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Over 2 years ago I was approached by Neil Messenger from Leeds University,
UK who asked about my interest in being involved in a project to develop a book
that provided a series of Instant Notes for Sport and Exercise Biomechanics.
While the concept was not new to the traditional science areas it was certainly
unique to the subject area of sport and exercise biomechanics. The thought of
developing a text that could be used by both students and teachers alike was
appealing and challenging. The text that is  nally presented is essential for stu-
dents in that it covers the fundamental areas of study in such a way that can be
used in application or be expanded and developed at a higher research level. For
the teacher it provides one single resource to plan and prepare more detailed lec-
ture, laboratory and tutorial classes.

I wish to take this opportunity to thank Neil for his initial invitation, to say
that I understand why he was not able to continue with it and  nally to thank
the other three authors (Adrian Lees, Neil Fowler and Adrian Burden) who
helped to achieve its conclusion.

Paul Grimshaw
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Section A – Kinematics of motion

A1 ANATOMICAL DESCRIPTORS OF
MOTION

Key Notes

Super cial (close to surface), deep (away from surface), anterior (front),
posterior (rear), medial (near mid-line), lateral (away from mid-line),
superior (relative highest position), inferior (relative lowest position),
proximal (near point of attachment to body), distal (furthest away from
body attachment).

Abduction (take away from mid-line), adduction (bring towards mid-line)
internal–external rotation (lower leg inward and outward rotation about
long axis), plantar- and dorsi exion (pointing toes or bringing toes
towards the shin), extension and  exion (straightening or bringing
segments closer together), hyper-extension (excessive extension).

Inversion and eversion (heel rolling outwards or inwards), pronation
(complex tri-planar movement in foot involving eversion, abduction and
dorsi exion), supination (tri-planar movement in foot involving
inversion, adduction and plantar- exion).

Valgus (lower limb segment rotated about anterior–posterior axis through
knee away from mid-line of body), varus (as for valgus but rotation
towards mid-line), horizontal abduction and adduction (arm held out in
front in transverse plane and then abducted or adducted), circumduction
(rotation of a part or segment in a circular manner).

Parallel (equidistant and never intersecting), degrees of freedom (method
used to describe movement or position), diagonal plane (a  at surface
that is slanted), tension (to stretch or pull apart), compression (to squeeze
together), elevate and depress (to raise up or push down).

Origin (starting or beginning point), insertion (anatomical origin),
coordinate/s (a number or set of numbers corresponding to a system of
reference), plane (a  at surface), perpendicular (at 90∞).

Translate (change in position but without rotation), drawer (anatomical
translation), anterior-drawer (drawer in an anatomical direction), rotate
(move through an angle), vertical and horizontal (in a two-dimensional
space usually upwards (in the y direction) and along (in the x direction)).

Abscissa (often the x axis), ordinate (often the y axis), intersect (cross each
other).

Anatomical position (facing forwards, arms by side, feet forwards and
parallel, palms forward and  ngers extended), cardinal plane (plane
passing through center of mass), sagittal plane (divides body or part into
left and right portions), transverse axis (perpendicular to sagittal plane),

General terms

Descriptions
of motion

Joint
movement patterns

Ankle joint
movement

Speci c joint
movement

Planes and
axes of motion

Coordinates



frontal plane (divides into front and rear portions), anterior–posterior axis
(perpendicular to frontal plane), transverse plane (divides into upper and
lower portions), longitudinal axis (perpendicular to transverse plane).

Global-laboratory coordinate system ( xed coordinate position in labora-
tory), local coordinate system ( xed coordinate system within body or
segment), right-handed method of orientation (all coordinates in right-
hand directions x, y, and z are positive).

Descriptions of Anatomical descriptors of motion are essential for an understanding of bio-
motion mechanics and it is important that many of the terms that are used in both the

study of anatomy and biomechanics are explained in more detail.
Super cial describes the structures that are close to the surface of objects,

whereas deep describes the structures that are not near the surface of the object.
Anterior describes the front portion or part of a body, whereas posterior
describes the rear or back portion of a body or structure. Medial move-
ment describes movement in a direction that is towards the center line (mid-line)
of the body or structure. Lateral, on the other hand, describes a movement that is
away from the center line of the body or structure. The medial part of your knee
would be the part that is nearest to the mid-line of the body (which is most likely
to be the inside part of your knee) and the lateral part would be the part furthest
away from the mid-line (which is likely to be the outside portion of your knee).
Superior describes the higher position of a body or part that when standing
would be the part furthest from the feet, whereas inferior would describe the
lower part or portion that when standing would be the nearest part to the feet
(hence we can see that it is a relative term). Proximal would be used to explain the
closest point of attachment of a body or part to the rest of the body (e.g., the arm
attachment to the trunk) and distal would explain the furthest point away from
the attachment of the body or part to the rest of the body. In the case of the
forearm the elbow would be at the proximal end and the wrist would be the
distal end from the shoulder joint point of attachment to the body. Fig. A1.1 helps
to identify some of these terms in more detail.
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Coordinate systems
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Fig. A1.1. Anatomical descriptors of motion



Joint movement Abduction involves the movement (usually as a rotation) of a body part or 
patterns segment away from the body, while adduction involves the bringing of this segment

or body part closer to the body. Internal rotation or movement involves the
rotating (either clockwise or anti-clockwise) of a limb or segment towards the
mid-line of the body, whereas external rotation involves the rotation of this part
away from the mid-line of the body. These terms, however, can be confusing; for
example, during the internal and external rotation of the lower leg about the long
axis it is possible to see that the anterior part of the leg will rotate towards the
mid-line of the body, whereas the posterior part of the lower leg will rotate away
from the mid-line. Plantar- exion, usually most commonly expressed in relation
to the ankle joint (because of the reference to the plantar surface of the foot),
involves the movement causing a pointing of the toes downwards. Dorsi exion
involves the opposite (again in relation to the ankle) where the toes are brought
towards the shin and in an upward rotational movement or direction. Similar
movements occur at the wrist but these are more conventionally referred to as
 exion and extension. Extension is de ned as an extending (that is, straightening
out) of the limb or segment whereas  exion involves the bringing of the segments
that are being  exed closer together. Extension at the knee joint would be straight-
ening your leg, whereas  exion at the knee joint would be bringing your lower leg
segment and upper leg segment (thigh) closer together. Often the term hyper-
extension is also used in the context of these movements. In this case hyper-
extension would be an excessive amount of extension (i.e., above that normally
seen in the joint or structure). However, these movements can be confusing and
they are dependent upon the structure that is either extending or  exing. For
example,  exion at the hip joint would be where the upper leg segment was
moved in the direction towards the trunk (Fig. A1.2 helps to illustrate hip  exion
and extension in more detail).

A1 – Anatomical descriptors of motion 3

Anterior

Posterior

Hip
extension

Sagittal plane view

Extension
(increasing angle) Hip

flexion
Flexion

(decreasing angle)

Fig. A1.2. Hip flexion and extension

Ankle joint Inversion at a joint or structure refers to the rolling outwards (laterally) while 
movement eversion involves a rolling inwards (medially) of the structure or segment. These

two terms are also often confusing and are best described with reference to a
structure or segment. For example, inversion of the calcaneus (or heel bone in
the foot) would be when you rolled this part of the foot over on the outside of
your ankle. Conversely, eversion of the calcaneus would be rolling the ankle (or
heel bone) inwards. Figs A1.3 and A1.4 help to illustrate this in more detail.
Pronation and supination are complex movements that involve motion in three



planes and about three axes of rotation simultaneously. These movements are
often described at the sub-talar joint which is in the foot. However, pronation
and supination can also occur at the wrist joint. Pronation and supination at the
sub-talar joint in the foot involve: pronation: calcaneal eversion; ankle dorsi-
 exion and forefoot abduction; supination: calcaneal inversion; forefoot adduc-
tion and ankle plantar- exion.

These complex movements will be described in more detail later in this text.
Figs A1.3, A1.4 and A1.5 help to illustrate some of these movements in more
detail.
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Fig. A1.3. Inversion of the calcaneus (heel bone in the foot)

Fig. A1.4. Eversion of the calcaneus (heel bone in the foot)

Fig. A1.5. Anatomical descriptors of motion



Specific joint In addition to these movements there are also a number of speci c de nitions 
movement that are unique to certain body segments or joints. For example, valgus rotation

is usually made with reference to the knee joint where the lower leg is moved in
a lateral but rotational manner (i.e., away from the mid-line of the body). Varus
rotation is the opposite of valgus rotation and is where the lower limb segment
is rotated about the knee in a medial direction towards the mid-line of the body.
Both these actions would occur about an anterior–posterior axis that is
presented through the knee joint. Similarly, horizontal abduction and hori-
zontal adduction tend to be stated with reference to the shoulder joint where
the limb is  rst moved to a horizontal position (i.e., straight out in front of the
body) and then the limb is either abducted or adducted (moved away from or
towards the mid-line of the body). Circumduction, again often made with refer-
ence to the shoulder joint, is where the limb is held out in front (horizontally)
and where it is rotated in a circular pattern (circumducting). This rotation
involves a combined movement of  exion/extension and adduction/abduction
but with no shaft rotation. This movement (circumduction) can also be made
with reference to many other joints and structures (e.g., the  ngers can easily
circumduct). Fig. A1.6 shows some of these movements in more detail.
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Circumduction
(circular movement
combining flexion/
extension adduction/
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shaft rotation)

Fig. A1.6. Anatomical descriptors of motion

General terms In biomechanics there are many different descriptive terms that are used to help
describe movement patterns and parameters within the body. However, in
addition there are also a number of common terms that are used together with
the many anatomical descriptors. Some of those that are used in such association
are as follows: parallel can be described as being equidistant and not inter-
secting (e.g., parallel lines never converge); degrees of freedom is a term that is
used widely to describe the number of coordinates it takes uniquely to specify
the position of a system (the movement of the knee could be described with six
degrees of freedom); a diagonal plane is a  at or level surface that is slanted in
an oblique (neither parallel, perpendicular nor right angular) direction; tension
is classi ed as the act or process of stretching something, whereas compression
is the act or process of squeezing something; elevation or to elevate is the event
of raising something upwards and depression or to depress is the event of
pushing something downwards.

