesis To determine whether the overall
regression is significant (that is, to determine whether is significant), we may per-
form a hypothesis test as follows.

1. Data. The research situation and the data generated by the research are examined
to determine if multiple regression is an appropriate technique for analysis.

2. Assumptions. We assume that the multiple regression model and its underlying
assumptions as presented in Section 10.2 are applicable.

3. Hypotheses. In general, the null hypothesis is 
and the alternative is not all In words, the null hypothesis

states that all the independent variables are of no value in explaining the variation
in the Y values.

4. Test statistic. The appropriate test statistic is V.R., which is computed as part
of an analysis of variance. The general ANOVA table is shown as Table 10.4.1.
In Table 10.4.1, MSR stands for mean square due to regression and MSE stands
for mean square about regression or, as it is sometimes called, the error mean
square.

5. Distribution of test statistic. When is true and the assumptions are met, V.R.
is distributed as F with k and degrees of freedom.

6. Decision rule. Reject if the computed value of V.R. is equal to or greater than
the critical value of F.

7. Calculation of test statistic. See Table 10.4.1.

8. Statistical decision. Reject or fail to reject in accordance with the decision
rule.

9. Conclusion. If we reject we conclude that, in the population from which the
sample was drawn, the dependent variable is linearly related to the independent vari-
ables as a group. If we fail to reject we conclude that, in the population from
which our sample was drawn, there may be no linear relationship between the
dependent variable and the independent variables as a group.

10. p value. We obtain the p value from the table of the F distribution.

We illustrate the hypothesis testing procedure by means of the following example.

H0,

H0,

H0

H0

n - k - 1
H0

bi = 0.HA:bk = 0
H0: b1 = b2 = b3 = . . . =

R 2
y.12
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TABLE 10.4.1 ANOVA Table for Multiple Regression

Source SS d.f. MS V.R.

Due to regression SSR k
About regression SSE

Total SST n - 1

MSE = SSE>1n - k - 12n - k - 1

MSR>MSEMSR = SSR>k



EXAMPLE 10.4.2

We wish to test the null hypothesis of no linear relationship among the three variables
discussed in Example 10.3.1: CDA score, age, and education level.

Solution:

1. Data. See the description of the data given in Example 10.3.1.

2. Assumptions. We assume that the assumptions discussed in Section
10.2 are met.

3. Hypotheses.

4. Test statistic. The test statistic is V.R.

5. Distribution of test statistic. If is true and the assumptions are met,
the test statistic is distributed as F with 2 numerator and 68 denomina-
tor degrees of freedom.

6. Decision rule. Let us use a significance level of The decision
rule, then, is reject if the computed value of V.R. is equal to or greater
than 4.95 (obtained by interpolation).

7. Calculation of test statistic. The ANOVA for the example is shown
in Figure 10.3.1, where we see that the computed value of V.R. is
20.02.

8. Statistical decision. Since 20.02 is greater than 4.95, we reject 

9. Conclusion. We conclude that, in the population from which the sam-
ple came, there is a linear relationship among the three variables.

10. p value. Since 20.02 is greater than 5.76, the p value for the test is less
than .005. ■

Inferences Regarding Individual Frequently, we wish to evaluate the
strength of the linear relationship between Y and the independent variables individually.
That is, we may want to test the null hypothesis that against the alternative 

The validity of this procedure rests on the assumptions stated earlier:
that for each combination of values there is a normally distributed subpopulation of Y
values with variance 

Hypothesis Tests for the To test the null hypothesis that is equal to
some particular value, say, the following t statistic may be computed:

(10.4.3)

where the degrees of freedom are equal to and is the standard deviation
of the bN i.

sbN i
n - k - 1,

t =
bN i - bi0

sbN i

bi0,
biBi

s2.
Xi

1i = 1, 2, . . . , k2. bi Z 0bi = 0

B’s

H0.

H0

a = .01.

H0

HA: = not all bi = 0

H0: = b1 = b2 = 0
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The standard deviations of the are given as part of the output from most com-
puter software packages that do regression analysis.

EXAMPLE 10.4.3

Let us refer to Example 10.3.1 and test the null hypothesis that age (years) is irrelevant
in predicting the capacity to direct attention (CDA).

Solution:

1. Data. See Example 10.3.1.

2. Assumptions. See Section 10.2.

3. Hypotheses.

4. Test statistic. See Equation 10.4.3.

5. Distribution of test statistic. When is true and the assumptions are
met, the test statistic is distributed as Student’s t with 68 degrees of
freedom.

6. Decision rule. Reject if the computed t is either greater than or equal
to 1.9957 (obtained by interpolation) or less than or equal to 

7. Calculation of test statistic. By Equation 10.4.3 and data from Figure
10.3.1 we compute

8. Statistical decision. The null hypothesis is rejected since the computed
value of is less than 

9. Conclusion. We conclude, then, that there is a linear relationship
between age and CDA in the presence of education level.

10. p value. For this test, because 
(obtained by interpolation). ■

Now, let us perform a similar test for the second partial regression coefficient, 

t =
bN 2 - 0

sbN2

=
.6108

.1357
= 4.50

a = .05

HA: b2 Z 0

H0: b2 = 0

b2:

-3.80 6 -2.6505p 6 21.0052 = .01

-1.9957.t, -3.80,

t =
bN1 - 0

sbN1

=
- .18412

.04851
= -3.80

-1.9957.
H0

H0

 Let a = .05

HA: b1 Z 0

H0: b1 = 0

bN i
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In this case also the null hypothesis is rejected, since 4.50 is greater than 1.9957. We
conclude that there is a linear relationship between education level and CDA in the pres-
ence age, and that education level, used in this manner, is a useful variable for predict-
ing CDA. [For this test, ]

Confidence Intervals for the i When the researcher has been led to conclude
that a partial regression coefficient is not 0, he or she may be interested in obtaining a
confidence interval for this Confidence intervals for the may be constructed in the
usual way by using a value from the t distribution for the reliability factor and standard
errors given above.

A percent confidence interval for is given by

For our illustrative example we may compute the following 95 percent confidence
intervals for and 

The 95 percent confidence interval for is

The 95 percent confidence interval for is 

We may give these intervals the usual probabilistic and practical interpretations. We are
95 percent confident, for example, that is contained in the interval from .3400 to .8816
since, in repeated sampling, 95 percent of the intervals that may be constructed in this
manner will include the true parameter.

Some Precautions One should be aware of the problems involved in carrying out
multiple hypothesis tests and constructing multiple confidence intervals from the same
sample data. The effect on of performing multiple hypothesis tests from the same data
is discussed in Section 8.2. A similar problem arises when one wishes to construct
confidence intervals for two or more partial regression coefficients. The intervals will not
be independent, so that the tabulated confidence coefficient does not, in general, apply.
In other words, all such intervals would not be percent confidence intervals.

In order to maintain approximate confidence intervals for partial
regression coefficients, adjustments must be made to the calculation of errors in the pre-
vious equations. These adjustments are sometimes called family-wise error rates, and
can be found in many computer software packages. The topic is discussed in detail by
Kutner, et al. (4).

10011 - a210011 - a2
a

b2

 .3400, .8816

 .6108 ; .2708

 .6108 ; 11.995721.13572b2

- .28092, - .08732

- .18412 ; .0968

- .18412 ; 1.99571.048512b1

b2.b1

bN i ; t1-1a>22,n-k-1sbN i

bi10011 - a2
bibi.

B

p 6 21.0052 = .01.
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Another problem sometimes encountered in the application of multiple regression
is an apparent incompatibility in the results of the various tests of significance that one
may perform. In a given problem for a given level of significance, one or the other of
the following situations may be observed.

1. and all significant

2. and some but not all significant

3. significant but none of the significant

4. All significant but not 

5. Some significant, but not all nor 

6. Neither nor any significant

Notice that situation 1 exists in our illustrative example, where we have a significant
and two significant regression coefficients. This situation does not occur in all cases.

In fact, situation 2 is very common, especially when a large number of independent vari-
ables have been included in the regression equation.

EXERCISES

10.4.1 Refer to Exercise 10.3.1. (a) Calculate the coefficient of multiple determination; (b) perform an
analysis of variance; (c) test the significance of each Let for all tests of sig-
nificance and determine the p value for all tests; (d) construct a 95 percent confidence interval for
each significant sample slope.

10.4.2 Refer to Exercise 10.3.2. Do the analysis suggested in Exercise 10.4.1.

10.4.3 Refer to Exercise 10.3.3. Do the analysis suggested in Exercise 10.4.1.

10.4.4 Refer to Exercise 10.3.4. Do the analysis suggested in Exercise 10.4.1.

10.4.5 Refer to Exercise 10.3.5. Do the analysis suggested in Exercise 10.4.1.

10.4.6 Refer to Exercise 10.3.6. Do the analysis suggested in Exercise 10.4.1.

10.5 USING THE MULTIPLE
REGRESSION EQUATION

As we learned in the previous chapter, a regression equation may be used to obtain a
computed value of when a particular value of X is given. Similarly, we may use our
multiple regression equation to obtain a value when we are given particular values of
the two or more X variables present in the equation.

Just as was the case in simple linear regression, we may, in multiple regression,
interpret a value in one of two ways. First we may interpret as an estimate of the
mean of the subpopulation of Y values assumed to exist for particular combinations of 
values. Under this interpretation is called an estimate, and when it is used for this pur-
pose, the equation is thought of as an estimating equation. The second interpretation of

yN
Xi

yNyN

yN
yNY,

a = .05bN i1i 7 02.

R 2

bN iR 2

R 2bN i

R 2bN i

bN iR 2

bN iR 2

bN iR 2
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is that it is the value Y is most likely to assume for given values of the In this case
is called the predicted value of Y, and the equation is called a prediction equation. In

both cases, intervals may be constructed about the value when the normality assump-
tion of Section 10.2 holds true. When is interpreted as an estimate of a population mean,
the interval is called a confidence interval, and when is interpreted as a predicted value
of Y, the interval is called a prediction interval. Now let us see how each of these inter-
vals is constructed.

The Confidence Interval for the Mean of a Subpopulation of
Y Values Given Particular Values of the We have seen that a

percent confidence interval for a parameter may be constructed by the gen-
eral procedure of adding to and subtracting from the estimator a quantity equal to the reli-
ability factor corresponding to multiplied by the standard error of the estimator.
We have also seen that in multiple regression the estimator is

(10.5.1)

If we designate the standard error of this estimator by the percent con-
fidence interval for the mean of Y, given specified is as follows:

(10.5.2)

The Prediction Interval for a Particular Value of Y Given
Particular Values of the When we interpret as the value Y is most
likely to assume when particular values of the are observed, we may construct a
prediction interval in the same way in which the confidence interval was constructed.
The only difference in the two is the standard error. The standard error of the predic-
tion is slightly larger than the standard error of the estimate, which causes the pre-
diction interval to be wider than the confidence interval.

If we designate the standard error of the prediction by the percent
prediction interval is

(10.5.3)

The calculations of and in the multiple regression case are complicated and will
not be covered in this text. The reader who wishes to see how these statistics are calcu-
lated may consult the book by Anderson and Bancroft (3), other references listed at the
end of this chapter and Chapter 9, and previous editions of this text. The following exam-
ple illustrates how MINITAB may be used to obtain confidence intervals for the mean
of Y and prediction intervals for a particular value of Y.

EXAMPLE 10.5.1

We refer to Example 10.3.1. First, we wish to construct a 95 percent confidence inter-
val for the mean CDA score (Y) in a population of 68-year-old subjects who com-
pleted 12 years of education Second, suppose we have a subject who is 68 years1X22. 1X12

s ¿yN j
syN j

yN j ; t 11-a>22,n-k-1s¿yN j

10011 - a2s ¿yN ,

Xi

yNXi

yNj ; t 11-a>22,n-k-1syNj

Xi

10011 - a2syN ,

yNj = bN 0 + bN 1x1j + bN 2x 2j + . . . + bN kxk j

1 - a

10011 - a2 Xi

yN
yN

yN
yN

Xi.yN
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of age and has an education level of 12 years. What do we predict to be this subject’s
CDA score?

Solution: The point estimate of the mean CDA score is

The point prediction, which is the same as the point estimate obtained pre-
viously, also is

To obtain the confidence interval and the prediction interval for the
parameters for which we have just computed a point estimate and a point
prediction, we use MINITAB as follows. After entering the information
for a regression analysis of our data as shown in Figure 10.3.1, we click
on Options in the dialog box. In the box labeled “Prediction intervals for
new observations,” we type 68 and 12 and click OK twice. In addition
to the regression analysis, we obtain the following output:

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 0.303 0.672 (�1.038, 1.644) (�6.093, 6.699)

We interpret these intervals in the usual ways. We look first at the
confidence interval. We are 95 percent confident that the interval from

to includes the mean of the subpopulation of Y values for the
specified combination of values, since this parameter would be included
in about 95 percent of the intervals that can be constructed in the manner
shown.

Now consider the subject who is 68 years old and has 12 years of
education. We are 95 percent confident that this subject would have a CDA
score somewhere between and The fact that the P.I. is wider
than the C.I. should not be surprising. After all, it is easier to estimate the
mean response than it is estimate an individual observation. ■

EXERCISES

For each of the following exercises compute the y value and construct (a) 95 percent confidence
and (b) 95 percent prediction intervals for the specified values of 

10.5.1 Refer to Exercise 10.3.1 and let and 

10.5.2 Refer to Exercise 10.3.2 and let and 

10.5.3 Refer to Exercise 10.3.3 and let and 

10.5.4 Refer to Exercise 10.3.4 and let and x2j = 2.x1j = 1

x2j = 6.x1j = 5

x3j = 22.x1j = 50, x2j = 20,

x2j = 35.x1j = 95

Xi.

6.699.-6.093

Xi

1.644-1.038

yN = 5.494 - .184121682 + .61081122 = .3034

yN = 5.494 - .184121682 + .61081122 = .3034
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10.5.5 Refer to Exercise 10.3.5 and let and 

10.5.6 Refer to Exercise 10.3.6 and let and

10.6 THE MULTIPLE CORRELATION MODEL

We pointed out in the preceding chapter that while regression analysis is concerned with
the form of the relationship between variables, the objective of correlation analysis is to
gain insight into the strength of the relationship. This is also true in the multivariable
case, and in this section we investigate methods for measuring the strength of the rela-
tionship among several variables. First, however, let us define the model and assump-
tions on which our analysis rests.

The Model Equation We may write the correlation model as

(10.6.1)

where is a typical value from the population of values of the variable Y, the are
the regression coefficients defined in Section 10.2, and the are particular (known) val-
ues of the random variables This model is similar to the multiple regression model,
but there is one important distinction. In the multiple regression model, given in Equa-
tion 10.2.1, the are nonrandom variables, but in the multiple correlation model the 
are random variables. In other words, in the correlation model there is a joint distribu-
tion of Y and the that we call a multivariate distribution. Under this model, the vari-
ables are no longer thought of as being dependent or independent, since logically they
are interchangeable and either of the may play the role of Y.

Typically, random samples of units of association are drawn from a population of
interest, and measurements of Y and the are made.

A least-squares plane or hyperplane is fitted to the sample data by methods
described in Section 10.3, and the same uses may be made of the resulting equation.
Inferences may be made about the population from which the sample was drawn if it
can be assumed that the underlying distribution is normal, that is, if it can be assumed
that the joint distribution of Y and is a multivariate normal distribution. In addition,
sample measures of the degree of the relationship among the variables may be computed
and, under the assumption that sampling is from a multivariate normal distribution, the
corresponding parameters may be estimated by means of confidence intervals, and
hypothesis tests may be carried out. Specifically, we may compute an estimate of the
multiple correlation coefficient that measures the dependence between Y and the This
is a straightforward extension of the concept of correlation between two variables that we
discuss in Chapter 9. We may also compute partial correlation coefficients that measure
the intensity of the relationship between any two variables when the influence of all other
variables has been removed.

The Multiple Correlation Coefficient As a first step in analyzing
the relationships among the variables, we look at the multiple correlation coefficient.

Xi.

Xi

Xi

Xi

Xi

XiXi

Xi.
xij

b’syj

yj = b0 + b1x1j + b2x 2j + Á + bkx kj + Pj

x6j = 70.
x4j = 6.00, x5j = 75,x3j = 2.00,x1j = 50, x2j = 95.0,

x2 j = 80.x1j = 90
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The multiple correlation coefficient is the square root of the coefficient of multi-
ple determination and, consequently, the sample value may be computed by taking the
square root of Equation 10.4.2. That is,

(10.6.2)

To illustrate the concepts and techniques of multiple correlation analysis, let us
consider an example.

EXAMPLE 10.6.1

Wang et al. (A-4), using cadaveric human femurs from subjects ages 16 to 19 years, inves-
tigated toughness properties of the bone and measures of the collagen network within
the bone. Two variables measuring the collagen network are porosity (P, expressed as
a percent) and a measure of collagen network tensile strength The measure of
toughness (W, Newtons), is the force required for bone fracture. The 29 cadaveric
femurs used in the study were free from bone-related pathologies. We wish to analyze
the nature and strength of the relationship among the three variables. The measure-
ments are shown in the following table.

1S2.

R y .12 . . . k = 2R 2
y .12 . . . k = Cg1yN j - y22

g1yj - y22 = ASSR

SST
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TABLE 10.6.1 Bone Toughness and
Collagen Network Properties for 
29 Femurs

W P S

193.6 6.24 30.1

137.5 8.03 22.2

145.4 11.62 25.7

117.0 7.68 28.9

105.4 10.72 27.3

99.9 9.28 33.4

74.0 6.23 26.4

74.4 8.67 17.2

112.8 6.91 15.9

125.4 7.51 12.2

126.5 10.01 30.0

115.9 8.70 24.0

98.8 5.87 22.6

94.3 7.96 18.2

99.9 12.27 11.5

83.3 7.33 23.9

72.8 11.17 11.2

83.5 6.03 15.6

59.0 7.90 10.6

(Continued)



Solution: We use MINITAB to perform the analysis of our data. Readers interested
in the derivation of the underlying formulas and the arithmetic procedures
involved may consult the texts listed at the end of this chapter and Chap-
ter 9, as well as previous editions of this text. If a least-squares prediction
equation and multiple correlation coefficient are desired as part of the analy-
sis, we may obtain them by using the previously described MINITAB mul-
tiple regression procedure. When we do this with the sample values of 
and stored in Columns 1 through 3, respectively, we obtain the output
shown in Figure 10.6.1.

The least-squares equation, then, is

yN j = 35.61 + 1.451x1j + 2.3960x2j

X2,
Y, X1,

508 CHAPTER 10 MULTIPLE REGRESSION AND CORRELATION

The regression equation is
Y = 35.6 + 1.45 X1 + 2.40 X2

Predictor Coef SE Coef T P
Constant 35.61 29.13 1.22 0.232
X1 1.451 2.763 0.53 0.604
X2 2.3960 0.7301 3.28 0.003

S = 27.42 R-Sq = 29.4% R-Sq(adj) = 24.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 8151.1 4075.6 5.42 0.011
Residual Error 26 19553.5 752.1
Total 28 27704.6

FIGURE 10.6.1 Output from MINITAB multiple regression procedure for the data in
Table 10.6.1.

W P S

87.2 8.27 24.7

84.4 11.05 25.6

78.1 7.61 18.4

51.9 6.21 13.5

57.1 7.24 12.2

54.7 8.11 14.8

78.6 10.05 8.9

53.7 8.79 14.9

96.0 10.40 10.3

89.0 11.72 15.4 Source: Xiaodu Wang, Ph.D.
Used with permission.



This equation may be used for estimation and prediction purposes and may
be evaluated by the methods discussed in Section 10.4.

As we see in Figure 10.6.1, the multiple regression output also gives us
the coefficient of multiple determination, which, in our present example, is

The multiple correlation coefficient, therefore, is

Interpretation of 

We interpret as a measure of the correlation among the variables force required to
fracture, porosity, and collagen network strength in the sample of 29 femur bones from
subjects ages 16 to 19. If our data constitute a random sample from the population of such
persons, we may use as an estimate of the true population multiple correlation
coefficient. We may also interpret as the simple correlation coefficient between 
and , the observed and calculated values, respectively, of the “dependent” variable. Per-
fect correspondence between the observed and calculated values of Y will result in a cor-
relation coefficient of 1, while a complete lack of a linear relationship between observed
and calculated values yields a correlation coefficient of 0. The multiple correlation coef-
ficient is always given a positive sign.

We may test the null hypothesis that by computing

(10.6.3)

The numerical value obtained from Equation 10.6.3 is compared with the tabulated value
of F with k and degrees of freedom. The reader will recall that this is iden-
tical to the test of described in Section 10.4.

For our present example let us test the null hypothesis that against the
alternative that . We compute

Since 5.41 is greater than so that we may reject the null hypothesis at the
.025 level of significance and conclude that the force required for fracture is correlated
with porosity and the measure of collagen network strength in the sampled population.

The computed value of F for testing that the population multiple correlation
coefficient is equal to zero is given in the analysis of variance table in Figure 10.6.1 and
is 5.42. The two computed values of F differ as a result of differences in rounding in
the intermediate calculations. ■

Partial Correlation The researcher may wish to have a measure of the strength
of the linear relationship between two variables when the effect of the remaining variables
has been removed. Such a measure is provided by the partial correlation coefficient. For

H0

4.27, p 6 .025,

F =
.294

1 - .294
# 29 - 2 - 1

2
= 5.41

ry.12 Z 0
ry.12 = 0

H0: b1 = b2 = . . . = bk = 0
n - k - 1

F =
R2

y .12 . . . k

1 - R2
y .12 . . . k

# n - k - 1

k

ry.12 . . . k = 0

yN
yjRy.12

ry.12,Ry.12

Ry.12

Ry.12

R y .12 = 1.294 = .542

R 2
y .12 = .294

10.6 THE MULTIPLE CORRELATION MODEL 509



example, the partial sample correlation coefficient is a measure of the correlation
between Y and after controlling for the effect of 

The partial correlation coefficients may be computed from the simple correlation
coefficients. The simple correlation coefficients measure the correlation between two vari-
ables when no effort has been made to control other variables. In other words, they are
the coefficients for any pair of variables that would be obtained by the methods of sim-
ple correlation discussed in Chapter 9.

Suppose we have three variables, and The sample partial correlation coef-
ficient measuring the correlation between Y and after controlling for for example,
is written In the subscript, the symbol to the right of the decimal point indicates
the variable whose effect is being controlled, while the two symbols to the left of the
decimal point indicate which variables are being correlated. For the three-variable case,
there are two other sample partial correlation coefficients that we may compute. They
are and 

The Coefficient of Partial Determination The square of the partial
correlation coefficient is called the coefficient of partial determination. It provides use-
ful information about the interrelationships among variables. Consider for example.
Its square, tells us what proportion of the remaining variability in Y is explained by

after has explained as much of the total variability in Y as it can.

Calculating the Partial Correlation Coefficients For three vari-
ables the following simple correlation coefficients may be calculated:

the simple correlation between Y and

the simple correlation between Y and

the simple correlation between and 

The MINITAB correlation procedure may be used to compute these simple corre-
lation coefficients as shown in Figure 10.6.2. As noted earlier, the sample observations
are stored in Columns 1 through 3. From the output in Figure 10.6.2 we see that

and
The sample partial correlation coefficients that may be computed from the simple

correlation coefficients in the three-variable case are:

1. The partial correlation between Y and after controlling for the effect of

(10.6.4)

2. The partial correlation between Y and after controlling for the effect of

(10.6.5)

3. The partial correlation between and after controlling for the effect of Y:

(10.6.6)r12.y = 1r12 - ry1ry22>211 - r 2
y1211 - r 2

y22
X2X1

ry2.1 = 1ry2 - ry1r122>211 - r 2
y1211 - r 2

122
X1:X2

ry1.2 = 1ry1 - ry2r122>211 - r 2
y2211 - r 2

122
X2:X1

ry2 = .535.r12 = - .08, ry1 = .043,

X2X1r12,

X2ry2,

X1ry1,

X2X1

r 2
y1.2

ry1.2,

r12.y.ry2.1

ry1.2.
X2,X1

X2.Y, X1,

X2.X1

ry.12
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EXAMPLE 10.6.2

To illustrate the calculation of sample partial correlation coefficients, let us refer to Exam-
ple 10.6.1, and calculate the partial correlation coefficients among the variables force to
fracture , porosity and collagen network strength 

Solution: Instead of computing the partial correlation coefficients from the simple cor-
relation coefficients by Equations 10.6.4 through 10.6.6, we use MINITAB
to obtain them.

The MINITAB procedure for computing partial correlation coefficients
is based on the fact that a given partial correlation coefficient is itself the sim-
ple correlation between two sets of residuals. A set of residuals is obtained
as follows. Suppose we have measurements on two variables, X (independ-
ent) and Y (dependent). We obtain the least-squares prediction equation,

For each value of X we compute a residual, which is equal to
the difference between the observed value of Y and the predicted

value of Y associated with the X.
Now, suppose we have three variables, and Y. We want to com-

pute the partial correlation coefficient between and Y while holding 
constant. We regress on and compute the residuals, which we may
call residual set A. We regress Y on and compute the residuals, which
we may call residual set B. The simple correlation coefficient measuring the
strength of the relationship between residual set A and residual set B is
the partial correlation coefficient between and Y after controlling for the
effect of X2.

X1

X2

X2X1

X2X1

X1, X2,

1yi - yN i2,yN = b0
N + bx

N .

1X22.1X12,1Y2
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Dialog box: Session Command:

Stat ➤ Basic Statistics ➤ Correlation MTB> CORRELATION C1-C3

Type C1-C3 in Variables. Click OK.

Output:

Y X1
X1 0.043

0.823

X2 0.535 -0.080
0.003 0.679

Cell Contents: Pearson correlation
P-Value

FIGURE 10.6.2 MINITAB procedure for calculating the simple correlation coefficients for
the data in Table 10.6.1.



When using MINITAB we store each set of residuals in a different
column for future use in calculating the simple correlation coefficients
between them.

We use session commands rather than a dialog box to calculate the
partial correlation coefficients when we use MINITAB. With the observa-
tions on and Y stored in Columns 1 through 3, respectively, the pro-
cedure for the data of Table 10.6.1 is shown in Figure 10.6.3. The output
shows that and 

Partial correlations can be calculated directly using SPSS software as
seen in Figure 10.6.5. This software displays, in a succinct table, both the
partial correlation coefficient and the p value associated with each partial
correlation. ■

Testing Hypotheses About Partial Correlation Coefficients
We may test the null hypothesis that any one of the population partial correlation coef-
ficients is 0 by means of the t test. For example, to test we compute

(10.6.7)

which is distributed as Student’s t with degrees of freedom.
Let us illustrate the procedure for our current example by testing 

against the alternative, The computed t is

Since the computed t of .523 is smaller than the tabulated t of 2.0555 for 26 degrees
of freedom and (two-sided test), we fail to reject at the .05 level of sig-
nificance and conclude that there may be no correlation between force required for
fracture and porosity after controlling for the effect of collagen network strength. Sig-
nificance tests for the other two partial correlation coefficients will be left as an exer-
cise for the reader. Note that p values for these tests are calculated by MINITAB as
shown in Figure 10.6.3.

The SPSS statistical software package for the PC provides a convenient procedure
for obtaining partial correlation coefficients. To use this feature choose “Analyze” from
the menu bar, then “Correlate,” and, finally, “Partial.” Following this sequence of choices
the Partial Correlations dialog box appears on the screen. In the box labeled “Variables:,”
enter the names of the variables for which partial correlations are desired. In the box
labeled “Controlling for:” enter the names of the variable(s) for which you wish to con-
trol. Select either a two-tailed or one-tailed level of significance. Unless the option is
deselected, actual significance levels will be displayed. For Example 10.6.2, Figure 10.6.4
shows the SPSS computed partial correlation coefficients between the other two vari-
ables when controlling, successively, for (porosity), (collagen network strength),
and Y (force required for fracture).

X2X1

H0a = .05

t = .102A29 - 2 - 1

1 - 1.10222 = .523

HA: ry1.2 Z 0.
H0: ry1.2 = 0

n - k - 1

t = ry1.2 . . . kA n - k - 1

1 - r 2
y1.2 . . . k

H0: ry1.2 . . . k = 0,

ry2.1 = .541.ry1.2 = .102, r12.y = - .122,

X1, X2,
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MTB > regress C1 1 C2;
SUBC> residuals C4.

MTB > regress C3 1 C2;
SUBC> residuals C5.

MTB > regress C1 1 C3;
SUBC> residuals C6.

MTB > regress C2 1 C3;
SUBC> residuals C7.

MTB > regress C2 1 C1;
SUBC> residuals C8.

MTB > regress C3 1 C1;
SUBC> residuals C9.

MTB > corr C4 C5

Correlations: C4, C5

Pearson correlation of C4 and C5 = 0.102
P-Value = 0.597

MTB > corr C6 C7

Correlations: C6, C7

Pearson correlation of C6 and C7 = -0.122
P-Value = 0.527

MTB > corr C8 C9

Correlations: C8, C9

Pearson correlation of C8 and C9 = 0.541
P-Value = 0.002

FIGURE 10.6.3 MINITAB procedure for computing partial correlation coefficients from the
data of Table 10.6.1.
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Controlling for: X1

X2 Y

X2 1.0000 .5412
( 0) ( 26)
P= . P= .003

Y .5412 1.0000
( 26) ( 0)
P= .003 P= .

Controlling for: X2

Y X1

Y 1.0000 .1024
( 0) ( 26)
P= . P= .604

X1 .1024 1.0000
( 26) ( 0)
P= .604 P= .

Controlling for: Y

X1 X2

X1 1.0000 -.1225
( 0) ( 26)
P= . P= .535

X2 -.1225 1.0000
( 26) ( 0)
P= .535 P= .

(Coefficient / (D.F.) / 2-tailed Significance)
“.” is printed if a coefficient cannot be computed

FIGURE 10.6.4 Partial coefficients obtained with SPSS for Windows, Example 10.6.2.
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FIGURE 10.6.5 Partial correlation coefficients for the data in Example 10.6.1. (a) ry1.2,
(b) r12.y, and (c) ry2.1.

(a)

Correlations

Porosity Tensile
Control Variables (X1) Strength (X2)

Force to Fracture (Y) Porocity (X1) Correlation 1.000 �.122
Significance (2-tailed) . .535
df 0 26

Tensile Strength (X2) Correlation �.122 1.000
Significance (2-tailed) .535 .
df 26 0

(b)

Correlations

Tensile Force to
Control Variables Strength (X2) Fracture (Y)

Porosity (X1) Tensile Strength (X2) Correlation 1.000 .541
Significance (2-tailed) . .003
df 0 26

Force to Fracture (Y) Correlation .541 1.000
Significance (2-tailed) .003 .
df 26 0

(c)

Although our illustration of correlation analysis is limited to the three-variable case,
the concepts and techniques extend logically to the case of four or more variables. The
number and complexity of the calculations increase rapidly as the number of variables
increases.

Correlations

Force to
Control Variables Fracture (Y) Porosity (X1)

Tensile Strength (X2) Force to Fracture (Y) Correlation 1.000 .102
Significance (2-tailed) . .604
df 0 26

Porosity (X1) Correlation .102 1.000
Significance (2-tailed) .604 .
df 26 0



EXERCISES

10.6.1 The objective of a study by Anton et al. (A-5) was to investigate the correlation structure of
multiple measures of HIV burden in blood and tissue samples. They measured HIV burden four
ways. Two measurements were derived from blood samples, and two measurements were made on
rectal tissue. The two blood measures were based on HIV DNA assays and a second co-culture
assay that was a modification of the first measure. The third and fourth measurements were quan-
titations of HIV-1 DNA and RNA from rectal biopsy tissue. The table below gives data on HIV
levels from these measurements for 34 subjects.

HIV DNA Blood HIV Co-Culture HIV DNA Rectal HIV RNA Rectal
(Y) Blood (X1) Tissue (X2) Tissue (X3)

115 .38 899 56
86 1.65 167 158
19 .16 73 152
6 .08 146 35

23 .02 82 60
147 1.98 2483 1993
27 .15 404 30

140 .25 2438 72
345 .55 780 12
92 .22 517 5
85 .09 346 5
24 .17 82 12

109 .41 1285 5
5 .02 380 5

95 .84 628 32
46 .02 451 5
25 .64 159 5

187 .20 1335 121
5 .04 30 5

47 .02 13 30
118 .24 5 5
112 .72 625 83
79 .45 719 70
52 .23 309 167
52 .06 27 29
7 .37 199 5

13 .13 510 42
80 .24 271 15
86 .96 273 45
26 .29 534 71
53 .25 473 264

185 .28 2932 108
30 .19 658 33
9 .03 103 5

76 .21 2339 5
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HIV DNA Blood HIV Co-Culture HIV DNA Rectal HIV RNA Rectal
(Y) Blood (X1) Tissue (X2) Tissue (X3)

51 .09 31 36
73 .06 158 5
47 .08 773 5
48 .12 545 67
16 .03 5 5

Source: Peter A. Anton, M.D. Used with permission.

(a) Compute the simple correlation coefficients between all possible pairs of variables.

(b) Compute the multiple correlation coefficient among the four variables. Test the overall corre-
lation for significance.

(c) Calculate the partial correlations between HIV DNA blood and each one of the other variables
while controlling for the other two. (These are called second-order partial correlation coefficients.)

(d) Calculate the partial correlation between HIV co-culture blood and HIV DNA, controlling for
the other two variables.

(e) Calculate the partial correlation between HIV co-culture blood and HIV RNA, controlling for
the other two variables.

(f) Calculate the partial correlations between HIV DNA and HIV RNA, controlling for the other
two variables.

10.6.2 The following data were obtained on 12 males between the ages of 12 and 18 years (all measure-
ments are in centimeters):

Height Radius Length Femur Length
(Y) (X1) (X2)

149.0 21.00 42.50
152.0 21.79 43.70
155.7 22.40 44.75
159.0 23.00 46.00
163.3 23.70 47.00
166.0 24.30 47.90
169.0 24.92 48.95
172.0 25.50 49.90
174.5 25.80 50.30
176.1 26.01 50.90
176.5 26.15 50.85
179.0 26.30 51.10

Total 1992.1 290.87 573.85

(a) Find the sample multiple correlation coefficient and test the null hypothesis that 

(b) Find each of the partial correlation coefficients and test each for significance. Let for
all tests.

(c) Determine the p value for each test.

(d) State your conclusions.

a = .05

ry.12 = 0.
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10.6.3 The following data were collected on 15 obese girls:

Weight in Lean Body Mean Daily
Kilograms Weight Caloric Intake
(Y) (X1) (X2)

79.2 54.3 2670
64.0 44.3 820
67.0 47.8 1210
78.4 53.9 2678
66.0 47.5 1205
63.0 43.0 815
65.9 47.1 1200
63.1 44.0 1180
73.2 44.1 1850
66.5 48.3 1260
61.9 43.5 1170
72.5 43.3 1852

101.1 66.4 1790
66.2 47.5 1250
99.9 66.1 1789

Total 1087.9 741.1 22739

(a) Find the multiple correlation coefficient and test it for significance.

(b) Find each of the partial correlation coefficients and test each for significance. Let for
all tests.

(c) Determine the p value for each test.

(d) State your conclusions.

10.6.4 A research project was conducted to study the relationships among intelligence, aphasia, and
apraxia. The subjects were patients with focal left hemisphere damage. Scores on the following
variables were obtained through the application of standard tests.

The results are shown in the following table. Find the multiple correlation coefficient and
test for significance. Let and find the p value.

Subject Y X1 X2 X3 X4

1 66 7.6 7.4 2296.87 2
2 78 13.2 11.9 2975.82 8
3 79 13.0 12.4 2839.38 11

a = .05

X4 = severity of aphasia

X3 = lesion volume 1pixels2X2 = constructive apraxia

X1 = ideomotor apraxia

Y = intelligence

a = .05
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Subject Y X1 X2 X3 X4

4 84 14.2 13.3 3136.58 15
5 77 11.4 11.2 2470.50 5
6 82 14.4 13.1 3136.58 9
7 82 13.3 12.8 2799.55 8
8 75 12.4 11.9 2565.50 6
9 81 10.7 11.5 2429.49 11

10 71 7.6 7.8 2369.37 6
11 77 11.2 10.8 2644.62 7
12 74 9.7 9.7 2647.45 9
13 77 10.2 10.0 2672.92 7
14 74 10.1 9.7 2640.25 8
15 68 6.1 7.2 1926.60 5 

10.7 SUMMARY

In this chapter we examine how the concepts and techniques of simple linear regression
and correlation analysis are extended to the multiple-variable case. The least-squares
method of obtaining the regression equation is presented and illustrated. This chapter
also is concerned with the calculation of descriptive measures, tests of significance, and
the uses to be made of the multiple regression equation. In addition, the methods and
concepts of correlation analysis, including partial correlation, are discussed.

When the assumptions underlying the methods of regression and correlation pre-
sented in this and the previous chapter are not met, the researcher must resort to alter-
native techniques such as those discussed in Chapter 13.
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SUMMARY OF FORMULAS FOR CHAPTER 10

Formula 
Number Name Formula

10.2.1 Representation of 
the multiple 
linear regression 
equation

10.2.2 Representation 
of the multiple 
linear regression 
equation with 
two independent 
variables

yj = b0 + b1x1j + b2x2j + Pj

yj = b0 + b1x1j + b2x2j + Á + bk xkj + Pj

(Continued)
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10.2.3 Random deviation
of a point from a 
plane when there 
are two 
independent
variables

10.3.1 Sum-of-squared
residuals

10.4.1 Sum-of-squares 
equation

10.4.2 Coefficient of
multiple
determination

10.4.3 t statistic for
testing hypotheses 
about

10.5.1 Estimation equation
for multiple 
linear regression

10.5.2 Confidence interval 
for the mean of Y
for a given X

10.5.3 Prediction interval
for Y for a given X

10.6.1 Multiple correlation
model

10.6.2 Multiple correlation
coefficient

10.6.3 F statistic for
testing the multiple
correlation
coefficient

10.6.4–10.6.6 Partial correlation
between two 
variables (1 and 2) 
after controlling 
for a third (3)

r12.3 = 1r12 - r13r232>211 - r 2
13211 - r 2

232
F =

R2
y.12...k

1 - R2
y.12...k

# n - k - 1

k

Ry.12...k = 2Ry
2

.12...k = Dg1yi - yjN 22
g1yi - y22 = ASSR

SST

yj = b0 + b1x1j + b2x2j + Á + bkxkj + Pj

yjN ; t11-a>22, n-k-1s¿yN j

yjN ; t11-a>22, n-k-1syNj

yjN = b0
N + b1

N x1j + b2
N x2j + Á + bk

N xkj

bi

t =
bj
N - bjo

sbN i

R2
y.12...k =

g1yj - yjN 22
g1yj - y22 =

SSR

SST

a P2
j = a 1yj - yjN 22

Pj = yj - b0 - b1x1j - b2x2j

SST � SSR � SSE

a 1yj - y22 = a 1yjN - y22 + a 1yj - yjN 22
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10.6.7 t statistic for testing 
hypotheses about 
partial correlation 
coefficients

Symbol Key • � estimated regression/correlation coefficient x
• � regression/correlation coefficient 
• � model error term
• k � number of independent variables
• n � sample size
• r12.3 � sample partial correlation coefficient between 1 and 2 

after controlling for 3
• R � sample correlation coefficient
• R2 � multiple coefficient of determination
• t � t statistic
• xi � value of independent variable at i
• � sample mean of independent variable
• yi � value of dependent variable at i
• � sample mean of dependent variable
• � estimated y
• z � z statistic

yN
y

x

P
bx

bx
N

t = ry1.2...kAn - k - 1

1 - r 2
y1.2..k

REVIEW QUESTIONS AND EXERCISES

1. What are the assumptions underlying multiple regression analysis when one wishes to infer about
the population from which the sample data have been drawn?

2. What are the assumptions underlying the correlation model when inference is an objective?

3. Explain fully the following terms:

(a) Coefficient of multiple determination (b) Multiple correlation coefficient

(c) Simple correlation coefficient (d) Partial correlation coefficient

4. Describe a situation in your particular area of interest where multiple regression analysis would
be useful. Use real or realistic data and do a complete regression analysis.

5. Describe a situation in your particular area of interest where multiple correlation analysis would
be useful. Use real or realistic data and do a complete correlation analysis.

In Exercises 6 through 11 carry out the indicated analysis and test hypotheses at the indicated sig-
nificance levels. Compute the p value for each test.

6. We learned in Example 9.7.1 that the purpose of a study by Kwast-Rabben et al. (A-6) was to
analyze somatosensory evoked potentials (SEPs) and their interrelations following stimulation of
digits I, III, and V in the hand. Healthy volunteers were recruited for the study. Researchers applied
stimulation below-pain-level intensity to the fingers. Recordings of spinal responses were made
with electrodes fixed by adhesive electrode cream to the subject’s skin. Results are shown in the
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following table for 114 subjects. Use multiple regression to see how well you can predict the peak
spinal latency (Cv) of the SEP for digit I when age (years) and arm length (cm) are the predictor
variables. Evaluate the usefulness of your prediction equation.

Age Arm Length Cv Dig.I Age Arm Length Cv Dig.I Age Arm Length Cv Dig.I

35.07 76.5 13.50 32.00 82.0 16.30 42.08 94.0 17.70
35.07 76.5 13.50 32.00 82.0 15.40 40.09 94.0 17.70
21.01 77.0 13.00 38.09 86.5 16.60 40.09 94.0 17.40
21.01 77.0 13.60 38.09 86.5 16.00 42.09 92.5 18.40
47.06 75.5 14.30 58.07 85.0 17.00 20.08 95.0 19.00
47.06 75.5 14.90 58.07 85.0 16.40 50.08 94.5 19.10
26.00 80.0 15.40 54.02 88.0 17.60 50.08 94.5 19.20
26.00 80.0 14.70 48.10 92.0 16.80 47.11 97.5 17.80
53.04 82.0 15.70 48.10 92.0 17.00 47.11 97.5 19.30
53.04 82.0 15.80 54.02 88.0 17.60 26.05 96.0 17.50
43.07 79.0 15.20 45.03 91.5 17.30 26.05 96.0 18.00
39.08 83.5 16.50 45.03 91.5 16.80 43.02 98.0 18.00
39.08 83.5 17.00 35.11 94.0 17.00 43.02 98.0 18.80
43.07 79.0 14.70 26.04 88.0 15.60 32.06 98.5 18.30
29.06 81.0 16.00 51.07 87.0 16.80 32.06 98.5 18.60
29.06 81.0 15.80 51.07 87.0 17.40 33.09 97.0 18.80
50.02 86.0 15.10 26.04 88.0 16.50 33.09 97.0 19.20
25.07 81.5 14.60 35.11 94.0 16.60 35.02 100.0 18.50
25.07 81.5 15.60 52.00 88.5 18.00 35.02 100.0 18.50
25.10 82.5 14.60 44.02 90.0 17.40 26.05 96.0 19.00
47.04 86.0 17.00 44.02 90.0 17.30 26.05 96.0 18.50
47.04 86.0 16.30 24.05 91.0 16.40 25.08 100.5 19.80
37.00 83.0 16.00 24.00 87.0 16.10 25.06 100.0 18.80
37.00 83.0 16.00 24.00 87.0 16.10 25.06 100.0 18.40
34.10 84.0 16.30 24.00 87.0 16.00 25.08 100.5 19.00
47.01 87.5 17.40 24.00 87.0 16.00 30.05 101.0 18.00
47.01 87.5 17.00 53.05 90.0 17.50 30.05 101.0 18.20
30.04 81.0 14.10 53.05 90.0 17.50 36.07 104.5 18.90
23.06 81.5 14.20 52.06 90.0 18.00 36.07 104.5 19.20
23.06 81.5 14.70 52.06 90.0 17.90 35.09 102.0 21.00
30.04 81.0 13.90 53.04 93.0 18.40 35.09 102.0 19.20
78.00 81.0 17.20 22.04 90.0 16.40 21.01 101.5 18.60
41.02 83.5 16.70 22.04 90.0 15.80 21.01 101.5 18.60
41.02 83.5 16.50 46.07 95.5 18.80 40.00 95.5 20.00
28.07 78.0 14.80 46.07 95.5 18.60 42.09 92.5 18.40
28.07 78.0 15.00 47.00 93.5 18.00 42.08 94.0 18.50
36.05 88.0 17.30 47.00 93.5 17.90 35.04 86.0 16.00
35.04 86.0 15.30 39.05 94.5 17.40 36.05 88.0 16.60

Source: Olga Kwast-Rabben, Ph.D. Used with permission.

7. The following table shows the weight and total cholesterol and triglyceride levels in 15 patients
with primary type II hyperlipoproteinemia just prior to initiation of treatment:



X1 X2

Total Cholesterol Triglyceride
Y Weight (kg) (mg/100 ml) (mg/100 ml)

76 302 139
97 336 101
83 220 57
52 300 56
70 382 113
67 379 42
75 331 84
78 332 186
70 426 164
99 399 205
75 279 230
78 332 186
70 410 160
77 389 153
76 302 139

Compute the multiple correlation coefficient and test for significance at the .05 level.

8. In a study of the relationship between creatinine excretion, height, and weight, the data shown in
the following table were collected on 20 infant males:

Creatinine
Excretion
(mg/day) Weight (kg) Height (cm)

Infant Y X1 X2

1 100 9 72
2 115 10 76
3 52 6 59
4 85 8 68
5 135 10 60
6 58 5 58
7 90 8 70
8 60 7 65
9 45 4 54

10 125 11 83
11 86 7 64
12 80 7 66
13 65 6 61
14 95 8 66
15 25 5 57
16 125 11 81
17 40 5 59
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Creatinine
Excretion
(mg/day) Weight (kg) Height (cm)

Infant Y X1 X2

18 95 9 71
19 70 6 62
20 120 10 75

(a) Find the multiple regression equation describing the relationship among these variables.

(b) Compute and do an analysis of variance.

(c) Let and and find the predicted value of Y.

9. A study was conducted to examine those variables thought to be related to the job satisfaction
of nonprofessional hospital employees. A random sample of 15 employees gave the following
results:

Coded Index of
Score on Job Intelligence Personal
Satisfaction Score Adjustment
Test (Y ) (X1) (X2)

54 15 8
37 13 1
30 15 1
48 15 7
37 10 4
37 14 2
31 8 3
49 12 7
43 1 9
12 3 1
30 15 1
37 14 2
61 14 10
31 9 1
31 4 5

(a) Find the multiple regression equation describing the relationship among these variables.

(b) Compute the coefficient of multiple determination and do an analysis of variance.

(c) Let and and find the predicted value of Y.

10. A medical research team obtained the index of adiposity, basal insulin, and basal glucose values
on 21 normal subjects. The results are shown in the following table. The researchers wished to
investigate the strength of the association among these variables.

X2 = 5X1 = 10

X2 = 60X1 = 10

R 2
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Index of Basal Insulin Basal Glucose
Adiposity ( U/ml) (mg/100 ml)
Y X1 X2

90 12 98
112 10 103
127 14 101
137 11 102
103 10 90
140 38 108
105 9 100
92 6 101
92 8 92
96 6 91

114 9 95
108 9 95
160 41 117
91 7 101

115 9 86
167 40 106
108 9 84
156 43 117
167 17 99
165 40 104
168 22 85

Compute the multiple correlation coefficient and test for significance at the .05 level.

11. As part of a study to investigate the relationship between stress and certain other variables, the
following data were collected on a simple random sample of 15 corporate executives.

(a) Find the least-squares regression equation for these data.

(b) Construct the analysis of variance table and test the null hypothesis of no relationship among
the five variables.

(c) Test the null hypothesis that each slope in the regression model is equal to zero.

(d) Find the multiple coefficient of determination and the multiple correlation coefficient. Let
and find the p value for each test.

Annual
Number of Years Salary

Measure of Measure of in Present (�1000)
Stress (Y) Firm Size (X1) Position (X2) (X3) Age (X4)

101 812 15 $30 38
60 334 8 20 52
10 377 5 20 27
27 303 10 54 36

a = .05

M
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Annual
Number of Years Salary

Measure of Measure of in Present (�1000)
Stress (Y) Firm Size (X1) Position (X2) (X3) Age (X4)

89 505 13 52 34
60 401 4 27 45
16 177 6 26 50

184 598 9 52 60
34 412 16 34 44
17 127 2 28 39
78 601 8 42 41

141 297 11 84 58
11 205 4 31 51

104 603 5 38 63
76 484 8 41 30

For each of the studies described in Exercises 12 through 16, answer as many of the following
questions as possible:

(a) Which is more relevant, regression analysis or correlation analysis, or are both techniques
equally relevant?

(b) Which is the dependent variable?

(c) What are the independent variables?

(d) What are the appropriate null and alternative hypotheses?

(e) Which null hypotheses do you think were rejected? Why?

(f) Which is the more relevant objective, prediction or estimation, or are the two equally relevant?
Explain your answer.

(g) What is the sampled population?

(h) What is the target population?

(i) Which variables are related to which other variables? Are the relationships direct or inverse?

( j) Write out the regression equation using appropriate numbers for parameter estimates.

(k) What is the numerical value of the coefficient of multiple determination?

(l) Give numerical values for any correlation coefficients that you can.

12. Hashimoto et al. (A-7) developed a multiple regression model to predict the number of visits to emer-
gency rooms at Jikei University hospitals in Tokyo for children having an asthma attack. The
researchers found that the number of visits per night increased significantly when climate conditions
showed a rapid decrease from higher barometric pressure, from higher air temperature, and from higher
humidity, as well as lower wind speed. The final model demonstrated that 22 percent of the variation
in the number of visits was explained by variation in the predictor variables mentioned above with
eight other significant climate variables.

13. Correlation was one of many procedures discussed in a study reported by Stenvinkel et al. (A-8).
In a cohort of 204 subjects with end-stage renal disease, they found no significant correlations
between log plasma adiponectin levels and age and no significant correlation between log plasma
adiponectin and glomerular filtration rate.
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14. Van Schuylenbergh et al. (A-9) used physiological and anthropometric measurements as independ-
ent variables to predict triathlon performance (expressed in minutes). Ten triathletes underwent
extensive physiological testing in swimming, cycling, and running. Within 2 weeks after the last
laboratory test, all subjects competed in the National University Triathlon Championship. The final
regression model was

in which triathlon performance in minutes, the running speed at MLSS (m/s),
the swimming speed at MLSS, and blood lactate concentration at running

MLSS (mmol/L). MLSS refers to maximal lactate steady state and is generally acknowledged to
be a good marker of functional aerobic power during prolonged exercise. It also differs for each
physical activity. For the above model 

15. Maximal static inspiratory mouth pressure is a simple measurement of respiratory muscle
strength. A study by Tomalak et al. (A-10) examined correlations among the variables with 
(measured sitting), forced expiratory volume (FEV), peak expiratory flow (PEF), and maximal inspi-
ratory flow (PIF) in 144 boys and 152 girls ages 7–14. The researchers found was correlated
with FEV, PEF, and PIF in boys and respectively) and for girls the
correlations were also significant and respectively).

16. Di Monaco et al. (A-11) used multiple regression to predict bone mineral density of the femoral
neck (among other locations). Among 124 Caucasian, healthy postmenopausal women, they
found that weight age and total lymphocyte count were
each useful in predicting bone mineral density. In addition, 

For each of the data sets given in Exercises 17 through 19, do as many of the following as you
think appropriate:

(a) Obtain the least-squares multiple regression equation.

(b) Compute the sample coefficient of multiple determination.

(c) Compute the sample coefficient of multiple correlation.

(d) Compute simple coefficients of determination and correlation.

(e) Compute partial correlation coefficients.

(f) Construct graphs.

(g) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(h) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(i) Use your regression equations to make predictions and estimates about the dependent variable
for your selected values of the independent variables.

( j) Construct confidence intervals for relevant population parameters.

(k) Describe the population(s) to which you think your inferences are applicable.

17. Pellegrino et al. (A-12) hypothesized that maximal bronchoconstriction can be predicted from the
bronchomotor effect of deep inhalation and the degree of airway sensitivity to methacholine
(MCh). One group of participants consisted of 26 healthy or mildly asthmatic subjects (22 males,
4 females) who had limited bronchoconstriction to inhaled MCh. The mean age of the patients
was 31 years with a standard deviation of 8. There was one smoker in the group. Among the data
collected on each subject were the following observations on various lung function measurement
variables: 

R 2 = .40.
1p 6 .00121p 6 .012,1p 6 .0012,

p 6 .001,1p 6 .001, p 6 .001,
p = .002,1p = .001, p = .0055,

PImax

PImax

1PImax2 R 2 = .98.

BLCR =MLSSS =
MLSSR =TP =

TP = 130 - 9.2MLSSR - 25.9MLSSS + 1.4BLCR
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18. The purpose of a study by O’Brien et al. (A-13) was to assess hypothalamic-pituitary-adrenal
(HPA) axis function (known to be altered in depression) in patients with Alzheimer’s disease (AD)
by means of the adrenocorticotrophic hormone (ACTH) test, which assesses adrenal function by
measuring cortisol production by the adrenal gland in response to an injection of ACTH. AD
subjects (mean age 69.9 years with standard deviation of 9.8) were recruited from referrals to a
hospital memory clinic. Normal control subjects consisted of spouses of patients and residents of
a retirement hostel (mean age 73.8 with standard deviation of 11.6). There were eight males and
eight females in the AD group and 10 males and eight females in the control group. Among the
data collected were the following observations on age (C1), age at onset for AD subjects (C2),
length of history of disease in months (C3), cognitive examination score (C4), peak cortisol level
(C5), and total hormone response (C6):
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(X11) (X12) (X13)
(X2) (X3) (X6) (X7) (X8) (X9) (X10) FEV1 Max

(X1) FEV1, FEV1/FVC, (X4) (X5) M/P MP PD15FEV1 decr decr decr
FEV1 % Pred % Ratio Slope (ln mg) (ln mg) (ln mg) (%) (%) (%)

5.22 108.75 83.92 5.30 3.90 1.36 0.75 8.44 8.24 6.34 21.40 55.40 74.40
5.38 123.96 78.54 6.00 3.70 1.62 0.56 7.76 7.00 6.18 15.80 50.80 85.14
3.62 111.04 86.19 3.10 2.85 1.10 0.69 6.92 6.61 5.56 30.40 54.36 83.07
3.94 94.26 85.28 4.10 2.70 1.52 0.44 6.79 8.52 6.38 16.40 29.10 58.50
4.48 104.43 76.58 3.21 3.00 1.07 0.63 8.79 9.74 6.68 27.80 46.30 76.70
5.28 117.33 81.99 5.65 5.55 1.02 0.83 8.98 8.97 8.19 32.60 70.80 90.00
3.80 93.37 76.61 3.75 4.70 0.80 0.50 10.52 10.60 10.04 15.80 35.30 64.90
3.14 104.67 82.63 3.20 3.20 1.00 0.70 6.18 6.58 6.02 37.60 64.10 87.50
5.26 120.09 84.84 6.30 7.40 0.89 0.55 11.85 11.85 11.85 11.70 29.10 41.20
4.87 121.14 89.69 5.50 5.50 1.00 0.56 11.85 11.85 11.85 10.30 16.40 29.70
5.35 124.71 84.65 5.60 7.00 0.80 0.40 11.98 11.98 11.29 0.00 18.00 47.20
4.30 95.98 80.37 5.78 4.90 1.18 0.59 6.48 6.19 5.11 17.00 48.20 79.60
3.75 87.82 65.79 2.26 1.65 1.37 0.53 6.25 7.02 5.03 27.10 39.53 81.80
4.41 112.21 69.78 3.19 2.95 1.08 0.57 7.66 8.08 5.51 24.70 48.80 85.90
4.66 108.37 78.72 5.00 5.90 0.85 0.49 7.79 9.77 6.10 15.00 35.00 70.30
5.19 99.05 73.62 4.20 1.50 2.80 0.63 5.15 5.78 4.72 31.40 61.90 86.70
4.32 122.38 75.13 4.39 3.30 1.33 0.74 6.20 6.34 5.10 28.25 60.30 78.00
4.05 95.97 84.38 3.40 2.50 1.30 0.59 5.64 8.52 5.61 18.20 29.50 46.00
3.23 88.25 87.30 4.00 4.00 1.00 0.71 3.47 3.43 2.77 21.60 64.50 86.00
3.99 105.56 86.74 5.30 2.70 1.96 0.76 6.40 5.20 6.17 22.50 63.00 77.80
4.37 102.34 80.18 3.20 1.80 1.77 0.85 5.05 4.97 5.42 35.30 57.00 78.00
2.67 68.11 65.12 1.70 1.30 1.38 0.91 3.97 3.95 4.11 32.40 58.80 82.40
4.75 103.71 73.08 4.60 3.60 1.21 0.71 6.34 5.29 6.04 18.85 47.50 72.20
3.19 88.12 85.07 3.20 1.80 1.77 0.76 5.08 4.85 5.16 36.20 83.40 93.00
3.29 102.17 92.68 3.80 2.40 1.58 0.50 8.21 6.90 10.60 21.60 28.10 66.70
2.87 95.03 95.67 3.00 3.00 1.00 0.75 6.24 5.99 7.50 27.00 46.70 68.30

and maximal and partial forced expiratory flows at 50 percent of control FVC; M/P ratio ratio of to at control; MP
slope slope of the regression of percent decrements of and recorded during the MCh inhalation challenge; dose of MCh
that decreased FEV1 by 15 percent of control; PD40 Vm50 and doses of MCh that decreased and by 40 percent of control
respectively; % max decr percent maximal decrement at plateau.

Source: Dr. Riccardo Pellegrino. Used with permission.
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Alzheimer’s Disease Subjects Controls

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

73 69 48 75 400.00 44610 70 97 419.00 53175
87 83 48 39 565.00 63855 81 93 470.00 54285
60 54 72 67 307.00 31110 82 93 417.00 47160
62 57 60 64 335.00 36000 57 101 215.00 27120
75 70 48 51 352.00 44760 87 91 244.00 23895
63 60 24 79 426.00 47250 88 88 355.00 33565
81 77 48 51 413.00 51825 87 91 392.00 42810
66 64 24 61 402.00 41745 70 100 354.00 45105
78 73 60 32 518.00 66030 63 103 457.00 48765
72 64 72 61 505.00 49905 87 81 323.00 39360
69 65 48 73 427.00 55350 73 94 386.00 48150
76 73 36 63 409.00 51960 87 91 244.00 25830
46 41 60 73 333.00 33030 58 103 353.00 42060
77 75 18 63 591.00 73125 85 93 335.00 37425
64 61 36 59 559.00 60750 58 99 470.00 55140
72 69 30 47 511.00 54945 67 100 346.00 50745

68 100 262.00 28440
62 93 271.00 23595

• � Not applicable.

Source: Dr. John T. O’Brien. Used with permission.

## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

19. Johnson et al. (A-14) note that the ability to identify the source of remembered information is a
fundamental cognitive function. They conducted an experiment to explore the relative contribution
of perceptual cues and cognitive operations information to age-related deficits in discriminating
memories from different external sources (external source monitoring). Subjects for the experiment
included 96 graduate and undergraduate students (41 males and 55 females) ranging in ages from
18 to 27 years. Among the data collected were the following performance recognition scores on
source monitoring conditions (C1, C2, C3) and scores on the Benton Facial Recognition Test (C4),
the Wechsler Adult Intelligence Scale—Revised (WAIS-R), WAIS-R Block Design subscale (C5),
WAIS-R Vocabulary subscale (C6), the Benton Verbal Fluency Test (C7), and the Wisconsin Card
Sorting Test (C8):

C1 C2 C3 C4 C5 C6 C7 C8

0.783 2.63 0.808 25 38 62 67 6
0.909 3.36 0.846 * * 50 * *
0.920 2.14 0.616 23 25 53 47 6
0.727 3.36 0.846 25 40 49 58 6
0.737 2.93 0.731 * * 59 * *
0.600 4.07 0.962 19 50 51 35 6
0.840 3.15 0.885 * * 57 * *
0.850 3.06 0.769 * * 55 * *
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C1 C2 C3 C4 C5 C6 C7 C8

0.875 3.72 0.923 24 23 52 35 6
0.792 3.15 0.884 * * 50 * *
0.680 4.07 0.962 * * 56 * *
0.731 4.64 1.000 23 30 59 47 3
0.826 1.84 0.616 * * 52 * *
0.609 2.98 0.846 * * 56 * *
0.923 4.64 1.000 * * 53 * *
0.773 3.36 0.846 * * 60 * *
0.714 1.62 0.577 23 43 53 42 6
0.667 3.72 0.923 20 32 59 28 6
0.769 1.40 0.423 * * 51 * *
0.565 3.55 0.885 * * 45 * *
0.824 1.78 0.577 * * 45 * *
0.458 1.90 0.615 21 46 50 47 6
0.840 4.07 0.962 * * 59 * *
0.720 4.07 0.962 * * 53 * *
0.917 3.72 0.923 24 31 43 37 6
0.560 4.07 0.926 * * 62 * *
0.840 4.07 0.962 26 22 50 40 6
0.720 4.07 0.962 * * 52 * *
0.783 1.74 0.577 * * 54 * *
0.696 1.62 0.539 * * 57 * *
0.625 3.72 0.923 22 37 55 40 6
0.737 1.12 0.423 * * 47 * *
0.900 1.92 0.654 22 40 46 42 6
0.565 3.55 0.885 22 43 56 64 6
0.680 4.07 0.962 * * 54 * *
0.760 4.07 0.962 * * 58 * *
0.958 1.90 0.615 24 36 46 43 6
0.652 2.98 0.846 * * 54 * *
0.560 4.07 0.962 * * 56 * *
0.500 1.92 0.654 24 42 45 46 6
0.826 2.63 0.808 * * 60 * *
0.783 2.58 0.808 * * 60 * *
0.783 2.63 0.808 * * 49 * *
0.750 2.14 0.692 22 37 62 58 6
0.913 2.11 0.693 * * 46 * *
0.952 1.49 0.539 26 32 48 36 6
0.800 4.07 0.962 * * 59 * *
0.870 3.55 0.885 * * 48 * *
0.652 1.97 0.654 * * 59 * *
0.640 4.07 0.962 25 36 56 54 6
0.692 4.64 1.000 23 23 58 25 6
0.917 3.72 0.923 * * 55 * *
0.760 4.07 0.962 22 35 52 33 6
0.739 3.55 0.885 24 43 58 43 6
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C1 C2 C3 C4 C5 C6 C7 C8

0.857 3.20 0.808 * * 59 * *
0.727 3.36 0.846 * * 61 * *
0.833 2.80 0.846 * * 56 * *
0.840 4.07 0.962 21 11 49 58 3
0.478 2.27 0.731 * * 60 * *
0.920 4.07 0.962 24 40 64 50 6
0.731 4.64 1.000 20 40 51 50 6
0.920 4.07 0.962 23 50 61 53 6
0.720 4.07 0.962 * * 57 * *
1.000 2.79 0.807 25 47 56 30 6
0.708 3.72 0.923 24 16 57 42 6
1.000 4.64 1.000 25 48 55 54 6
0.739 3.55 0.885 23 27 57 38 6
0.600 4.20 0.962 22 38 57 33 6
0.962 4.64 1.000 25 37 63 31 6
0.772 2.22 0.731 24 48 51 41 6
0.800 2.92 0.847 24 28 47 45 6
0.923 4.64 1.000 25 45 54 48 6
0.870 3.50 0.885 24 44 54 48 5
0.808 4.64 1.000 24 43 57 58 6
1.000 4.07 0.962 25 30 59 49 6
0.870 3.55 0.885 26 44 61 35 6
0.923 4.64 1.000 * * 52 * *
0.958 2.58 0.808 27 32 52 33 6
0.826 3.50 0.885 21 31 61 44 6
0.962 3.72 0.923 23 31 57 38 6
0.783 3.50 0.885 23 46 60 36 6
0.905 3.20 0.808 23 34 55 37 4
1.000 4.64 1.000 23 33 57 33 6
0.875 3.72 0.923 21 34 55 29 6
0.885 4.07 0.962 * * 52 * *
0.913 2.92 0.846 23 44 57 47 6
0.962 4.07 0.961 24 36 54 43 6
0.682 3.36 0.846 20 41 61 34 1
0.810 2.63 0.769 20 40 57 43 6
0.720 2.79 0.808 25 23 64 43 3
0.875 2.80 0.846 24 43 59 43 2
0.923 3.72 0.924 25 40 58 33 6
0.909 3.36 0.846 24 43 56 41 6
0.920 4.07 0.962 24 50 52 28 6
1.000 3.72 0.923 21 45 64 46 6
0.609 3.50 0.885 22 25 49 35 6

Missing data.

Source: Dr. Doreen M. De Leonardis. Used with permission.

* =
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Exercises for Use with the Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1. Winters et al. (A-15) conducted a study involving 248 high-school students enrolled in introduc-
tory physical education courses. The researchers wanted to know if social cognitive theory con-
structs were correlated with discretionary, “leisure-time” physical exercise. The main outcome
variable is STREN, which is the number of days in a week that a high-school student engaged in
strenuous physical activity (operationally defined as exercise that results in sweating, labored
breathing, and rapid heart rate). Students in the study filled out lengthy questionnaires from which
the following variables were derived:

SELFR100—measures personal regulation of goal-directed behavior (higher values indicate
more goal oriented).

SS100—measures social support, social encouragement, and social expectation that are provided
by friends and family for physical exercise (higher values indicate more support).

SSE100—measures perceived ability to overcome barriers to exercise (higher values indicate
higher ability).

OEVNORM—measures outcome expectations and their associated expectancies for physical
exercise (higher values indicate stronger perceived links to desired outcomes from exercise).

With these data (LTEXER),

(a) Calculate the bivariate correlation for each pair of variables and interpret the meaning of each.

(b) Using STREN as the dependent variable, compute the multiple correlation coefficient.

(c) Using STREN as the dependent variable, calculate the partial correlation coefficient for
STREN and SELFR100 after controlling for SS100.

(d) Using STREN as the dependent variable, calculate the partial correlation coefficient for
STREN and SSE100 after controlling for OEVNORM.

Note that there many missing values in this data set.

2. With data obtained from a national database on childbirth, Matulavich et al. (A-16) examined the
number of courses of prescribed steroids a mother took during pregnancy (STEROIDS). The size
of the baby was measured by length (cm), weight (grams), and head circumference (cm). Calcu-
late the correlation of the number of courses of steroids with each of the three outcome variables.
What are the hypotheses for your tests? What are the p -values? What are your conclusions? (The
name of the data set is STERLENGTH.)

3. Refer to the data on cardiovascular risk factors (RISKFACT). The subjects are 1000 males
engaged in sedentary occupations. You wish to study the relationships among risk factors in this
population. The variables are

Select a simple random sample from this population and carry out an appropriate statistical analy-
sis. Prepare a narrative report of your findings and compare them with those of your classmates.
Consult with your instructor regarding the size of the sample.

X4 = triglycerides 1mg/dl2X3 = HDL cholesterol 1mg/dl2X2 = total cholesterol 1mg/dl2X1 = systolic blood pressure 1mm Hg2Y = oxygen consumption
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4. Refer to the data on 500 patients who have sought treatment for the relief of respiratory disease
symptoms (RESPDIS). A medical research team is conducting a study to determine what factors may
be related to respiratory disease. The dependent variable Y is a measure of the severity of the dis-
ease. A larger value indicates a more serious condition. The independent variables are as follows:

measure of air quality at place of residence (a larger number indicates poorer quality)

Select a simple random sample of subjects from this population and conduct a statistical analysis
that you think would be of value to the research team. Prepare a narrative report of your results
and conclusions. Use graphic illustrations where appropriate. Compare your results with those of
your classmates. Consult your instructor regarding the size of sample you should select.
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CHAPTER OVERVIEW

This chapter discusses some additional tools and concepts that are useful in
regression analysis. The presentation includes expansions of the basic ideas
and techniques of regression analysis that were introduced in Chapters 9
and 10.

TOPICS

11.1 INTRODUCTION

11.2 QUALITATIVE INDEPENDENT VARIABLES

11.3 VARIABLE SELECTION PROCEDURES

11.4 LOGISTIC REGRESSION

11.5 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how to include qualitative variables in a regression analysis.
2. understand how to use automated variable selection procedures to develop

regression models.
3. be able to perform logistic regression for dichotomous and polytomous

dependent variables.

CHAPTER11
REGRESSION ANALYSIS:
SOME ADDITIONAL
TECHNIQUES



11.1 INTRODUCTION

The basic concepts and methodology of regression analysis are covered in Chapters 9
and 10. In Chapter 9 we discuss the situation in which the objective is to obtain an
equation that can be used to make predictions and estimates about some dependent
variable from knowledge of some other single variable that we call the independent,
predictor, or explanatory variable. In Chapter 10 the ideas and techniques learned in
Chapter 9 are expanded to cover the situation in which it is believed that the inclusion
of information on two or more independent variables will yield a better equation for
use in making predictions and estimations. Regression analysis is a complex and pow-
erful statistical tool that is widely employed in health sciences research. To do the sub-
ject justice requires more space than is available in an introductory statistics textbook.
However, for the benefit of those who wish additional coverage of regression analysis,
we present in this chapter some additional topics that should prove helpful to the stu-
dent and practitioner of statistics.

Regression Assumptions Revisited As we learned in Chapters 9 and 10,
there are several assumptions underlying the appropriate use of regression procedures.
Often there are certain measurements that strongly influence the shape of a distribution
or impact the magnitude of the variance of a measured variable. Other times, certain
independent variables that are being used to develop a model are highly correlated, lead-
ing to the development of a model that may not be unique or correct. 

Non-Normal Data Many times the data that are used to build a regression model
are not normally distributed. One may wish to explore the possibility that some of the
observed data points are outliers or that they disproportionately affect the distribution of
the data. Such an investigation may be accomplished informally by constructing a scatter
plot and looking for observations that do not seem to fit with the others. Alternatively,
many computer packages produce formal tests to evaluate potential outlying observations
in either the dependent variable or the independent variables. It is always up to the
researcher, however, to justify which observations are to be removed from the data set
prior to analysis.

Often one may wish to attempt a transformation of the data. Mathematical trans-
formations are useful because they do not affect the underlying relationships among
variables. Since hypothesis tests for the regression coefficients are based on normal dis-
tribution statistics, data transformations can sometimes normalize the data to the extent
necessary to perform such tests. Simple transformations, such as taking the square root
of measurements or taking the logarithm of measurements, are quite common.

EXAMPLE 11.1.1

Researchers were interested in blood concentrations of delta-9-tetrahydrocannabinol 
(
-9-THC), the active psychotropic component in marijuana, from 25 research subjects.
These data are presented in Table 11.1.1, as are these same data after using a log10 trans-
formation.
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Box-and-whisker plots from SPSS software for these data are shown in Figure 11.1.1.
The raw data are clearly skewed, and an outlier is identified (observation 25). A log10

transformation, which is often useful for such skewed data, removes the magnitude of
the outlier and results in a distribution that is much more nearly symmetric about the
median. Therefore, the transformed data could be used in lieu of the raw data for con-
structing the regression model. Though symmetric data do not, necessarily, imply that
the data are normal, they do result in a more appropriate model. Formal tests of normal-
ity, as previously mentioned, should always be carried out prior to analysis. ■

Unequal Error Variances When the variances of the error terms are not equal,
we may obtain a satisfactory equation for the model, but, because the assumption that
the error variances are equal is violated, we will not be able to perform appropriate
hypothesis tests on the model coefficients. Just as was the case in overcoming the 
non-normality problem, transformations of the regression variables may reduce the
impact of unequal error variances.
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TABLE 11.1.1 Data from a Random Sample of 25 Research
Subjects Tested for -9-THC, Example 11.1.1

Case No. Concentration ( g/ml) Log10 Concentration ( g/ml)

1 .30 �.52

2 2.75 .44

3 2.27 .36

4 2.37 .37

5 1.12 .05

6 .60 �.22

7 .61 �.21

8 .89 �.05

9 .33 �.48

10 .85 �.07

11 2.18 .34

12 3.59 .56

13 .28 �.55

14 1.90 .28

15 1.71 .23

16 .85 �.07

17 1.53 .18

18 2.25 .35

19 .88 �.05

20 .49 �.31

21 4.35 .64

22 .67 �.17

23 2.74 .44

24 .79 �.10

25 6.94 .84 

MM

≤



Correlated Independent Variables Multicollinearity is a common problem
that arises when one attempts to build a model using many independent variables.
Multicollinearity occurs when there is a high degree of correlation among the
independent variables. For example, imagine that we want to find an equation relating
height and weight to blood pressure. A common variable that is derived from height
and weight is called the body mass index (BMI). If we attempt to find an equation
relating height, weight, and BMI to blood pressure, we can expect to run into analytical
problems because BMI, by definition, is highly correlated with both height and weight.

The problem arises mathematically when the solutions for the regression coefficients
are derived. Since the data are correlated, solutions may not be found that are unique to a
given model. The least complex solution to multicollinearity is to calculate correlations
among all of the independent variables and to retain only those variables that are not highly
correlated. A conservative rule of thumb to remove redundancy in the data set is to elim-
inate variables that are related to others with a significant correlation coefficient above 0.7.

EXAMPLE 11.1.2

A study of obesity and metabolic syndrome used data collected from 15 students, and
included systolic blood pressure (SBP), weight, and BMI. These data are presented in
Table 11.1.2.