In many examples within biomechanics it is important that we understand the
movement of the body through both two-dimensional (width and height or x and
y directions) and three-dimensional space (width, height and depth or more
commonly termed x, y, and z directions). In order to assist in our understanding



of this movement it is therefore necessary to be able to de ne the space in which
we are moving. Again, a number of descriptors are helpful in our understanding
of movement in this space and these can be summarized as follows: the term
origin refers to the point that is the start/beginning and it can also be classi ed as
a reference point to which other movements are relative. In the case of a two-
dimensional (2D) plane or movement the origin is often the intersection point of
the x and y axes (i.e., where the horizontal (x) and vertical (y) axes cross). This
would be the reference point that has the coordinates of 0, 0 (x and y coordinates).
In anatomical terms this point of origin is often referred to as the point of inser-
tion for muscle, tendon or ligament. The word coordinates refers to the set of
numbers (two numbers in a two-dimensional space and three numbers in a three-
dimensional space) that describe a point of location. The term plane refers to a  at
two-dimensional surface and an axis refers to a straight line that often passes
through a body, part or segment and is usually used to describe rotation. In this
context it is important to clarify that the axis does not necessarily have to pass
through the body or segment and it can be located elsewhere. Translate or trans-
lation is the word that can be used to mean the change in position of body parts
or segments without rotation (as in the case of translatory motion along a straight
line in a single plane). In anatomical terms this is often referred to as a drawer of
a structure or joint. For example, an anterior drawer of your tibia would be to
translate the bone (lower leg) in an anterior direction in a straight line. Rotate or
rotation means to move the limb or segment through an angle about a joint or axis
or rotation (movement of your lower leg about your knee joint would be an act of
rotation). Vertical de nes the upward direction or in the case of a  at two-dimen-
sional surface it would be the y direction (upward), and horizontal de nes the
direction that is along the x axis (again with reference to a two-dimensional
surface).

Coordinates In a two-dimensional example (such as the page you are reading) we have two
dimensions of space. Vertical and horizontal (or height and width) are terms that
are often used to express two-dimensional space. The pages of this book will have
a vertical distance (height) and a horizontal distance (width). In this context we
often use x and y axes to represent the two-dimensional space we are considering.
The x axis would be drawn in the horizontal direction and the y axis would be
drawn in the vertical direction (although they can be used to describe whichever
direction is required and it is not always the case that the x axis represents the
horizontal direction). The x axis is often termed the abscissa and the y axis the
ordinate. The point at which the two axes intersect (cross) is called the origin and
it is important to point out that these two axes would always be expressed
perpendicular (at 90∞) to each other. Fig. A1.7 identi es this con guration in more
detail.

Planes and axes In three-dimensional (3D) space a third axis is needed to describe the movement 
of motion and this is usually described as the z axis. This axis also acts through the origin

but is perpendicular to both the x and y axes described previously. Fig. A1.8
shows the third axis and the planes ( at 2D surfaces) that are created from the
con guration of these three axes in more detail.

The three planes of motion that have been created from the three axes of
motion can also be translated to the human body. In this case the origin of these
planes and axes is usually expressed at the center of mass of the body. Using the
example of the body that is shown in Figs A1.9, A1.10 and A1.11, this is at

6 Section A – Kinematics of motion



approximately the mid-point between the two hips. It is important to note that
in these  gures the body is presented in what is called the anatomical position
(facing forward, arms by the side, feet forwards and parallel, and palms
forwards with  ngers extended). However, in many cases, within human move-
ment the body will be in different positions and it will be important to be able to
describe the movement in these positions relative to the three cardinal planes (a
plane that passes through the center of mass of the body), and axes of motion
described.

The sagittal plane runs from a front to back and superior to inferior (top to
bottom) orientation. The plane in this example divides the body into equal left
and right portions. The transverse axis of rotation is perpendicular (at 90∞) to
the sagittal plane (Fig. A1.9). A typical movement in this plane and about this
axis of rotation would be a somersault.

The frontal plane runs from a side to side and superior to inferior orientation.
The plane in this example divides the body into equal front and rear portions. The
anterior–posterior axis of rotation is perpendicular to this plane (Fig. A1.10). A
typical movement in this plane and about this axis of rotation would be a
cartwheel.
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The transverse plane runs from a side to side and anterior to posterior
orientation. This plane in this example divides the body into equal upper and
lower portions (superior and inferior parts). The longitudinal axis of rotation is
perpendicular to the transverse plane (Fig. A1.11). A typical movement in this
plane and about this axis of rotation would be a pirouette (as in ice skating).

Many different sagittal, frontal, and transverse planes can pass through
different individual body parts. Each individual set of planes (i.e., sagittal or
frontal or transverse) are parallel to each other. All sagittal planes are perpendic-
ular (at 90°) to all frontal planes that are perpendicular to all transverse planes.
Anatomical axes are described as lines that are perpendicular to de ned planes of
motion. Again, it is important to point out that all anterior–posterior axes are
perpendicular to all transverse axes that are perpendicular to all longitudinal
axes. Motion by limbs often takes place in several planes and about several axes

8 Section A – Kinematics of motion
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Fig. A1.9. Three-dimensional planes and axes of motion

Fig. A1.10. Three-dimensional planes and axes of motion



of rotation; for example, as we have said pronation and supination are tri-planar
movements that are often described at the sub-talar joint in the foot. However,
other anatomical movements can sometimes be described with reference to one
plane and one axis of rotation: for example, knee/elbow or shoulder  exion or
extension would occur in the sagittal plane and about the transverse axis of
rotation; abduction and adduction movement at most joints and valgus and varus
rotation at the knee would occur in the frontal plane and about the
anterior–posterior axis of rotation; internal and external rotation of the knee joint
(or more precisely internal and external rotation of the tibia/ bula or femur) and
horizontal abduction and adduction would occur in the transverse plane and
about the longitudinal axis of rotation.

Coordinate Within any 3D data collection in biomechanics it is important to be able to specify 
systems a certain coordinate system that is used to explain and clarify movement patterns.

Two common coordinate systems that are used are either a global or laboratory
coordinate system and a local coordinate system. In both examples the right-
handed method of con guration is used. The right-handed system of con gura-
tion can be de ned with reference to both Figs A1.8 and A1.12. In Fig. A1.8 it is
possible to see that the right-hand corner of the 3D con guration has certain x, y,
and z speci cations (i.e., all the coordinates located in this 3D space have a
positive value). In the right-handed system of 3D con guration the coordinates
are arranged in this manner (all positive and all in a right-handed direction). This
is shown more speci cally in Fig. A1.12 where the x, y, and z right-handed con-
 guration is presented in isolation.

The global coordinate system (GCS) (also known as the inertial reference
system) is presented when the object space is de ned during 3D data capture. The
system is right handed and is used to de ne the  xed coordinate position within
the laboratory. This position is then used to de ne all other positions within the
data capture process that follows. The local coordinate system (LCS) is used to
describe the position within a body or segment. This coordinate system would
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Fig. A1.11. Three-dimensional planes and axes of motion



stay within the body or segment during movement. Again this is a right-handed
method of orientation with the center of the LCS usually placed at the center of
mass of the body. Fig. A1.13 helps to identify this relationship between the GCS
and the LCS in more detail.
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Section A – Kinematics of motion

A2 MECHANICAL DESCRIPTORS OF
LINEAR MOTION

Key Notes

Is the study of forces and the effects of these forces on living things.

These are subdivisions of mechanics that are concerned with
displacement, velocity and acceleration (kinematics) and forces that cause
or result from motion (kinetics).

Linear motion (or translatory motion) is concerned with movement along
a line that is either straight or curved and where there is no rotation and
all body parts move in the same direction at the same speed. Angular
motion involves movement around an axis of rotation.

A quantity that is represented by magnitude (size) only.

A quantity that is represented by both magnitude and direction.

The term distance is classi ed as a scalar quantity and is expressed with
reference to magnitude only (i.e., 14 miles). Displacement is the vector
quantity and is expressed with both magnitude and direction (i.e., 14
miles north-east).

Speed is the scalar quantity that is used to describe the motion of an
object. It is calculated as distance divided by time taken. Velocity is the
vector quantity and it is used to also describe the motion of an object. It is
calculated as displacement divided by time taken.

Is de ned as the change in velocity per unit of time. It is calculated as
velocity divided by time taken.

Average is the usual term for the arithmetic mean. The sample mean is
derived by summing all the known observed values and dividing by their
number (i.e., how many of them there are). For example over a 26 mile
race the average speed of the athlete was 14 miles per hour (mph).
Instantaneous refers to smaller increments of time in which the velocity
or acceleration calculations are made. The smaller the increments of time
between successive data points the more the value tends towards an
instantaneous value.

Biomechanics Biomechanics is broadly de ned as the study of forces and their affects on
living things. In mechanics there is use of a further subdivision into what is
known as kinematic and kinetic quantities. Biomechanics and mechanics are
used to study human motion. This section is concerned with linear (i.e., transla-

Linear and
angular motion

Biomechanics

Average and
instantaneous

Distance and
displacement

Kinematics
and kinetics

Scalar quantity

Acceleration

Speed and velocity

Vector quantity



tional – where all the points move in the same direction in the same time and
without rotation) kinematics. Fig. A2.1 helps to illustrate the de nition of biome-
chanics and kinematics in more detail.

Human movement or motion can be classi ed as either linear or angular motion.
Most movements within biomechanics are a combination of translation and rota-
tion. This leads to a description that is termed general motion. Linear motion (or
translation) is movement along a line which may be either straight or curved and
where all the body parts are moving in the same direction at the same speed. This
can be classi ed as either rectilinear motion (motion in a straight line) or curvi-
linear motion (motion in a curved line). Angular motion (which will be discussed
in the next section) involves movement around an axis (either imaginary or real)
with all the body parts (or individual body parts) moving through the same angle
at the same time. Fig. A2.2 identi es these types of motion in more detail.

Kinematics Linear kinematics is concerned with the quantities that describe the motion of 
and kinetics bodies such as distance, displacement, speed, velocity, and acceleration. These
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BIOMECHANICS
(the study of the effect of forces on living things)

Linear and angular
KINEMATICS

concerned with quantities
that describe motion
(i.e., displacement

velocity and
acceleration)

Linear and angular
KINETICS

concerned with the forces
that cause or result from

the motion of bodies

Linear motion Angular motion

Somersault

High bar swingRectilinear motion

Curvilinear motion

Fig. A2.1. Biomechanics, kinematics and kinetics

Fig. A2.2. Different types of motion



quantities can be classi ed as either scalar or vector quantities. Scalar quantities
are represented by magnitude (size) only, whereas vector quantities are repre-
sented by both magnitude and direction. Hence, vector quantities can be
presented mathematically or graphically on paper by scaled straight lines or
arrows. For example, speed is de ned as the distance traveled per unit of time
and as such it is a scalar quantity (i.e., no direction is speci ed).

Speed = 

Ex 1. If an athlete ran 14 miles in 1 hour and 15 minutes what was the athlete’s
average speed?

Speed = 

Speed = 

Convert the time component to one common quantity (i.e., hours)

Speed = 

Speed = 11.2 miles per hour (mph)

This would represent the average speed of this athlete over the whole 14 mile
running activity. Hence the measure of speed in this case is a scalar quantity and
is expressed in magnitude only (i.e., 11.2 mph). In this example we could have
expressed speed in many different units, for example meters/second (m/s) or
kilometers per hour (kph). See if you can convert an average speed value of 11.2
mph into units of metres/second (m/s)? Figs A2.3 and A2.4 show the solution
to this problem which present both the direct conversion of 11.2 mph to
m/s and the revised calculation in m/s for the athlete described in this example.

Scalar and In example 1 we can see that the athlete covered a distance of 14 miles but we do 
vector quantities not know whether this was in a straight line, in a series of curves, or indeed in a

circle starting and  nishing at the same point. In this context the term speed is

14 miles

1.25 hours

14 miles

1 hour 15 minutes

Distance

Time

Distance traveled

Time taken
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1 mile = 1609.344 meters
1 hour = 60 minutes = 60 · 60 seconds = 3600 seconds

11.2 miles = 11.2 · 1609.344 m = 18024.652 m 

Speed in m/s = 18024.652 m
3600 s

Speed = 5.0068 m/s

Average speed of 11.2 mph = 5.0 m/s (to 1 decimal place)

Fig. A2.3. Converting an average speed of 11.2 mph into the units of m/s



used because there is no directional component speci ed. However, if we now
reword this example it is possible to express the solution as a vector quantity
such as velocity. Vector quantities are expressed with reference to both
magnitude and direction and in the case of the runner in example 1 this can be
restated as follows.

Ex 2 If an athlete covered a displacement of 14 miles in a straight line in a
north-east direction in a time of 1 hour 15 minutes, what would be the
athlete’s average velocity over this time period?

Distance and Note: in this example the term distance has been replaced with the term 
displacement displacement, which is used to express a directional component (i.e., straight

line north-east direction). Although the result would be of the same magnitude
(because the athlete covered the same distance/displacement in the same time)
the quantity would be a vector quantity because there would now be a direc-
tional component to the solution. This vector quantity could now be expressed
graphically to scale by an arrow on a piece of paper or by mathematical repre-
sentation. Fig. A2.5 illustrates this in more detail.
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1 mile = 1609.344 meters
1 hour = 60 minutes         1 minute = 60 seconds

14 miles = 14 · 1609.344 m = 22530.76 m

Average speed in m/s = 22530.76 m
4500 s

Average speed = 5.0068 m/s

Average speed of athlete = 5.0 m/s (to 1 decimal place)

1.25 hours = 1.25 ¥ 60 min ¥ 60 s = 4500 s

Fig. A2.4. Calculation in m/s for athlete described

14
m

ile
s

Finish

Start

Displacement

Distance

Start and finish

Time =
1 hour 15 minutes

Vector quantity that
has both magnitude and
direction (north-east)

Distance = circumference
Displacement = 0

Velocity =

=

=   11.2 mph

–––––––––––
displacement

time

–––––––14 miles
1.25 hrs

Fig. A2.5. Defining the terms distance and displacement



Speed and Often within biomechanics it is useful to be able to express both speed and 
velocity velocity components. Sometimes it is only the average speed that is of interest

(such as, for example, when an athlete runs a marathon race (26.2 miles or 26
miles 385 yards) and the coach is interested in getting a quick and simple measure
of how the race was performed overall). As this average speed would be
presented over a 26 mile running distance it does not really describe the speci c
details of the race but it may be useful for training. Similarly, during the long
jump take-off phase it is interesting to be able to know exactly what the vertical
and horizontal velocities are at the point of take-off. Such information would
allow the coach or scientist to be able to work out the angle of take-off and
observe whether the athlete jumped with a  at, long trajectory or a high, shorter
one. Both these aspects (speed and velocity) are equally important for the under-
standing of sport, exercise, and general human movement.

Both speed and velocity can be uniform or non-uniform quantities. Uniform
describes motion that is constant over a period of time (i.e., constant velocity or
speed (no acceleration or deceleration)) and non-uniform describes varying or
changing velocity or speed over time (i.e., with some acceleration or decelera-
tion). In human motion it is usually the knowledge of non-uniform motion that is
more bene cial to the athlete, coach, scientist, and student of biomechanics. For
example, in the case of our runner in example 1, who covered 14 miles in 1 hour
15 minutes, it would be more bene cial to know what changes in the runner’s
speed or velocity occurred throughout the activity. Such information would have
important training and performance implications and would be as valuable in a
sprint race lasting no more than 10 seconds (i.e., 100 m sprint) as it would be in a
marathon event lasting several hours.

Linear velocity and acceleration are important quantities within biomechanics
that are used to describe and analyse the motion of human bodies. Fig. A2.6
illustrates a series of 100 m sprint data from a university level athlete.

From consideration of Fig. A2.6 it is possible to see that the athlete covered the
100 m displacement (horizontal displacement in a straight line along a track) and
that this 100 m displacement is divided into 10 m sections or intervals. For
example, the  rst 10 m was covered in 1.66 seconds and the second 10 m in 1.18
seconds (or 20 m in 2.84 seconds (cumulative time)). It is possible to see from this
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Average horizontal velocity over 100 m = 100/11.09 = 9.01 m/s

Disp. Cumulative Time Average velocity
(m) time (s) (s) (m/s)

10 m intervals

10 1.66 1.66 6.03

20 2.84 1.18 8.47

30 3.88 1.04 9.62

40 5.00 1.12 8.92

50 5.95 0.95 10.50

60 6.97 1.02 9.80

70 7.93 0.96 10.40

80 8.97 1.04 9.62

90 10.07 1.10 9.09

100 11.09 1.02 9.30

Fig. A2.6. Sprint data for university level 100 m athlete



data that the athlete covered the whole 100 m displacement in 11.09 seconds. We
can now use this data to determine average velocity over smaller increments
(such as every 10 m interval). Such information would provide us with a bio-
mechanical description of the whole 100 m event. The presentation and analysis
of this velocity can be seen from the consideration of the calculations and data
identi ed in Figs A2.7, A2.8 and A2.9. Note: it is important to point out that this is
expressed as velocity (a vector quantity) because we have a directional compo-
nent (i.e., horizontal displacement along a straight 100 m track) and even though
we are considering the velocity (average) over much smaller increments (i.e.,
10 m intervals) it is still an average velocity over that horizontal displacement
interval or section. In this context taking even smaller time intervals will
eventually lead to an “instantaneous” value for the calculation of speed or
velocity. Such analysis provides a more detailed biomechanical breakdown of the
event of the 100 m sprint race.

This data (average velocity of the whole 100 m, speci c velocity for each 10 m
section of the race or “instantaneous” values for even smaller time or displace-
ment intervals) could be compared with values for Olympic and World athletic
performances or indeed to other athletes within the club or university. Obviously
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Average velocity over first 10 m

Average velocity between 10–20 m

Average velocity between 20–30 m

0–10 m = = 6.03 m/s10 m
1.66 s
–––––

10–20 m = = 8.47 m/s10 m
1.18 s
–––––

20–30 m = = 9.62 m/s10 m
1.04 s
–––––

1. During first second of motion (5.0 m) the velocity
increased rapidly

2. During the next 4.75 seconds the velocity increased
to maximum value of about 10 m/s which was
achieved at 60 m

3. Maximum velocity (around 10 m/s) maintained for
about 1 second to 70 m

4. Velocity decreased steadily from 10 m/s to 9.2 m/s
over the last 30 m

‘He/she who slows down the least wins the sprint race’

Fig. A2.7. Velocity calculations (example 10 m intervals) for 100 m sprint data of university
level athlete

Fig. A2.8. Analysis of velocity data



such knowledge of individual and comparative performances would have
important training and performance implications for both the athlete and the
coach.