Correlations for the three variables are shown in Figure 11.1.2. The very large and
significant correlation between the variables weight and BMI suggests that including both
of these variables in the model is inappropriate because of the high level of redundancy
in the information provided by these variables. This makes logical sense since BMI is a
function of weight. The researcher is now faced with the task of deciding which of the
variables to retain for constructing the regression model.
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11.2 QUALITATIVE INDEPENDENT VARIABLES

The independent variables considered in the discussion in Chapter 10 were all quantita-
tive; that is, they yielded numerical values that were either counts or measurements in
the usual sense of the word. For example, some of the independent variables used in our
examples and exercises were age, education level, collagen porosity, and collagen ten-
sile strength. Frequently, however, it is desirable to use one or more qualitative variables
as independent variables in the regression model. Qualitative variables, it will be recalled,
are those variables whose “values” are categories and that convey the concept of attrib-
ute rather than amount or quantity. The variable marital status, for example, is a quali-
tative variable whose categories are “single,” “married,” “widowed,” and “divorced.”
Other examples of qualitative variables include sex (male or female), diagnosis, race,
occupation, and immunity status to some disease. In certain situations an investigator
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TABLE 11.1.2 Data from a Random Sample of 15 Students

Case No. SBP Weight (lbs.) BMI

1 126 125 24.41

2 129 130 23.77

3 126 132 20.07

4 123 200 27.12

5 124 321 39.07

6 125 100 20.90

7 127 138 22.96

8 125 138 24.44

9 123 149 23.33

10 119 180 25.82

11 127 184 26.40

12 126 251 31.37

13 122 197 26.72

14 126 107 20.22

15 125 125 23.62

FIGURE 11.1.2 Correlations calculated in MINITAB software for the data in 
Example 11.1.2. ■

Correlations: SBP, Weight, BMI

SBP Weight

Weight �0.289
p-value 0.296

BMI �0.213 0.962
p-value 0.447 0.000



may suspect that including one or more variables such as these in the regression equa-
tion would contribute significantly to the reduction of the error sum of squares and
thereby provide more precise estimates of the parameters of interest.

Suppose, for example, that we are studying the relationship between the dependent
variable systolic blood pressure and the independent variables weight and age. We might
also want to include the qualitative variable sex as one of the independent variables. Or
suppose we wish to gain insight into the nature of the relationship between lung capac-
ity and other relevant variables. Candidates for inclusion in the model might consist
of such quantitative variables as height, weight, and age, as well as qualitative vari-
ables such as sex, area of residence (urban, suburban, rural), and smoking status (cur-
rent smoker, ex-smoker, never smoked).

Dummy Variables In order to incorporate a qualitative independent variable in
the multiple regression model, it must be quantified in some manner. This may be
accomplished through the use of what are known as dummy variables.

DEFINITION
A dummy variable is a variable that assumes only a finite number of
values (such as 0 or 1) for the purpose of identifying the different cate-
gories of a qualitative variable.

The term “dummy” is used to indicate the fact that the numerical values (such as
0 and 1) assumed by the variable have no quantitative meaning but are used merely to
identify different categories of the qualitative variable under consideration. Qualitative
variables are sometimes called indicator variables, and when there are only two cate-
gories, they are sometimes called dichotomous variables.

The following are some examples of qualitative variables and the dummy variables
used to quantify them:

Qualitative Variable Dummy Variable

Sex (male, female):

Place of residence (urban, rural, suburban):

Smoking status [current smoker, ex-smoker 
(has not smoked for 5 years or less), ex-smoker 
(has not smoked for more than 5 years), never 
smoked]:
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x3 = e1 for ex-smoker 1 7 5 years2
0 otherwise

x 2 = e1 for ex-smoker 1… 5 years2
0 otherwise

x1 = e1 for current smoker
0 for otherwise

x 2 = e1 for rural
0 for urban and suburban

x1 = e1 for urban
0 for rural and suburban

x1 = e1 for male
0 for female



Note in these examples that when the qualitative variable has k categories, 
dummy variables must be defined for all the categories to be properly coded. This rule is
applicable for any multiple regression containing an intercept constant. The variable sex, with
two categories, can be quantified by the use of only one dummy variable, while three dummy
variables are required to quantify the variable smoking status, which has four categories.

The following examples illustrate some of the uses of qualitative variables in mul-
tiple regression. In the first example we assume that there is no interaction between the
independent variables. Since the assumption of no interaction is not realistic in many
instances, we illustrate, in the second example, the analysis that is appropriate when inter-
action between variables is accounted for.

EXAMPLE 11.2.1

In a study of factors thought to be associated with birth weight, a simple random sample
of 100 birth records was selected from the North Carolina 2001 Birth Registry (A-1).
Table 11.2.1 shows, for three variables, the data extracted from each record. There are
two independent variables: length of gestation (weeks), which is quantitative, and smok-
ing status of mother (smoke), a qualitative variable. The dependent variable is birth
weight (grams).

k - 1
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TABLE 11.2.1 Data from a Simple Random Sample of 100 Births from the North
Carolina Birth Registry, Example 11.2.1

Case No. Grams Weeks Smoke

1 3147 40 0

2 2977 41 0

3 3119 38 0

4 3487 38 0

5 4111 39 0

6 3572 41 0

7 3487 40 0

8 3147 41 0

9 3345 38 1

10 2665 34 0

11 1559 34 0

12 3799 38 0

13 2750 38 0

14 3487 40 0

15 3317 38 0

16 3544 43 1

17 3459 45 0

18 2807 37 0

19 3856 40 0

20 3260 40 0

21 2183 42 1

22 3204 38 0

Case No. Grams Weeks Smoke

51 3232 38 0

52 3317 40 0

53 2863 37 0

54 3175 37 0

55 3317 40 0

56 3714 34 0

57 2240 36 0

58 3345 39 0

59 3119 39 0

60 2920 37 0

61 3430 41 0

62 3232 35 0

63 3430 38 0

64 4139 39 0

65 3714 39 0

66 1446 28 1

67 3147 39 1

68 2580 31 0

69 3374 37 0

70 3941 40 0

71 2070 37 0

72 3345 40 0
(Continued )
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Case No. Grams Weeks Smoke

23 3005 36 0

24 3090 40 1

25 3430 39 0

26 3119 40 0

27 3912 39 0

28 3572 40 0

29 3884 41 0

30 3090 38 0

31 2977 42 0

32 3799 37 0

33 4054 40 0

34 3430 38 1

35 3459 41 0

36 3827 39 0

37 3147 44 1

38 3289 38 0

39 3629 36 0

40 3657 36 0

41 3175 41 1

42 3232 43 1

43 3175 36 0

44 3657 40 1

45 3600 39 0

46 3572 40 0

47 709 25 0

48 624 25 0

49 2778 36 0

50 3572 35 0

Case No. Grams Weeks Smoke

73 3600 40 0

74 3232 41 0

75 3657 38 1

76 3487 39 0

77 2948 38 0

78 2722 40 0

79 3771 40 0

80 3799 45 0

81 1871 33 0

82 3260 39 0

83 3969 38 0

84 3771 40 0

85 3600 40 0

86 2693 35 1

87 3062 45 0

88 2693 36 0

89 3033 41 0

90 3856 42 0

91 4111 40 0

92 3799 39 0

93 3147 38 0

94 2920 36 0

95 4054 40 0

96 2296 36 0

97 3402 38 0

98 1871 33 1

99 4167 41 0

100 3402 37 1

Source: John P. Holcomb, sampled and coded from North Carolina Birth Registry data found at
www.irss.unc.edu/ncvital/bfd1down.html.

Solution: For the analysis, we quantify smoking status by means of a dummy vari-
able that is coded 1 if the mother is a smoker and 0 if she is a nonsmoker.
The data in Table 11.2.1 are plotted as a scatter diagram in Figure 11.2.1.
The scatter diagram suggests that, in general, longer periods of gestation
are associated with larger birth weights.

To obtain additional insight into the nature of these data, we may enter
them into a computer and employ an appropriate program to perform fur-
ther analyses. For example, we enter the observations 

for the first case; for the second
case; and so on. Figure 11.2.2 shows the computer output obtained with the
use of the MINITAB multiple regression program.

x22 = 0y2 = 2977, x12 = 41,40, x21 = 0,
y1 = 3147, x11 =

www.irss.unc.edu/ncvital/bfd1down.html
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FIGURE 11.2.1 Birth weights and lengths of gestation for 100 births:
( ) smoking and ( ) nonsmoking mothers.��

The regression equation is 

grams � �1724 � 130 x1 � 294 x2

Predictor Coef SE Coef T P
Constant �1724.4 558.8 �3.09 0.003
weeks (x1) 130.05 14.52 8.96 0.000
smoke (x2) �294.4 135.8 �2.17 0.033

S � 484.6 R-Sq � 46.4% R-Sq(adj) � 45.3%

Analysis of Variance

SOURCE DF SS MS F P
Regression 2 19689185 9844593 41.92 0.000
Residual Error 97 22781681 234863
Total 99 42470867

SOURCE DF Seq SS
x1 1 18585166
x2 1 1104020

FIGURE 11.2.2 Partial computer printout, MINITAB multiple regression analysis. 
Example 11.2.1.
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FIGURE 11.2.3 Birth weights and lengths of gestation for 100 births and the
fitted regression lines: ( ) smoking and ( ) nonsmoking mothers.��

We see in the printout that the multiple regression equation is

(11.2.1)

To observe the effect on this equation when we wish to consider only
the births to smoking mothers, we let The equation then becomes

(11.2.2)

which has a y -intercept of and a slope of 130. Note that the 
y-intercept for the new equation is equal to 

Now let us consider only births to nonsmoking mothers. When we let
our regression equation reduces to

(11.2.3)

The slope of this equation is the same as the slope of the equation for
smoking mothers, but the y-intercepts are different. The y-intercept for the
equation associated with nonsmoking mothers is larger than the one for the

= -1724 + 130x1j

yNj = -1724 + 130x1j - 294102x2 = 0,

1-29424 = -2018.
1bN 0 + bN12 = 3-1724 +

-2018

= -2018 + 130x1j

yN j = -1724 + 130x1j - 294112x2j = 1.

yN j = -1724 + 130x1j - 294bN 2x2j

yN j = bN 0 + bN 1x1j + bN 2x2j



smoking mothers. These results show that for this sample, babies born to
mothers who do not smoke weighed, on the average, more than babies born
to mothers who do smoke, when length of gestation is taken into account.
The amount of the difference, on the average, is 294 grams. Stated another
way, we can say that for this sample, babies born to mothers who smoke
weighed, on the average, 294 grams less than the babies born to mothers
who do not smoke, when length of gestation is taken into account. Figure
11.2.3 shows the scatter diagram of the original data along with a plot of
the two regression lines (Equations 11.2.2 and 11.2.3). ■

EXAMPLE 11.2.2

At this point a question arises regarding what inferences we can make about the sam-
pled population on the basis of the sample results obtained in Example 11.2.1. First of
all, we wish to know if the sample difference of 294 grams is significant. In other words,
does smoking have an effect on birth weight? We may answer this question through the
following hypothesis testing procedure.

Solution:

1. Data. The data are as given in Example 11.2.1.

2. Assumptions. We presume that the assumptions underlying multiple
regression analysis are met.

3. Hypotheses. Suppose we let

4. Test statistic. The test statistic is

5. Distribution of test statistic. When the assumptions are met and
is true the test statistic is distributed as Student’s t with 97 degrees of
freedom.

6. Decision rule. We reject if the computed t is either greater than
or equal to 1.9848 or less than or equal to (obtained by inter-
polation).

7. Calculation of test statistic. The calculated value of the test statistic
appears in Figure 11.2.2 as the t ratio for the coefficient associated with
the variable appearing in Column 3 of Table 11.2.1. This coefficient, of
course, is We see that the computed t is

8. Statistical decision. Since we reject

9. Conclusion. We conclude that, in the sampled population, whether the
mothers smoke is associated with a reduction in the birth weights of their
babies.

10. p value. For this test we have from Figure 11.2.2. ■

A Confidence Interval for Given that we are able to conclude that in
the sampled population the smoking status of the mothers does have an effect on the
birth weights of their babies, we may now inquire as to the magnitude of the effect. Our

B2

p = .033

H0.-2.17 6 -1.9848,

-2.17.bN 2.

-1.9848
H0

H0

t = 1bN2 - 02>sbN2
.

a = .05.H0 : b2 = 0; HA: b2 Z 0.
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best point estimate of the average difference in birth weights, when length of gestation
is taken into account, is 294 grams in favor of babies born to mothers who do not smoke.
We may obtain an interval estimate of the mean amount of the difference by using infor-
mation from the computer printout by means of the following expression:

For a 95 percent confidence interval, we have

Thus, we are 95 percent confident that the difference is somewhere between about 564
grams and 25 grams.

Advantages of Dummy Variables The reader may have correctly surmised
that an alternative analysis of the data of Example 11.2.1 would consist of fitting two
separate regression equations: one to the subsample of mothers who smoke and another
to the subsample of those who do not. Such an approach, however, lacks some of the
advantages of the dummy variable technique and is a less desirable procedure when the
latter procedure is valid. If we can justify the assumption that the two separate regres-
sion lines have the same slope, we can get a better estimate of this common slope through
the use of dummy variables, which entails pooling the data from the two subsamples. In
Example 11.2.1 the estimate using a dummy variable is based on a total sample size of
100 observations, whereas separate estimates would be based on a sample of 85 smok-
ers and only 15 nonsmokers. The dummy variables approach also yields more precise
inferences regarding other parameters since more degrees of freedom are available for
the calculation of the error mean square.

Use of Dummy Variables: Interaction Present Now let us consider
the situation in which interaction between the variables is assumed to be present. Sup-
pose, for example, that we have two independent variables: one quantitative variable 
and one qualitative variable with three response levels yielding the two dummy variables

and The model, then, would be

(11.2.4)

in which and are called interaction terms and represent the interaction
between the quantitative and the qualitative independent variables. Note that there is no
need to include in the model the term containing it will always be zero because
when , and when The model of Equation 11.2.4 allows
for a different slope and Y-intercept for each level of the qualitative variable.

Suppose we use dummy variable coding to quantify the qualitative variable as follows:

X3 = e1 for level 2
0 otherwise

X2 = e1 for level 1
0 otherwise

X3 = 1, X2 = 0.X2 = 1, X3 = 0
X2jX3j ;

b5X1jX3jb4X1jX2j

yj = b0 + b1X1j + b2X2j + b3X3j + b4X1jX2j + b5X1jX3j + Pj

X3.X2

X1

-563.9, -24.9

-294.4 ; 1.98481135.82
bN 2 ; tsbN 2
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The three sample regression equations for the three levels of the qualitative variable, then,
are as follows:

Level 1 ( )

(11.2.5)

Level 2 ( )

(11.2.6)

Level 3 ( )

(11.2.7)

Let us illustrate these results by means of an example.

EXAMPLE 11.2.3

A team of mental health researchers wishes to compare three methods (A, B, and C) of
treating severe depression. They would also like to study the relationship between age
and treatment effectiveness as well as the interaction (if any) between age and treatment.
Each member of a simple random sample of 36 patients, comparable with respect to
diagnosis and severity of depression, was randomly assigned to receive treatment A, B,
or C. The results are shown in Table 11.2.2. The dependent variable Y is treatment effec-
tiveness, the quantitative independent variable X1 is patient’s age at nearest birthday, and
the independent variable type of treatment is a qualitative variable that occurs at three
levels. The following dummy variable coding is used to quantify the qualitative variable:

The scatter diagram for these data is shown in Figure 11.2.4. Table 11.2.3 shows the
data as they were entered into a computer for analysis. Figure 11.2.5 contains the printout
of the analysis using the MINITAB multiple regression program.

Solution: Now let us examine the printout to see what it provides in the way of insight
into the nature of the relationships among the variables. The least-squares
equation is

yNj = 6.21 + 1.03x1j + 41.3x2j + 22.7x3j - .703x1j x2j - .510x1j x3j

X3 = e1 for treatment B
0 otherwise

X2 = e1 for treatment A
0 otherwise

= bN0 + bN1x1j

yNj = bN0 + bN1x1j + bN2102 + bN3102 + bN4x1j102 + bN5x1j102X2 � 0, X3 � 0

= 1bN0 + bN32 + 1bN1 + bN52x1j

= bN0 + bN1x1j + bN3 + bN5x1j

yNj = bN0 + bN1x1j + bN2102 + bN3112 + bN4x1j102 + bN5x1j112X2 � 0, X3 � 1

= 1bN0 + bN22 + 1bN1 + bN42x1j

= bN0 + bN1x1j + bN2 + bN4x1j

yNj = bN0 + bN1x1j + bN2112 + bN3102 + bN4x1j112 + bN5x1j102X2 � 1, X3 � 0
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TABLE 11.2.2 Data for Example 11.2.3

Measure of Method of

Effectiveness Age Treatment

56 21 A

41 23 B

40 30 B

28 19 C

55 28 A

25 23 C

46 33 B

71 67 C

48 42 B

63 33 A

52 33 A

62 56 C

50 45 C

45 43 B

58 38 A

46 37 C

58 43 B

34 27 C

65 43 A

55 45 B

57 48 B

59 47 C

64 48 A

61 53 A

62 58 B

36 29 C

69 53 A

47 29 B

73 58 A

64 66 B

60 67 B

62 63 A

71 59 C

62 51 C

70 67 A

71 63 C 

The three regression equations for the three treatments are as follows:

Treatment A (Equation 11.2.5)

= 47.51 + .327x1j

yNj = 16.21 + 41.32 + 11.03 - .7032x1j



Treatment B (Equation 11.2.6)

Treatment C (Equation 11.2.7)

Figure 11.2.6 contains the scatter diagram of the original data along
with the regression equations for the three treatments. Visual inspection of
Figure 11.2.6 suggests that treatments A and B do not differ greatly with
respect to their slopes, but their y-intercepts are considerably different. The
graph suggests that treatment A is better than treatment B for younger
patients, but the difference is less dramatic with older patients. Treatment C
appears to be decidedly less desirable than both treatments A and B for
younger patients but is about as effective as treatment B for older patients.
These subjective impressions are compatible with the contention that there
is interaction between treatments and age.

Inference Procedures

The relationships we see in Figure 11.2.6, however, are sample results. What can we
conclude about the population from which the sample was drawn?

For an answer let us look at the t ratios on the computer printout in Figure 11.2.5.
Each of these is the test statistic

t =
bN i - 0

sbN i

yN j = 6.21 + 1.03x1j

= 28.91 + .520x1j

yN j = 16.21 + 22.72 + 11.03 - .5102x1j
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FIGURE 11.2.4 Scatter diagram of data for Example 11.2.3:
( ) treatment A, ( ) treatment B, ( ) treatment C.���
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TABLE 11.2.3 Data for Example 11.2.3 Coded for Computer Analysis

Y

56 21 1 0 21 0

55 28 1 0 28 0

63 33 1 0 33 0

52 33 1 0 33 0

58 38 1 0 38 0

65 43 1 0 43 0

64 48 1 0 48 0

61 53 1 0 53 0

69 53 1 0 53 0

73 58 1 0 58 0

62 63 1 0 63 0

70 67 1 0 67 0

41 23 0 1 0 23

40 30 0 1 0 30

46 33 0 1 0 33

48 42 0 1 0 42

45 43 0 1 0 43

58 43 0 1 0 43

55 45 0 1 0 45

57 48 0 1 0 48

62 58 0 1 0 58

47 29 0 1 0 29

64 66 0 1 0 66

60 67 0 1 0 67

28 19 0 0 0 0

25 23 0 0 0 0

71 67 0 0 0 0

62 56 0 0 0 0

50 45 0 0 0 0

46 37 0 0 0 0

34 27 0 0 0 0

59 47 0 0 0 0

36 29 0 0 0 0

71 59 0 0 0 0

62 51 0 0 0 0

71 63 0 0 0 0

X1X3X1X2X3X2X1

for testing We see by Equation 11.2.5 that the y-intercept of the regression
line for treatment A is equal to Since the t ratio of 8.12 for testing 
is greater than the critical t of 2.0423 (for ), we can reject that and
conclude that the y-intercept of the population regression line for treatment A is differ-
ent from the y-intercept of the population regression line for treatment C, which has a

b2 = 0H0a = .05
H0 : b2 = 0bN 0 + bN 2.

H0 : bi = 0.
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The regression equation is

Predictor Coef Stdev t-ratio p
Constant 6.211 3.350 1.85 0.074
x1 1.03339 0.07233 14.29 0.000
x2 41.304 5.085 8.12 0.000
x3 22.707 5.091 4.46 0.000
x4 0.1090 0.000
x5 0.1104 0.000

Analysis of Variance

SOURCE DF SS MS F p
Regression 5 4932.85 986.57 64.04 0.000
Error 30 462.15 15.40
Total 35 5395.00

SOURCE DF SEQ SS
x1 1 3424.43
x2 1 803.80
x3 1 1.19
x4 1 375.00
x5 1 328.42

R-sq1adj2 = 90.0%R-sq = 91.4%s = 3.925

-4.62-0.5097
-6.45-0.7029

y = 6.21 + 1.03 x1 + 41.3 x2 + 22.7 x3 - 0.703 x4 - 0.510 x5

FIGURE 11.2.5 Computer printout, MINITAB multiple regression analysis, Example 11.2.3.
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FIGURE 11.2.6 Scatter diagram of data for Example 11.2.3 with the fitted
regression lines: ( ) treatment A, ( ) treatment B, ( ) treatment C.���



y-intercept of Similarly, since the t ratio of 4.46 for testing is also greater
than the critical t of 2.0423, we can conclude (at the .05 level of significance) that the
y-intercept of the population regression line for treatment B is also different from the y-
intercept of the population regression line for treatment C. (See the y-intercept of Equa-
tion 11.2.6.)

Now let us consider the slopes. We see by Equation 11.2.5 that the slope of the
regression line for treatment A is equal to (the slope of the line for treatment C)
Since the t ratio of for testing is less than the critical t of
we can conclude (for ) that the slopes of the population regression lines for treat-
ments A and C are different. Similarly, since the computed t ratio for testing 
is also less than we conclude (for ) that the population regression lines
for treatments B and C have different slopes (see the slope of Equation 11.2.6). Thus we
conclude that there is interaction between age and type of treatment. This is reflected by
a lack of parallelism among the regression lines in Figure 11.2.6. ■

Another question of interest is this: Is the slope of the population regression line
for treatment A different from the slope of the population regression line for treatment
B? To answer this question requires computational techniques beyond the scope of 
this text. The interested reader is referred to books devoted specifically to regression
analysis.

In Section 10.4 the reader was warned that there are problems involved in making
multiple inferences from the same sample data. Again, books on regression analysis are
available that may be consulted for procedures to be followed when multiple inferences,
such as those discussed in this section, are desired.

We have discussed only two situations in which the use of dummy variables is
appropriate. More complex models involving the use of one or more qualitative inde-
pendent variables in the presence of two or more quantitative variables may be appro-
priate in certain circumstances. More complex models are discussed in the many books
devoted to the subject of multiple regression analysis.

EXERCISES

For each exercise do the following:

(a) Draw a scatter diagram of the data using different symbols for the different categorical variables.

(b) Use dummy variable coding and regression to analyze the data.

(c) Perform appropriate hypothesis tests and construct appropriate confidence intervals using your
choice of significance and confidence levels.

(d) Find the p value for each test that you perform.

11.2.1 For subjects undergoing stem cell transplants, dendritic cells (DCs) are antigen-presenting cells that
are critical to the generation of immunologic tumor responses. Bolwell et al. (A-2) studied lymphoid
DCs in 44 subjects who underwent autologous stem cell transplantation. The outcome variable is the
concentration of DC2 cells as measured by flow cytometry. One of the independent variables is the

a = .05-2.0423,
H0 : b5 = 0

a = .05
-2.0423,H0 : b4 = 0-6.45

+ bN 4.bN1

H0 : b3 = 0b0.
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age of the subject (years), and the second independent variable is the mobilization method. During
chemotherapy, 11 subjects received granulocyte colony-stimulating factor (G-CSF) mobilizer 
( g/kg/day) and 33 received etoposide (2 ). The mobilizer is a kind of blood progenitor cell
that triggers the formation of the DC cells. The results were as follows:

G-CSF Etoposide

DC Age DC Age DC Age DC Age

6.16 65 3.18 70 4.24 60 4.09 36
6.14 55 2.58 64 4.86 40 2.86 51
5.66 57 1.69 65 4.05 48 2.25 54
8.28 47 2.16 55 5.07 50 0.70 50
2.99 66 3.26 51 4.26 23 0.23 62
8.99 24 1.61 53 11.95 26 1.31 56
4.04 59 6.34 24 1.88 59 1.06 31
6.02 60 2.43 53 6.10 24 3.14 48

10.14 66 2.86 37 0.64 52 1.87 69
27.25 63 7.74 65 2.21 54 8.21 62
8.86 69 11.33 19 6.26 43 1.44 60

Source: Lisa Rybicki, M.S. Used with permission.

11.2.2 According to Pandey et al. (A-3) carcinoma of the gallbladder is not infrequent. One of the pri-
mary risk factors for gallbladder cancer is cholelithiasis, the asymptomatic presence of stones in
the gallbladder. The researchers performed a case-control study of 50 subjects with gallbladder
cancer and 50 subjects with cholelithiasis. Of interest was the concentration of lipid peroxidation
products in gallbladder bile, a condition that may give rise to gallbladder cancer. The lipid perox-
idation product melonaldehyde (MDA, g/mg) was used to measure lipid peroxidation. One of the
independent variables considered was the cytochrome P-450 concentration (CYTO, nmol/mg).
Researchers used disease status (gallbladder cancer vs. cholelithiasis) and cytochrome P-450 con-
centration to predict MDA. The following data were collected.

Cholelithiasis Gallbladder Cancer

MDA CYTO MDA CYTO MDA CYTO MDA CYTO

0.68 12.60 11.62 4.83 1.60 22.74 9.20 8.99
0.16 4.72 2.71 3.25 4.00 4.63 0.69 5.86
0.34 3.08 3.39 7.03 4.50 9.83 10.20 28.32
3.86 5.23 6.10 9.64 0.77 8.03 3.80 4.76
0.98 4.29 1.95 9.02 2.79 9.11 1.90 8.09
3.31 21.46 3.80 7.76 8.78 7.50 2.00 21.05
1.11 10.07 1.72 3.68 2.69 18.05 7.80 20.22
4.46 5.03 9.31 11.56 0.80 3.92 16.10 9.06
1.16 11.60 3.25 10.33 3.43 22.20 0.98 35.07
1.27 9.00 0.62 5.72 2.73 11.68 2.85 29.50

m

g>m2m
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Cholelithiasis Gallbladder Cancer

MDA CYTO MDA CYTO MDA CYTO MDA CYTO

1.38 6.13 2.46 4.01 1.41 19.10 3.50 45.06
3.83 6.06 7.63 6.09 6.08 36.70 4.80 8.99
0.16 6.45 4.60 4.53 5.44 48.30 1.89 48.15
0.56 4.78 12.21 19.01 4.25 4.47 2.90 10.12
1.95 34.76 1.03 9.62 1.76 8.83 0.87 17.98
0.08 15.53 1.25 7.59 8.39 5.49 4.25 37.18
2.17 12.23 2.13 12.33 2.82 3.48 1.43 19.09
0.00 0.93 0.98 5.26 5.03 7.98 6.75 6.05
1.35 3.81 1.53 5.69 7.30 27.04 4.30 17.05
3.22 6.39 3.91 7.72 4.97 16.02 0.59 7.79
1.69 14.15 2.25 7.61 1.11 6.14 5.30 6.78
4.90 5.67 1.67 4.32 13.27 13.31 1.80 16.03
1.33 8.49 5.23 17.79 7.73 10.03 3.50 5.07
0.64 2.27 2.79 15.51 3.69 17.23 4.98 16.60
5.21 12.35 1.43 12.43 9.26 9.29 6.98 19.89

Source: Manoj Pandey, M.D. Used with permission.

11.2.3 The purpose of a study by Krantz et al. (A-4) was to investigate dose-related effects of methadone
in subjects with torsades de pointes, a polymorphic ventricular tachycardia. In the study of 17
subjects, 10 were men ( ) and seven were women ( ). The outcome variable, is the
QTc interval, a measure of arrhythmia risk. The other independent variable, in addition to sex,
was methadone dose (mg/day). Measurements on these variables for the 17 subjects were as
follows.

Sex Dose (mg/day) QTc (msec)

0 1000 600
0 550 625
0 97 560
1 90 585
1 85 590
1 126 500
0 300 700
0 110 570
1 65 540
1 650 785
1 600 765
1 660 611
1 270 600
1 680 625
0 540 650
0 600 635
1 330 522

sex = 1sex = 0
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11.2.4 Refer to Exercise 9.7.2, which describes research by Reiss et al. (A-5), who collected samples from
90 patients and measured partial thromboplastin time (aPTT) using two different methods: the
CoaguChek point-of-care assay and standard laboratory hospital assay. The subjects were also classi-
fied by their medication status: 30 receiving heparin alone, 30 receiving heparin with warfarin, and
30 receiving warfarin and enoxaparin. The data are as follows.

Heparin Warfarin Warfarin and Enoxaparin

CoaguChek Hospital CoaguChek Hospital CoaguChek Hospital
aPTT aPTT aPTT aPTT aPTT aPTT

49.3 71.4 18.0 77.0 56.5 46.5
57.9 86.4 31.2 62.2 50.7 34.9
59.0 75.6 58.7 53.2 37.3 28.0
77.3 54.5 75.2 53.0 64.8 52.3
42.3 57.7 18.0 45.7 41.2 37.5
44.3 59.5 82.6 81.1 90.1 47.1
90.0 77.2 29.6 40.9 23.1 27.1
55.4 63.3 82.9 75.4 53.2 40.6
20.3 27.6 58.7 55.7 27.3 37.8
28.7 52.6 64.8 54.0 67.5 50.4
64.3 101.6 37.9 79.4 33.6 34.2
90.4 89.4 81.2 62.5 45.1 34.8
64.3 66.2 18.0 36.5 56.2 44.2
89.8 69.8 38.8 32.8 26.0 28.2
74.7 91.3 95.4 68.9 67.8 46.3

150.0 118.8 53.7 71.3 40.7 41.0
32.4 30.9 128.3 111.1 36.2 35.7
20.9 65.2 60.5 80.5 60.8 47.2
89.5 77.9 150.0 150.0 30.2 39.7
44.7 91.5 38.5 46.5 18.0 31.3
61.0 90.5 58.9 89.1 55.6 53.0
36.4 33.6 112.8 66.7 18.0 27.4
52.9 88.0 26.7 29.5 18.0 35.7
57.5 69.9 49.7 47.8 78.3 62.0
39.1 41.0 85.6 63.3 75.3 36.7
74.8 81.7 68.8 43.5 73.2 85.3
32.5 33.3 18.0 54.0 42.0 38.3

125.7 142.9 92.6 100.5 49.3 39.8
77.1 98.2 46.2 52.4 22.8 42.3

143.8 108.3 60.5 93.7 35.8 36.0

Source: Curtis E. Haas, Pharm.D. Used with permission.

Use the multiple regression to predict the hospital aPTT from the CoaguCheck aPTT level as well
as the medication received. Is knowledge of medication useful in the prediction? Let for
all tests.

a = .05
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11.3 VARIABLE SELECTION PROCEDURES

Health sciences researchers contemplating the use of multiple regression analysis to solve
problems usually find that they have a large number of variables from which to select
the independent variables to be employed as predictors of the dependent variable. Such
investigators will want to include in their model as many variables as possible in order
to maximize the model’s predictive ability. The investigator must realize, however, that
adding another independent variable to a set of independent variables always increases
the coefficient of determination Therefore, independent variables should not be added
to the model indiscriminately, but only for good reason. In most situations, for example,
some potential predictor variables are more expensive than others in terms of data-
collection costs. The cost-conscious investigator, therefore, will not want to include an
expensive variable in a model unless there is evidence that it makes a worthwhile
contribution to the predictive ability of the model.

The investigator who wishes to use multiple regression analysis most effectively
must be able to employ some strategy for making intelligent selections from among
those potential predictor variables that are available. Many such strategies are in cur-
rent use, and each has its proponents. The strategies vary in terms of complexity and
the tedium involved in their employment. Unfortunately, the strategies do not always
lead to the same solution when applied to the same problem.

Stepwise Regression Perhaps the most widely used strategy for selecting inde-
pendent variables for a multiple regression model is the stepwise procedure. The proce-
dure consists of a series of steps. At each step of the procedure each variable then in the
model is evaluated to see if, according to specified criteria, it should remain in the model.

Suppose, for example, that we wish to perform stepwise regression for a model
containing k predictor variables. The criterion measure is computed for each variable. Of
all the variables that do not satisfy the criterion for inclusion in the model, the one that
least satisfies the criterion is removed from the model. If a variable is removed in this
step, the regression equation for the smaller model is calculated and the criterion meas-
ure is computed for each variable now in the model. If any of these variables fail to sat-
isfy the criterion for inclusion in the model, the one that least satisfies the criterion is
removed. If a variable is removed at this step, the variable that was removed in the first
step is reentered into the model, and the evaluation procedure is continued. This process
continues until no more variables can be entered or removed.

The nature of the stepwise procedure is such that, although a variable may be
deleted from the model in one step, it is evaluated for possible reentry into the model in
subsequent steps.

MINITAB’s STEPWISE procedure, for example, uses the associated F statistic as
the evaluative criterion for deciding whether a variable should be deleted or added to
the model. Unless otherwise specified, the cutoff value is The printout of the
STEPWISE results contains t statistics (the square root of F ) rather than F statistics.
At each step MINITAB calculates an F statistic for each variable then in the model. If
the F statistic for any of these variables is less than the specified cutoff value (4 if some
other value is not specified), the variable with the smallest F is removed from the model.
The regression equation is refitted for the reduced model, the results are printed, and

F = 4.

R 2.
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the procedure goes to the next step. If no variable can be removed, the procedure tries
to add a variable. An F statistic is calculated for each variable not then in the model.
Of these variables, the one with the largest associated F statistic is added, provided its
F statistic is larger than the specified cutoff value (4 if some other value is not speci-
fied). The regression equation is refitted for the new model, the results are printed, and
the procedure goes on to the next step. The procedure stops when no variable can be
added or deleted.

The following example illustrates the use of the stepwise procedure for selecting
variables for a multiple regression model.

EXAMPLE 11.3.1

A nursing director would like to use nurses’ personal characteristics to develop a regres-
sion model for predicting the job performance ( JOBPER). The following variables are
available from which to choose the independent variables to include in the model:

We wish to use the stepwise procedure for selecting independent variables from those
available in the table to construct a multiple regression model for predicting job
performance.

Solution: Table 11.3.1 shows the measurements taken on the dependent variable,
JOBPER, and each of the six independent variables for a sample of
30 nurses.

X6 = initiative 1INIT2X5 = problem-solving skills 1PROB2X4 = communication skills 1COMM2X3 = ambition 1AMB2X2 = enthusiasm 1ENTH2X1 = assertiveness 1ASRV2
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TABLE 11.3.1 Measurements on Seven Variables
for Examples 11.3.1

Y

45 74 29 40 66 93 47

65 65 50 64 68 74 49

73 71 67 79 81 87 33

63 64 44 57 59 85 37

83 79 55 76 76 84 33

45 56 48 54 59 50 42

60 68 41 66 71 69 37

73 76 49 65 75 67 43

X6X5X4X3X2X1

(Continued)



We use MINITAB to obtain a useful model by the stepwise proce-
dure. Observations on the dependent variable job performance (JOBPER)
and the six candidate independent variables are stored in MINITAB
Columns 1 through 7, respectively. Figure 11.3.1 shows the appropriate
MINITAB procedure and the printout of the results.

To obtain the results in Figure 11.3.1, the values of F to enter and F
to remove both were set automatically at 4. In step 1 there are no variables
to be considered for deletion from the model. The variable AMB (Column
4) has the largest associated F statistic, which is 
Since 94.8676 is greater than 4, AMB is added to the model. In step 2 the
variable INIT (Column 7) qualifies for addition to the model since its
associated F of is greater than 4 and it is the variable with
the largest associated F statistic. It is added to the model. After step 2
no other variable could be added or deleted, and the procedure stopped.
We see, then, that the model chosen by the stepwise procedure is a two-
independent-variable model with AMB and INIT as the independent vari-
ables. The estimated regression equation is

■yN = 31.96 + .787x3 - .45x6

1-2.222 = 4.84

F = 19.7422 = 94.8676.
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Y

74 83 71 77 76 84 33

69 62 44 57 67 81 43

66 54 52 67 63 68 36

69 61 46 66 64 75 43

71 63 56 67 60 64 35

70 84 82 68 64 78 37

79 78 53 82 84 78 39

83 65 49 82 65 55 38

75 86 63 79 84 80 41

67 61 64 75 60 81 45

67 71 45 67 80 86 48

52 59 67 64 69 79 54

52 71 32 44 48 65 43

66 62 51 72 71 81 43

55 67 51 60 68 81 39

42 65 41 45 55 58 51

65 55 41 58 71 76 35

68 78 65 73 93 77 42

80 76 57 84 85 79 35

50 58 43 55 56 84 40

87 86 70 81 82 75 30

84 83 38 83 69 79 41 

X6X5X4X3X2X1



To change the criterion for allowing a variable to enter the model from 4 to some
other value K, click on Options, then type the desired value of K in the Enter box. The
new criterion F statistic, then, is K rather than 4. To change the criterion for deleting a
variable from the model from 4 to some other value K, click on Options, then type the
desired value of K in the Remove box. We must choose K to enter to be greater than or
equal to K to remove.

Though the stepwise selection procedure is a common technique employed by
researchers, other methods are available. Following is a brief discussion of two such
tools. The final model obtained by each of these procedures is the same model that was
found by using the stepwise procedure in Example 11.3.1.

Forward Selection This strategy is closely related to the stepwise regression
procedure. This method builds a model using correlations. Variables are retained that
meet the criteria for inclusion, as in stepwise selection. The first variable entered into
the model is the one with the highest correlation with the dependent variable. If this vari-
able meets the inclusion criterion, it is retained. The next variable to be considered for
inclusion is the one with the highest partial correlation with the dependent variable. If it
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Dialog box: Session command:

Stat ➤ Regression ➤ Stepwise MTB > Stepwise C1 C2–C7;
SUBC>  FEnter 4.0;

Type C1 in Response and C2–C7 in Predictors. SUBC>  FRemove 4.0.

Stepwise Regression

F-to-Enter: 4.00 F-to-Remove: 4.00

Response is C1 on 6 predictors, with N = 30

Step 1 2
Constant 7.226 31.955

C4 0.888 0.787
T-Ratio 9.74 8.13

C7 -0.45
T-Ratio -2.20

S 5.90 5.53
R-Sq 77.21 80.68

FIGURE 11.3.1 MINITAB stepwise procedure and output for the data of Table 11.3.1.



meets the inclusion criteria, it is retained. This procedure continues until all of the inde-
pendent variables have been considered. The final model contains all of the independent
variables that meet the inclusion criteria.

Backward Elimination This model-building procedure begins with all of the
variables in the model. This strategy also builds a model using correlations and a prede-
termined inclusion criterion based on the F statistic. The first variable considered for
removal from the model is the one with the smallest partial correlation coefficient. If this
variable does not meet the criterion for inclusion, it is eliminated from the model. The
next variable to be considered for elimination is the one with the next lowest partial cor-
relation. It will be eliminated if it fails to meet the criterion for inclusion. This proce-
dure continues until all variables have been considered for elimination. The final model
contains all of the independent variables that meet the inclusion criteria.

EXERCISES

11.3.1 Refer to the data of Exercise 10.3.2 reported by Son et al. (A-6), who studied family caregiving
in Korea of older adults with dementia. The outcome variable, caregiver burden (BURDEN), was
measured by the Korean Burden Inventory (KBI) where scores ranged from 28 to 140 with higher
scores indicating higher burden. Perform a stepwise regression analysis on the following independ-
ent variables reported by the researchers:

CGAGE: caregiver age (years)

CGINCOME: caregiver income (Won-Korean currency)

CGDUR: caregiver-duration of caregiving (month)

ADL: total activities of daily living where low scores indicate the elderly perform activities
independently.

MEM: memory and behavioral problems with higher scores indicating more problems.

COG: cognitive impairment with lower scores indicating a greater degree of cognitive impair-
ment.

SOCIALSU: total score of perceived social support (25–175, higher values indicating more
support). The reported data are as follows.

CGAGE CGINCOME CGDUR ADL MEM COG SOCIALSU BURDEN

41 200 12 39 4 18 119 28
30 120 36 52 33 9 131 68
41 300 60 89 17 3 141 59
35 350 2 57 31 7 150 91
37 600 48 28 35 19 142 70
42 90 4 34 3 25 148 38
49 300 26 42 16 17 172 46
39 500 16 52 6 26 147 57
49 309 30 88 41 13 98 89
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CGAGE CGINCOME CGDUR ADL MEM COG SOCIALSU BURDEN

40 250 60 90 24 3 147 48
40 300 36 38 22 13 146 74
70 60 10 83 41 11 97 78
49 450 24 30 9 24 139 43
55 300 18 45 33 14 127 76
27 309 30 47 36 18 132 72
39 250 10 90 17 0 142 61
39 260 12 63 14 16 131 63
44 250 32 34 35 22 141 77
33 200 48 76 33 23 106 85
42 200 12 26 13 18 144 31
52 200 24 68 34 26 119 79
48 300 36 85 28 10 122 92
53 300 12 22 12 16 110 76
40 300 11 82 57 3 121 91
35 200 8 80 51 3 142 78
47 150 60 80 20 18 101 103
33 180 19 81 20 1 117 99
41 200 48 30 7 17 129 73
43 300 36 27 27 27 142 88
25 309 24 72 9 0 137 64
35 250 12 46 15 22 148 52
35 200 6 63 52 13 135 71
45 200 7 45 26 18 144 41
36 300 24 77 57 0 128 85
52 600 60 42 10 19 148 52
41 230 6 60 34 11 141 68
40 200 36 33 14 14 151 57
45 400 96 49 30 15 124 84
48 75 6 89 64 0 105 91
50 200 30 72 31 3 117 83
31 250 30 45 24 19 111 73
33 300 2 73 13 3 146 57
30 200 30 58 16 15 99 69
36 250 6 33 17 21 115 81
45 500 12 34 13 18 119 71
32 300 60 90 42 6 134 91
55 200 24 48 7 23 165 48
50 309 20 47 17 18 101 94
37 250 30 32 13 15 148 57
40 1000 21 63 32 15 132 49
40 300 12 76 50 5 120 88
49 300 18 79 44 11 129 54
37 309 18 48 57 9 133 73
47 250 38 90 33 6 121 87
41 200 60 55 11 20 117 47
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CGAGE CGINCOME CGDUR ADL MEM COG SOCIALSU BURDEN

33 1000 18 83 24 11 140 60
28 309 12 50 21 25 117 65
33 400 120 44 31 18 138 57
34 330 18 79 30 20 163 85
40 200 18 24 5 22 157 28
54 200 12 40 20 17 143 40
32 300 32 35 15 27 125 87
44 280 66 55 9 21 161 80
44 350 40 45 28 17 142 49
42 280 24 46 19 17 135 57
44 500 14 37 4 21 137 32
25 600 24 47 29 3 133 52
41 250 84 28 23 21 131 42
28 1000 30 61 8 7 144 49
24 200 12 35 31 26 136 63
65 450 120 68 65 6 169 89
50 200 12 80 29 10 127 67
40 309 12 43 8 13 110 43
47 1000 12 53 14 18 120 47
44 300 24 60 30 16 115 70
37 309 54 63 22 18 101 99
36 300 12 28 9 27 139 53
55 200 12 35 18 14 153 78
45 2000 12 37 33 17 111 112
45 400 14 82 25 13 131 52
23 200 36 88 16 0 139 68
42 1000 12 52 15 0 132 63
38 200 36 30 16 18 147 49
41 230 36 69 49 12 171 42

25 200 30 52 17 20 145 56
47 200 12 59 38 17 140 46
35 100 12 53 22 21 139 72
59 150 60 65 56 2 133 95
49 300 60 90 12 0 145 57
51 200 48 88 42 6 122 88
54 250 6 66 12 23 133 81
53 30 24 60 21 7 107 104
49 100 36 48 14 13 118 88
44 300 48 82 41 13 95 115
36 200 18 88 24 14 100 66
64 200 48 63 49 5 125 92
51 120 2 79 34 3 116 97
43 200 66 71 38 17 124 69
54 150 96 66 48 13 132 112
29 309 19 81 66 1 152 88

Source: Gwi-Ryung Son, R.N., Ph.D. Used with permission.
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11.3.2 Machiel Naeije (A-7) identifies variables useful in predicting maximum mouth opening (MMO,
millimeters) for 35 healthy volunteers. The variables examined were:

AGE: years

DOWN_CON: downward condylar translation, mm

FORW_CON: forward condylar translation, mm

Gender: 0 � Female, 1 � Male

MAN_LENG: mandibular length, mm

MAN_WIDT: mandibular width, mm

Use the following reported measurements to perform a stepwise regression.

AGE DOWN_CON FORW_CON Gender MAN_LENG MAN_WIDT MMO

21.00 4.39 14.18 1 100.86 121.00 52.34
26.00 1.39 20.23 0 93.08 118.29 51.90
30.00 2.42 13.45 1 98.43 130.56 52.80
28.00 �.18 19.66 1 102.95 125.34 50.29
21.00 4.10 22.71 1 108.24 125.19 57.79
20.00 4.49 13.94 0 98.34 113.84 49.41
21.00 2.07 19.35 0 95.57 115.41 53.28
19.00 �.77 25.65 1 98.86 118.30 59.71
24.00 7.88 18.51 1 98.32 119.20 53.32
18.00 6.06 21.72 0 92.70 111.21 48.53
22.00 9.37 23.21 0 88.89 119.07 51.59
21.00 3.77 23.02 1 104.06 127.34 58.52
20.00 1.10 19.59 0 98.18 111.24 62.93
22.00 2.52 16.64 0 91.01 113.81 57.62
24.00 5.99 17.38 1 96.98 114.94 65.64
22.00 5.28 22.57 0 97.86 111.58 52.85
22.00 1.25 20.89 0 96.89 115.16 64.43
22.00 6.02 20.38 1 98.35 122.52 57.25
19.00 1.59 21.63 0 90.65 118.71 50.82
26.00 6.05 10.59 0 92.99 119.10 40.48
22.00 �1.51 20.03 1 108.97 129.00 59.68
24.00 �.41 24.55 0 91.85 100.77 54.35
21.00 6.75 14.67 1 104.30 127.15 47.00
22.00 4.87 17.91 1 93.16 123.10 47.23
22.00 .64 17.60 1 94.18 113.86 41.19
29.00 7.18 15.19 0 89.56 110.56 42.76
25.00 6.57 17.25 1 105.85 140.03 51.88
20.00 1.51 18.01 0 89.29 121.70 42.77
27.00 4.64 19.36 0 92.58 128.01 52.34
26.00 3.58 16.57 1 98.64 129.00 50.45
23.00 6.64 12.47 0 83.70 130.98 43.18
25.00 7.61 18.52 0 88.46 124.97 41.99
22.00 5.39 11.66 1 94.93 129.99 39.45
31.00 5.47 12.85 1 96.81 132.97 38.91
23.00 2.60 19.29 0 93.13 121.03 49.10

Source: Machiel Naeije, D.D.S. Used with permission.
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11.3.3 One purpose of a study by Connor et al. (A-8) was to examine reactive aggression among chil-
dren and adolescents referred to a residential treatment center. The researchers used the Proactive/
Reactive Rating Scale, obtained by presenting three statements to clinicians who examined the
subjects. The respondents answered, using a scale from 1 to 5, with 5 indicating that the state-
ment almost always applied to the child. An example of a reactive aggression statement is,
“When this child has been teased or threatened, he or she gets angry easily and strikes back.”
The reactive score was the average response to three statements of this type. With this variable
as the outcome variable, researchers also examined the following: AGE (years), VERBALIQ
(verbal IQ), STIM (stimulant use), AGEABUSE (age when first abused), CTQ (a measure of
hyperactivity in which higher scores indicate higher hyperactivity), TOTALHOS (total hostility
as measured by an evaluator, with higher numbers indicating higher hostility). Perform stepwise
regression to find the variables most useful in predicting reactive aggression in the following
sample of 68 subjects.

REACTIVE AGE VERBALIQ STIM AGEABUSE CTQ TOTALHOS

4.0 17 91 0 0 0 8
3.7 12 94 0 1 29 10
2.3 14 105 0 1 12 10
5.0 16 97 0 1 9 11
2.0 15 97 0 2 17 10
2.7 8 91 0 0 6 4
2.0 10 111 0 0 6 6
3.3 12 105 0 0 28 7
2.0 17 101 1 0 12 9
4.3 13 102 1 1 8 11
4.7 15 83 0 0 9 9
4.3 15 66 0 1 5 8
2.0 15 90 0 2 3 8
4.0 13 88 0 1 28 8
2.7 13 98 0 1 17 10
2.7 9 135 0 0 30 11
2.7 18 72 0 0 10 9
2.0 13 93 0 2 20 8
3.0 14 94 0 2 10 11
2.7 13 93 0 1 4 8
3.7 16 73 0 0 11 11
2.7 12 74 0 1 10 7
2.3 14 97 0 2 3 11
4.0 13 91 1 1 21 11
4.0 12 88 0 1 14 9
4.3 13 90 0 0 15 2
3.7 14 104 1 1 10 10
3.0 18 82 0 0 1 7
4.3 14 79 1 3 6 7
1.0 16 93 0 0 5 8
4.3 16 99 0 1 21 11
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REACTIVE AGE VERBALIQ STIM AGEABUSE CTQ TOTALHOS

2.3 14 73 0 2 8 9
3.0 12 112 0 0 15 9
1.3 15 102 0 1 1 5
3.0 16 78 1 1 26 8
2.3 9 95 1 0 23 10
1.0 15 124 0 3 0 11
3.0 17 73 0 1 1 10
3.3 11 105 0 0 23 5
4.0 11 89 0 0 27 8
1.7 9 88 0 1 2 8
2.3 16 96 0 1 5 7
4.7 15 76 1 1 17 9
1.7 16 87 0 2 0 4
1.7 15 90 0 1 10 12
4.0 12 76 0 0 22 10
5.0 12 83 1 1 19 7
4.3 10 88 1 0 10 5
5.0 9 98 1 0 8 9
3.7 12 100 0 0 6 4
3.3 14 80 0 1 3 10
2.3 16 84 0 1 3 9
1.0 17 117 0 2 1 9
1.7 12 145 1 0 0 5
3.7 12 123 0 0 1 3
2.0 16 94 0 2 6 6
3.7 17 70 0 1 11 13
4.3 14 113 0 0 8 8
2.0 12 123 1 0 2 8
3.0 7 107 0 0 11 9
3.7 12 78 1 0 15 11
4.3 14 73 0 1 2 8
2.3 18 91 0 3 8 10
4.7 12 91 0 0 6 9
3.7 15 111 0 0 2 9
1.3 15 71 0 1 20 10
3.7 7 102 0 0 14 9
1.7 9 89 0 0 24 6

Source: Daniel F. Connor, M.D. and Lang Lin. Used with permission.

11.4 LOGISTIC REGRESSION

Up to now our discussion of regression analysis has been limited to those situations
in which the dependent variable is a continuous variable such as weight, blood pres-
sure, or plasma levels of some hormone. Much research in the health sciences field
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is motivated by a desire to describe, understand, and make use of the relationship
between independent variables and a dependent (or outcome) variable that is discrete.
Particularly plentiful are circumstances in which the outcome variable is dichotomous.
A dichotomous variable, we recall, is a variable that can assume only one of two
mutually exclusive values. These values are usually coded for a success and

for a nonsuccess, or failure. Dichotomous variables include those whose two
possible values are such categories as died–did not die; cured–not cured; disease
occurred–disease did not occur; and smoker–nonsmoker. The health sciences profes-
sional who either engages in research or needs to understand the results of research
conducted by others will find it advantageous to have, at least, a basic understanding
of logistic regression, the type of regression analysis that is usually employed when
the dependent variable is dichotomous. The purpose of the present discussion is to
provide the reader with this level of understanding. We shall limit our presentation to
the case in which there is only one independent variable that may be either continu-
ous or dichotomous.

The Logistic Regression Model Recall that in Chapter 9 we referred to
regression analysis involving only two variables as simple linear regression analysis. The
simple linear regression model was expressed by the equation

(11.4.1)

in which y is an arbitrary observed value of the continuous dependent variable. When
the observed value of Y is the mean of a subpopulation of Y values for a given value
of X, the quantity , the difference between the observed Y and the regression line (see
Figure 9.2.1) is zero, and we may write Equation 11.4.1 as

(11.4.2)

which may also be written as

(11.4.3)

Generally the right-hand side of Equations 11.4.1 through 11.4.3 may assume any value
between minus infinity and plus infinity.

Even though only two variables are involved, the simple linear regression model
is not appropriate when Y is a dichotomous variable because the expected value (or mean)
of Y is the probability that and, therefore, is limited to the range 0 through 1,
inclusive. Equations 11.4.1 through 11.4.3, then, are incompatible with the reality of the
situation.

If we let then the ratio can take on values between 0 and
plus infinity. Furthermore, the natural logarithm (ln) of can take on valuesp>11 - p2p>11 - p2p = P1Y = 12,

Y = 1

E1y ƒx2 = b0 + b1x

my ƒ x = b0 + b1x

P
my ƒx,

y = b0 + b1x + P

Y = 0
Y = 1
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between minus infinity and plus infinity just as can the right-hand side of Equations
11.4.1 through 11.4.3. Therefore, we may write

(11.4.4)

Equation 11.4.4 is called the logistic regression model because the transformation of 
(that is, p) to is called the logit transformation. Equation 11.4.4 may also
be written as

(11.4.5)

in which exp is the inverse of the natural logarithm.
The logistic regression model is widely used in health sciences research. For exam-

ple, the model is frequently used by epidemiologists as a model for the probability (inter-
preted as the risk) that an individual will acquire a disease during some specified time
period during which he or she is exposed to a condition (called a risk factor) known to be
or suspected of being associated with the disease.

Logistic Regression: Dichotomous Independent Variable The
simplest situation in which logistic regression is applicable is one in which both the
dependent and the independent variables are dichotomous. The values of the dependent
(or outcome) variable usually indicate whether or not a subject acquired a disease or
whether or not the subject died. The values of the independent variable indicate the sta-
tus of the subject relative to the presence or absence of some risk factor. In the discus-
sion that follows we assume that the dichotomies of the two variables are coded 0 and
1. When this is the case the variables may be cross-classified in a table, such as Table
11.4.1, that contains two rows and two columns. The cells of the table contain the fre-
quencies of occurrence of all possible pairs of values of the two variables: (1, 1), (1, 0),
(0, 1), and (0, 0).

An objective of the analysis of data that meet these criteria is a statistic known as
the odds ratio. To understand the concept of the odds ratio, we must understand the term

p =
exp1b0 + b1x2

1 + exp1b0 + b1x2
ln3p>11 - p24 my ƒx

ln c p

1 - p
d = b0 + b1x
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TABLE 11.4.1 Two Cross-Classified
Dichotomous Variables Whose Values
Are Coded 1 and 0

Independent

Variable (X )

Dependent

Variable (Y) 1 0

1

2 n0,0n0,1

n1,0n1,1



odds, which is frequently used by those who place bets on the outcomes of sporting events
or participate in other types of gambling activities. Using probability terminology, we may
define odds as follows.

DEFINITION
The odds for success are the ratio of the probability of success to the
probability of failure.

The odds ratio is a measure of how much greater (or less) the odds are for sub-
jects possessing the risk factor to experience a particular outcome. This conclusion
assumes that the outcome is a rare event. For example, when the outcome is the con-
tracting of a disease, the interpretation of the odds ratio assumes that the disease is rare.

Suppose, for example, that the outcome variable is the acquisition or nonacquisition
of skin cancer and the independent variable (or risk factor) is high levels of exposure to
the sun. Analysis of such data collected on a sample of subjects might yield an odds ratio
of 2, indicating that the odds of skin cancer are two times higher among subjects with high
levels of exposure to the sun than among subjects without high levels of exposure.

Computer software packages that perform logistic regression frequently provide as
part of their output estimates of and and the numerical value of the odds ratio.
As it turns out the odds ratio is equal to exp .

EXAMPLE 11.4.1

LaMont et al. (A-9) tested for obstructive coronary artery disease (OCAD) among 113 men
and 35 women who complained of chest pain or possible equivalent to their primary care
physician. Table 11.4.2 shows the cross-classification of OCAD with gender. We wish
to use logistic regression analysis to determine how much greater the odds are of find-
ing OCAD among men than among women.

Solution: We may use the SAS® software package to analyze these data. The inde-
pendent variable is gender and the dependent variable is status with respect
to having obstructive coronary artery disease (OCAD). Use of the SAS®

command PROC LOGIST yields, as part of the resulting output, the statis-
tics shown in Figure 11.4.1.

1b12b1b0
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TABLE 11.4.2 Cases of Obstructive Coronary
Artery Disease (OCAD) Classified by Sex

Disease Males Females Total

OCAD present 92 15 107

OCAD not present 21 20 41

Total 113 35 148

Source: Matthew J. Budoff, M.D. Used with permission.



We see that the estimate of is and the estimate of is 1.7649.
The estimated odds ratio, then, is     Thus we esti-
mate that the odds of finding a case of obstructive coronary artery disease to
be almost six times higher among men than women. ■

Logistic Regression: Continuous Independent Variable Now let
us consider the situation in which we have a dichotomous dependent variable and a con-
tinuous independent variable. We shall assume that a computer is available to perform
the calculations. Our discussion, consequently, will focus on an evaluation of the ade-
quacy of the model as a representation of the data at hand, interpretation of key elements
of the computer printout, and the use of the results to answer relevant questions about
the relationship between the two variables.

EXAMPLE 11.4.2

According to Gallagher et al. (A-10), cardiac rehabilitation programs offer “informa-
tion, support, and monitoring for return to activities, symptom management, and risk
factor modification.” The researchers conducted a study to identify among women fac-
tors that are associated with participation in such programs. The data in Table 11.4.3
are the ages of 185 women discharged from a hospital in Australia who met eligibility
criteria involving discharge for myocardial infarction, artery bypass surgery, angio-
plasty, or stent. We wish to use these data to obtain information regarding the relation-
ship between age (years) and participation in a cardiac rehabilitation program
( if participated, and if not). We wish also to know if we may use
the results of our analysis to predict the likelihood of participation by a woman if we
know her age.

Solution: The independent variable is the continuous variable age (AGE), and the
dependent or response variable is status with respect to attendance in a car-
diac rehabilitation program. The dependent variable is a dichotomous vari-
able that can assume one of two values: not attend, and 1 = did0 = did

ATT = 0,ATT = 1,

= exp11.76492 = 5.84.
b1-1.4773a
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Wald
Error Chi-Square Pr > ChiSq

Intercept 1 -1.4773 0.2418 37.3118 <.0001
sex 1 1.7649 0.4185 17.7844 <.0001

FIGURE 11.4.1 Partial output from use of SAS® command PROC LOGISTIC with the data 
of Table 11.4.2.

OR
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TABLE 11.4.3 Ages of Women Participating and
Not Participating in a Cardiac Rehabilitation
Program

Nonparticipating Participating

( ) ( )

50 73 46 74 74 62

59 75 57 59 50 74

42 71 53 81 55 61

50 69 40 74 66 69

34 78 73 77 49 76

49 69 68 59 55 71

67 74 72 75 73 61

44 86 59 68 41 46

53 49 64 81 64 69

45 63 78 74 46 66

79 63 68 65 65 57

46 72 67 81 50 60

62 64 55 62 61 63

58 72 71 85 64 63

70 79 80 84 59 56

60 75 75 39 73 70

67 70 69 52 73 70

64 73 80 67 65 63

62 66 79 82 67 63

50 75 71 84 60 65

61 73 69 79 69 67

69 71 78 81 61 68

74 72 75 74 79 84

65 69 71 85 66 69

80 76 69 92 68 78

69 60 77 69 61 69

77 79 81 83 63 79

61 78 78 82 70 83

72 62 76 85 68 67

67 73 84 82 59 47

80 64 57

66

Source: Robyn Gallagher, R.N., Ph.D. Used with permission.

ATT � 1ATT � 0

attend. We use the SAS® software package to analyze the data. The SAS®

command is PROC LOGISTIC, but if we wish to predict attendance in the
cardiac program, we need to use the “descending” option with PROC
LOGISTIC. (When you wish to predict the outcome labeled “1” of the
dependent variable, use the “descending option” in SAS®. Consult SAS®



documentation for further details.) A partial printout of the analysis is shown
in Figure 11.4.2.

The slope of our regression is and the intercept is 1.8744. The
regression equation, then, is

where and is the predicted probability of attending
cardiac rehabilitation for a woman aged 

Test of that 

We reach a conclusion about the adequacy of the logistic model by testing the null
hypothesis that the slope of the regression line is zero. The test statistic is 
where z is the standard normal statistic, is the sample slope , and is its
standard error (.0146) as shown in Figure 11.4.2. From these numbers we compute

which has an associated two-sided p value of .0094. We
conclude, therefore, that the logistic model is adequate. The square of z is chi-square with
1 degree of freedom, a statistic that is shown in Figure 11.4.2.

Using the Logistic Regression to Estimate p

We may use Equation 11.4.5 and the results of our analysis to estimate p, the probabil-
ity that a woman of a given age (within the range of ages represented by the data) will
attend a cardiac rehabilitation program. Suppose, for example, that we wish to estimate
the probability that a woman who is 50 years of age will participate in a rehabilitation
program. Substituting 50 and the results shown in Figure 11.4.2 into Equation 11.4.5
gives

SAS® calculates the estimated probabilities for the given values of X. We can see the
estimated probabilities of attending cardiac rehabilitation programs for the age range
of the subjects enrolled in the study in Figure 11.4.3. Since the slope was negative,
we see a decreasing probability of attending a cardiac rehabilitation program for older
women.

pN =
exp31.8744 - 1.0379215024

1 + exp31.8744 - 1.0379215024 = .49485

z = - .0379>.0146 = -2.5959,

sbN1
1- .03792b1

N

z = b1
N >sbN1

B1 � 0H0

xi.
pN iyNi = ln3pN i>11 - pN i24yNi = 1.8744 - .0379xi

- .0379,
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Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.8744 0.9809 3.6518 0.0560
age 1 �0.0379 0.0146 6.7083 0.0096

FIGURE 11.4.2 Partial SAS® printout of the logistic regression analysis of the data in 
Table 11.4.3.



Multiple Logistic Regression Practitioners often are interested in the rela-
tionships of several independent variables to a response variable. These independent vari-
ables may be either continuous or discrete or a combination of the two.

Multiple logistic models are constructed by expanding Equations 11.4.1 to 11.4.4.
If we begin with Equation 11.4.4, multiple logistic regression can be represented as

(11.4.6)

Using the logit transformation, we now have

(11.4.7)

EXAMPLE 11.4.3

Consider the data presented in Review Exercise 24. In this study by Fils-Aime et al. 
(A-21), data were gathered and classified with regard to alcohol use. Subjects were classi-
fied as having either early (� 25 years) or late (� 25 years) onset of excessive alcohol use.

p =
exp1b0 + b1x1j + b2x2j + Á + bkxkj2

1 + exp1b0 + b1x1j + b2x2j + Á + bkxkj2

ln c p

1 - p
d = b0 + b1x1j + b2x2j + Á + bkxkj
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FIGURE 11.4.3 Estimated probabilities of attendance for ages within the study for 
Example 11.4.2. ■



Levels of cerebrospinal fluid (CSF) tryptophan (TRYPT) and 5-hydroxyindoleacetic acid
(5-HIAA) concentrations were also obtained.

Solution: The independent variables are the concentrations of TRYPT and 5-HIAA,
and the dependent variable is the dichotomous response for onset of exces-
sive alcohol use. We use SPSS software to analyze the data. The output is
presented in Figure 11.4.3.

The equation can be written as

Note that the coefficient for TRYPT is 0, and therefore it is not playing a role in the
model.

Test of H0 that 

Tests for significance of the regression coefficients can be obtained directly from Figure
11.4.3.  Note that both the constant (intercept) and the 5-HIAA variables are significant
in the model (both have p values, noted as “Sig.” in the table, � .05); however, TRYPT
is not significant and therefore need not be in the model, suggesting that it is not useful
for identifying those study participants with early or late alcoholism onset.

As above, probabilities can be easily obtained by using equation 11.4.7 and sub-
stituting the values obtained from the analysis. ■

Polytomous Logistic Regression Thus far we have limited our discussion
to situations in which there is a dichotomous response variable (e.g., successful or unsuc-
cessful). Often we have a situation in which multiple categories make up the response.
We may, for example, have subjects that are classified as positive, negative, and unde-
termined for a given disease (a standard polytomous response). There may also be times
when we have a response variable that is ordered. We may, for example, classify our
subjects by BMI as underweight, ideal weight, overweight, or obese (an ordinal polyto-
mous response). The modeling process is slightly more complex and requires the use of
a computer program. For those interested in exploring these valuable methods further,
we recommend the book by Hosmer and Lemeshow (1).

Further Reading We have discussed only the basic concepts and applications
of logistic regression. The technique has much wider application. Stepwise regression
analysis may be used with logistic regression. There are also techniques available for

B1 � 0

yiN = 2.076 - .013x1j + 0x2j
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Parameter B S.E. Wald Df Sig. Exp(B)

5-HIAA �.013 .006 5.878 1 .015 .987

TRYPT .000 .000 .000 1 .983 1.000

Constant 2.076 1.049 3.918 1 .048 7.970

FIGURE 11.4.3 SPSS output for the data in Example 11.4.3.



(Continued)

EXERCISES

11.4.1 In a study of violent victimization of women and men, Porcerelli et al. (A-11) collected informa-
tion from 679 women and 345 men ages 18 to 64 years at several family-practice centers in the
metropolitan Detroit area. Patients filled out a health history questionnaire that included a ques-
tion about victimization. The following table shows the sample subjects cross-classified by gender
and whether the subject self-identified as being “hit, kicked, punched, or otherwise hurt by some-
one within the past year.” Subjects answering yes to that question are classified “violently victim-
ized.” Use logistic regression analysis to find the regression coefficients and the estimate of the
odds ratio. Write an interpretation of your results.

Victimization Women Men Total

No victimization 611 308 919
Violently victimized 68 37 105
Total 679 345 1024

Source: John H. Porcerelli, Rosemary Cogan, Patricia P. West, Edward A. 
Rose, Dawn Lambrecht, Karen E. Wilson, Richard K. Severson, and Dunia 
Karana, “Violent Victimization of Women and Men: Physical and Psychiatric 
Symptoms,” Journal of the American Board of Family Practice, 16 (2003),
32–39.

11.4.2 Refer to the research of Gallagher et al. (A-10) discussed in Example 11.4.2. Another covariate
of interest was a score using the Hospital Anxiety and Depression Index. A higher value for this
score indicates a higher level of anxiety and depression. Use the following data to predict whether
a woman in the study participated in a cardiac rehabilitation program.

Hospital Anxiety and
Hospital Anxiety and Depression Index Depression Index Scores for
Scores for Nonparticipating Women Participating Women

17 14 19 16 23 25
7 21 6 9 3 6

19 13 8 22 24 29
16 15 13 17 13 22
23 21 4 14 26 11
27 12 15 14 19 12
23 9 23 5 25 20
18 29 19 5 15 18
21 4 14 14 22 24
27 18 19 20 13 18
14 22 17 21 21 8
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constructing confidence intervals for odds ratios. The reader who wishes to learn more
about logistic regression may consult the books by Hosmer and Lemeshow (1) and
Kleinbaum (2).



Hospital Anxiety and
Hospital Anxiety and Depression Index Depression Index Scores for
Scores for Nonparticipating Women Participating Women

25 5 13 17 15 10
19 27 14 17 12 17
23 16 14 10 25 14
6 11 17 13 29 21
8 19 26 10 17 25

15 23 15 20 21 25
30 22 19 3 8 16
18 25 16 18 19 23
10 11 10 9 16 19
29 20 15 10 24 24
8 11 22 5 17 11

12 28 8 15 26 17
27 12 15 13 12 19
12 19 20 16 19 20
9 18 12 13 17

16 13 2 23 31
6 12 6 11 0

22 7 14 17 18
10 12 19 29 18
9 14 14 6 15

11 13 19 20

Source: Robyn Gallagher, R.N., Ph.D. Used with permission.

11.5 SUMMARY

This chapter is included for the benefit of those who wish to extend their understand-
ing of regression analysis and their ability to apply techniques to models that are more
complex than those covered in Chapters 9 and 10. In this chapter we present some
additional topics from regression analysis. We discuss the analysis that is appropri-
ate when one or more of the independent variables is dichotomous. In this discussion
the concept of dummy variable coding is presented. A second topic that we discuss
is how to select the most useful independent variables when we have a long list of
potential candidates. The technique we illustrate for the purpose is stepwise regres-
sion analysis. Finally, we present the basic concepts and procedures that are involved 
in logistic regression analysis. We cover two situations: the case in which the inde-
pendent variable is dichotomous, and the case in which the independent variable is
continuous.

Since the calculations involved in obtaining useful results from data that are appro-
priate for analysis by means of the techniques presented in this chapter are complicated
and time-consuming when attempted by hand, it is recommended that a computer be
used to work the exercises.
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SUMMARY OF FORMULAS FOR CHAPTER 11

Formula 
Number Name Formula

11.4.1–11.4.3 Representations of
the simple linear
regression model

11.4.4 Simple logistic
regression model

11.4.5 Alternative 
representation of the 
simple logistic 
regression model

11.4.6 Alternative
representation of the 
multiple logistic 
regression model

11.4.7 Alternative
representation of the 
multiple logistic 
regression model

Symbol Key • � regression intercept
• � regression coefficient
• � regression model error term
• � expected value of y at x

• � logit transformation

• � mean of y at x
• xi � value of independent variable at i
my|x

ln c p

1 - p
dE1y ƒx2P

bi

b0

p =
exp1b0 + b1x1j + b2x2j + Á + bkxkj2

1 + exp1b0 + b1x1j + b2x2j + Á + bkxkj2

ln c p

1 - p
d = b0 + b1x1j + b2x2j + Á + bkxkj

p =
exp1b0 + b1x2

1 + exp1b0 + b1x2
ln c p

1 - p
d = b0 + b1x

E1y ƒx2 = b0 + b1x
my ƒx = b0 + b1x
y = b0 + b1x + P
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REVIEW QUESTIONS AND EXERCISES

1. What is a qualitative variable?

2. What is a dummy variable?

3. Explain and illustrate the technique of dummy variable coding.

4. Why is a knowledge of variable selection techniques important to the health sciences researcher?

5. What is stepwise regression?

6. Explain the basic concept involved in stepwise regression.



7. When is logistic regression used?

8. Write out and explain the components of the logistic regression model.

9. Define the word odds.

10. What is an odds ratio?

11. Give an example in your field in which logistic regression analysis would be appropriate when the
independent variable is dichotomous.

12. Give an example in your field in which logistic regression analysis would be appropriate when the
independent variable is continuous.

13. Find a published article in the health sciences field in which each of the following techniques is
employed:

(a) Dummy variable coding

(b) Stepwise regression

(c) Logistic regression

Write a report on the article in which you identify the variables involved, the reason for the choice
of the technique, and the conclusions that the authors reach on the basis of their analysis.

14. In Example 10.3.1, we saw that the purpose of a study by Jansen and Keller (A-12) was to pre-
dict the capacity to direct attention (CDA) in elderly subjects. The study collected information on
71 community-dwelling older women with normal mental status. Higher CDA scores indicate bet-
ter attentional functioning. In addition to the variables age and education level, the researchers per-
formed stepwise regression with two additional variables: IADL, a measure of activities of daily
living (higher values indicate greater number of daily activities), and ADS, a measure of atten-
tional demands (higher values indicate more attentional demands). Perform stepwise regression
with the data in the following table and report your final model, p values, and conclusions.

CDA Age Edyrs IADL ADS CDA Age Edyrs IADL ADS

4.57 72 20 28 27 3.17 79 12 28 18
68 12 27 96 87 12 21 61

1.39 65 13 24 97 0.99 71 14 28 55
85 14 27 48 81 16 27 124
84 13 28 50 66 16 28 42
90 15 27 47 81 16 28 64
79 12 28 71 5.07 80 13 28 26

0.30 74 10 24 48 82 12 28 84
69 12 28 67 5.00 65 13 28 43
87 15 21 81 0.63 73 16 26 70
84 12 27 44 2.62 85 16 28 20

0.18 79 12 28 39 1.77 83 17 23 80
71 12 28 124 83 8 27 21

3.26 76 14 29 43 1.44 76 20 28 26
73 14 29 30 77 12 28 53
86 12 26 44 83 12 22 69

3.73 69 17 28 47 79 14 27 82-4.62
-5.77-0.77
-5.77-1.12

-3.79-1.37

-4.43
-6.29
-4.46

-5.86
-2.70

-0.75-4.66
-2.21-2.56
-2.94-3.55

-1.19-3.04

REVIEW QUESTIONS AND EXERCISES 577

(Continued)



CDA Age Edyrs IADL ADS CDA Age Edyrs IADL ADS

66 11 28 49 69 12 28 77
5.74 65 16 28 48 66 14 28 38
2.83 71 14 28 46 0.80 75 12 28 28

80 18 28 25 77 16 27 85
81 11 28 27 78 12 22 82

4.44 66 14 29 54 2.68 83 20 28 34
3.35 76 17 29 26 85 10 20 72

70 12 25 100 4.85 76 18 28 24
76 12 27 38 75 14 29 49

9.61 67 12 26 84 0.63 70 16 28 29
7.57 72 20 29 44 5.92 79 16 27 83
2.21 68 18 28 52 3.63 75 18 28 32

102 12 26 18 94 8 24 80
1.73 67 12 27 80 6.39 76 18 28 41
6.03 66 14 28 54 84 18 27 75

75 18 26 67 1.07 79 17 27 21
91 13 21 101 5.31 78 16 28 18

4.17 74 15 28 90 0.30 79 12 28 38

Source: Debra Jansen, Ph.D., R.N. Used with permission.

15. In the following table are the cardiac output (L/min) and oxygen consumption (VO ) values for a
sample of adults (A) and children (C), who participated in a study designed to investigate the rela-
tionship among these variables. Measurements were taken both at rest and during exercise. Treat
cardiac output as the dependent variable and use dummy variable coding and analyze the data by
regression techniques. Explain the results. Plot the original data and the fitted regression equations.