Acceleration Acceleration is de ned as the change in velocity per unit of time and it is usually
measured in meters per second squared (m/s2). This means that the velocity of an
object will increase/decrease by an amount for every second of its motion. For
example, a constant (uniform) acceleration of 2.5 m/s2 indicates that the body will
increase its velocity by 2.5 m/s for every second of its motion (2.5 m/s for 1
second, 5.0 m/s for 2 seconds, 7.5 m/s for 3 seconds and so on). Figs A2.10, A2.11,
and A2.12 show the calculation and presentation of some acceleration data for the
university 100 m sprint performance used in the previous example.
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Fig. A2.9. Graphical presentation of velocity data

U = velocity of the object at time t1
V = velocity of the object at time t2
U = initial velocity
V = final velocity

Acceleration is defined as the change in velocity per unit of time
(rate of change of velocity)

Acceleration = V – U
t2 – t1
–––––

Positive acceleration Negative acceleration

When the velocity increases
over a time period

(speeding up)

When the velocity decreases
over a time period

(slowing down)

Fig. A2.10. Acceleration defined



From consideration of these  gures it is possible to see that the athlete is both
accelerating and decelerating throughout the activity. If we now look at the
velocity versus time graph (shown in Fig. A2.9) we can see that it is possible to read
values directly from this graph for speci c time points (i.e., 7 seconds into the
race). Between 0 and 7 seconds we can see that there is an average positive
acceleration of +1.50 m/s2 (i.e., indicating the athlete is on average speeding up
over this period of time). Between 0 and 11 seconds (almost the whole race) the
athlete has an average horizontal acceleration of +0.83 m/s2. However, more
detailed analysis (over smaller time intervals) shows that the athlete is actually
decelerating (slowing down) between 7 and 11 seconds in the activity (-0.33 m/s2).
This data provides valuable biomechanical information for the athlete and coach
that can be used to improve performance. As an alternative to reading speci c
time points from the graph we can use the velocity calculations that we have
already (i.e., the velocity values for each 10 m displacement). In this context, the
following example determines the acceleration between the velocity points of
10.50 and 8.92 m/s (approximately between the 40 and 50 m points).

Acceleration of the athlete between velocity points of 10.50 m/s and 8.52 m/s
Using the formula for acceleration

Acceleration (a) = 

Acceleration (a) = 
m/s

= s

Acceleration (a) = +1.66 m/s2 (average acceleration over this time)

Note: in the context of the graph it can be seen that the values that are plotted
are between the points of displacement or time (i.e., indicating an average
between two points that is expressed at the mid-point). In addition, considering
that velocity is a vector quantity, the positive and negative sign would represent
the directional component. A positive velocity value would indicate movement

10.50 - 8.92

5.95 – 5.00

v – u

t2 – t1
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Analysis of 100 m university sprinter (acceleration)

= 1.50 m/s2

= 0.83 m/s2

= –0.33 m/s2

Acceleration between 0 and 7 seconds

a =10.51 – 0 m/s
7.0 – 0 s

Acceleration between 0 and 11 seconds

9.21 – 0 m/s
11.0 – 0 s

–––––––––––a =

Acceleration between 7 and 11 seconds

9.21 – 10.51 m/s
11.0 – 7.0 s

–––––––––––––––a =

–––––––––––

Fig. A2.11. Acceleration calculations for selected time intervals (reading values from the
graph of velocity vs. time)



along the 100 m track towards the  nish line, whereas a negative value for
horizontal velocity would indicate movement back towards the start (which in a
100 m sprint race would not usually happen). However, in terms of acceleration,
a positive value would indicate speeding up (accelerating) and a negative value
slowing down (decelerating). In this example the velocity and acceleration signs
(positive and negative) are independent. However, it is also possible to have a
negative acceleration value when the object is speeding up (increasing velocity or
accelerating). For example, in the case of acceleration due to the gravity of the
earth the acceleration is often expressed as –9.81 m/s2. This indicates a downward
(towards the earth) acceleration of 9.81 m/s2 (i.e., an object will speed up (increase
its velocity) as it falls towards the center of the earth (see section on gravity within
this text)). However, in the case of acceleration in the horizontal direction (as in
the example of our 100 m sprinter) a negative acceleration value would indicate a
deceleration (slowing down) of the athlete.

Finally, in terms of biomechanics it is useful to be able to present all of this data
in a series of graphs. In order to analyse performance, the coach and the athlete
can use the graphs for displacement/time, velocity/time and acceleration/time.
Fig. A2.12 (1–3) presents graphs for the data calculated for the 100 m university
level sprinter used in our example. Note that the acceleration data is presented for
10 m intervals between velocity values, as is the data for velocity (i.e., between
displacement values). The data is presented both as raw values and smoothed
(using a curve of best  t) between data points.

From consideration of these graphs, it is possible to see that the velocity data
indicates the athlete increases velocity from the start and reaches a peak at around
the 60 m point in the race (or at about 7 seconds). At this point the athlete
manages to hold this peak velocity for about 1 second to 70 m before it then
begins to fall towards 100 m. This is con rmed by the acceleration/time graph,
which shows positive (increasing velocity) values up to 60 m. Although it appears
that the acceleration/time graph is decreasing during this section, the values are
still all positive and are hence indicating acceleration or speeding up. The
acceleration/time graph then passes through zero (which at this point would
indicate no acceleration), as the athlete would have constant horizontal velocity
for this brief 1-second period. Next, the acceleration/time graph becomes
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Fig. A2.12(1). Displacement/time, velocity/time, and acceleration/time graphs of data for
100 m university level athlete over 10 m intervals (best fit straight line shown)



negative, indicating a deceleration or slowing down (i.e., from about 70 to 100 m).
Hence, the statement made by many athletics coaches and biomechanists of
“he/she who slows down the least wins the sprint race” appears to be true of our 100 m
university level sprinter. This characteristic speeding up (increasing horizontal
velocity) to a peak at around 60 m, holding this speed for about 1 second and then
slowing down as they approach 100 m is typical of many 100 m performances at
many different levels (from amateur to Olympic athlete). Hence, it is obvious that
such biomechanical analysis may have important implications for both training
and performance.
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Fig. A2.12(2). Displacement/time, velocity/time, and acceleration/time graphs of data for
100 m university level athlete over 10 m intervals (smoothed data indicated by dotted line)



Application From the following (Fig. A2.13) set of data taken from two different world
record 1500 m freestyle swimming performances (Kieran Perkins 1994 and
Grant Hackett 2001) calculate the average horizontal velocity and acceleration
over each 100 m displacement (distance) interval. Also see if you can provide a
brief analysis of each swimmer’s race. Note: in this context in may be important
to qualify that the displacement in a swimming event such as this is technically
zero (i.e., the athlete starts, swims 50 m (down the pool length), turns, and then
returns to the start again). Hence the term distance and speed are probably more
appropriate in this application.
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Disp (m) 1994 Perkins 2001 Hackett

100 54.81 54.19
200 1:52.91 1:52.45
300 2:51.48 2:51.29
400 3:50.37 3:50.18
500 4:49.04 4:48.82
600 5:48.51 5:47.45
700 6:47.72 6:45.96
800 7:46.00 7:44.47
900 8:45.28 8:43.05

1000 9:44.94 9:41.78
1100 10:44.63 10:40.56
1200 11:44.50 11:39.51
1300 12:44.70 12:38.51
1400 13:44.44 13:37.89
1500 14:41.66 WR 14:34.56 WR

Fig. A2.13. Two sets of world record 1500 m freestyle swimming data shown over 100 m
intervals



Section A – Kinematics of motion

A3 MECHANICAL DESCRIPTORS OF
ANGULAR MOTION

Key Notes

Is where all the parts of a body (i.e., all parts on a rigid object or all parts
on a segment of the human body) move through the same angle.

Describes quantities, such as angular displacement, angular velocity, and
angular acceleration.

Angular displacement is the difference between the initial and the  nal
angular position of a rotating body (it is expressed with both magnitude
and direction). For example, 36 degrees anti-clockwise. Angular distance
is expressed with magnitude only (i.e., 2.4 radians).

Units that are used to measure angular displacement (where a circle = 360
degrees or 2p radians). 1 radian is approximately 57.3 degrees.

Angular velocity is the angular displacement divided by the time
taken. Angular acceleration is de ned as the rate of change of angular
velocity and is calculated by angular velocity ( nal – initial) divided by
the time taken.

Clockwise rotation is movement in the same direction as the hands of a
clock (i.e., clockwise) when you look at it from the front. Clockwise
rotation is given a negative symbol (-ve) for representation. Anti-
clockwise rotation is the opposite movement to clockwise rotation and it
is given a positive symbol (+ve) for representation.

An absolute angle is the angle measured from the right horizontal (a  xed
line) to the distal aspect of the segment or body of interest. A relative
joint angle is the included angle between two lines that often represent
segments of the body (i.e., the relative knee joint angle between the upper
leg (thigh) and the lower leg (shank)). In a relative angle both elements
(lines) that make up the angle can be moving.

An included angle is the angle that is contained between two lines that
meet or cross (intersect) at a point. Often these lines are used to represent
segments of the human body. The vertex is the intersection point of two
lines. In human movement the vertex is used to represent the joint of
interest in the human body (i.e., the knee joint)

Angular motion Angular motion is rotatory movement about an imaginary or real axis of rotation
and where all parts on a body (and the term body need not necessarily be a
human body) or segment move through the same angle. Angular kinematics

Degrees and
radians

Angular motion

Angular
displacement and

distance

Included angle
and vertex

Absolute and
relative angles

Angular kinematics

Angular velocity
and angular
acceleration

Clockwise and
anti-clockwise

rotation



describes quantities of angular motion using such terms as angular displacement,
angular velocity and angular acceleration. Fig. A3.1 identi es two examples of
angular motion in more detail.

Angular distance or displacement (scalar or vector quantity) is usually
expressed in the units of degrees (where a complete circle is 360 degrees).
Similarly, angular velocity and angular acceleration are often expressed as
degrees per second (°/s) and degrees per second squared (°/s2 or
degrees/second2) respectively. However, it is more convenient within human
motion to use the term radian. The value for 1 radian represents an angle of
approximately 57.3°. Fig. A3.2 de nes the term radian and its relationship with
angular degrees of movement.

As with the terms used to describe linear motion, within angular motion there
exists both scalar and vector quantities. However, it is often possible and more
easily understandable to describe angular movement using such de nitions as
clockwise or anti-clockwise rotation. Again, positive and negative signs can be
used to denote the different directions (e.g., clockwise rotation may be assigned
a negative sign and anti-clockwise rotation a positive sign which is the common
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Rotational limb movement
during kicking a ball

Rotational limb and club
movement in the golf swing

O

R S

Circle with center O

q

OR = OS = the radius of the circle

When the distance RS (the arc
length of the circle) is equal to the
radius of the circle the angle q is
approximately 57.3 degrees (or 1 radian)

Within a circle (360°) there are exactly
2p radians

p = 3.142 (to three decimal places)
Hence 2 · 3.142 = 6.284 radians
360/6.284 = 57.3 (to one decimal place)

1 radian = 57.3 degrees

Fig. A3.1. Angular/rotational movement within human motion

Fig. A3.2. The definition of 1 radian



convention used within biomechanics). Figs A3.3 and A3.4 help to indicate scalar
and vector quantities and the directions of angular motion.

Considering Fig. A3.4 it is possible to see the actions employed by the leg in
kicking a soccer ball. The upper leg segment (thigh) moves with an anti-clockwise
rotation between position 1 and position 2. The lower leg segment also moves in
an anti-clockwise rotation between these positions. Note that these two actions
happen simultaneously and in association with the linear (forward translation)
movement of the whole body. From such a description and knowing the time
taken for this movement it would be possible to calculate the angular velocity of
each of these segments in kicking this soccer ball.
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Clockwise
rotation (–ve)

A

B

B1

315°

45°

Distance = 315° (5.5 radians)
Displacement =   45° (0.76 radians) anti-clockwise

The “arm” AB moves in a clockwise rotation
through 315 degrees (i.e., 5.5 radians). The
distance (scalar quantity) covered by the arm
is 315 degrees whereas the displacement
(vector quantity) is only 45 degrees (anti-
clockwise). However, in this example, to
calculate the average angular velocity of the
arm it would be necessary to use the distance
(angle) that the arm has moved through
(i.e., 315 degrees clockwise in this case).
Note: by giving the distance value a direction
(clockwise) it is a vector quantity

Linear translation

Position 1 Hip axis

Knee axis

Position 2

Angular
velocity

Angular
velocity

Rv
Vv

Hv

Linear
velocity

Preparatory swing of leg in
kicking a soccer ball. Limb
rotation about hip and knee
joint axes (anti-clockwise)

Rv = resultant linear velocity
Hv = horizontal linear velocity
Vv = vertical linear velocity

Anti-clockwise
rotation (+ve)

Anti-clockwise
rotation (+ve)

Fig. A3.3. Angular movement

Fig. A3.4. Limb rotation in kicking a ball



Angular velocity Considering the individual action of the upper leg segment in this example
(Fig. A3.5) as taken from Fig. A3.4, we can see that the upper leg segment (repre-
sented by a single line in Fig. A3.5) moves anti-clockwise through 30 degrees (10∞
before the vertical line and 20∞ after the vertical line). If we know that the upper
leg moved through this angle in 0.5 seconds, it is possible to calculate the average
angular velocity of this limb segment. Fig. A3.6 shows the calculation of average
angular velocity depicted by the symbol w (the Greek letter omega) in more
detail.

It is important to point out that for every part (or point on the limb) that is
along the limb segment shown in Fig. A3.5, the average angular velocity will be
the same. All the parts along this limb travel through the same angle of 30 degrees
in 0.5 seconds (10∞ before the vertical line and 20∞ after the vertical line) and as
such their average angular velocities (w) will be determined using the formula:
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Position 1 Position 2

Hip axis

Knee axis

Hip Hip Hip

Knee Knee

Time = 0.5 s

Anti-clockwise
rotation (+ve)

Knee expressed
at one single

pointq1 = 10°
q2 = 20°

q = 30°

The upper leg rotates
anti-clockwise from
position 1 to position 2
in 0.5 seconds through
an angle of 30° (10° + 20°).
What is the angular
velocity of the limb?

Knee

This is the average angular velocity (anti-clockwise) of the
upper leg (thigh) during the kicking of a soccer ball

Angular velocity (w) is given by the following equation:

Where angular displacement = angular movement
between the initial and final angular position
(which is 30° anti-clockwise (+ve) in this case)

angular displacement (degrees or radians)
time taken (seconds)w = ––––––––––––––––––––––––––––––––––––

w =

= 60°/s

average angular velocity = 

1.05 radians/s

30°
0.5 s
–––– Note: it is important to

point out that this is the
average angular velocity
of every point along the
limb or segment

Fig. A3.5. Calculation of average angular velocity (w) of the upper leg (thigh)

Fig. A3.6. Calculation of average angular velocity (w) of the upper leg



w = angular displacement (measured in degrees or radians)
w = time taken (measured in seconds)

w = angular velocity
w = (measured in degrees/second or radians/second (∞/s or rads/s))

In this example, angular displacement is de ned as the difference between the
initial and  nal angular position of the object or segment (in either a clockwise
or anti-clockwise rotation).

Angular Angular acceleration, as depicted by the symbol a (the Greek letter alpha), is calcu- 
acceleration lated by dividing the angular velocity (w) by the time taken. It is de ned as the

rate of change of angular velocity and is expressed between two points of interest
(i.e., an interval of time (t1 and t2) or position 1 and 2 in our example). In the case
of the example shown in Fig. A3.5, it is possible to see that the average angular
acceleration can be calculated by using the angular velocity and the time taken for
the movement between the two positions. This is shown in more detail in Fig. A3.7.

Again, it is important to point out that, as for angular velocity, all the parts
along this limb segment will have the same angular acceleration as they all have
the same angular velocity. The angular displacement (rotation) is the same for a
part that is far away from the axis of rotation (which is the hip joint axis of
rotation in this case) as it is for a part that is close to the axis of rotation.

Considering Fig. A3.4, when kicking a ball it is possible to see that the upper
segment of the leg (the thigh) rotates about the hip joint (or hip axis of rotation) in
an anti-clockwise direction (hence making it a displacement (vector quantity)
because we now have a directional component). Similarly, and at the same time,
the lower segment of the leg (the shank) rotates about the knee joint (knee axis of
rotation) also in an anti-clockwise direction. Both these actions occur simul-
taneously and contribute to the average angular velocity and angular acceleration
generated by the limb in kicking this ball. Fig. A3.8 shows the angular displace-
ment (and linear translation forward of the body) of the two segments (upper leg
(thigh) and lower leg (shank)) working together in this example (ignoring the
movement of the foot).

Following this it is now possible to consider the movement of the lower leg and
determine its average angular velocity and acceleration. From Fig. A3.9 we can
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Note: for every point on the limb segment (points near to the
axis of rotation (which is the hip joint) or points far away from
the axis of rotation) the angular acceleration will be the same

Average angular acceleration (a) is given by the following equation:

In this example (Fig. A3.5) the initial angular velocity of the limb was
zero (position 1) and the final angular velocity was 60°/s (position 2).
Hence average angular acceleration can be calculated as follows:

angular velocity (final – initial)a = time taken
(degs/s or rads/s)

(t2 – t1) (seconds)

a = –

= 240°/s2 or 4.19 rads/s2

60°/s  – 0°/s
0.25 s – 0 s 

Fig. A3.7. Calculation of angular acceleration (a)



see that the lower leg (during this simultaneous action with the upper leg)
traveled through an angle of 105∞ in an anti-clockwise direction (100∞ before the
vertical line and 5∞ after the vertical line). Similarly, because it is attached to the
upper leg at the knee joint (which is the axis of rotation for this segment) all this
happens in the same time of 0.5 seconds. Fig. A3.10 shows the average angular
velocity and angular acceleration calculations for the lower leg segment. Again, it
is important to point out that all parts of the body along this lower leg segment
(represented by a line in this example) will have the same average angular
velocity and the same average angular acceleration. All the parts along this lower
leg segment (depicted as a line in Fig. A3.9) travel through the same angle (105∞)
in the same time (0.5 s).