Cardiac Cardiac
Output (L/min) VO2 (L/min) Age Group Output (L/min) VO2 (L/min) Age Group

4.0 .21 A 4.0 .25 C
7.5 .91 C 6.1 .22 A
3.0 .22 C 6.2 .61 C
8.9 .60 A 4.9 .45 C
5.1 .59 C 14.0 1.55 A
5.8 .50 A 12.9 1.11 A
9.1 .99 A 11.3 1.45 A
3.5 .23 C 5.7 .50 C
7.2 .51 A 15.0 1.61 A
5.1 .48 C 7.1 .83 C
6.0 .74 C 8.0 .61 A
5.7 .70 C 8.1 .82 A

14.2 1.60 A 9.0 1.15 C
4.1 .30 C 6.1 .39 A

16. A simple random sample of normal subjects between the ages of 6 and 18 yielded the data on
total body potassium (mEq) and total body water (liters) shown in the following table. Let total

2

-7.65
-0.02

-0.08

-7.07-2.30

-0.08-2.14
-3.13

-3.69

-4.60-0.29
-0.75-2.40

-2.22
-2.03-5.92
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potassium be the dependent variable and use dummy variable coding to quantify the qualitative
variable. Analyze the data using regression techniques. Explain the results. Plot the original data
and the fitted regression equations.

Total Body Total Body Total Body Total Body
Potassium Water Sex Potassium Water Sex

795 13 M 950 12 F
1590 16 F 2400 26 M
1250 15 M 1600 24 F
1680 21 M 2400 30 M
800 10 F 1695 26 F

2100 26 M 1510 21 F
1700 15 F 2000 27 F
1260 16 M 3200 33 M
1370 18 F 1050 14 F
1000 11 F 2600 31 M
1100 14 M 3000 37 M
1500 20 F 1900 25 F
1450 19 M 2200 30 F
1100 14 M

17. The data shown in the following table were collected as part of a study in which the subjects were
preterm infants with low birth weights born in three different hospitals. Use dummy variable cod-
ing and multiple regression techniques to analyze these data. May we conclude that the three sam-
ple hospital populations differ with respect to mean birth weight when gestational age is taken into
account? May we conclude that there is interaction between hospital of birth and gestational age?
Plot the original data and the fitted regression equations.

Birth Gestation Hospital Birth Gestation Hospital
Weight (kg) Age (weeks) of Birth Weight (kg) Age (weeks) of Birth

1.4 30 A 1.0 29 C
.9 27 B 1.4 33 C

1.2 33 A .9 28 A
1.1 29 C 1.0 28 C
1.3 35 A 1.9 36 B
.8 27 B 1.3 29 B

1.0 32 A 1.7 35 C
.7 26 A 1.0 30 A

1.2 30 C .9 28 A
.8 28 A 1.0 31 A

1.5 32 B 1.6 31 B
1.3 31 A 1.6 33 B
1.4 32 C 1.7 34 B
1.5 33 B 1.6 35 C
1.0 27 A 1.2 28 A
1.8 35 B 1.5 30 B
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Birth Gestation Hospital Birth Gestation Hospital
Weight (kg) Age (weeks) of Birth Weight (kg) Age (weeks) of Birth

1.4 36 C 1.8 34 B
1.2 34 A 1.5 34 C
1.1 28 B 1.2 30 A
1.2 30 B 1.2 32 C

18. Refer to Chapter 9, Review Exercise 18. In the study cited in that exercise, Maria Mathias (A-13)
investigated the relationship between ages (AGE) of boys and improvement in measures of hyper-
activity, attitude, and social behavior. In the study, subjects were randomly assigned to two differ-
ent treatments. The control group (TREAT ) received standard therapy for hyperactivity, and
the treatment group (TREAT ) received standard therapy plus pet therapy. The results are
shown in the following table. Create a scatter plot with age as the independent variable and ATT
(change in attitude with positive numbers indicating positive change in attitude) as the dependent
variable. Use different symbols for the two different treatment groups. Use multiple regression
techniques to determine whether age, treatment, or the interaction are useful in predicting ATT.
Report your results.

Subject TREAT AGE ATT Subject TREAT AGE ATT

1 1 9 17 0 10 0.4
2 1 9 0.0 18 0 7 0.0
3 1 13 19 0 12 1.1
4 1 6 20 0 9 0.2
5 1 9 1.0 21 0 7 0.4
6 1 8 0.8 22 0 6 0.0
7 1 8 23 1 11 0.6
8 1 9 24 1 11 0.4
9 0 7 0.0 25 1 11 1.0

10 0 12 0.4 26 1 11 0.8
11 0 9 27 1 11 1.2
12 0 10 1.0 28 1 11 0.2
13 0 12 1.4 29 1 11 0.8
14 0 9 1.0 30 1 8 0.0
15 0 12 0.8 31 1 9 0.4
16 0 9 1.0

Source: Maria Mathias, M.D. and the Wright State University Statistical Consulting Center. Used with permission.

For each study described in Exercises 19 through 21, answer as many of the following questions
as possible:

(a) Which is the dependent variable?

(b) What are the independent variables?

(c) What are the appropriate null and alternative hypotheses?

(d) Which null hypotheses do you think were rejected? Why?

(e) Which is the more relevant objective, prediction or estimation, or are the two equally relevant?
Explain your answer.

-0.8

-1.2
-0.6

-0.4
-0.4

-1.2

= 1
= 0
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(f) What is the sampled population?

(g) What is the target population?

(h) Which variables are related to which other variables? Are the relationships direct or inverse?

(i) Write out the regression equation using appropriate numbers for parameter estimates.

( j) Give numerical values for any other statistics that you can.

(k) Identify each variable as to whether it is quantitative or qualitative.

(l) Explain the meaning of any statistics for which numerical values are given.

19. Golfinopoulos and Arhonditsis (A-14) used a multiple regression model in a study of tri-
halomethanes (THMs) in drinking water in Athens, Greece. THMs are of concern since they have
been related to cancer and reproductive outcomes. The researchers found the following regression
model useful in predicting THM:

The variables were as follows: chla chlorophyll concentration, pH acid/base scale, Br
bromide concentration, S dummy variable for summer, Sp dummy variable for spring, T
temperature, and CL chlorine concentration. The researchers reported R .52, p

20. In a study by Takata et al. (A-15), investigators evaluated the relationship between chewing ability
and teeth number and measures of physical fitness in a sample of subjects ages 80 or higher in Japan.
One of the outcome variables that measured physical fitness was leg extensor strength. To measure
the ability to chew foods, subjects were asked about their ability to chew 15 foods (peanuts, vinegared
octopus, and French bread, among others). Consideration of such variables as height, body weight,
gender, systolic blood pressure, serum albumin, fasting glucose concentration, back pain, smoking,
alcohol consumption, marital status, regular medical treatment, and regular exercise revealed that the
number of chewable foods was significant in predicting leg extensor strength 
However, in the presence of the other variables, number of teeth was not a significant predictor

21. Varela et al. (A-16) examined 515 patients who underwent lung resection for bronchogenic carci-
noma. The outcome variable was the occurrence of cardiorespiratory morbidity after surgery. Any
of the following postoperative events indicated morbidity: pulmonary atelectasis or pneumonia,
respiratory or ventilatory insufficiency at discharge, need for mechanical ventilation at any time
after extubation in the operating room, pulmonary thromboembolism, arrhythmia, myocardial
ischemia or infarct, and clinical cardiac insufficiency. Performing a stepwise logistic regression,
the researchers found that age and postoperative forced expiratory volume 
were statistically significant in predicting the occurrence of cardiorespiratory morbidity.

For each of the data sets given in Exercises 22 through 29, do as many of the following as you
think appropriate:

(a) Apply one or more of the techniques discussed in this chapter.

(b) Apply one or more of the techniques discussed in previous chapters.

(c) Construct graphs.

(d) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(e) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(f) Describe the population(s) to which you think your inferences are applicable.

1p = .00321p 6 .0012

1bN 1 = .003, p = .93732. 1bN 1 = .075, p = .03662.

6 .001.==
===
===

-43.63S + 1.13Sp + 2.62T * S - .72T * CL
THM = - .26chla + 1.57 pH + 28.74Br - 66.72Br 2
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22. A study by Davies et al. (A-17) was motivated by the fact that, in previous studies of contractile
responses to -adrenoceptor agonists in single myocytes from failing and nonfailing human hearts,
they had observed an age-related decline in maximum response to isoproterenol, at frequencies
where the maximum response to high Ca in the same cell was unchanged. For the present study,
the investigators computed the isoproterenol/Ca ratio (ISO/CA) from measurements taken on
myocytes from patients ranging in age from 7 to 70 years. Subjects were classified as older (
years) and younger. The following are the (ISO/CA) values, age, and myocyte source of subjects
in the study. Myocyte sources were reported as donor and biopsy.

Age ISO/CA Myocyte Source

7 1.37 Donor
21 1.39 Donor
28 1.17 Donor
35 0.71 Donor
38 1.14 Donor
50 0.95 Donor
51 0.86 Biopsy
52 0.72 Biopsy
55 0.53 Biopsy
56 0.81 Biopsy
61 0.86 Biopsy
70 0.77 Biopsy

23. Hayton et al. (A-18) investigated the pharmacokinetics and bioavailability of cefetamet and cefe-
tamet pivoxil in infants between the ages of 3.5 and 17.3 months who had received the antibiotic
during and after urological surgery. Among the pharmacokinetic data collected were the follow-
ing measurements of the steady-state apparent volume of distribution (V). Also shown are previ-
ously collected data on children ages 3 to 12 years (A-19) and adults (A-20). Weights (W) of
subjects are also shown.

Infants Children Adults

W (kg) V (liters) W (kg) V (liters) W (kg) V (liters)

6.2 2.936 13 4.72 61 19.7
7.5 3.616 14 5.23 80 23.7
7.0 1.735 14 5.85 96 20.0
7.1 2.557 15 4.17 75 19.5
7.8 2.883 16 5.01 60 19.6
8.2 2.318 17 5.81 68 21.5
8.3 3.689 17 7.03 72.2 21.9
8.5 4.133 17.5 6.62 87 30.9
8.6 2.989 17 4.98 66.5 20.4
8.8 3.500 17.5 6.45

10.0 4.235 20 7.73
10.0 4.804 23 7.67
10.2 2.833 25 9.82

750

2+

2+

b
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Used with permission.
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Infants Children Adults

W (kg) V (liters) W (kg) V (liters) W (kg) V (liters)

10.3 4.068 37 14.40
10.6 3.640 28 10.90
10.7 4.067 47 15.40
10.8 8.366 29 9.86
11.0 4.614 37 14.40
12.5 3.168
13.1 4.158

Source: Dr. Klaus Stoeckel. Used with permission.

24. According to Fils-Aime et al. (A-21), epidemiologic surveys have found that alcoholism is the most
common mental or substance abuse disorder among men in the United States. Fils-Aime and asso-
ciates investigated the interrelationships of age at onset of excessive alcohol consumption, family his-
tory of alcoholism, psychiatric comorbidity, and cerebrospinal fluid (CSF) monoamine metabolite
concentrations in abstinent, treatment-seeking alcoholics. Subjects were mostly white males classi-
fied as experiencing early (25 years or younger) or late (older than 25 years) onset of excessive alco-
hol consumption. Among the data collected were the following measurements on CSF tryptophan
(TRYPT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations (pmol/ml).

Onset Onset
1 Early 1 Early

5-HIAA TRYPT 0 Late 5-HIAA TRYPT 0 Late

57 3315 1 102 3181 1
116 2599 0 51 2513 1
81 3334 1 92 2764 1
78 2505 0 104 3098 1

206 3269 0 50 2900 1
64 3543 1 93 4125 1

123 3374 0 146 6081 1
147 2345 1 96 2972 1
102 2855 1 112 3962 0
93 2972 1 23 4894 1

128 3904 0 109 3543 1
69 2564 1 80 2622 1
20 8832 1 111 3012 1
66 4894 0 85 2685 1
90 6017 1 131 3059 0

103 3143 0 58 3946 1
68 3729 0 110 3356 0
81 3150 1 80 3671 1

143 3955 1 42 4155 1
121 4288 1 80 1923 1
149 3404 0 91 3589 1
82 2547 1 102 3839 0

��
��
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Onset Onset
1 Early 1 Early

5-HIAA TRYPT 0 Late 5-HIAA TRYPT 0 Late

100 3633 1 93 2627 0
117 3309 1 98 3181 0
41 3315 1 78 4428 0

223 3418 0 152 3303 0
96 2295 1 108 5386 1
87 3232 0 102 3282 1
96 3496 1 122 2754 1
34 2656 1 81 4321 1
98 4318 1 81 3386 1
86 3510 0 99 3344 1

118 3613 1 73 3789 1
84 3117 1 163 2131 1
99 3496 1 109 3030 0

114 4612 1 90 4731 1
140 3051 1 110 4581 1
74 3067 1 48 3292 0
45 2782 1 77 4494 0
51 5034 1 67 3453 1
99 2564 1 92 3373 1
54 4335 1 86 3787 0
93 2596 1 101 3842 1
50 2960 1 88 2882 1

118 3916 0 38 2949 1
96 2797 0 75 2248 0
49 3699 1 35 3203 0

133 2394 0 53 3248 1
105 2495 0 77 3455 0
61 2496 1 179 4521 1

197 2123 1 151 3240 1
87 3320 0 57 3905 1
50 3117 1 45 3642 1

109 3308 0 76 5233 0
59 3280 1 46 4150 1

107 3151 1 98 2579 1
85 3955 0 84 3249 1

156 3126 0 119 3381 0
110 2913 0 41 4020 1
81 3786 1 40 4569 1
53 3616 1 149 3781 1
64 3277 1 116 2346 1
57 2656 1 76 3901 1
29 4953 0 96 3822 1
34 4340 1

Source: Dr. Markku Linnoila. Used with permission.

��
��
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25. The objective of a study by Abrahamsson et al. (A-22) was to investigate the anti-thrombotic effects
of an inhibitor of the plasminogen activator inhibitor-1 (PAI-1) in rats given endotoxin. Experi-
mental subjects were male Sprague–Dawley rats weighing between 300 and 400 grams. Among
the data collected were the following measurements on PAI-1 activity and the lung 125I-concen-
tration in anesthetized rats given three drugs:

Plasma PAI-1 Activity 125I-Fibrin in the Lungs
Drugs (U/ml) (% of Ref. Sample)

Endotoxin 127 158
175 154
161 118
137 77
219 172
260 277
203 216
195 169
414 272
244 192

Endotoxin PRAP-1 low dose 107 49
103 28
248 187
164 109
176 96
230 126
184 148
276 17
201 97
158 86

Endotoxin PRAP-1 high dose 132 86
130 24
75 17

140 41
166 114
194 110
121 26
111 53
208 71
211 90

Source: Dr. Tommy Abrahamsson. Used with permission.

26. Pearse and Sylvester (A-23) conducted a study to determine the separate contributions of
ischemia and extracorporeal perfusion to vascular injury occurring in isolated sheep lungs and
to determine the oxygen dependence of this injury. Lungs were subjected to ischemia alone,
extracorporeal perfusion alone, and both ischemia and extracorporeal perfusion. Among the data
collected were the following observations on change in pulmonary arterial pressure (mm Hg)
and pulmonary vascular permeability assessed by estimation of the reflection coefficient for
albumin in perfused lungs with and without preceding ischemia:

+

+
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Ischemic–Perfused Lungs Perfused Lungs

Change in Change in
Pulmonary Reflection Pulmonary Reflection
Pressure Coefficient Pressure Coefficient

8.0 0.220 34.0 0.693
3.0 0.560 31.0 0.470

10.0 0.550 4.0 0.651
23.0 0.806 48.0 0.999
15.0 0.472 32.0 0.719
43.0 0.759 27.0 0.902
18.0 0.489 25.0 0.736
27.0 0.546 25.0 0.718
13.0 0.548
0.0 0.467

Source: Dr. David B. Pearse. Used with permission.

27. The purpose of a study by Balzamo et al. (A-24) was to investigate, in anesthetized rabbits, the
effects of mechanical ventilation on the concentration of substance P (SP) measured by radioim-
munoassay in nerves and muscles associated with ventilation and participating in the sensory inner-
vation of the respiratory apparatus and heart. SP is a neurotransmitter located in primary sensory
neurons in the central and autonomic nervous systems. Among the data collected were the follow-
ing measures of SP concentration in cervical vagus nerves (X) and corresponding nodose ganglia
(NG), right and left sides:

SPXright SPNGright SPXleft SPNGleft

0.6500 9.6300 3.3000 1.9300
2.5600 3.7800 0.6200 2.8700
1.1300 7.3900 0.9600 1.3100
1.5500 3.2800 2.7000 5.6400

35.9000 22.0000 4.5000 9.1000
19.0000 22.8000 8.6000 8.0000
13.6000 2.3000 7.0000 8.3000
8.0000 15.8000 4.1000 4.7000
7.4000 1.6000 5.5000 2.5000
3.3000 11.6000 9.7000 8.0000

19.8000 18.0000 13.8000 8.0000
8.5000 6.2000 11.0000 17.2000
5.4000 7.8000 11.9000 5.3000

11.9000 16.9000 8.2000 10.6000
47.7000 35.9000 3.9000 3.3000
14.2000 10.2000 3.2000 1.9000
2.9000 1.6000 2.7000 3.5000
6.6000 3.7000 2.8000 2.5000
3.7000 1.3000

Source: Dr. Yves Jammes. Used with permission.
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28. Scheeringa and Zeanah (A-25) examined the presence of posttraumatic stress disorder (PTSD), the
severity of posttraumatic symptomatology, and the pattern of expression of symptom clusters in
relation to six independent variables that may be salient to the development of a posttraumatic dis-
order in children under 48 months of age. The following data were collected during the course of
the study.

Predictor Variables Response Variables

Acute/ Wit./ Threat to
Gender Age Rept. Injury Exper. Caregiver Reexp Numb Arous FrAgg

0 1 0 1 1 1 3 0 0 1
0 1 0 0 0 1 2 2 1 1
1 1 0 0 0 1 3 1 1 1
0 1 0 0 0 1 3 1 0 4
1 0 1 1 1 0 1 3 1 1
1 1 0 1 1 0 3 1 0 1
0 1 0 1 1 0 4 2 0 1
0 1 0 0 1 0 5 2 0 4
1 1 0 0 0 1 2 1 3 2
1 1 1 1 1 0 4 1 0 0
0 0 1 1 1 0 1 3 0 1
1 0 1 0 1 0 1 3 0 2
1 0 1 1 1 0 0 3 0 0
1 1 0 1 1 0 4 1 2 1
1 0 0 1 1 1 3 2 1 3
1 0 0 1 1 1 3 1 2 1
0 1 0 1 1 1 3 1 2 2
0 1 0 0 0 1 5 2 1 1
0 1 0 0 0 1 1 2 2 2
0 1 0 1 1 0 4 4 0 3
1 0 1 1 1 0 2 1 2 3
1 0 0 1 1 1 1 1 2 1
1 1 0 0 0 1 4 1 1 1
0 1 0 0 0 1 3 2 1 0
0 1 0 0 0 1 3 1 2 4
0 1 0 0 0 1 3 1 2 4
0 1 0 0 1 0 2 2 0 0
1 1 0 0 0 1 2 0 3 0
1 1 0 0 0 1 2 0 1 2
0 1 0 1 0 1 2 3 1 3
1 1 1 0 1 0 1 2 1 1
1 1 0 1 1 1 3 2 0 4
1 1 0 0 0 0 2 4 2 0
0 1 0 0 0 1 1 1 0 2
0 0 1 0 0 1 2 3 2 3
0 0 1 0 0 1 3 1 4 3
0 0 1 0 0 1 3 1 2 3

REVIEW QUESTIONS AND EXERCISES 587

(Continued)



Predictor Variables Response Variables

Acute/ Wit./ Threat to
Gender Age Rept. Injury Exper. Caregiver Reexp Numb Arous FrAgg

0 0 0 0 1 0 1 1 0 0
1 0 0 0 0 1 4 3 2 3
1 0 0 1 1 0 4 2 3 2
0 0 1 1 1 0 1 2 2 1

Key: Gender male
female

Age younger than 18 months at time of trauma
older than 18 months

Acute/rept. trauma was acute, single blow
trauma was repeated or chronic

Injury subject was not injured in the trauma
subject was physically injured in the trauma

Wit./exper. subject witnessed but did not directly experience trauma
subject directly experienced the trauma

Threat to caregiver caregiver was not threatened in the trauma
caregiver was threatened in the trauma

Reexp � Reexperiencing cluster symptom count
Numb � Numbing of responsiveness/avoidance cluster symptom count
Arous � Hyperarousal cluster symptom count
FrAgg � New fears/aggression cluster symptom count

Source: Dr. Michael S. Scheeringa. Used with permission.

29. One of the objectives of a study by Mulloy and McNicholas (A-26) was to compare ventila-
tion and gas exchange during sleep and exercise in chronic obstructive pulmonary disease
(COPD). The investigators wished also to determine whether exercise studies could aid in the
prediction of nocturnal desaturation in COPD. Subjects (13 male, 6 female) were ambulatory
patients attending an outpatient respiratory clinic. The mean age of the patients, all of whom
had severe, stable COPD, was 64.8 years with a standard deviation of 5.2. Among the data col-
lected were measurements on the following variables:

Mean Lowest Fall
Age PaO2 PaCO2 FEV1 Lowest Sleep Sleep Sleep
(years) BMI (mm Hg) (mm Hg) (% Predicted) Ex. 

67 23.46 52.5 54 22 74 70.6 56 29.6
62 25.31 57.75 49.575 19 82 85.49 76 11.66
68 23.11 72 43.8 41 95 88.72 82 11.1
61 25.15 72 47.4 38 88 91.11 76 18.45
70 24.54 78 40.05 40 88 92.86 92 0.8
71 25.47 63.75 45.375 31 85 88.95 80 13
60 19.49 80.25 42.15 28 91 94.78 90 4
57 21.37 84.75 40.2 20 91 93.72 89 5.8

SaO2
aSaO2

aSaO2
aSaO2

a

1 =
0 =
1 =
0 =
1 =
0 =
1 =
0 =
1 =
0 =
1 =
0 =
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Mean Lowest Fall
Age PaO2 PaCO2 FEV1 Lowest Sleep Sleep Sleep
(years) BMI (mm Hg) (mm Hg) (% Predicted) Ex. 

69 25.78 68.25 43.8 32 85 90.91 79 13
57 22.13 83.25 43.725 20 88 94.39 86 9.5
74 26.74 57.75 51 33 75 89.89 80 14.11
63 19.07 78 44.175 36 81 93.95 82 13
64 19.61 90.75 40.35 27 90 95.07 92 4
73 30.30 69.75 38.85 53 87 90 76 18
63 26.12 51.75 46.8 39 67 69.31 46 34.9
62 21.71 72 41.1 27 88 87.95 72 22
67 24.75 84.75 40.575 45 87 92.95 90 2.17
57 25.98 84.75 40.05 35 94 93.4 86 8.45
66 32.00 51.75 53.175 30 83 80.17 71 16

a Treated as dependent variable in the authors’ analyses. BMI body mass index; PaO2 arterial oxygen tension; PaCO2 arterial
carbon dioxide pressure; FEV1 forced expiratory volume in 1 second; SaO2 arterial oxygen saturation.

Source: Dr. Eithne Mulloy. Used with permission.

Exercises for Use with the Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1. The goal of a study by Gyurcsik et al. (A-27) was to examine the usefulness of aquatic exercise-
related goals, task self-efficacy, and scheduling self-efficacy for predicting aquatic exercise atten-
dance by individuals with arthritis. The researchers collected data on 142 subjects participating in
Arthritis Foundation Aquatics Programs. The outcome variable was the percentage of sessions
attended over an 8-week period (ATTEND). The following predictor variables are all centered val-
ues. Thus, for each participant, the mean for all participants is subtracted from the individual score.
The variables are:

GOALDIFF—higher values indicate setting goals of higher participation.

GOALSPEC—higher values indicate higher specificity of goals related to aquatic exercise.

INTER—interaction of GOALDIFF and GOALSPEC.

TSE—higher values indicate participants’ confidence in their abilities to attend aquatic
classes.

SSE—higher values indicate participants’ confidence in their abilities to perform eight tasks
related to scheduling exercise into their daily routine for 8 weeks.

MONTHS—months of participation in aquatic exercise prior to start of study.

With the data set AQUATICS, perform a multiple regression to predict ATTEND with each of the
above variables. What is the multiple correlation coefficient? What variables are significant in pre-
dicting ATTEND? What are your conclusions?

2. Rodehorst (A-28) conducted a prospective study of 212 rural elementary school teachers. 
The main outcome variable was the teachers’ intent to manage children demonstrating symptoms
of asthma in their classrooms. This variable was measured with a single-item question that used
a seven-point Likert scale (INTENT, with possible responses of extremely probable to1 =

==
===

SaO2
aSaO2

aSaO2
aSaO2

a
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extremely improbable). Rodehorst used the following variables as independent variables to
predict INTENT:

SS Social Support. Scores range from 7 to 49, with higher scores indicating higher perceived
social support for managing children with asthma in a school setting.

ATT Attitude. Scores range from 15 to 90, with higher scores indicating more favorable
attitudes toward asthma.

KNOW Knowledge. Scores range from 0 to 24, with higher scores indicating higher general
knowledge about asthma.

CHILD Number of children with asthma the teacher has had in his or her class during his or
her entire teaching career.

SE Self-efficacy. Scores range from 12 to 60, with higher scores indicating higher self-efficacy
for managing children with asthma in the school setting.

YRS Years of teaching experience.

With the data TEACHERS, use stepwise regression analysis to select the most useful variables to
include in a model for predicting INTENT.

3. Refer to the weight loss data on 588 cancer patients and 600 healthy controls (WGTLOSS). Weight
loss among cancer patients is a well-known phenomenon. Of interest to clinicians is the role played
in the process by metabolic abnormalities. One investigation into the relationships among these
variables yielded data on whole-body protein turnover (Y ) and percentage of ideal body weight
for height (X ). Subjects were lung cancer patients and healthy controls of the same age. Select a
simple random sample of size 15 from each group and do the following:

(a) Draw a scatter diagram of the sample data using different symbols for each of the two groups.

(b) Use dummy variable coding to analyze these data.

(c) Plot the two regression lines on the scatter diagram. May one conclude that the two sampled
populations differ with respect to mean protein turnover when percentage of ideal weight is taken
into account?

May one conclude that there is interaction between health status and percentage of ideal body
weight? Prepare a verbal interpretation of the results of your analysis and compare your results
with those of your classmates.
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CHAPTER OVERVIEW

This chapter explores techniques that are commonly used in the analysis of
count or frequency data. Uses of the chi-square distribution, which was
mentioned briefly in Chapter 6, are discussed and illustrated in greater de-
tail. Additionally, statistical techniques often used in epidemiological studies
are introduced and demonstrated by means of examples.

TOPICS

12.1 INTRODUCTION

12.2 THE MATHEMATICAL PROPERTIES OF THE CHI-SQUARE DISTRIBUTION

12.3 TESTS OF GOODNESS-OF-FIT

12.4 TESTS OF INDEPENDENCE

12.5 TESTS OF HOMOGENEITY

12.6 THE FISHER EXACT  TEST

12.7 RELATIVE RISK, ODDS RATIO, AND THE MANTEL-HAENSZEL STATISTIC

12.8 SURVIVAL ANALYSIS

12.9 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand the mathematical properties of the chi-square distribution.
2. be able to use the chi-square distribution for goodness-of-fit tests.
3. be able to construct and use contingency tables to test independence and 

homogeneity.
4. be able to apply Fisher’s exact test for 2 	 2 tables.
5. understand how to calculate and interpret the epidemiological concepts of 

relative risk, odds ratios, and the Mantel-Haenszel statistic.

CHAPTER12
THE CHI-SQUARE 
DISTRIBUTION AND THE
ANALYSIS OF FREQUENCIES



12.1 INTRODUCTION

In the chapters on estimation and hypothesis testing, brief mention is made of the chi-
square distribution in the construction of confidence intervals for, and the testing of,
hypotheses concerning a population variance. This distribution, which is one of the most
widely used distributions in statistical applications, has many other uses. Some of the
more common ones are presented in this chapter along with a more complete descrip-
tion of the distribution itself, which follows in the next section.

The chi-square distribution is the most frequently employed statistical technique
for the analysis of count or frequency data. For example, we may know for a sample of
hospitalized patients how many are male and how many are female. For the same sam-
ple we may also know how many have private insurance coverage, how many have
Medicare insurance, and how many are on Medicaid assistance. We may wish to know,
for the population from which the sample was drawn, if the type of insurance coverage
differs according to gender. For another sample of patients, we may have frequencies for
each diagnostic category represented and for each geographic area represented. We might
want to know if, in the population from which the same was drawn, there is a relation-
ship between area of residence and diagnosis. We will learn how to use chi-square analy-
sis to answer these types of questions.

There are other statistical techniques that may be used to analyze frequency data
in an effort to answer other types of questions. In this chapter we will also learn about
these techniques.

12.2 THE MATHEMATICAL PROPERTIES 
OF THE CHI-SQUARE DISTRIBUTION

The chi-square distribution may be derived from normal distributions. Suppose that from
a normally distributed random variable Y with mean and variance we randomly
and independently select samples of size Each value selected may be trans-
formed to the standard normal variable z by the familiar formula

(12.2.1)

Each value of z may be squared to obtain When we investigate the sampling distri-
bution of , we find that it follows a chi-square distribution with 1 degree of freedom.
That is,

Now suppose that we randomly and independently select samples of size from
the normally distributed population of Y values. Within each sample we may transform

n = 2

x2112 = a y - m
s
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z2
z2.

z i =
yi - m
s

n = 1.
s2m

594 CHAPTER 12 THE CHI-SQUARE DISTRIBUTION AND THE ANALYSIS OF FREQUENCIES



each value of y to the standard normal variable z and square as before. If the resulting
values of for each sample are added, we may designate this sum by

since it follows the chi-square distribution with 2 degrees of freedom, the number of
independent squared terms that are added together.

The procedure may be repeated for any sample size n. The sum of the resulting 
values in each case will be distributed as chi-square with n degrees of freedom. In gen-
eral, then,

(12.2.2)

follows the chi-square distribution with n degrees of freedom. The mathematical form of
the chi-square distribution is as follows:

(12.2.3)

where e is the irrational number 2.71828 . . . and k is the number of degrees of free-
dom. The variate u is usually designated by the Greek letter chi and, hence, the
distribution is called the chi-square distribution. As we pointed out in Chapter 6, the chi-
square distribution has been tabulated in Appendix Table F. Further use of the table is
demonstrated as the need arises in succeeding sections.

The mean and variance of the chi-square distribution are k and 2k, respectively.
The modal value of the distribution is for values of k greater than or equal to 2
and is zero for 

The shapes of the chi-square distributions for several values of k are shown in Fig-
ure 6.9.1. We observe in this figure that the shapes for and are quite differ-
ent from the general shape of the distribution for We also see from this figure that
chi-square assumes values between 0 and infinity. It cannot take on negative values, since
it is the sum of values that have been squared. A final characteristic of the chi-square dis-
tribution worth noting is that the sum of two or more independent chi-square variables
also follows a chi-square distribution.

Types of Chi-Square Tests As already noted, we make use of the chi-square
distribution in this chapter in testing hypotheses where the data available for analysis 
are in the form of frequencies. These hypothesis testing procedures are discussed under
the topics of tests of goodness-of-fit, tests of independence, and tests of homogeneity. We
will discover that, in a sense, all of the chi-square tests that we employ may be thought
of as goodness-of-fit tests, in that they test the goodness-of-fit of observed frequencies to
frequencies that one would expect if the data were generated under some particular the-
ory or hypothesis. We, however, reserve the phrase “goodness-of-fit” for use in a more
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restricted sense. We use it to refer to a comparison of a sample distribution to some the-
oretical distribution that it is assumed describes the population from which the sample
came. The justification of our use of the distribution in these situations is due to Karl
Pearson (1), who showed that the chi-square distribution may be used as a test of the
agreement between observation and hypothesis whenever the data are in the form of
frequencies. An extensive treatment of the chi-square distribution is to be found in the
book by Lancaster (2). Nikulin and Greenwood (3) offer practical advice for conducting
chi-square tests.

Observed Versus Expected Frequencies The chi-square statistic is most
appropriate for use with categorical variables, such as marital status, whose values are the
categories married, single, widowed, and divorced. The quantitative data used in the com-
putation of the test statistic are the frequencies associated with each category of the one
or more variables under study. There are two sets of frequencies with which we are con-
cerned, observed frequencies and expected frequencies. The observed frequencies are the
number of subjects or objects in our sample that fall into the various categories of the vari-
able of interest. For example, if we have a sample of 100 hospital patients, we may observe
that 50 are married, 30 are single, 15 are widowed, and 5 are divorced. Expected frequen-
cies are the number of subjects or objects in our sample that we would expect to observe
if some null hypothesis about the variable is true. For example, our null hypothesis might
be that the four categories of marital status are equally represented in the population from
which we drew our sample. In that case we would expect our sample to contain 25 mar-
ried, 25 single, 25 widowed, and 25 divorced patients.

The Chi-Square Test Statistic The test statistic for the chi-square tests we
discuss in this chapter is

(12.2.4)

When the null hypothesis is true, is distributed approximately as with 
degrees of freedom. In determining the degrees of freedom, k is equal to the number of
groups for which observed and expected frequencies are available, and r is the number
of restrictions or constraints imposed on the given comparison. A restriction is imposed
when we force the sum of the expected frequencies to equal the sum of the observed
frequencies, and an additional restriction is imposed for each parameter that is estimated
from the sample.

In Equation 12.2.4, is the observed frequency for the ith category of the variable
of interest, and is the expected frequency (given that is true) for the ith category.

The quantity is a measure of the extent to which, in a given situation, pairs of
observed and expected frequencies agree. As we will see, the nature of is such that
when there is close agreement between observed and expected frequencies it is small,
and when the agreement is poor it is large. Consequently, only a sufficiently large value
of will cause rejection of the null hypothesis.

If there is perfect agreement between the observed frequencies and the frequencies
that one would expect, given that is true, the term in Equation 12.2.4 willOi - EiH0

X2

X2
X2

H0Ei

Oi

k - rx2X2

X 2 = a c 1Oi - Ei22
Ei

d
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be equal to zero for each pair of observed and expected frequencies. Such a result would
yield a value of equal to zero, and we would be unable to reject 

When there is disagreement between observed frequencies and the frequencies one
would expect given that is true, at least one of the terms in Equation 12.2.4
will be a nonzero number. In general, the poorer the agreement between the and the

the greater or the more frequent will be these nonzero values. As noted previously,
if the agreement between the and the is sufficiently poor (resulting in a sufficiently
large value,) we will be able to reject 

When there is disagreement between a pair of observed and expected frequencies,
the difference may be either positive or negative, depending on which of the two frequen-
cies is the larger. Since the measure of agreement, is a sum of component quantities
whose magnitudes depend on the difference positive and negative differences
must be given equal weight. This is achieved by squaring each difference. Divid-
ing the squared differences by the appropriate expected frequency converts the quantity
to a term that is measured in original units. Adding these individual terms
yields a summary statistic that reflects the extent of the overall agreement between
observed and expected frequencies.

The Decision Rule The quantity will be small if the observed
and expected frequencies are close together and will be large if the differences are large.

The computed value of is compared with the tabulated value of with 
degrees of freedom. The decision rule, then, is: Reject if is greater than or equal
to the tabulated for the chosen value of 

Small Expected Frequencies Frequently in applications of the chi-square
test the expected frequency for one or more categories will be small, perhaps much less
than 1. In the literature the point is frequently made that the approximation of to 
is not strictly valid when some of the expected frequencies are small. There is disagree-
ment among writers, however, over what size expected frequencies are allowable before
making some adjustment or abandoning in favor of some alternative test. Some writ-
ers, especially the earlier ones, suggest lower limits of 10, whereas others suggest that
all expected frequencies should be no less than 5. Cochran (4, 5), suggests that for good-
ness-of-fit tests of unimodal distributions (such as the normal), the minimum expected
frequency can be as low as 1. If, in practice, one encounters one or more expected fre-
quencies less than 1, adjacent categories may be combined to achieve the suggested min-
imum. Combining reduces the number of categories and, therefore, the number of degrees
of freedom. Cochran’s suggestions appear to have been followed extensively by practi-
tioners in recent years.

12.3 TESTS OF GOODNESS-OF-FIT

As we have pointed out, a goodness-of-fit test is appropriate when one wishes to decide
if an observed distribution of frequencies is incompatible with some preconceived or
hypothesized distribution.

x2

x2X 2

a.x2
X 2H0

k - rx2X 2

g31Oi - Ei22>Ei4
X2,

1Oi - Ei22>Ei

Oi - Ei

Oi - Ei,
X2,

H0.X2
EiOi

Ei,
Oi

Oi - EiH0

H0.X2
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We may, for example, wish to determine whether or not a sample of observed val-
ues of some random variable is compatible with the hypothesis that it was drawn from
a population of values that is normally distributed. The procedure for reaching a deci-
sion consists of placing the values into mutually exclusive categories or class intervals
and noting the frequency of occurrence of values in each category. We then make use of
our knowledge of normal distributions to determine the frequencies for each category
that one could expect if the sample had come from a normal distribution. If the discrep-
ancy is of such magnitude that it could have come about due to chance, we conclude
that the sample may have come from a normal distribution. In a similar manner, tests of
goodness-of-fit may be carried out in cases where the hypothesized distribution is the
binomial, the Poisson, or any other distribution. Let us illustrate in more detail with some
examples of tests of hypotheses of goodness-of-fit.

EXAMPLE 12.3.1 The Normal Distribution

Cranor and Christensen (A-1) conducted a study to assess short-term clinical, economic,
and humanistic outcomes of pharmaceutical care services for patients with diabetes in
community pharmacies. For 47 of the subjects in the study, cholesterol levels are sum-
marized in Table 12.3.1.

We wish to know whether these data provide sufficient evidence to indicate that
the sample did not come from a normally distributed population. Let 

Solution:

1. Data. See Table 12.3.1.

2. Assumptions. We assume that the sample available for analysis is a
simple random sample.

a = .05
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TABLE 12.3.1 Cholesterol Levels as
Described in Example 12.3.1

Cholesterol

Level (mg/dl) Number of Subjects

100.0–124.9 1

125.0–149.9 3

150.0–174.9 8

175.0–199.9 18

200.0–224.9 6

225.0–249.9 4

250.0–274.9 4

275.0–299.9 3

Source: Carole W. Cranor, and Dale B. Christensen,
“The Asheville Project: Short-Term Outcomes of a
Community Pharmacy Diabetes Care Program,” 
Journal of the American Pharmaceutical Association,
43 (2003), 149–159. Used with permission.



3. Hypotheses.

In the population from which the sample was drawn,
cholesterol levels are normally distributed.
The sampled population is not normally distributed.

4. Test statistic. The test statistic is

5. Distribution of test statistic. If is true, the test statistic is distrib-
uted approximately as chi-square with degrees of freedom. The
values of k and r will be determined later.

6. Decision rule. We will reject if the computed value of is equal
to or greater than the critical value of chi-square.

7. Calculation of test statistic. Since the mean and variance of the
hypothesized distribution are not specified, the sample data must be used
to estimate them. These parameters, or their estimates, will be needed
to compute the frequency that would be expected in each class interval
when the null hypothesis is true. The mean and standard deviation com-
puted from the grouped data of Table 12.3.1 are

As the next step in the analysis, we must obtain for each class
interval the frequency of occurrence of values that we would expect
when the null hypothesis is true, that is, if the sample were, in fact,
drawn from a normally distributed population of values. To do this,
we first determine the expected relative frequency of occurrence of
values for each class interval and then multiply these expected rela-
tive frequencies by the total number of values to obtain the expected
number of values for each interval.

The Expected Relative Frequencies

It will be recalled from our study of the normal distribution that the relative frequency of
occurrence of values equal to or less than some specified value, say, of the normally dis-
tributed random variable X is equivalent to the area under the curve and to the left of as
represented by the shaded area in Figure 12.3.1. We obtain the numerical value of this area
by converting to a standard normal deviation by the formula and find-
ing the appropriate value in Appendix Table D. We use this procedure to obtain the expected
relative frequencies corresponding to each of the class intervals in Table 12.3.1. We esti-
mate and with and s as computed from the grouped sample data. The first step con-
sists of obtaining z values corresponding to the lower limit of each class interval. The area
between two successive z values will give the expected relative frequency of occurrence of
values for the corresponding class interval.

xsm

z0 = 1x0 - m2>sx0

x0

x0,

s = 41.31

x = 198.67

X2H0

k - r
H0

X 2 = a
k

i=1
c 1Oi - Ei22

Ei
d

HA:

H0:
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For example, to obtain the expected relative frequency of occurrence of values in the
interval 100.0 to 124.9 we proceed as follows:

The z value corresponding to is 

The z value corresponding to is 

In Appendix Table D we find that the area to the left of is .0084, and the area to
the left of is .0375. The area between and is equal to

which is equal to the expected relative frequency of occurrence
of cholesterol levels within the interval 100.0 to 124.9. This tells us that if the null
hypothesis is true, that is, if the cholesterol levels are normally distributed, we should
expect 2.91 percent of the values in our sample to be between 100.0 and 124.9. When
we multiply our total sample size, 47, by .0291 we find the expected frequency for the
interval to be 1.4. Similar calculations will give the expected frequencies for the other
intervals as shown in Table 12.3.2.

.0375 - .0084 = .0291,
-2.39-1.78-1.78

-2.39

z =
125.0 - 198.67

41.31
= -1.78X = 125.0

z =
100.0 - 198.67

41.31
= -2.39X = 100.0
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x0 X

FIGURE 12.3.1 A normal distribution showing the relative frequency of
occurrence of values less than or equal to The shaded area represents the
relative frequency of occurrence of values equal to or less than x0.

x0.

TABLE 12.3.2 Class Intervals and Expected Frequencies for 
Example 12.3.1

/s

At Lower Limit Expected Relative Expected

Class Interval of Interval Frequency Frequency

.0084 .4
1.8

100.0–124.9 �2.39 .0291 1.4

125.0–149.9 �1.78 .0815 3.8

150.0–174.9 �1.18 .1653 7.8

175.0–199.9 �.57 .2277 10.7

200.0–224.9 .03 .2269 10.7

225.0–249.9 .64 .1536 7.2

250.0–274.9 1.24 .0753 3.5

275.0–299.9 1.85 .0251 1.2
1.5

300.0 and greater 2.45 .0071 .3

6  100

z � (xi � x )

r

r



Comparing Observed and Expected Frequencies

We are now interested in examining the magnitudes of the discrepancies between the
observed frequencies and the expected frequencies, since we note that the two sets of fre-
quencies do not agree. We know that even if our sample were drawn from a normal dis-
tribution of values, sampling variability alone would make it highly unlikely that the
observed and expected frequencies would agree perfectly. We wonder, then, if the dis-
crepancies between the observed and expected frequencies are small enough that we feel
it reasonable that they could have occurred by chance alone, when the null hypothesis is
true. If they are of this magnitude, we will be unwilling to reject the null hypothesis that
the sample came from a normally distributed population.

If the discrepancies are so large that it does not seem reasonable that they could
have occurred by chance alone when the null hypothesis is true, we will want to reject
the null hypothesis. The criterion against which we judge whether the discrepancies are
“large” or “small” is provided by the chi-square distribution.

The observed and expected frequencies along with each value of 
are shown in Table 12.3.3. The first entry in the last column, for example, is computed
from The other values of are computed in a sim-
ilar manner.

From Table 12.3.3 we see that The appropri-
ate degrees of freedom are 8 (the number of groups or class intervals) (for the
three restrictions: making and estimating and from the sample
data)

8. Statistical decision. When we compare with values of 
in Appendix Table F, we see that it is less than so that,
at the .05 level of significance, we cannot reject the null hypothesis that
the sample came from a normally distributed population.

x2
.95 = 11.070,

x2X2 = 10.566

= 5.
smgEi = gOi,

- 3
X2 = g31Oi - Ei22>Ei4 = 10.566.

1Oi - Ei22>Ei11 - 1.822>1.8 = .356.

1Oi - Ei22>Ei
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TABLE 12.3.3 Observed and Expected Frequencies and
for Example 12.3.1

Observed Expected

Frequency Frequency

Class Interval /Ei

0 .4
1.8

100.0–124.9 1 1.4
.356

125.0–149.9 3 3.8 .168

150.0–174.9 8 7.8 .005

175.0–199.9 18 10.7 4.980

200.0–224.9 6 10.7 2.064

225.0–249.9 4 7.2 1.422

250.0–274.9 4 3.5 .071

275.0–299.9 3 1.2
1.5 1.500

300.0 and greater 0 .3

Total 47 47 10.566

6  100

(Oi - Ei )
2(Ei)(Oi)

(Oi � Ei )2>Ei

r

r



9. Conclusion. We conclude that in the sampled population, cholesterol
levels may follow a normal distribution.

10. p value. Since . In other
words, the probability of obtaining a value of as large as 10.566,
when the null hypothesis is true, is between .05 and .10. Thus we con-
clude that such an event is not sufficiently rare to reject the null hypoth-
esis that the data come from a normal distribution. ■

Sometimes the parameters are specified in the null hypothesis. It should be noted
that had the mean and variance of the population been specified as part of the null
hypothesis in Example 12.3.1, we would not have had to estimate them from the sam-
ple and our degrees of freedom would have been 

Alternatives Although one frequently encounters in the literature the use of chi-
square to test for normality, it is not the most appropriate test to use when the hypoth-
esized distribution is continuous. The Kolmogorov–Smirnov test, described in Chapter
13, was especially designed for goodness-of-fit tests involving continuous distributions.

EXAMPLE 12.3.2 The Binomial Distribution

In a study designed to determine patient acceptance of a new pain reliever, 100 physi-
cians each selected a sample of 25 patients to participate in the study. Each patient, after
trying the new pain reliever for a specified period of time, was asked whether it was
preferable to the pain reliever used regularly in the past.

The results of the study are shown in Table 12.3.4.

8 - 1 = 7.

X 2
11.070 7 10.566 7 9.236, .05 6 p 6 .10
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TABLE 12.3.4 Results of Study Described in Example 12.3.2

Total Number

Number of Patients of Patients

Out of 25 Number of Preferring New

Preferring New Doctors Reporting Pain Reliever

Pain Reliever this Number by Doctor

0 5 0

1 6 6

2 8 16

3 10 30

4 10 40

5 15 75

6 17 102

7 10 70

8 10 80

9 9 81

10 or more 0 0

Total 100 500



We are interested in determining whether or not these data are compatible with the
hypothesis that they were drawn from a population that follows a binomial distribution.
Again, we employ a chi-square goodness-of-fit test.

Solution: Since the binomial parameter, p, is not specified, it must be estimated from
the sample data. A total of 500 patients out of the 2500 patients participat-
ing in the study said they preferred the new pain reliever, so that our point
estimate of p is The expected relative frequencies can
be obtained by evaluating the binomial function

for For example, to find the probability that out of a sam-
ple of 25 patients none would prefer the new pain reliever, when in the total
population the true proportion preferring the new pain reliever is .2, we would
evaluate

This can be done most easily by consulting Appendix Table B, where we
see that The relative frequency of occurrence of sam-
ples of size 25 in which no patients prefer the new pain reliever is .0038.
To obtain the corresponding expected frequency, we multiply .0038 by 100
to get .38. Similar calculations yield the remaining expected frequencies,
which, along with the observed frequencies, are shown in Table 12.3.5. We

P1X = 02 = .0038.

f102 = a25

0
b .20.825-0

x = 0, 1, . . . , 25.

f1x2 = a25

x
b .2x .825-x

pN = 500>2500 = .20.
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TABLE 12.3.5 Calculations for Example 12.3.2

Number of

Number of Doctors Reporting

Patients Out of 25 This Number Expected Expected

Preferring New (Observed Relative Frequency

Pain Reliever Frequency, Frequency

0 5 .0038 .38

1 6 .0236 2.36

2 8 .0708 7.08

3 10 .1358 13.58

4 10 .1867 18.67

5 15 .1960 19.60

6 17 .1633 16.33

7 10 .1109 11.09

8 10 .0623 6.23

9 9 .0295 2.95

10 or more 0 .0173 1.73

Total 100 1.0000 100.00

EiOi)

r 11 r 2.74



see in this table that the first expected frequency is less than 1, so that we
follow Cochran’s suggestion and combine this group with the second group.
When we do this, all the expected frequencies are greater than 1.

From the data, we compute

The appropriate degrees of freedom are 10 (the number of groups left
after combining the first two) less 2, or 8. One degree of freedom is lost
because we force the total of the expected frequencies to equal the total
observed frequencies, and one degree of freedom is sacrificed because we
estimated p from the sample data.

We compare our computed with the tabulated with 8 degrees
of freedom and find that it is significant at the .005 level of significance;
that is, We reject the null hypothesis that the data came from a
binomial distribution. ■

EXAMPLE 12.3.3 The Poisson Distribution

A hospital administrator wishes to test the null hypothesis that emergency admissions
follow a Poisson distribution with Suppose that over a period of 90 days the num-
bers of emergency admissions were as shown in Table 12.3.6.

l = 3.

p 6 .005.

x2X2

X 2 =
111 - 2.7422

2.74
+
18 - 7.0822

7.08
+ . . . +

10 - 1.7322
1.73

= 47.624
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TABLE 12.3.6 Number of Emergency Admissions to a Hospital During a 
90-Day Period

Emergency Emergency Emergency Emergency

Day Admissions Day Admissions Day Admissions Day Admissions

1 2 24 5 47 4 70 3

2 3 25 3 48 2 71 5

3 4 26 2 49 2 72 4

4 5 27 4 50 3 73 1

5 3 28 4 51 4 74 1

6 2 29 3 52 2 75 6

7 3 30 5 53 3 76 3

8 0 31 1 54 1 77 3

9 1 32 3 55 2 78 5

10 0 33 2 56 3 79 2

11 1 34 4 57 2 80 1

12 0 35 2 58 5 81 7

13 6 36 5 59 2 82 7

14 4 37 0 60 7 83 1

15 4 38 6 61 8 84 5

16 4 39 4 62 3 85 1
(Continued)



The data of Table 12.3.6 are summarized in Table 12.3.7.

Solution: To obtain the expected frequencies we first obtain the expected relative fre-
quencies by evaluating the Poisson function given by Equation 4.4.1 for each
entry in the left-hand column of Table 12.3.7. For example, the first expected
relative frequency is obtained by evaluating

We may use Appendix Table C to find this and all the other expected rel-
ative frequencies that we need. Each of the expected relative frequencies

f102 =
e-330

0!
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Emergency Emergency Emergency Emergency

Day Admissions Day Admissions Day Admissions Day Admissions

17 3 40 4 63 1 86 4

18 4 41 5 64 3 87 4

19 3 42 1 65 1 88 9

20 3 43 3 66 0 89 2

21 3 44 1 67 3 90 3

22 4 45 2 68 2

23 3 46 3 69 1 

TABLE 12.3.7 Summary of Data Presented
in Table 12.3.6

Number of

Number of Days This Number

Emergency Admissions of Emergency

in a Day Admissions Occurred

0 5

1 14

2 15

3 23

4 16

5 9

6 3

7 3

8 1

9 1

10 or more 0

Total 90



is multiplied by 90 to obtain the corresponding expected frequencies.
These values along with the observed and expected frequencies and the
components of are displayed in Table 12.3.8, in which
we see that

We also note that the last three expected frequencies are less than 1, so that
they must be combined to avoid having any expected frequencies less than 1.
This means that we have only nine effective categories for computing
degrees of freedom. Since the parameter, , was specified in the null
hypothesis, we do not lose a degree of freedom for reasons of estimation,
so that the appropriate degrees of freedom are By consulting
Appendix Table F, we find that the critical value of for 8 degrees of free-
dom and is 15.507, so that we cannot reject the null hypothesis at
the .05 level, or for that matter any reasonable level, of significance

We conclude, therefore, that emergency admissions at this hos-
pital may follow a Poisson distribution with At least the observed
data do not cast any doubt on that hypothesis.

If the parameter has to be estimated from sample data, the estimate
is obtained by multiplying each value x by its frequency, summing these
products, and dividing the total by the sum of the frequencies. ■

l

l = 3.
1p 7 .102.a = .05

x2
9 - 1 = 8.

l

X 2 = a c 1Oi - Ei22
Ei

d =
15 - 4.5022

4.50
+ . . . +

12 - 1.0822
1.08

= 3.664

X 2, 1Oi - Ei22>Ei,
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TABLE 12.3.8 Observed and Expected Frequencies and Components
of X2 for Example 12.3.3

Number of

Number of Days this Expected

Emergency Number Relative Expected

Admissions Occurred, Oi Frequency Frequency

0 5 .050 4.50 .056

1 14 .149 13.41 .026

2 15 .224 20.16 1.321

3 23 .224 20.16 .400

4 16 .168 15.12 .051

5 9 .101 9.09 .001

6 3 .050 4.50 .500

7 3 .022 1.98 .525

8 1 .008 .72

9 1 .003 .27 .784

10 or more 0 .001 .09

Total 90 1.000 90.00 3.664

1Oi � Ei22
Ei

rr 2 1.08



EXAMPLE 12.3.4 The Uniform Distribution

The flu season in southern Nevada for 2005–2006 ran from December to April, the
coldest months of the year. The Southern Nevada Health District reported the numbers
of vaccine-preventable influenza cases shown in Table 12.3.9. We are interested in
knowing whether the numbers of flu cases in the district are equally distributed among
the five flu season months. That is, we wish to know if flu cases follow a uniform
distribution.

Solution:

1. Data. See Table 12.3.9.

2. Assumptions. We assume that the reported cases of flu constitute a sim-
ple random sample of cases of flu that occurred in the district.

3. Hypotheses.

Flu cases in southern Nevada are uniformly distributed over the five
flu season months.
Flu cases in southern Nevada are not uniformly distributed over the
five flu season months.

Let

4. Test statistic. The test statistic is

5. Distribution of test statistic. If is true, X2 is distributed approxi-
mately as with degrees of freedom.

6. Decision rule. Reject if the computed value of X2 is equal to or
greater than 13.277.

H0

15 - 12 = 4x2
H0

X2 = a 1Oi - Ei22
Ei

a = .01.

HA:

H0:
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TABLE 12.3.9 Reported Vaccine-Preventable
Influenza Cases from Southern Nevada,
December 2005–April 2006

Number of

Reported Cases

Month of Influenza

December 2005 62

January 2006 84

February 2006 17

March 2006 16

April 2006 21

Total 200

Source: http://www.southernnevadahealthdistrict.org/
epidemiology/disease_statistics.htm.

http://www.southernnevadahealthdistrict.org/epidemiology/disease_statistics.htm
http://www.southernnevadahealthdistrict.org/epidemiology/disease_statistics.htm


7. Calculation of test statistic. If the null hypothesis is true, we would
expect to observe 200 5 � 40 cases per month. Figure 12.3.2 shows the
computer printout obtained from MINITAB. The bar graph shows the
observed and expected frequencies per month. The chi-square table pro-
vides the observed frequencies, the expected frequencies based on a uni-
form distribution, and the individual chi-square contribution for each test
value.

8. Statistical decision. Since 97.15, the computed value of X2, is greater
than 13.277, we reject, based on these data, the null hypothesis of a

>
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FIGURE 12.3.2 MINITAB output for Example 12.3.4.

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: C1

Test Contribution

Category Observed Proportion Expected to Chi-Sq
1 62 0.2 40 12.100

2 84 0.2 40 48.400

3 17 0.2 40 13.225

4 16 0.2 40 14.400

5 21 0.2 40 9.025

N DF Chi-Sq P-Value

200 4 97.15 0.000

Category 54321
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uniform distribution of flu cases during the flu season in southern
Nevada.

9. Conclusion. We conclude that the occurrence of flu cases does not fol-
low a uniform distribution.

10. p value. From the MINITAB output we see that p � .000 (i.e., � .001).
■

EXAMPLE 12.3.5

A certain human trait is thought to be inherited according to the ratio 1:2:1 for
homozygous dominant, heterozygous, and homozygous recessive. An examination of
a simple random sample of 200 individuals yielded the following distribution of the
trait: dominant, 43; heterozygous, 125; and recessive, 32. We wish to know if these
data provide sufficient evidence to cast doubt on the belief about the distribution of
the trait.

Solution:

1. Data. See statement of the example.

2. Assumptions. We assume that the data meet the requirements for the ap-
plication of the chi-square goodness-of-fit test.

3. Hypotheses.

: The trait is distributed according to the ratio 1:2:1 for homozygous
dominant, heterozygous, and homozygous recessive.
: The trait is not distributed according to the ratio 1:2:1.

4. Test statistic. The test statistic is

5. Distribution of test statistic. If is true, is distributed as chi-square
with 2 degrees of freedom.

6. Decision rule. Suppose we let the probability of committing a type I error
be .05. Reject if the computed value of is equal to or greater than
5.991.

7. Calculation of test statistic. If is true, the expected frequencies for
the three manifestations of the trait are 50, 100, and 50 for dominant,
heterozygous, and recessive, respectively. Consequently,

8. Statistical decision. Since , we reject 

9. Conclusion. We conclude that the trait is not distributed according to the
ratio 1:2:1.

10. p value. Since the p value for the test is ■p 6 .005.13.71 7 10.597,

H0.13.71 7 5.991

X 2 = 143 - 5022>50 + 1125 - 10022>100 + 132 - 5022>50 = 13.71

H0

X2H0

X2H0

X 2 = a c 1O - E22
E

d
HA

H0
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EXERCISES

12.3.1 The following table shows the distribution of uric acid determinations taken on 250 patients. Test
the goodness-of-fit of these data to a normal distribution with and Let 

Uric Acid Observed Uric Acid Observed
Determination Frequency Determination Frequency

1 6 to 6.99 45
1 to 1.99 5 7 to 7.99 30
2 to 2.99 15 8 to 8.99 22
3 to 3.99 24 9 to 9.99 10
4 to 4.99 43 10 or higher 5
5 to 5.99 50

Total 250

12.3.2 The following data were collected on 300 eight-year-old girls. Test, at the .05 level of significance,
the null hypothesis that the data are drawn from a normally distributed population. The sample
mean and standard deviation computed from grouped data are 127.02 and 5.08.

Height in Observed Height in Observed
Centimeters Frequency Centimeters Frequency

114 to 115.9 5 128 to 129.9 43
116 to 117.9 10 130 to 131.9 42
118 to 119.9 14 132 to 133.9 30
120 to 121.9 21 134 to 135.9 11
122 to 123.9 30 136 to 137.9 5
124 to 125.9 40 138 to 139.9 4
126 to 127.9 45

Total 300

12.3.3 The face sheet of patients’ records maintained in a local health department contains 10 entries.
A sample of 100 records revealed the following distribution of erroneous entries:

Number of Erroneous
Entries Out of 10 Number of Records

0 8
1 25
2 32
3 24
4 10
5 or more 1

Total 100

6 1

a = .01.s = 2.01.m = 5.74
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Test the goodness-of-fit of these data to the binomial distribution with Find the p value
for this test.

12.3.4 In a study conducted by Byers et al. (A-2), researchers tested a Poisson model for the distribution
of activities of daily living (ADL) scores after a 7-month prehabilitation program designed to pre-
vent functional decline among physically frail, community-living older persons. ADL measured
the ability of individuals to perform essential tasks, including walking inside the house, bathing,
upper and lower body dressing, transferring from a chair, toileting, feeding, and grooming. The
scoring method used in this study assigned a value of 0 for no (personal) help and no difficulty,
1 for difficulty but no help, and 2 for help regardless of difficulty. Scores were summed to pro-
duce an overall score ranging from 0 to 16 (for eight tasks). There were 181 subjects who com-
pleted the study. Suppose we use the authors’ scoring method to assess the status of another group
of 181 subjects relative to their activities of daily living. Let us assume that the following results
were obtained.

Observed Expected Observed Expected
X Frequency X Frequency X Frequency X Frequency

0 74 11.01 7 4 2.95
1 27 30.82 8 3 1.03
2 14 43.15 9 2 0.32
3 14 40.27 10 3 0.09
4 11 28.19 11 4 0.02
5 7 15.79 12 or more 13 0.01
6 5 7.37

Source: Hypothetical data based on procedure reported by Amy L. Byers, Heather Allore, 
Thomas M. Gill, and Peter N. Peduzzi, “Application of Negative Binomial Modeling for 
Discrete Outcomes: A Case Study in Aging Research,” Journal of Clinical Epidemiology, 56
(2003), 559–564.

Test the null hypothesis that these data were drawn from a Poisson distribution with Let

12.3.5 The following are the numbers of a particular organism found in 100 samples of water from a
pond:

Number of Organisms Number of Organisms
per Sample Frequency per Sample Frequency

0 15 4 5
1 30 5 4
2 25 6 1
3 20 7 0

Total 100

Test the null hypothesis that these data were drawn from a Poisson distribution. Determine the p
value for this test.

a = .01.
l = 2.8.

p = .20.
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12.3.6 A research team conducted a survey in which the subjects were adult smokers. Each subject in a
sample of 200 was asked to indicate the extent to which he or she agreed with the statement: “I
would like to quit smoking.” The results were as follows:

Response: Strongly agree Agree Disagree Strongly Disagree

Number
Responding: 102 30 60 8

Can one conclude on the basis of these data that, in the sampled population, opinions are not
equally distributed over the four levels of agreement? Let the probability of committing a type I
error be .05 and find the p value.

12.4 TESTS OF INDEPENDENCE

Another, and perhaps the most frequent, use of the chi-square distribution is to test the
null hypothesis that two criteria of classification, when applied to the same set of enti-
ties, are independent. We say that two criteria of classification are independent if the
distribution of one criterion is the same no matter what the distribution of the other cri-
terion. For example, if socioeconomic status and area of residence of the inhabitants of
a certain city are independent, we would expect to find the same proportion of families
in the low, medium, and high socioeconomic groups in all areas of the city.

The Contingency Table The classification, according to two criteria, of a set
of entities, say, people, can be shown by a table in which the r rows represent the var-
ious levels of one criterion of classification and the c columns represent the various
levels of the second criterion. Such a table is generally called a contingency table. The
classification according to two criteria of a finite population of entities is shown in
Table 12.4.1.

We will be interested in testing the null hypothesis that in the population the two
criteria of classification are independent. If the hypothesis is rejected, we will conclude
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TABLE 12.4.1 Two-Way Classification of a Finite 
Population of Entities

Second

Criterion of First Criterion of Classification Level
Classification

Level 1 2 3 . . . c Total

1

2

3

r

Total NN.c. . .N.3N.2N.1

Nr.Nrc
. . .Nr3Nr2Nr1

ooooooo

N3.N3c
. . .N33N32N31

N2.N2c
. . .N23N22N21

N1.N1c
. . .N13N12N11



that the two criteria of classification are not independent. A sample of size n will be drawn
from the population of entities, and the frequency of occurrence of entities in the sample
corresponding to the cells formed by the intersections of the rows and columns of Table
12.4.1 along with the marginal totals will be displayed in a table such as Table 12.4.2.

Calculating the Expected Frequencies The expected frequency, under
the null hypothesis that the two criteria of classification are independent, is calculated
for each cell.

We learned in Chapter 3 (see Equation 3.4.4) that if two events are independent,
the probability of their joint occurrence is equal to the product of their individual prob-
abilities. Under the assumption of independence, for example, we compute the probabil-
ity that one of the n subjects represented in Table 12.4.2 will be counted in Row 1 and
Column 1 of the table (that is, in Cell 11) by multiplying the probability that the sub-
ject will be counted in Row 1 by the probability that the subject will be counted in Col-
umn 1. In the notation of the table, the desired calculation is

To obtain the expected frequency for Cell 11, we multiply this probability by the total
number of subjects, n. That is, the expected frequency for Cell 11 is given by

Since the n in one of the denominators cancels into numerator n, this expression reduces to

In general, then, we see that to obtain the expected frequency for a given cell, we mul-
tiply the total of the row in which the cell is located by the total of the column in which
the cell is located and divide the product by the grand total.

1n1.21n.12
n

an1.
n
b an.1

n
b 1n2

an1.
n
b an.1

n
b
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TABLE 12.4.2 Two-Way Classification of a Sample 
of Entities

Second

Criterion of First Criterion of Classification Level
Classification

Level 1 2 3 . . . c Total

1

2

3

r

Total nn.c. . .n.3n.2n.1

nr.nrc
. . .nr 3nr 2nr1

oooooo

n3.n3c
. . .n33n32n31

n2.n2c
. . .n 23n22n21

n1.n1c
. . .n13n12n11



Observed Versus Expected Frequencies The expected frequencies and
observed frequencies are compared. If the discrepancy is sufficiently small, the null hypoth-
esis is tenable. If the discrepancy is sufficiently large, the null hypothesis is rejected, and
we conclude that the two criteria of classification are not independent. The decision as to
whether the discrepancy between observed and expected frequencies is sufficiently large
to cause rejection of will be made on the basis of the size of the quantity computed
when we use Equation 12.2.4, where and refer, respectively, to the observed and
expected frequencies in the cells of Table 12.4.2. It would be more logical to designate the
observed and expected frequencies in these cells by and but to keep the notation
simple and to avoid the introduction of another formula, we have elected to use the sim-
pler notation. It will be helpful to think of the cells as being numbered from 1 to k, where
1 refers to Cell 11 and k refers to Cell rc. It can be shown that as defined in this man-
ner is distributed approximately as with degrees of freedom when the
null hypothesis is true. If the computed value of is equal to or larger than the tabulated
value of for some the null hypothesis is rejected at the level of significance. The
hypothesis testing procedure is illustrated with the following example.

EXAMPLE 12.4.1

In 1992, the U.S. Public Health Service and the Centers for Disease Control and Pre-
vention recommended that all women of childbearing age consume 400 mg of folic acid
daily to reduce the risk of having a pregnancy that is affected by a neural tube defect
such as spina bifida or anencephaly. In a study by Stepanuk et al. (A-3), 693 pregnant
women called a teratology information service about their use of folic acid supplemen-
tation. The researchers wished to determine if preconceptional use of folic acid and race
are independent. The data appear in Table 12.4.3.

Solution:
1. Data. See Table 12.4.3.

2. Assumptions. We assume that the sample available for analysis is equiv-
alent to a simple random sample drawn from the population of interest.

aa,x2
X2

1r - 121c - 12x2
X2

Eij,Oij

EiOi

H0
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TABLE 12.4.3 Race of Pregnant Caller and Use of 
Folic Acid

Preconceptional Use of Folic Acid

Yes No Total

White 260 299 559

Black 15 41 56

Other 7 14 21

Total 282 354 636

Source: Kathleen M. Stepanuk, Jorge E. Tolosa, Dawneete Lewis, 
Victoria Meyers, Cynthia Royds, Juan Carlos Saogal, and Ron Librizzi,
“Folic Acid Supplementation Use Among Women Who Contact a Teratol-
ogy Information Service,” American Journal of Obstetrics and Gynecol-
ogy, 187 (2002), 964–967.



3. Hypotheses.

Race and preconceptional use of folic acid are independent.
The two variables are not independent.

Let .

4. Test statistic. The test statistic is

5. Distribution of test statistic. When is true, is distributed ap-
proximately as with 
2 degrees of freedom.

6. Decision rule. Reject if the computed value of is equal to or
greater than 5.991.

7. Calculation of test statistic. The expected frequency for the first cell is
. The other expected frequencies are calcu-

lated in a similar manner. Observed and expected frequencies are dis-
played in Table 12.4.4. From the observed and expected frequencies we
may compute

8. Statistical decision. We reject since 

9. Conclusion. We conclude that is false, and that there is a relationship
between race and preconceptional use of folic acid.

10. p value. Since  7.378 6 9.08960 6 9.210, .01 6 p 6 .025.

H0

9.08960 7 5.991.H0

= .59461 + .47368 + . . . + .45647 = 9.08960

=
1260 - 247.8622

247.86
+
1299 - 311.1422

311.14
+ . . . +

114 - 11.6922
11.69

X 2 =a c 1Oi - Ei22
Ei

d

1559 * 2822>636 = 247.86

X2H0

1r - 121c - 12 = 13 - 1212 - 12 = 122112 =x2
X2H0

X 2 = a
k

i=1
c 1Oi - Ei22

Ei
d

a = .05

HA:
H0:
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TABLE 12.4.4 Observed and Expected Frequencies
for Example 12.4.1

Preconceptional Use of Folic Acid

Yes No Total

White 260 (247.86) 299 (311.14) 559

Black 15 (24.83) 41 (31.17) 56

Other 7 (9.31) 14 (11.69) 21

Total 282 354 636
■



Computer Analysis The computer may be used to advantage in calculating 
for tests of independence and tests of homogeneity. Figure 12.4.1 shows the procedure
and printout for Example 12.4.1 when the MINITAB program for computing from
contingency tables is used. The data were entered into MINITAB Columns 1 and 2, cor-
responding to the columns of Table 12.4.3.

We may use SAS® to obtain an analysis and printout of contingency table data by
using the PROC FREQ statement. Figure 12.4.2 shows a partial SAS® printout reflecting
the analysis of the data of Example 12.4.1.

X2

X2
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FIGURE 12.4.1 MINITAB procedure and output for chi-square analysis of data in Table 12.4.3.

Data:

C1: 260 15 7
C2: 299 41 14

Dialog Box: Session command:

Stat ➤ Tables ➤ Chi-square Test MTB > CHISQUARE C1-C3

Type C1-C2 in Columns containing the table.
Click OK.

Output:

Chi-Square Test: C1, C2

Expected counts are printed below observed counts

C1 C2 Total
1 260 299 559

247.86 311.14

2 15 41 56
24.83 31.17

3 7 14 21
9.31 11.69

Total 282 354 636

Chi-Sq = 0.595 + 0.474 +
3.892 + 3.100 +
0.574 + 0.457 = 9.091

DF = 2, P-Value = 0.011
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The SAS System

The FREQ Procedure

Table of race by folic

race folic
Frequency
Percent
Row Pct
Col Pct No Yes Total
-----------------------------
Black 41 15 56

6.45 2.36 8.81
73.21 26.79
11.58 5.32

-----------------------------
Other 14 7 21

2.20 1.10 3.30
66.67 33.33
3.95 2.48

-----------------------------
White 299 260 559

47.01 40.88 87.89
53.49 46.51
84.46 92.20

-----------------------------
Total 354 282 636

55.66 44.34 100.00

Statistics for Table of race by folic

Statistic DF Value Prob
----------------------------------------------------------
Chi-Square 2 9.0913 0.0106
Likelihood Ratio Chi-Square 2 9.4808 0.0087
Mantel—Haenszel Chi-Square 1 8.9923 0.0027
Phi Coefficient 0.1196
Contingency Coefficient 0.1187
Cramer’s V 0.1196

Sample Size = 636

FIGURE 12.4.2 Partial SAS® printout for the chi-square analysis of the data from 
Example 12.4.1.



Note that the SAS® printout shows, in each cell, the percentage that cell frequency
is of its row total, its column total, and the grand total. Also shown, for each row and
column total, is the percentage that the total is of the grand total. In addition to the 
statistic, SAS® gives the value of several other statistics that may be computed from con-
tingency table data. One of these, the Mantel–Haenszel chi-square statistic, will be dis-
cussed in a later section of this chapter.

Small Expected Frequencies The problem of small expected frequencies
discussed in the previous section may be encountered when analyzing the data of con-
tingency tables. Although there is a lack of consensus on how to handle this prob-
lem, many authors currently follow the rule given by Cochran (5). He suggests that
for contingency tables with more than 1 degree of freedom a minimum expectation
of 1 is allowable if no more than 20 percent of the cells have expected frequencies
of less than 5. To meet this rule, adjacent rows and/or adjacent columns may be com-
bined when to do so is logical in light of other considerations. If is based on less
than 30 degrees of freedom, expected frequencies as small as 2 can be tolerated. We
did not experience the problem of small expected frequencies in Example 12.4.1, since
they were all greater than 5.

The Contingency Table Sometimes each of two criteria of classifica-
tion may be broken down into only two categories, or levels. When data are cross-
classified in this manner, the result is a contingency table consisting of two rows and
two columns. Such a table is commonly referred to as a table. The value of 
may be computed by first calculating the expected cell frequencies in the manner dis-
cussed above. In the case of a contingency table, however, may be calculated
by the following shortcut formula:

(12.4.1)

where a, b, c, and d are the observed cell frequencies as shown in Table 12.4.5. When
we apply the rule for finding degrees of freedom to a table, the
result is 1 degree of freedom. Let us illustrate this with an example.

2 * 21r - 121c - 12
X 2 =

n1ad - bc221a + c21b + d21a + b21c + d2
X22 * 2

X22 * 2

2 : 2

X2

X2
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TABLE 12.4.5 A 2 � 2 Contingency Table

Second Criterion
First Criterion of Classification

of Classification 1 2 Total

1 a b
2 c d

Total nb + da + c

c + d

a + b



EXAMPLE 12.4.2

According to Silver and Aiello (A-4), falls are of major concern among polio survivors.
Researchers wanted to determine the impact of a fall on lifestyle changes. Table 12.4.6
shows the results of a study of 233 polio survivors on whether fear of falling resulted in
lifestyle changes.

Solution:
1. Data. From the information given we may construct the contin-

gency table displayed as Table 12.5.6.

2. Assumptions. We assume that the sample is equivalent to a simple ran-
dom sample.

3. Hypotheses.

: Fall status and lifestyle change because of fear of falling are
independent.
: The two variables are not independent.

Let

4. Test statistic. The test statistic is

5. Distribution of test statistic. When is true, is distributed approxi-
mately as with 
degree of freedom.

6. Decision rule. Reject if the computed value of is equal to or
greater than 3.841.

7. Calculation of test statistic. By Equation 12.4.1 we compute

8. Statistical decision. We reject since 31.7391 7 3.841.H0

X2 =
2333113121362 - 1522114242114521882118321502 = 31.7391

X2H0

112112 = 11r - 121c - 12 = 12 - 1212 - 12 =x2
X2H0

X2 = a
k

i=1
c 1Oi - Ei22

Ei
d

a = .05.

H1

H0

2 * 2
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TABLE 12.4.6 Contingency Table for the Data of Example 12.4.2

Made Lifestyle Changes Because of Fear of Falling

Yes No Total

Fallers 131 52 183

Nonfallers 14 36 50

Total 145 88 233

Source: J. K. Silver and D. D. Aiello, “Polio Survivors: Falls and Subsequent Injuries,”
American Journal of Physical Medicine and Rehabilitation, 81 (2002), 567–570.



9. Conclusion. We conclude that is false, and that there is a relationship
between experiencing a fall and changing one’s lifestyle because of fear of
falling.

10. p value. Since ■

Small Expected Frequencies The problems of how to handle small
expected frequencies and small total sample sizes may arise in the analysis of 
contingency tables. Cochran (5) suggests that the test should not be used if 
or if and any expected frequency is less than 5. When , an expected
cell frequency as small as 1 can be tolerated.

Yates’s Correction The observed frequencies in a contingency table are discrete
and thereby give rise to a discrete statistic, which is approximated by the distri-
bution, which is continuous. Yates (6) in 1934 proposed a procedure for correcting for
this in the case of tables. The correction, as shown in Equation 12.4.2, consists
of subtracting half the total number of observations from the absolute value of the quan-
tity before squaring. That is,

(12.4.2)

It is generally agreed that no correction is necessary for larger contingency tables.
Although Yates’s correction for tables has been used extensively in the past, more
recent investigators have questioned its use. As a result, some practitioners recommend
against its use.

We may, as a matter of interest, apply the correction to our current example. Using
Equation 12.4.2 and the data from Table 12.4.6, we may compute

As might be expected, with a sample this large, the difference in the two results is not
dramatic.

Tests of Independence: Characteristics The characteristics of a chi-
square test of independence that distinguish it from other chi-square tests are as follows:

1. A single sample is selected from a population of interest, and the subjects or objects
are cross-classified on the basis of the two variables of interest.

2. The rationale for calculating expected cell frequencies is based on the probability
law, which states that if two events (here the two criteria of classification) are inde-
pendent, the probability of their joint occurrence is equal to the product of their
individual probabilities.

3. The hypotheses and conclusions are stated in terms of the independence (or lack
of independence) of two variables.

X2 =
2333|113121362 - 15221142| - .51233242114521882118321502 = 29.9118

2 * 2

X 2
corrected =

n1|ad - bc | - .5n221a + c21b + d21a + b21c + d2
ad - bc

2 * 2

x2X2,

n = 4020 6 n 6 40
n 6 20x2

2 * 2

31.7391 7 7.879, p 6 .005.

H0
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EXERCISES

In the exercises that follow perform the test at the indicated level of significance and determine
the p value.

12.4.1 In the study by Silver and Aiello (A-4) cited in Example 12.4.2, a secondary objective was to
determine if the frequency of falls was independent of wheelchair use. The following table gives
the data for falls and wheelchair use among the subjects of the study.

Wheelchair Use

Yes No

Fallers 62 121
Nonfallers 18 32

Do these data provide sufficient evidence to warrant the conclusion that wheelchair use and falling
are related? Let 

12.4.2 Sternal surgical site infection (SSI) after coronary artery bypass graft surgery is a complication
that increases patient morbidity and costs for patients, payers, and the health care system. Segal
and Anderson (A-5) performed a study that examined two types of preoperative skin preparation
before performing open heart surgery. These two preparations used aqueous iodine and insoluble
iodine with the following results.

Comparison of Aqueous and Insoluble Preps

Prep Group Infected Not Infected

Aqueous iodine 14 94
Insoluble iodine 4 97

Source: Cynthia G. Segal and Jacqueline J. Anderson, “Preoperative Skin 
Preparation of Cardiac Patients,” AORN Journal, 76 (2002), 8231–827.

Do these data provide sufficient evidence at the level to justify the conclusion that the
type of skin preparation and infection are related?

12.4.3 The side effects of nonsteroidal antiinflammatory drugs (NSAIDs) include problems involving
peptic ulceration, renal function, and liver disease. In 1996, the American College of Rheuma-
tology issued and disseminated guidelines recommending baseline tests (CBC, hepatic panel,
and renal tests) when prescribing NSAIDs. A study was conducted by Rothenberg and Holcomb
(A-6) to determine if physicians taking part in a national database of computerized medical
records performed the recommended baseline tests when prescribing NSAIDs. The researchers
classified physicians in the study into four categories—those practicing in internal medicine,
family practice, academic family practice, and multispeciality groups. The data appear in the
following table.

a = .05

a = .05.
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Source: J. K. Silver and D. D. Aiello, “Polio Survivors: Falls and
Subsequent Injuries,” American Journal of Physical Medicine and
Rehabilitation, 81 (2002), 567–570.



Performed Baseline Tests

Practice Type Yes No

Internal medicine 294 921
Family practice 98 2862
Academic family practice 50 3064
Multispecialty groups 203 2652

Do the data above provide sufficient evidence for us to conclude that type of practice and per-
formance of baseline tests are related? Use 

12.4.4 Boles and Johnson (A-7) examined the beliefs held by adolescents regarding smoking and weight.
Respondents characterized their weight into three categories: underweight, overweight, or appro-
priate. Smoking status was categorized according to the answer to the question, “Do you currently
smoke, meaning one or more cigarettes per day?” The following table shows the results of a tele-
phone study of adolescents in the age group 12–17.

Smoking

Yes No

Underweight 17 97
Overweight 25 142
Appropriate 96 816

Do the data provide sufficient evidence to suggest that weight perception and smoking status are
related in adolescents? 

12.4.5 A sample of 500 college students participated in a study designed to evaluate the level of college stu-
dents’ knowledge of a certain group of common diseases. The following table shows the students clas-
sified by major field of study and level of knowledge of the group of diseases:

Knowledge of
Diseases

Major Good Poor Total

Premedical 31 91 122
Other 19 359 378

Total 50 450 500

Do these data suggest that there is a relationship between knowledge of the group of diseases and
major field of study of the college students from which the present sample was drawn? Let

12.4.6 The following table shows the results of a survey in which the subjects were a sample of 300
adults residing in a certain metropolitan area. Each subject was asked to indicate which of three
policies they favored with respect to smoking in public places.

a = .05.

a = .05.

a = .01.

622 CHAPTER 12 THE CHI-SQUARE DISTRIBUTION AND THE ANALYSIS OF FREQUENCIES

Source: Sharon M. Boles and Patrick B. Johnson, “Gender,
Weight Concerns, and Adolescent Smoking,” Journal of Addictive
Diseases, 20 (2001), 5–14.

Source: Ralph Rothenberg and
John P. Holcomb, “Guidelines 
for Monitoring of NSAIDs: Who
Listened?,” Journal of Clinical
Rheumatology, 6 (2000), 258–265.



Policy Favored

Smoking
Highest No Allowed in No
Education Restrictions Designated Smoking No
Level on Smoking Areas Only at All Opinion Total

College graduate 5 44 23 3 75
High-school graduate 15 100 30 5 150
Grade-school graduate 15 40 10 10 75

Total 35 184 63 18 300

Can one conclude from these data that, in the sampled population, there is a relationship between
level of education and attitude toward smoking in public places? Let 

12.5 TESTS OF HOMOGENEITY

A characteristic of the examples and exercises presented in the last section is that, in each
case, the total sample was assumed to have been drawn before the entities were classified
according to the two criteria of classification. That is, the observed number of entities
falling into each cell was determined after the sample was drawn. As a result, the row and
column totals are chance quantities not under the control of the investigator. We think of
the sample drawn under these conditions as a single sample drawn from a single popula-
tion. On occasion, however, either row or column totals may be under the control of the
investigator; that is, the investigator may specify that independent samples be drawn from
each of several populations. In this case, one set of marginal totals is said to be fixed, while
the other set, corresponding to the criterion of classification applied to the samples, is ran-
dom. The former procedure, as we have seen, leads to a chi-square test of independence.
The latter situation leads to a chi-square test of homogeneity. The two situations not only
involve different sampling procedures; they lead to different questions and null hypothe-
ses. The test of independence is concerned with the question: Are the two criteria of clas-
sification independent? The homogeneity test is concerned with the question: Are the sam-
ples drawn from populations that are homogeneous with respect to some criterion of
classification? In the latter case the null hypothesis states that the samples are drawn from
the same population. Despite these differences in concept and sampling procedure, the two
tests are mathematically identical, as we see when we consider the following example.

Calculating Expected Frequencies Either the row categories or the column
categories may represent the different populations from which the samples are drawn. If,
for example, three populations are sampled, they may be designated as populations 1, 2, and
3, in which case these labels may serve as either row or column headings. If the variable
of interest has three categories, say, A, B, and C, these labels may serve as headings for
rows or columns, whichever is not used for the populations. If we use notation similar to
that adopted for Table 12.4.2, the contingency table for this situation, with columns used to
represent the populations, is shown as Table 12.5.1. Before computing our test statistic we

a = .05.
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need expected frequencies for each of the cells in Table 12.5.1. If the populations are indeed
homogeneous, or, equivalently, if the samples are all drawn from the same population, with
respect to the categories A, B, and C, our best estimate of the proportion in the combined
population who belong to category A is By the same token, if the three populations
are homogeneous, we interpret this probability as applying to each of the populations indi-
vidually. For example, under the null hypothesis, is our best estimate of the probability
that a subject picked at random from the combined population will belong to category A.
We would expect, then, to find of those in the sample from population 1 to belong
to category A, of those in the sample from population 2 to belong to category A,
and of those in the sample from population 3 to belong to category A. These cal-
culations yield the expected frequencies for the first row of Table 12.5.1. Similar reasoning
and calculations yield the expected frequencies for the other two rows.

We see again that the shortcut procedure of multiplying appropriate marginal totals
and dividing by the grand total yields the expected frequencies for the cells.

From the data in Table 12.5.1 we compute the following test statistic:

EXAMPLE 12.5.1

Narcolepsy is a disease involving disturbances of the sleep–wake cycle. Members of the
German Migraine and Headache Society (A-8) studied the relationship between migraine
headaches in 96 subjects diagnosed with narcolepsy and 96 healthy controls. The results
are shown in Table 12.5.2. We wish to know if we may conclude, on the basis of these

X2 = a
k

i=1
c 1Oi - Ei22

Ei
d

n.31nA.>n2n.21nA.>n2 n.11nA.>n2
nA.

nA.>n.
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TABLE 12.5.1 A Contingency Table for Data for a
Chi-Square Test of Homogeneity

Population

Variable Category 1 2 3 Total

A
B
C

Total nn.3n.2n.1

nC.nC3nC2nC1

nB.nB3nB2nB1

nA.nA3nA2nA1

TABLE 12.5.2 Frequency of Migraine Headaches
by Narcolepsy Status

Reported Migraine Headaches

Yes No Total

Narcoleptic subjects 21 75 96

Healthy controls 19 77 96

Total 40 152 192 

Source: The DMG Study Group,
“Migraine and Idiopathic
Narcolepsy—A Case-Control Study,”
Cephalagia, 23 (2003), 786–789.



data, that the narcolepsy population and healthy populations represented by the samples
are not homogeneous with respect to migraine frequency.

Solution:
1. Data. See Table 12.5.2.

2. Assumptions. We assume that we have a simple random sample from
each of the two populations of interest.

3. Hypotheses.

The two populations are homogeneous with respect to migraine 
frequency.

The two populations are not homogeneous with respect to
migraine frequency.

Let

4. Test statistic. The test statistic is

5. Distribution of test statistic. If is true, is distributed approxi-
mately as with degree of freedom.

6. Decision rule. Reject if the computed value of is equal to or
greater than 3.841.

7. Calculation of test statistic. The MINITAB output is shown in Figure
12.5.1.

X2H0

12 - 1212 - 12 = 112112 = 1x2
X2H0

X 2 = g31Oi - Ei22>Ei4
a = .05.

HA:

H0:
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FIGURE 12.5.1 MINITAB output for Example 12.5.1.

Chi-Square Test

Expected counts are printed below observed counts

Rows: Narcolepsy Columns: Migraine

No Yes All

No 77 19 96
76.00 20.00 96.00

Yes 75 21 96
76.00 20.00 96.00

All 152 40 192
152.00 40.00 192.00

Chi-Square = 0.126, DF = 1, P-Value = 0.722



8. Statistical decision. Since .126 is less than the critical value of 3.841, we
are unable to reject the null hypothesis.

9. Conclusion. We conclude that the two populations may be homogeneous
with respect to migraine frequency.

10. p value. From the MINITAB output we see that p � .722. ■

Small Expected Frequencies The rules for small expected frequencies given
in the previous section are applicable when carrying out a test of homogeneity.

In summary, the chi-square test of homogeneity has the following characteristics:

1. Two or more populations are identified in advance, and an independent sample is
drawn from each.

2. Sample subjects or objects are placed in appropriate categories of the variable of
interest.

3. The calculation of expected cell frequencies is based on the rationale that if the pop-
ulations are homogeneous as stated in the null hypothesis, the best estimate of the
probability that a subject or object will fall into a particular category of the variable
of interest can be obtained by pooling the sample data.

4. The hypotheses and conclusions are stated in terms of homogeneity (with respect
to the variable of interest) of populations.

Test of Homogeneity and The chi-square test of homogene-
ity for the two-sample case provides an alternative method for testing the null hypothe-
sis that two population proportions are equal. In Section 7.6, it will be recalled, we
learned to test against by means of the statistic

where is obtained by pooling the data of the two independent samples available for
analysis.

Suppose, for example, that in a test of against the sam-
ple data were as follows: When we pool the
sample data we have

and

which is significant at the .05 level since it is greater than the critical value of 1.96.

z =
.60 - .40

A 1.490921.50912
100

+
1.490921.50912

120

= 2.95469

p =
.6011002 + .4011202

100 + 120
=

108

220
= .4909

Np2 = .40.n 2 = 120,Np1 = .60n1 = 100,
HA: p1 Z p2,H0: p1 = p2

p

z =
1 Np1 - Np22 - 1 Np1 - Np220
Ap11 - p2

n1
+

p11 - p2
n2

HA: p1 Z p2H0: p1 = p2

H0: p1 � p2
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If we wish to test the same hypothesis using the chi-square approach, our contin-
gency table will be

Characteristic Present

Sample Yes No Total

1 60 40 100
2 48 72 120

Total 108 112 220

By Equation 12.4.1 we compute

which is significant at the .05 level because it is greater than the critical value of
3.841. We see, therefore, that we reach the same conclusion by both methods. This
is not surprising because, as explained in Section 12.2, We note that

and that 

EXERCISES

In the exercises that follow perform the test at the indicated level of significance and determine
the p value.

12.5.1 Refer to the study by Carter et al. (A-9), who investigated the effect of age at onset of bipolar dis-
order on the course of the illness. One of the variables studied was subjects’ family history. Table
3.4.1 shows the frequency of a family history of mood disorders in the two groups of interest:
early age at onset (18 years or younger) and later age at onset (later than 18 years).

Family History of Mood
Disorders Early Later Total

Negative (A) 28 35 63
Bipolar disorder (B) 19 38 57
Unipolar (C) 41 44 85
Unipolar and bipolar (D) 53 60 113

Total 141 177 318

Source: Tasha D. Carter, Emanuela Mundo, Sagar V. Parkh, and James L. Kennedy,
“Early Age at Onset as a Risk Factor for Poor Outcome of Bipolar Disorder,” Journal
of Psychiatric Research, 37 (2003), 297–303.

Can we conclude on the basis of these data that subjects 18 or younger differ from subjects older
than 18 with respect to family histories of mood disorders? Let a = .05.

7 181L2… 181E2

3.841 = 11.9622.8.7302 = 12.9546922 x2112 = z2.

X2 =
220316021722 - 140214824211082111221100211202 = 8.7302
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12.5.2 Coughlin et al. (A-10) examined breast and cervical screening practices of Hispanic and non-
Hispanic women in counties that approximate the U.S. southern border region. The study used
data from the Behavioral Risk Factor Surveillance System surveys of adults ages 18 years or
older conducted in 1999 and 2000. The following table shows the number of observations of
Hispanic and non-Hispanic women who had received a mammogram in the past 2 years cross-
classified by marital status.

Marital Status Hispanic Non-Hispanic Total

Currently married 319 738 1057
Divorced or separated 130 329 459
Widowed 88 402 490
Never married or living as 41 95 136

an unmarried couple

Total 578 1564 2142

Source: Steven S. Coughlin, Robert J. Uhler, Thomas Richards, and Katherine
M. Wilson, “Breast and Cervical Cancer Screening Practices Among Hispanic
and Non-Hispanic Women Residing Near the United States–Mexico Border,
1999–2000,” Family and Community Health, 26, (2003), 130–139.

We wish to know if we may conclude on the basis of these data that marital status and ethnicity
(Hispanic and non-Hispanic) in border counties of the southern United States are not homoge-
neous. Let 

12.5.3 Swor et al. (A-11) examined the effectiveness of cardiopulmonary resuscitation (CPR) training in peo-
ple over 55 years of age. They compared the skill retention rates of subjects in this age group who
completed a course in traditional CPR instruction with those who received chest-compression–only
cardiopulmonary resuscitation (CC-CPR). Independent groups were tested 3 months after training.
Among the 27 subjects receiving traditional CPR, 12 were rated as competent. In the CC-CPR group,
15 out of 29 were rated competent. Do these data provide sufficient evidence for us to conclude that
the two populations are not homogeneous with respect to competency rating 3 months after training?
Let

12.5.4 In an air pollution study, a random sample of 200 households was selected from each of two com-
munities. A respondent in each household was asked whether or not anyone in the household was
bothered by air pollution. The responses were as follows:

Any Member of Household
Bothered by Air Pollution?

Community Yes No Total

I 43 157 200
II 81 119 200

Total 124 276 400

Can the researchers conclude that the two communities differ with respect to the variable of
interest? Let a = .05.

a = .05.

a = .05.
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12.5.5 In a simple random sample of 250 industrial workers with cancer, researchers found that 102 had
worked at jobs classified as “high exposure” with respect to suspected cancer-causing agents. Of
the remainder, 84 had worked at “moderate exposure” jobs, and 64 had experienced no known expo-
sure because of their jobs. In an independent simple random sample of 250 industrial workers from
the same area who had no history of cancer, 31 worked in “high exposure” jobs, 60 worked in
“moderate exposure” jobs, and 159 worked in jobs involving no known exposure to suspected
cancer-causing agents. Does it appear from these data that persons working in jobs that expose them
to suspected cancer-causing agents have an increased risk of contracting cancer? Let 

12.6 THE FISHER EXACT TEST

Sometimes we have data that can be summarized in a contingency table, but these
data are derived from very small samples. The chi-square test is not an appropriate
method of analysis if minimum expected frequency requirements are not met. If, for
example, n is less than 20 or if n is between 20 and 40 and one of the expected frequen-
cies is less than 5, the chi-square test should be avoided.

A test that may be used when the size requirements of the chi-square test are not
met was proposed in the mid-1930s almost simultaneously by Fisher (7, 8), Irwin (9),
and Yates (10). The test has come to be known as the Fisher exact test. It is called exact
because, if desired, it permits us to calculate the exact probability of obtaining the
observed results or results that are more extreme.

Data Arrangement When we use the Fisher exact test, we arrange the data in
the form of a contingency table like Table 12.6.1. We arrange the frequencies in
such a way that and choose the characteristic of interest so that 

Some theorists believe that Fisher’s exact test is appropriate only when both mar-
ginal totals of Table 12.6.1 are fixed by the experiment. This specific model does not
appear to arise very frequently in practice. Many experimenters, therefore, use the test
when both marginal totals are not fixed.

Assumptions The following are the assumptions for the Fisher exact test.

1. The data consist of A sample observations from population 1 and B sample obser-
vations from population 2.

2. The samples are random and independent.

3. Each observation can be categorized as one of two mutually exclusive types.

a>A 7 b>B.A 7 B
2 * 2

2 * 2

a = .05.
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TABLE 12.6.1 A 2 � 2 Contingency Table for the Fisher Exact Test

With Without

Sample Characteristic Characteristic Total

1 a A
2 b B

Total A + BA + B - a - ba + b

B - b

A - a



Hypotheses The following are the null hypotheses that may be tested and their
alternatives.

1. (Two-sided)

: The proportion with the characteristic of interest is the same in both popula-
tions; that is, 
: The proportion with the characteristic of interest is not the same in both
populations;

2. (One-sided)

: The proportion with the characteristic of interest in population 1 is less than
or the same as the proportion in population 2; 
: The proportion with the characteristic of interest is greater in population 1
than in population 2; 

Test Statistic The test statistic is b, the number in sample 2 with the character-
istic of interest.

Decision Rule Finney (11) has prepared critical values of b for Latscha
(12) has extended Finney’s tables to accommodate values of A up to 20. Appendix Table
J gives these critical values of b for A between 3 and 20, inclusive. Significance levels
of .05, .025, .01, and .005 are included. The specific decision rules are as follows:

1. Two-sided test Enter Table J with A, B, and a. If the observed value of b is equal
to or less than the integer in a given column, reject at a level of significance equal
to twice the significance level shown at the top of that column. For example, sup-
pose , and the observed value of b is 1. We can reject the null
hypothesis at the the and the levels of
significance, but not at the level.

2. One-sided test Enter Table J with A, B, and a. If the observed value of b is less than
or equal to the integer in a given column, reject at the level of significance shown
at the top of that column. For example, suppose that , and the
observed value of b is 3. We can reject the null hypothesis at the .05 and .025 levels
of significance, but not at the .01 or .005 levels.

Large-Sample Approximation For sufficiently large samples we can test the
null hypothesis of the equality of two population proportions by using the normal approx-
imation. Compute

(12.6.1)

where

(12.6.2)

and compare it for significance with appropriate critical values of the standard normal dis-
tribution. The use of the normal approximation is generally considered satisfactory if a,

pN = 1a + b2>1A + B2
z =

1a>A2 - 1b>B22pN 11 - pN 211>A + 1>B2

A = 16, B = 8, a = 4
H0

21.0052 = .01
21.012 = .0221.0252 = .05,21.052 = .10,

A = 8, B = 7, a = 7

H0

A … 15.

p1 7 p2.
HA

p
1
… p2.

H0

p
1
Z p2.

HA

p
1
= p2.

H0
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b, , and are all greater than or equal to 5. Alternatively, when sample sizes
are sufficiently large, we may test the null hypothesis by means of the chi-square test.

Further Reading The Fisher exact test has been the subject of some controversy
among statisticians. Some feel that the assumption of fixed marginal totals is unrealistic
in most practical applications. The controversy then centers around whether the test is
appropriate when both marginal totals are not fixed. For further discussion of this and
other points, see the articles by Barnard (13, 14, 15), Fisher (16), and Pearson (17).

Sweetland (18) compared the results of using the chi-square test with those obtained
using the Fisher exact test for samples of size to He found close
agreement when A and B were close in size and the test was one-sided.

Carr (19) presents an extension of the Fisher exact test to more than two samples
of equal size and gives an example to demonstrate the calculations. Neave (20) presents
the Fisher exact test in a new format; the test is treated as one of independence rather
than of homogeneity. He has prepared extensive tables for use with his approach.

The sensitivity of Fisher’s exact test to minor perturbations in contingency
tables is discussed by Dupont (21).

EXAMPLE 12.6.1

The purpose of a study by Justesen et al. (A-12) was to evaluate the long-term efficacy
of taking indinavir/ritonavir twice a day in combination with two nucleoside reverse tran-
scriptase inhibitors among HIV-positive subjects who were divided into two groups.
Group 1 consisted of patients who had no history of taking protease inhibitors (PI Naïve).
Group 2 consisted of patients who had a previous history taking a protease inhibitor (PI
Experienced). Table 12.6.2 shows whether these subjects remained on the regimen for
the 120 weeks of follow-up. We wish to know if we may conclude that patients classi-
fied as group 1 have a lower probability than subjects in group 2 of remaining on the
regimen for 120 weeks.

2 * 2

A + B = 69.A + B = 3

B - bA - a
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TABLE 12.6.2 Regimen Status at 120 Weeks 
for PI Naïve and PI Experienced Subjects Taking
Indinavir/Ritonavir as Described in Example 12.6.1

Remained in

the Regimen

for 120 Weeks

Total Yes No

1 (PI Naïve) 9 2 7

2 (PA Experienced) 12 8 4

Total 21 10 11

Source: U.S. Justesen, A. M. Lervfing, A. Thomsen, J. A. Lindberg,
C. Pedersen, and P. Tauris, “Low-Dose Indinavir in Combination
with Low-Dose Ritonavir: Steady-State Pharmacokinetics and 
Long-Term Clinical Outcome Follow-Up,” HIV Medicine, 4 (2003),
250–254.



Solution:

1. Data. The data as reported are shown in Table 12.6.2. Table 12.6.3
shows the data rearranged to conform to the layout of Table 12.6.1.
Remaining on the regimen is the characteristic of interest.

2. Assumptions. We presume that the assumptions for application of the
Fisher exact test are met.

3. Hypotheses.

: The proportion of subjects remaining 120 weeks on the regimen
in a population of patients classified as group 2 is the same as or
less than the proportion of subjects remaining on the regimen 120
weeks in a population classified as group 1.
: Group 2 patients have a higher rate than group 1 patients of
remaining on the regimen for 120 weeks.

4. Test statistic. The test statistic is the observed value of b as shown in
Table 12.6.3.

5. Distribution of test statistic. We determine the significance of b by
consulting Appendix Table J.

6. Decision rule. Suppose we let The decision rule, then, is to
reject if the observed value of b is equal to or less than 1, the value
of b in Table J for and 

7. Calculation of test statistic. The observed value of b, as shown in
Table 12.6.3, is 2.

8. Statistical decision. Since , we fail to reject .

9. Conclusion. Since we fail to reject we conclude that the null
hypothesis may be true. That is, it may be true that the rate of remain-
ing on the regimen for 120 weeks is the same or less for the PI experi-
enced group compared to the PI naïve group.

10. p value. We see in Table J that when the value
of has an exact probability of occurring by chance alone, when

is true, greater than .05. ■H0

b = 2
a = 8,B = 9,A = 12,

H0,

H02 7 1

a = .05.a = 8,B = 9,A = 12,
H0

a = .05.

HA

H0
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TABLE 12.6.3 Data of Table 12.6.2 Rearranged to Conform to the 
Layout of Table 12.6.1

Remained in Regimen for 120 Weeks

Yes No Total

2 (PI Experienced)

1 (PI Naïve)

Total 21 = A + B11 = A + B - a - b10 = a + b

9 = B7 = B - b2 = b

12 = A4 = A - a8 = a



Various statistical software programs perform the calculations for the Fisher exact
test.  Figure 12.6.1 shows the results of Example 12.6.1 as computed by SPSS. The exact
p value is provided for both a one-sided and a two-sided test. Based on these results, we
fail to reject H0 (p value � .05), just as we did using the statistical tables in the Appen-
dix. Note that in addition to the Fisher exact test several alternative tests are provided.
The reader should be aware that these alternative tests are not appropriate if the assump-
tions underlying them have been violated.

EXERCISES

12.6.1 The goal of a study by Tahmassebi and Curzon (A-13) was to determine if drooling in children
with cerebral palsy is due to hypersalivation. One of the procedures toward that end was to exam-
ine the salivary buffering capacity of cerebral palsied children and controls. The following table
gives the results.
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FIGURE 12.6.1 SPSS output for Example 12.6.1.

Pl * Remained Cross-Tabulation

Count

Remained

Yes No Total

Pl Experienced 8 4 12
Naive 2 7 9

Total 10 11 21

Chi-Square Tests

Asymp. Sig. Exact Sig. Exact Sig.
Value df (2-sided) (2-sided) (1-sided)

Pearson Chi-Square 4.073b 1 .044
Continuity Correctiona 2.486 1 .115
Likelihood Ratio 4.253 1 .039
Fisher’s Exact Test .080 .056
Linear-by-Linear 3.879 1 .049
Association
N of Valid Cases 21

a. Computed only for a 2 	 2 table

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.29.



Buffering Capacity

Group Medium High

Cerebral palsy 2 8
Control 3 7

Source: J. F. Tahmassebi and M. E. J. Curzon, “The Cause of Drooling in Children with Cerebral Palsy—
Hypersalivation or Swallowing Defect?” International Journal of Paediatric Dentistry, 13 (2003), 106–111.

Test for a significant difference between cerebral palsied children and controls with respect to high
or low buffering capacity. Let and find the p value.

12.6.2 In a study by Xiao and Shi (A-14), researchers studied the effect of cranberry juice in the treat-
ment and prevention of Helicobacter pylori infection in mice. The eradication of Helicobacter
pylori results in the healing of peptic ulcers. Researchers compared treatment with cranberry juice
to “triple therapy (amoxicillin, bismuth subcitrate, and metronidazole) in mice infected with Heli-
cobacter pylori. After 4 weeks, they examined the mice to determine the frequency of eradication
of the bacterium in the two treatment groups. The following table shows the results.

No. of Mice with Helicobacter pylori Eradicated

Yes No

Triple therapy 8 2
Cranberry juice 2 8

Source: Shu Dong Xiao and Tong Shi, “Is Cranberry Juice Effective in the Treatment and Prevention of
Helicobacter Pylori Infection of Mice,” Chinese Journal of Digestive Diseases, 4 (2003), 136–139.

May we conclude, on the basis of these data, that triple therapy is more effective than cranberry
juice at eradication of the bacterium? Let and find the p value.

12.6.3 In a study by Shaked et al. (A-15), researchers studied 26 children with blunt pancreatic injuries.
These injuries occurred from a direct blow to the abdomen, bicycle handlebars, fall from height,
or car accident. Nineteen of the patients were classified as having minor injuries, and seven were
classified as having major injuries. Pseudocyst formation was suspected when signs of clinical
deterioration developed, such as increased abdominal pain, epigastric fullness, fever, and increased
pancreatic enzyme levels. In the major injury group, six of the seven children developed pseudo-
cysts while in the minor injury group, three of the 19 children developed pseudocysts. Is this suf-
ficient evidence to allow us to conclude that the proportion of children developing pseudocysts is
higher in the major injury group than in the minor injury group? Let 

12.7 RELATIVE RISK, ODDS RATIO, AND 
THE MANTEL–HAENSZEL STATISTIC

In Chapter 8 we learned to use analysis of variance techniques to analyze data that arise
from designed experiments, investigations in which at least one variable is manipulated
in some way. Designed experiments, of course, are not the only sources of data that are

a = .01.

a = .05

a = .05
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of interest to clinicians and other health sciences professionals. Another important class
of scientific investigation that is widely used is the observational study.

DEFINITION
An observational study is a scientific investigation in which neither 
the subjects under study nor any of the variables of interest are
manipulated in any way.

An observational study, in other words, may be defined simply as an investigation that
is not an experiment. The simplest form of observational study is one in which there are
only two variables of interest. One of the variables is called the risk factor, or independent
variable, and the other variable is referred to as the outcome, or dependent variable.

DEFINITION
The term risk factor is used to designate a variable that is thought 
to be related to some outcome variable. The risk factor may be a 
suspected cause of some specific state of the outcome variable.

In a particular investigation, for example, the outcome variable might be subjects’
status relative to cancer and the risk factor might be their status with respect to cigarette
smoking. The model is further simplified if the variables are categorical with only two
categories per variable. For the outcome variable the categories might be cancer present
and cancer absent. With respect to the risk factor subjects might be categorized as smok-
ers and nonsmokers.

When the variables in observational studies are categorical, the data pertaining to
them may be displayed in a contingency table, and hence the inclusion of the topic in
the present chapter. We shall limit our discussion to the situation in which the outcome
variable and the risk factor are both dichotomous variables.

Types of Observational Studies There are two basic types of observational
studies, prospective studies and retrospective studies.

DEFINITION
A prospective study is an observational study in which two random
samples of subjects are selected. One sample consists of subjects who
possess the risk factor, and the other sample consists of subjects who
do not possess the risk factor. The subjects are followed into the future
(that is, they are followed prospectively), and a record is kept on the
number of subjects in each sample who, at some point in time, are
classifiable into each of the categories of the outcome variable.

The data resulting from a prospective study involving two dichotomous variables can
be displayed in a contingency table that usually provides information regarding the
number of subjects with and without the risk factor and the number who did and did not

2 * 2

12.7 RELATIVE RISK, ODDS RATIO, AND THE MANTEL–HAENSZEL STATISTIC 635



succumb to the disease of interest as well as the frequencies for each combination of cat-
egories of the two variables.

DEFINITION
A retrospective study is the reverse of a prospective study. The samples
are selected from those falling into the categories of the outcome 
variable. The investigator then looks back (that is, takes a retrospective
look) at the subjects and determines which ones have (or had) and
which ones do not have (or did not have) the risk factor.

From the data of a retrospective study we may construct a contingency table with
frequencies similar to those that are possible for the data of a prospective study.

In general, the prospective study is more expensive to conduct than the retrospective
study. The prospective study, however, more closely resembles an experiment.

Relative Risk The data resulting from a prospective study in which the dependent
variable and the risk factor are both dichotomous may be displayed in a contingency
table such as Table 12.7.1. The risk of the development of the disease among the subjects
with the risk factor is The risk of the development of the disease among the
subjects without the risk factor is We define relative risk as follows.

DEFINITION
Relative risk is the ratio of the risk of developing a disease among
subjects with the risk factor to the risk of developing the disease
among subjects without the risk factor.

We represent the relative risk from a prospective study symbolically as

(12.7.1)

where a, b, c, and d are as defined in Table 12.7.1, and indicates that the relative
risk is computed from a sample to be used as an estimate of the relative risk, RR, for
the population from which the sample was drawn.

RR

RR =
a>1a + b2
c>1c + d2

c>1c + d2.a>1a + b2. 2 * 2
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TABLE 12.7.1 Classification of a Sample of Subjects with Respect
to Disease Status and Risk Factor

Disease Status

Risk Factor Present Absent Total at Risk

Present a b
Absent c d

Total nb + da + c

c + d

a + b



We may construct a confidence interval for RR

(12.7.2)

where is the two-sided z value corresponding to the chosen confidence coefficient and
is computed by Equation 12.4.1.

Interpretation of RR The value of RR may range anywhere between zero and
infinity. A value of 1 indicates that there is no association between the status of the risk
factor and the status of the dependent variable. In most cases the two possible states of the
dependent variable are disease present and disease absent. We interpret an RR of 1 to mean
that the risk of acquiring the disease is the same for those subjects with the risk factor and
those without the risk factor. A value of RR greater than 1 indicates that the risk of acquir-
ing the disease is greater among subjects with the risk factor than among subjects without
the risk factor. An RR value that is less than 1 indicates less risk of acquiring the disease
among subjects with the risk factor than among subjects without the risk factor. For exam-
ple, a risk factor of 2 is taken to mean that those subjects with the risk factor are twice as
likely to acquire the disease as compared to subjects without the risk factor.

We illustrate the calculation of relative risk by means of the following example.

EXAMPLE 12.7.1

In a prospective study of pregnant women, Magann et al. (A-16) collected extensive
information on exercise level of low-risk pregnant working women. A group of 217
women did no voluntary or mandatory exercise during the pregnancy, while a group of
238 women exercised extensively. One outcome variable of interest was experiencing
preterm labor. The results are summarized in Table 12.7.2.

We wish to estimate the relative risk of preterm labor when pregnant women exer-
cise extensively.

Solution: By Equation 12.7.1 we compute

RR =
22>238

18>217
=

.0924

.0829
= 1.1

X2
z a

10011 - a2%CI = RR1;1za>2X 22
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TABLE 12.7.2 Subjects with and without the Risk Factor Who Became Cases of
Preterm Labor

Risk Factor Cases of Preterm Labor Noncases of Preterm Labor Total

Extreme exercising 22 216 238

Not exercising 18 199 217

Total 40 415 455

Source: Everett F. Magann, Sharon F. Evans, Beth Weitz, and John Newnham, “Antepartum, Intrapartum,
and Neonatal Significance of Exercise on Healthy Low-Risk Pregnant Working Women,” Obstetrics and
Gynecology, 99 (2002), 466–472.



These data indicate that the risk of experiencing preterm labor when a
woman exercises heavily is 1.1 times as great as it is among women who do
not exercise at all.

We compute the 95 percent confidence interval for RR as follows. By
Equation 12.4.1, we compute from the data in Table 12.7.2:

By Equation 12.7.2, the lower and upper confidence limits are, respec-
tively, and Since the interval
includes 1, we conclude, at the .05 level of significance, that the population
risk may be 1. In other words, we conclude that, in the population, there may
not be an increased risk of experiencing preterm labor when a pregnant
woman exercises extensively.

The data were processed by NCSS. The results are shown in Figure
12.7.1. The relative risk calculation is shown in the column at the far right
of the output, along with the 95% confidence limits. Because of rounding
errors, these values differ slightly from those given in the example. ■

Odds Ratio When the data to be analyzed come from a retrospective study, relative
risk is not a meaningful measure for comparing two groups. As we have seen, a retro-
spective study is based on a sample of subjects with the disease (cases) and a separate
sample of subjects without the disease (controls or noncases). We then retrospectively
determine the distribution of the risk factor among the cases and controls. Given the results
of a retrospective study involving two samples of subjects, cases, and controls, we may
display the data in a table such as Table 12.7.3, in which subjects are dichotomized
with respect to the presence and absence of the risk factor. Note that the column head-
ings in Table 12.7.3 differ from those in Table 12.7.1 to emphasize the fact that the data
are from a retrospective study and that the subjects were selected because they were either
cases or controls. When the data from a retrospective study are displayed as in Table
12.7.3, the ratio , for example, is not an estimate of the risk of disease for sub-
jects with the risk factor. The appropriate measure for comparing cases and controls in a
retrospective study is the odds ratio. As noted in Chapter 11, in order to understand the

a>1a + b2
2 * 2

1.11+1.96>1.1274 = 1.86.1.11-1.96>1.1274 = .65

X2 =
4553122211992 - 121621182421402141521238212172 = .1274
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Odds Ratio and Relative Risk Section

Common Original Iterated Log Odds Relative

Parameter Odds Ratio Odds Ratio Odds Ratio Ratio Risk

Upper 95% C.L. 2.1350 2.2683 0.7585 2.1192

Estimate 1.1260 1.1207 1.1207 0.1140 1.1144

Lower  95% C.L. 0.5883 0.5606 �0.5305 0.5896

FIGURE 12.7.1 NCSS output for the data in Example 12.7.1.



concept of the odds ratio, we must understand the term odds, which is frequently used
by those who place bets on the outcomes of sporting events or participate in other types
of gambling activities.

DEFINITION
The odds for success are the ratio of the probability of success to the
probability of failure.

We use this definition of odds to define two odds that we can calculate from data
displayed as in Table 12.7.3:

1. The odds of being a case (having the disease) to being a control (not having the dis-
ease) among subjects with the risk factor is 

2. The odds of being a case (having the disease) to being a control (not having the dis-
ease) among subjects without the risk factor is 

We now define the odds ratio that we may compute from the data of a retrospec-
tive study. We use the symbol to indicate that the measure is computed from sam-
ple data and used as an estimate of the population odds ratio, OR.

DEFINITION
The estimate of the population odds ratio is

(12.7.3)

where a, b, c, and d are as defined in Table 12.7.3.

We may construct a confidence interval for OR by the following method:

(12.7.4)

where is the two-sided z value corresponding to the chosen confidence coefficient and
is computed by Equation 12.4.1.X2

za

10011 - a2%CI = OR1;1za>1X2

OR =
a>b
c>d =

ab
bc

OR

3c>1c + d24>3d>1c + d24 = c>d.

3a>1a + b24>3b>1a + b24 = a>b.
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TABLE 12.7.3 Subjects of a Retrospective Study Classified
According to Status Relativeto a Risk Factor and Whether
They Are Cases or Controls

Sample

Risk Factor Cases Controls Total

Present a b
Absent c d

Total nb + da + c

c + d

a + b



Interpretation of the Odds Ratio In the case of a rare disease, the popula-
tion odds ratio provides a good approximation to the population relative risk. Consequently,
the sample odds ratio, being an estimate of the population odds ratio, provides an indirect
estimate of the population relative risk in the case of a rare disease.

The odds ratio can assume values between zero and A value of 1 indicates no
association between the risk factor and disease status. A value less than 1 indicates reduced
odds of the disease among subjects with the risk factor. A value greater than 1 indicates
increased odds of having the disease among subjects in whom the risk factor is present.

EXAMPLE 12.7.2

Toschke et al. (A-17) collected data on obesity status of children ages 5–6 years and the
smoking status of the mother during the pregnancy. Table 12.7.4 shows 3970 subjects
classified as cases or noncases of obesity and also classified according to smoking status
of the mother during pregnancy (the risk factor). We wish to compare the odds of obe-
sity at ages 5–6 among those whose mother smoked throughout the pregnancy with the
odds of obesity at age 5–6 among those whose mother did not smoke during pregnancy.

Solution: The odds ratio is the appropriate measure for answering the question posed.
By Equation 12.7.3 we compute

We see that obese children (cases) are 9.62 times as likely as nonobese chil-
dren (noncases) to have had a mother who smoked throughout the pregnancy.

We compute the 95 percent confidence interval for OR as follows. By
Equation 12.4.1 we compute from the data in Table 12.7.4

X 2 =
397031642134962 - 134221682421132213838214062135642 = 217.6831

OR =
1642134962134221682 = 9.62

q .
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TABLE 12.7.4 Subjects Classified According to Obesity 
Status and Mother’s Smoking Status during Pregnancy

Obesity Status

Smoking Status

During Pregnancy Cases Noncases Total

Smoked throughout 64 342 406

Never smoked 68 3496 3564

Total 132 3838 3970

Source: A. M. Toschke, S. M. Montgomery, U. Pfeiffer, and R. von Kries,
“Early Intrauterine Exposure to Tobacco-Inhaled Products and Obesity,” 
American Journal of Epidemiology, 158 (2003), 1068–1074.



The lower and upper confidence limits for the population OR, respectively,
are and We conclude
with 95 percent confidence that the population OR is somewhere between
7.12 and 13.00. Because the interval does not include 1, we conclude that,
in the population, obese children (cases) are more likely than nonobese
children (noncases) to have had a mother who smoked throughout the
pregnancy.

The data from Example 12.7.2 were processed using SPSS. The results
are shown in Figure 12.7.2. The odds ratio calculation, along with the 95%
confidence limits, are shown in the top line of the Risk Estimate box. These
values differ slightly from those in the example because of rounding error.

■

The Mantel–Haenszel Statistic Frequently when we are studying the rela-
tionship between the status of some disease and the status of some risk factor, we are

9.621+1.96>1217.6831 = 13.00.9.621-1.96>1217.6831 = 7.12
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FIGURE 12.7.2 SPSS output for Example 12.7.2.

Smoking_status * Obsesity_status Cross-Tabulation

Count

Obesity status

Cases Noncases Total

Smoking_status Smoked throughout 64 342 406
Never smoked 68 3496 3564

Total 132 3838 3970

Risk Estimate

95% Confidence 
Interval

Value Lower Upper

Odds Ratio for
Smoking_status
(Smoked throughout 9.621 6.719 13.775
/Never smoked)
For cohort Obesity_ 8.262 5.966 11.441
status � Cases
For cohort Obesity_ .859 .823 .896
status � Noncases
N of Valid Cases 3970



aware of another variable that may be associated with the disease, with the risk factor,
or with both in such a way that the true relationship between the disease status and the
risk factor is masked. Such a variable is called a confounding variable. For example,
experience might indicate the possibility that the relationship between some disease and
a suspected risk factor differs among different ethnic groups. We would then treat eth-
nic membership as a confounding variable. When they can be identified, it is desirable
to control for confounding variables so that an unambiguous measure of the relation-
ship between disease status and risk factor may be calculated. A technique for accom-
plishing this objective is the Mantel–Haenszel (22) procedure, so called in recognition
of the two men who developed it. The procedure allows us to test the null hypothesis
that there is no association between status with respect to disease and risk factor sta-
tus. Initially used only with data from retrospective studies, the Mantel–Haenszel pro-
cedure is also appropriate for use with data from prospective studies, as discussed by
Mantel (23).

In the application of the Mantel–Haenszel procedure, case and control subjects are
assigned to strata corresponding to different values of the confounding variable. The data
are then analyzed within individual strata as well as across all strata. The discussion that
follows assumes that the data under analysis are from a retrospective or a prospective
study with case and noncase subjects classified according to whether they have or do not
have the suspected risk factor. The confounding variable is categorical, with the different
categories defining the strata. If the confounding variable is continuous it must be cat-
egorized. For example, if the suspected confounding variable is age, we might group
subjects into mutually exclusive age categories. The data before stratification may be
displayed as shown in Table 12.7.3.

Application of the Mantel–Haenszel procedure consists of the following steps.

1. Form k strata corresponding to the k categories of the confounding variable. Table
12.7.5 shows the data display for the ith stratum.

2. For each stratum compute the expected frequency of the upper left-hand cell of
Table 12.7.5 as follows:

(12.7.5)ei =
1ai + bi21ai + ci2

ni

ei

642 CHAPTER 12 THE CHI-SQUARE DISTRIBUTION AND THE ANALYSIS OF FREQUENCIES

TABLE 12.7.5 Subjects in the ith Stratum of a Confounding
Variable Classified According to Status Relative to a Risk
Factor and Whether They Are Cases or Controls

Sample

Risk Factor Cases Controls Total

Present

Absent

Total nibi + diai + ci

ci + didici

ai + bibiai



3. For each stratum compute

(12.7.6)

4. Compute the Mantel–Haenszel test statistic, as follows:

(12.7.7)

5. Reject the null hypothesis of no association between disease status and suspected
risk factor status in the population if the computed value of is equal to or
greater than the critical value of the test statistic, which is the tabulated chi-square
value for 1 degree of freedom and the chosen level of significance.

Mantel–Haenszel Estimator of the Common Odds Ratio When
we have k strata of data, each of which may be displayed in a table like Table 12.7.5,
we may compute the Mantel–Haenszel estimator of the common odds ratio, as
follows:

(12.7.8)

When we use the Mantel–Haenszel estimator given by Equation 12.7.4, we assume that,
in the population, the odds ratio is the same for each stratum.

We illustrate the use of the Mantel–Haenszel statistics with the following examples.

EXAMPLE 12.7.3

In a study by LaMont et al. (A-18), researchers collected data on obstructive coronary
artery disease (OCAD), hypertension, and age among subjects identified by a treadmill
stress test as being at risk. In Table 12.7.6, counts on subjects in two age strata are pre-
sented with hypertension as the risk factor and the presence of OCAD as the case/noncase
variable.

Solution:

1. Data. See Table 12.7.6.

2. Assumptions. We assume that the assumptions discussed earlier for the
valid use of the Mantel–Haenszel statistic are met.

ORMH =
a

k

i=1
1aidi>ni2

a
k

i=1
1bici>ni2

ORMH

x2
MH

x2
MH =

aak
i=1

ai - a
k

i=1
eib2

a
k

i=1
yi

x2
MH

yi =
1ai + bi21ci + di21ai + ci21bi + di2

ni
21ni - 12
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3. Hypotheses.

There is no association between the presence of hypertension
and occurrence of OCAD in subjects 55 and under and subjects
over 55.

There is a relationship between the two variables.

4. Test statistic.

as given in Equation 12.7.7.

5. Distribution of test statistic. Chi-square with 1 degree of freedom.

6. Decision rule. Suppose we let Reject if the computed
value of the test statistic is greater than or equal to 3.841.

7. Calculation of test statistic. By Equation 12.7.5 we compute the fol-
lowing expected frequencies:

e2 = 150 + 142150 + 182>88 = 16421682>88 = 49.45

e1 = 121 + 112121 + 162>54 = 13221372>54 = 21.93

H0a = .05.

x2
MH =

aak
i=1

ai - a
k

i=1
eib2

a
k

i=1
yi

HA:

H0:
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TABLE 12.7.6 Patients Stratified by Age and Classified by Status 
Relative to Hypertension (the Risk Factor) and OCAD (Case/Noncase
Variable)

Stratum 1 (55 and under)

Risk Factor

(Hypertension) Cases (OCAD) Noncases Total

Present 21 11 32

Absent 16 6 22

Total 37 17 54

Stratum 2 (over 55)

Risk Factor

(Hypertension) Cases (OCAD) Noncases Total

Present 50 14 64

Absent 18 6 24

Total 68 20 88

Source: Matthew J. Budoff, MD. Used with permission.



By Equation 12.7.6 we compute

Finally, by Equation 12.7.7 we compute

8. Statistical decision. Since , we fail to reject 

9. Conclusion. We conclude that there may not be an association between
hypertension and the occurrence of OCAD.

10. p value. Since , the p value for this test is 

We now illustrate the calculation of the Mantel–Haenszel estimator of the
common odds ratio. ■

EXAMPLE 12.7.4

Let us refer to the data in Table 12.7.6 and compute the common odds ratio.

Solution: From the stratified data in Table 12.7.6 we compute the numerator of the
ratio as follows:

The denominator of the ratio is

Now, by Equation 12.7.7, we compute the common odds ratio:

From these results we estimate that, regardless of age, patients who
have hypertension are less likely to have OCAD than patients who do not
have hypertension. ■

Hand calculation of the Mantel-Haenszel test statistics can prove to be a cumber-
some task.  Fortunately, the researcher can find relief in one of several statistical soft-
ware packages that are available. To illustrate, results from the use of SPSS to process
the data of Example 12.7.3 are shown in Figure 12.7.3. These results differ from those
given in the example because of rounding error.

ORMH =
5.7424

6.1229
= .94

= 6.1229

1b1c1>n12 + 1b2c2>n22 = 311121162>544 + 311421182>884
= 5.7424

1a1d1>n12 + 1a2d2>n22 = 31212162>544 + 31502162>884

p 7 .10..0242 6 2.706

H0..0242 6 3.841

x 2
MH =

3121 + 502 - 121.93 + 49.45242
2.87 + 3.10

= .0242

y2 = 1642124216821202>177442188 - 12 = 3.10

y1 = 1322122213721172>129162154 - 12 = 2.87
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EXERCISES

12.7.1 Davy et al. (A-19) reported the results of a study involving survival from cervical cancer. The
researchers found that among subjects younger than age 50, 16 of 371 subjects had not survived
for 1 year after diagnosis. In subjects age 50 or older, 219 of 376 had not survived for 1 year after
diagnosis. Compute the relative risk of death among subjects age 50 or older. Does it appear from
these data that older subjects diagnosed as having cervical cancer are prone to higher mortality
rates?
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Smoking_status * Obsesity_status * Stratum Cross-Tabulation

Count

Obesity status

Stratum Cases Noncases Total

55 and under Smoking_status Smoked throughout 21 11 32
Never smoked 16 6 22

Total 37 17 54

Over 55 Smoking_status Smoked throughout 50 14 64
Never smoked 18 6 24

Total 68 20 88

Tests of Conditional Independence

Asymp. Sig.
Chi-Squared df (2-sided)

Cochran's .025 1 .875
Mantel-Haenszel .002 1 .961

Mantel-Haenszel Common Odds Ratio Estimate

Estimate .938
In(Estimate) �.064
Std. Error of In(Estimate) .412
Asymp. Sig. (2-sided) .876
Asymp. 95% confidence Common Odds Lower Bound .418
Interval Ratio Upper Bound 2.102

In(Common) Lower Bound �.871
Odds Ratio) Upper Bound .743

FIGURE 12.7.3 SPSS output for Example 12.7.3.



12.7.2 The objective of a prospective study by Stenestrand et al. (A-20) was to compare the mortality rate
following an acute myocardial infarction (AMI) among subjects receiving early revascularization to
the mortality rate among subjects receiving conservative treatments. Among 2554 patients receiving
revascularization within 14 days of AMI, 84 died in the year following the AMI. In the conservative
treatment group (risk factor present), 1751 of 19,358 patients died within a year of AMI. Compute
the relative risk of mortality in the conservative treatment group as compared to the revascularization
group in patients experiencing AMI.

12.7.3 Refer to Example 12.7.2. Toschke et al. (A-17), who collected data on obesity status of children
ages 5–6 years and the smoking status of the mother during the pregnancy, also reported on
another outcome variable: whether the child was born premature (37 weeks or fewer of gesta-
tion). The following table summarizes the results of this aspect of the study. The same risk fac-
tor (smoking during pregnancy) is considered, but a case is now defined as a mother who gave
birth prematurely.

Premature Birth Status

Smoking Status
During Pregnancy Cases Noncases Total

Smoked throughout 36 370 406
Never smoked 168 3396 3564

Total 204 3766 3970

Source: A. M. Toschke, S. M. Montgomery, U. Pfeiffer, and 
R. von Kries, “Early Intrauterine Exposure to Tobacco-Inhaled
Products and Obesity,” American Journal of Epidemiology, 
158 (2003), 1068–1074.

Compute the odds ratio to determine if smoking throughout pregnancy is related to premature birth.
Use the chi-square test of independence to determine if one may conclude that there is an associ-
ation between smoking throughout pregnancy and premature birth. Let 

12.7.4 Sugiyama et al. (A-21) examined risk factors for allergic diseases among 13- and 14-year-old
schoolchildren in Japan. One risk factor of interest was a family history of eating an unbalanced
diet. The following table shows the cases and noncases of children exhibiting symptoms of rhini-
tis in the presence and absence of the risk factor.

Rhinitis

Family History Cases Noncases Total

Unbalanced diet 656 1451 2107
Balanced diet 677 1662 2339

Total 1333 3113 4446

Source: Takako Sugiyama, Kumiya Sugiyama, Masao Toda,
Tastuo Yukawa, Sohei Makino, and Takeshi Fukuda, “Risk Factors
for Asthma and Allergic Diseases Among 13–14-Year-Old 
Schoolchildren in Japan,” Allergology International, 51 (2002),
139–150.

a = .05.
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What is the estimated odds ratio of having rhinitis among subjects with a family history of an
unbalanced diet compared to those eating a balanced diet? Compute the 95 percent confidence
interval for the odds ratio.

12.7.5 According to Holben et al. (A-22), “Food insecurity implies a limited access to or availability of
food or a limited/uncertain ability to acquire food in socially acceptable ways.” These researchers
collected data on 297 families with a child in the Head Start nursery program in a rural area of
Ohio near Appalachia. The main outcome variable of the study was household status relative to
food security. Households that were not food secure are considered to be cases. The risk factor of
interest was the absence of a garden from which a household was able to supplement its food sup-
ply. In the following table, the data are stratified by the head of household’s employment status
outside the home.

Stratum 1 (Employed Outside the Home)

Risk Factor Cases Noncases Total

No garden 40 37 77
Garden 13 38 51

Total 53 75 128

Stratum 2 (Not Employed Outside the Home)

Risk Factor Cases Noncases Total

No garden 75 38 113
Garden 15 33 48

Total 90 71 161

Source: David H. Holben, Ph.D. and John P. Holcomb, Jr., Ph.D. Used with permission.

Compute the Mantel–Haenszel common odds ratio with stratification by employment status. Use
the Mantel–Haenszel chi-square test statistic to determine if we can conclude that there is an asso-
ciation between the risk factor and food insecurity. Let 

12.8 SURVIVAL ANALYSIS

In many clinical studies, an investigator may wish to monitor the progress of patients
from some point in time, such as the time a surgical procedure is performed or a treat-
ment regimen is initiated, until the occurrence of some well-defined event such as death
or cessation of symptoms.

Suppose, for example, that patients who have experienced their first heart attack
are enrolled in a study to assess the effectiveness of two competing medications for the
prevention of a second myocardial infarction. The investigation begins when the first
patient, following his or her first heart attack, is enrolled in the study. The study con-
tinues until each patient in the study experiences one or another of three events: (1) a
myocardial infarction (the event of interest), (2) loss to follow-up for some reason such
as death from a cause other than a heart attack or having moved to another locality, or

a = .05.
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(3) the condition of being alive at the time the investigator decides to terminate the
study.

For each patient in the study, the investigator records the amount of time (in
months, days, years, or some other measures of time) elapsing between the point at which
the patient entered the study and the point at which he or she experienced one of the
terminating events. The time elapsing between enrollment in the study and the experi-
encing of one of the events is referred to as the patient’s survival time. The set of such
survival times recorded during the course of a study is referred to as survival data.

Suppose we have the following information on three of the patients in the study
involving heart-attack patients. Patient A entered the study on January 1, 2002, and had
a myocardial infarction on December 31, 2003. Patient A’s survival time is 24 months.
Patient B entered the study on July 1, 2002, and moved out of state on December 31,
2002. Patient B’s survival time is 6 months. Patient C entered the study on August 1,
2002, and was still alive when the study was terminated on December 31, 2004. Patient
C’s survival time is 29 months. The survival time for patient B is called a censored sur-
vival time, since the terminating event was loss to follow-up rather than the event of
interest. Similarly, since the terminating event for patient C was being alive at the end
of the study, this patient’s survival time is also called a censored survival time. The sur-
vival times for patient B and patient C are called censored data. The experiences of these
three patients may be represented graphically as shown in Figure 12.8.1.

Censored data can arise in a variety of ways. In singly censored data, a fixed num-
ber of subjects enter into a study at the same time and remain in the study until one of
two things occur. First, at the conclusion of the study, not all of the subjects may have
experienced a given condition or endpoint of interest, and therefore their survival times are
not known exactly. This is called type I censoring. Second, the study may be ended after
a certain proportion of subjects have experienced a given condition. Those that did not
experience the condition would not have a known survival time. This is called type II cen-
soring. A third type of censoring leads to progressively censored data. In this type of cen-
soring, the period of the study is fixed, but subjects may enter the experiment at different
times. (For example, in a clinical study, patients can enter the study at any time after diag-
nosis.) Patients may then experience, or not experience, a condition by the end of the study.
Those who did not experience the condition do not have known survival times. This is
called type III censoring. Clearly the details surrounding censored data are complex and
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require much more detailed analysis than can be covered in this text. For those interested
in further reading, we suggest the books by Lee (28) or Hosmer and Lemeshow (34).

Typically, for purposes of analysis, a dichotomous, or indicator, variable is used to
distinguish survival times of those patients who experienced the event of interest from
the censored times of those who did not experience the event of interest because of loss
to follow-up or being alive at the termination of the study.

In studies involving the comparison of two treatments, we are interested in three items
of information for each patient: (1) Which treatment, A or B, was given to the patient? 
(2) For what length of time was the patient observed? (3) Did the patient experience the event
of interest during the study or was he or she either lost to follow-up or alive at the end of
the study? (That is, is the observed time an event time or a censored time?) In studies that
are not concerned with the comparison of treatments or other characteristics of patients, only
the last two items of data are relevant.

Armed with these three items of information, we are able, in studies like our
myocardial infarction example, to estimate the median survival time of the group of
patients who received treatment A and compare it with the estimated median survival time
of the group receiving treatment B. Comparison of the two medians allows us to answer
the following question: Based on the information from our study, which treatment do we
conclude delays for a longer period of time, on the average, the occurrence of the event
of interest? In the case of our example, we may answer the question: Which treatment do
we conclude delays for a longer period of time, on the average, the occurrence of a sec-
ond myocardial infarction? The data collected in follow-up studies such as we have
described may also be used to answer another question of considerable interest to the cli-
nician: What is the estimated probability that a patient will survive for a specified length
of time? The clinician involved in our myocardial infarction study, for example, might
ask, “What is the estimated probability that, following a first heart attack, a patient receiv-
ing treatment A will survive for more than three years?” The methods employed to answer
these questions by using the information collected during a follow-up study are known as
survival analysis methods.

The Kaplan–Meier Procedure Now let us show how we may use the data
usually collected in follow-up studies of the type we have been discussing to estimate
the probability of surviving for a specified length of time. The method we use was intro-
duced by Kaplan and Meier (24) and for that reason is called the Kaplan–Meier proce-
dure. Since the procedure involves the successive multiplication of individual estimated
probabilities, it is sometimes referred to as the product-limit method of estimating sur-
vival probabilities.

As we shall see, the calculations include the computations of proportions of sub-
jects in a sample who survive for various lengths of time. We use these sample propor-
tions as estimates of the probabilities of survival that we would expect to observe in the
population represented by our sample. In mathematical terms we refer to the process as
the estimation of a survivorship function. Frequency distributions and probability distri-
butions may be constructed from observed survival times, and these observed distribu-
tions may show evidence of following some theoretical distribution of known functional
form. When the form of the sampled distribution is unknown, it is recommended that
the estimation of a survivorship function be accomplished by means of a nonparametric
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technique, of which the Kaplan–Meier procedure is one. Nonparametric techniques are
defined and discussed in detail in Chapter 13.

Calculations for the Kaplan–Meier Procedure We let

the number of subjects whose survival times are available

the proportion of subjects surviving at least the first time period 
(day, month, year, etc.)

the proportion of subjects surviving the second time period 
after having survived the first time period

the proportion of subjects surviving the third time period 
after having survived the second time period

the proportion of subjects surviving the kth time period 
after having survived the th time period

We use these proportions, which we may relabel as estimates of
the probability that a subject from the population represented by the sample will survive
time periods k, respectively.

For any time period, we estimate the probability of surviving the
tth time period, as follows:

(12.8.1)

The probability of surviving to time is estimated by

(12.8.2)

We illustrate the use of the Kaplan–Meier procedure with the following example.

EXAMPLE 12.8.1

To assess results and identify predictors of survival, Martini et al. (A-23) reviewed
their total experience with primary malignant tumors of the sternum. They classified
patients as having either low-grade (25 patients) or high-grade (14 patients) tumors.
The event (status), time to event (months), and tumor grade for each patient are shown
in Table 12.8.1. We wish to compare the 5-year survival experience of these two groups
by means of the Kaplan–Meier procedure.

Solution: The data arrangement and necessary calculations are shown in Table 12.8.2.
The entries for the table are obtained as follows.

1. We begin by listing the observed times in order from smallest to largest
in Column 1.

SN1t2 = pN1 * pN2 * . . . * pNt

t, S1t2,
pN t =

number of subjects surviving at least 1t - 12 time periods
who also survive the t th period

number of subjects alive at end of time period 1t - 12
pt,

t11 … t … k2,1, 2, 3, . . . ,

pN1, pN2, pN3, . . . , pNk

1k - 12pk =

...

p3 =

p2 =

p1 =
n =
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2. Column 2 contains an indicator variable that shows vital status

3. In Column 3 we list the number of patients at risk for each time asso-
ciated with the death of a patient. We need only be concerned about the
times at which deaths occur because the survival rate does not change
at censored times.

4. Column 4 contains the number of patients remaining alive just after one
or more deaths.

5. Column 5 contains the estimated conditional probability of surviving,
which is obtained by dividing Column 4 by Column 3. Note that,
although there were two deaths at 15 months in the low-grade group and
two deaths at 9 months in the high-grade group, we calculate only one
survival proportion at these points. The calculations take the two deaths
into account.

6. Column 6 contains the estimated cumulative probability of survival. We
obtain the entries in this column by successive multiplication. Each entry

11 = died, 0 = alive or censored2.
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TABLE 12.8.1 Survival Data, Subjects with Malignant Tumors of the Sternum

Time Vital Tumor Time Vital Tumor

Subject (Months) Statusa Gradeb Subject (Months) Statusa Gradeb

1 29 dod L 21 155 ned L

2 129 ned L 22 102 dod L

3 79 dod L 23 34 ned L

4 138 ned L 24 109 ned L

5 21 dod L 25 15 dod L

6 95 ned L 26 122 ned H

7 137 ned L 27 27 dod H

8 6 ned L 28 6 dod H

9 212 dod L 29 7 dod H

10 11 dod L 30 2 dod H

11 15 dod L 31 9 dod H

12 337 ned L 32 17 dod H

13 82 ned L 33 16 dod H

14 33 dod L 34 23 dod H

15 75 ned L 35 9 dod H

16 109 ned L 36 12 dod H

17 26 ned L 37 4 dod H

18 117 ned L 38 0 dpo H

19 8 ned L 39 3 dod H

20 127 ned L

a dod dead of disease; ned no evidence of disease; dpo dead postoperation.
b L low-grade; H high-grade.

Source: Dr. Nael Martini. Used with permission.

==
===
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TABLE 12.8.2 Data Arrangement and Calculations for Kaplan–Meier Procedure, 
Example 12.8.1

1 2 3 4 5 6

Vital Status Patients Cumulative

Time Censored Patients Remaining Survival Survival

(Months) Dead at Risk Alive Proportion Proportion

Patients with Low-Grade Tumors

6 0

8 0

11 1 23 22 .956522

15 1

15 1 22 20 .869564

21 1 20 19 .826086

26 0

29 1 18 17 .780192

33 1 17 16 .734298

34 0

75 0

79 1 14 13 .681847

82 0

95 0

102 1 11 10 .619860

109 0

109 0

117 0

127 0

129 0

137 0

138 0

155 0

212 1 2 1 .309930

337 0

1>2 = .500000

10>11 = .909090

13>14 = .928571

16>17 = .941176

17>18 = .944444

19>20 = .950000

20>22 = .909090

22>23 = .956522

1 �
0 �

(Continued)



after the first in Column 5 is multiplied by the cumulative product of all
previous entries.

After the calculations are completed we examine Table 12.8.2 to deter-
mine what useful information it provides. From the table we note the fol-
lowing facts, which allow us to compare the survival experience of the two
groups of subjects: those with low-grade tumors and those with high-grade
tumors:

1. Median survival time. We can determine the median survival time by
locating the time, in months, at which the cumulative survival propor-
tion is equal to .5. None of the cumulative survival proportions are ex-
actly .5, but we see that in the low-grade tumor group, the probability
changes from .619860 to .309930 at 212 months; therefore, the median
survival for this group is 212 months. In the high-grade tumor group, the
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1 2 3 4 5 6

Vital

Status Patients Cumulative

Time Censored Patients Remaining Survival Survival

(Months) Dead at Risk Alive Proportion Proportion

Patients with High-Grade Tumors

0 1 14 13 .928571

2 1 13 12 .857142

3 1 12 11 .785714

4 1 11 10 .714285

6 1 10 9 .642856

7 1 9 8 .571428

9 1

9 1 8 6 .428572

12 1 6 5 .357143

16 1 5 4 .285714

17 1 4 3 .214286

23 1 3 2 .142857

27 1 2 1 .071428

122 0 1 0

1>2 = .500000

2>3 = .666667

3>4 = .750000

4>5 = .800000

5>6 = .833333

6>8 = .750000

8>9 = .888889

9>10 = .900000

10>11 = .909090

11>12 = .916667

12>13 = .923077

13>14 = .928571

1 �
0 �



cumulative proportion changes from .571428 to .428572 at 9 months,
which is the median survival for this group.

2. Five-year survival rate. We can determine the 5-year or 60-month sur-
vival rate for each group directly from the cumulative survival proportion
at 60 months. For the low-grade tumor group, the 5-year survival rate is
.734298 or 73 percent; for the high-grade tumor group, the 5-year sur-
vival rate is .071428 or 7 percent.

3. Mean survival time. We may compute for each group the mean of the
survival times, which we will call and for the low-grade and high-
grade groups, respectively. For the low-grade tumor group we compute

and for the high-grade tumor group we compute
Since so many of the times in the low-grade group

are censored, the true mean survival time for that group is, in reality,
higher (perhaps, considerably so) than 88.04. The true mean survival time
for the high-grade group is also likely higher than the computed 18.35,
but with just one censored time we do not expect as great a difference
between the calculated mean and the true mean. Thus, we see that we
have still another indication that the survival experience of the low-grade
tumor group is more favorable than the survival experience of the high-
grade tumor group.

4. Average hazard rate. From the raw data of each group we may also cal-
culate another descriptive statistic that can be used to compare the two
survival experiences. This statistic is called the average hazard rate. It is
a measure of nonsurvival potential rather than survival. A group with a
higher average hazard rate will have a lower probability of surviving than
a group with a lower average hazard rate. We compute the average haz-
ard rate, designated by dividing the number of subjects who do not sur-
vive by the sum of the observed survival times. For the low-grade tumor
group, we compute For the high-grade tumor
group we compute We see that the average haz-
ard rate for the high-grade group is higher than for the low-grade group,
indicating a smaller chance of surviving for the high-grade group.

The cumulative survival proportion column of Table 12.8.2 may be por-
trayed visually in a survival curve graph in which the cumulative survival pro-
portions are represented by the vertical axis and the time in months by the
horizontal axis. We note that the graph resembles stairsteps with “steps”
occurring at the times when deaths occurred. The graph also allows us to rep-
resent visually the median survival time and survival rates such as the 5-year
survival rate. The graph for the cumulative survival data of Table 12.8.2 is
shown in Figure 12.8.2.

These observations strongly suggest that the survival experience of
patients with low-grade tumors is far more favorable than that of patients
with high-grade tumors.

hH = 13>257 = .05084.
hL = 9>2201 = .004089.

h

TH = 257>14 = 18.35.
TL = 2201>25 = 88.04,

THTL
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The results of comparing the survival experiences of two groups will not always
be as dramatic as those of our example. For an objective comparison of the survival expe-
riences of two groups, it is desirable that we have an objective technique for determin-
ing whether they are statistically significantly different. We know also that the observed
results apply strictly to the samples on which the analyses are based. Of much greater
interest is a method for determining if we may conclude that there is a difference between
survival experiences in the populations from which the samples were drawn. In other
words, at this point, we desire a method for testing the null hypothesis that there is no
difference in survival experience between two populations against the alternative that
there is a difference. Such a test is provided by the log-rank test. The log-rank test is an
application of the Mantel–Haenszel procedure discussed in Section 12.7. The extension
of the procedure to survival data was proposed by Mantel (25). To calculate the log-rank
statistic we proceed as follows:

1. Order the survival times until death for both groups combined, omitting censored
times. Each time constitutes a stratum as defined in Section 12.7.

2. For each stratum or time, we construct a table in which the first row con-
tains the number of observed deaths, the second row contains the number of
patients alive, the first column contains data for one group, say, group A, and the
second column contains data for the other group, say, group B. Table 12.8.3 shows
the table for time 

3. For each stratum compute the expected frequency for the upper left-hand cell of
its table by Equation 12.7.5.

4. For each stratum compute by Equation 12.7.6.

5. Finally, compute the Mantel–Haenszel statistic (now called the log-rank statistic)
by Equation 12.7.7.

We illustrate the calculation of the log-rank statistic with the following example.

yi

t i.

2 * 2ti,
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FIGURE 12.8.2 Kaplan–Meier survival curve, Example 12.8.1, 
showing median survival times and 5-year (60-month) survival rates. ■



EXAMPLE 12.8.2

Let us refer again to the data on primary malignant tumors of the sternum presented
in Example 12.8.1. Examination of the data reveals that there are 20 time periods
(strata). For each of these a table following the pattern of Table 12.8.3 must be
constructed. The first of these tables is shown as Table 12.8.4. By Equations 12.7.5 and
12.7.6 we compute and as follows:

The data for Table 12.8.4 and similar data for the other 19 time periods are shown in
Table 12.8.5. Using data from Table 12.8.5, we compute the log-rank statistic by Equa-
tion 12.7.7 as follows:

Reference to Appendix Table F reveals that since the p value for this
test is We, therefore, reject the null hypothesis that the survival experience is
the same for patients with low-grade tumors and high-grade tumors and conclude that
they are different.

There are alternative procedures for testing the null hypothesis that two survival
curves are identical. They include the Breslow test (also called the generalized Wilcoxon
test) and the Tarone–Ware test. Both tests, as well as the log-rank test, are discussed in
Parmar and Machin (26). Like the log-rank test, the Breslow test and the Tarone–Ware test
are based on the weighted differences between actual and expected numbers of deaths at

6 .005.
24.704 7 7.879,

x2
MH =

19 - 17.81122
3.140

= 24.704

yi =
10 + 12125 + 13210 + 25211 + 132

392 1382 = .230

ei =
10 + 1210 + 252

39
= .641

yiei

2 * 2
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TABLE 12.8.3 Contingency Table for Stratum (Time) ti for Calculating the 
Log-Rank Test

Group A Group B Total

Number of deaths observed

Number of patients alive

Number of patients “at risk” ni = ai + bi + ci + dibi + diai + ci

ci + didici

ai + bibiai

TABLE 12.8.4 Contingency Table for First Stratum (Time
Period) for Calculating the Log-Rank Test, Example 12.8.2

Low-Grade High-Grade Total

Deaths 0 1 1

Patients alive 25 13 38

Patients at risk 25 13 39



the observed time points. Whereas the log-rank test ranks all deaths equally, the Breslow
and Tarone–Ware tests give more weight to early deaths. For Example 12.8.1, SPSS com-
putes a value of for the Breslow test and a value of 
for the Tarone–Ware test. Kleinbaum (27) discusses another test called the Peto test. For-
mulas for this test are found in Parmar and Machin (26). The Peto test also gives more
weight to the early part of the survival curve, where we find the larger numbers of sub-
jects at risk. When choosing a test, then, researchers who want to give more weight to the
earlier part of the survival curve will select either the Breslow, the Tarone–Ware, or the
Peto test. Otherwise, the log-rank test is appropriate.

We have covered only the basic concepts of survival analysis in this section. The
reader wishing to pursue the subject in more detail may consult one or more of several
books devoted to the topic, such as those by Kleinbaum (27), Lee (28), Marubini and
Valsecchi (29), and Parmar and Machin (26).

Computer Analysis

Several of the available statistical software packages, such as SPSS, are capable of per-
forming survival analysis and constructing supporting graphs as described in this section.