Summation of Considering Figs A3.8 and A3.9 it is possible to see that the upper leg 
speed principle segment (hip to knee (thigh)) and the lower leg segment (knee to ankle (shank))

are linked together and they and move in one simultaneous action from position
1 to position 2. Although the angular displacements of the two segments are
different (upper leg segment moves through 30∞ rotation anti-clockwise and
lower leg segment moves through 105∞ rotation anti-clockwise), both limbs are
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Hip
Hip

Ankle

Knee

Knee

Ankle

Anti-clockwise
rotation (+ve)

Anti-clockwise
rotation (+ve)

Fig. A3.8. Angular movements of limb segments in kicking a ball (showing only upper and
lower leg segments)

Hip Hip

Ankle

Knee
Knee

Time taken = 0.5 s

q = 100°

Position 1 Position 2
q = 5°

Ankle

We can see that the lower leg
(knee–ankle) segment travels

through 105° (100° + 5°)
anti-clockwise rotation in 0.5 s

q = 10° q = 20°
Upper leg

Lower leg

Fig. A3.9. Angular movements of limb segments in kicking a ball (only upper and lower leg
shown)



attached to each other. At the same time (in this example) the whole body (or
whole leg in this case) moves forwards with a linear translation (as you would
expect when you attempt to kick a ball). The summation of speed principle
which has been widely discussed within the biomechanical literature suggests
that such a movement is initiated from the larger segments and is then trans-
ferred to the smaller segments. For example, in throwing a ball, movement is
 rst initiated from the legs, transferred through the hips to the shoulders and
then on to the elbow, wrist, hand, and  ngers. As each part of the body
approaches extension (and often peak linear and angular velocity) the next part
begins its movement. Although this certainly appears to be true for the actions
of kicking and throwing (as anyone who has kicked or thrown a ball will know)
the biomechanical research on this topic is not conclusive as to the exact mech-
anism for the generation of  nal velocity at the point of contact or ball release
(because the actions are multi-planar and three-dimensional).

Absolute and Within biomechanics a joint angle can be expressed as two lines that intersect at a 
relative joint point. The intersection point is termed the vertex and the joint angle can be the 
angles angle that is contained between the two lines (the included angle). The two

straight lines usually represent the segments of the body (e.g., the upper leg
segment and the lower leg segment in our example) and the vertex the joint center
(which would be the knee joint in this case). Absolute joint angles are deter-
mined from the right horizontal to the distal end of the segment of interest.
Relative joint angles are the angles that are contained between segments and
these are the included angle between the longitundinal axes of the two segments.
In the description of relative angles within the human body it is possible that both
lines (or segments) will be moving. However, when discussing absolute angles,
one of the lines (i.e., the right horizontal) is  xed and does not move. Fig. A3.11
illustrates the difference between absolute angles and relative joint angles in more
detail.
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Average angular
velocity (w)

=

=

= 210 /s (or 3.66 rads/s)

–––105
0.5

–––––––––––––––––––
displacement (angular)

time taken

Average angular
acceleration (a)

=

=

= 420∞

∞

/s2 (or 7.33 rads/s2 )

–––210 – 0
0.5 – 0

––––––––––––––––
angular velocity (w)

time taken

Lower leg moves through 105∞ (100° + 5°) in a time of 0.5 s

Fig. A3.10. Average angular velocity and average angular acceleration of lower leg segment
in kicking a ball (from Fig. A3.9)
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Right horizontal (fixed line)

q = absolute thigh angle (absolute angle)

q = ankle angle (relative angle)Ankle

Hip

q = knee angle
(relative angle) Knee

Fig. A3.11. Absolute and relative joint angles



Section A – Kinematics of motion

A4 THE RELATIONSHIP BETWEEN
LINEAR AND ANGULAR MOTION

Key Notes

The linear and angular components of movement are linked by a
mathematical relationship. Speci c formulae exist that are used to show
the linear translation caused by an object that is rotating.

The angular movements of arms, segments and implements causes the
linear motion of an end point that is applied to objects such as soccer
balls, golf balls, and tennis balls.

In order to examine the angular displacement of an object that is located
on a rotating arm (rigid body) it is necessary to join two points on the
object with a line. The new line on the object will have the same angular
displacement as the original line segment (rigid body). A point does not
have a rotational orientation and hence can not be expressed as having
angular displacement. However, a collection of points (i.e., a line) or
arm/segment can be used to determine this angular displacement.

The linear distance covered by a point on a rotating arm is the arc length
(curve of motion). The linear displacement of a point on a rotating body is
expressed by determining the chord length. The linear distance (arc
length) is calculated by the formula s = r q where q is expressed in radians.
A point that is further away from the axis of rotation will cover a greater
linear distance (arc length) than a point that is nearer to the axis of rota-
tion. Hence this point (which is further away) will also have greater linear
velocity and acceleration.

The formula v = w r is used to relate the average linear velocity of a point
or object on a rotating arm with the average angular velocity of the arm.

The formula a = a r is used to relate average linear acceleration of a
point or object on a rotating arm with the average angular acceleration of
the arm.

Instantaneous velocity or acceleration is the velocity or acceleration
expressed at an instant in time. Average velocity or acceleration is
determined between successive time points. Instantaneous is de ned as
occurring at a given instant or limit as the time interval approaches zero.
As the time interval between points gets smaller (i.e., approaches zero)
the value determined for velocity and acceleration tends towards an
instantaneous value.

The linear velocity and acceleration of a point on a rotating
body/arm/segment acts at a tangent to the curve (arc of motion). A
tangent is de ned as a line that touches a curve at a point. This line has
the same gradient as that of the curve at that point. It acts perpendicular
(at 90°) to the rotating arm or segment.

Objects and points
on a rotating arm

(segment)

Linear and
angular movement

Linear distance and
displacement of a
point on a rotating

arm

Relationship between
linear and angular

velocity and between
linear and angular

acceleration of
objects/points on a

rotating arm

Instantaneous linear
velocity and
acceleration

Tangential



Linear and The linear and angular components of movement are linked by a mathematical 
angular relationship. Speci c formulae exist that show how the linear translation of 
movement points on a rotating object can be determined. Often within biomechanics it is

necessary to understand and apply this relationship. For example, in the case of
the soccer kick it is the angular movement of the leg that creates the resultant
linear velocity (and horizontal and vertical components) that is applied to the
ball in order to give it trajectory and movement. Similarly, in golf it is the
angular movement of the arms and the club that imparts resultant linear
velocity to the golf ball to give it an angle of take-off and a parabolic  ight path.
Fig. A4.1 shows an element of this angular–linear relationship.

In Fig. A4.1 the arm (AB) moved from position 1 to position 2 in 0.45 seconds.
The angular displacement in this example was 35∞ (i.e., change in angular
position). The average angular velocity of the arm AB can be determined by the
change in angular position (angular displacement) divided by the time taken.

w = angular displacement (between position 1 and position 2)
w = time taken

w = 35∞
w = 0.45 s
Average angular velocity = 77.8 ∞/s (or 1.36 rads/s)
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Axis of rotation A

Arm AB moves from position 1
to position 2 (anti-clockwise)
through 35°

Rv = resultant linear velocity
Vv = vertical velocity
Hv = horizontal velocity

Position
1

Position
2

B B

Rv
Vv

Hv

q = 35∞

Fig. A4.1. Linear and angular components of motion

This value represents the average angular velocity of the arm AB between posi-
tion 1 and position 2. The angular displacement is angle that is formed between
the  nal and the initial position of the line/segment/arm (i.e., 35∞ in this
example). Any point on this line AB (or segment) will move through the same
angle in the same time. Within biomechanics, however, it is often the case that we
refer to points or objects on a rotating line or segment. In order to express the
angular displacement of an object that is on a rotating line or segment it would be
necessary to choose any two points that are on the object and join them with a
line. The new line on the object will rotate (if the original line/segment/arm is a
rigid body) in exactly the same manner as the original segment or line that the
object is located on. Figs A4.2 and A4.3 help to illustrate this in more detail.

In Fig. A4.3 it is possible to see that all the points (parts) on a rotating body (A,
B and, C collectively in this case (i.e., the additional line)) will travel through the
same angle (60∞ anti-clockwise). Since the angular displacement of the original
line/segment is also 60∞, and it moves through this angle in the same time, the



angular velocities of all the parts on the arm will be the same. In this context it is
important to indicate that in terms of angular displacement we are technically
referring to a collection of points or parts (i.e., the arm/line A, B, and C) as it is not
possible for a single point to have an angular orientation (see Fig. A4.3). However,
if we were to consider the linear distance/displacement and linear velocities
(technically linear speed without the directional component) of each point A, B,
and C (which we can because a point can have a linear orientation) we can deter-
mine that the linear distances covered by each of these points and hence their
linear velocities will be different (because each will have a different radial
(radius) distance from the point of rotation). The further away the point is from
the center of rotation (as in the case of point C in Fig. A4.3) the greater will be the
linear distance/displacement covered by that point.

Linear distance/displacement of a point on a rotating arm
The point B on the rotating arm in Fig. A4.4 will move through a linear distance
that can be expressed by determining the length of the arc. However, the linear
displacement of the point B can be determined by calculating the length of the
chord that is contained from the position of point B at the beginning of the move-
ment to the position of point B at the end of the movement. A chord is de ned as
a straight line connecting two points on a curve or surface that lies between the
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Axis of rotation
Rotating line
or segment

Object

q

q

An object (rectangle) is
positioned on a rotating line. Two
points on the object are joined
by a line (new line). The rotation
of the object is the same as the
rotation of the line/segment
(providing the line or segment
rotating is a rigid body). Thus
q experienced by the object
(and the new line) = q
experienced by the rotating
line/segment (original line)

The angular displacement covered by all parts on a rotating body
is equal (i.e., 60° anti-clockwise in this case). Providing it is a rigid body.
Note: In describing angular movement it is not technically correct to refer
to these elements as points because it is not possible for a point to have
a rotational orientation. However it is possible for a collection of points to
have rotational orientation (i.e., the arm/line containing points A, B and C)

C

B

A

0
A B C

q = 60°

The arm containing points
A, B and C moves
anti-clockwise through 60°

0 = axis of rotation

Fig. A4.2. Points on a line or segment that is rotating.