A standard SPSS analysis of the data discussed in Examples 12.8.1 and 12.8.2  is
shown in Figure 12.8.3. ■

25.22 1p = .0000224.93 1p = .00002
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TABLE 12.8.5 Intermediate Calculations for the Log-Rank Test, Example 12.8.2

Time,

0 0 25 25 1 13 14 39 0.641 0.230

2 0 25 25 1 12 13 38 0.658 0.225

3 0 25 25 1 11 12 37 0.676 0.219

4 0 25 25 1 10 11 36 0.694 0.212

6 0 25 25 1 9 10 35 0.714 0.204

7 0 24 24 1 8 9 33 0.727 0.198

9 0 23 23 2 6 8 31 1.484 0.370

11 1 22 23 0 6 6 29 0.793 0.164

12 0 22 22 1 5 6 28 0.786 0.168

15 2 20 22 0 5 5 27 1.630 0.290

16 0 20 20 1 4 5 25 0.800 0.160

17 0 20 20 1 3 4 24 0.833 0.139

21 1 19 20 0 3 3 23 0.870 0.113

23 0 19 19 1 2 3 22 0.864 0.118

27 0 18 18 1 1 2 20 0.900 0.090

29 1 17 18 0 1 1 19 0.947 0.050

33 1 16 17 0 1 1 18 0.944 0.052

79 1 13 14 0 1 1 15 0.933 0.062

102 1 10 11 0 1 1 12 0.917 0.076

212 1 1 2 0 0 0 2 1.000 0.000

Totals 9 17.811 3.140

yieinibi � didibiai + ciciaiti



The Proportional Hazards or Cox Regression Model In previous
chapters, we saw that regression models can be used for continuous outcome measures
and for binary outcome measures (logistic regression). Additional regression techniques
are available when the dependent measures may consist of a mixture of either time-until-
event data or censored time observations. Returning to our example of a clinical trial of
the effectiveness of two different medications to prevent a second myocardial infarction,
we may wish to control for additional characteristics of the subjects enrolled in the study.
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Means and Medians for Survival Time

Meana Median

95% Confidence Interval 95% Confidence Interval

tumor_ Std. Lower Upper Std. Lower Upper
grade Estimate Error Bound Bound Estimate Error Bound Bound

H 18.357 8.251 2.186 34.528 9.000 1.852 5.371 12.629

L 88.040 15.258 58.134 117.946 82.000 16.653 49.359 114.641

Overall 63.026 11.490 40.505 85.546 27.000 7.492 12.317 41.683

a Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

Chi-Square df Sig.

Log Rank (Mantel-Cox) 24.704 1 .000
Breslow (Generalized
Wilcoxon) 24.927 1 .000
Tarone-Ware 25.217 1 .000

Test of equality of survival distributions for the different levels of tumor_grade.

FIGURE 12.8.3 SPSS output for Examples 12.8.1 and 12.8.2.



For example, we would expect subjects to be different in their baseline systolic blood
pressure measurements, family history of heart disease, weight, body mass, and other
characteristics. Because all of these factors may influence the length of the time interval
until a second myocardial infarction, we would like to account for these factors in deter-
mining the effectiveness of the medications. The regression method known as Cox regres-
sion (after D. R. Cox, who first proposed the method) or proportional hazard regression
can be used to account for the effects of continuous and discrete covariate (independent
variable) measurements when the dependent variable is possibly censored time-until-
event data.

We describe this technique by first introducing the hazard function, which describes
the conditional probability that an event will occur at a time just larger than condi-
tional on having survived event-free until time This conditional probability is also
known as the instantaneous failure rate at time and is often written as the function

The regression model requires that we assume the covariates have the effect of
either increasing or decreasing the hazard for a particular individual compared to some
baseline value for the function. In our clinical trial example we might measure k covari-
ates on each of the subjects where there are subjects and is the base-
line hazard function. We describe the regression model as

(12.8.3)

The regression coefficients represent the change in the hazard that results from
the risk factor, that we have measured. Rearranging the above equation shows that
the exponentiated coefficient represents the hazard ratio or the ratio of the conditional
probabilities of an event. This is the basis for naming this method proportional haz-
ards regression. You may recall that this is the same way we obtained the estimate of
the odds ratio from the estimated coefficient when we discussed logistic regression in
Chapter 11.

(12.8.4)

Estimating the covariate effects, requires the use of a statistical software package
because there is no straightforward single equation that will provide the estimates 
for this regression model. Computer output usually includes estimates of the regres-
sion coefficients, standard error estimates, hazard ratio estimates, and confidence
intervals. In addition, computer output may also provide graphs of the hazard func-
tions and survival functions for subjects with different covariate values that are use-
ful to compare the effects of covariates on survival. In summary, Cox regression is a
useful technique for determining the effects of covariates with survival data. Addi-
tional information can be found in the texts by Kleinbaum (27), Lee (28), Kalbfleisch
and Prentice (30), Elandt-Johnson and Johnson (31), Cox and Oakes (32), and Fleming
and Harrington (33).

bN

h1ti2
h 01ti2 = exp1b1zi1 + b2zi2 + Á + bkzik2

z ik,

h1ti2 = h 01ti2exp1b1z i1 + b2z i2 + Á + bkzik2
h 01ti2I = 1, . . . , n

h1ti2. ti

ti.
ti
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EXERCISES

12.8.1 Fifty-three patients with medullary thyroid cancer (MTC) were the subjects of a study by Dot-
torini et al. (A-24), who evaluated the impact of different clinical and pathological factors and the
type of treatment on their survival. Thirty-two of the patients were females, and the mean age of
all patients was 46.11 years with a standard deviation of 14.04 (range 18–35 years). The follow-
ing table shows the status of each patient at various periods of time following surgery. Analyze
the data using the techniques discussed in this section.

Subject Timea (Years) Statusb Subject Timea (Years) Statusb

1 0 doc 28 6 alive
2 1 mtc 29 6 alive
3 1 mtc 30 6 alive
4 1 mtc 31 6 alive
5 1 mtc 32 7 mtc
6 1 mtc 33 8 alive
7 1 mtc 34 8 alive
8 1 mtc 35 8 alive
9 1 alive 36 8 alive

10 2 mtc 37 8 alive
11 2 mtc 38 9 alive
12 2 mtc 39 10 alive
13 2 alive 40 11 mtc
14 2 alive 41 11 doc
15 3 mtc 42 12 mtc
16 3 mtc 43 12 doc
17 3 alive 44 13 mtc
18 4 mtc 45 14 alive
19 4 alive 46 15 alive
20 4 alive 47 16 mtc
21 4 alive 48 16 alive
22 5 alive 49 16 alive
23 5 alive 50 16 alive
24 5 alive 51 17 doc
25 5 alive 52 18 mtc
26 6 alive 53 19 alive
27 6 alive

a Time is number of years after surgery.
b doc dead of other causes; mtc dead of medullary thyroid cancer.

Source: Dr. Massimo E. Dottorini. Used with permission.

12.8.2 Banerji et al. (A-25) followed non–insulin-dependent diabetes mellitus (NIDDM) patients from
onset of their original hyperglycemia and the inception of their near–normoglycemic remission fol-
lowing treatment. Subjects were black men and women with a mean age of 45.4 years and a stan-
dard deviation of 10.4. The following table shows the relapse/remission experience of 62 subjects.
Use the techniques covered in this section to analyze these data.

==

EXERCISES 661



Total Total Total
Duration of Duration of Duration of
Remission Remission Remission Remission Remission Remission
(Months) Statusa (Months) Statusa (Months) Statusa

3 1 8 2 26 1

3 2 9 2 27 1

3 1 10 1 28 2

3 1 10 1 29 1

3 1 11 2 31 2

4 1 13 1 31 1

4 1 16 1 33 2

4 1 16 2 39 2

5 1 17 2 41 1

5 1 18 2 44 1

5 1 20 1 46 1

5 1 22 1 46 2

5 1 22 2 48 1

5 1 22 2 48 2

5 1 23 1 48 1

6 1 24 2 49 1

6 1 25 2 50 1

6 1 25 2 53 1

7 1 26 1 70 2

8 2 26 1 94 1

8 1

8 2

a 1 � yes (the patient is still in remission); 2 � no (the patient has relapsed).

Source: Dr. Mary Ann Banerji. Used with permission.

12.8.3 If available in your library, read the article, “Impact of Obesity on Allogeneic Stem Cell Transplant
Patients: A Matched Case-Controlled Study,” by Donald R. Fleming et al. [American Journal of
Medicine, 102 (1997), 265–268] and answer the following questions:
(a) How was survival time determined?
(b) Why do you think the authors used the Wilcoxon test (Breslow test) for comparing the sur-
vival curves?
(c) Explain the meaning of the p values reported for Figures 1 through 4.
(d) What specific statistical results allow the authors to arrive at their stated conclusion?

12.8.4 If available in your library, read the article, “Improved Survival in Patients with Locally Advanced
Prostate Cancer Treated with Radiotherapy and Goserelin,” by Michel Bolla et al. [New England
Journal of Medicine, 337 (1997), 295–300], and answer the following questions:
(a) How was survival time determined?
(b) Why do you think the authors used the log-rank test for comparing the survival curves?
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(c) Explain the meaning of the p values reported for Figures 1 and 2.
(d) What specific statistical results allow the authors to arrive at their stated conclusion?

12.8.5 Fifty subjects who completed a weight-reduction program at a fitness center were divided into
two equal groups. Subjects in group 1 were immediately assigned to a support group that met
weekly. Subjects in group 2 did not participate in support group activities. All subjects were fol-
lowed for a period of 60 weeks. They reported weekly to the fitness center, where they were
weighed and a determination was made as to whether they were within goal. Subjects were con-
sidered to be within goal if their weekly weight was within 5 pounds of their weight at time of
completion of the weight-reduction program. Survival was measured from the date of completion
of the weight-reduction program to the termination of follow-up or the point at which the sub-
ject exceeded goal. The following results were observed:

Status Status
(G � Within Goal (G � Within Goal

Time G� � Exceeded Goal Time G� � Exceeded Goal
Subject (Weeks) L � Lost to Follow-Up) Subject (Weeks) L � Lost to Follow-Up)

Group 1 Group 2

1 60 G 1 20 G�
2 32 L 2 26 G�
3 60 G 3 10 G�
4 22 L 4 2 G�
5 6 G+ 5 36 G�
6 60 G 6 10 G�
7 60 G 7 20 G�
8 20 G+ 8 18 L
9 32 G+ 9 15 G�

10 60 G 10 22 G�
11 60 G 11 4 G�
12 8 G+ 12 12 G�
13 60 G 13 24 G�
14 60 G 14 6 G�
15 60 G 15 18 G�
16 14 L 16 3 G�
17 16 G+ 17 27 G�
18 24 L 18 22 G�
19 34 L 19 8 G�
20 60 G 20 10 L
21 40 L 21 32 G�
22 26 L 22 7 G�
23 60 G 23 8 G�
24 60 G 24 28 G�
25 52 L 25 7 G�

Analyze these data using the methods discussed in this section.
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12.9 SUMMARY

In this chapter some uses of the versatile chi-square distribution are discussed. Chi-square
goodness-of-fit tests applied to the normal, binomial, and Poisson distributions are pre-
sented. We see that the procedure consists of computing a statistic

that measures the discrepancy between the observed and expected frequencies of
occurrence of values in certain discrete categories. When the appropriate null hypothesis is
true, this quantity is distributed approximately as When is greater than or equal to
the tabulated value of for some the null hypothesis is rejected at the level of sig-
nificance.

Tests of independence and tests of homogeneity are also discussed in this chapter.
The tests are mathematically equivalent but conceptually different. Again, these tests
essentially test the goodness-of-fit of observed data to expectation under hypotheses,
respectively, of independence of two criteria of classifying the data and the homogene-
ity of proportions among two or more groups.

In addition, we discussed and illustrated in this chapter four other techniques for
analyzing frequency data that can be presented in the form of a contingency table:
the Fisher exact test, the odds ratio, relative risk, and the Mantel–Haenszel procedure.
Finally, we discussed the basic concepts of survival analysis and illustrated the compu-
tational procedures by means of two examples.

SUMMARY OF FORMULAS FOR CHAPTER 12

Formula 
Number Name Formula

12.2.1 Standard normal random variable

12.2.2 Chi-square distribution with n
degrees of freedom 

12.2.3 Chi-square probability density
function

12.2.4 Chi-square test statistic

12.4.1 Chi-square calculation formula 
for a 2 	 2 contingency table x2 =

n1ad - bc221a + c21b + d21a + b21c + d2
x2 = a c 1Oi - Ei22

Ei
d

f1u2 =
1a k

2
- 1b !

1

2k>2 u1k>22-1e-1u>22
x21n2 = z2

1 + z2
2 + Á + z2

n

z i =
yi - m
s

2 * 2

aa,x2
X2x2.

1Ei21Oi2
X2 = a c 1Oi - Ei22

Ei
d
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12.4.2 Yates’s corrected 
chi-square calcu- 
lation for a 2 	 2
contingency table

12.6.1–12.6.2 Large-sample 
approximation
to the chi-square 

12.7.1 Relative risk 
estimate

12.7.2 Confidence 
interval for the 
relative risk 
estimate

12.7.3 Odds ratio 
estimate

12.7.4 Confidence 
interval for the 
odds ratio 
estimate

12.7.5 Expected 
frequency in 
the Mantel– 
Haenszel statistic

12.7.6 Stratum expected 
frequency in the 
Mantel–Haenszel
statistic

12.7.7 Mantel–Haenszel 
test statistic

12.7.8 Mantel–Haenszel
estimator of the 
common odds ratio ORMH =

a
k

i=1
1aidi>ni2

a
k

i=1
1bici>ni2

x2
MH =

aak
i=1

ai - a
k

i=1
eib

a
k

i=1
vi

vi =
1ai + bi21ci + di21ai + ci21bi + di2

n2
i 1ni - 12

ei =
1ai + bi21ai + ci2

ni

10011 - a2%CI = OR1;1za>1x22

10011 - a2%CI = RR1;1za>1x22

x2
corrected =

n1 ƒad - bc ƒ - .5n221a + c21b + d21a + b21c + d2
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where

pN = 1a + b2>1A + B2
z =

1a>A2 - 1b>B2
2pN11 - pN211>A + 1>B2

(Continued )

RR =
a>1a + b2
c>1c + d2

OR =
a>b
c>d =

ad

bc



12.8.1 Survival number of subjects surviving at least (t � 1) time period 
probability

12.8.2 Estimated 
survival 
function

12.8.3 Hazard 
regression 
model

12.8.4 Proportional 
hazard model

Symbol • a, b, c, d � cell frequencies in a 2 	 2 contingency table
Key • A, B � row totals in the 2 	 2 contingency table

• � regression coefficient 
• (or X2) � chi-square
• ei � expected frequency in the Mantel–Haenszel statistic
• Ei � expected frequency
• � expected value of y at x
• k � degrees of freedom in the chi-square distribution
• � mean
• Oi � observed frequency

• OR � odds ratio estimate
• � standard deviation
• RR � relative risk estimate
• vi � stratum expected frequency in the Mantel–Haenszel statistic
• yi � data value at point i
• z � normal variate

REVIEW QUESTIONS AND EXERCISES

1. Explain how the chi-square distribution may be derived.

2. What are the mean and variance of the chi-square distribution?

3. Explain how the degrees of freedom are computed for the chi-square goodness-of-fit tests.

4. State Cochran’s rule for small expected frequencies in goodness-of-fit tests.

5. How does one adjust for small expected frequencies?

6. What is a contingency table?

7. How are the degrees of freedom computed when an value is computed from a contingency
table?

X 2

s

m

E1y ƒ x2
x2
b

h1ti2
h01ti2 = exp1b1z i1 + b2z i2 + Á + bkz ik2
h1ti2 = h01ti2exp1b1z i1 + b2z i2 + Á + bkzik2
SN1t2 = p1N * p2N * Á * ptN
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who also survive tth period

number of subjects alive at end of time period 1t - 12



8. Explain the rationale behind the method of computing the expected frequencies in a test of
independence.

9. Explain the difference between a test of independence and a test of homogeneity.

10. Explain the rationale behind the method of computing the expected frequencies in a test of
homogeneity.

11. When do researchers use the Fisher exact test rather than the chi-square test?

12. Define the following:

(a) Observational study (b) Risk factor

(c) Outcome (d) Retrospective study

(e) Prospective study (f) Relative risk

(g) Odds (h) Odds ratio

(i) Confounding variable

13. Under what conditions is the Mantel–Haenszel test appropriate?

14. Explain how researchers interpret the following measures:

(a) Relative risk

(b) Odds ratio

(c) Mantel–Haenszel common odds ratio

15. In a study of violent victimization of women and men, Porcerelli et al. (A-26) collected infor-
mation from 679 women and 345 men ages 18 to 64 years at several family practice centers
in the metropolitan Detroit area. Patients filled out a health history questionnaire that included
a question about victimization. The following table shows the sample subjects cross-classified
by gender and the type of violent victimization reported. The victimization categories are
defined as no victimization, partner victimization (and not by others), victimization by a per-
son other than a partner (friend, family member, or stranger), and those who reported multiple
victimization.

Gender No Victimization Partner Nonpartner Multiple Total

Women 611 34 16 18 679
Men 308 10 17 10 345

Total 919 44 33 28 1024

Source: John H. Porcerelli, Rosemary Cogan, Patricia P. West, Edward A. Rose, Dawn Lambrecht,
Karen E. Wilson, Richard K. Severson, and Dunia Karana, “Violent Victimization of Women and Men:
Physical and Psychiatric Symptoms,” Journal of the American Board of Family Practice, 16 (2003),
32–39.

Can we conclude on the basis of these data that victimization status and gender are not independ-
ent? Let 

16. Refer to Exercise 15. The following table shows data reported by Porcerelli et al. for 644 African-
American and Caucasian women. May we conclude on the basis of these data that for women,
race and victimization status are not independent? Let a = .05.

a = .05.
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No Victimization Partner Nonpartner Multiple Total

Caucasian 356 20 3 9 388
African-American 226 11 10 9 256

Total 582 31 13 18 644

Source: John H. Porcerelli, Rosemary Cogan, Patricia P. West, Edward A. Rose, Dawn Lambrecht, Karen
E. Wilson, Richard K. Severson, and Dunia Karana, “Violent Victimization of Women and Men: Physical
and Psychiatric Symptoms,” Journal of the American Board of Family Practice, 16 (2003), 32–39.

17. A sample of 150 chronic carriers of a certain antigen and a sample of 500 noncarriers revealed
the following blood group distributions:

Blood Group Carriers Noncarriers Total

0 72 230 302
A 54 192 246
B 16 63 79
AB 8 15 23

Total 150 500 650

Can one conclude from these data that the two populations from which the samples were drawn differ
with respect to blood group distribution? Let What is the p value for the test?

18. The following table shows 200 males classified according to social class and headache status:

Social Class

Headache Group A B C Total

No headache 6 30 22 58
(in previous year)

Simple headache 11 35 17 63
Unilateral headache 4 19 14 37

(nonmigraine)
Migraine 5 25 12 42

Total 26 109 65 200

Do these data provide sufficient evidence to indicate that headache status and social class are
related? Let What is the p value for this test?

19. The following is the frequency distribution of scores made on an aptitude test by 175 applicants
to a physical therapy training facility 

Score Number of Applicants Score Number of Applicants

10–14 3 40–44 28
15–19 8 45–49 20

1x = 39.71, s = 12.922.
a = .05.

a = .05.
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Score Number of Applicants Score Number of Applicants

20–24 13 50–54 18
25–29 17 55–59 12
30–34 19 60–64 8
35–39 25 65–69 4

Total 175

Do these data provide sufficient evidence to indicate that the population of scores is not normally
distributed? Let What is the p value for this test?

20. A local health department sponsored a venereal disease (VD) information program that was open
to high-school juniors and seniors who ranged in age from 16 to 19 years. The program director
believed that each age level was equally interested in knowing more about VD. Since each age
level was about equally represented in the area served, she felt that equal interest in VD would be
reflected by equal age-level attendance at the program. The age breakdown of those attending was
as follows:

Age Number Attending

16 26
17 50
18 44
19 40

Are these data incompatible with the program director’s belief that students in the four age levels
are equally interested in VD? Let What is the p value for this test?

21. A survey of children under 15 years of age residing in the inner-city area of a large city were clas-
sified according to ethnic group and hemoglobin level. The results were as follows:

Ethnic
Hemoglobin Level (g/100 ml)

Group 10.0 or Greater 9.0–9.9 Total

A 80 100 20 200
B 99 190 96 385
C 70 30 10 110

Total 249 320 126 695

Do these data provide sufficient evidence to indicate, at the .05 level of significance, that the two
variables are related? What is the p value for this test?

22. A sample of reported cases of mumps in preschool children showed the following distribution by
age:

<9.0

a = .05.

a = .05.
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Age (Years) Number of Cases

Under 1 6
1 20
2 35
3 41
4 48

Total 150

Test the hypothesis that cases occur with equal frequency in the five age categories. Let 
What is the p value for this test?

23. Each of a sample of 250 men drawn from a population of suspected joint disease victims was
asked which of three symptoms bother him most. The same question was asked of a sample of
300 suspected women joint disease victims. The results were as follows:

Most Bothersome Symptom Men Women

Morning stiffness 111 102
Nocturnal pain 59 73
Joint swelling 80 125

Total 250 300

Do these data provide sufficient evidence to indicate that the two populations are not homogeneous
with respect to major symptoms? Let What is the p value for this test?

For each of the Exercises 24 through 34, indicate whether a null hypothesis of homogeneity or a
null hypothesis of independence is appropriate.

24. A researcher wishes to compare the status of three communities with respect to immunity against
polio in preschool children. A sample of preschool children was drawn from each of the three
communities.

25. In a study of the relationship between smoking and respiratory illness, a random sample of adults
were classified according to consumption of tobacco and extent of respiratory symptoms.

26. A physician who wished to know more about the relationship between smoking and birth defects
studies the health records of a sample of mothers and their children, including stillbirths and spon-
taneously aborted fetuses where possible.

27. A health research team believes that the incidence of depression is higher among people with hypo-
glycemia than among people who do not suffer from this condition.

28. In a simple random sample of 200 patients undergoing therapy at a drug abuse treatment center,
60 percent belonged to ethnic group I. The remainder belonged to ethnic group II. In ethnic group
I, 60 were being treated for alcohol abuse (A), 25 for marijuana abuse (B), and 20 for abuse of
heroin, illegal methadone, or some other opioid (C). The remainder had abused barbiturates,

a = .05.

a = .05.
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cocaine, amphetamines, hallucinogens, or some other nonopioid besides marijuana (D). In ethnic
group II the abused drug category and the numbers involved were as follows:

Can one conclude from these data that there is a relationship between ethnic group and choice of
drug to abuse? Let and find the p value.

29. Solar keratoses are skin lesions commonly found on the scalp, face, backs of hands, forearms, ears,
scalp, and neck. They are caused by long-term sun exposure, but they are not skin cancers. Chen
et al. (A-27) studied 39 subjects randomly assigned (with a 3 to 1 ratio) to imiquimod cream and
a control cream. The criterion for effectiveness was having 75 percent or more of the lesion area
cleared after 14 weeks of treatment. There were 21 successes among 29 imiquimod-treated subjects
and three successes among 10 subjects using the control cream. The researchers used Fisher’s exact
test and obtained a p value of .027. What are the variables involved? Are the variables quantitative
or qualitative? What null and alternative hypotheses are appropriate? What are your conclusions?

30. Janardhan et al. (A-28) examined 125 patients who underwent surgical or endovascular treatment
for intracranial aneurysms. At 30 days postprocedure, 17 subjects experienced transient/persistent
neurological deficits. The researchers performed logistic regression and found that the 95 percent
confidence interval for the odds ratio for aneurysm size was .09–.96. Aneurysm size was
dichotomized as less than 13 mm and greater than or equal to 13 mm. The larger tumors indicated
higher odds of deficits. Describe the variables as to whether they are continuous, discrete, quanti-
tative, or qualitative. What conclusions may be drawn from the given information?

31. In a study of smoking cessation by Gold et al. (A-29), 189 subjects self-selected into three treat-
ments: nicotine patch only (NTP), Bupropion SR only (B), and nicotine patch with Bupropion SR

Subjects were grouped by age into younger than 50 years old, between 50 and 64,
and 65 and older. There were 15 subjects younger than 50 years old who chose NTP, 26 who chose
B, and 16 who chose . In the 50–64 years category, six chose NTP, 54 chose B, and 40
chose In the oldest age category, six chose NTP, 21 chose B, and five chose 
What statistical technique studied in this chapter would be appropriate for analyzing these data?
Describe the variables involved as to whether they are continuous, discrete, quantitative, or qual-
itative. What null and alternative hypotheses are appropriate? If you think you have sufficient infor-
mation, conduct a complete hypothesis test. What are your conclusions?

32. Kozinszky and Bártai (A-30) examined contraceptive use by teenage girls requesting abortion in
Szeged, Hungary. Subjects were classified as younger than 20 years old or 20 years old or older. Of
the younger than 20-year-old women, 146 requested an abortion. Of the older group, 1054 requested
an abortion. A control group consisted of visitors to the family planning center who did not request
an abortion or persons accompanying women who requested an abortion. In the control group, there
were 147 women under 20 years of age and 1053 who were 20 years or older. One of the outcome
variables of interest was knowledge of emergency contraception. The researchers report that, “Emer-
gency contraception was significantly [(Mantel–Haenszel) p ] less well known among the
would-be aborter teenagers as compared to the older women requesting artificial abortion

than the relevant knowledge of the teenage controls ” Explain the mean-
ing of the reported statistics. What are your conclusions based on the given information?

33. The goal of a study by Crosignani et al. (A-31) was to assess the effect of road traffic exhaust
on the risk of childhood leukemia. They studied 120 children in Northern Italy identified through
a population-based cancer registry (cases). Four controls per case, matched by age and gender,

1OR = .102.1OR = .072 6 .001

NTP + B.NTP + B.
NTP + B

1NTP + B2.

a = .05

A1282  B1322  C1132  D1the remainder2
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were sampled from population files. The researchers used a diffusion model of benzene to esti-
mate exposure to traffic exhaust. Compared to children whose homes were not exposed to road
traffic emissions, the rate of childhood leukemia was significantly higher for heavily exposed chil-
dren. Characterize this study as to whether it is observational, prospective, or retrospective.
Describe the variables as to whether they are continuous, discrete, quantitative, qualitative, a risk
factor, or a confounding variable. Explain the meaning of the reported results. What are your con-
clusions based on the given information?

34. Gallagher et al. (A-32) conducted a descriptive study to identify factors that influence women’s
attendance at cardiac rehabilitation programs following a cardiac event. One outcome variable
of interest was actual attendance at such a program. The researchers enrolled women discharged
from four metropolitan hospitals in Sydney, Australia. Of 183 women, only 57 women actually
attended programs. The authors reported odds ratios and confidence intervals on the following
variables that significantly affected outcome: age-squared (1.72; 1.10–2.70). Women over the
age of 70 had the lowest odds, while women ages 55–70 years had the highest odds.), perceived
control (.92; .85–1.00), employment (.20; .07–.58), diagnosis (6.82, 1.84–25.21, odds ratio was
higher for women who experienced coronary artery bypass grafting vs. myocardial infarction),
and stressful event (.21, .06–.73). Characterize this study as to whether it is observational,
prospective, or retrospective. Describe the variables as to whether they are continuous, discrete,
quantitative, qualitative, a risk factor, or a confounding variable. Explain the meaning of the
reported odds ratios.

For each of the Exercises 35 through 54, do as many of the following as you think appropriate:

(a) Apply one or more of the techniques discussed in this chapter.

(b) Apply one or more of the techniques discussed in previous chapters.

(c) Construct graphs.

(d) Construct confidence intervals for population parameters.

(e) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(f) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(g) Describe the population(s) to which you think your inferences are applicable.

(h) State the assumptions necessary for the validity of your analyses.

35. In a prospective, randomized, double-blind study, Stanley et al. (A-33) examined the relative effi-
cacy and side effects of morphine and pethidine, drugs commonly used for patient-controlled anal-
gesia (PCA). Subjects were 40 women, between the ages of 20 and 65 years, undergoing total
abdominal hysterectomy. Patients were allocated randomly to receive morphine or pethidine by
PCA. At the end of the study, subjects described their appreciation of nausea and vomiting, pain,
and satisfaction by means of a three-point verbal scale. The results were as follows:

Satisfaction

Unhappy/ Moderately Happy/
Drug Miserable Happy Delighted Total

Pethidine 5 9 6 20
Morphine 9 9 2 20

Total 14 18 8 40
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Pain

Unbearable/ Slight/
Drug Severe Moderate None Total

Pethidine 2 10 8 20
Morphine 2 8 10 20

Total 4 18 18 40

Nausea

Unbearable/ Slight/
Drug Severe Moderate None Total

Pethidine 5 9 6 20
Morphine 7 8 5 20

Total 12 17 11 40

Source: Dr. Balraj L. Appadu. Used with permission.

36. Screening data from a statewide lead poisoning prevention program between April 1990 and March
1991 were examined by Sargent et al. (A-34) in an effort to learn more about community risk fac-
tors for iron deficiency in young children. Study subjects ranged in age between 6 and 59 months.
Among 1860 children with Hispanic surnames, 338 had iron deficiency. Four-hundred-fifty-seven
of 1139 with Southeast Asian surnames and 1034 of 8814 children with other surnames had iron
deficiency.

37. To increase understanding of HIV-infection risk among patients with severe mental illness, Hor-
wath et al. (A-35) conducted a study to identify predictors of injection drug use among patients
who did not have a primary substance use disorder. Of 192 patients recruited from inpatient and
outpatient public psychiatric facilities, 123 were males. Twenty-nine of the males and nine of the
females were found to have a history of illicit-drug injection.

38. Skinner et al. (A-36) conducted a clinical trial to determine whether treatment with melphalan,
prednisone, and colchicine (MPC) is superior to colchicine (C) alone. Subjects consisted of 100
patients with primary amyloidosis. Fifty were treated with C and 50 with MPC. Eighteen months
after the last person was admitted and 6 years after the trial began, 44 of those receiving C and
36 of those receiving MPC had died.

39. The purpose of a study by Miyajima et al. (A-37) was to evaluate the changes of tumor cell con-
tamination in bone marrow (BM) and peripheral blood (PB) during the clinical course of patients
with advanced neuroblastoma. Their procedure involved detecting tyrosine hydroxylase (TH)
mRNA to clarify the appropriate source and time for harvesting hematopoietic stem cells for trans-
plantation. The authors used Fisher’s exact test in the analysis of their data. If available, read
their article and decide if you agree that Fisher’s exact text was the appropriate technique to use.
If you agree, duplicate their procedure and see if you get the same results. If you disagree, explain
why.
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40. Cohen et al. (A-38) investigated the relationship between HIV seropositivity and bacterial vaginosis
in a population at high risk for sexual acquisition of HIV. Subjects were 144 female commercial sex
workers in Thailand of whom 62 were HIV-positive and 109 had a history of sexually transmitted
diseases (STD). In the HIV-negative group, 51 had a history of STD.

41. The purpose of a study by Lipschitz et al. (A-39) was to examine, using a questionnaire, the rates
and characteristics of childhood abuse and adult assaults in a large general outpatient population.
Subjects consisted of 120 psychiatric outpatients (86 females, 34 males) in treatment at a large
hospital-based clinic in an inner-city area. Forty-seven females and six males reported incidents of
childhood sexual abuse.

42. Subjects of a study by O’Brien et al. (A-40) consisted of 100 low-risk patients having well-dated
pregnancies. The investigators wished to evaluate the efficacy of a more gradual method for pro-
moting cervical change and delivery. Half of the patients were randomly assigned to receive a
placebo, and the remainder received 2 mg of intravaginal prostaglandin E2 (PGE2) for 5 consecu-
tive days. One of the infants born to mothers in the experimental group and four born to those in
the control group had macrosomia.

43. The purposes of a study by Adra et al. (A-41) were to assess the influence of route of delivery on
neonatal outcome in fetuses with gastroschisis and to correlate ultrasonographic appearance of the
fetal bowel with immediate postnatal outcome. Among 27 cases of prenatally diagnosed gastroschi-
sis the ultrasonograph appearance of the fetal bowel was normal in 15. Postoperative complica-
tions were observed in two of the 15 and in seven of the cases in which the ultrasonographic
appearance was not normal.

44. Liu et al. (A-42) conducted household surveys in areas of Alabama under tornado warnings. In
one of the surveys (survey 2) the mean age of the 193 interviewees was 54 years. Of these 56.0
percent were women, 88.6 percent were white, and 83.4 percent had a high-school education or
higher. Among the information collected were data on shelter-seeking activity and understanding
of the term “tornado warning.” One-hundred-twenty-eight respondents indicated that they usually
seek shelter when made aware of a tornado warning. Of these, 118 understood the meaning of tor-
nado warning. Forty-six of those who said they didn’t usually seek shelter understood the mean-
ing of the term.

45. The purposes of a study by Patel et al. (A-43) were to investigate the incidence of acute angle-
closure glaucoma secondary to pupillary dilation and to identify screening methods for detecting
angles at risk of occlusion. Of 5308 subjects studied, 1287 were 70 years of age or older. Seven-
teen of the older subjects and 21 of the younger subjects (40 through 69 years of age) were iden-
tified as having potentially occludable angles.

46. Voskuyl et al. (A-44) investigated those characteristics (including male gender) of patients with
rheumatoid arthritis (RA) that are associated with the development of rheumatoid vasculitis (RV).
Subjects consisted of 69 patients who had been diagnosed as having RV and 138 patients with RA
who were not suspected to have vasculitis. There were 32 males in the RV group and 38 among
the RA patients.

47. Harris et al. (A-45) conducted a study to compare the efficacy of anterior colporrhaphy and retro-
pubic urethropexy performed for genuine stress urinary incontinence. The subjects were 76 women
who had undergone one or the other surgery. Subjects in each group were comparable in age, social
status, race, parity, and weight. In 22 of the 41 cases reported as cured the surgery had been per-
formed by attending staff. In 10 of the failures, surgery had been performed by attending staff. All
other surgeries had been performed by resident surgeons.

674 CHAPTER 12 THE CHI-SQUARE DISTRIBUTION AND THE ANALYSIS OF FREQUENCIES



48. Kohashi et al. (A-46) conducted a study in which the subjects were patients with scoliosis. As
part of the study, 21 patients treated with braces were divided into two groups, group

and group on the basis of certain scoliosis progression factors. Two
patients in group A and eight in group B exhibited evidence of progressive deformity, while the
others did not.

49. In a study of patients with cervical intraepithelial neoplasia, Burger et al. (A-47) compared
those who were human papillomavirus (HPV)-positive and those who were HPV-negative with
respect to risk factors for HPV infection. Among their findings were 60 out of 91 nonsmokers
with HPV infection and 44 HPV-positive patients out of 50 who smoked 21 or more cigarettes
per day.

50. Thomas et al. (A-48) conducted a study to determine the correlates of compliance with follow-up
appointments and prescription filling after an emergency department visit. Among 235 respondents,
158 kept their appointments. Of these, 98 were females. Of those who missed their appointments,
31 were males.

51. The subjects of a study conducted by O’Keefe and Lavan (A-49) were 60 patients with cogni-
tive impairment who required parenteral fluids for at least 48 hours. The patients were ran-
domly assigned to receive either intravenous (IV) or subcutaneous (SC) fluids. The mean age
of the 30 patients in the SC group was 81 years with a standard deviation of 6. Fifty-seven
percent were females. The mean age of the IV group was 84 years with a standard deviation
of 7. Agitation related to the cannula or drip was observed in 11 of the SC patients and 24 of
the IV patients.

52. The objective of a study by Lee et al. (A-50) was to improve understanding of the biologic
behavior of gastric epithelioid stromal tumors. They studied the clinical features, histologic
findings, and DNA ploidy of a series of the tumors to identify factors that might distinguish
between benign and malignant variants of these tumors and have relevance for prognosis. Fifty-
five patients with tumors were classified on the basis of whether their tumors were high-grade
malignant (grade 2), low-grade malignant (grade 1), or benign (grade 0). Among the data col-
lected were the following:

Outcome Number of Outcome Number of
(1 � Death Days to Last (1 � Death Days to Last

Tumor from Follow-Up Tumor from Follow-Up
Patient Grade Disease) or Death Patient Grade Disease) or Death

1 0 0 87 8 0 0 1616
2 0 0 775 9 0 0 1982
3 0 0 881 10 0 0 2035
4 0 0 914 11 0 0 2191
5 0 0 1155 12 0 0 2472
6 0 0 1162 13 0 0 2527
7 0 0 1271 14 0 0 2782

15 0 0 3108 36 0 0 7318
16 0 0 3158 37 0 0 7447
17 0 0 3609 38 0 0 9525
18 0 0 3772 39 0 0 9938
19 0 0 3799 40 0 0 10429

B1nB = 92,A1nA = 122
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Outcome Number of Outcome Number of
(1 � Death Days to Last (1 � Death Days to Last

Tumor from Follow-Up Tumor from Follow-Up
Patient Grade Disease) or Death Patient Grade Disease) or Death

20 0 0 3819 41 1 1 450
21 0 0 4586 42 1 1 556
22 0 0 4680 43 1 1 2102
23 0 0 4989 44 1 0 2756
24 0 0 5675 45 1 0 3496
25 0 0 5936 46 1 1 3990
26 0 0 5985 47 1 0 5686
27 0 0 6175 48 1 0 6290
28 0 0 6177 49 1 0 8490
29 0 0 6214 50 2 1 106
30 0 0 6225 51 2 1 169
31 0 0 6449 52 2 1 306
32 0 0 6669 53 2 1 348
33 0 0 6685 54 2 1 549
34 0 0 6873 55 2 1 973
35 0 0 6951

Source: Dr. Michael B. Farnell. Used with permission.

53. Girard et al. (A-51) conducted a study to identify prognostic factors of improved survival after
resection of isolated pulmonary metastases (PM) from colorectal cancer. Among the data collected
were the following regarding number of resected PM, survival, and outcome for 77 patients who
underwent a complete resection at the first thoracic operation:

Number of Number of
Resected Survival Resected Survival

Patient PM (Months) Status Patient PM (Months) Status

1 1 24 Alive 8 1 15 Dead
2 1 67 Alive 9 1 10 Dead
3 1 42 Alive 10 1 41 Dead
4 �1 28 Dead 11 �1 41 Dead
5 1 37 Dead 12 1 27 Dead
6 1 133 Alive 13 1 93 Alive
7 1 33 Dead 14 �1 0 Dead

15 1 60 Dead 47 1 54 Dead
16 1 43 Dead 48 �1 57 Alive
17 �1 73 Alive 49 �1 16 Dead
18 1 55 Alive 50 1 29 Dead
19 1 46 Dead 51 1 14 Dead
20 1 66 Alive 52 �1 29 Dead
21 1 10 Dead 53 �1 99 Dead
22 �1 3 Dead 54 �1 23 Dead
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Number of Number of
Resected Survival Resected Survival

Patient PM (Months) Status Patient PM (Months) Status

23 �1 7 Dead 55 1 74 Alive
24 �1 129 Alive 56 1 169 Alive
25 1 19 Alive 57 �1 24 Dead
26 �1 15 Dead 58 �1 9 Dead
27 1 39 Alive 59 1 43 Dead
28 1 15 Dead 60 1 3 Alive
29 �1 30 Dead 61 �1 20 Dead
30 1 35 Alive 62 1 2 Dead
31 �1 18 Dead 63 �1 41 Dead
32 1 27 Dead 64 �1 27 Dead
33 1 121 Alive 65 1 45 Alive
34 �1 8 Dead 66 1 26 Dead
35 1 24 Alive 67 �1 10 Dead
36 1 127 Alive 68 1 143 Alive
37 1 26 Dead 69 1 16 Dead
38 �1 7 Dead 70 1 29 Alive
39 �1 26 Dead 71 1 17 Dead
40 �1 17 Dead 72 �1 20 Dead
41 1 18 Dead 73 1 92 Alive
42 1 17 Dead 74 �1 15 Dead
43 �1 10 Dead 75 1 5 Dead
44 �1 33 Dead 76 �1 73 Alive
45 �1 42 Alive 77 1 19 Dead
46 1 40 Alive

Source: Dr. Philippe Girard. Used with permission.

Exercises for Use with the Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1. Refer to the data on smoking, alcohol consumption, blood pressure, and respiratory disease among
1200 adults (SMOKING). The variables are as follows:

Sex (A):

Smoking status (B):

Drinking level (C):

Symptoms of respiratory disease (D):

High blood pressure status (E):

Select a simple random sample of size 100 from this population and carry out an analysis to see
if you can conclude that there is a relationship between smoking status and symptoms of respira-
tory disease. Let and determine the p value for your test. Compare your results with those
of your classmates.

a = .05

1 = present, 0 = absent

1 = present, 0 = absent

2 = heavy drinker
1 = light to moderate drinker
0 = nondrinker

0 = nonsmoker, 1 = smoker

1 = male, 0 = female
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2. Refer to Exercise 1. Select a simple random sample of size 100 from the population and carry out
a test to see if you can conclude that there is a relationship between drinking status and high blood
pressure status in the population. Let and determine the p value. Compare your results
with those of your classmates.

3. Refer to Exercise 1. Select a simple random sample of size 100 from the population and carry out
a test to see if you can conclude that there is a relationship between gender and smoking status
in the population. Let and determine the p value. Compare your results with those of your
classmates.

4. Refer to Exercise 1. Select a simple random sample of size 100 from the population and carry
out a test to see if you can conclude that there is a relationship between gender and drinking
level in the population. Let and find the p value. Compare your results with those of
your classmates.
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CHAPTER OVERVIEW 

This chapter explores a wide variety of techniques that are useful when the
underlying assumptions of traditional hypothesis tests are violated or one
wishes to perform a test without making assumptions about the sampled
population.

TOPICS

13.1 INTRODUCTION

13.2 MEASUREMENT SCALES

13.3 THE SIGN TEST
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13.12 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand the rank transformation and how nonparametric procedures can be 

used for weak measurement scales.

CHAPTER13
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2. be able to calculate and interpret a wide variety of nonparametric tests 
commonly used in practice.

3. understand which nonparametric tests may be used in place of traditional 
parametric statistical tests when various test assumptions are violated.

13.1 INTRODUCTION

Most of the statistical inference procedures we have discussed up to this point are clas-
sified as parametric statistics. One exception is our use of chi-square—as a test of
goodness-of-fit and as a test of independence. These uses of chi-square come under
the heading of nonparametric statistics.

The obvious question now is, “What is the difference?” In answer, let us recall the
nature of the inferential procedures that we have categorized as parametric. In each case,
our interest was focused on estimating or testing a hypothesis about one or more population
parameters. Furthermore, central to these procedures was a knowledge of the functional form
of the population from which were drawn the samples providing the basis for the inference.

An example of a parametric statistical test is the widely used t test. The most com-
mon uses of this test are for testing a hypothesis about a single population mean or the
difference between two population means. One of the assumptions underlying the valid
use of this test is that the sampled population or populations are at least approximately
normally distributed.

As we will learn, the procedures that we discuss in this chapter either are not con-
cerned with population parameters or do not depend on knowledge of the sampled popu-
lation. Strictly speaking, only those procedures that test hypotheses that are not statements
about population parameters are classified as nonparametric, while those that make no
assumption about the sampled population are called distribution-free procedures. Despite
this distinction, it is customary to use the terms nonparametric and distribution-free inter-
changeably and to discuss the various procedures of both types under the heading non-
parametric statistics. We will follow this convention.

The above discussion implies the following four advantages of nonparametric
statistics.

1. They allow for the testing of hypotheses that are not statements about population
parameter values. Some of the chi-square tests of goodness-of-fit and the tests of
independence are examples of tests possessing this advantage.

2. Nonparametric tests may be used when the form of the sampled population is
unknown.

3. Nonparametric procedures tend to be computationally easier and consequently more
quickly applied than parametric procedures. This can be a desirable feature in cer-
tain cases, but when time is not at a premium, it merits a low priority as a criterion
for choosing a nonparametric test. Indeed, most statistical software packages now
include a wide variety of nonparametric analysis options, making considerations
about computation speed unnecessary.

4. Nonparametric procedures may be applied when the data being analyzed consist
merely of rankings or classifications. That is, the data may not be based on a
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measurement scale strong enough to allow the arithmetic operations necessary for
carrying out parametric procedures. The subject of measurement scales is discussed
in more detail in the next section.

Although nonparametric statistics enjoy a number of advantages, their disadvantages
must also be recognized.

1. The use of nonparametric procedures with data that can be handled with a para-
metric procedure results in a waste of data.

2. The application of some of the nonparametric tests may be laborious for large
samples.

13.2 MEASUREMENT SCALES

As was pointed out in the previous section, one of the advantages of nonparametric sta-
tistical procedures is that they can be used with data that are based on a weak measure-
ment scale. To understand fully the meaning of this statement, it is necessary to know
and understand the meaning of measurement and the various measurement scales most
frequently used. At this point the reader may wish to refer to the discussion of measure-
ment scales in Chapter 1.

Many authorities are of the opinion that different statistical tests require different
measurement scales. Although this idea appears to be followed in practice, there are alter-
native points of view.

Data based on ranks, as will be discussed in this chapter, are commonly encoun-
tered in statistics. We may, for example, simply note the order in which a sample of
subjects complete an event instead of the actual time taken to complete it. More often,
however, we use a rank transformation on the data by replacing, prior to analysis, the
original data by their ranks. Although we usually lose some information by employing
this procedure (for example, the ability to calculate the mean and variance), the trans-
formed measurement scale allows the computation of most nonparametric statistical pro-
cedures. In fact, most of the commonly used nonparametric procedures, including most
of those presented in this chapter, can be obtained by first applying the rank transfor-
mation and then using the standard parametric procedure on the transformed data instead
of on the original data. For example, if we wish to determine whether two independent
samples differ, we may employ the independent samples t test if the data are approxi-
mately normally distributed. If we cannot make the assumption of normal distributions,
we may, as we shall see in the sections that follow, employ an appropriate nonparamet-
ric test. In lieu of these procedures, we could first apply the rank transformation on the
data and then use the independent samples t test on the ranks. This will provide an
equivalent test to the nonparametric test, and is a useful tool to employ if a desired non-
parametric test is not available in your available statistical software package.

Readers should also keep in mind that other transformations (e.g., taking the log-
arithm of the original data) may sufficiently normalize the data such that standard para-
metric procedures can be used on the transformed data in lieu of using nonparametric
methods.
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13.3 THE SIGN TEST

The familiar t test is not strictly valid for testing (1) the null hypothesis that a popula-
tion mean is equal to some particular value, or (2) the null hypothesis that the mean of
a population of differences between pairs of measurements is equal to zero unless the
relevant populations are at least approximately normally distributed. Case 2 will be rec-
ognized as a situation that was analyzed by the paired comparisons test in Chapter 7.
When the normality assumptions cannot be made or when the data at hand are ranks
rather than measurements on an interval or ratio scale, the investigator may wish for an
optional procedure. Although the t test is known to be rather insensitive to violations of
the normality assumption, there are times when an alternative test is desirable.

A frequently used nonparametric test that does not depend on the assumptions of
the t test is the sign test. This test focuses on the median rather than the mean as a meas-
ure of central tendency or location. The median and mean will be equal in symmetric
distributions. The only assumption underlying the test is that the distribution of the vari-
able of interest is continuous. This assumption rules out the use of nominal data.

The sign test gets its name from the fact that pluses and minuses, rather than numer-
ical values, provide the raw data used in the calculations. We illustrate the use of the sign
test, first in the case of a single sample, and then by an example involving paired samples.

EXAMPLE 13.3.1

Researchers wished to know if instruction in personal care and grooming would improve
the appearance of mentally retarded girls. In a school for the mentally retarded, 10 girls
selected at random received special instruction in personal care and grooming. Two
weeks after completion of the course of instruction the girls were interviewed by a nurse
and a social worker who assigned each girl a score based on her general appearance.
The investigators believed that the scores achieved the level of an ordinal scale. They
felt that although a score of, say, 8 represented a better appearance than a score of 6,
they were unwilling to say that the difference between scores of 6 and 8 was equal to
the difference between, say, scores of 8 and 10; or that the difference between scores of
6 and 8 represented twice as much improvement as the difference between scores of 5
and 6. The scores are shown in Table 13.3.1. We wish to know if we can conclude that
the median score of the population from which we assume this sample to have been
drawn is different from 5.

Solution:

1. Data. See problem statement.

2. Assumptions. We assume that the measurements are taken on a con-
tinuous variable.

3. Hypotheses.

The population median is 5.

The population median is not 5.

Let a = .05.

HA:

H0:
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4. Test statistic. The test statistic for the sign test is either the observed
number of plus signs or the observed number of minus signs. The nature
of the alternative hypothesis determines which of these test statistics is
appropriate. In a given test, any one of the following alternative hypothe-
ses is possible:

If the alternative hypothesis is

a sufficiently small number of minus signs causes rejection of The
test statistic is the number of minus signs. Similarly, if the alternative
hypothesis is

a sufficiently small number of plus signs causes rejection of The test
statistic is the number of plus signs. If the alternative hypothesis is

either a sufficiently small number of plus signs or a sufficiently small
number of minus signs causes rejection of the null hypothesis. We may
take as the test statistic the less frequently occurring sign.

5. Distribution of test statistic. As a first step in determining the nature
of the test statistic, let us examine the data in Table 13.3.1 to determine
which scores lie above and which ones lie below the hypothesized
median of 5. If we assign a plus sign to those scores that lie above the
hypothesized median and a minus to those that fall below, we have the
results shown in Table 13.3.2.

If the null hypothesis were true, that is, if the median were, in fact, 5,
we would expect the numbers of scores falling above and below 5 to be

HA: P1+2 Z P1-2
H0.

HA: P1+2 6 P1-2
H0.

HA: P1+2 7 P1-2
HA: P1+2 Z P1-2 two-sided alternative

HA: P1+2 6 P1-2 one-sided alternative

HA: P1+2 7 P1-2 one-sided alternative
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TABLE 13.3.1 General Appearance
Scores of 10 Mentally Retarded Girls

Girl Score Girl Score

1 4 6 6

2 5 7 10

3 8 8 7

4 8 9 6

5 9 10 6



approximately equal. This line of reasoning suggests an alternative way in
which we could have stated the null hypothesis, namely, that the probability
of a plus is equal to the probability of a minus, and these probabilities are
equal to .5. Stated symbolically, the hypothesis would be

In other words, we would expect about the same number of plus signs as
minus signs in Table 13.3.2 when is true. A look at Table 13.3.2 reveals
a preponderance of pluses; specifically, we observe eight pluses, one minus,
and one zero, which was assigned to the score that fell exactly on the median.
The usual procedure for handling zeros is to eliminate them from the analy-
sis and reduce n, the sample size, accordingly. If we follow this procedure,
our problem reduces to one consisting of nine observations of which eight
are plus and one is minus.

Since the number of pluses and minuses is not the same, we wonder if
the distribution of signs is sufficiently disproportionate to cast doubt on our
hypothesis. Stated another way, we wonder if this small a number of minuses
could have come about by chance alone when the null hypothesis is true, or if
the number is so small that something other than chance (that is, a false null
hypothesis) is responsible for the results.

Based on what we learned in Chapter 4, it seems reasonable to con-
clude that the observations in Table 13.3.2 constitute a set of n independent
random variables from the Bernoulli population with parameter p. If we let

the sampling distribution of k is the binomial probabil-
ity distribution with parameter if the null hypothesis is true.

6. Decision rule. The decision rule depends on the alternative hypothesis.

For reject if, when is true, the probabil-
ity of observing k or fewer minus signs is less than or equal to

For reject if the probability of observing,
when is true, k or fewer plus signs is equal to or less than

For reject if (given that is true) the proba-
bility of obtaining a value of k as extreme as or more extreme than
was actually computed is equal to or less than 

For this example the decision rule is: Reject if the p value for the
computed test statistic is less than or equal to .05.

H0

a>2.

H0H0HA: P1+2 Z P1-2, a.H0

H0HA: P1+2 6 P1-2, a.
H0H0HA: P1+2 7 P1-2,

p = .5
k = the test statistic,

H0

H0: P1+2 = P1-2 = .5
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TABLE 13.3.2 Scores Above and Below the Hypothesized Median Based
on Data of Example 13.3.1

Girl 1 2 3 4 5 6 7 8 9 10

Score relative to 0
hypothesized 
median

++++++++-

(�)(�)



7. Calculation of test statistic. We may determine the probability of
observing x or fewer minus signs when given a sample of size n and
parameter p by evaluating the following expression:

(13.3.1)

For our example we would compute

8. Statistical decision. In Appendix Table B we find

With a two-sided test either a sufficiently small number of minuses
or a sufficiently small number of pluses would cause rejection of the
null hypothesis. Since, in our example, there are fewer minuses, we
focus our attention on minuses rather than pluses. By setting equal to
.05, we are saying that if the number of minuses is so small that the
probability of observing this few or fewer is less than .025 (half of ),
we will reject the null hypothesis. The probability we have computed,
.0195, is less than .025. We, therefore, reject the null hypothesis.

9. Conclusion. We conclude that the median score is not 5.

10. p value. The p value for this test is ■

Sign Test: Paired Data When the data to be analyzed consist of observations
in matched pairs and the assumptions underlying the t test are not met, or the measure-
ment scale is weak, the sign test may be employed to test the null hypothesis that the
median difference is 0. An alternative way of stating the null hypothesis is

One of the matched scores, say, is subtracted from the other score, If is
less than the sign of the difference is and if is greater than the sign of the
difference is If the median difference is 0, we would expect a pair picked at random
to be just as likely to yield a as a when the subtraction is performed. We may state
the null hypothesis, then, as

In a random sample of matched pairs, we would expect the number of s and ’s to
be about equal. If there are more s or more ’s than can be accounted for by chance
alone when the null hypothesis is true, we will entertain some doubt about the truth of
our null hypothesis. By means of the sign test, we can decide how many of one sign
constitutes more than can be accounted for by chance alone.

-+’
-+’

H0: P1+2 = P1-2 = .5

-+
- .

Xi,Yi+ ,Xi,
YiXi.Yi,

P1Xi 7 Yi2 = P1Xi 6 Yi2 = .5

21.01952 = .0390.

a

a

P1k … 1 ƒ 9, .52 = .0195

9C01.5201.529-0 + 9C11.5211.529-1 = .00195 + .01758 = .0195

P1k … x ƒ n, p2 = a
x

k=0
nCkpkqn-k
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EXAMPLE 13.3.2

A dental research team wished to know if teaching people how to brush their teeth would
be beneficial. Twelve pairs of patients seen in a dental clinic were obtained by carefully
matching on such factors as age, sex, intelligence, and initial oral hygiene scores. One
member of each pair received instruction on how to brush his or her teeth and on other
oral hygiene matters. Six months later all 24 subjects were examined and assigned an
oral hygiene score by a dental hygienist unaware of which subjects had received the
instruction. A low score indicates a high level of oral hygiene. The results are shown
in Table 13.3.3.

Solution:

1. Data. See problem statement.

2. Assumptions. We assume that the population of differences between
pairs of scores is a continuous variable.

3. Hypotheses. If the instruction produces a beneficial effect, this fact
would be reflected in the scores assigned to the members of each pair. If
we take the differences , we would expect to observe more ’s
than s if instruction had been beneficial, since a low score indicates a
higher level of oral hygiene. If, in fact, instruction is beneficial, the
median of the hypothetical population of all such differences would be
less than 0, that is, negative. If, on the other hand, instruction has no
effect, the median of this population would be zero. The null and alter-
nate hypotheses, then, are:

+’
-Xi - Yi
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TABLE 13.3.3 Oral Hygiene Scores of 12 Subjects
Receiving Oral Hygiene Instruction and 
12 Subjects Not Receiving Instruction 

Score

Pair Instructed Not Instructed

Number

1 1.5 2.0

2 2.0 2.0

3 3.5 4.0

4 3.0 2.5

5 3.5 4.0

6 2.5 3.0

7 2.0 3.5

8 1.5 3.0

9 1.5 2.5

10 2.0 2.5

11 3.0 2.5

12 2.0 2.5 

(Yi)(Xi)

(Yi)
(Xi)



The median of the differences is zero 

The median of the differences is negative 

Let be .05.

4. Test statistic. The test statistic is the number of plus signs.

5. Distribution of test statistic. The sampling distribution of k is the bino-
mial distribution with parameters n and .5 if is true.

6. Decision rule. Reject if 

7. Calculation of test statistic. As will be seen, the procedure here is
identical to the single sample procedure once the score differences have
been obtained for each pair. Performing the subtractions and observing
signs yields the results shown in Table 13.3.4.

The nature of the hypothesis indicates a one-sided test so that all
of is associated with the rejection region, which consists of all
values of k (where k is equal to the number of � signs) for which the
probability of obtaining that many or fewer pluses due to chance alone
when is true is equal to or less than .05. We see in Table 13.3.4 that
the experiment yielded one zero, two pluses, and nine minuses. When
we eliminate the zero, the effective sample size is with two pluses
and nine minuses. In other words, since a “small” number of plus signs
will cause rejection of the null hypothesis, the value of our test statistic
is

8. Statistical decision. We want to know the probability of obtaining no
more than two pluses out of 11 tries when the null hypothesis is true.
As we have seen, the answer is obtained by evaluating the appropriate
binomial expression. In this example we find

By consulting Appendix Table B, we find this probability to be .0327.
Since .0327 is less than .05, we must reject 

9. Conclusion. We conclude that the median difference is negative. That
is, we conclude that the instruction was beneficial.

10. p value. For this test, ■

Sign Test with “Greater Than” Tables As has been demonstrated, the
sign test may be used with a single sample or with two samples in which each member

p = .0327.

H0.

P1k … 2 ƒ  11, .52 = a
2

k=0
11Ck1.52k1.5211-k

k = 2.

n = 11

H0

a = .05

P1k … 2 ƒ  11, .52 … .05.H0

H0

a

3P1+2 6 P1-24.HA:

3P1+2 = P1-24.H0:
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TABLE 13.3.4 Signs of Differences in Oral Hygiene Scores of 12 Subjects
Instructed and 12 Matched Subjects Not Instructed 

Pair 1 2 3 4 5 6 7 8 9 10 11 12

Sign of score 0
differences

-+------+--

(Yi)(Xi)
(Xi � Yi)



of one sample is matched with a member of the other sample to form a sample of
matched pairs. We have also seen that the alternative hypothesis may lead to either a
one-sided or a two-sided test. In either case we concentrate on the less frequently occur-
ring sign and calculate the probability of obtaining that few or fewer of that sign.

We use the least frequently occurring sign as our test statistic because the bino-
mial probabilities in Appendix Table B are “less than or equal to” probabilities. By using
the least frequently occurring sign, we can obtain the probability we need directly from
Table B without having to do any subtracting. If the probabilities in Table B were
“greater than or equal to” probabilities, which are often found in tables of the binomial
distribution, we would use the more frequently occurring sign as our test statistic in
order to take advantage of the convenience of obtaining the desired probability directly
from the table without having to do any subtracting. In fact, we could, in our present
examples, use the more frequently occurring sign as our test statistic, but because Table B
contains “less than or equal to” probabilities we would have to perform a subtraction
operation to obtain the desired probability. As an illustration, consider the last exam-
ple. If we use as our test statistic the most frequently occurring sign, it is 9, the num-
ber of minuses. The desired probability, then, is the probability of nine or more minuses,
when and That is, we want

However, since Table B contains “less than or equal to” probabilities, we must obtain
this probability by subtraction. That is,

which is the result obtained previously.

Sample Size We saw in Chapter 5 that when the sample size is large and when
p is close to .5, the binomial distribution may be approximated by the normal distribu-
tion. The rule of thumb used was that the normal approximation is appropriate when
both np and nq are greater than 5. When as was hypothesized in our two exam-
ples, a sample of size 12 would satisfy the rule of thumb. Following this guideline, one
could use the normal approximation when the sign test is used to test the null hypothe-
sis that the median or median difference is 0 and n is equal to or greater than 12. Since
the procedure involves approximating a continuous distribution by a discrete distribution,
the continuity correction of .5 is generally used. The test statistic then is

(13.3.2)

which is compared with the value of z from the standard normal distribution correspon-
ding to the chosen level of significance. In Equation 13.3.2, is used when 
and is used when k Ú n>2.k - .5

k 6 n>2k + .5

z =
1k ; .52 - .5n

.52n

p = .5,

= .0327

= 1 - .9673

P1k Ú 9 ƒ  11, .52 = 1 - P1k … 8 ƒ  11, .52
P1k = 9 ƒ  11, .52p = .5.n = 11
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Computer Analysis Many statistics software packages will perform the sign test.
For example, if we use MINITAB to perform the test for Example 13.3.1 in which the
data are stored in Column 1, the procedure and output would be as shown in Figure 13.3.1.

EXERCISES

13.3.1 A random sample of 15 student nurses was given a test to measure their level of authoritarianism
with the following results:

Student Authoritarianism Student Authoritarianism
Number Score Number Score

1 75 9 82
2 90 10 104
3 85 11 88
4 110 12 124
5 115 13 110
6 95 14 76
7 132 15 98
8 74

Test at the .05 level of significance, the null hypothesis that the median score for the sampled pop-
ulation is 100. Determine the p value.

EXERCISES 693

Data:

C1: 4 5 8 8 9 6 10 7 6 6

Dialog box: Session command:

Stat ➤ Nonparametrics ➤ 1-Sample Sign MTB > STest 5 C1;
SUBC>  Alternative 0.

Type C1 in Variables. Choose Test median and type 5 in
the text box. Click OK.

Output:

Sign Test for Median: C1

Sign test of median � 5.00 versus N.E. 5.000
N BELOW EQUAL ABOVE P-VALUE MEDIAN

C1 10 1 1 8 0.0391 6.500

FIGURE 13.3.1 MINITAB procedure and output for Example 13.3.1.



13.3.2 Determining the effects of grapefruit juice on pharmacokinetics of oral digoxin (a drug often pre-
scribed for heart ailments) was the goal of a study by Parker et al. (A-1). Seven healthy nonsmok-
ing volunteers participated in the study. Subjects took digoxin with water for 2 weeks, no digoxin
for 2 weeks, and digoxin with grapefruit juice for 2 weeks. The average peak plasma digoxin
concentration (Cmax) when subjects took digoxin with water is given in the first column of the
following table. The second column gives the Cmax concentration when subjects took digoxin with
grapefruit juice. May we conclude on the basis of these data that the Cmax concentration is higher
when digoxin is taken with grapefruit juice? Let 

Cmax

Subject GFJ

1 2.34 3.03
2 2.46 3.46
3 1.87 1.97
4 3.09 3.81
5 5.59 3.07
6 4.05 2.62
7 6.21 3.44

13.3.3 A sample of 15 patients suffering from asthma participated in an experiment to study the effect of
a new treatment on pulmonary function. Among the various measurements recorded were those of
forced expiratory volume (liters) in 1 second before and after application of the treatment.
The results were as follows:

Subject Before After Subject Before After

1 1.69 1.69 9 2.58 2.44
2 2.77 2.22 10 1.84 4.17
3 1.00 3.07 11 1.89 2.42
4 1.66 3.35 12 1.91 2.94
5 3.00 3.00 13 1.75 3.04
6 .85 2.74 14 2.46 4.62
7 1.42 3.61 15 2.35 4.42
8 2.82 5.14

On the basis of these data, can one conclude that the treatment is effective in increasing the 
level? Let and find the p value.

13.4 THE WILCOXON SIGNED-RANK 
TEST FOR LOCATION

Sometimes we wish to test a null hypothesis about a population mean, but for some rea-
son neither z nor t is an appropriate test statistic. If we have a small sample from
a population that is known to be grossly nonnormally distributed, and the central limit the-
orem is not applicable, the z statistic is ruled out. The t statistic is not appropriate because

1n 6 302

a = .05
FEV1

1FEV12

H2O

a = .05.
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Source: Robert B. Parker, Pharm.D.
Used with permission.



the sampled population does not sufficiently approximate a normal distribution. When con-
fronted with such a situation we usually look for an appropriate nonparametric statistical
procedure. As we have seen, the sign test may be used when our data consist of a single
sample or when we have paired data. If, however, the data for analysis are measured on at
least an interval scale, the sign test may be undesirable because it would not make full use
of the information contained in the data. A more appropriate procedure might be the
Wilcoxon (1) signed-rank test, which makes use of the magnitudes of the differences
between measurements and a hypothesized location parameter rather than just the signs of
the differences.

Assumptions The Wilcoxon test for location is based on the following assump-
tions about the data.

1. The sample is random.

2. The variable is continuous.

3. The population is symmetrically distributed about its mean 

4. The measurement scale is at least interval.

Hypotheses The following are the null hypotheses (along with their alternatives)
that may be tested about some unknown population mean 

(a) (b) (c)

When we use the Wilcoxon procedure, we perform the following calculations.

1. Subtract the hypothesized mean from each observation to obtain

If any is equal to the mean, so that eliminate that from the calcula-
tions and reduce n accordingly.

2. Rank the usable from the smallest to the largest without regard to the sign of
. That is, consider only the absolute value of the designated when rank-

ing them. If two or more of the are equal, assign each tied value the mean of
the rank positions the tied values occupy. If, for example, the three smallest 
are all equal, place them in rank positions 1, 2, and 3, but assign each a rank of

3. Assign each rank the sign of the that yields that rank.

4. Find the sum of the ranks with positive signs, and the sum of the ranks
with negative signs.

The Test Statistic The Wilcoxon test statistic is either or depending on
the nature of the alternative hypothesis. If the null hypothesis is true, that is, if the true
population mean is equal to the hypothesized mean, and if the assumptions are met, the

T- ,T+

T- ,T+ ,

di

11 + 2 + 32>3 = 2.

ƒdi ƒ
ƒdi ƒ

ƒdi ƒ ,di,di

di

didi = 0,x i

di = x i - m0

x i,m0

HA: m 7 m0HA: m 6 m0HA: m Z m0

H0: m … m0H0: m Ú m0H0: m = m0

m0.

m.
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probability of observing a positive difference of a given magnitude is equal
to the probability of observing a negative difference of the same magnitude. Then, in
repeated sampling, when the null hypothesis is true and the assumptions are met, the
expected value of is equal to the expected value of We do not expect and 
computed from a given sample to be equal. However, when is true, we do not expect
a large difference in their values. Consequently, a sufficiently small value of or a suf-
ficiently small value of will cause rejection of 

When the alternative hypothesis is two-sided , either a sufficiently small
value of or a sufficiently small value of will cause us to reject The
test statistic, then, is or whichever is smaller. To simplify notation, we call the
smaller of the two T.

When is true, we expect our sample to yield a large value of There-
fore, when the one-sided alternative hypothesis states that the true population mean is
less than the hypothesized mean a sufficiently small value of will cause
rejection of and is the test statistic.

When is true, we expect our sample to yield a large value of There-
fore, for the one-sided alternative a sufficiently small value of will cause
rejection of and is the test statistic.

Critical Values Critical values of the Wilcoxon test statistic are given in Appendix
Table K. Exact probability levels (P) are given to four decimal places for all possible rank
totals (T ) that yield a different probability level at the fourth decimal place from .0001 up
through .5000. The rank totals (T ) are tabulated for all sample sizes from through

The following are the decision rules for the three possible alternative hypotheses:

(a) Reject at the level of significance if the calculated T is smaller
than or equal to the tabulated T for n and preselected Alternatively, we may
enter Table K with n and our calculated value of T to see whether the tabulated P
associated with the calculated T is less than or equal to our stated level of signif-
icance. If so, we may reject 

(b) Reject at the level of significance if is less than or equal to
the tabulated T for n and preselected 

(c) . Reject at the level of significance if is less than or equal to
the tabulated T for n and preselected 

EXAMPLE 13.4.1

Cardiac output (liters/minute) was measured by thermodilution in a simple random sam-
ple of 15 postcardiac surgical patients in the left lateral position. The results were as
follows:

4.91 4.10 6.74 7.27 7.42 7.50 6.56 4.64
5.98 3.14 3.23 5.80 6.17 5.39 5.77

We wish to know if we can conclude on the basis of these data that the population mean
is different from 5.05.

a.
T-aH0HA: m 7 m0

a.
T+aH0HA: m 6 m0.

H0.

a>2.
aH0HA: m Z m0.

n = 30.
n = 5

T-H0

T-HA: m 7 m0,
T- .H0: m … m0

T+H0,
T+1m 6 m02, T+ .H0: m Ú m0

T- ,T+

H0: m = m0.T-T+

1m Z m02H0.T-

T+

H0

T-T+T- .T+

di = x i - m0
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Solution:

1. Data. See statement of example.

2. Assumptions. We assume that the requirements for the application of
the Wilcoxon signed-ranks test are met.

3. Hypotheses.

4. Test statistic. The test statistic will be or whichever is smaller.
We will call the test statistic T.

5. Distribution of test statistic. Critical values of the test statistic are
given in Table K of the Appendix.

6. Decision rule. We will reject if the computed value of T is less than
or equal to 25, the critical value for and the clos-
est value to .0250 in Table K.

7. Calculation of test statistic. The calculation of the test statistic is
shown in Table 13.4.1.

8. Statistical decision. Since 34 is greater than 25, we are unable to reject 

9. Conclusion. We conclude that the population mean may be 5.05.

10. p value. From Table K we see that p = 21.07572 = .1514.

H0.

a>2 = .0240,n = 15,
H0

T- ,T+

Let a = 0.05.

HA: m Z 5.05

H0: m = 5.05
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TABLE 13.4.1 Calculation of the Test Statistic for Example 13.4.1

Cardiac

Output Rank of Signed Rank of 

4.91 1

4.10 7

6.74 10

7.27 13

7.42 14

7.50 15

6.56 9

4.64 3

5.98 6

3.14 12

3.23 11

5.80 5

6.17 8

5.39 2

5.77 4

T+ = 86, T- = 34, T = 34

+4+ .72

+2+ .34

+8+1.12

+5+ .75

-11-1.82

-12-1.91

+6+ .93

-3- .41

+9+1.51

+15+2.45

+14+2.37

+13+2.22

+10+1.69

-7- .95

-1- .14

ƒdi ƒƒdi ƒdi � xi � 5.05

■



Wilcoxon Matched-Pairs Signed-Ranks Test The Wilcoxon test
may be used with paired data under circumstances in which it is not appropriate to 
use the paired-comparisons t test described in Chapter 7. In such cases obtain each of
the values, the difference between each of the n pairs of measurements. If we 
let we may follow the procedure
described above to test any one of the following null hypotheses: 
and

Computer Analysis Many statistics software packages will perform the
Wilcoxon signed-rank test. If, for example, the data of Example 13.4.1 are stored in
Column 1, we could use MINITAB to perform the test as shown in Figure 13.4.1.

EXERCISES

13.4.1 Sixteen laboratory animals were fed a special diet from birth through age 12 weeks. Their weight
gains (in grams) were as follows:

63 68 79 65 64 63 65 64 76 74 66 66 67 73 69 76

Can we conclude from these data that the diet results in a mean weight gain of less than 70 grams?
Let and find the p value.

13.4.2 Amateur and professional singers were the subjects of a study by Grape et al. (A-2). The researchers
investigated the possible beneficial effects of singing on well-being during a single singing lesson.
One of the variables of interest was the change in cortisol as a result of the signing lesson. Use the
data in the following table to determine if, in general, cortisol (nmol/L) increases after a singing
lesson. Let Find the p value.a = .05.

a = .05,

H0: mD Ú 0.
H0: mD Ú 0,H0: mD = 0,

mD = the mean of a population of such differences,
n di
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Dialog box: Session command:

Stat ➤ Nonparametrics ➤ 1-Sample Wilcoxon MTB > WTEST 5.05 C1;
SUBC>  Alternative 0.

Type C1 in Variables. Choose Test median. Type 5.05 in
the text box. Click OK .

Output:

Wilcoxon Signed Rank Test: C1

TEST OF MEDIAN � 5.050 VERSUS MEDIAN N.E. 5.050

N FOR WILCOXON ESTIMATED
N  TEST STATISTIC P-VALUE MEDIAN

C1 15 15 86.0 0.148 5.747

FIGURE 13.4.1 MINITAB procedure and output for Example 13.4.1.



Subject 1 2 3 4 5 6 7 8

Before 214 362 202 158 403 219 307 331
After 232 276 224 412 562 203 340 313

Source: Christina Grape, M.P.H., Licensed Nurse. Used with permission.

13.4.3 In a study by Zuckerman and Heneghan (A-3), hemodynamic stresses were measured on sub-
jects undergoing laparoscopic cholecystectomy. An outcome variable of interest was the ventric-
ular end diastolic volume (LVEDV) measured in milliliters. A portion of the data appear in the
following table. Baseline refers to a measurement taken 5 minutes after induction of anesthesia,
and the term “5 minutes” refers to a measurement taken 5 minutes after baseline.

LVEDV (ml)

Subject Baseline 5 Minutes

1 51.7 49.3
2 79.0 72.0
3 78.7 87.3
4 80.3 88.3
5 72.0 103.3
6 85.0 94.0
7 69.7 94.7
8 71.3 46.3
9 55.7 71.7

10 56.3 72.3

May we conclude, on the basis of these data, that among subjects undergoing laparoscopic chole-
cystectomy, the average LVEDV levels change? Let 

13.5 THE MEDIAN TEST

A nonparametric procedure that may be used to test the null hypothesis that two inde-
pendent samples have been drawn from populations with equal medians is the median
test. The test, attributed mainly to Mood (2) and Westenberg (3), is also discussed by
Brown and Mood (4).

We illustrate the procedure by means of an example.

EXAMPLE 13.5.1

Do urban and rural male junior high school students differ with respect to their level of
mental health?

Solution:

1. Data. Members of a random sample of 12 male students from a rural
junior high school and an independent random sample of 16 male

a = .01.
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Source: R. S. Zuckerman, MD.
Used with permission.



students from an urban junior high school were given a test to measure
their level of mental health. The results are shown in Table 13.5.1.

To determine if we can conclude that there is a difference, we per-
form a hypothesis test that makes use of the median test. Suppose we
choose a .05 level of significance.

2. Assumptions. The assumptions underlying the test are (a) the sam-
ples are selected independently and at random from their respective
populations; (b) the populations are of the same form, differing only
in location; and (c) the variable of interest is continuous. The level of
measurement must be, at least, ordinal. The two samples do not have
to be of equal size.

3. Hypotheses.

is the median score of the sampled population of urban students,
and is the median score of the sampled population of rural students.
Let

4. Test statistic. As will be shown in the discussion that follows, the test
statistic is as computed, for example, by Equation 12.4.1 for a 
contingency table.

5. Distribution of test statistic. When is true and the assumptions are
met, is distributed approximately as with 1 degree of freedom.

6. Decision rule. Reject if the computed value of is (since
).

7. Calculation of test statistic. The first step in calculating the test statis-
tic is to compute the common median of the two samples combined. This
is done by arranging the observations in ascending order and, because

a = .05
Ú 3.841X2H0

x2X2
H0

2 * 2X2

a = .05.
MR

MU

HA: MU Z MR

H0: MU = MR
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TABLE 13.5.1 Level of Mental Health Scores
of Junior High Boys

School

Urban Rural Urban Rural

35 29 25 50

26 50 27 37

27 43 45 34

21 22 46 31

27 42 33

38 47 26

23 42 46

25 32 41



the total number of observations is even, obtaining the mean of the two
middle numbers. For our example the median is

We now determine for each group the number of observations falling
above and below the common median. The resulting frequencies are arranged
in a table. For the present example we construct Table 13.5.2.

If the two samples are, in fact, from populations with the same median,
we would expect about one-half the scores in each sample to be above the
combined median and about one-half to be below. If the conditions relative
to sample size and expected frequencies for a contingency table as
discussed in Chapter 12 are met, the chi-square test with 1 degree of free-
dom may be used to test the null hypothesis of equal population medians.
For our examples we have, by Formula 12.4.1,

8. Statistical decision. Since the critical value of with
and 1 degree of freedom, we are unable to reject the null hypoth-

esis on the basis of these data.

9. Conclusion. We conclude that the two samples may have been drawn
from populations with equal medians.

10. p value. Since we have ■

Handling Values Equal to the Median Sometimes one or more observed
values will be exactly equal to the common median and, hence, will fall neither above
nor below it. We note that if is odd, at least one value will always be exactly
equal to the median. This raises the question of what to do with observations of this
kind. One solution is to drop them from the analysis if is large and there are
only a few values that fall at the combined median. Or we may dichotomize the scores
into those that exceed the median and those that do not, in which case the observations
that equal the median will be counted in the second category.

Median Test Extension The median test extends logically to the case where
it is desired to test the null hypothesis that samples are from populations with
equal medians. For this test a contingency table may be constructed by using the2 * k

k Ú 3

n1 + n2

n1 + n2

p 7 .10.2.33 6 2.706,

a = .05
x22.33 6 3.841,

X2 =
283162142 - 1821102421162112211421142 = 2.33

2 * 2

2 * 2

133 + 342>2 = 33.5.
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TABLE 13.5.2 Level of Mental Health Scores of Junior 
High School Boys

Urban Rural Total

Number of scores above median 6 8 14

Number of scores below median 10 4 14

Total 16 12 28



frequencies that fall above and below the median computed from combined samples. If
conditions as to sample size and expected frequencies are met, may be computed and
compared with the critical with degrees of freedom.

Computer Analysis The median test calculations may be carried out using
MINITAB. To illustrate using the data of Example 13.5.1 we first store the mea-
surements in MINITAB Column 1. In MINITAB Column 2 we store codes that iden-
tify the observations as to whether they are for an urban (1) or rural (2) subject. The
MINITAB procedure and output are shown in Figure 13.5.1.

EXERCISES

13.5.1 Fifteen patient records from each of two hospitals were reviewed and assigned a score designed
to measure level of care. The scores were as follows:

Hospital A: 99, 85, 73, 98, 83, 88, 99, 80, 74, 91, 80, 94, 94, 98, 80

Hospital B: 78, 74, 69, 79, 57, 78, 79, 68, 59, 91, 89, 55, 60, 55, 79

k - 1x2
X2
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Dialog box: Session command:

Stat ➤ Nonparametrics ➤ Mood’s Median Test MTB > Mood C1 C2.

Type C1 in Response and C2 in Factor. Click OK.

Output:

Mood Median Test: C1 versus C2

Mood median test of C1

Chisquare � 2.33 df � 1 p � 0.127

Individual 95.0% CIs
C2 N<� N> Median Q3�Q1 --------�---------�---------�--------
1 10 6 27.0 15.0 (-�-------------------)
2 4 8 39.5 14.8 (-------------�----------)

--------�---------�---------�--------
30.0 36.0 42.0

Overall median � 33.5

A 95.0% C.I. for median (1) - median(2): (�17.1,3.1)

FIGURE 13.5.1 MINITAB procedure and output for Example 13.5.1.



Would you conclude, at the .05 level of significance, that the two population medians are differ-
ent? Determine the p value.

13.5.2 The following serum albumin values were obtained from 17 normal and 13 hospitalized subjects:

Serum Albumin (g/100 ml) Serum Albumin (g/100 ml)

Normal Subjects Hospitalized Subjects Normal Subjects Hospitalized Subjects

2.4 3.0 1.5 3.1 3.4 4.0 3.8 1.5
3.5 3.2 2.0 1.3 4.5 3.5 3.5
3.1 3.5 3.4 1.5 5.0 3.6
4.0 3.8 1.7 1.8 2.9
4.2 3.9 2.0 2.0

Would you conclude at the .05 level of significance that the medians of the two populations sam-
pled are different? Determine the p value.

13.6 THE MANN–WHITNEY TEST

The median test discussed in the preceding section does not make full use of all the
information present in the two samples when the variable of interest is measured on at
least an ordinal scale. Reducing an observation’s information content to merely that of
whether or not it falls above or below the common median is a waste of information. If,
for testing the desired hypothesis, there is available a procedure that makes use of more
of the information inherent in the data, that procedure should be used if possible. Such
a nonparametric procedure that can often be used instead of the median test is the
Mann–Whitney test (5), sometimes called the Mann–Whitney–Wilcoxon test. Since this
test is based on the ranks of the observations, it utilizes more information than does the
median test.

Assumptions The assumptions underlying the Mann–Whitney test are as follows:

1. The two samples, of size n and m, respectively, available for analysis have been
independently and randomly drawn from their respective populations.

2. The measurement scale is at least ordinal.

3. The variable of interest is continuous.

4. If the populations differ at all, they differ only with respect to their medians.

Hypotheses When these assumptions are met we may test the null hypothesis that
the two populations have equal medians against either of the three possible alternatives:
(1) the populations do not have equal medians (two-sided test), (2) the median of popu-
lation 1 is larger than the median of population 2 (one-sided test), or (3) the median of
population 1 is smaller than the median of population 2 (one-sided test). If the two pop-
ulations are symmetric, so that within each population the mean and median are the same,
the conclusions we reach regarding the two population medians will also apply to the two
population means. The following example illustrates the use of the Mann–Whitney test.
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EXAMPLE 13.6.1

A researcher designed an experiment to assess the effects of prolonged inhalation of cad-
mium oxide. Fifteen laboratory animals served as experimental subjects, while 10 similar
animals served as controls. The variable of interest was hemoglobin level following the
experiment. The results are shown in Table 13.6.1. We wish to know if we can conclude
that prolonged inhalation of cadmium oxide reduces hemoglobin level.

Solution:

1. Data. See Table 13.6.1.

2. Assumptions. We assume that the assumptions of the Mann– Whitney test
are met.

3. Hypotheses. The null and alternative hypotheses are as follows:

where is the median of a population of animals exposed to cadmium
oxide and is the median of a population of animals not exposed to
the substance. Suppose we let 

4. Test statistic. To compute the test statistic we combine the two sam-
ples and rank all observations from smallest to largest while keeping
track of the sample to which each observation belongs. Tied observa-
tions are assigned a rank equal to the mean of the rank positions for
which they are tied. The results of this step are shown in Table 13.6.2.

a = .05.
MY

MX

HA: MX 6 MY

H0: MX Ú MY
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TABLE 13.6.1 Hemoglobin Determinations
(grams) for 25 Laboratory Animals

Exposed Animals Unexposed Animals

(X) (Y )

14.4 17.4

14.2 16.2

13.8 17.1

16.5 17.5

14.1 15.0

16.6 16.0

15.9 16.9

15.6 15.0

14.1 16.3

15.3 16.8

15.7

16.7

13.7

15.3

14.0 



The test statistic is

(13.6.1)

where n is the number of sample X observations and S is the sum of the
ranks assigned to the sample observations from the population of X val-
ues. The choice of which sample’s values we label X is arbitrary.

5. Distribution of test statistic. Critical values from the distribution of the
test statistic are given in Appendix Table L for various levels of 

6. Decision rule. If the median of the X population is, in fact, smaller than
the median of the Y population, as specified in the alternative hypothe-
sis, we would expect (for equal sample sizes) the sum of the ranks

a.

T = S -
n1n + 12

2
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TABLE 13.6.2 Original Data and Ranks, 
Example 13.6.1

X Rank Y Rank

13.7 1

13.8 2

14.0 3

14.1 4.5

14.1 4.5

14.2 6

14.4 7

15.0 8.5

15.0 8.5

15.3 10.5

15.3 10.5

15.6 12

15.7 13

15.9 14

16.0 15

16.2 16

16.3 17

16.5 18

16.6 19

16.7 20

16.8 21

16.9 22

17.1 23

17.4 24

17.5 25

_____

Total 145



assigned to the observations from the X population to be smaller than the
sum of the ranks assigned to the observations from the Y population. The
test statistic is based on this rationale in such a way that a sufficiently
small value of T will cause rejection of In general, for
one-sided tests of the type illustrated here the decision rule is:

Reject if the computed T is less than where is the criti-
cal value of T obtained by entering Appendix Table L with n, the number of
X observations; m, the number of Y observations; and the chosen level of
significance.

If we use the Mann–Whitney procedure to test

against

sufficiently large values of T will cause rejection so that the decision
rule is:

Reject if computed T is greater than where 

For the two-sided test situation with

computed values of T that are either sufficiently large or sufficiently small
will cause rejection of The decision rule for this case, then, is:

Reject if the computed value of T is either less than or
greater than where is the critical value of T for n, m, and 
given in Appendix Table L, and 

For this example the decision rule is:

Reject if the computed value of T is smaller than 45, the critical value of
the test statistic for and found in Table L.

The rejection regions for each set of hypotheses are shown in
Figure 13.6.1.

7. Calculation of test statistic. For our present example we have, as
shown in Table 13.6.2, so that

T = 145 -
15115 + 12

2
= 25

S = 145,

a = .05n = 15, m = 10,
H0

w1-1a>22 = nm - wa>2. a>2wa>2w1-1a>22, wa> 2H0: MX = MY

H0.

HA: MX Z MY

H0: MX = MY

nm - wa.w1-a =w1-a,H0: MX … MY

HA: MX 7 MY

H0: MX … MY

a,

wawa,H0: MX = MY

H0: MX Ú MY.
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8. Statistical decision. When we enter Table L with and
we find the critical value of to be 45. Since we

reject

9. Conclusion. We conclude that is smaller than This leads to the
conclusion that prolonged inhalation of cadmium oxide does reduce the
hemoglobin level.

10. p value. Since we have for this test 
■

Large-Sample Approximation When either n or m is greater than 20 we
cannot use Appendix Table L to obtain critical values for the Mann–Whitney test. When
this is the case we may compute

(13.6.2)

and compare the result, for significance, with critical values of the standard normal
distribution.

Mann–Whitney Statistic and the Wilcoxon Statistic As was noted
at the beginning of this section, the Mann–Whitney test is sometimes referred to as the

z =
T - mn>21nm1n + m + 12>12

.005 7 p 7 .001.22 6 25 6 30,

MY.MX

H0.
25 6 45,waa = .05,

n = 15, m = 10,
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FIGURE 13.6.1 Mann–Whitney test rejection regions for three sets of hypotheses.



Ranks

y N Mean Rank Sum of Rank

x 1.000000 15 9.67 146.00
2.000000 10 18.00 180.00
Total 25

Test Statisticb

x

Mann-Whitney U 25.000
Wilcoxon W 145.000
Z �2.775
Asymp. Sig. (2-tailed) .006
Exact Sig. [2*(1-tailed Sig.)] .004a

a. Not corrected for ties
b. Grouping Variable: y
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Dialog box: Session command:

Stat ➤ Nonparametrics ➤ Mann–Whitney MTB > Mann-Whitney 95.0
C1 C2;
SUBC > Alternative �1.

Type C1 in First Sample and C2 in Second Sample.
At Alternative choose less than.
Click OK.

Output:

Mann–Whitney Test and CI: C1, C2

C1 N � 15 Median � 15.300
C2 N � 10 Median � 16.550
Point estimate for ETA1 � ETA2 is �1.300
95.1 Percent C.I. for ETA1 � ETA2 is (�2.300,�0.600)
W � 145.0
Test of ETA1 � ETA2 vs. ETA1 � ETA2 is significant at 0.0030
The test is significant at 0.0030 (adjusted for ties)

FIGURE 13.6.2 MINITAB procedure and output for Example 13.6.1.

FIGURE 13.6.3 SPSS output for Example 13.6.1.



Mann–Whitney-Wilcoxon test. Indeed, many computer packages give the test value of
both the Mann–Whitney test (U) and the Wilcoxon test (W). These two tests are alge-
braically equivalent tests, and are related by the following equality when there are no
ties in the data:

(13.6.3)

Computer Analysis Many statistics software packages will perform the
Mann–Whitney test. With the data of two samples stored in Columns 1 and 2, for
example, MINITAB will perform a one-sided or two-sided test. The MINITAB proce-
dure and output for Example 13.6.1 are shown in Figure 13.6.2.

The SPSS output for Example 13.6.1 is shown in Figure 13.6.3. As we see this out-
put provides the Mann–Whitney test, the Wilcoxon test, and large-sample z approximation.

EXERCISES

13.6.1 Cranor and Christensen (A-4) studied diabetics insured by two employers. Group 1 subjects
were employed by the City of Asheville, North Carolina, and group 2 subjects were employed
by Mission–St. Joseph’s Health System. At the start of the study, the researchers performed the
Mann–Whitney test to determine if a significant difference in weight existed between the two
study groups. The data are displayed in the following table.

Weight (Pounds)

Group 1 Group 2

252 215 240 185 195 220
240 190 302 310 210 295
205 270 312 212 190 202
200 159 126 238 172 268
170 204 268 184 190 220
170 215 215 136 140 311
320 254 183 200 280 164
148 164 287 270 264 206
214 288 210 200 270 170
270 138 225 212 210 190
265 240 258 182 192
203 217 221 225 126

Source: Carole W. Carnor, Ph.D. Used with permission.

May we conclude, on the basis of these data, that patients in the two groups differ significantly
with respect to weight? Let 

13.6.2 One of the purposes of a study by Liu et al. (A-5) was to determine the effects of MRZ 2/579 (a
receptor antagonist shown to provide neuroprotective activity in vivo and in vitro) on neurological

a = .05.

U + W =
m1m + 2n + 12

2
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deficit in Sprague–Dawley rats. In the study, 10 rats were to receive MRZ 2/579 and nine rats were
to receive regular saline. Prior to treatment, researchers studied the blood gas levels in the two groups
of rats. The following table shows the levels for the two groups.

Saline (mmHg) MRZ 2/579 (mmHg)

112.5 133.3
106.3 106.4
99.5 113.1
98.3 117.2

103.4 126.4
109.4 98.1
108.9 113.4
107.4 116.8

116.5

Source: Ludmila Belayev, M.D. Used with permission.

May we conclude, on the basis of these data, that, in general, subjects on saline have, on average,
lower levels at baseline? Let 

13.6.3 The purpose of a study by researchers at the Cleveland (Ohio) Clinic (A-6) was to determine if
the use of Flomax® reduced the urinary side effects commonly experienced by patients following
brachytherapy (permanent radioactive seed implant) treatment for prostate cancer. The following
table shows the American Urological Association (AUA) symptom index scores for two groups of
subjects after 8 weeks of treatment. The higher the AUA index, the more severe the urinary obstruc-
tion and irritation.

AUA Index (Flomax®) AUA Index (Placebo)

1 5 11 1 6 12
1 5 11 1 6 12
2 6 11 2 6 13
2 6 11 2 6 14
2 7 12 2 6 17
2 7 12 3 7 18
3 7 13 3 8 19
3 7 14 3 8 20
3 8 16 3 9 23
4 8 16 4 9 23
4 8 18 4 10
4 8 21 4 10
4 9 31 5 11
4 9 5 11
4 10 5 12

Source: Chandana Reddy, M.S. Used with permission.

May we conclude, on the basis of these data, that the median AUA index in the Flomax® group
differs significantly from the median AUA index of the placebo group? Let a = .05.

a = .01.pO2

pO2
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13.7 THE KOLMOGOROV–SMIRNOV
GOODNESS-OF-FIT TEST

When one wishes to know how well the distribution of sample data conforms to some
theoretical distribution, a test known as the Kolmogorov–Smirnov goodness-of-fit test
provides an alternative to the chi-square goodness-of-fit test discussed in Chapter 12. The
test gets its name from A. Kolmogorov and N. V. Smirnov, two Russian mathematicians
who introduced two closely related tests in the 1930s.

Kolmogorov’s work (6) is concerned with the one-sample case as discussed here.
Smirnov’s work (7) deals with the case involving two samples in which interest centers
on testing the hypothesis that the distributions of the two-parent populations are iden-
tical. The test for the first situation is frequently referred to as the Kolmogorov–Smirnov
one-sample test. The test for the two-sample case, commonly referred to as the 
Kolmogorov–Smirnov two-sample test, will not be discussed here.

The Test Statistic In using the Kolmogorov–Smirnov goodness-of-fit test, a
comparison is made between some theoretical cumulative distribution function, 
and a sample cumulative distribution function, The sample is a random sample
from a population with unknown cumulative distribution function It will be recalled
(Section 4.2) that a cumulative distribution function gives the probability that X is equal
to or less than a particular value, x. That is, by means of the sample cumulative distri-
bution function, we may estimate If there is close agreement between
the theoretical and sample cumulative distributions, the hypothesis that the sample was
drawn from the population with the specified cumulative distribution function, is
supported. If, however, there is a discrepancy between the theoretical and observed cumu-
lative distribution functions too great to be attributed to chance alone, when is true,
the hypothesis is rejected.

The difference between the theoretical cumulative distribution function, and
the sample cumulative distribution function, is measured by the statistic D, which
is the greatest vertical distance between and When a two-sided test is appro-
priate, that is, when the hypotheses are

for all x from

for at least one x

the test statistic is

(13.7.1)

which is read, “D equals the supremum (greatest), over all x, of the absolute value of the
difference minus ”

The null hypothesis is rejected at the level of significance if the computed
value of D exceeds the value shown in Appendix Table M for (two-sided) and
the sample size n.

1 - a
a

FT1X2.FS1X2
D = sup

x
ƒ FS1x2 - FT1x2 ƒ

HA: F1x2 Z FT1x2 -q  to +qH0: F1x2 = FT1x2
FT1x2.FS1x2FS1x2, FT1x2,H0

FT1x2,
P1X … x2.FS1x2,

F1x2.FS1x2. FT1x2,
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Assumptions The assumptions underlying the Kolmogorov–Smirnov test include
the following:

1. The sample is a random sample.

2. The hypothesized distribution is continuous.

When values of D are based on a discrete theoretical distribution, the test is con-
servative. When the test is used with discrete data, then, the investigator should bear in
mind that the true probability of committing a type I error is at most equal to the
stated level of significance. The test is also conservative if one or more parameters have
to be estimated from sample data.

EXAMPLE 13.7.1

Fasting blood glucose determinations made on 36 nonobese, apparently healthy, adult males
are shown in Table 13.7.1. We wish to know if we may conclude that these data are not
from a normally distributed population with a mean of 80 and a standard deviation of 6.

Solution:

1. Data. See Table 13.7.1.

2. Assumptions. The sample available is a simple random sample from a
continuous population distribution.

3. Hypotheses. The appropriate hypotheses are

for all x from to 

for at least one x

Let

4. Test statistic. See Equation 13.7.1.

5. Distribution of test statistic. Critical values of the test statistic for
selected values of are given in Appendix Table M.

6. Decision rule. Reject if the computed value of D exceeds .221, the
critical value of D for and 

7. Calculation of test statistic. Our first step is to compute values of
as shown in Table 13.7.2.FS1x2

a = .05.n = 36
H0

a

a = .05.

HA: F1x2 Z FT1x2 +q-qH0: F1x2 = FT1x2

a,

FT1x2
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TABLE 13.7.1 Fasting Blood Glucose Values
(mg/100 ml) for 36 Nonobese, Apparently
Healthy, Adult Males

75 92 80 80 84 72

84 77 81 77 75 81

80 92 72 77 78 76

77 86 77 92 80 78

68 78 92 68 80 81

87 76 80 87 77 86



Each value of is obtained by dividing the corresponding
cumulative frequency by the sample size. For example, the first value of

We obtain values of by first converting each observed value
of x to a value of the standard normal variable, z. From Appendix Table
D we then find the area between and z. From these areas we are
able to compute values of The procedure, which is similar to that
used to obtain expected relative frequencies in the chi-square goodness-
of-fit test, is summarized in Table 13.7.3.

FT1x2. -q

FT1x2FS1x2 = 2>36 = .0556.

FS1x2
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TABLE 13.7.2 Values of for Example 13.7.1

Cumulative

x Frequency Frequency

68 2 2 .0556

72 2 4 .1111

75 2 6 .1667

76 2 8 .2222

77 6 14 .3889

78 3 17 .4722

80 6 23 .6389

81 3 26 .7222

84 2 28 .7778

86 2 30 .8333

87 2 32 .8889

92 4 36 1.0000

36

FS(x )

FS (x )

TABLE 13.7.3 Steps in Calculation
of for Example 13.7.1

x /6

68 .0228

72 .0918

75 .2033

76 .2514

77 .3085

78 .3707

80 .00 .5000

81 .17 .5675

84 .67 .7486

86 1.00 .8413

87 1.17 .8790

92 2.00 .9772

- .33

- .50

- .67

- .83

-1.33

-2.00

FT (x)z � (x � 80)

FT (x)



The test statistic D may be computed algebraically, or it may be
determined graphically by actually measuring the largest vertical distance
between the curves of and on a graph. The graphs of the
two distributions are shown in Figure 13.7.1.

Examination of the graphs of and reveals that
Now let us compute the value of D alge-

braically. The possible values of are shown in Table
13.7.4. This table shows that the exact value of D is .1547.

8. Statistical decision. Reference to Table M reveals that a computed D
of .1547 is not significant at any reasonable level. Therefore, we are not
willing to reject .

9. Conclusion. The sample may have come from the specified distribution.

10. p value. Since we have a two-sided test, and since . we
have .p 7 .20

1547 6 .174,

H0

ƒFS1x2 - FT1x2 ƒD L .16 = 1.72 - .562. FT1x2FS1x2FT1x2FS1x2
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TABLE 13.7.4 Calculation of for
Example 13.7.1

x

68 .0556 .0228 .0328

72 .1111 .0918 .0193

75 .1667 .2033 .0366

76 .2222 .2514 .0292

77 .3889 .3085 .0804

78 .4722 .3707 .1015

80 .6389 .5000 .1389

81 .7222 .5675 .1547

84 .7778 .7486 .0292

86 .8333 .8413 .0080

87 .8889 .8790 .0099

92 1.0000 .9772 .0228

ƒFS (x) � FT (x) ƒFT (x)FS (x)

�FS (x) � FT (x) �

■



StatXact is often used for nonparametric statistical analysis. This particular soft-
ware program has a nonparametric module that contains nearly all of the commonly
used nonparametric tests, and many less common, but useful, procedures as well. Com-
puter analysis using StatXact for the data in Example 13.7.1 is shown in Figure 13.7.2.
Note that it provides the test statistic of D � 0.156 and the exact two-sided p value 
of .3447.

A Precaution The reader should be aware that in determining the value of D, it
is not always sufficient to compute and choose from the possible values of

The largest vertical distance between and may not occur
at an observed value, x, but at some other value of X. Such a situation is illustrated in
Figure 13.7.3. We see that if only values of at the left endpoints of
the horizontal bars are considered, we would incorrectly compute D as
One can see by examining the graph, however, that the largest vertical distance between

and occurs at the right endpoint of the horizontal bar originating at the
point corresponding to and the correct value of D is

One can determine the correct value of D algebraically by computing, in addition
to the differences the differences for all values of

where the number of different values of x and
The correct value of the test statistic will then be

(13.7.2)D = maximum
1 … i … r

5maximum3 ƒFS1x i2 - FT1x i2 ƒ , ƒFS1x i-12 - FT1x i2 ƒ 46
FS1x02 = 0.r =i = 1,  2, . . . , r + 1,

ƒFS1x i-12 - FT1x i2 ƒƒFS1x2 - FT1x2 ƒ ,
ƒ .5 - .2 ƒ = .3.x = .4,

FT1x2FS1x2
ƒ .2 - .4 ƒ = .2.

ƒFS1x2 - FT1x2 ƒ FT1x2FS1x2ƒFS1x2 - FT1x2 ƒ .
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FIGURE 13.7.2 StatXact output for Example 13.7.1



Advantages and Disadvantages The following are some important
points of comparison between the Kolmogorov–Smirnov and the chi-square goodness-
of-fit tests.

1. The Kolmogorov–Smirnov test does not require that the observations be grouped as
is the case with the chi-square test. The consequence of this difference is that the
Kolmogorov–Smirnov test makes use of all the information present in a set of data.

2. The Kolmogorov–Smirnov test can be used with any size sample. It will be recalled
that certain minimum sample sizes are required for the use of the chi-square test.

3. As has been noted, the Kolmogorov–Smirnov test is not applicable when parame-
ters have to be estimated from the sample. The chi-square test may be used in these
situations by reducing the degrees of freedom by 1 for each parameter estimated.

4. The problem of the assumption of a continuous theoretical distribution has already
been mentioned.

EXERCISES

13.7.1 The weights at autopsy of the brains of 25 adults suffering from a certain disease were as follows:

Weight of Brain (grams)

859 1073 1041 1166 1117
962 1051 1064 1141 1202
973 1001 1016 1168 1255
904 1012 1002 1146 1233
920 1039 1086 1140 1348
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Can one conclude from these data that the sampled population is not normally distributed with a
mean of 1050 and a standard deviation of 50? Determine the p value for this test.

13.7.2 IQs of a sample of 30 adolescents arrested for drug abuse in a certain metropolitan jurisdiction
were as follows:

IQ

95 100 91 106 109 110
98 104 97 100 107 119
92 106 103 106 105 112

101 91 105 102 101 110
101 95 102 104 107 118

Do these data provide sufficient evidence that the sampled population of IQ scores is not normally
distributed with a mean of 105 and a standard deviation of 10? Determine the p value.

13.7.3 For a sample of apparently normal subjects who served as controls in an experiment, the follow-
ing systolic blood pressure readings were recorded at the beginning of the experiment:

162 177 151 167
130 154 179 146
147 157 141 157
153 157 134 143
141 137 151 161

Can one conclude on the basis of these data that the population of blood pressures from which
the sample was drawn is not normally distributed with and Determine the p
value.

13.8 THE KRUSKAL–WALLIS ONE-WAY
ANALYSIS OF VARIANCE BY RANKS

In Chapter 8 we discuss how one-way analysis of variance may be used to test the null
hypothesis that several population means are equal. When the assumptions underlying
this technique are not met, that is, when the populations from which the samples are
drawn are not normally distributed with equal variances, or when the data for analysis
consist only of ranks, a nonparametric alternative to the one-way analysis of variance
may be used to test the hypothesis of equal location parameters. As was pointed out in
Section 13.5, the median test may be extended to accommodate the situation involving
more than two samples. A deficiency of this test, however, is the fact that it uses only a
small amount of the information available. The test uses only information as to whether
or not the observations are above or below a single number, the median of the combined
samples. The test does not directly use measurements of known quantity. Several
nonparametric analogs to analysis of variance are available that use more information by

s = 12?m = 150
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taking into account the magnitude of each observation relative to the magnitude of every
other observation. Perhaps the best known of these procedures is the Kruskal–Wallis one-
way analysis of variance by ranks (8).

The Kruskal–Wallis Procedure The application of the test involves the
following steps.

1. The observations from the k samples are combined into a single
series of size n and arranged in order of magnitude from smallest to largest. 
The observations are then replaced by ranks from 1, which is assigned to the small-
est observation, to n, which is assigned to the largest observation. When two or
more observations have the same value, each observation is given the mean of the
ranks for which it is tied.

2. The ranks assigned to observations in each of the k groups are added separately to
give k rank sums.

3. The test statistic

(13.8.1)

is computed. In Equation 13.8.1,

4. When there are three samples and five or fewer observations in each sample, the
significance of the computed H is determined by consulting Appendix Table N.
When there are more than five observations in one or more of the samples, H is
compared with tabulated values of with degrees of freedom.

EXAMPLE 13.8.1

In a study of pulmonary effects on guinea pigs, Lacroix et al. (A-7) exposed ovalbu-
min (OA)-sensitized guinea pigs to regular air, benzaldehyde, or acetaldehyde. At the
end of exposure, the guinea pigs were anesthetized and allergic responses were
assessed in bronchoalveolar lavage (BAL). One of the outcome variables examined
was the count of eosinophil cells, a type of white blood cell that can increase with
allergies. Table 13.8.1 gives the eosinophil cell count for the three treatment
groups.

Can we conclude that the three populations represented by the three samples dif-
fer with respect to eosinophil cell count? We can so conclude if we can reject the null
hypothesis that the three populations do not differ in eosinophil cell count.

1*1062

k - 1x2

R j = the sum of the ranks in the jth sample

n = the number of observations in all samples combined

nj = the number of observations in the jth sample

k = the number of samples

H =
12

n1n + 12akj=1

R 2
j

n j
- 31n + 12

n1, n2, . . . , nk
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Solution:

1. Data. See Table 13.8.1.

2. Assumptions. The samples are independent random samples from
their respective populations. The measurement scale employed is at least
ordinal. The distributions of the values in the sampled populations are
identical except for the possibility that one or more of the populations
are composed of values that tend to be larger than those of the other
populations.

3. Hypotheses.

than at least one of the other populations.

Let

4. Test statistic. See Equation 13.8.1.

5. Distribution of test statistic. Critical values of H for various sample
sizes and levels are given in Appendix Table N.

6. Decision rule. The null hypothesis will be rejected if the computed
value of H is so large that the probability of obtaining a value that large
or larger when is true is equal to or less than the chosen significance
level, 

7. Calculation of test statistic. When the three samples are combined into
a single series and ranked, the table of ranks shown in Table 13.8.2 may
be constructed.

The null hypothesis implies that the observations in the three sam-
ples constitute a single sample of size 15 from a single population. If
this is true, we would expect the ranks to be well distributed among the
three groups. Consequently, we would expect the total sum of ranks to
be divided among the three groups in proportion to group size. Departures

a.
H0

a

a = .01.

HA: At least one of the populations tends to exhibit larger values

H0: The population centers are all equal.
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TABLE 13.8.1 Eosinophil Count for 
Ovalbumin-Sensitized Guinea Pigs

Eosinophil Cell Count 

Air Benzaldehyde Acetaldehyde

12.22 3.68 54.36

28.44 4.05 27.87

28.13 6.47 66.81

38.69 21.12 46.27

54.91 3.33 30.19

Source: G. Lacroix. Used with permission.

(:106)



from these conditions are reflected in the magnitude of the test statis-
tics H.

From the data in Table 13.8.2 and Equation 13.8.1, we obtain

8. Statistical decision. Table N shows that when the are 5, 5, and 5,
the probability of obtaining a value of is less than .009. The
null hypothesis can be rejected at the .01 level of significance.

9. Conclusion. We conclude that there is a difference in the average
eosinophil cell count among the three populations.

10. p value. For this test,  ■

Ties When ties occur among the observations, we may adjust the value of H by
dividing it by

(13.8.2)

where The letter t is used to designate the number of tied observations in a
group of tied values. In our example there are no groups of tied values but, in general,
there may be several groups of tied values resulting in several values of T.

The effect of the adjustment for ties is usually negligible. Note also that the effect
of the adjustment is to increase H, so that if the unadjusted H is significant at the cho-
sen level, there is no need to apply the adjustment.

More than Three Samples/Large Samples Now let us illustrate the
procedure when there are more than three samples and at least one of the is greater
than 5.

nj

T = t 3 - t.

1 -
g T

n3 - n

p 6 .009.

H = 9.14
nj

H =
12

151162 c 14722
5

+
11622

5
+
15722

5
d - 3115 + 12 = 9.14
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TABLE 13.8.2 The Data of Table 13.8.1 Replaced
by Ranks

Air Benzaldehyde Acetaldehyde

5 2 13

9 3 7

8 4 15

11 6 12

14 1 10

R 3 = 57R 2 = 16R1 = 47
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TABLE 13.8.3 Net Book Value of Equipment per Bed by Hospital Type

Type Hospital

A B C D E

$1735(11) $5260(35) $2790(20) $3475(26) $6090(40)

1520(2) 4455(28) 2400(12) 3115(22) 6000(38)

1476(1) 4480(29) 2655(16) 3050(21) 5894(37)

1688(7) 4325(27) 2500(13) 3125(23) 5705(36)

1702(10) 5075(32) 2755(19) 3275(24) 6050(39)

2667(17) 5225(34) 2592(14) 3300(25) 6150(41)

1575(4) 4613(30) 2601(15) 2730(18) 5110(33)

1602(5) 4887(31) 1648(6)

1530(3) 1700(9)

1698(8)

R5 = 264R4 = 159R3 = 124R2 = 246R1 = 68

EXAMPLE 13.8.2

Table 13.8.3 shows the net book value of equipment capital per bed for a sample of
hospitals from each of five types of hospitals. We wish to determine, by means of the
Kruskal–Wallis test, if we can conclude that the average net book value of equipment
capital per bed differs among the five types of hospitals. The ranks of the 41 values,
along with the sum of ranks for each sample, are shown in the table.

Solution: From the sums of the ranks we compute

Reference to Appendix Table F with degrees of freedom indi-
cates that the probability of obtaining a value of H as large as or larger
than 36.39, due to chance alone, when there is no difference among the
populations, is less than .005. We conclude, then, that there is a difference
among the five populations with respect to the average value of the vari-
able of interest. ■

Computer Analysis The MINITAB software package computes the Kruskal–
Wallis test statistic and provides additional information. After we enter the eosinophil
counts in Table 13.8.1 into Column 1 and the group codes into Column 2, the MINITAB
procedure and output are as shown in Figure 13.8.1.

k - 1 = 4

=  36.39

H =
12

41141 + 12 c 16822
10

+
124622

8
+
112422

9
+
115922

7
+
126422

7
d - 3141 + 12



EXERCISES

For the following exercises, perform the test at the indicated level of significance and determine
the p value.

13.8.1 In a study of healthy subjects grouped by age (Younger: 19–50 years, Seniors: 65–75 years,
and Longeval: 85–102 years), Herrmann et al. (A-8) measured their vitamin B-12 levels (ng/L).
All elderly subjects were living at home and able to carry out normal day-to-day activities. The
following table shows vitamin B-12 levels for 50 subjects in the young group, 92 seniors, and
90 subjects in the longeval group.

Young (19–50 Years) Senior (65–75 Years) Longeval (85–102 Years)

230 241 319 371 566 170 148 149 631 198
477 442 190 460 290 542 1941 409 305 321
561 491 461 440 271 282 128 229 393 2772
347 279 163 520 308 194 145 183 282 428
566 334 377 256 440 445 174 193 273 259
260 247 190 335 238 921 495 161 157 111
300 314 375 137 525 1192 460 400 1270 262
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Data:
C1: 12.22 28.44 28.13 38.69 54.91 3.68 4.05 6.47 21.12 3.33 54.36 27.87 66.81 46.27 30.19

C2: 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Dialog box: Session command:

Stat ➤ Nonparametrics ➤ Kruskal–Wallis MTB > Kruskal–Wallis C1 C2.
Type C1 in Response and C2 in Factor. Click OK.

Output:

Kruskal–Wallis Test: C1 versus C2

Kruskal–Wallis Test on C1

C2 N Median Ave Rank Z
1 5 28.440 9.4 0.86
2 5 4.050 3.2 -2.94
3 5 46.270 11.4 2.08
Overall 15 8.0

H = 9.14  DF = 2  P = 0.010

FIGURE 13.8.1 MINITAB procedure and output, Kruskal–Wallis test of eosinophil count data in Table 13.8.1.
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Young (19–50 Years) Senior (65–75 Years) Longeval (85–102 Years)

230 254 229 452 298 748 548 348 252 161
215 419 193 437 153 187 198 175 262 1113
260 335 294 236 323 350 165 540 381 409
349 455 740 432 205 1365 226 293 162 378
315 297 194 411 248 232 557 196 340 203
257 456 780 268 371 509 166 632 370 221
536 668 245 703 668 357 218 438 483 917
582 240 258 282 197 201 186 368 222 244
293 320 419 290 260 177 346 262 277
569 562 372 286 198 872 239 190 226
325 360 413 143 336 240 241 203
275 357 685 310 421 136 195 369
172 609 136 352 712 359 220 162

2000 740 441 262 461 715 164 95
240 430 423 404 631 252 279 178
235 645 617 380 1247 414 297 530
284 395 985 322 1033 372 474 334
883 302 170 340 285 236 375 521

Source: W. Herrmann and H. Schorr. Used with permission.

May we conclude, on the basis of these data, that the populations represented by these samples
differ with respect to vitamin B-12 levels? Let 

13.8.2 The following are outpatient charges made to patients for a certain surgical procedure
by samples of hospitals located in three different areas of the country:

Area

I II III

$80.75 $58.63 $84.21
78.15 72.70 101.76
85.40 64.20 107.74
71.94 62.50 115.30
82.05 63.24 126.15

Can we conclude at the .05 level of significance that the three areas differ with respect to the charges?

13.8.3 A study of young children by Flexer et al. (A-9) published in the Hearing Journal examines the
effectiveness of an FM sound field when teaching phonics to children. In the study, children in a
classroom with no phonological or phonemic awareness training (control) were compared to a class
with phonological and phonemic awareness (PPA) and to a class that utilized phonological and
phonemic awareness training and the FM sound field (PPA/FM). A total of 53 students from three
separate preschool classrooms participated in this study. Students were given a measure of phone-
mic awareness in preschool and then at the end of the first semester of kindergarten. The improve-
ment scores are listed in the following table as measured by the Yopp–Singer Test of Phonemic
Segmentation.

1-$1002a = .01.
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Improvement (Control) Improvement PPA Improvement PPA/FM

0 1 2 1 19
�1 1 3 3 20

0 2 15 7 21
1 2 18 9 21
4 3 19 11 22
5 6 20 17 22
9 7 5 17 15
9 8 17 17

13 9 18 17
18 18 18 19
0 20 19 22
0 19

Source: John P. Holcomb, Jr., Ph.D. Used with permission.

Test for a significant difference among the three groups. Let 

13.8.4 Refer to Example 13.8.1. Another variable of interest to Lacroix et al. (A-7) was the number
of alveolar cells in three groups of subjects exposed to air, benzaldehyde, or acetaldehyde. The
following table gives the information for six guinea pigs in each of the three treatment groups.

Number of Alveolar Cells 

Air Benzaldehyde Acetaldehyde

0.55 0.81 0.65
0.48 0.56 13.69
7.8 1.11 17.11
8.72 0.74 7.43
0.65 0.77 5.48
1.51 0.83 0.99
0.55 0.81 0.65

May we conclude, on the basis of these data, that the number of alveolar cells in ovalbumin-sensitized
guinea pigs differs with type of exposure? Let 

13.8.5 The following table shows the pesticide residue levels (ppb) in blood samples from four popula-
tions of human subjects. Use the Kruskal–Wallis test to test at the .05 level of significance the null
hypothesis that there is no difference among the populations with respect to average level of pes-
ticide residue.

Population Population

A B C D A B C D

10 4 15 7 44 11 9 4
37 35 5 11 12 7 11 5
12 32 10 10 15 32 9 2

a = .05.

(:106)

a = .05.
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Source: G. Lacroix. Used with permission.
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Population Population

A B C D A B C D

31 19 12 8 42 17 14 6
11 33 6 2 23 8 15 3

9 18 6 5

13.8.6 Hepatic -glutamyl transpeptidase (GGTP) activity was measured in 22 patients undergoing percu-
taneous liver biopsy. The results were as follows:

Hepatic
Subject Diagnosis GGTP Level

1 Normal liver 27.7
2 Primary biliary cirrhosis 45.9
3 Alcoholic liver disease 85.3
4 Primary biliary cirrhosis 39.0
5 Normal liver 25.8
6 Persistent hepatitis 39.6
7 Chronic active hepatitis 41.8
8 Alcoholic liver disease 64.1
9 Persistent hepatitis 41.1

10 Persistent hepatitis 35.3
11 Alcoholic liver disease 71.5
12 Primary biliary cirrhosis 40.9
13 Normal liver 38.1
14 Primary biliary cirrhosis 40.4
15 Primary biliary cirrhosis 34.0
16 Alcoholic liver disease 74.4
17 Alcoholic liver disease 78.2
18 Persistent hepatitis 32.6
19 Chronic active hepatitis 46.3
20 Normal liver 39.6
21 Chronic active hepatitis 52.7
22 Chronic active hepatitis 57.2

Can we conclude from these sample data that the average population GGTP level differs among
the five diagnostic groups? Let and find the p value.

13.9 THE FRIEDMAN TWO-WAY ANALYSIS 
OF VARIANCE BY RANKS

Just as we may on occasion have need of a nonparametric analog to the parametric one-
way analysis of variance, we may also find it necessary to analyze the data in a two-way
classification by nonparametric methods analogous to the two-way analysis of variance.
Such a need may arise because the assumptions necessary for parametric analysis of
variance are not met, because the measurement scale employed is weak, or because results

a = .05

g
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are needed in a hurry. A test frequently employed under these circumstances is the Fried-
man two-way analysis of variance by ranks (9, 10). This test is appropriate whenever the
data are measured on, at least, an ordinal scale and can be meaningfully arranged in a
two-way classification as is given for the randomized block experiment discussed in Chap-
ter 8. The following example illustrates this procedure.

EXAMPLE 13.9.1

A physical therapist conducted a study to compare three models of low-volt electrical
stimulators. Nine other physical therapists were asked to rank the stimulators in order of
preference. A rank of 1 indicates first preference. The results are shown in Table 13.9.1.
We wish to know if we can conclude that the models are not preferred equally.

Solution:

1. Data. See Table 13.9.1.

2. Assumptions. The observations appearing in a given block are inde-
pendent of the observations appearing in each of the other blocks, and
within each block measurement on at least an ordinal scale is achieved.

3. Hypothesis. In general, the hypotheses are:

The treatments all have identical effects.

At least one treatment tends to yield larger observations than
at least one of the other treatments.

For our present example we state the hypotheses as follows:

The three models are equally preferred.

The three models are not equally preferred.

Let a = .05.

HA:

H0:

HA:

H0:
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TABLE 13.9.1 Physical Therapists’ Rankings of
Three Models of Low-Volt Electrical Stimulators

Model

Therapist A B C

1 2 3 1

2 2 3 1

3 2 3 1

4 1 3 2

5 3 2 1

6 1 2 3

7 2 3 1

8 1 3 2

9 1 3 2

Rj 15 25 14



4. Test statistic. By means of the Friedman test we will be able to deter-
mine if it is reasonable to assume that the columns of ranks have been
drawn from the same population. If the null hypothesis is true we would
expect the observed distribution of ranks within any column to be the
result of chance factors and, hence, we would expect the numbers 1, 2,
and 3 to occur with approximately the same frequency in each column.
If, on the other hand, the null hypothesis is false (that is, the models are
not equally preferred), we would expect a preponderance of relatively
high (or low) ranks in at least one column. This condition would be
reflected in the sums of the ranks. The Friedman test will tell us whether
or not the observed sums of ranks are so discrepant that it is not likely
they are a result of chance when is true.

Since the data already consist of rankings within blocks (rows), our
first step is to sum the ranks within each column (treatment). These sums
are the shown in Table 13.9.1. A test statistic, denoted by Friedman
as is computed as follows:

(13.9.1)

where the number of rows (blocks) and the number of columns
(treatments).

5. Distribution of test statistic. Critical values for various values of n and
k are given in Appendix Table O.

6. Decision rule. Reject if the probability of obtaining (when is
true) a value of as large as or larger than actually computed is less
than or equal to 

7. Calculation of test statistic. Using the data in Table 13.9.1 and Equa-
tions 13.9.1, we compute

8. Statistical decision. When we consult Appendix Table Oa, we find that
the probability of obtaining a value of as large as 8.222 due to chance
alone, when the null hypothesis is true, is .016. We are able, therefore,
to reject the null hypothesis.

9. Conclusion. We conclude that the three models of low-volt electrical
stimulator are not equally preferred.

10. p value. For this test, ■

Ties When the original data consist of measurements on an interval or a ratio scale
instead of ranks, the measurements are assigned ranks based on their relative magni-
tudes within blocks. If ties occur, each value is assigned the mean of the ranks for which
it is tied.

p = .016.

x2
r

x2
r =

12

913213 + 12 311522 + 12522 + 114224 - 319213 + 12 = 8.222

a.
x2

r

H0H0

k =n =

x2
r =

12

nk1k + 12akj=1
1R j22 - 3n1k + 12

x2
r ,

Rj

H0
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Large Samples When the values of k and/or n exceed those given in Table O,
the critical value of is obtained by consulting the table (Table F) with the chosen

and degrees of freedom.

EXAMPLE 13.9.2

Table 13.9.2 shows the responses, in percent decrease in salivary flow, of 16 experimental
animals following different dose levels of atropine. The ranks (in parentheses) and the sum
of the ranks are also given in the table. We wish to see if we may conclude that the dif-
ferent dose levels produce different responses. That is, we wish to test the null hypothesis
of no difference in response among the four dose levels.

Solution: From the data, we compute

Reference to Table F indicates that with degrees of free-
dom the probability of getting a value of as large as 30.32 due to chance
alone is, when is true, less than .005. We reject the null hypothesis and
conclude that the different dose levels do produce different responses.

H0

x2
r

k - 1 = 3

x2
r =

12

1614214 + 12 312022 + 136.522 + 14422 + 159.5224 - 3116214 + 12 = 30.32

k - 1a

x2x2
r
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TABLE 13.9.2 Percent Decrease in Salivary Flow of
Experimental Animals Following Different Dose Levels 
of Atropine

Dose Level

Animal

Number A B C D

1 29(1) 48(2) 75(3) 100(4)

2 72(2) 30(1) 100(3.5) 100(3.5)

3 70(1) 100(4) 86(2) 96(3)

4 54(2) 35(1) 90(3) 99(4)

5 5(1) 43(3) 32(2) 81(4)

6 17(1) 40(2) 76(3) 81(4)

7 74(1) 100(3) 100(3) 100(3)

8 6(1) 34(2) 60(3) 81(4)

9 16(1) 39(2) 73(3) 79(4)

10 52(2) 34(1) 88(3) 96(4)

11 8(1) 42(3) 31(2) 79(4)

12 29(1) 47(2) 72(3) 99(4)

13 71(1) 100(3.5) 97(2) 100(3.5)

14 7(1) 33(2) 58(3) 79(4)

15 68(1) 99(4) 84(2) 93(3)

16 70(2) 30(1) 99(3.5) 99(3.5)

Rj 20 36.5 44 59.5
■



Computer Analysis Many statistics software packages, including MINITAB, will
perform the Friedman test. To use MINITAB we form three columns of data. We may, for
example, set up the columns so that Column 1 contains numbers that indicate the treat-
ment to which the observations belong, Column 2 contains numbers indicating the blocks
to which the observations belong, and Column 3 contains the observations. If we do this
for Example 13.9.1, the MINITAB procedure and output are as shown in Figure 13.9.1.

EXERCISES

For the following exercises perform the test at the indicated level of significance and determine
the p value.

13.9.1 The following table shows the scores made by nine randomly selected student nurses on final exam-
inations in three subject areas:

Subject Area
Student
Number Fundamentals Physiology Anatomy

1 98 95 77
2 95 71 79

EXERCISES 729

Dialog box: Session command:

Stat ➤ Nonparametrics ➤ Friedman MTB > FRIEDMAN C3 C1 C2

Type C3 in Response, C1 in Treatment and C2 in
Blocks. Click OK.

Output:

Friedman Test: C3 versus C1 blocked by C2

S � 8.22 d.f. � 2 p � 0.017

Est. Sum of
C1 N Median RANKS
1 9 2.0000 15.0
2 9 2.6667 25.0
3 9 1.3333 14.0

Grand median � 2.0000

FIGURE 13.9.1 MINITAB procedure and output for Example 13.9.1.
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Subject Area
Student
Number Fundamentals Physiology Anatomy

3 76 80 91
4 95 81 84
5 83 77 80
6 99 70 93
7 82 80 87
8 75 72 81
9 88 81 83

Test the null hypothesis that student nurses constituting the population from which the above sam-
ple was drawn perform equally well in all three subject areas against the alternative hypothesis
that they perform better in, at least, one area. Let 

13.9.2 Fifteen randomly selected physical therapy students were given the following instructions: “Assume that
you will marry a person with one of the following handicaps (the handicaps were listed and designated
by the letters A to J). Rank these handicaps from 1 to 10 according to your first, second, third (and so
on) choice of a handicap for your marriage partner.” The results are shown in the following table.

Handicap
Student
Number A B C D E F G H I J

1 1 3 5 9 8 2 4 6 7 10
2 1 4 5 7 8 2 3 6 9 10
3 2 3 7 8 9 1 4 6 5 10
4 1 4 7 8 9 2 3 6 5 10
5 1 4 7 8 10 2 3 6 5 9
6 2 3 7 9 8 1 4 5 6 10
7 2 4 6 9 8 1 3 7 5 10
8 1 5 7 9 10 2 3 4 6 8
9 1 4 5 7 8 2 3 6 9 10

10 2 3 6 8 9 1 4 7 5 10
11 2 4 5 8 9 1 3 7 6 10
12 2 3 6 8 10 1 4 5 7 9
13 3 2 6 9 8 1 4 7 5 10
14 2 5 7 8 9 1 3 4 6 10
15 2 3 6 7 8 1 5 4 9 10

Test the null hypothesis of no preference for handicaps against the alternative that some handicaps
are preferred over others. Let 

13.9.3 Ten subjects with exercise-induced asthma participated in an experiment to compare the protective
effect of a drug administered in four dose levels. Saline was used as a control. The variable of inter-
est was change in after administration of the drug or saline. The results were as follows:FEV1

a = .05.

a = .05.
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Dose Level of Drug (mg/ml)

Subject Saline 2 10 20 40

1
2
3
4
5
6
7
8
9

10

Can one conclude on the basis of these data that different dose levels have different effects? Let
and find the p value.

13.10 THE SPEARMAN RANK 
CORRELATION COEFFICIENT

Several nonparametric measures of correlation are available to the researcher. Of these
a frequently used procedure that is attractive because of the simplicity of the calcula-
tions involved is due to Spearman (11). The measure of correlation computed by this
method is called the Spearman rank correlation coefficient and is designated by This
procedure makes use of the two sets of ranks that may be assigned to the sample values
of X and Y, the independent and continuous variables of a bivariate distribution.

Hypotheses The usually tested hypotheses and their alternatives are as follows:

(a) and Y are mutually independent.
and Y are not mutually independent.

(b) and Y are mutually independent.
There is a tendency for large values of X and large values of Y to be paired

together.

(c) and Y are mutually independent.
There is a tendency for large values of X to be paired with small values of Y.

The hypotheses specified in (a) lead to a two-sided test and are used when it is desired
to detect any departure from independence. The one-sided tests indicated by (b) and (c)
are used, respectively, when investigators wish to know if they can conclude that the vari-
ables are directly or inversely correlated.

The Procedure The hypothesis-testing procedure involves the following steps.

1. Rank the values of X from 1 to n (numbers of pairs of values of X and Y in the
sample). Rank the values of Y from 1 to n.

HA:
H0: X

HA:
H0: X

HA: X
H0: X

rs.

a = .05

- .41+ .11- .28- .35-2.12
- .51- .11- .39- .24- .78
- .09- .07- .18- .31-1.15
- .84- .54- .87- .88-1.16
- .75- .55-1.22-1.99-3.12
- .18- .04- .17- .25- .48
- .08- .41- .24- .56- .76
- .83- .08- .11- .28-1.41
- .16- .21- .31- .56-1.55
- .32- .21- .14- .32- .68
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2. Compute for each pair of observations by subtracting the rank of from the
rank of 

3. Square each and compute the sum of the squared values.

4. Compute

(13.10.1)

5. If n is between 4 and 30, compare the computed value of with the critical values,
of Appendix Table P. For the two-sided test, is rejected at the significance

level if is greater than or less than where is at the intersection of the
column headed and the row corresponding to n. For the one-sided test with 
specifying direct correlation, is rejected at the significance level if is greater
than for and n. The null hypothesis is rejected at the significance level in the
other one-sided test if is less than for and n.

6. If n is greater than 30, one may compute

(13.10.2)

and use Appendix Table D to obtain critical values.

7. Tied observations present a problem. The use of Table P is strictly valid only when
the data do not contain any ties (unless some random procedure for breaking ties
is employed). In practice, however, the table is frequently used after some other
method for handling ties has been employed. If the number of ties is large, the fol-
lowing correction for ties may be employed:

(13.10.3)

where the number of observations that are tied for some particular rank. When
this correction factor is used, is computed from

(13.10.4)

instead of from Equation 13.10.1.
In Equation 13.10.4,

the sum of the values of T for the various tied ranks in X

the sum of the values of T for the various tied ranks in Y

Most authorities agree that unless the number of ties is excessive, the correction
makes very little difference in the value of When the number of ties is small,rs.

Ty =
Tx =

gy 2 =
n3 - n

12
- gTy

g x2 =
n3 - n

12
- gTx

rs =
gx 2 + gy 2 - gd 2

i

22gx 2gy 2

rs

t =

T =
t 3 - t

12

z = rs2n - 1

a-r*srs

aar s*
rsaH0

HAa>2 r s*-r s*,r s*rs

aH0r s*,
rs

rs = 1 -
6gd 2

i

n1n2 - 12
gd 2

i ,di

Xi.
Yidi
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we can follow the usual procedure of assigning the tied observations the mean of
the ranks for which they are tied and proceed with steps 2 to 6.

EXAMPLE 13.10.1

In a study of the relationship between age and the EEG, data were collected on 20 sub-
jects between ages 20 and 60 years. Table 13.10.1 shows the age and a particular EEG
output value for each of the 20 subjects. The investigator wishes to know if it can be
concluded that this particular EEG output is inversely correlated with age.

Solution:

1. Data. See Table 13.10.1.

2. Assumptions. We assume that the sample available for analysis is a
simple random sample and that both X and Y are measured on at least
the ordinal scale.

3. Hypotheses.

This EEG output and age are mutually independent.

There is a tendency for this EEG output to decrease with age.

Suppose we let a = .05.

HA:

H0:
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TABLE 13.10.1 Age and EEG Output
Value for 20 Subjects

Subject EEG Output

Number Age (X) Value (Y)

1 20 98

2 21 75

3 22 95

4 24 100

5 27 99

6 30 65

7 31 64

8 33 70

9 35 85

10 38 74

11 40 68

12 42 66

13 44 71

14 46 62

15 48 69

16 51 54

17 53 63

18 55 52

19 58 67

20 60 55



4. Test statistic. See Equation 13.10.1.

5. Distribution of test statistic. Critical values of the test statistic are
given in Appendix Table P.

6. Decision rule. For the present test we will reject if the computed
value of is less than 

7. Calculation of test statistic. When the X and Y values are ranked, we
have the results shown in Table 13.10.2. The and are shown
in the same table.

Substitution of the data from Table 13.10.2 into Equation 13.10.1
gives

8. Statistical decision. Since our computed is less than the crit-
ical we reject the null hypothesis.

9. Conclusion. We conclude that the two variables are inversely related.

10. p value. Since we have for this test p 6 .001.- .76 6 -0.6586,

r*s,
rs = - .76

rs = 1 -
6123402

20312022 - 14 = - .76

g d 2
idi, d 2

i ,

- .3789.rs

H0
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TABLE 13.10.2 Ranks for Data of Example 13.10.1

Subject

Number Rank (X ) Rank (Y )

1 1 18 289

2 2 15 169

3 3 17 196

4 4 20 256

5 5 19 196

6 6 7 1

7 7 6 1 1

8 8 12 16

9 9 16 49

10 10 14 16

11 11 10 1 1

12 12 8 4 16

13 13 13 0 0

14 14 4 10 100

15 15 11 4 16

16 16 2 14 196

17 17 5 12 144

18 18 1 17 289

19 19 9 10 100

20 20 3 17 289

gd2
i = 2340

-4

-7

-4

-1

-14

-16

-14

-13

-17

d 2
idi

■



Let us now illustrate the procedure for a sample with and some tied
observations.

EXAMPLE 13.10.2

In Table 13.10.3 are shown the ages and concentrations (ppm) of a certain mineral in
the tissue of 35 subjects on whom autopsies were performed as part of a large research
project.

The ranks, and are shown in Table 13.10.4. Let us test, at the .05 level
of significance, the null hypothesis that X and Y are mutually independent against the
two-sided alternative that they are not mutually independent.

Solution: From the data in Table 13.10.4 we compute

To test the significance of we compute

z = .75235 - 1 = 4.37

rs

rs = 1 -
611788.52

35313522 - 14 = .75

g d 2
idi, d 2

i ,

n 7 30
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TABLE 13.10.3 Age and Mineral Concentration (ppm) in Tissue  
of 35 Subjects

Mineral Mineral

Subject Age Concentration Subject Age Concentration

Number (X ) (Y ) Number (X ) (Y )

1 82 169.62 19 50 4.48

2 85 48.94 20 71 46.93

3 83 41.16 21 54 30.91

4 64 63.95 22 62 34.27

5 82 21.09 23 47 41.44

6 53 5.40 24 66 109.88

7 26 6.33 25 34 2.78

8 47 4.26 26 46 4.17

9 37 3.62 27 27 6.57

10 49 4.82 28 54 61.73

11 65 108.22 29 72 47.59

12 40 10.20 30 41 10.46

13 32 2.69 31 35 3.06

14 50 6.16 32 75 49.57

15 62 23.87 33 50 5.55

16 33 2.70 34 76 50.23

17 36 3.15 35 28 6.81

18 53 60.59 



Since 4.37 is greater than and we
reject and conclude that the two variables under study are not mutually
independent.

For comparative purposes let us correct for ties using Equation 13.10.3
and then compute by Equation 13.10.4.

In the rankings of X we had six groups of ties that were broken by
assigning the values 13.5, 17, 19.5, 21.5, 23.5, and 32.5. In five of the groups
two observations tied, and in one group three observations tied. We, there-
fore, compute five values of

and one value of

From these computations, we have so that

ax 2 =
352 - 35

12
- 4.5 = 3565.5

gTx = 51.52 + 2 = 4.5,

Tx =
33 - 3

12
=

24

12
= 2

Tx =
23 - 2

12
=

6

12
= .5

rs

H0

z = 3.89, p 6 21.00012 = .0002,
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TABLE 13.10.4 Ranks for Data of Example 13.10.2

Subject Rank Rank Subject Rank Rank

Number (X ) (Y ) Number (X ) (Y )

1 32.5 35 �2.5 6.25 19 17 9 8 64.00

2 35 27 8 64.00 20 28 25 3 9.00

3 34 23 11 121.00 21 21.5 21 .5 .25

4 25 32 �7 49.00 22 23.5 22 1.5 2.25

5 32.5 19 13.5 182.25 23 13.5 24 �10.5 110.25

6 19.5 11 8.5 72.25 24 27 34 �7 49.00

7 1 14 �13 169.00 25 6 3 3 9.00

8 13.5 8 5.5 30.25 26 12 7 5 25.00

9 9 6 3 9.00 27 2 15 �13 169.00

10 15 10 5 25.00 28 21.5 31 �9.5 90.25

11 26 33 �7 49.00 29 29 26 3 9.00

12 10 17 �7 49.00 30 11 18 �7 49.00

13 4 1 3 9.00 31 7 4 3 9.00

14 17 13 4 16.00 32 30 28 2 4.00

15 23.5 20 3.5 12.25 33 17 12 5 25.00

16 5 2 3 9.00 34 31 29 2 4.00

17 8 5 3 9.00 35 3 16 �13 169.00

18 19.5 30 �10.5 110.25

gd 2
i = 1788.5

d 2
idid 2

idi



Since no ties occurred in the Y rankings, we have and

From Table 13.10.4 we have From these data we may now
compute by Equation 13.10.4

We see that in this case the correction for ties does not make any difference
in the value of ■

Computer Analysis We may use MINITAB, as well as many other statistical
software packages, to compute the Spearman correlation coefficient. To use MINITAB,
we must first have MINITAB rank the observations and store the ranks in separate
columns, one for the X ranks and one for the Y ranks. If we rank the X and Y values of
Example 13.10.1 and store them in Columns 3 and 4, we may obtain the Spearman rank
correlation coefficient with the procedure shown in Figure 13.10.1. Other software pack-
ages such as SAS® and SPSS, for example, automatically rank the measurements before
computing the coefficient, thereby eliminating an extra step in the procedure.

EXERCISES

For the following exercises perform the test at the indicated level of significance and determine
the p value.

13.10.1 The following table shows 15 randomly selected geographic areas ranked by population density
and age-adjusted death rate. Can we conclude at the .05 level of significance that population den-
sity and age-adjusted death rate are not mutually independent?

rs.

rs =
3565.5 + 3570.0 - 1788.5

2113565.52135702 = .75

gd 2
i = 1788.5.

ay 2 =
353 - 35

12
- 0 = 3570.0

gTy = 0
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Dialog box: Session command:

Stat ➤ Basic Statistics ➤ Correlation MTB > CORRELATION C3 C4

Type C3–C4 in Variables. Click OK.

Output:

Correlations (Pearson)

Correlation of (X)Rank and (Y)Rank � -0.759

FIGURE 13.10.1 MINITAB procedure and output for computing Spearman rank correlation
coefficient, Example 13.10.1.



Rank by Rank by

Population Age-Adjusted Population Age-Adjusted
Area Density (X) Death Rate (Y ) Area Density (X) Death Rate (Y )

1 8 10 9 6 8
2 2 14 10 14 5
3 12 4 11 7 6
4 4 15 12 1 2
5 9 11 13 13 9
6 3 1 14 15 3
7 10 12 15 11 13
8 5 7

13.10.2 The following table shows 10 communities ranked by decayed, missing, or filled (DMF) teeth per
100 children and fluoride concentration in ppm in the public water supply:

Rank by Rank by

DMF Teeth Fluoride DMF Teeth Fluoride
per 100 Concentration per 100 Concentration

Community Children (X) (Y ) Community Children (X) (Y )

1 8 1 6 4 7
2 9 3 7 1 10
3 7 4 8 5 6
4 3 9 9 6 5
5 2 8 10 10 2

Do these data provide sufficient evidence to indicate that the number of DMF teeth per 100 chil-
dren tends to decrease as fluoride concentration increases? Let 

13.10.3 The purpose of a study by Nozawa et al. (A-10) was to evaluate the outcome of surgical repair of
pars interarticularis defect by segmental wire fixation in young adults with lumbar spondylolysis.
The authors cite literature indicating that segmental wire fixation has been successful in the treat-
ment of nonathletes with spondylolysis and point out that no information existed on the results of
this type of surgery in athletes. In a retrospective study of subjects having surgery between 1993
and 2000, the authors found 20 subjects who had undergone the surgery. The following table shows
the age (years) at surgery and duration (months) of follow-up care for these subjects.

Duration of Follow-Up Duration of Follow-Up
(Months) Age (Years) (Months) Age (Years)

103 37 38 27
68 27 36 31
62 12 34 24
60 18 30 23
60 18 19 14

a = .05.
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Duration of Follow-Up Duration of Follow-Up
(Months) Age (Years) (Months) Age (Years)

54 28 19 23
49 25 19 18
44 20 19 29
42 18 17 24
41 30 16 27

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo Tanaka, “Repair of Pars Interarticu-
laris Defect by Segmental Wire Fixation in Young Athletes with Spondylolysis,” American Journal of Sports
Medicine, 31 (2003), pp. 359–364.

May we conclude, on the basis of these data, that in a population of similar subjects there is an
association between age and duration of follow-up? Let 

13.10.4 Refer to Exercise 13.10.3. Nozawa et al. (A-10) also calculated the Japanese Orthopaedic Associ-
ation score for measuring back pain ( JOA). The results for the 20 subjects along with the duration
of follow-up are shown in the following table. The higher the number, the lesser the degree of pain.

Duration of Follow-Up Duration of Follow-Up
(Months) JOA (Months) JOA

103 21 38 13
68 14 36 24
62 26 34 21
60 24 30 22
60 13 19 25
54 24 19 23
49 22 19 20
44 23 19 21
42 18 17 25
41 24 16 21

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo Tanaka, “Repair of 
Pars Interarticularis Defect by Segmental Wire Fixation in Young Athletes with Spondylolysis,” 
American Journal of Sports Medicine, 31 (2003), pp. 359–364.

Can we conclude from these data that in general there is a relationship between length of follow-
up and JOA score at the time of the operation? Let 

13.10.5 Butz et al. (A-11) studied the use of noninvasive positive-pressure ventilation by patients with amy-
otrophic lateral sclerosis. They evaluated the benefit of the procedure on patients’ symptoms, qual-
ity of life, and survival. Two variables of interest are partial pressure of arterial carbon
dioxide, and partial pressure of arterial oxygen. The following table shows, for 30 subjects,
values of these variables (mm Hg) obtained from baseline arterial blood gas analyses.

40 101 54.5 80 34.5 86.5
47 69 54 72 40.1 74.7

PaO2PaCO2PaO2PaCO2PaO2PaCO2

PaO2,
PaCO2,

a = .05.

a = .05.
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34 132 43 105 33 94
42 65 44.3 113 59.9 60.4
54 72 53.9 69.2 62.6 52.5
48 76 41.8 66.7 54.1 76.9
53.6 67.2 33 67 45.7 65.3
56.9 70.9 43.1 77.5 40.6 80.3
58 73 52.4 65.1 56.6 53.2
45 66 37.9 71 59 71.9

Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu, A. Sperfeld,
S. Winter, H. H. Mehrkens, A. C. Ludolph, and H. Schreiber, “Longitudinal
Effects of Noninvasive Positive-Pressure Ventilation in Patients with Amy-
otrophic Lateral Sclerosis,” American Journal of Medical Rehabilitation, 82
(2003) 597–604.

On the basis of these data may we conclude that there is an association between and 
values? Let 

13.10.6 Seventeen patients with a history of congestive heart failure participated in a study to assess the
effects of exercise on various bodily functions. During a period of exercise the following data were
collected on the percent change in plasma norepinephrine (Y ) and the percent change in oxygen
consumption (X ):

Subject X Y Subject X Y

1 500 525 10 50 60
2 475 130 11 175 105
3 390 325 12 130 148
4 325 190 13 76 75
5 325 90 14 200 250
6 205 295 15 174 102
7 200 180 16 201 151
8 75 74 17 125 130
9 230 420

On the basis of these data can one conclude that there is an association between the two variables?
Let

13.11 NONPARAMETRIC 
REGRESSION ANALYSIS

When the assumptions underlying simple linear regression analysis as discussed in Chap-
ter 9 are not met, we may employ nonparametric procedures. In this section we present
estimators of the slope and intercept that are easy-to-calculate alternatives to the least-
squares estimators described in Chapter 9.

a = .05.

a = .05.
PaO2PaCO2

PaO2PaCO2PaO2PaCO2PaO2PaCO2
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Theil’s Slope Estimator Theil (12) proposes a method for obtaining a point
estimate of the slope coefficient We assume that the data conform to the classic
regression model

where the are known constants, and are unknown parameters, and is an
observed value of the continuous random variable Y at For each value of we assume
a subpopulation of Y values, and the are mutually independent. The are all distinct
(no ties), and we take 

The data consist of n pairs of sample observations, 
where the ith pair represents measurements taken on the ith unit of association.

To obtain Theil’s estimator of we first form all possible sample slopes 
where There will be values of The estimator of

which we designate by is the median of values. That is,

(13.11.1)

The following example illustrates the calculation of 

EXAMPLE 13.11.1

In Table 13.11.1 are the plasma testosterone (ng/ml) levels (Y ) and seminal citric acid
(mg/ml) levels in a sample of eight adult males. We wish to compute the estimate of
the population regression slope coefficient by Theil’s method.

Solution: The ordered values of are shown in Table 13.11.2.
If we let the indicators of the first and second val-

ues of Y and X in Table 13.11.1, we may compute as follows:

When all the slopes are computed in a similar manner and ordered as in
Table 13.11.2, winds up as the tenth value in the ordered array.

The median of the values is .4878. Consequently, our estimate of
the population slope coefficient b1

N = .4878.
Sij

- .3846

S12 = 1175 - 2302>1278 - 4212 = - .3846

S12

i = 1 and j = 2,
SijN = 8C2 = 28

bN1.

b1
N = median5Sij6

Sijb1
Nb1

Sij .N = nC2i 6 j.1yj - yi2>1x j - x i2, Sij =b1

1x1, y12, 1x 2, y22, . . . , 1x n, yn2,x1 6 x 2 6 . . . 6 xn.
x iPi

x i,x i.
yib1b0x i

yi = b0 + b1x1 + Pi,  i = 1, . . . , n

b.
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TABLE 13.11.1 Plasma Testosterone and Seminal Citric Acid Levels 
in Adult Males

Testosterone: 230 175 315 290 275 150 360 425

Citric acid: 421 278 618 482 465 105 550 750



An Estimator of the Intercept Coefficient Dietz (13) recommends
two intercept estimators. The first, designated is the median of the n terms

in which is the Theil estimator. It is recommended when the researcher 
is not willing to assume that the error terms are symmetric about 0. If the researcher is
willing to assume a symmetric distribution of error terms, Dietz recommends the esti-
mator which is the median of the pairwise averages of the 
terms. We illustrate the calculation of each in the following example.

EXAMPLE 13.11.2

Refer to Example 13.11.1. Let us compute and from the data on testosterone
and citric acid levels.

Solution: The ordered terms are: 13.5396, 24.6362, 39.3916, 48.1730,
54.8804, 59.1500, 91.7100, and 98.7810. The median, 51.5267, is the
estimator .

The ordered pairwise averages of the 
are

13.5396 49.2708 75.43
19.0879 51.5267 76.8307
24.6362 52.6248 78.9655
26.4656 53.6615 91.71
30.8563 54.8804 95.2455
32.0139 56.1603 98.781
34.21 57.0152
36.3448 58.1731

.4878xi

yi -818 + 12>2 = 36
1b0

N 21,M

yi - .4878xi

aN 2,MaN 1,M

yi - b1
N xin1n + 12>21b0

N 22,M

b1
Nyi - b1

N xi

1b0
N 21,M
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TABLE 13.11.2 Ordered Values of for
Example 13.11.1

.5037

.1445 .5263

.1838 .5297

.2532 .5348

.2614 .5637

.3216 .5927

.3250 .6801

.3472 .8333

.3714 .8824

.3846 .9836

.4118 1.0000

.4264 1.0078

.4315 1.0227

.4719 1.0294

- .6618

Sij

(Continued )

■



36.4046 59.15
39.3916 61.7086
39.7583 65.5508
41.8931 69.0863
43.7823 69.9415
47.136 73.2952
48.173 73.477

The median of these averages, 53.1432, is the estimator The esti-
mating equation, then, is if we are willing to
assume that the distribution of error terms is symmetric about 0. If we are
not willing to make the assumption of symmetry, the estimating equation
is ■

EXERCISES

13.11.1 The following are the heart rates (HR: beats/minute) and oxygen consumption values (
cal/kg/24 h) for nine infants with chronic congestive heart failure:

HR(X): 163 164 156 151 152 167 165 153 155
53.9 57.4 41.0 40.0 42.0 64.4 59.1 49.9 43.2

Compute

13.11.2 The following are the body weights (grams) and total surface area of nine laboratory
animals:

Body weight (X): 660.2 706.0 924.0 936.0 992.1 888.9 999.4 890.3 841.2
Surface area (Y): 781.7 888.7 1038.1 1040.0 1120.0 1071.5 1134.5 965.3 925.0

Compute the slope estimator and two intercept estimators.

13.12 SUMMARY

This chapter is concerned with nonparametric statistical tests. These tests may be used
either when the assumptions underlying the parametric tests are not realized or when
the data to be analyzed are measured on a scale too weak for the arithmetic procedures
necessary for the parametric tests.

Nine nonparametric tests are described and illustrated. Except for the
Kolmogorov–Smirnov goodness-of-fit test, each test provides a nonparametric alternative
to a well-known parametric test. There are a number of other nonparametric tests avail-
able. The interested reader is referred to the many books devoted to nonparametric
methods, including those by Gibbons (14) and Pett (15).

1cm22bN 1, 1bN 021,M, and 1bN 022, M

VO21Y 2:
VO2:

yi = 51.5267 + .4878xi.

yi = 53.1432 + .4878xi

aN 2,M.
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SUMMARY OF FORMULAS FOR CHAPTER 13

Formula 
Number Name Formula

13.3.1 Sign test statistic

13.3.2 Large-sample 
approximation
of the sign test

13.6.1 Mann–Whitney test 
statistic

13.6.2 Large-sample 
approximation of the 
Mann–Whitney test

13.6.3 Equivalence of the 
Mann–Whitney and 
Wilcoxon two-sample 
statistics

13.7.1–13.7.2 Kolmogorov–Smirnov
test statistic

13.8.1 Kruskal–Wallis test 
statistic

13.8.2 Kruskal–Wallis test 
statistic adjustment 
for ties

13.9.2 Friedman test statistic

13.10.1 Spearman rank 
correlation test 
statistic rs = 1 -

6ad2
i

n1n2 - 12
x2

r =
12

nk1k + 12 akj=1
1Rj22 - 3n1k + 12

1 -
aT

n3 - n

H =
12

n1n + 12 akj=1

R2
j

nj
- 31n + 12

U + W =
m1m + 2n + 12

2

Z =
T - mn>22nm1n + m + 12>12

T = S -
n1n + 12

2

P1k … x ƒ n, p2 = a
x

k=0
nCk pkqn-k
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- FT1x i-12 ƒ D F= maxEmax C ƒFs1x i2 - FT1x i2 ƒ , ƒFs1x i-12D = sup ƒFs1x2 - FT1x2 ƒ
x

1… i…r

z =
1k - 0.52 - 0.5n

0.52n
, if k Ú

n

2

z =
1k + 0.52 + 0.5n

0.52n
, if k 6

n

2



13.10.2 Large-sample 
approximation of 
the Spearman 
rank correlation

13.10.3–13.10.4 Correction for tied 
observations in the 
Spearman rank 
correlation

13.11.1 Theil’s 
estimator of 

Symbol Key • � Theil’s estimator of 
• � chi-square
• D � Kolmogorov–Smirnov test statistic
• Fi(x) � distribution function of i
• H � Friedman test statistic
• k � sign test statistic and the number of columns in the Friedman test
• m � sample size of the smaller of two samples
• n � sample size of the larger of two samples
• p � probability of success
• q � 1 � p � probability of failure
• R � rank
• rs � Spearman rank correlation coefficient
• S � sum of ranks
• Sij � slope between point i and j
• sup � supremum (greatest)
• t � number of tied observations
• T � correction for tied observations
• x and y � data value for variables x and y
• U � Mann–Whitney test statistic
• W � Wilcoxon test statistic
• z � normal variate

x21or X22 bNb

b

bN = median{Si}

z = rs2n - 1
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with

rs =
a x2 + a y2 - ad2

i

2Aa x2a y2

T =
t 3 - t

12

REVIEW QUESTIONS AND EXERCISES

1. Define nonparametric statistics.

2. What is meant by the term distribution-free statistical tests?

3. What are some of the advantages of using nonparametric statistical tests?

4. What are some of the disadvantages of the nonparametric tests?



5. Describe a situation in your particular area of interest where each of the following tests could be
used. Use real or realistic data and test an appropriate hypothesis using each test.