Fig. A4.3. Relationship between linear and angular components of motion.
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Linear
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displacement
of rotating
points



two points. To calculate the linear distance covered by the rotating point (i.e., the
arc length) we can use the relationship that is presented in Fig. A4.4 that links
the angle (only when it is expressed in radians) with the distance of the point
from the axis of rotation (the radius). In Fig. 4.4, if point B was located 0.34 m from
the axis of rotation (i.e., the radius) what would be the linear distance covered by
the point if the arm rotated through an angle of 25∞ (0.44 radians)? The following
formulae (also shown in Fig. 4.4) is used to calculate the linear distance (i.e., the
length of the arc) moved by the point in this example.

Linear distance moved by a point on a rotating arm/line/segment (Fig. A4.4)

s = r q

where
s = linear distance (arc length)
q = angle or angular displacement (expressed in radians only)
r = distance of point from axis of rotation (radius)

For point B located 0.34 m from axis of rotation and moving through 25∞ (0.44
radians)

s = r q
s = 0.34 · 0.44
s = 0.15 m (to two decimal places) – arc length or linear distance moved by point B

In order to calculate the length of the chord (or the linear displacement) it is
necessary to also use the distance of the point from the axis of rotation (the radius)
and the angular displacement (i.e., the angle q that the arm has been displaced
through). However this relationship is not as straightforward as the calculation
for linear distance (the arc length) because although the chord length is directly
proportional to the radius it is not directly proportional to the angle or angular
displacement. Fig. A4.5 shows the calculation for chord lengths for angles up to
90∞. For angles greater than 90∞ there are more complex tables of chords that are
used within the area of mathematics (i.e., Ptolemy’s table of chords).

From Fig. A4.6 it is possible to see that a point that is closer to the axis of rota-
tion will travel with less linear distance (arc length) than a point that is further
away from the axis of rotation (when both points are located on the same
line/segment/rotating arm). This is the same application as with muscles and
their points of attachments to bones. The muscle (muscle tendon and muscle
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q

A

B B

Axis of
rotation

Position
1

Position
2Arc length

(linear distance)

Chord (linear
displacement)

r

The arm AB rotates from position 1
to position 2 through an angle of
25° (0.44 rads). The point on the
end of the arm (point B) moves a
linear distance that is expressed
by the length of the arc. In addition
the point B is displaced through a
linear displacement represented by
the length of the chord.

Linear distance (s) – arc length
s = r · q when q is in radians and
r = the distance (radius) of the
point from the axis of rotation

Fig. A4.4. Linear distance/displacement of a rotating object/point



contraction which causes linear movement) will move with a small amount of
linear distance (i.e., a small contractile element) but it will cause a large amount of
movement at the end of the segment or arm (i.e.,  exing your arm in a bicep curl
causes a large linear movement at the end of the arm (i.e., at the hand) and a small
linear movement at the muscle point of attachment (which is ideal because the
muscle is only able to move a small linear distance in contraction)). In Fig. A4.6
point A is located 0.46 m from the axis of rotation (O) and point B is located 0.67
m from the axis of rotation. If the angular displacement of the limb (rotating arm)
in this case is 22∞ (0.38 radians) anti-clockwise what is the linear distance (arc
length) covered by point A and point B?

Linear distance covered by point A

s = r q (where q is expressed in radians)
s = 0.46 · 0.38
s = 0.175 m
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O = axis of rotation
OC rotates anti-clockwise to OA

AC = chord

If OA = 1 (unity)
then sin of angle AÔB is AB
double angle AÔB to obtain
angle AÔC. Chord of AÔC
is AC then sin AB of angle
AÔB is half the chord AC of
angle AÔC

The sin of an angle is half the
chord of twice the angle

O O

A A

D

CC

B

sin AÔB = opp/hyp
sin AÔB = AB/O A
If OA = 1
sin AÔB = AB

O = axis of rotation
OA = 0.46 m
OB = 0.67 m
anti-clockwise rotation 22°

O

A

A

B

B
q = 22°

What is the linear distance covered by each point (A and B)?

Fig. A4.5. Linear displacement of a rotating point (chord length)

Fig. A4.6. Linear distance moved by points acting at different distances from the axis of
rotation



Linear distance covered by point B

s = r q
s = 0.67 · 0.38
s = 0.255 m

All points (parts) on this rotating arm in Fig. A4.6 will move through the same
angle (angular displacement) in the same time. Hence all these points (or
collection of points) will have the same average angular velocity. However, point
A has moved through a linear distance of 0.175 m and point B has moved through
a linear distance of 0.255 m. Both these movements occurred in the same time and
therefore both points will have different average linear velocities (because B has
moved through 0.255 m in the same time that A has moved through 0.175 m).

Considering Fig. A4.7 it is possible to see that we can take the formula used to
determine the linear distance (s = rq) moved by a point on a rotating body (the
arc length) and by algebraic manipulation we can develop the formula that is
used to link average linear velocity (v) with average angular velocity (w). Fig.
A4.7 shows that by algebraic manipulation we can derive that the relationship
between average linear velocity and average angular velocity is as follows:

v = w r

where
v = average linear velocity
w = average angular velocity
r = radius or distance from point of rotation to point of interest
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By algebraic manipulation we can take the formula used to
determine linear distance and develop the equations to
be used to calculate the average linear and average angular
velocity components of rotational motion

Average linear velocity (v) = average
angular velocity (w) · radius (r)

Linear distance (s) = rq

So v = q r
t

––

Angular velocity (w) = q
t
– Linear velocity (v) = d

t
–

Hence v = w r

 or s
t
–

(average) (average)

where q = change in
angular position

Fig. A4.7. Calculation of average angular velocity

Average and As we have seen the average linear velocity (or speed without a directional 
instantaneous component) of a point on a rotating arm is derived from the equation of average 
values angular velocity multiplied by the radius or distance of the point of interest from

the axis of rotation (v = w r). This is expressed as an average value because it is

Relationship
between linear
and angular
movement



determined from the movement between two points (i.e., an angular displace-
ment). However, the linear velocity of point B at any instant in time throughout
the movement will act at a tangent to the curve (arc of movement). This will be
expressed as velocity at an instant and is know as instantaneous velocity. In this
context it is expressed as a tangential linear velocity and is given the expression
vT. A tangent is de ned as a line that touches a curve at a point. The line will have
the same gradient (slope of a line measured as its ratio of vertical to horizontal
change) as that of the curve at that point. The tangent will act at 90∞ (perpendicu-
larly) to the rotating arm that the point is contained on (Fig. A4.8). The direction of
the velocity of this point will be perpendicular to the rotating arm (radius of the
point) and at a tangent to the curve (circular path of the object).

Considering Fig. A4.8 it is possible to see that at any instant in the rotational
movement of the arm AB the point B will have a tangential linear velocity
(a velocity that acts at a tangent to the curve (arc) of rotation). This linear
tangential velocity will be derived from how much linear distance (the arc length)
the point has moved through in a given time or from the angular velocity in a
given time. The smaller the time intervals the more the value will tend towards an
instantaneous value. Instantaneous is de ned as occurring at a given instant or
limit as the time interval approaches zero. In biomechanics it is important to
understand and determine this linear velocity so we can assess how effective our
rotational movements (such as in the golf swing) are in relation to producing
linear motion (such as the resultant linear velocity of the golf ball).
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A

B B

Position
2

Position
1

vT vT
vT

The arm AB rotates anti-clockwise
from position 1 (about axis A) to
position 2 through 52° in 0.25 s.
At each instant in time in this
rotational movement point B will
have tangential linear velocity. The
average angular velocity is measured 
by the angular displacement covered
by the arm (52°) over the time
taken (0.25 s)

Instantaneous linear (tangential) velocity
vT of point B at various instants in time
throughout the rotational movement of
the segment/arm

52°

Fig. A4.8. Relationship between linear and angular components of motion

Angular and As with velocity, a mathematical relationship exists that will link average linear 
linear acceleration acceleration with average angular acceleration and this is portrayed in Fig. A4.9.

From Fig. A4.9 we can see that average angular acceleration is expressed as
change in angular velocity over time (or the rate of change of angular velocity).
This is portrayed as a = w/t. In order to link average linear acceleration with
average angular acceleration we use the same method of algebraic manipulation
that we used for determining the relationship between angular and linear
velocity. Thus the formula that links average linear acceleration with average
angular acceleration is as follows:

a = ar



where
a = average linear acceleration
a = average angular acceleration
r = radius or distance of point of interest from axis of rotation

In this context it is important to also clarify that if this linear acceleration was to
be determined at an instant in time then it would also be classi ed as an instan-
taneous value that is acting at a tangent to the curve (or arc of motion). This
would be represented by the expression aT or tangential linear acceleration.
Similarly as with linear tangential velocity this acceleration would act in the
direction of the tangent to the curve at that instant in time.