(a) The sign test

(b) The median test

(c) The Wilcoxon test

(d) The Mann–Whitney test

(e) The Kolmogorov–Smirnov goodness-of-fit test

(f) The Kruskal–Wallis one-way analysis of variance by ranks

(g) The Friedman two-way analysis of variance by ranks

(h) The Spearman rank correlation coefficient

(i) Nonparametric regression analysis

6. The following are the ranks of the ages (X ) of 20 surgical patients and the dose (Y ) of an anal-
gesic agent required to block one spinal segment.

Rank of Rank of Dose Rank of Rank of Dose
Age in Requirement Age in Requirement
Years (X ) (Y) Years (X ) (Y )

1 1 11 13
2 7 12 5
3 2 13 11
4 4 14 16
5 6 15 20
6 8 16 18
7 3 17 19
8 15 18 17
9 9 19 10

10 12 20 14

Compute and test (two-sided) for significance. Let Determine the p value for this test.

7. Otani and Kishi (A-12) studied seven subjects with diabetic macular edema. They measured the
foveal thickness in seven eyes pre- and post-unilateral vitrectomy surgery. The results are
shown in the following table:

Subject Pre-op Foveal Thickness Post-op Foveal Thickness 

1 690 200
2 840 280
3 470 230
4 690 200
5 730 560
6 500 210
7 440 200

Source: Tomohiro Otani, M.D. Used with permission.

Use the Wilcoxon signed-rank test to determine whether one should conclude that the sur-
gery is effective in reducing foveal thickness. Let What is the p value?a = .05.

(Mm)(Mm)

1mm2
a = .05.rs
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8. The subjects of a study by J. Jose and S. R. Ell (A-13) were 303 healthy volunteers who self-
assessed their own nasal flow status by indicating whether their nasal airway was (1) totally
clear, (2) not very clear, (3) very blocked, or (4) totally blocked. Following the self-assessment,
an In-Check meter was used to measure peak inspiratory nasal flow rate (PINFR, L/min). Data
on 175 subjects in three of the self-assessment categories are displayed in the following table.
The authors performed a Kruskal–Wallis test to determine if these data provide sufficient evi-
dence to indicate a difference in population centers of PINFR among these three response groups.
Let What is the test statistic value for this test?

Peak Inspiratory Nasal Flow Rate (L/min)

Totally Clear Not Very Clear Partially Blocked

180 105 150 120 160 190 130 100
150 150 110 95 200 95 110 100
200 240 130 140 70 130 110 100
130 120 100 135 75 240 130 105
200 90 170 100 150 180 125 95
120 135 80 130 80 140 100 85
150 110 125 180 130 150 230 50
150 155 115 155 160 130 110 105
160 105 140 130 180 90 270 200
150 140 140 140 90 115 180
110 200 95 120 180 130 130
190 170 110 290 140 210 125
150 150 160 170 230 190 90
120 120 90 280 220 135 210
180 170 135 150 130 130 140
140 200 110 185 180 210 125
130 160 130 150 140 90 210
230 180 170 150 140 125 120
200 170 130 170 120 140 115
140 160 115 210 140 160 100
150 150 145 140 150 230 130
170 100 130 140 190 100 130
180 100 170 160 210 120 110
160 180 160 120 130 120 150
200 130 90 230 190 150 110
90 200 110 100 220 110 90

130 120 130 190 160 150 120
140 145 130 90 105 130 115
200 130 120 100 120 150 140
220 100 130 125 140 130 130
200 130 180 180 130 145 160
120 160 140 200 115 160 110
310 125 175 160 115 120 165
160 100 185 170 100 220 120
115 140 190 85 150 145 150

a = .01.
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Peak Inspiratory Nasal Flow Rate (L/min)

Totally Clear Not Very Clear Partially Blocked

170 185 130 150 130 150 170
130 180 160 280 130 120 110
220 115 160 140 170 155 120
250 260 130 100 130 100 85
160 160 135 140 145 140
130 170 130 90
130 115 120 190
150 150 190 130
160 130 170

Source: J. Jose, MS, FRCS. Used with permission.

9. Ten subjects with bronchial asthma participated in an experiment to evaluate the relative effective-
ness of three drugs. The following table shows the change in (forced expired volume in 1
second) values (expressed as liters) 2 hours after drug administration:

Drug Drug

Subject A B C Subject A B C

1 .00 .13 .26 6 .03 .18 .25
2 .04 .17 .23 7 .05 .21 .32
3 .02 .20 .21 8 .02 .23 .38
4 .02 .27 .19 9 .00 .24 .30
5 .04 .11 .36 10 .12 .08 .30

Are these data sufficient to indicate a difference in drug effectiveness? Let What is the
p value for this test?

10. One facet of the nursing curriculum at Wright State University requires that students use mathe-
matics to perform appropriate dosage calculations. In a study by Wendy Gantt (A-14), undergrad-
uate nursing students were given a standardized mathematics test to determine their mathematical
aptitude (scale: 0–100). The students were divided into two groups: traditional college age (18–24
years, 26 observations) and nontraditional ( eight observations). Scores on the mathematics
test appear in the following table:

Traditional Students’ Scores Nontraditional Students’ Scores

70 6 88 77
57 79 68 72
85 14 88 54
55 82 92 87
87 45 85 85

25+ ,

a = .05.

FEV1
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Traditional Students’ Scores Nontraditional Students’ Scores

84 57 56 62
56 91 31 77
68 76 80 86
94 60

Source: Wendy Gantt and the Wright State University Statistical Consulting Center. Used with permission.

Do these data provide sufficient evidence to indicate a difference in population medians? Let 
What is the p value for this test? Use both the median test and the Mann–Whitney test and compare
the results.

11. The following are the PaCO2 (mm Hg) values in 16 patients with bronchopulmonary disease:

39, 40, 45, 48, 49, 56, 60, 75, 42, 48, 32, 37, 32, 33, 33, 36

Use the Kolmogorov–Smirnov test to test the null hypothesis that PaCO2 values in the sampled
population are normally distributed with and 

12. The following table shows the caloric intake (cal/day/kg) and oxygen consumption VO2 (ml/min/kg)
in 10 infants:

Calorie Calorie
Intake (X) VO2(Y) Intake (X) VO2(Y)

50 7.0 100 10.8
70 8.0 150 12.0
90 10.5 110 10.0

120 11.0 75 9.5
40 9.0 160 11.9

Test the null hypothesis that the two variables are mutually independent against the alternative that
they are directly related. Let What is the p value for this test?

13. Mary White (A-15) surveyed physicians to measure their opinions regarding the importance of
ethics in medical practice. The measurement tool utilized a scale from 1 to 5 in which a higher
value indicated higher opinion of the importance of ethics. The ages and scores of the study sub-
jects are shown in the following table. Can one conclude on the basis of these results that age and
ethics score are directly related? Let the probability of committing a type I error be .05. What is
the p value?

Age Ethics Age Ethics Age Ethics

25 4.00 26 4.50 26 4.50
34 4.00 29 4.75 27 5.00
30 4.25 30 4.25 22 3.75
31 3.50 26 4.50 22 4.25
25 4.75 30 4.25 24 4.50

a = .05.

s = 12.m = 44

a = .05.
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Age Ethics Age Ethics Age Ethics

25 3.75 25 3.75 22 4.25
25 4.75 24 4.75 24 3.75
29 4.50 24 4.00 38 4.50
29 4.50 25 4.50 22 4.50
26 3.75 25 4.00 22 4.50
25 3.25 26 4.75 25 4.00
29 4.50 34 3.25 23 3.75
27 3.75 23 4.50 22 4.25
29 4.25 26 3.25 23 4.00
25 3.75 23 5.00 22 4.25
25 4.50 24 4.25 25 3.50
25 4.00 45 3.25 26 4.25
26 4.25 23 3.75 25 4.25
26 4.00 25 3.75 27 4.75
24 4.00 25 3.75 23 3.75
25 4.00 23 3.75 22 4.00
22 3.75 23 4.75 26 4.75
26 4.50 26 4.00 22 4.25

23 4.00

14. Dominic Sprott (A-16) conducted an experiment with rabbits in which the outcome variable was
the fatty infiltration in the shoulder mass (PFI, measured as a percent). At baseline, 15 rabbits had
a randomly chosen shoulder muscle detached. The shoulder was then reattached. Six weeks later,
five randomly chosen rabbits were sacrificed and the differences in the PFI between the reattached
shoulder and the nondetached shoulder were recorded (group A). Six months later, the 10 remain-
ing rabbits were sacrificed and again the differences in the PFI between the reattached shoulder
and the nondetached shoulder were recorded (group B).

Percent Fatty Infiltration Difference
(Nondetached–Reattached)

Group A Group B

2.55 1.04 1.38
0.9 3.29 0.75
0.2 0.99 0.36

�0.29 1.79 0.74
1.11 �0.85 0.3

Can we conclude, at the .05 level of significance, that the treatments have a differential effect on
PFI between the two shoulder muscles? What is the p value for the test?

In each of the Exercises 15 through 29, do one or more of the following that you think are
appropriate:

(a) Apply one or more of the techniques discussed in this chapter.

(b) Apply one or more of the techniques discussed in previous chapters.
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State University Statistical Consulting Center.
Used with permission.



(c) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(d) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(e) Describe the population(s) to which you think your inferences are applicable.

(f) State the assumptions necessary for the validity of your analyses.

15. The purpose of a study by Damm et al. (A-17) was to investigate insulin sensitivity and insulin secre-
tion in women with previous gestational diabetes (GDM). Subjects were 12 normal-weight glucose-
tolerant women (mean age, 36.6 years; standard deviation, 4.16) with previous gestational diabetes
and 11 controls (mean age, 35 years; standard deviation, 3.3). Among the data collected were the
following fasting plasma insulin values (mmol/L). Use the Mann–Whitney test to determine if you
can conclude on the basis of these data that the two populations represented differ with respect to
average fasting plasma insulin level.

Controls Previous GDM Controls Previous GDM

46.25 30.00 40.00 31.25
40.00 41.25 30.00 56.25
31.25 56.25 51.25 61.25
38.75 45.00 32.50 50.00
41.25 46.25 43.75 53.75
38.75 46.25 62.50

Source: Dr. Peter Damm. Used with permission.

16. Gutin et al. (A-18) compared three measures of body composition, including dual-energy x-ray
absorptiometry (DXA). Subjects were apparently healthy children (21 boys and 22 girls) between
the ages of 9 and 11 years. Among the data collected were the following measurements of body-
composition compartments by DXA. The investigators were interested in the correlation between
all possible pairs of these variables.

Bone Fat-Free
Fat-Free Mineral Soft

Percent Fat Fat Mass Mass Content Tissue

11.35 3.8314 29.9440 1.19745 28.7465
22.90 6.4398 21.6805 0.79250 20.8880
12.70 4.0072 27.6290 0.95620 26.6728
42.20 24.0329 32.9164 1.45740 31.4590
24.85 9.4303 28.5009 1.32505 27.1758
26.25 9.4292 26.4344 1.17412 25.2603
23.80 8.4171 26.9938 1.11230 25.8815
37.40 20.2313 33.8573 1.40790 32.4494
14.00 3.9892 24.4939 0.95505 23.5388
19.35 7.2981 30.3707 1.45545 28.9153
29.35 11.1863 26.8933 1.17775 25.7156
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Bone Fat-Free
Fat-Free Mineral Soft

Percent Fat Fat Mass Mass Content Tissue

18.05 5.8449 26.5341 1.13820 25.3959
13.95 4.6777 28.9144 1.23730 27.6771
32.85 13.2474 27.0849 1.17515 25.9097
11.40 3.7912 29.5245 1.42780 28.0967
9.60 3.2831 30.8228 1.14840 29.6744

20.90 7.2277 27.3302 1.24890 26.0813
44.70 25.7246 31.8461 1.51800 30.3281
17.10 5.1219 24.8233 0.84985 23.9734
16.50 5.0749 25.7040 1.09240 24.6116
14.35 5.0341 30.0228 1.40080 28.6220
15.45 4.8695 26.6403 1.07285 25.5674
28.15 10.6715 27.2746 1.24320 26.0314
18.35 5.3847 23.9875 0.94965 23.0379
15.10 5.6724 31.9637 1.32300 30.6407
37.75 25.8342 42.6004 1.88340 40.7170
39.05 19.6950 30.7579 1.50540 29.2525
22.25 7.2755 25.4560 0.88025 24.5757
15.50 4.4964 24.4888 0.96500 23.5238
14.10 4.3088 26.2401 1.17000 25.0701
26.65 11.3263 31.2088 1.48685 29.7219
20.25 8.0265 31.5657 1.50715 30.0586
23.55 10.1197 32.8385 1.34090 31.4976
46.65 24.7954 28.3651 1.22575 27.1394
30.55 10.0462 22.8647 1.01055 21.8541
26.80 9.5499 26.0645 1.05615 25.0083
28.10 9.4096 24.1042 0.97540 23.1288
24.55 14.5113 44.6181 2.17690 42.4412
17.85 6.6987 30.8043 1.23525 29.5690
20.90 6.5967 24.9693 0.97875 23.9905
33.00 12.3689 25.1049 0.96725 24.1377
44.00 26.1997 33.3471 1.42985 31.9172
19.00 5.0785 21.6926 0.78090 20.9117

Source: Dr. Mark Litaker. Used with permission.

17. The concern of a study by Crim et al. (A-19) was the potential role of flow cytometric analysis of
bronchoalveolar lavage fluid (BALF) in diagnosing acute lung rejection. The investigators note that
previous studies suggested an association of acute lung rejection with increases in CD8 lympho-
cytes, and increased expression of human lymphocyte antigen (HLA)-DR antigen and interleukin-2
receptor (IL-2R). Subjects consisted of lung transplant (LT) recipients who had no histologic evi-
dence of rejection or infection, normal human volunteers (NORM), healthy heart transplant (HT)
recipient volunteers, and lung transplant recipients who were experiencing acute lung rejection (AR).
Among the data collected were the following percentages of BALF CD8� lymphocytes that also
express IL-2R observed in the four groups of subjects.

+
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Norm HT LT AR

0 0 1 6 12
2 0 0 6 0
1 5 5 8 9
0 4 0 16 7
0 6 0 24 2
2 0 5 5 6
3 0 18 3 14
0 4 2 22 10
0 8 2 10 3
1 8 8 0 0

0 8 0
7 3 1
2 4 1
5 4 0
1 18 0

0 4

18. Ichinose et al. (A-20) studied the involvement of endogenous tachykinins in exercise-induced air-
way narrowing in patients with asthma by means of a selective neurokinin 1-receptor antagonist,
FK-888. Nine subjects (eight male, one female) ages 18 to 43 years with at least a 40 percent fall
in the specific airway conductance participated in the study. The following are the oxygen con-
sumption (ml/min) data for the subjects at rest and during exercise while under treatment with a
placebo and FK-888:

Placebo FK-888

At Rest Exercise At Rest Exercise

303 2578 255 2406
288 2452 348 2214
285 2768 383 3134
280 2356 328 2536
295 2112 321 1942
270 2716 234 2652
274 2614 387 2824
185 1524 198 1448
364 2538 312 2454

19. Transforming growth factor (TGF ), according to Tomiya and Fujiwara (A-21), is alleged to
play a role in malignant progression as well as normal cell growth in an autocrine manner, and its
serum levels have been reported to increase during this progression. The present investigators have
developed an enzyme-linked immunosorbent assay (ELISA) for measuring serum TGF levels in
the diagnosis of hepatocellular carcinoma (HCC) complicating cirrhosis. In a study in which they
evaluated the significance of serum TGF levels for diagnostic purposes, they collected thea

a

aa
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following measurements on the liver function tests, TGF (pg/ml), and serum -fetoprotein (AFP)
(ng/ml) from HCC patients:

TGF AFP TGF AFP TGF AFP TGF AFP

32.0 12866 44.0 23077 100.0 479 15.0 921
65.9 9 75.0 371 12.0 47 34.0 118
25.0 124.3 36.0 291 32.0 177 100.0 6.2
30.0 9 65.0 700 98.0 9 26.0 19
22.0 610 44.0 40 20.0 1063 53.0 594
40.0 238 56.0 9538 20.0 21 140.0 10
52.0 153 34.0 19 9.0 206 24.0 292
28.0 23 300.0 11 58.0 32 20.0 11
11.0 28 39.0 42246 39.0 628 35.0 37
45.0 240 82.0 12571 52.0 35
29.0 66 85.0 20 50.0 742
45.0 83 24.0 29 95.0 10
21.0 4 40.0 310 18.0 291
38.0 214 9.0 19

Source: Dr. Kenji Fujiwara. Used with permission.

20. The objective of a study by Sakhaee et al. (A-22) was to ascertain body content of aluminum (A1)
noninvasively using the increment in serum and urinary Al following the intravenous administration
of deferoxamine (DFO) in patients with kidney stones and osteoporotic women undergoing long-term
treatment with potassium citrate or tricalcium dicitrate respectively. Subjects con-
sisted of 10 patients with calcium nephrolithiasis and five patients with osteoporosis who were main-
tained on potassium citrate or calcium citrate for 2–8 years, respectively, plus 16 normal volunteers
without a history of regular aluminum-containing antacid use. Among the data collected were the fol-
lowing 24-hour urinary aluminum excretion measurements ( g/day) before (PRE) and after (POST) 
2-hour infusion of DFO.

Group PRE POST Group PRE POST

Control 41.04 135.00 Control 9.39 12.32
Control 70.00 95.20 Control 10.72 13.42
Control 42.60 74.00 Control 16.48 17.40
Control 15.48 42.24 Control 10.20 14.20
Control 26.90 104.30 Control 11.40 20.32
Control 16.32 66.90 Control 8.16 12.80
Control 12.80 10.68 Control 14.80 62.00
Control 68.88 46.48 Patient 15.20 27.15
Control 25.50 73.80 Patient 8.70 38.72
Patient 0.00 14.16 Patient 5.52 7.84
Patient 2.00 20.72 Patient 13.28 31.70
Patient 4.89 15.72 Patient 3.26 17.04
Patient 25.90 52.40 Patient 29.92 151.36
Patient 19.35 35.70 Patient 15.00 61.38

m

1Ca3Cit22,1K3Cit2

AAAA

aa
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Group PRE POST Group PRE POST

Patient 4.88 70.20 Patient 36.80 142.45
Patient 42.75 86.25

Source: Dr. Khashayar Sakhaee. Used with permission.

21. The purpose of a study by Dubuis et al. (A-23) was to determine whether neuropsychological deficit
of children with the severe form of congenital hypothyroidism can be avoided by earlier onset of
therapy and higher doses of levothyroxine. Subjects consisted of 10 infants (ages 3 to 24 days) with
severe and 35 infants (ages 2 to 10 days) with moderate congenital hypothyroidism. Among the
data collected were the following measurements on plasma (nmol/L) levels at screening:

Severe Cases Moderate Cases

Sex (nmol/L) Sex (nmol/L) Sex (nmol/L)

M 16 F 20 F 62
M 57 F 34 M 50
M 40 F 188 F 40
F 50 F 69 F 116
F 57 F 162 F 80
F 38 F 148 F 97
F 51 F 108 F 51
F 38 F 54 F 84
M * F 96 F 51
F 60 M 76 F 94

M 122 M 158
M 43 F *
F 40 M 47
F 29 M 143
F 83 M 128
F 62 M 112

M 111
F 84
M 55

22. Kuna et al. (A-24) conducted a study concerned with chemokines in seasonal allergic rhinitis. Sub-
jects included 18 atopic individuals with seasonal allergic rhinitis caused by ragweed pollen.
Among the data collected on these subjects were the following eosinophil cationic protein (ECP)
and histamine measurements:

ECP (ng/ml) Histamine (ng/ml) ECP (ng/ml) Histamine (ng/ml)

511.0 31.2 25.3 5.6
388.0 106.0 31.1 62.7
14.1 37.0 325.0 138.0

314.0 90.0 437.0 116.0

T4T4T4

T4
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14 158 182 179 34 181 182 208
15 184 177 182 35 191 230 208
16 223 244 234 36 248 284 279
17 154 178 187 37 224 228 199
18 176 137 162 38 229 318 272
19 205 253 288 39 147 199 194
20 167 156 136 40 248 258 302
21 164 176 191 41 160 218 229
22 177 168 185 42 175 187 166
23 140 175 167 43 262 260 247
24 167 186 195 44 189 199 181

Source: Dr. Chee Jeong Kim. Used with permission.

ECP (ng/ml) Histamine (ng/ml) ECP (ng/ml) Histamine (ng/ml)

74.1 29.0 277.0 70.6
8.8 87.0 602.0 184.0

144.0 45.0 33.0 8.6
56.0 151.8 661.0 264.0

205.0 86.0 162.0 92.0

Source: Dr. Allen P. Kaplan. Used with permission.

23. The purpose of a study by Kim et al. (A-25) was to investigate the serial changes in Lp(a) lipopro-
tein levels with the loss of female sex hormones by surgical menopause and with estrogen
replacement therapy in the same women. Subjects were 44 premenopausal women who underwent
a transabdominal hysterectomy (TAH). Thirty-one of the women had a TAH and unilateral salp-
ingo-oophorectomy (USO), and 13 had a TAH and bilateral salpingo-oophorectomy (BSO). The
women ranged in age from 30 to 53 years. Subjects in the BSO group received .625 mg of con-
jugated equine estrogen daily 2 months after the operation. The following were the subjects’ total
cholesterol levels before (TC0), 2 months after (TC2), and 4 months after (TC4) the surgical pro-
cedure and hormone replacement therapy.

USO USO

Subject TC0 TC2 TC4 Subject TC0 TC2 TC4

1 202 203 196 25 134 131 135
2 204 183 203 26 163 190 185
3 206 199 192 27 196 183 192
4 166 180 176 28 181 194 208
5 150 171 154 29 160 162 181
6 137 134 129 30 188 200 181
7 164 168 171 31 172 188 189
8 207 249 223

BSO9 126 121 140

Subject TC0 TC2 TC4
10 131 141 167

32 224 218 239

11 133 159 149

33 202 196 231

12 142 152 140
13 225 193 180
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24. Velthuis et al. (A-26) conducted a study to evaluate whether the combination of passively immo-
bilized heparin-coating and standard heparization can reduce complement activation in patients
undergoing cardiac surgical intervention. The investigators note that heparin-coated extracorporeal
circuits reduce complement activation during cardiac operations, but that little in vivo information
is available on the reduction in alternative and classic pathway activation. Complement activation
initiates a systemic inflammatory response during and after cardiac operations and is associated
with pathophysiologic events such as postoperative cardiac depression, pulmonary capillary leak-
age, and hemolysis. Subjects were 20 patients undergoing elective cardiopulmonary bypass (CPB)
grafting randomly allocated to be treated with either heparin-coated extracorporeal circuits (H) or
uncoated circuits (U). Among the data collected were the following plasma terminal complement
complex (SC5b-9) concentrations at baseline, 10 minutes after start of CPB, at cessation of CPB,
and after the administration of protamine sulfate:

Patient Treatment Baseline 10 min CPB End CPB Protamine

1 U 0.37 0.81 1.88 2.12
2 U 0.48 0.73 3.28 3.31
3 U 0.48 0.42 2.94 1.46
4 H 0.37 0.44 1.28 3.82
5 H 0.38 0.31 0.50 0.68
6 U 0.38 0.43 1.39 5.04
7 H 0.46 0.57 1.03 1.29
8 H 0.32 0.35 0.75 1.10
9 U 0.41 0.94 1.57 2.53

10 U 0.37 0.38 2.07 1.69
11 H 0.48 0.33 1.12 1.04
12 H 0.39 0.39 1.69 1.62
13 U 0.27 0.41 1.28 2.26
14 H 0.51 0.27 1.17 1.05
15 H 0.97 0.75 1.82 1.31
16 U 0.53 1.57 4.49 2.15
17 U 0.41 0.47 1.60 1.87
18 U 0.46 0.65 1.49 1.24
19 H 0.75 0.78 1.49 1.57
20 H 0.64 0.52 2.11 2.44

Source: Dr. Henk te Velthuis. Used with permission.

25. Heijdra et al. (A-27) state that many patients with severe chronic obstructive pulmonary disease
(COPD) have low arterial oxygen saturation during the night. These investigators conducted a study
to determine whether there is a causal relationship between respiratory muscle dysfunction and
nocturnal saturation. Subjects were 20 (five females, 15 males) patients with COPD randomly
assigned to receive either target-flow inspiratory muscle training (TF-IMT) at 60 percent of their
maximal inspiratory mouth pressure ( ) or sham TF-IMT at 10 percent of Among the
data collected were the following endurance times (Time, s) for each subject at the beginning of
training and 10 weeks later:

PImax.PImax



Time (s) TF-IMT Time (s) TF-IMT
60% 10% 

Week 0 Week 10 Week 0 Week 10

330 544 430 476
400 590 400 320
720 624 900 650
249 330 420 330
144 369 679 486
440 789 522 369
440 459 116 110
289 529 450 474
819 1099 570 700
540 930 199 259

Source: Dr. Yvonne F. Heijdra. Used with permission.

26. The three objectives of a study by Wolkin et al. (A-28) were to determine (a) the effects of chronic
haloperidol treatment on cerebral metabolism in schizophrenic patients, (b) the relation between
negative symptoms and haloperidol-induced regional changes in cerebral glucose utilization, and
(c) the relation between metabolic change and clinical antipsychotic effect. Subjects were 18 male
veterans’ hospital inpatients (10 black, five white, and three Hispanic) with either acute or chronic
decompensation of schizophrenia. Subjects ranged in age from 26 to 44 years, and their duration
of illness ranged from 7 to 27 years. Among the data collected were the following pretreatment
scores on the digit-symbol substitution subtest of the WAIS-R (DSY1RW) and haloperidol-induced
change in absolute left dorsolateral prefrontal cortex (DLLA3V1) and absolute right dorsolateral
prefrontal cortex (DLRA3V1) measured in units of mol glucose/100 g tissue/min:

DSY1RW DLLA3V1 DLRA3V1 DSY1RW DLLA3V1 DLRA3V1

47 18
16 0 .40
31 29
34 17 9.48 11.31
22 38
70 64
59 52
41 50
0 4.67 7.26 62

Source: Dr. Adam Wolkin. Used with permission.

27. The purpose of a study by Maltais et al. (A-29) was to compare and correlate the increase in arte-
rial lactic acid (La) during exercise and the oxidative capacity of the skeletal muscle in patients
with chronic obstructive pulmonary disease (COPD) and control subjects (C). There were nine
subjects in each group. The mean age of the patients was 62 years with a standard deviation of 5.
Control subjects had a mean age of 54 years with a standard deviation of 3. Among the data

-1.87-4.92
-9.45-10.82-7.48-9.02

-11.81-15.13-12.61-9.70
-13.61-12.19-13.01-12.12
-6.47-6.59-12.95-17.12

-2.16-5.46
-4.57-4.62-11.58-10.15

-1.71-9.59-8.08
-9.58-4.91-17.17-7.97

m

PImaxPImax
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collected were the following values for the activity of phosphofructokinase (PFK), hexokinase
(HK), and lactate dehydrogenase (LDH) for the two groups:

PFK HK LDH

C COPD C COPD C COPD

106.8 49.3 2.0 2.3 241.5 124.3
19.6 107.1 3.2 1.4 216.8 269.6
27.3 62.9 2.5 1.0 105.6 247.8
51.6 53.2 2.6 3.6 133.9 200.7
73.2 105.7 2.4 1.3 336.4 540.5
89.6 61.3 2.4 2.9 131.1 431.1
47.7 28.2 3.5 2.2 241.4 65.3

113.5 68.5 2.2 1.5 297.1 204.7
46.4 40.8 2.4 1.6 156.6 137.6

Source: Dr. François Maltais. Used with permission.

28. Torre et al. (A-30) conducted a study to determine serum levels of nitrite in pediatric patients with
human immunodeficiency virus type 1 (HIV-1) infection. Subjects included 10 healthy control chil-
dren (six boys and four girls) with a mean age of 9.7 years and a standard deviation of 3.3. The
remainder of the subjects were 21 children born to HIV-1-infected mothers. Of these, seven (three
boys and four girls) were affected by AIDS. They had a mean age of 6 years with a standard devia-
tion of 2.8. The remaining 14 children (seven boys and seven girls) became seronegative for HIV-1
during the first year of life. Their mean age was 3.3 years with a standard deviation of 2.3 years.
Among the data collected were the following serum levels of nitrite ( mol/L):

Controls Seronegativized Children HIV-1-Positive Patients

0.301 0.335 0.503
0.167 0.986 0.268
0.201 0.846 0.335
0.234 1.006 0.946
0.268 2.234 0.846
0.268 1.006 0.268
0.201 0.803 0.268
0.234 0.301
0.268 0.936
0.301 0.268

0.134
0.335
0.167
0.234

Source: Dr. Donato Torre. Used with permission.

29. Seghaye et al. (A-31) analyzed the influence of low-dose aprotinin on complement activation,
leukocyte stimulation, cytokine production, and the acute-phase response in children undergoing

n � 7n � 14n � 10

m
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cardiac operations. Inclusion criterion for the study was a noncyanotic congenital cardiac defect
requiring a relatively simple primary surgical procedure associated with a low postoperative risk.
Among the data collected were the following measurements on interleukin-6 (IL-6) and C-reactive
protein (CRP) obtained 4 and 24 hours postoperatively, respectively:

IL-6 CRP IL-6 CRP IL-6 CRP

122 32 467 53 215 50
203 39 421 29 415 41
458 63 421 44 66 12
78 7 227 24 58 14

239 62 265 31 213 9
165 22 97 12

Source: Dr. Marie-Christine Seghaye. Used with permission.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1. California State Assembly Bill 2071 (AB 2071) mandated that patients at methadone clinics be
required to undergo a minimum of 50 minutes of counseling per month. Evan Kletter (A-32) col-
lected data on 168 subjects who were continuously active in treatment through the Bay Area Addic-
tion Research and Treatment (BAART) centers for 1 year prior to, and 2 years after AB 2071’s
implementation. Prior to AB 2071, BAART center counselors spent two sessions of at least 
15 minutes per session per month with each client. The subjects in the study were also identified
as cocaine abusers. The observations in KLETTER are the percentages of failing a cocaine drug
test for each of the subjects pre- and post-AB 2071. For example, a pre-value of 60 implies that
the patient failed a cocaine test 60 percent of the time prior to adoption of AB 2071. Dr. Kletter
performed a Wilcoxon rank sum test to determine if the percentage of failed tests decreased sig-
nificantly after the passage of AB 2071. Use the data to determine what conclusion he was able
to reach. Report the test statistic and p value.
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CHAPTER OVERVIEW

The focus of this chapter is on measurements and other tools that are used
in the evaluation of the health of various human groups of interest, such as
local, state, and national populations.  The techniques employed are con-
cerned with certain aspects of death, disease, and fertility.

TOPICS

14.1 INTRODUCTION

14.2 DEATH RATES AND RATIOS

14.3 MEASURES OF FERTILITY

14.4 MEASURES OF MORBIDITY

14.5 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand the basic concepts and methodologies of epidemiology and vital 

statistics and how they are used by professionals in the health sciences field.
2. be able to describe the differences between a rate and a ratio, and to explain 

when the use of each is appropriate.
3. understand the concepts of mortality, morbidity, and fertility.
4. know how to calculate useful measures from mortality, morbidity, and fertility 

data.
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14.1 INTRODUCTION

The private physician arrives at a diagnosis and treatment plan for an individual patient
by means of a case history, a physical examination, and various laboratory tests. The
community may be thought of as a living complex organism for which the public health
team is the physician. To carry out this role satisfactorily the public health team must
also make use of appropriate tools and techniques for evaluating the health status of the
community. Traditionally, these tools and techniques have consisted of the community’s
vital statistics, which include the counts of births, deaths, illnesses, and the various rates
and ratios that may be computed from them.

The idea of community-based, public health medicine as just described is most
often studied using the concepts and tools of epidemiology. Epidemiologists study the
mechanisms by which diseases and other health-related conditions arise and how they
are distributed among populations. While private physicians diagnose and treat individ-
ual patients who have a medical condition, epidemiologists and public health profession-
als are additionally interested in studying those members of a population who are well,
and how those who have an illness differ from those who are free of the illness. To that
end, the use of vital statistics and epidemiological tools are employed in determining the
prevalence of a given condition at a point in time and incidence at which new condi-
tions arise in the population. Standard epidemiological measures such as those of mor-
tality, morbidity, and fertility are explored in this chapter.

In succeeding sections we give some of the more useful and widely used rates and
ratios. Before proceeding, however, let us distinguish between the terms rate and ratio
by defining each as follows.

1. Rate. Although there are some exceptions, the term rate usually is reserved to
refer to those calculations that involve the frequency of the occurrence of some
event. A rate is expressed in the form

(14.1.1)

where

the frequency with which an event has occurred during some specified
period of time

the number of persons exposed to the risk of the event during the same
period of time

some number such as 10, 100, 1000, 10,000, or 100,000

As indicated by Expression 14.1.1, the numerator of a rate is a component part of the
denominator. The purpose of the multiplier, k, called the base, is to avoid results
involving the very small numbers that may arise in the calculation of rates and to
facilitate comprehension of the rate. The value chosen for k will depend on the mag-
nitudes of the numerator and denominator.

k =

a + b =

a =

a a

a + b
b k
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2. Ratio. A ratio is a fraction of the form

(14.1.2)

where k is some base as already defined and both c and d refer to the frequency of
occurrence of some event or item. In the case of a ratio, as opposed to a rate, the
numerator is not a component part of the denominator. We can speak, for example,
of the person–doctor ratio or the person–hospital-bed ratio of a certain geographic
area. The values of k most frequently used in ratios are 1 and 100.

14.2 DEATH RATES AND RATIOS

The rates and ratios discussed in this section are concerned with the occurrence of death.
Death rates express the relative frequency of the occurrence of death within some spec-
ified interval of time in a specific population. The denominator of a death rate is referred
to as the population at risk. The numerator represents only those deaths that occurred
in the population specified by the denominator.

1. Annual crude death rate. The annual crude death rate is defined as

where the value of k is usually chosen as 1000. This is the most widely used rate
for measuring the overall health of a community. To compare the crude death rates
of two communities is hazardous, unless it is known that the communities are com-
parable with respect to the many characteristics, other than health conditions, that
influence the death rate. Variables that enter into the picture include age, race, sex,
and socioeconomic status. When two populations must be compared on the basis of
death rates, adjustments may be made to reconcile the population differences with
respect to these variables. The same precautions should be exercised when compar-
ing the annual death rates for the same community for 2 different years.

2. Annual specific death rates. It is usually more meaningful and enlightening to
observe the death rates of small, well-defined subgroups of the total population.
Rates of this type are called specific death rates and are defined as

where k is usually equal to 1000. Subgroups for which specific death rates may be
computed include those groups that may be distinguished on the basis of sex, race,
and age. Specific rates may be computed for two or more characteristics simulta-
neously. For example, we may compute the death rate for white males, thus obtain-
ing a race-sex specific rate. Cause-specific death rates may also be computed by

total number of deaths in a specific subgroup during a year

total population in the specific subgroup as of July 1
# k

total number of deaths during year 1January 1 to December 312
total population as of July 1

# k

a c

d
b k
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including in the numerator only those deaths due to a particular cause of death,
say, cancer, heart disease, or accidents. Because of the small fraction that results,
the base, k, for a cause-specific rate is usually 100,000 or 1,000,000.

3. Adjusted or standardized death rates. As we have already pointed out, the use-
fulness of the crude death rate is restricted by the fact that it does not reflect the
composition of the population with respect to certain characteristics by which it is
influenced. We have seen that by means of specific death rates various segments
of the population may be investigated individually. If, however, we attempt to
obtain an overall impression of the health of a population by looking at individual
specific death rates, we are soon overwhelmed by their great number.

What is wanted is a single figure that measures the forces of mortality in a popu-
lation while holding constant one or more of the compositional factors such as age, race,
or sex. Such a figure, called an adjusted death rate, is available. It is most commonly
obtained by what is known as the direct method of adjustment. The method consists
essentially of applying to a standard population specific rates observed in the popula-
tion of interest. From the resulting expected numbers we may compute an overall rate
that tells us what the rate for the population of interest would be if that population had
the same composition as the standard population. This method is not restricted to the
computation of adjusted death rates only, but may be used to obtain other adjusted rates,
for example, an adjusted birth rate. If two or more populations are adjusted in this man-
ner, they are then directly comparable on the basis of the adjustment factors. Opinions
differ as to what population should be used as the standard. The population of the United
States as of the last decennial census is frequently used. For adjustment calculations a
population of 1,000,000, reflecting the composition of the standard population and called
the standard million, is usually used. In the following example we illustrate the direct
method of adjustment to obtain an age-adjusted death rate.

EXAMPLE 14.2.1

The 2000 crude death rate for Georgia was 7.8 deaths per 1000 population (A-1). Let
us obtain an age-adjusted death rate for Georgia by using the 2000 United States cen-
sus as the standard population. In other words, we want a death rate that could have been
expected in Georgia if the age composition of the Georgia population had been the same
as that of the United States in 2000.

Solution: The data necessary for the calculations are shown in Table 14.2.1.
The procedure for calculating an age-adjusted death rate by the direct

method consists of the following steps.

1. The population of interest is listed (Column 2) according to age group
(Column 1).

2. The deaths in the population of interest are listed (Column 3) by age
group.

3. The age-specific death rates (Column 4) for each age group are calcu-
lated by dividing Column 3 by Column 2 and multiplying by 100,000.
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4. The standard population (Column 5) is listed by age group. We obtain the
standard population as follows. The 2000 U.S. population by age group is
shown in Table 14.2.2. We divide the total for each age group by the grand
total and multiply by 1,000,000. For example, to obtain the standard pop-
ulation count for the 0–4 age group, we divide 19,175,798 by 281,421,906
and multiply the result by 1,000,000. That is, 

Similar calculations yield the standard popula-
tion counts for the other age groups as shown in Table 14.2.1.
281,421,9062 = 68,139.

1,000,000119,175,798>

14.2 DEATH RATES AND RATIOS 767

TABLE 14.2.1 Calculations of Age-Adjusted Death Rate for Georgia, 2000, by
Direct Method

1 2 3 4 5 6

Standard Number

Age-Specific Population of Expected

Death Based on U.S. Deaths in

Rates (per Population Standard

Age (Years) Populationa Deathsa 100,000) 2000b Population

0–4 595,150 1,299 218.3 68,139 149

5–9 615,584 101 16.4 73,020 12

10–14 607,759 136 22.4 72,944 16

15–19 596,277 447 75.0 71,849 54

20–44 3,244,960 5,185 159.8 369,567 591

45–64 1,741,448 13,092 751.8 220,141 1,655

65 and over 785,275 43,397 5526.3 124,339 6,871

Total 8,186,453 63,657 1,000,000c 9,348

Sources: a Georgia Vital and Morbidity Statistics 2000, Georgia Division of Public Health, Atlanta (A-1).
b Profile of General Demographic Characteristics: 2000, U.S. Census Bureau DP-1 (A-2).
c Total does not reflect actual sum because of rounding to the nearest person.

TABLE 14.2.2 Population of the United 
States, 2000

Age (Years) Population

0–4 19,175,798

5–9 20,549,505

10–14 20,528,072

15–19 20,219,890

20–44 104,004,252

45–64 61,952,636

65 and over 34,991,753

Total 281,421,906

Source: Profile of General Demographic Character-
istics: 2000, U.S. Census Bureau DP-1 (A-2).



5. The expected number of deaths in the standard population for each group
(Column 6) is computed by multiplying Column 4 by Column 5 and
dividing by 100,000. The entries in Column 6 are the deaths that would
be expected in the standard population if the persons in this population
had been exposed to the same risk of death experienced by the popula-
tion being adjusted.

6. The entries in Column 6 are summed to obtain the total number of
expected deaths in the standard population.

7. The age-adjusted death rate is computed in the same manner as a crude
death rate. That is, the age-adjusted death rate is equal to

In the present example we have an age-adjusted death rate of 

We see, then, that by adjusting the 2000 population of Georgia to the
age distribution of the standard population, we obtain an adjusted death
rate that is 1.5 per 1000 greater than the crude death rate . This
increase in the death rate following adjustment reflects the fact that in 2000
the population of Georgia was slightly younger than the population of the
United States as a whole. For example, only 9.6 percent of the Georgia
population was 65 years of age or older, whereas 12.4 percent of the U.S.
population was in that age group. ■

4. Maternal mortality rate. This rate is defined as

where k is taken as 1000 or 100,000. The preferred denominator for this rate is the
number of women who were pregnant during the year. This denominator, however,
is impossible to determine.

A death from a puerperal cause is a death that can be ascribed to some phase
of childbearing. Because of the decline in the maternal mortality rate in the United
States, it is more convenient to use In some countries, however,

results in a more convenient rate. The decline in the maternal mortal-
ity rate in this country also has had the effect of reducing its usefulness as a dis-
criminator among communities with varying qualities of medical care and health
facilities.

k = 1000
k = 100,000.

deaths from all puerperal causes during a year

total live births during the year
# k

19.3 - 7.82

9348

1,000,000
# 1000 = 9.3

total number of expected deaths

total standard population
# 1000
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Some limitations of the maternal mortality rate include the following:
(a) Fetal deaths are not included in the denominator. This results in an inflated

rate, since a mother can die from a puerperal cause without producing a live
birth.

(b) A maternal death can be counted only once, although twins or larger multi-
ple births may have occurred. Such cases cause the denominator to be too
large and, hence, there is a too small rate.

(c) Under-registration of live births, which result in a too small denominator,
causes the rate to be too large.

(d) A maternal death may occur in a year later than the year in which the birth
occurred. Although there are exceptions, in most cases the transfer of mater-
nal deaths will balance out in a given year.

5. Infant mortality rate. This rate is defined as

where k is generally taken as 1000. Use and interpretation of this rate must be
made in light of its limitations, which are similar to those that characterize 
the maternal mortality rate. Many of the infants who die in a given calendar year
were born during the previous year; and, similarly, many children born in a given
calendar year will die during the following year. In populations with a stable birth
rate this does not pose a serious problem. In periods of rapid change, however,
some adjustment should be made. One way to make an adjustment is to allocate
the infant deaths to the calendar year in which the infants were born before com-
puting the rate.

6. Neonatal mortality rate. In an effort to better understand the nature of infant deaths,
rates for ages less than a year are frequently computed. Of these, the one most fre-
quently computed is the neonatal mortality rate, which is defined as

where .

7. Fetal death rate. This rate is defined as

where k is usually taken to be 1000. A fetal death is defined as a product of con-
ception that shows no sign of life after complete birth. There are several problems
associated with the use and interpretation of this rate. There is variation among
reporting areas with respect to the duration of gestation. Some areas report all fetal

total number of fetal deaths during a year

total deliveries during the year
# k

k = 1000

number of deaths under 28 days of age during a year

total number of live births during the year
# k

number of deaths under 1 year of age during a year

total number of live births during the year
# k
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deaths regardless of length of gestation, while others have a minimum gestation
period that must be reached before reporting is required. Another objection to the
fetal death rate is that it does not take into account the extent to which a commu-
nity is trying to reproduce. The ratio to be considered next has been proposed to
overcome this objection.

8. Fetal death ratio. This ratio is defined as

where k is taken as 100 or 1000.
Some authorities have suggested that the number of fetal deaths as well as

live births be included in the denominator in an attempt to include all pregnancies
in the computation of the ratio. The objection to this suggestion rests on the incom-
pleteness of fetal death reporting.

9. Perinatal mortality rate. Since fetal deaths occurring late in pregnancy and
neonatal deaths frequently have the same underlying causes, it has been suggested
that the two be combined to obtain what is known as the perinatal mortality rate.
This rate is computed as

where

10. Cause-of-death ratio. This ratio is defined as

where This index is used to measure the relative importance of a given
cause of death. It should be used with caution in comparing one community with
another. A higher cause-of-death ratio in one community than that in another may
be because the first community has a low mortality from other causes.

11. Proportional mortality ratio. This index has been suggested as a single measure
for comparing the overall health conditions of different communities. It is defined
as

where The specified class is usually an age group such as 50 years and
over, or a cause of death category, such as accidents.

k = 100.

number of deaths in a particular subgroup

total number of deaths
# k

k = 100.

number of deaths due to a specific disease during a year

total number of deaths due to all causes during the year
# k

k = 1000.

1number of fetal deaths of 28 weeks or more2 + 1infant deaths under 7 days21number of fetal deaths of 28 weeks or more2 + 1number of live births2 # k

total number of fetal deaths during a year

total number of live births during the year
# k
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EXERCISES

14.2.1 The following 2000 data were reported for the Clayton County (Georgia) Health District—
Morrow:

Number

Total White Blacka

Estimated population as of July 1, 2000 236,517 89,741 121,927
Total live births 4,350 1,629 2,494
Fetal deaths 41 8 32
Deaths

Total deaths all ages 1366 898 446
Under 1 year 41 13 28
Under 28 days 24 6 18
Between 28 and 364 days 17 7 10

Cause of death
Malignant neoplasms 303 212 85
Major cardiovascular diseases 471 329 136

Source: 2000 Mortality Vital Statistics Reports, Georgia Office of Health Information
and Policy (A-3).
a The Black category does not include “other” races. The total includes white, black,
and “other.”

From these data compute the following rates and ratios: (a) crude death rate, (b) race-specific
death rates for white and black, (c) infant mortality rate, (d) neonatal mortality rate, (e) fetal
death ratio, and (f) cause of death ratios for malignant neoplasms and major cardiovascular
diseases.

14.2.2 The following table shows the deaths and estimated population by age for the state of Georgia
for 1999. Use these data to compute the age-adjusted death rate for Georgia, 1999. Use the same
standard population that was used in Example 14.2.1.

Age (Years) Population Deaths

0–4 580,222 1,197
5–9 577,151 126

10–14 563,293 153
15–19 570,547 460
20–44 3,083,521 4,989
45–64 1,653,515 12,633
65 and over 761,457 42,076

Total 7,789,706 61,634

Source: 1999 Mortality Vital Statistics Reports, 
Georgia Office of Health Information and Policy (A-4).

14.2.3 The following table shows, by age group, deaths in North Carolina during 2000, the population of
North Carolina for 2000, and the population of the United States for 2000. Use these data to
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compute the 2000 age-adjusted death rate for North Carolina. Use the 2000 U.S. population as the
standard population.

Age (Years) Populationa Deathsb U.S. Populationc

0–4 539,509 1,178 19,175,798
5–14 1,113,920 224 41,077,577

15–24 1,117,439 954 39,183,891
25–34 1,213,415 1,384 39,891,724
35–44 1,287,120 2,823 45,148,527
45–54 1,085,150 5,271 37,677,952
55–64 723,712 8,035 24,274,684
65 and over 969,048 51,863 34,991,753

Total 8,049,313 71,732 281,421,906

Sources: a Profile of General Demographic Characteristics: 2000, U.S. Census Bureau, 
DP-1 for North Carolina (A-5).
b Selected Vital Statistics for 2000 and 1996–2000, North Carolina State Center for Health Statistics, (A-6).
c Profile of General Demographic Characteristics: 2000, U.S. Census Bureau DP-1 (A-2).

14.2.4 The following data are for North Carolina for year 2000. Use these data to compute rates and/or
ratios of interest.

Total White Minoritya

Live births 120,247 86,341 33,906
Low birth weight 10,572 6,150 4,422
C-section 28,198 19,895 8,303
Perinatal deaths 1,683 913 770
Fetal deaths 937 516 421
Neonatal (under 28 days) 746 397 349
Postneonatal (28 days–1 year) 288 148 140
Infant deaths (under 1 year) 1,034 545 489
Death: males (excluding fetals) 71,732 55,241 16,491
Death: females (excluding fetals) 35,227 26,823 8,404
Cause of death: heart disease 19,649 15,419 4230
Cause of death: cancer 15,747 12,375 3372

Source: Selected Vital Statistics for 2000 and 1996–2000 and Leading Causes
of Death by Age Group, North Carolina State Center for Health Statistics (A-6).
a The minority category includes all nonwhite races.

14.3 MEASURES OF FERTILITY

The term fertility as used by American demographers refers to the actual bearing of chil-
dren as opposed to the capacity to bear children, for which phenomenon the term fecun-
dity is used. Knowledge of the “rate” of childbearing in a community is important to the
health worker in planning services and facilities for mothers, infants, and children. The
following are the six basic measures of fertility.
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1. Crude birth rate. This rate is the most widely used of the fertility measures. It
is obtained from

where For an illustration of the computation of this and the other five
rates, see Table 14.3.1.

2. General fertility rate. This rate is defined as

number of live births during a year

total number of women of childbearing age
# k

k = 1000.

total number of live births during a year

total population as of July 1
# k
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TABLE 14.3.1 Illustration of Procedures for Computing Six Basic Measures of Fertility, 
for Georgia, 2000

1 2 3 4 5 6 7 8

Standard

Number of Population

Births to Age-Specific U.S. Based on

Age of Number of Women of Birth Rate Population U.S. Cumulative

Woman Women in Specified per 1000 for Year Population Expected Fertility

(Years) Populationa Ageb Women 2000c 2000 Births Rate

10–14 296,114 396 1.3 20,528,072 112,524 146 6.7

15–19 286,463 17,915 62.5 20,219,890 110,835 6,927 319.4

20–24 285,733 36,512 127.8 18,964,001 103,951 13,285 958.3

25–29 316,000 35,206 111.4 19,381,336 106,239 11,835 1,515.4

30–34 326,709 27,168 83.2 20,512,388 112,438 9,355 1,931.1

35–39 350,943 12,685 36.1 22,706,664 124,466 4,493 2,111.9

40–54 887,104 2,404d 2.7 60,119,815 329,546 890 2,152.5

Total 2,749,066 132,286 182,432,166 1,000,000 46,931

Computation of six basic rates:

(1) Crude birth rate total births divided by total population

(2) General fertility rates

(3) Age-specific fertility rates entries in Column 3 divided by entries in Column 2 multiplied by 1000 for
each group. Results appear in Column 4.

(4) Expected births entries in Column 4 multiplied by entries in Column 6 divided by 1000 for each group.
Results appear in Column 7.

(5) Total fertility rate the sum of each age-specific rate multiplied by the age interval width 

(6) Cumulative fertility rate age-specific birth rate multiplied by age interval width cumulated by age. See
Column 8.

(7) Standardized general fertility rate

Sources: a Obtained from Georgia Division of Public Health Online Analytical Statistical Information System (OASIS) (A-7).
b Georgia Natality Vital Statistics Reports, 2000, Georgia Division of Public Health, Atlanta (A-8).
c Age Groups and Sex: 2000, U.S. Census Bureau 2000 Summary file QT-P1 for United States (A-9).
d May include births to women age 55 years.

= 146,9432>11,000,0002110002 = 46.9.

=
+ 1127.82152 + 111.4152 + 83.2152 + 36.1152 + 2.71152 = 2,152.5.

= 1.3152 + 62.5152=

=

=
= 1132,286>2,749,0662110002 = 48.1.

= 1132,286>8,186,4532110002 = 16.2.
=



where and the childbearing age is usually defined as ages 15 through 44
or ages 15 through 49. The attractive feature of this rate, when compared to the
crude birth rate, is the fact that the denominator approximates the number of per-
sons actually exposed to the risk of bearing a child.

3. Age-specific fertility rate. Since the rate of childbearing is not uniform through-
out the childbearing ages, a rate that permits the analysis of fertility rates for shorter
maternal age intervals is desirable. The rate used is the age-specific fertility rate,
which is defined as

where Age-specific rates may be computed for single years of age or any
age interval. Rates for 5-year age groups are the ones most frequently computed. Spe-
cific fertility rates may be computed also for other population subgroups such as those
defined by race, socioeconomic status, and various demographic characteristics.

4. Total fertility rate. If the age-specific fertility rates for all ages are added and mul-
tiplied by the interval into which the ages were grouped, the result is called the total
fertility rate. The resulting figure is an estimate of the number of children a cohort
of 1000 women would have if, during their reproductive years, they reproduced at
the rates represented by the age-specific fertility rates from which the total fertility
rate is computed.

5. Cumulative fertility rate. The cumulative fertility rate is computed in the same
manner as the total fertility rate except that the adding process can terminate at
the end of any desired age group. The numbers in Column 7 of Table 14.3.1 are
the cumulative fertility rates through the ages indicated in Column 1. The final
entry in the cumulative fertility rate column is the total fertility rate.

6. Standardized fertility rate. Just as the crude death rate may be standardized or
adjusted, so may we standardize the general fertility rate. The procedure is identi-
cal to that discussed in Section 14.2 for adjusting the crude death rate. The neces-
sary computations for computing the age-standardized fertility rate are shown in
Table 14.3.1. Note the total population figure for Georgia in 2000 is 8,186,453 (see
Table 14.2.1).

EXERCISES

14.3.1 The data in the following table are for the state of Georgia for 2001:

Age of Number of Births
Woman Number of Women to Women of
(Years) in Populationa Specified Ageb

10–14 307,496 391
15–19 287,916 17,249

k = 1000.

number of births to women of a certain age in a year

total number of women of the specified age
# k

k = 1000
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Age of Number of Births
Woman Number of Women to Women of
(Years) in Populationa Specified Ageb

25–29 309,759 34,884
30–34 339,018 28,334
35–39 353,387 12,911
40–54 923,315 2,413c

Total 2,815,251 133,468

Sources: a Obtained from Georgia Division of Public Health Online Analytical 
Statistical Information System (OASIS) (A-7).
b Georgia Natality Vital Statistics Reports, 2001, Georgia Division of Public Health, Atlanta (A-10).
c May include births to women age 55 years.

From the above data compute the following rates:

(a) Age-specific fertility rates for each age group

(b) Total fertility rate

(c) Cumulative fertility rate through each age group

(d) General fertility rate standardized by age

Use the standard population shown in Table 14.3.1.

14.3.2 There was a total of 133,468 live births in Georgia in 2001 (A-10). The estimated total popula-
tion as of July 1, 2001, was 8,186,453 (A-11), and the number of women between the ages of 10
and 54 was 2,815,251 (A-10). Use these data to compute:

(a) The crude birth rate (b) The general fertility rate

14.3.3 The following data are for the state of North Carolina for 2000:

Age of Number of Births to
Woman Women of Specified Number of Women U.S. Population
(Years) Agea in Populationb for Year 2000c

10–14 335 276,837 20,528,072
15–19 15,343 262,292 20,219,890
20–24 33,030 274,738 18,964,001
25–29 32,975 290,046 19,381,336
30–34 25,529 303,023 20,512,388
35–39 11,032 326,552 22,706,664
40–44 1,917 320,657 22,441,863
45–54 82d 559,312 37,677,952

Total 120,243 2,613,457 182,432,166

Sources: a North Carolina Resident Births for 2000 by Age of Mother and Birth Order for All Women,
North Carolina Department of Health and Human Services, State Center for Health Statistics (A-12).
b Age Groups and Sex: 2000, U.S. Census Bureau 2000 Summary file QT-P1 for North Carolina (A-13).
c Age Groups and Sex: 2000, U.S. Census Bureau 2000 Summary file QT-P1 for the United States (A-9).
d May contain births to women older than 54.
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From these data, compute the rates specified in Exercise 14.3.1. To the extent possible, compare
the results with those obtained in Exercise 14.3.1 and comment on the comparison.

14.4 MEASURES OF MORBIDITY

Another area that concerns the health worker who is analyzing the health of a commu-
nity is morbidity. The word “morbidity” refers to the community’s status with respect to
disease. Data for the study of the morbidity of a community are not, as a rule, as readily
available and complete as are the data on births and deaths because of incompleteness of
reporting and differences among states with regard to laws requiring the reporting of dis-
eases. The two rates most frequently used in the study of diseases in a community are
the incidence rate and the prevalence rate.

1. Incidence rate. This rate is defined as

where the value of k depends on the magnitude of the numerator. A base of 1000
is used when convenient, but 100 can be used for the more common diseases, and
10,000 or 100,000 can be used for those less common or rare. This rate, which
measures the degree to which new cases are occurring in the community, is use-
ful in helping determine the need for initiation of preventive measures. It is a mean-
ingful measure for both chronic and acute diseases.

2. Prevalence rate. Although it is referred to as a rate, the prevalence rate is really
a ratio, since it is computed from

where the value of k is selected by the same criteria as for the incidence rate. This
rate is especially useful in the study of chronic diseases, but it may also be com-
puted for acute diseases.

3. Case-fatality ratio. This ratio is useful in determining how well the treatment pro-
gram for a certain disease is succeeding. It is defined as

where The period of time covered is arbitrary, depending on the nature
of the disease, and it may cover several years for an endemic disease. Note that
this ratio can be interpreted as the probability of dying following contraction of
the disease in question and, as such, reveals the seriousness of the disease.

k = 100.

total number of deaths due to a disease

total number of cases due to the disease
# k

total number of cases, new or old, existing at a point in time

total population at that point in time
# k

total number of new cases of a specific disease during a year

total population as of July 1
# k
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4. Immaturity ratio. This ratio is defined as

where

5. Secondary attack rate. This rate measures the occurrence of a contagious dis-
ease among susceptible persons who have been exposed to a primary case and is
defined as

where This rate is used to measure the spread of infection and is usually
applied to closed groups such as a household or classroom, where it can reason-
ably be assumed that all members were, indeed, contacts.

EXERCISES

14.4.1 Use the following facts to compute and label appropriate measures of morbidity.

(a) In 1997, in one of Georgia’s state districts, 504 of 6927 babies born weighed less than 2500
grams at time of birth. In 2001, in the same district, 675 of 8336 babies born weighed less than
2500 grams. [SOURCE: Georgia Vital Statistics Report, 1997 (A-14), and Georgia Natality Vital
Statistics Report, 2001 (A-10).]

(b) In 1999, the estimated number of cigarette smokers in Nevada was 430,000, and in the same
year, the estimated population of the state was 1,935,000. In the same year, 57,296,000 Americans
were current users of cigarettes, and the estimated population as of July 1, 1999 was 279,040,000.
[SOURCE: U.S. Substance Abuse and Mental Health Services Administration, National Household
Survey on Drug Abuse,1999, as reported in Statistical Abstracts of the United States: 2002 (118th
edition), U.S. Bureau of the Census, Washington, DC, 2002, Table No. 183; U.S. Census Bureau
State Population Estimates, as reported in Statistical Abstract of the United States: 2002 (118th
edition), U.S. Bureau of the Census, Washington, DC, 2002, Table No. 18 (A-15).]

(c) In 2000, in the United States, there were 40,758 reported new cases of acquired immunodefi-
ciency syndrome (AIDS). The estimated population of the United States as of July 1, 2000, was
281,421,906. [SOURCE: U.S. Centers for Disease Control and Prevention, Atlanta, GA, Summary
of Notifiable Diseases, United States, 2000, Morbidity and Mortality Weekly Report, Vol. 49, No.
53, June 14, 2002, and Statistical Abstract of the United States: 2002 (118th edition), U.S. Bureau
of the Census, Washington, DC, 2002, Table No. 174 (A-16).]

14.5 SUMMARY

This chapter is concerned with the computation and interpretation of various rates and
ratios that are useful in studying the health of a community. More specifically, we dis-
cuss the more important rates and ratios relating to births, deaths, and morbidity. Indi-
viduals who wish to continue their reading in this area may find the books by Kittleson
(1) and Smith (2) of interest.

k = 100.

number of additional cases among contacts of a
primary case within the maximum incubation period

total number of susceptible contacts
# k

k = 100.

number of live births under 2500 grams during a year

total number of live births during the year
# k

14.5 SUMMARY 777



SUMMARY OF FORMULAS FOR CHAPTER 14

Formula 
Number Name Formula

14.1.1 Rate

14.1.2 Ratio

14.2— Annual crude
death rates death rate 
and ratios

Annual specific
death rate

Age-adjusted
death rate

Maternal
mortality rate

Infant
mortality rate

Neonatal
mortality rate

Fetal death
rate

Fetal death
ratio

Perinatal
mortality

Cause-of-death
ratio

Proportional
mortality ratio

14.3— Crude birth 
measures rate 
of fertility

total number of live births during a year

total population as of July 1
# k

number of deaths in a particular subgroup

total number of deaths
# k

number of deaths due to a specific disease during a year

total number of deaths due to all causes during the year
# k

+  (number of live births)

(number of fetal deaths of 28 weeks or more)
+  (infant deaths under 7 days)

(number of fetal deaths of 28 weeks or more)
# k

total number of fetal deaths during a year

total number of live births during the year
# k

total number of fetal deaths during a year

total number of deliveries during the year
# k

number of deaths under 28 days of age during a year

total number of live births during the year
# k

number of deaths under 1 year of age during a year

total number of live births during the year
# k

deaths from all puerperal causes during a year

total live births during the year
# k

total number of expected deaths

total standard population
# k

total number of deaths in a specific subgroup during a year

total population in the specific subgroup as of July 1
# k

total number of deaths during year

total population as of July 1
# k

a c

d
bk

a a

a + b
bk
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General
fertility rate

Age-specific
fertility rate

14.4— Incidence rate
measures of 
morbidity

Prevalence
rate

Case-fatality
ratio

Immaturity
ratio

Secondary
attack rate

Symbol Key • a, b, c, d � frequencies associated with the definition 
of rates and ratios

• k � multiplier for rates and ratios

REVIEW QUESTIONS AND EXERCISES

1. Explain the difference between a rate and a ratio.

2. Explain the difference between a crude death rate and a specific death rate.

3. Why is it inadvisable to compare the crude death rates of two geographic areas?

4. What is an adjusted or standardized death rate? What is the advantage of an adjusted death rate
over a crude death rate?

5. Define and discuss each of the following:

(a) Maternal mortality rate (h) Crude birth rate

(b) Infant mortality rate (i) General fertility rate

(c) Fetal death rate ( j) Age-specific fertility rate

(d) Fetal death ratio (k) Total fertility rate

(e) Perinatal mortality rate (l) Cumulative fertility rate

(f) Cause-of-death ratio (m) Standardized fertility rate

(g) Proportional mortality ratio

6. What is morbidity?

number of additional cases among contacts of a
primary case within the maximum incubation period

total number of susceptible contacts
# k

total number of live births under 2500 grams during a year

total number of live births during the year
# k

total number of deaths due to a disease

total number of cases due to the disease
# k

total number of all diseases cases at a given  point in time

total population at a given point in time
# k

total number of new cases of a specific disease during a year

total population as of July 1
# k

number of births to women of a certain age in a year

total number of women of the specified age
# k

total number of live births during a year

total number of women of childbearing age
# k
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7. Define and discuss the following morbidity measures:

(a) Incidence rate (d) Immaturity ratio

(b) Prevalence rate (e) Secondary attack rate

(c) Case-fatality ratio

8. For one or more geographical areas (for example, the United States, your state of residence, and
your county of residence) collect data and compute as many of the rates and ratios discussed in
this chapter as possible.

9. The following table shows, by age group, deaths in North Carolina during 2001, the estimated
population of North Carolina for 2001, and the population of the United States for 2000. Use these
data to compute the 2001 age-adjusted death rate for North Carolina. Use the 2000 U.S. popula-
tion as the standard population.

Age (Years) Populationa Deathsb U.S. Populationc

0–4 566,740 1,178 19,175,798
5–14 1,140,934 224 41,077,577

15–24 1,130,671 954 39,183,891
25–34 1,210,066 1,384 39,891,724
35–44 1,293,741 2,823 45,148,527
45–54 1,124,305 5,271 37,677,952
55–64 753,533 8,035 24,274,684
65 and over 986,115 51,863 34,991,753

Total 8,206,105 71,732 281,421,906

Sources: a Table ST-EST2002-ASRO-02-37—State Characteristic Estimates, 
Population Division, U.S. Census Bureau (A-17).
b Selected Vital Statistics for 2001 and 1997–2001, North Carolina State 
Center for Health Statistics (A-18).
c Profile of General Demographic Characteristics: 2000, U.S. Census Bureau, 
DP-1 for the United States (A-2).

10. The following data (numbers of specified events) are for a specific county in North Carolina for the
year 2001. Use these data to compute as many of the rates and ratios mentioned in this chapter as
possible.

Number

Total White Minority

Estimated population as of July 1, 2001 301,098 176,961 124,137
Total live births 5,315 3,093 2,222
Fetal deaths 45 21 24
Deaths

Total deaths all ages (excluding fetals) 1,989 1,222 767
Under 1 year 56 17 39
Under 28 days 40 9 31
Between 28 and 364 days 16 8 8

780 CHAPTER 14 VITAL STATISTICS

(Continued)



Number

Total White Minority

Low birth weight 480 201 279
Mother smoked 667 472 195
C-section 1,243 694 549

Source: Selected Vital Statistics for 2001 and 1997–2001, North Carolina State Center
for Health Statistics (A-18).

11. The following death data (number of deaths per category) are for the state of New York for
2000. Use these data to compute rates and/or ratios of interest. To the extent possible, com-
pare your results with those of Exercises 14.2.4 and comment on the comparison.

Total White Minoritya

Live births 285,455 182,285 103,170
Low birth weight 20,020 12,235 7,785
C-section 64,424 45,577 18,847
Infant deaths (under 1 year) 1,632 957 675
Death: males 74,636 61,873 12,763
Death: females 82,776 69,890 12,886
Cause of death: heart disease 57,921 49,624 8,297
Cause of death: cancer 37,277 31,351 5,926
Cause of death: AIDS 2,299 1,048 1,251

Source: Vital Statistics of New York State 2000 Tables, New York State 
Department of Health (A-19).
a The minority category includes all nonwhite and not stated races.

12. The following data are for the state of Georgia for 1994:

Age of Number of Births
Woman Number of Women to Women of
(Years) in Populationb Specified Ageb U.S. Populationc

10–14 246,026 599 17,114,249
15–19 251,197 17,329 17,754,015
20–24 259,413 31,333 19,020,312
25–29 287,951 28,940 21,313,045
30–34 300,358 22,588 21,862,887
35–39 298,578 8,777 19,963,117
40–44 278,679 1,329 17,615,786
45–49 229,377 43a 13,872,573
Unknown — 46 —

a May include some births to women over 49 years of age.
Sources: b Georgia Vital Statistics Report 1994, Georgia Department of Human Resources, Atlanta,
October 1995.
c 1990 Census of Population, United States, CP-1-1, Bureau of Census, Washington DC, November 1992,
Table 14.
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Use these data to compute the rates specified in Exercise 14.3.1. Compare the results with those
obtained in Exercises 14.3.1 and 14.3.3 where appropriate and comment on the comparison.

13. There was a total of 110,984 live births in Georgia in 1994. The estimated total population as of
July 1, 1994, was 6,965,539. See Review Exercise 12 for the number of women of childbearing
age. From these data compute the crude birth rate and the general fertility rate. Compare the results
with those of Exercises 14.3.2 and 14.3.4 and comment on the comparison.

14. Use the following facts to compute and label appropriate measures of morbidity.

(a) In 2000, in the United States, there were 1560 cases of Malaria. The estimated population of
the United States as of July 1, 2000, was 281,422,000. [SOURCE: U.S. Centers for Disease Control
and Prevention, Atlanta, GA, Summary of Notifiable Diseases, United States, 2000. Morbidity and
Mortality Weekly Report, Vol. 49, No. 53, June 14, 2002, and Statistical Abstract of the United
States: 2002 (118th edition), U.S. Bureau of the Census, Washington, DC, 2002, Table Nos. 18 and
174 (A-20).]

(b) In 2000, in the United States, there were 17,730 reported cases of Lyme disease. The esti-
mated population of the United States as of July 1, 2000, was 281,422,000. [SOURCE: U.S. Cen-
ters for Disease Control and Prevention, Atlanta, GA, Summary of Notifiable Diseases, United
States, 2000. Morbidity and Mortality Weekly Report, Vol. 49, No. 53, June 14, 2002, and Statis-
tical Abstract of the United States: 2002 (118th edition), U.S. Bureau of the Census, Washington,
DC, 2002, Table Nos. 18 and 174 (A-20).]

(c) In 1999, in Ohio, there were 436,000 estimated current users of marijuana. The estimated pop-
ulation of Ohio as of July 1, 2000, was 11,335,000. [SOURCE: U.S. Substance Abuse and Mental
Health Services Administration, National Household Survey on Drug Abuse, 1999, and Statistical
Abstract of the United States: 2002 (118th edition), U.S. Bureau of the Census, Washington, DC,
2002, Table Nos. 18 and 183 (A-21).]
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Chapter 1

Review Exercises

7. Situation A.
(a) 300 households (b) all households in the small southern town
(c) number of school-aged children present (d) all that reported one or
more children (e) nominal (categories: 0 children, 1 child, and so on)

Situation B.
(a) 250 patients (b) all patients admitted to the hospital during the past year
(c) distance patient lives from the hospital (d) 250 distances (e) ratio

Chapter 2

2.3.1. (a)
Cumulative

Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency

0–0.49 3 3 3.33 3.33
.5–0.99 3 6 3.33 6.67

1.0–1.49 15 21 16.67 23.33

ANSWERS TO 
ODD-NUMBERED EXERCISES

(Continued )
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ANSWERS TO ODD-NUMBERED EXERCISES A-107

Cumulative
Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency

1.5–1.99 15 36 16.67 40.00
2.0–2.49 45 81 50.00 90.00
2.5–2.99 9 90 10.00 100.00

(b) 40.0% (c) .7667 (d) 16.67% (e) 9 (f) 16.67%
(g) 2.17, because it composes almost 25 percent of the data and is the most
frequently occurring value in the data set. (h) Skewed to the left.

2.3.3. (a)
Cumulative

Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency

20–24.99 2 2 0.069 6.90
25–29.99 11 13 0.3793 44.83
30–34.99 6 19 0.2069 65.52
35–39.99 2 21 0.069 72.41
40–44.99 5 26 0.1724 89.66
45–49.99 2 28 0.069 96.55
50–54.99 1 29 0.0345 100.00

BMI
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(b) 44.83% (c) 24.14% (d) 34.48% (e) The data are right
skewed (f) 21



2.3.5. (a)
Class Relative
Interval Frequency Frequency

0–2 5 0.1111
3–5 16 0.3556
6–8 13 0.2889
9–11 5 0.1111

12–14 4 0.0889
15–17 2 0.0444

45 1.000

A-108 ANSWERS TO ODD-NUMBERED EXERCISES
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2.3.7. (a)
Cumulative

Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency

110–139 8 8 0.0516 0.0516
140–169 16 24 0.1032 0.1548
170–199 46 70 0.2968 0.4516
200–229 49 119 0.3161 0.7677
230–259 26 145 0.1677 0.9354
260–289 9 154 0.0581 0.9935
290–319 1 155 0.0065 1.0000
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2.3.9. (a)

Stem-and-Leaf Display: Stem-and-Leaf Display:
Hospital A Hospital B

Stem-and-leaf of C1 N = 25 Stem-and-leaf of C2 N = 25
Leaf Unit = 1.0 Leaf Unit = 1.0

1 17 1 1 12 5

2 18 4 2 13 5

4 19 15 4 14 35

9 20 11259 9 15 02445

(6) 21 233447 (4) 16 5678

10 22 2259 12 17 38

6 23 389 10 18 466
3 24 589 7 19 0059

3 20 3
2 21 24

(b) Both asymmetric: A is skewed left, and B is skewed right.

2.3.11. (a)
Cumulative

Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency

.0–.0999 45 45 20.83 20.83

.1–.1999 50 95 23.15 43.98

.2–.2999 34 129 15.74 59.72

.3–.3999 21 150 9.72 69.44

.4–.4999 23 173 10.65 80.09

.5–.5999 12 185 5.56 85.65

.6–.6999 11 196 5.09 90.74

.7–.7999 6 202 2.78 93.52

.8–.8999 4 206 1.85 95.37

.9–.9999 5 211 2.31 97.69

1.0–1.0999 4 215 1.85 99.54

1.1–1.1999 1 216 0.46 100.00

A-110 ANSWERS TO ODD-NUMBERED EXERCISES
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(b) Skewed right (c) 10, 4.62% (d) 196, 90.74%; 67, 31.02%, 143, 19.91%
2.5.1. (a) 193.6 (b) 205.0 (c) no mode (d) 255 (e) 5568.09

(f) 74.62 (g) 38.53 (h) 100.5
2.5.3. (a) 47.42 (b) 46.35 (c) 54.0, 33.0 (d) 29.6 (e) 76.54

(f) 8.75 (g) 18.45 (h) 13.73
2.5.5. (a) 16.75 (b) 15 (c) 15 (d) 43 (e) 124.02

(f) 11.14 (g) 66.51 (h) 8.25
2.5.7. (a) 1.8172 (b) 2 (c) 2.17 (d) 2.83 (e) .3165

(f) .5625 (g) 30.96 (h) .6700
2.5.9. (a) 33.87 (b) 30.49 (c) none (d) 29.84 (e) 64.00

(f) 8.00 (g) 23.62 (h) 13.4
2.5.11. (a) 6.711 (b) 7.00 (c) 7.00 (d) 16 (e) 16.21

(f) 4.026 (g) 59.99 (h) 5.5
2.5.13. (a) 204.19 (b) 204 (c) 212, 198 (d) 196 (e) 1258.12

(f) 35.47 (g) 17.37 (h) 46

Review Exercises

13. (a) Leaf Unit = 1.0

2 2 55
4 2 67
7 2 999
10 3 001
17 3 2223333
(12) 3 444555555555
21 3 666666666666666666677

(b) skewed (c) surgery is performed before birth; birth is generally around
37 weeks (d)

15. (a)
(b) Stem-and-leaf of GFR N = 28

Leaf Unit = 1.0

1 1 8
6 2 11377
12 3 022267
(7) 4 1223388
9 5 158
6 6 02378
1 7
1 8 8

(c) See graph on following page (A-113)

(d) 67.9%, 96.55%, 100%

x = 43.39, median = 42, s = 17.09, C.V. = 39.387, s2 = 292.07
x = 33.680, median = 35.00, s = 3.210, s 2 = 10.304
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17. Some examples include difference, diversity, departure, discrepancy, deviation, and
entropy
19.
21. Answers will vary: It is not uncommon for students to score higher on exams as a
semester progresses; therefore, the exam scores are likely to be left skewed, making
the median, which is less affected by skew, to be the better choice.

23. Answers will vary: Using Sturges's rule, where 
. An estimate of sample standard deviation can be found by dividing the sample

range by 4. Therefore, so that . Using this formula, then and
suggesting that (d) or (e) may be appropriate.

25. Answers will vary: Imagine you are examining protein intake among college stu-
dents. In general most students are likely to consume the average daily protein intake,
but among this population, there is likely to be a fair number of athletes who consume
large amounts of protein owing to the demands of their sport. In that case, the data are
likely to be positively skewed, and the median better represents the central tendency of
the data.
27. Variable N Mean Median TrMean StDev SE Mean

S/R 216 0.3197 0.2440 0.2959 0.2486 0.0169

Variable Minimum Maximum Q1 Q3
S/R 0.0269 1.1600 0.1090 0.4367

IQR = .3277, Range = 1.1331, IQR>R = .2892

w = 160
9.23 = 17.33

R = 160R L 4ss L R
4

9.23
k = 1 + 3.3221log10300) Mw = R

k ,

x = 3.95, Median = 3, s = 3.605, s2 = 12.998
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Stem-and-leaf of C1 N = 107
Leaf Unit = 1.0

1 4 5
5 5 0004
12 5 5556899
18 6 013444
31 6 5555666777888
(28) 7 0000011122222222333333344444
48 7 666666666677888999
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29. (a) Variable N Mean Median TrMean StDev SE Mean
nutri 107 75.40 73.80 74.77 13.64 1.32

Variable Minimum Maximum Q1 Q3
nutri 45.60 130.00 67.50 80.60

Variance = 186.0496, Range = 84.4, IQR = 13.1, IQR>R = .1552
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Chapter 3

3.4.1. (a) .6631 (b) marginal (d) .0332 (e) joint (f) .0493
(g) conditional (h) .3701 (i) addition rule

3.4.3. (a) male and split drugs, .3418 (b) male or split drugs or both, .8747
(c) male given split drugs, .6134 (d) male, .6592

3.4.5. .95
3.4.7. .301
3.5.1. (a) A subject having the symptom (S) and not having the disease.

(b) A subject not having S but having the disease. (c) .96
(d) .9848 (e) .0595 (f) .99996 (g) .00628, .999996, .3895, .9996,
.8753, .9955 (h) predictive value increases as the hypothetical disease rate
increases

3.5.3. .9999977

Review Exercises

3. (a) .2143 (b) .5519 (c) .1536 (d) .4575 (e) .5065
5. (a) .1349 (b) .6111 (c) .3333 (d) .5873 (e) .3571

(f) .6667 (g) 0 (h) .3269

1>107 = .0093102>107 = .9533
102.68; 103>107 = .9626; 75.4 ; 3113.642; 34.48, 116.32; 105>107 = .9813

75.4 ; 13.64; 61.76, 89.04; 79>107 = .7383; 75.4 ; 2113.642; 48.12,



7. (a) 1. .2200 2. .5000 3. .0555 4. .1100 5. .5900
(b) 1. .3000 2. .3900 3. .3900 4. .1667 5. .0700 6. .6000

9. (a) .0432 (b) .0256 (c) .0247 (d) .9639 (e) .5713
(f) .9639 (g) .9810

11. .0060
13. .0625
15. mothers under the age of 24
17. null set, as events are mutually exclusive
19. (a) plasma lipoprotein between 10–15 or greater than or equal to 30.
(b) plasma lipoprotein between 10–15 and greater than or equal to 30.
(c) plasma lipoprotein between 10–15 and less than or equal to 20.
(d) plasma lipoprotein between 10–15 or less than or equal to 20.
21. (a) .7456 (b) .3300
23. .0125

Chapter 4

A-116 ANSWERS TO ODD-NUMBERED EXERCISES

4.2.1 (a)

Relative Cumulative 
Number of Substances Used Frequency Frequency Frequency

0 144 .19 .19
1 342 .44 .63
2 142 .18 .81
3 72 .09 .90
4 39 .05 .95
5 20 .03 .98
6 6 .01 .99
7 9 .01 1.00
8 2 .003 1.003
9 1 .001 1.004

Total 777 1.004

(b) 0.5
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ANSWERS TO ODD-NUMBERED EXERCISES A-117

4.2.3.
4.3.1. (a) .1484 (b) .8915 (c) .1085 (d) .8080
4.3.3. (a) .2536, (b) .3461 (c) .7330 (d) .9067 (e) .0008
4.3.5.
4.3.7. (a) .5314 (b) .3740 (c) .0946 (d) .9931 (e) .0946

(f) .0069

4.3.9.
Number of
Successes, x Probability, f(x)

0

1

2

3

Total 1

4.4.1. (a) .156 (b) .215 (c) .629 (d) .320
4.4.3. (a) .105 (b) .032 (c) .007 (d) .440
4.4.5. (a) .086 (b) .946 (c) .463 (d) .664 (e) .026
4.6.1. .4236
4.6.3. .2912
4.6.5. .0099
4.6.7. .95
4.6.9. .901

4.6.11.
4.6.13. 1.77
4.6.15. 1.32

-2.54

3!

3! 0!
1.2201.823 = .512

3!

2! 1!
1.2211.822 = .384

3!

1! 2!
1.2221.821 = .096

3!

0! 3!
1.2231.820 = .008

mean = 4.8, variance = 3.264

x = 1.58, s2 = 2.15, s = 1.47
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4.7.1. (a) .6321 (b) .4443 (c) .0401 (d) .3064
4.7.3. (a) .1357 (b) .2389 (c) .6401 (d) .0721 (e) .1575
4.7.5. (a) .3413 (b) .1056 (c) .0062 (d) .3830
4.7.7. (a) .0630 (b) .0166 (c) .7719

Review Exercises

15. (a) .0212 (b) .0949 (c) .0135 (d) .7124
17. (a) .034 (b) .467 (c) .923 (d) .010 (e) .105
19. (a) .4967 (b) .5033 (c) .1678 (d) .0104 (e) .8218
21. (a) .0668 (b) .6247 (c) .6826
23. (a) .0013 (b) .0668 (c) .8931
25. 57.1
27. (a) 64.75 (b) 118.45 (c) 130.15 (d) 131.8
29. 14.90
31. 10.6
33. (a) Bernoulli assuming there is an equal probability of both genders
(b) Not Bernoulli—more than two possible outcomes
(c) Not Bernoulli—weight is not a binary variable

Chapter 5

5.3.1. 204, 6.2225
5.3.3. (a) .1841 (b) .7980 (c) .0668
5.3.5. (a) .0020 (b) .1736 (c) .9777 (d) .4041
5.3.7. (a) .9876 (b) .0668 (c) .0668 (d) .6902
5.3.9.

Sample

6, 8, 10 8.00
6, 8, 12 8.67
6, 8, 14 9.33
6, 10, 12 9.33
6, 10, 14 10.00
6, 12, 14 10.67
8, 10, 12 10.00
8, 10, 14 10.67
8, 12, 14 11.33
10, 12, 14 12.00

5.4.1. .3897
5.4.3. .0038
5.4.5. .0139
5.5.1. .1131
5.5.3. .0808
5.5.5. (a) .1539 (b) .3409 (c) .5230
5.6.1. .1056
5.6.3. .7938

mx = 10,sx = 1.333

x

A-118 ANSWERS TO ODD-NUMBERED EXERCISES
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Review Exercises

11. .0003
13. .0262
15. .1335
17. .1093
19. .1292
21. 252
23. .53, .0476
25. At least approximately normally distributed
27. .9942
29. (a) No (b) Yes (c) No (d) Yes (e) Yes (f) Yes

Chapter 6

6.2.1. (a) 88, 92 (b) 87, 93 (c) 86, 94
6.2.3. (a) 7.63, 8.87 (b) 7.51, 8.99 (c) 7.28, 9.22
6.2.5. 1603.688, 1891.563; 1576.125, 1919.125; 1521.875, 1973.375
6.3.1. (a) 2.1448 (b) 2.8073 (c) 1.8946 (d) 2.0452
6.3.3. (a) 1.549, .387 (b) 2.64, 4.36; .49, .91 (c) Nitric oxide diffusion

rates are normally distributed in the population from which the sample was
drawn. (f) narrower (g) wider

6.3.5. 66.2, 76.8; 65.1, 77.9; 62.7, 80.3
6.4.1.
6.4.3. 17.70; 19.95; 24.40
6.4.5. 64.09, 479.91; 19.19, 524.81; 621.49
6.4.7. 2.1, 4.5; 1.8, 4.8; 1.3, 5.3
6.4.9.
6.5.1. .1028, .1642
6.5.3. .4415, .6615
6.6.1. .0268, .1076
6.6.3. .2667
6.7.1. 27, 16
6.7.3. 19
6.8.1. 683, 1068
6.8.3. 385, 289
6.9.1. 6.334, 44.63
6.9.3. 793.92, 1370.41
6.9.5. 1.17, 2.09
6.9.7.

6.10.1. .44, 17.37
6.10.3. .49, 2.95
6.10.5. .9, 3.52
6.10.7. 5.13, 60.30

Review Exercises

13.
15. pN = .30; .19, .41

x = 79.87, s2 = 28.1238, s = 5.3; 76.93, 82.81

170.98503 … s2 … 630.65006

- .0843,

-32.58, -25.42; -33.33, -24.67, -34.87, -23.13

-77.49,
-12.60,-8.15,-5.90,

-549.82, -340.17; -571.28, -318.72; -615.52, -274.48



17.
19.
21.
23. 2.82
25. 362.73, 507.27
27. .44, .74
29. .188
31. Level of confidence decreases. The interval would have no width. The level of

confidence would be zero.
33. z, 8.1, 8.1
35. All drivers ages 55 and older. Drivers 55 and older participating in the vision

study.
37. .2865, .3529 (Use z since )

Chapter 7

7.2.1. Reject because 
7.2.3. Fail to reject because 
7.2.5. Yes, reject 
7.2.7. No, fail to reject 
7.2.9. Yes, reject 
7.2.11. reject
7.2.13. fail to reject 
7.2.15. reject
7.2.17. fail to reject 
7.2.19. Reject since 
7.3.1. Reject because 
7.3.3. Reject because 
7.3.5. Reject because 
7.3.7. Reject
7.3.9. Reject
7.3.11. Reject
7.4.1. Reject because 
7.4.3. Reject
7.4.5. Reject since 
7.5.1. Reject since 
7.5.3. Reject because 
7.5.5. Reject because 
7.6.1. Reject because 
7.6.3. Fail to reject because 
7.7.1. Do not reject since (two-sided test).
7.7.3. Do not reject (two-sided test)
7.7.5. Do not reject 
7.7.7.
7.8.1. Fail to reject because 
7.8.3. No,
7.8.5. Reject
7.8.7. V.R. = 2.1417, p 7 .10

V.R. = 4, .02 6 p 6 .05H0.
V.R. = 1.83, p 7 .10

V.R. = 1.226 6 1.74 p 7 .10
x2 = 22.036, .10 7 p 7 .05

p 7 .10H0.x2 = 28.8.
p 7 .05H0.x2 = 6.75.

5.142 6 20.723 6 34.267, p 7 .01H0,
z = 1.70 6 1.96, p = .088H0

-2.86 6 -2.58, p = .0042H0

z = -2.21, p = .0136H0

-1.77 6 -1.645, p = .0384H0

-1.62 7 -1.645. p = .0526H0

-4.4580 6 -2.4469, p 6 .01H0

-3.1553 6 -1.8125, .005 6 p 6 .01H0.
3.17 7 2.624, p 6 .005H0

p 6 .01H0.t = -3.3567.
p = 211 - .99972 = .0006H0.z = 3.39.

p 6 21.0052 = .010H0.s2
p = 5421.25, t = -6.66.

z = 3.39 7 1.96. p = 21.00032H0

-9.60 6 -2.6591, p 6 21.0052H0

-10.9 6 -2.388, p 6 .005H0

z = -4.00. p 6 .0001H0

p = 21.04752 = .095H0.z = 1.67,
p 6 .0001H0.z = -4.18,

p 7 .2H0.t = .1271,
H0, p 6 .0001z = 4,

H0, z = 3.08. p = .0010
H0. t = -1.5 7 -1.709. .05 6 p 6 .10

H0, z = -5.73 6 -1.645. p 6 .0001
.76 6 1.333. p 7 .10H0

-2.57 6 -2.33, p = .0051 6 .01H0

n 7 30

- .416,

-2.18,
x = 19.23, s2 = 20.2268; 16.01, 22.45
pN = .90; .87, .93
pN1 = .20; pN2 = .54, .26, .42
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7.9.1.
Value of

Alternative Power Function
Value of 

516 0.9500 0.0500
521 0.8461 0.1539
528 0.5596 0.4404
533 0.3156 0.6844
539 0.1093 0.8907
544 0.0314 0.9686
547 0.0129 0.9871

7.9.3.

1 � BBM

515 520 525 530 535 540 545 550

1.0

0.8

0.6

0.4

0.2

0.0

Alternative values of mu

P
o

w
e
r

Value of
Alternative Power Function
Value of 

4.25 0.9900 0.0100
4.50 0.8599 0.1401
4.75 0.4325 0.5675
5.00 0.0778 0.9222
5.25 0.0038 0.9962

1 � BBM

4.2 4.4 4.6 4.8 5.0 5.2

1.0

0.8

0.6

0.4

0.2

0.0

Alternative values of mu

P
o

w
e
r



7.10.1. Select a sample of size 548 and compute If
reject If do not reject 

7.10.3. Select a sample of size 103 and compute If 
reject If do not reject 

Review Exercises

19. Reject since 
21. Fail to reject the null because 
23. Reject since 
25. Fail to reject because 
27.
29.
31. Reject since 

Answers to Exercises 41–55 obtained by MINITAB

41. 95.0% C.I.
(456.8, 875.9)

t p value
7.09 0.0000
Test of vs. 

43. 95.0% C.I.
(0.224, 0.796)

t p value
3.65 0.0010
Test of vs. 

45. Leg press: 95.0% C.I. Arm abductor: 95.0% C.I.
(32.22, 56.45) (3.717, 7.217)

t p value t p value
7.85 0.0000 6.70 0.0000

Test of vs. Test of vs. 
Hip flexor: 95.0% C.I. Arm abductor: 95.0% C.I.

(3.079, 6.388) (4.597, 7.670)
t p value t p value

6.14 0.0000 8.56 0.0000
Test of vs. Test of vs. 
Hip extensor: 95.0% C.I.

(6.031, 10.236)
t p value

8.30 0.0000
Test of vs. 

47. 95.0% C.I.

t p value
1-71.9, -26.52 m not = 0m = 0

m not = 0m = 0m not = 0m = 0

m not = 0m = 0m not = 0m = 0

m not = 0m = 0

m not = 0m = 0

-2.286 6 -1.7530, .025 7 p 7 .01H0

d = 11.49, s2
d = 256.679, sd = 16.02, t = 2.485, .025 7 p 7 .01

t = 3.873, p 6 .005
1.10 6 1.645, p = .1357H0

12.79 7 2.58. p 6 .0001H0

z = 1.48 6 1.96. p = .1388
29.49 7 2.33. p 6 .0001H0

H0.x 6 4.66,H0.
x Ú 4.66,x.n = 103; C = 4.66.

H0.x 6 518.25H0.x Ú 518.25,
x.n = 548; C = 518.25.
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0.0001
Test of vs. 

49. 95.0% C.I. for 
t test
t test

51. 95.0% C.I. for (.5, 26.4)
t test

53. 95.0% C.I. for 
t test

55. 95.0% C.I. for (7.6, 18.8)
t test

Chapter 8

Answers for 8.2.1–8.2.7 obtained by SAS®

8.2.1. F = 6.24
p = .0004
Alpha 0.05
Error Degrees of Freedom 325
Error Mean Square 1.068347
Critical Value of Studentized Range 3.65207

Comparisons significant at the 0.05 level are indicated
by ***.

Difference Simultaneous
Group Between 95% Confidence
Comparison Means Limits
90 - 30 0.1911 -0.1831 0.5652
90 - 120 0.6346 0.1320 1.1372 ***
90 - 60 0.6386 0.1360 1.1413 ***
30 - 90 -0.1911 -0.5652 0.1831
30 - 120 0.4436 -0.1214 1.0085
30 - 60 0.4476 -0.1173 1.0125
120 - 90 -0.6346 -1.1372 -0.1320 ***
120 - 30 -0.4436 -1.0085 0.1214
120 - 60 0.0040 -0.6531 0.6611
60 - 90 -0.6386 -1.1413 -0.1320 *** 
60 - 30 -0.4476 -1.0125 0.1173
60 - 120 -0.0040 -0.6611 0.6531

8.2.3. F = 9.36
p = < .0001

t = 4.78 p = 0.0000 d.f. = 311vs. not =2:mPT = mC

mPT - mC:
Both use Pooled StDev = 4.84

t = - .29 p = .77 d.f. = 531vs. not =2:m1 = m2

m1 - m2: 1-3.00, 2.22 t = 2.88, p = .045 d.f. = 4mGROUP 1 = mGROUP 2 1vs. not = 2:mGROUP 1 - mGROUP 2
t = -3.30 p = .0011 d.f. = 421vs. 62:m1 = m2

t = -3.30 p = .0021 d.f. = 421vs. not =2:m1 = m2

m1 - m2: 1-83.8, -202m not = 0m = 0
-4.34



Alpha 0.05
Error Degrees of Freedom 109
Error Mean Square 211252.3
Critical Value of Studentized Range 3.68984

Comparisons significant at the 0.05 level are indi-
cated by ***.

Difference Simultaneous
Group Between 95% Confidence
Comparison Means Limits
A - B 455.72 45.73 865.71 ***
A - C 574.54 235.48 913.59 ***
A - D 596.63 287.88 905.39 ***
B - A -455.72 -865.71 -45.73 ***
B - C 118.82 -271.45 509.09
B - D 140.91 -223.34 505.17
C - A -574.54 -913.59 -235.48 ***
C - B -118.82 -509.0 271.45
C - D 22.10 -259.95 304.14
D - A -596.63 -905.39 -287.88 ***
D - B -140.91 -505.17 223.34
D - C -22.10 -304.14 259.95

8.2.5. F = 9.26
p = .0009
Alpha 0.05
Error Degrees of Freedom 26
Error Mean Square 637.384
Critical Value of Studentized Range 3.51417

Comparisons significant at the 0.05 level are indicated
by ***.

Difference Simultaneous
Group Between 95% Confidence
Comparison Means Limits
Y - MA 18.16 -10.67 46.98
Y - E 48.13 20.07 76.19 ***
MA - Y -18.16 -46.98 10.67
MA - E 29.97 1.15 58.80 ***
E - Y -48.13 -76.19 -20.07 ***
E - MA -29.97 -58.80 -1.15 ***

8.2.7. F = 4.94
p = .0026
Alpha 0.05
Error Degrees of Freedom 174
Error Mean Square 0.17783
Critical Value of Studentized Range 3.66853
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Comparisons significant at the 0.05 level are indicated
by ***.

Difference Simultaneous
Group Between 95% Confidence
Comparison Means Limits
0 - 1 0.10165 -0.13866 0.34196
0 - 2 0.17817 -0.2188 0.37822

Difference Simultaneous
Group Between 95% Confidence
Comparison Means Limits
0 - 3 0.35447 0.10511 0.60383 ***
1 - 0 -0.10165 -0.34196 0.13866
1 - 2 0.07652 -0.17257 0.32561
1 - 3 0.25281 -0.03737 0.54300
2 - 0 -0.17817 -0.37822 0.02188
2 - 1 -0.07652 -0.32561 0.17257
2 - 3 0.17630 -0.08154 0.43413
3 - 0 -0.35447 -0.60383 -0.10511 ***
3 - 1 -0.25281 -0.54300 0.03737
3 - 2 -0.17630 -0.43413 0.08154

8.3.1.
8.3.3.
8.3.5.
8.3.7. Total Block (Dogs) Treatments (Times) Error

8.4.1.
8.4.3.
8.4.5. Total Block (Subject) Treatment (Time) Error

8.5.1. Ion dose inter 

8.5.3. Migraine treat interaction

Review Exercises

13. The sample mean for the healthy subjects is significantly
different from the means of categories B, C, and D. No other differences between
sample means are significant.

15. , . Do not reject 
17. Smoking status , Vital Exhaustion Group ,

Interaction
19. ,
21. ,
23. The sample D mean is significantly different from the

sample B mean. No other differences between sample means are significant.
p = .043.V.R. = 3.1187,

p = .008V.R. = 6.320
p 6 .001V.R. = 4.23

p = .032V.R. = 2.91,p = .003,
V.R. = 6.84p = .052,V.R. = 3.16

H0.p = .274V.R. = 1.35

p = .000.V.R. = 7.04,

p = .2404V.R. = 1.42,
p = .1522;V.R. = 2.13,p 6 .0001;V.R. = 19.98,

p = .427
V.R. = .89p = .000;V.R. = 74.59,p = .023;V.R. = 6.18,

d.f. = 18
d.f. = 2,d.f. = 9,d.f. = 29,

p 6 .005V.R. = 16.45,
p 6 .005V.R. = 48.78,

d.f. = 30
d.f. = 6,d.f. = 5d.f. = 41

.025 7 p 7 .01V.R. = 7.37,
p 6 .005V.R. = 30.22,
p 6 .005V.R. = 19.79,



25. V.R. (Age) Occupation Interaction

27. 499.5, 9, 166.5, 61.1667, 2.8889, 57.6346, 
29. (a) Completely randomized, (b) 3, (c) 30, (d) No, because

31. All differences significant except

33. , Tukey HSD not necessary.
35. (a) One-way ANOVA

(b) Response: post-pre training score
(c) Factors: Groups of years of experience (with 4 levels)
(d) surgical experience and interest in obstetrics
(e) no carryover effects
(f) treatment is years of experience  , total , error .

37. (a) repeated measures
(b) Response: BMD
(c) Factors: time periods (with six levels)
(d) diet, exercise, and calcium intake
(e) no carryover effects
(f) time factor , subject factor , total, error .

39.
Analysis of Variance for bilirubi
Source DF SS MS F P
subject 17 2480.83 145.93 45.57 0.000
time 6 89.09 14.85 4.64 0.000
Error 102 326.65 3.20
Total 125 2896.57

41. CR � Compression Ratio
Analysis of Variance for C.R.
Source DF SS MS F P
Group 4 9092 2273 8.12 0.001
Error 19 5319 280
Total 23 14411

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---
Control 6 79.96 5.46 (-----*-----)
I 4 78.69 21.44 (------*------)
II 4 47.84 23.74 (------*------)
III 5 43.51 10.43 (-----*------)
IV 5 33.32 20.40 (-----*------)

---+---------+---------+---------+---
Pooled StDev = 16.73 25 50 75 100
Tukey’s pairwise comparisons

d.f. = 125d.f. = 25d.f. = 5

d.f. = 26d.f. = 29d.f. = 3

p = .117,V.R. = 2.37
mLight - mModerate

HSD = 2.4533.p 6 .001.V.R. = 26.06,
1.0438 6 3.35

6 .005
p 6 .001V.R. = 7.12,

p 6 .001;V.R. = 31.47,p 6 .001;= 29.38,
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Family error rate = 0.0500
Individual error rate = 0.00728

Critical Value = 4.25

Intervals for (column level mean) - (row level mean)

Control I II III
I -31.19

33.72

II -0.34 -4.70
64.58 66.41

III 6.00 1.45 -29.41
66.89 68.91 38.05

IV 16.19 11.64 -19.21 -21.61
77.08 79.10 48.24 41.99

43. Two-way ANOVA: BC versus heat, chromo
Analysis of Variance for BC
Source DF SS MS F P
heat 1 0.1602 0.1602 3.95 0.061
chromo 1 0.6717 0.6717 16.55 0.001
Interaction 1 0.0000 0.0000 0.00 0.994
Error 20 0.8119 0.0406
Total 23 1.6438

Analysis of Variance for AC
Source DF SS MS F P
heat 1 0.0468 0.0468 1.99 0.174
chromo 1 0.4554 0.4554 19.34 0.000
Interaction 1 0.0039 0.0039 0.16 0.690
Error 20 0.4709 0.0235
Total 23 0.9769

Analysis of Variance for AC/BC
Source DF SS MS F P
heat 1 0.04524 0.04524 15.62 0.001
chromo 1 0.00000 0.00000 0.00 1.000
Interaction 1 0.00385 0.00385 1.33 0.262
Error 20 0.05793 0.00290
Total 23 0.10702

45. C.A. = Congruence angle
Analysis of Variance for C.A.
Source DF SS MS F P
Group 3 7598 2533 14.83 0.000
Error 86 14690 171
Total 89 22288



Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+---------+---------+---------+-
Lateral 27 6.78 15.10 (----*----)
Medial 26 -10.81 10.80 (----*----)
Multi 17 -18.29 15.09 (------*-----)
Normal 20 -7.00 10.76 (-----*-----)

-----+---------+---------+---------+-
Pooled StDev = 13.07 -20 -10 0 10

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0103

Critical value = 3.71

Intervals for (column level mean) - (row level mean)
Lateral Medial Multi

Medial 8.16
27.01

Multi 14.46 -3.21
35.69 18.18

Normal 3.66 -14.01 -22.60
23.89 6.39 0.02

47.
Analysis of Variance for response
Source DF SS MS F P
subject 5 25.78 5.16 4.72 0.018
temp 2 30.34 15.17 13.87 0.001
Error 10 10.93 1.09
Total 17 67.06

49. G.C. = glucose concentration
Analysis of Variance for G.C.
Source DF SS MS F P
group 3 8.341 2.780 10.18 0.001
subject 5 8.774 1.755 6.43 0.002
Error 15 4.096 0.273
Total 23 21.210

51.
Analysis of Variance for T3
Source DF SS MS F P
subject 11 8967 815 2.55 0.030
day 2 12466 6233 19.50 0.000
Error 22 7033 320
Total 35 28467
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53. BBL = blood bilirubin levels
Analysis of Variance for BBL
Source DF SS MS F P
Group 2 4077 2039 3.31 0.090
Error 8 4931 616
Total 10 9008

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---
Control 4 63.50 28.25 (--------*---------)
Hypercar 4 50.00 22.69 (---------*--------)
Hyperosm 3 98.00 22.27 (----------*----------)

---+---------+---------+---------+---
Pooled StDev = 24.83 30 60 90 120

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0213

Critical value = 4.04

Intervals for (column level mean) - (row level mean)

Control Hypercar

Hypercar -36.7
63.7

Hyperosm -88.7 -102.2
19.7 6.2

55.
Analysis of Variance for breathing scores
Source DF SS MS F P
group 2 244.17 122.08 14.50 0.000
Error 38 319.88 8.42
Total 40 564.05

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ----+---------+---------+---------+--
1 13 13.231 1.739 (------*-----)
2 14 13.786 2.833 (-----*-----)
3 14 18.643 3.713 (------*-----)

----+---------+---------+---------+--
Pooled StDev = 2.901 12.5 15.0 17.5 20.0

Tukey’s pairwise comparisons

Family error rate = 0.0500



Individual error rate = 0.0195
Critical value = 3.45

Intervals for (column level mean) - (row level mean)

1 2

2 -3.281
2.171

3 -8.138 -7.532
-2.686 -2.182

57.

Analysis of Variance for PSWQ
Source DF SS MS F P
Group 3 16654.9 5551.6 74.11 0.000
Error 115 8614.6 74.9
Total 118 25269.5

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+---------+---------+---------+-
1 15 62.933 8.556 (---*---)
2 30 38.333 7.494 (--*--)
3 19 64.158 10.259 (---*---)
4 55 66.536 8.678 (--*-)

-----+---------+---------+---------+-
Pooled StDev = 8.655 40 50 60 70

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0103

Critical value = 3.69

Intervals for (column level mean) - (row level mean)

1 2 3

2 17.459
31.741

3 -9.025 -32.446
6.575 -19.203

4 -10.181 -33.329 -8.388
2.975 -23.077 3.631

PSWQ = PSWQ score
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59.
Analysis of Variance for Age
Source DF SS MS F P
Group 2 16323.2 8161.6 139.79 0.000
Error 189 11034.7 58.4
Total 191 27357.9

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+-----
Daughter 50 49.420 7.508 (--*-)
Husband 65 71.985 7.516 (-*-)
Wife 77 68.649 7.828 (-*-)

-+---------+---------+---------+-----
Pooled StDev = 7.641 48.0 56.0 64.0 72.0

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0192

Critical value = 3.34

Intervals for (column level mean) - (row level mean)

Daughter Husband

Husband -25.959
-19.170

Wife -22.507 0.296
-15.952 6.375

61.

Analysis of Variance for SAP
Source DF SS MS F P
Grade 2 36181 18091 5.55 0.009
Error 29 94560 3261
Total 31 130742

SAP = serum alkaline phosphatase level



Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+-----
I 9 118.00 61.85 (---------*--------)
II 8 143.63 55.90 (---------*---------)
III 15 194.80 54.82 (-------*------)

-+---------+---------+---------+-----
Pooled StDev = 57.10 80 120 160 200

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0197

Critical value = 3.49

Intervals for (column level mean) - (row level mean)

I II

II -94.1
42.8

III -136.2 -112.9
-17.4 10.5

63.
Analysis of Variance for Hematocrit
Source DF SS MS F P
Group 2 817.5 408.8 20.26 0.000
Error 27 544.8 20.2
Total 29 1362.3

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev --+---------+---------+---------+----
Sham 10 38.200 2.573 (----*----)
Treated 15 40.200 5.348 (---*---)
Untreated 5 53.200 4.604 (------*------)

--+---------+---------+---------+----
Pooled StDev = 4.492 36.0 42.0 48.0 54.0

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0196
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Critical value = 3.51

Intervals for (column level mean) - (row level mean)

Sham Treated

Treated -6.551
2.551

Untreated -21.106 -18.757
-8.894 -7.243

65.

Analysis of Variance for Response
Source DF SS MS F P
Group 3 4.148 1.383 1.39 0.282
Error 16 15.898 0.994
Total 19 20.046

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ---------+---------+---------+-------
Both 5 11.520 0.653 (--------*---------)
rhGH 5 11.250 0.570 (--------*---------)
rhIGF-I 6 10.800 1.418 (---------*--------)
Saline 4 10.250 0.971 (---------*----------)

---------+---------+---------+-------
Pooled StDev = 0.997 10.0 11.0 12.0

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0113

Critical value = 4.05

Intervals for (column level mean) - (row level mean)

Both rhGH rhIGF-I

rhGH -1.5354
2.0754

rhIGF-I -1.0086 -1.2786
2.4486 2.1786

Saline -0.6450 -0.9150 -1.2927
3.1850 2.9150 2.3927

Both = rhIGF-I + rhGH



Chapter 9

9.3.1. (a) Direct, (b) Direct, (c) Inverse
9.3.3.
9.3.5.
9.3.7.
9.4.1. Predictor Coef SE Coef T P

Constant 559.90 29.13 19.22 0.000
Meth Dos 0.13989 0.06033 2.32 0.035

S = 68.28 R-Sq = 26.4% R-Sq(adj) = 21.5%

Analysis of Variance

Source DF SS MS F P
Regression 1 25063 25063 5.38 0.035
Residual Error 15 69923 4662
Total 16 94986

Confidence interval for .011, .268

9.4.3. Predictor Coef SE Coef T P
Constant 68.64 16.68 4.12 0.006
Cmax w/ -19.529 4.375 -4.46 0.004

S = 18.87 R-Sq = 76.9% R-Sq(adj) = 73.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 7098.4 7098.4 19.93 0.004
Residual Error 6 2137.4 356.2
Total 7 9235.9

Confidence interval for -30.23, -8.82

9.4.5. Predictor Coef SE Coef T P
Constant 0.19290 0.04849 3.98 0.001
DTPA GFR 0.006279 0.001059 5.93 0.000

S = 0.09159 R-Sq = 58.5% R-Sq(adj) = 56.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.29509 0.29509 35.18 0.000
Residual Error 25 0.20972 0.00839
Total 26 0.50481

Confidence interval for 0.0041, 0.0085b1
N

b1
N

b1
N

yN = 0.193 + 0.00628x
yN = 68.6 - 19.5x
yN = 560 + 0.140x
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9.5.1. (a) 580.6, 651.2 (b) 466.1, 765.6
9.5.3. (a) 5.22 (b) 36.92
9.5.5. (a) 0.3727, 0.4526 (b) 0.2199, 0.6055
9.7.1.
9.7.3.
9.7.5.

Review Exercises

17.
19. y-hat = 12.6 + 1.80x

Predictor Coef SE Coef T P
Constant 12.641 2.133 5.93 0.000
no. of p 1.8045 0.5585 3.23 0.005

S = 7.081 R-Sq = 38.0% R-Sq(adj) = 34.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 523.41 523.41 10.44 0.005
Residual Error 17 852.38 50.14
Total 18 1375.79

21. The regression equation is
B = 1.28 + 0.851 A

Predictor Coef SE Coef T P
Constant 1.2763 0.3935 3.24 0.006
A 0.8513 0.1601 5.32 0.000

S = 0.2409 R-Sq = 68.5% R-Sq(adj) = 66.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 1.6418 1.6418 28.29 0.000
Residual Error 13 0.7545 0.0580
Total 14 2.3963

23. 95% C.I. for
.79; 110.3022; 87.7773, 132.8271r: - .03,

yN = 61.8819 + .509687x ; V.R. = 4.285; .10 7 p 7 .05; t = 2.07;

p 6 .001t = 17.163,r 2 = .772,BOARD = -191 + 4.68 AVG,

- .770 6 r 6 - .211p = .003,t = -3.31,r = - .531,
-1 6 r 6 - .152p = .027,t = -3.11,r = - .812,

.030 6 r 6 .775p = .038,t = 2.23,r = .466,

-62.11,-30.42,



25. 95% C.I. for 
.91, 1; 40.63, 42.27.

29. The regression equation is
A = 570 + 0.429 B

Predictor Coef SE Coef T P
Constant 569.8 141.2 4.03 0.000
B 0.42927 0.04353 9.86 0.000

S = 941.6 R-Sq = 54.0% R-Sq(adj) = 53.4%

Pearson correlation of B and A = 0.735
P-Value = 0.000

31. The regression equation is
y = 45.0 + 0.867 x

Predictor Coef SE Coef T P
Constant 44.99 33.54 1.34 0.193
x 0.86738 0.07644 11.35 0.000

S = 102.9 R-Sq = 84.8% R-Sq(adj) = 84.2%

Pearson correlation of x and y = 0.921
P-Value = 0.000

33. The regression equation is 
S = -1.26 + 2.10 DBS

Predictor Coef SE Coef T P
Constant -1.263 3.019 -0.42 0.680
DBS 2.0970 0.1435 14.62 0.000

S = 8.316 R-Sq = 90.3% R-Sq(adj) = 89.9%

Pearson correlation of S and DBS = 0.950
P-Value = 0.000

35. The regression equation is 
log y = 2.06 + 0.0559 PCu

Predictor Coef SE Coef T P
Constant 2.0603 0.3007 6.85 0.000
PCu 0.05593 0.01631 3.43 0.001

r:
yN = 37.4564 + .0798x ; V.R. = 77.13; p 6 .005; t = 8.78;

A-136 ANSWERS TO ODD-NUMBERED EXERCISES



ANSWERS TO ODD-NUMBERED EXERCISES A-137

S = 0.3873 R-Sq = 16.4% R-Sq(adj) = 15.0%

Pearson correlation of PCu and log y = 0.405
P-Value = 0.001

37. The regression equation is
C6 = -0.141 - 1.33 C5

Predictor Coef SE Coef T P
Constant -0.1413 0.2267 -0.62 0.540
C5 -1.3286 0.1242 -10.69 0.000

S = 1.086 R-Sq = 84.5% R-Sq(adj) = 83.7%

Pearson correlation of IGELogE and SkinLogE = -0.919
P-Value = 0.000

39. Normotensive 

The regression equation is
C6 = 4.2 + 0.106 C7

Predictor Coef SE Coef T P
Constant 4.19 17.30 0.24 0.811
C7 0.1060 0.1590 0.67 0.512

S = 5.251 R-Sq = 2.0% R-Sq(adj) = 0.0%

Pearson correlation of C6 and C7 = 0.141
P-Value = 0.512

The regression equation is
C8 = 0.2 + 0.268 C9

Predictor Coef SE Coef T P
Constant 0.25 18.53 0.01 0.989
C9 0.2682 0.2932 0.91 0.370

S = 5.736 R-Sq = 3.7% R-Sq(adj) = 0.0%

Pearson correlation of C8 and C9 = 0.191
P-Value = 0.370

Preeclamptic

The regression equation is
C6 = 57.9 - 0.363 C7

C9 = 1C2 + C32>2 C8 = C2 - C3,C7 = 1C4 + C52>2,C6 = C4 - C5,



Predictor Coef SE Coef T P
Constant 57.89 17.10 3.39 0.003
C7 -0.3625 0.1273 -2.85 0.009

S = 7.109 R-Sq = 26.9% R-Sq(adj) = 23.6%

Pearson correlation of C6 and C7 = -0.519
P-Value = 0.009

The regression equation is
C8 = 54.4 - 0.540 C9

Predictor Coef SE Coef T P
Constant 54.377 9.771 5.56 0.000
C9 -0.5403 0.1154 -4.68 0.000

S = 5.787 R-Sq = 49.9% R-Sq(adj) = 47.6%

Pearson correlation of C8 and C9 = -0.707
P-Value = 0.000

41. The regression equation is
LBMD = 0.131 + 0.511 ABMD

Predictor Coef SE Coef T P
Constant 0.13097 0.05413 2.42 0.018
ABMD 0.51056 0.05935 8.60 0.000

S = 0.09188 R-Sq = 53.6% R-Sq(adj) = 52.9%

Pearson correlation of ABMD and LBMD = 0.732
P-Value = 0.000

43. WL, VO2

The regression equation is
WL = 0.01 + 0.262 VO2

Predictor Coef SE Coef T P
Constant 0.013 1.308 0.01 0.992
VO2 0.26237 0.07233 3.63 0.003

S = 1.835 R-Sq = 52.3% R-Sq(adj) = 48.3%

Pearson correlation of WL and VO2 = 0.723
P-Value = 0.003

WL, AT
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The regression equation is
WL = 0.75 + 0.367 AT

Predictor Coef SE Coef T P
Constant 0.752 1.761 0.43 0.677
AT 0.3668 0.1660 2.21 0.047

S = 2.241 R-Sq = 28.9% R-Sq(adj) = 23.0%

Pearson correlation of WL and AT = 0.538
P-Value = 0.047

WL, ET

The regression equation is
WL = 0.74 + 0.00637 ET

Predictor Coef SE Coef T P
Constant 0.739 1.173 0.63 0.541
ET 0.006375 0.001840 3.46 0.005

S = 1.879 R-Sq = 50.0% R-Sq(adj) = 45.8%

Pearson correlation of WL and ET = 0.707
P-Value = 0.005

45. The regression equation is
CL/F = 19.4 + 0.893 CLer

Predictor Coef SE Coef T P
Constant 19.393 4.496 4.31 0.000
CLer 0.89250 0.05671 15.74 0.000

S = 28.20 R-Sq = 59.3% R-Sq(adj) = 59.1%

Pearson correlation of CL/F and CLer = 0.770
P-Value = 0.000

Chapter 10

10.3.1.
10.3.3.
10.3.5. yN = -422.00 + 11.17x 1 - .63x 2

yN = 13.45 + 4.02x 1 + 2.81x 2

yN = -31.4 + 0.473x 1 + 1.07x 2



10.4.1.
Analysis of Variance

Sum of Mean
Source DF Squares Square F value Pr > F
Model 2 1576.99011 788.49506 185.13 <.0001
Error 32 136.29516 4.25922
Corrected Total 34 1713.28527

Root MSE 2.06379 R-Square 0.9204
Dependent Mean 51.25086 Adj R-Sq 0.9155
Coeff Var 4.02684

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 1 -31.42480 6.14747 -5.11 <.0001 -43.94678 -18.90282
X1 1 0.47317 0.06117 7.74 <.0001 0.34858 0.59776
X2 1 1.07117 0.06280 17.06 <.0001 0.94326 1.19909

(a) .9204 (c) (d) 95%
C.I. for slope for 95% C.I. for slope for 

10.4.3.
Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 452.56375 226.28188 7.05 0.0210
Error 7 224.70025 32.10004
Corrected Total 9 677.26400

Root MSE 5.66569 R-Square 0.6682
Dependent Mean 57.16000 Adj R-Sq 0.5734
Coeff Var 9.91198

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits
Intercept 1 13.44923 13.23156 1.02 0.3433 -17.83843 44.73689
X1 1 4.01680 1.07136 3.75 0.0072 1.48344 6.55016
X2 1 2.81175 1.37859 2.04 0.0808 -0.44809 6.07160

(a) .6682 (c) (d) 95% C.I.
for slope for 11.48344 - 6.550162X1:

X1 p -value = .0072, X2 p -value = .0808

10.94326 - 1.199092 X2:10.34858 - 0.597762,X1:
X1 p -value 6 .0001, X2 p -value 6 .0001
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10.4.5.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 17018 8508.89242 4.89 0.0175
Error 22 38282 1740.10069
Corrected Total 24 55300

Root MSE 41.71451 R-Square 0.3077
Dependent Mean 537.00000 Adj R-Sq 0.2448
Coeff Var 7.76807

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits
Intercept 1 -421.99671 339.76199 -1.24 0.2273 -1126.61995 282.62653
X1 1 11.16613 3.65523 3.05 0.0058 3.58564 18.74663
X2 1 -0.63032 0.93826 -0.67 0.5087 -2.57615 1.31552

(a) .3077 (c) (d) 95% C.I. for
slope for 

10.5.1. C.I.: 50.289, 51.747. P.I.: 46.751, 55.284
10.5.3. C.I.: 44.22, 56.59; P.I.: 35.64, 65.17
10.5.5. C.I.: 514.31, 550.75; P.I.: 444.12, 620.94
10.6.1. (a) Pairwise correlations:

DNA-Bloo Co-cult DNA-Rect
Co-cult 0.360
DNA-Rect 0.532 0.303
RNA-Rect 0.202 0.674  0.430

(b) (c)
(d) (e)

(f)
10.6.3. (a)

(b), (c)

Review Exercises

7.
9. (a) (b) R2 = .92yN = 11.419 + 1.2598x1 + 3.1067x2

R = .3496 F = .83 1p 7 .102
r12.y = - .1789, t = - .630, p 7 .20
ry1.2 = .9268, t = 8.549, p 6 .01; ry 2.1 = .3785, t = 1.417, .20 7 p 7 .10;

R = .9517, F = 57.638, p 6 .005
r23.y1 = .3969

r13.y2 = .6615r 12.y3 = - .1660.5232, ry3.12 = - .2538
ry1.23 = .3472, ry2.13 =R = .370, F = 7.06, p = .001

13.58564 - 18.746632X1:
X1 p -value = .0058, X2 p -value = .5807



(c)
Source SS d.f. MS V.R. p

Regression 1827.004659 2 913.50 69.048
Residual 158.728641 12 13.23

1985.7333 14

(d)
11. (a)

(b)
Source SS d.f. MS V.R. p

Regression 30873.47 4 7718.367 13.37
Residual 5774.93 10 577.493

36648.40 14

(c)
(d)

13. (a) correlation
(b) log plasma adiponectin levels
(c) age and glomerular filtration rate
(d) both correlations were not significant
(h) subjects with end-stage renal disease

15. (a) correlation
(b) static inspiratory mouth pressure
(c) forced expiratory volume, peak expiratory flow, and maximal inspiratroy flow
(d) both correlations were not significant
(h) boys and girls ages 7–14

17.

R 2
y .1234 = .842423; Ry.1234 = .91784

t1 = 4.40; t2 = - .78; t3 = 3.53; t4 = 2.59

6 .005

yN = -126.505 + .176x1 - 1.563x2 + 1.575x3 + 1.6292x4

yN = 11.419 + 1.25981102 + 3.1067152 = 39.55

6 .005

A-142 ANSWERS TO ODD-NUMBERED EXERCISES

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

X1 1
X2 .737(**) 1
X3 �.109 .244 1
X4 .760(**) .698(**) .316 1
X5 .556(**) .608(**) .273 .760(**) 1
X6 .040 �.213 �.136 �.101 �.647(**) 1
X7 �.291 �.289 �.093 �.293 �.412(*) .231 1
X8 .570(**) .659(**) .227 .568(**) .763(**) �.481(*) �.555(**) 1
X9 .555(**) .566(**) .146 .454(*) .717(**) �.503(**) �.650(**) .922(**) 1
X10 .345 .508(**) .419(*) .455(*) .640(**) �.377 �.480(*) .905(**) .788(**) 1
X11 �.467(*) �.400(*) �.224 �.621(**) �.702(**) .388(*) .732(**) �.652(**) �.646(**) �.582(**) 1
X12 �.250 �.260 �.178 �.228 �.448(*) .390(*) .778(**) �.641(**) �.717(**) �.667(**) .796(**) 1
X13 �.271 �.305 �.380 �.346 �.518(**) .348 .524(**) �.645(**) �.707(**) �.729(**) .744(**) .864(**) 1

** correlation is significant at the 0.01 level (2-tailed).
* correlation is significant at the 0.05 level (2-tailed).
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19.

Chapter 11

11.2.1. mobilizer: 0 G-CSF, 1-Etoposide

The regression equation is
conc = 12.9 - 0.0757 age - 5.48 mobilizer

Predictor Coef SE Coef T P
Constant 12.933 2.787 4.64 0.000
age -0.07566 0.04388 -1.72 0.092
mobilize -5.480 1.429 -3.83 0.000

S = 3.965 R-Sq = 27.1% R-Sq(adj) = 23.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 240.02 120.01 7.63 0.002
Residual Error 41 644.60 15.72
Total 43 884.62

11.2.3.
The regression equation is
QTc = 23.0 + 39.4 sex + 0.825 dose

Predictor Coef SE Coef T P
Constant 22.98 46.92 0.49 0.632
sex 39.40 42.14 0.93 0.366
dose 0.82456 0.07556 10.91 0.000

S = 84.10 R-Sq = 89.6% R-Sq(adj) = 88.1%

v1 v2 v3 v4 v5 v6 v7 v8

v1 1
v2 .123 1
v3 .115 .963(**) 1
v4 .417(**) �.063 �.041 1
v5 .005 �.102 �.103 �.059 1
v6 .001 .270(**) .295(**) �.036 .137 1
v7 �.113 �.074 �.076 .052 .134 .061 1
v8 .077 �.002 �.023 .146 .165 �.202 �.032 1

** Correlation is significant at the 0.01 level (2-tailed).



Analysis of Variance

Source DF SS MS F P
Regression 2 850164 425082 60.10 0.000
Residual Error 14 99018 7073
Total 16 949182

11.3.1.
Step 1 2 3
Constant 51.93 116.07 115.54

MEM 0.66 0.60 0.57
T-Value 5.75 5.87 5.53
P-Value 0.000 0.000 0.000

SOCIALSU -0.476 -0.492
T-Value -5.28 -5.51
P-Value 0.000 0.000

CGDUR 0.122
T-Value 1.88
P-Value 0.064

S 17.4 15.4 15.2
R-Sq 25.20 41.92 43.97
R-Sq(adj) 24.44 40.72 42.22

11.3.3.
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is REACTIVE on 6 predictors, with N = 68

Step 1 2 3

Constant 3.374 5.476 5.418

AGEABUSE -0.38 -0.45 -0.42
T-Value -2.49 -3.00 -2.91
P-Value 0.015 0.004 0.005

VERBALIQ -0.0219 -0.0228
T-Value -2.75 -2.93
P-Value 0.008 0.005

STIM 0.61
T-Value 2.05
P-Value 0.044
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S 1.06 1.01 0.990
R-Sq 8.57 18.10 23.15
R-Sq(adj) 7.19 15.58 19.55
C-p 10.4 4.6 2.5

11.4.1.
Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 2.1192 0.1740 148.3439 <.0001
sex 1 0.0764 0.2159 0.1252 0.7234

Odds Ratio Estimates

Effect Point Estimate 95% Wald Confidence Limits
sex 1.079 0.707 1.648

Review Exercises

15.

Coefficient Standard Error t

1.867 .3182 5.87
6.3772 .3972 16.06
1.9251 .3387 5.68

Source SS d.f. MS V.R.

Regression 284.6529 2 142.3265 202.36954
Residual 17.5813 25 .7033

302.2342 27

17.

Coefficient Standard Deviation t pa

�1.1361 .4904 �2.32 .05 p .02
.07648 .01523 5.02 .01
.7433 .6388 1.16 .20

�.8239 .6298 �1.31 .20 p .10
�.02772 .02039 �1.36 .20 p .10

.03204 .01974 1.62 .20 p .10

Obtained by using 35 d.f.

R2 = .834

a Approximate.

77
77
77

7
6

77

yN = -1.1361 + .07648x1 + .7433x2 - .8239x3 - .02772x1x2 + .03204x1x3

R2 = .942

yN = 1.87 + 6.3772x1 + 1.9251x2



Source SS d.f. MS V.R.

Regression 3.03754 5 .60751 34.04325

Residual .01784

For A:
For B :
For C :

23.
Response = V, Dummy1 = 1 if infant, 0 otherwise, Dummy2 = 1 if Child, 0 otherwise

The regression equation is
V = 11.7 + 0.137 W - 11.4 DUMMY1 -11.7 DUMMY2 + 0.226 INTER1 + 0.223
INTER2

Predictor Coef SE Coef T P
Constant 11.750 3.822 3.07 0.004
W 0.13738 0.05107 2.69 0.010
DUMMY1 -11.421 4.336 -2.63 0.012
DUMMY2 -11.731 3.966 -2.96 0.005
INTER1 0.2264 0.2208 1.03 0.311
INTER2 0.22332 0.06714 3.33 0.002

S = 1.73234 R=sq = 94.9% R=sq(adj) = 94.3%

Analysis of Variance

Source DF SS MS F P
Regression 5 2304.47 460.89 153.58 0.000
Residual Error 41 123.04 3.00
Total 46 2427.51

Source DF Seq SS
W 1 2265.07
DUMMY1 1 5.59
DUMMY2 1 0.00
INTER1 1 0.60
INTER2 1 33.20

yN = -1.1361 + .07648x1

yN = 1-1.1361 + .82392 + 1.07648 + .032042x1 = -1.96 + .10852x1

yN = 1-1.1361 + .74332 + 1.07648 - .027722x1 = - .3928 + .04875x1

x3 = e1 if B
0 if otherwise

x2 = e1 if A
0 if otherwise

34

39

  .60646

3.64400
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Unusual Observations

Obs W V Fit SE Fit Residual St Resid
17 10.8 8.366 4.257 0.496 4.109 2.48R
36 47.0 15.400 16.971 1.145 -1.571 -1.21X
41 96.0 20.000 24.938 1.265 -4.938 -4.17RX
46 87.0 30.900 23.702 0.881 7.198 4.83R

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Chapter 12

12.3.1.
12.3.3.
12.3.5.
12.4.1.
12.4.3.
12.4.5.
12.5.1.
12.5.3.
12.5.5.
12.6.1. Since (for Do not

reject
12.6.3. Since (for 

Reject
12.7.1. 95% C.I. 9.7, 18.8
12.7.3.
12.7.5.
12.8.1.
Number of Cases: 53 Censored:34 (64.15%) Events: 19

Survival Time  Standard Error  95% Confidence Interval

Mean:     12.57 1.10 ( 10.40,   14.73 )
(Limited to 19.00 )

Median: 16.00 1.80 ( 12.47,   19.53 )

Percentiles
25.00 50.00 75.00

Value 18.00 16.00 4.00
Standard Error 1.80 3.76

12.8.5. Support group:

Number of Cases: 22 Censored: 0 ( .00%) Events: 22

ORMH = 3.733, X2
MH = 25.095, p 6 .005

X 2 = 12.898, p 6 .005, OR = 1.967
RR = 13.51,

H0.
p = 21.0022 = .004.a = 162,B = 7,A = 9,b = 1

H0.
p 7 21.0352 = .070.a = 82,B = 10,A = 10,b = 7 7 3

X2 = 82.373, d.f. = 2, p 6 .005
X2 = .297, d.f. = 1, p 7 .10
X2 = 3.622, d.f. = 3, p 7 .10
X2 = 42.579, p 6 .005
X2 = 816.410, p 6 .005
X2 = .078, p 7 .10
X2 = 2.21, p 7 .10
X2 = 3.417, p 7 .10
X2 = 2.072, p 7 .05



Survival Time  Standard Error 95% Confidence Interval

Mean: 45.09 3.98 (   37.29,   52.89 )
Median: 60.00 .00 ( . , . )

Percentiles

25.00 50.00 75.00
Value 60.00 60.00 26.00
Standard Error . . 6.96

Nonsupport group:

Number of Cases: 28 Censored: 0  ( .00%) Events: 28

Survival Time Standard Error 95% Confidence Interval

Mean: 16.04 1.86 (   12.39,   19.68 )
Median: 15.00 5.29 ( 4.63,   25.37 )

Percentiles

25.00 50.00 75.00

Value 22.00 15.00 7.00
Standard Error 3.44 5.29 .92

Log Rank Statistic and (Significance): 29.22 ( .0000)

Breslow Statistic and (Significance): 23.42 ( .0000)

Tarone-Ware Statistic and (Significance): 26.28 ( .0000)

Review Exercises

15. Fail to reject.
17.
19.
21.
23.
25. Independence
27. Homogeneity
35. Overall Satisfaction

d.f. � 2,
2 cells with expected counts less than 5.0
Pain

d.f. � 2, p = 0.801
X 2 = 0.444

p = 0.208
X 2 = 3.143

X2 = 7.2577 .05 7 p 7 .025
X2 = 67.8015 p 6 .005
X2 = 5.1675, p 7 .10
X2 = 2.40516, p 7 .10
X2 = 7.124, d.f. = 3, p 7 .05,
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2 cells with expected counts less than 5.0
Nausea and Vomiting

d.f. � 2,
37. 95% C.I.: .92, 4.61
41.

d.f. � 1,
43. (one-sided test)
45.

d.f. � 1,
47.

d.f. � 1,
49. 95% C.I.: 1.52, 9.48OR
51.

d.f. � 1,

53. No. of Resected PMs � 1

Number of Cases: 46 Censored: 0 ( .00%) Events: 46

Survival Time  Standard Error 95% Confidence Interval

Mean: 45 6 (    34,     57 )
Median: 33 7 (    20,     46 )

Percentiles

25.00 50.00 75.00

Value 55.00 33.00 18.00
Standard Error 12.15 6.78 1.79

No. of Resected PMs 1

Number of Cases: 31 Censored: 0 ( .00%) Events: 31

Survival Time Standard Error 95% Confidence Interval

Mean: 31 5 (     20,      41 )
Median: 23 4 (     14,      32 )

Percentiles

25.00 50.00 75.00

Value 41.00 23.00 10.00
Standard Error 6.60 4.45 3.65

Log Rank Statistic and (Significance): 3.75 ( .0527)

Breslow Statistic and (Significance): 4.11 ( .0427)

Tarone–Ware Statistic and (Significance): 4.07 ( .0437)

7

p = 0.001
X2 = 11.589
OR = 3.79;

p = 0.027
X 2 = 4.875

p = 0.003
X 2 = 8.749
Test statistic = 2, p = .019

p = 0.000
X2 = 13.530
OR = 2.06;

p = 0.785
X 2 = 0.483



Chapter 13

13.3.1.
13.3.3. Since reject 
13.4.1.
13.4.3.
13.5.1.
13.6.1. Fail to reject 
13.6.3. Fail to reject 
13.7.1.
13.7.3.
13.8.1.
13.8.3.
13.8.5. (adjusted for ties), 
13.9.1.
13.9.3.

13.10.1.
13.10.3.
13.10.5.
13.11.1.

Review Exercises

7.
9.

11.
13.
15.
17.

(adjusted for ties)
19.
21.
23. USO:

BSO:
25.
27.

29.

Chapter 14

14.2.1. (a) 5.8 (b) White: 10.0, Black: 3.7, (c) 9.43 (d) 5.5
(e) 9.43 (f) MN 22.2, MCD 34.5

rs = .733, p = .001
LDH: T = 37, p = .7911, Fail to reject H0

HK: T = 61.5, p = .0703, Fail to reject H0

PFK: T = 38, p = .8598, Fail to reject H0

T = 89, p = .0046, Reject H0

x2
r = 4.77, p = .093
x2

r = 3.94, p = .140
T = 62.5, p = .0072, Reject H0

rs = - .036, p = .802
H = 9.30, d.f. = 3, p = 0.026
H = 9.02, d.f. = 3, p = 0.029
T = 29.5, p = 0.0263, Reject H0

rs = .09, p = .4532
D = .1587, p 7 .20
x2

r = 16.2, p 6 .005
T = 0, n = 7, p = .0078

1b0
N 22,M = -176.63
1b0

N 21,M = -176.685
b1
N = 1.429
rs = - .43, n = 30, .01 6 p 6 .02
rs = .018, n = 20, p 7 .05
rs = -0.07, p 7 .20
x2

r = 29.38, p 6 .005
x2

r = 8.67, p = .01
p 6 .005H = 19.61

H = 18.13, p 6 .0001, d.f. = 2.
H = 11.38, p = .003, d.f. = 3.
D = .1319, p 7 .20
D = .3241, p 6 .01

H0.S = 1772.5, p = .7566,
H0.T = 712.5, p = .2380,

X2 = 16.13, p 6 .005.
T = 11.5, .1054 6 p 6 .1308

.1613 6 p 6 .174T+ = 48.5.
p = .0112H0..0112 6 .05,P1x … 2 ƒ 13, .52 = .0112.

p = .6072P = .3036,
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14.2.3

Standard Number of
Population Expected

Age-Specific Based on U.S. Deaths in
Age Death Rates Population Standard
(Years) Populationa Deathsb U.S. Populationc (per 100,000) 2000 Population

0–4 539,509 1,178 19,175,798 218.3 68139 149
5–14 1,113,920 224 41,077,577 20.1 145964 29

15–24 1,117,439 954 39,183,891 85.4 139235 119
25–34 1,213,415 1,384 39,891,724 114.1 141751 162
35–44 1,287,120 2,823 45,148,527 219.3 160430 352
45–54 1,085,150 5,271 37,677,952 485.7 133884 650
55–64 723,712 8,035 24,274,684 1110.2 86257 958
65 and
Over 969,048 51,863 34,991,753 5352.0 124339 6655

Total 8,049,313 71,732 281,421,906 891.2 1000000 9073

Age-adjusted death rate � 9.1

14.3.1. (a) (10–14): 1.3, (15–19): 59.9, (20–24): 126.7, (25–29): 112.6, (30–34): 83.6,
(35–39): 36.5, (40–over): 2.6; (b) 2142.1 (c) (10–14): 
6.3, (15–19): 305.9, (20–24): 939.2, (25–29): 1502.3, (30–34): 1920.2,
(35–39): 2102.9, (40–over): 2142.1 (d) 46.7

14.3.3. (a) (10–14): 1.2, (15–19): 58.5, (20–24): 120.2, (24–29): 113.7, (30–34): 84.2,
(35–39): 33.8, (40–44): 6.0, (45 and over):.5; (b) 2089.6
(c) (10–14): 6.1, (15–19): 298.5, (20–24): 899.6, (25–29): 1468.1, (30–34):
1889.3, (35–39): 2058.2, (40–44): 2088.1, (45 and over): 2089.6
(d) 45.6

14.4.1. (a) immaturity ratio: 1997—7.3, 2001—8.1 (b) prevalence ratio:
Nevada—22.2, United States—20.5 (c) incidence rate—14.5 per 100,000

Review Exercises

9. 8.9
11. Infant mortality: Total—5.7; white—5.3; nonwhite—6.5;

Cause of death: heart disease total—36.8; white 37.7; nonwhite 32.3
Cancer total—23.7; white—23.8; nonwhite—23.1
AIDS total—1.5; white .8; nonwhite 4.9
Immaturity ratio: total—7.0; white—6.7; nonwhite—7.5
Incident rate C-section: total—22.6; white 25.0; nonwhite—18.3

13. 15.9, 51.6
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I-1

A
Accuracy, 14
Addition rule, 73–74
Analysis of variance, 305–308

assumptions, 307
completely randomized design, 308–334
one-way, 308–334
procedure, 307–308
randomized complete block design, 334–346
repeated measures design, 346–353
two-way, 334–346

Arithmetic mean, 38
Average hazard rate, 655

B
Backward selection, 560
Bayes’s theorem, 68, 81–83 
Bernoulli process, 100–101
�1, confidence interval, 434

hypothesis test, 431–434
Binomial distribution, 100–109

parameters, 106–108
table, A-3–A-31
Use of table, 104–106

Biostatistics, 3
Birth rate, crude, 773
Bivariate normal distribution, 441
Bonferroni’s method, 324, 327
Box-and-whisker plot, 50–52

C
Case-fatality ratio, 776
Cause-of-death ratio, 770
Censored data, 649
Central limit theorem, 140–141
Central tendency, measures, 38–43
Chi-square distribution, 195–197, 593–629

mathematical properties, 594–595
table, A-41
use in goodness-of-fit tests, 597–612

small expected frequencies, 597
use in tests of homogeneity, 623–629

small expected frequencies, 626
use in tests of independence, 612–623

small expected frequencies, 618
2 	 2 table, 618–620

Class interval, 22
Coefficient of determination, 423–428
Coefficient of multiple determination, 497–499
Coefficient of variation, 45–46
Combination, 102
Completely randomized design, 308–334

ANOVA table, 317
assumptions, 311

Compound symmetry, 348
Computers:

and analysis of variance, 308, 321–323, 325–327,
341–343, 349–351, 362, 364

and biostatistical analysis, 15–16
and chi-square, 608, 616-617, 625
and descriptive statistics, 21, 25–27, 29–30, 46–47
and hypothesis testing, 230–231, 244–245, 255
and interval estimation, 170–171
and logistic regression, 573
and multiple correlation analysis, 508–509, 511–515
and multiple regression analysis, 490–492, 508
and random numbers, 16
and simple linear regression and correlation analysis,

416–418, 437, 446–447
and stepwise regression, 556–559

Confidence coefficient, 168
Confidence interval:

for �1, 434
multiple regression, 502

for difference between two 
population means, 178–185

nonnormal populations, 179–180
for difference between two 

population proportions, 187–189
for mean of Y, given X, 437–438

INDEX

Numbers preceded by A refer to Appendix pages.



Confidence interval (Continued )
for �y|1…k, 504–505
for population mean, 166–178

nonnormal populations, 169–171
for population proportion, 185–187
practical interpretation, 168
for predicted Y, 437–438, 504–505
probabilistic interpretation, 169
for ratio of two variances, 199–203
for �, 450–451
for variance, 194–198

Confusion matrix, 220
Contingency table, 612
Correction for continuity, 153
Correlation coefficient:

multiple, 506–509
simple, 442–451

Correlation model:
multiple, 508–509
simple, 441–442

Cox regression model, 659–660
Critical region, 225
Critical value, 225–226
Cumulative frequencies, 25
Cumulative relative frequencies, 25

D
Data, 2

grouped, 22–37
raw, 20
sources, 3

Death rate:
crude, 765
fetal, 769
specific, 765
standardized, 766

Death rates and ratios, 765–772
Death ratio, fetal, 778
Decision rule, 219
Degrees of freedom, 41–42
Density function, 116
Descriptive statistics, 2, 19–64
Dispersion, measures, 43–49
Distribution-free procedures, 684
Dummy variable, 540–555

E
Epidemiology, 764
Estimation, 102–214

in simple linear regression analysis, 434, 
437–438

Estimator, 164
robust, 171

Events:
complementary, 75
independent, 74–75
mutually exclusive, 69

EXCEL:
and binomial distribution, 107

Exclusive or, 73
Experiments, 10

designing, 14–15
Exploratory data analysis, 52
Extrapolation, 438, 455–456

F
Factorial, 102
Factorial experiment, 353–368

ANOVA table, 359
assumptions, 357

False negative, 79
False positive, 79
Family-wise error rates, 502
F distribution, 199–200

table of, A-42–A-51
Fecundity, 772
Fertility, 772

measures, 772–776
Fertility rate:

age-specific, 774
cumulative, 774
general, 773
standardized, 774
total, 774

Finite population correction, 142
Fisher exact test, 629–634

table for, A-55–A-85
Fisher’s z, 449–451

table, A-54
Fixed effects model, 311
F-max test, 199
Forward selection, 559
Frequency distribution, 24–27
Frequency polygon, 27–28
Friedman test, 725–731

table for, A-102–A-103
F test, 316–317

G
Goodness-of-fit tests, 597–612, 

711–717
Grouped data, 22–37
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H
Histogram, 25–27
Hypothesis, 216

alternative, 217
formulating, 14
null, 217 
research, 216
statistical, 217

Hypothesis tests, 215–304
by means of confidence interval, 226–227
difference between means, 237–250

nonnormal populations, 243–244
population variances known, 237–239
population variances unknown, 239–243

for �i, multiple regression, 499–503
for �1, simple linear regression, 428–433
one-sided, 227–228
purpose, 216, 221
single population mean, 223–237

nonnormal population, 231–233
population variance known, 223–229
population variance unknown, 229–231

single population proportion, 258–261
single population variance, 265–268
steps in, 217–221
two population proportions, 262–265
two population variances, 268–273
two-sided, 227

I
Immaturity ratio, 776
Incidence rate, 776
Inclusive or, 73
Inferential statistics, 2, 163
Interaction, 354–356, 546
Interpolation, 438
Interquartile range, 48
Interval estimate, 164
Interval scale, 6

J
Joint distribution, 441

K
Kaplan-Meier procedure, 650–659
Kolmogrov–Smirnov test, 711–717

and StatXact computer analysis, 715
table for, A-99

Kruskal–Wallis test, 717–725
table for, A-l00–A-101

Kurtosis, 48–49

L
Least squares, method, 416
Least-squares line, 416–418
Levene’s test, 202, 271
Location parameters, 47
Log rank test, 656–658
Logistic regression, 565–575
Loss to followup, 648

M
Mann–Whitney test, 703–710

table for, A-95–A-98
Mantel–Haenszel statistic, 641–646
Margin of error, 169
Mean, 38–40

properties, 40
Measurement, 6
Measurement scales, 5–6, 685
Median, 40

properties, 41
Median test, 699–703
MINITAB:

and binomial distribution, 107–108
and box-and-whisker plots, 51–52
and chi-square, 608–616, 625
and confidence intervals for a mean, 170–171
and descriptive measures, 46–47
and dummy variables, 542–543, 547, 551
and factorial experiment, 362–363
and frequency distributions, 25–26
and Friedman test, 729
and histograms, 26–27
and hypothesis testing, 230–231, 244–245, 255–260
and Kruskal–Wallis test, 721–722
and Mann–Whitney test, 708–709
and median test, 702
and multiple correlation, 503–509, 511–513
and multiple regression, 491–492, 505
and normal distribution, 127–1278
and one-way ANOVA, 321–327
and ordered array, 21
and Poisson distribution, 112–113
and repeated measures ANOVA, 349–350
and sign test, 693
and simple linear regression, 416–418, 437, 

446–447
and Spearman rank correlation, 737
and stem-and-leaf displays, 29–30
and stepwise regression, 556–559
and two-way ANOVA, 341–342
and Wilcoxon test, 698
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Mode, 41
Morbidity, 776

measures, 776–777
Mortality rate:

infant, 769
maternal, 768
neonatal, 769
perinatal, 770

Multicollinearity, 538
Multiple comparison, 322–327
Multiple correlation coefficient, 506–509
Multiple correlation model, 506–509
Multiplication rule, 71–72
Multivariate distribution, 506
Multivariate normal distribution, 506

N
NCSS:

and box and whisker plots, 51
Nominal scale, 6
Nonparametric statistics, 683–762

advantages, 684
disadvantages, 685

Nonrejection region, 219
Normal distribution, 117–129

applications, 123–129
characteristics, 117–118
standard, 119–123
table, A-38–A-39

O
Observation, 14
Observational study, 635–636
Odds, 639
Odds ratio, 638–641
Ogive, 97
Operating characteristic curve, 278
Ordered array, 20–21
Ordinal scale, 6
Outliers, 51–171

P
Paired comparisons, 250–255
Parameter, 38
Partial correlation, 508–515
Partial regression coefficients, 488
Percentile, 47
Point estimate, 164
Poisson distribution, 109–114

table of, A-32–A-37

Poisson process, 110
Population, 5

finite, 5
infinite, 5
sampled, 165
target, 165

Power, 273–280
Precision, 14, 169
Predictive value negative, 81
Predictive value positive, 80
Prospective study, 635
Prediction interval, multiple regression, 504–505

simple linear regression, 437–438
Prevalence rate, 776
Probability, 65–86

posterior, 68
prior, 68
classical, 66
conditional, 70–72
joint, 71
marginal, 70, 75
objective, 66–67
personalistic, 67
properties, 68–69
relative frequency, 67
subjective, 67–68

Probability distributions, 93–134
of continuous variables, 114–129
of discrete variables, 94–115

cumulative, 97–99
properties, 96

Product-limit method, see
Kaplan–Meier procedure

Proportional hazards model, see
Cox regression model

Proportional mortality ratio, 770
p values, 221

Q
Qualitative variables, 4, 539–555
Quartile, 47–48

R
Random digits, table, A-2

use, 9–10
Randomized complete block design, 334–346

ANOVA table, 338
assumptions, 337

Range, 43–44
Rank transformation, 685
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Rate, 764–765
Ratio, 765
Ratio scale, 6
Regression:

logistic, 565–575
multiple, 485–506

assumptions, 487
equation, 487–492
model, 486–488

nonparametric, 740–743
resistant line, 438–440
simple linear, 409–440

assumptions, 411–412
equation, 413–422
model, 410–412

stepwise, 556–565
Rejection region, 219
Relative frequencies, 24–25
Relative risk, 634–638
Reliability, 14
Reliability coefficient, 168
Repeated measures design, 346–353

assumptions, 347–348
definition, 347

Research study, 10
Residual, 425
Resistant line, 438–440
Retrospective study, 636
Risk factor, 635

S
Sample, 5

convenience, 166
nonrandom, 165–166
random, 165–166
simple random, 7–10
size for controlling Type II errors, 278–280
size for estimating means, 189–192
size for estimating proportions, 192–193
stratified proportional to size, 13
stratified random, 12
stratified systematic, 12
systematic, 11

Sampling distribution, 135–161
characteristics, 137
construction of, 136
definition, 136
of difference between sample means, 146–151

nonnormal populations, 149
of difference between sample proportions, 155–157

of sample mean, 137–146
nonnormal populations, 140–142

of sample proportion, 151–155
SAS:

and chi-square analysis, 616–617
and descriptive measures, 47
and factorial experiment, 362, 364
and hypothesis testing, 234, 244–245
and logistic regression, 568–571
and multiple regression, 492
and one-way ANOVA, 322
and repeated measures ANOVA, 350–351
and simple linear regression and correlation,

438–439, 446–447
and Tukey’s HSD test, 326
and two-way ANOVA, 341–343

Scatter diagram, 415–416
Scientific methods, 13–15
Secondary attack rate, 776
Sensitivity, 80
Significance level, 219–220
Sign test, 636–694
Simple random sampling, 

7–11
without replacement, 7–8
with replacement, 7–8

Skewness, 41–42
Slope, 411
Spearman rank correlation coefficient, 731–740

table for, A-104
Specificity, 80
Sphericity, 348
SPSS:

and Fisher exact test, 633
and frequency distribution, 25–26
and kurtosis, 49
and logistic regression, 573
and Mann-Whitney test, 708–709
and Mantel-Haenzcel test, 645–646
and multiple regression, 490
and odds ratio, 641
and partial correlation, 512, 514–515
and repeated measures ANOVA, 350–351
and skewness, 43
and survival analysis, 658–659
and Turkey’s HSD test, 326

Standard deviation, 45
Standard error of mean, 140
Standard normal distribution, 119–123

table of, A-38–A-39
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Statistic, 38
Statistical inference, 7, 163
Statistics, 2
Stem-and-leaf-display, 28–30
Stepwise regression, 556–565
Studentized range, 324

table of, A-52–A-54
Student’s distribution, 172–177

table of, A-40
Sturges’ rule, 22
Survival analysis, 648–633

T
t distribution, 172–177

and difference between means, 180–183
population variances equal, 180–181
population variances not equal, 181–183

properties, 173
table of, A-40

Test statistic, 218–219
Trimmed mean, 171
Tukey’s HSD test, 323–324
Tukey’s line, 438–439
Type I error, 220
Type II error, 220, 273–280

U
Unbiasedness, 164
Uniform distribution, 607–609
Unit of association, 455

V
Variable, 3

continuous random, 4
dependent, 411
discrete random, 4
dummy, 540–555
explanatory, 486
extraneous, 307
independent, 411
predictor, 413, 486
qualitative, 4, 539–555
quantitative, 4
random, 4
response, 307, 413
treatment, 307

Variable selection procedures, 556–565
Variance, 44–45

interval estimation, 195–198
Variance ratio, 316
Variance ratio test, 199, 269–273
Vital statistics, 763–782

W
Wilcoxon test, 694–697

table for, A-86–A-95

Y
Yates’ correction, 620
y-intercept, 411
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