As we have seen from section A3, linear and angular movement have an
important relationship with each other. In human movement we use rotational
motion of an arm to generate linear translation of a point. For example, hitting a
tennis ball requires rotational movement of the arm and racket; throwing a
basketball requires rotational movement of the upper body, arms, and hands, and
obviously in golf we use rotational displacements of the club and arms to
generate high linear velocity of the club head and hence the golf ball (in excess of
45 m/s in professional golfers). Therefore, a good understanding of this relation-
ship is valuable towards providing an effective knowledge of human movement.
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From Fig. A4.7
Average linear velocity (v) = average angular velocity (w) · radius (r)

Average angular acceleration (a) =
w (change in angular velocity)

t (time)

Average linear acceleration (a) =
v (linear velocity)

t (time)
––––––––––––––

Average linear acceleration (a ) = a= a rw r
t

––
Hence

Average linear acceleration (a ) = average angular acceleration (a) x radius (r)

Fig. A4.9. Calculation of average angular acceleration
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A5 GRAPHICAL PRESENTATION OF
KINEMATIC DATA – NUMERICAL
DIFFERENTIATION

Key Notes

Numerical differentiation is the name given to a method for calculating
the rate of change of one variable with respect to another, usually time. It
does this using data collected during an experiment. In sport and exercise
biomechanics the variables most widely used are displacement and
velocity. The rate of change of displacement with respect to time is called
velocity while the rate of change of velocity with respect to time is called
acceleration.

The gradient of a curve representing data gives the rate of change and is
calculated from the slope between two data points. The process is best
illustrated graphically.

The gradient of a displacement-time curve gives the average velocity. If
the time interval between the two data points reduces to a very small
value the average velocity becomes the instantaneous velocity.

A positive gradient indicates a positive rate of change. For a
displacement-time curve this represents a positive velocity, in other
words an increase in velocity. A negative gradient indicates a negative
velocity and means the object is traveling in the negative direction with
respect to the measuring axes.

The displacement-time curve will have points of in ection and localized
minima and maxima. These indicate something special is happening to
the motion of the object. Points of minima and maxima indicate the object
has zero velocity. Points of in ection indicate a minimum or maximum
velocity has been reached.

The  nite difference method is an algorithm for performing numerical
differentiation. In practice this is a simple method and is based on the
equation for average velocity (when calculating velocity from
displacement data) or average acceleration (when calculating acceleration
from velocity data).

Numerical The biomechanical study of human motion requires an understanding of the 
differentiation precise relationship between the changes in position (displacement), how fast

the body is moving (velocity), and indeed how the velocity itself is changing
(acceleration). In section A2 it is shown that the average velocity of any moving
object is given by the change in displacement divided by the time over which

Numerical
differentiation

Gradient of a curve

Average and
instantaneous

velocity

Positive and
negative gradients

Points of minima,
maxima, and

in ection

Finite difference
method for numerical

differentiation



the change takes place. If displacement is represented by the letter s and time by
the letter t, the average velocity between instant 1 and instant 2 may be deter-
mined from the equation:

average velocity = (A5.1)

The average velocity is also called the rate of change of displacement. Remember,
velocity is a vector quantity and therefore this represents the average velocity in
a speci c direction; if the direction is not speci ed or unimportant to the situation
then the above equation is preferably termed the average speed.

Fig. A5.1a graphically represents the displacement of a moving object plotted
against time. From this it can be seen that the equation for the average velocity
between s1 and s2 is in fact the same equation that gives the slope or gradient of
the line between the points marked A and B, which correspond to the times t1 and
t2 respectively. Similarly, the gradient of the line between points C and D must be
the average velocity of the object over the smaller time interval dt. (Note: d is the
Greek lower case letter delta and is often used in mechanics to indicate a small
change in some quantity, in this case a small change in time.)

v
s s
t tav =

-
-

2 1

2 1
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Fig. A5.1. An illustration of how the gradient between two points becomes the tangent to the line as the time interval
between the two points reduces to zero

Instantaneous Knowing the average velocity of a moving object is only of limited value; usually 
values of greater interest is the velocity at a particular point in time and to know this it is

necessary to know the object’s instantaneous velocity. The instantaneous
velocity is the velocity that exists at any point in time and is given by the point on
the curve in Fig. A5.1a at that time. As the change in time becomes smaller and
smaller, the average velocity becomes the instantaneous velocity as the gradient
of line C–D becomes the tangent to the curve at that instant in time (Fig. A5.1b,
line E–F). Mathematically this is represented as the instantaneous velocity (v)

and is said to be the differential of displacement, s, with respect to time, t.

v
ds
dt

=



Following similar reasoning, and given that the average acceleration is

average acceleration = (A5.2)

the instantaneous acceleration is given by the gradient of the tangent to the
velocity curve at that instant in time and therefore the instantaneous acceleration,
a, is said to be the differential of velocity, v, with respect to time, t. This is written
mathematically as:

As this term contains velocity, which is itself a rate of change of displacement
with respect to time, acceleration is said to be the second differential of displace-
ment with respect to time.

The sign of In Fig. A5.1a, the average velocity between time t1 and t2 will be positive
the gradient because s2 is greater than s1 and therefore subtracting s1 from s2 will produce a

positive result. The gradient of the line between A and B is a positive gradient.
Similarly, the gradient of the tangent to the curve in Fig. A5.1b is positive.

Consider now Fig. A5.2. Here s2 is less than s1 therefore subtracting s1 from s2

will produce a negative gradient and the velocities will also be negative. Because
velocity is a vector quantity, its sign tells us about the direction of travel. In Fig.
A5.1, the object is moving away from the reference point (i.e., its displacement
is increasing from zero). In Fig. A5.2, however, the object’s displacement is
decreasing: it is getting closer to the origin. The negative sign of the velocity tells
us that the object is now moving in the opposite direction.

Acceleration may also be either positive or negative but whilst the sign of the
velocity is only dependent upon the direction of motion, the sign of an object’s
acceleration is dependent upon whether the object is accelerating or decelerating.
For example, a ball thrown vertically into the air will be moving in a positive
direction but as it is slowing down its acceleration will be negative (i.e., decelerat-
ing). When the ball reaches the apex of its  ight and falls back to earth the
magnitude of its velocity will now be increasing but in a negative direction (i.e.,
its velocity is negative) but its acceleration will still be negative (Fig. A5.3).

a
dv
dt

=

a
v v
t tav =

-
-

2 1

2 1
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Points of Sometimes, when plotting the motion of an object on a displacement time graph, 
maxima, minima we see localized points of maximum (point A, Fig. A5.4a) or minimum (point 
and inflection B, Fig. A5.4a) displacement (localized maxima and minima). At these points the

gradient of the curve is neither positive nor negative because the tangent is hori-
zontal. Here the velocity must be zero.

Points of in ection may also occur. Points of in ection occur when the curve
moves from a concave to convex (point C, Fig. A5.4b) or from convex to concave
(point D, Fig. A5.4b). These represent localized maximum and minimum gradi-
ents respectively and hence points of maximum or minimum velocity. Following
the same reasoning, points of in ection on a velocity time graph must indicate
local maximum or minimum acceleration.

A special case is the projectile  ight of Fig. A5.3. At the point of in ection of the
displacement, the tangent is horizontal and indicates a change in direction of the
projectile from an upward motion to a downward motion. Fig. A5.5 represents
the  exion angle, angular velocity and angular acceleration of the knee joint
during a normal walking stride from heel strike to heel strike. Note that the
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angular displacement, velocity, and acceleration curves follow the same rules as
linear displacement, velocity, and acceleration curves. Note also that the points of
in ection on the displacement curve indicate local maximum or minimum
velocity and therefore points of zero acceleration.

Numerical Differentiation is a mathematical process that quanti es the change in one 
differentiation – variable with respect to another. In this case, displacement and velocity with 
the finite respect to time. Therefore, differentiation of a displacement–time curve allows the
difference method determination of the rate of change of displacement (i.e., the instantaneous

velocity). Similarly the differentiation of a velocity–time curve allows the
determination of the rate of change of change of velocity (i.e., the instantaneous
acceleration).

In sport and exercise biomechanics, experimental data consist of a series of
discrete data values, so to obtain the instantaneous velocity (or acceleration) it is
necessary to use a method of numerical approximation. There are a number of
numerical differentiation methods we can use but the simplest (and most
frequently used) technique is the  nite difference method.

Table A5.1 represents the displacement-time data for an athlete during a 100 m
sprint race. The displacement from the start at each one second interval is
recorded in column two. The true instantaneous velocity of the athlete can never
be known but if the time interval was suf ciently small it may be possible to
estimate the velocity of the athlete during the race using the average velocity
between the known data points. That is, we use the equation A5.1:

where v is the approximated instantaneous velocity, and si and ti are displace-
ment, and times at instant i, and si+1 and ti+1 are the displacement and times at the
next data value. For example, between time 0.0 s and 1.0 s the velocity is given by:

m.s-1

It is important to note that the velocity value is ascribed to the mid-point between
the two displacement values (i.e., for displacement at times 0 s and 1 s the velocity
is attributed to 0.5 s). This is because the velocity is assumed to be constant
between the two displacement points so it makes sense to pick a point mid-
way between them. Acceleration may be calculated in a similar way and the
acceleration value is ascribed to the mid-point between the two velocity values.
Thus, end point data are lost when velocity is calculated and that even more data
points are lost when acceleration is determined. The calculated velocity and
acceleration for the whole race is given in Table A5.1.

The estimate of the instantaneous velocity becomes better and better the
smaller the value of t becomes. It is common practice in sport and exercise bio-
mechanics to use video to collect images of performance. This gives the
possibility of reducing the time interval to 0.04 s (for a video image rate of 25 Hz).
With special cameras or analysis equipment to access every video  eld (equal to
an image rate of 50 Hz) a higher image rate (and so a smaller time interval) can be
achieved. Under these circumstances the “approximated” instantaneous velocity
will be close to the actual instantaneous velocity.
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Table A5.1. A worked example of numerical differentiation for a 100 m race

t (s) s (m) v (m.s-1) a (m.s-2)

0.0 0.00
0.5 4.20
1.0 4.20 -3.03
1.5 7.23
2.0 11.43 -1.68
2.5 8.91
3.0 20.34 -1.51
3.5 10.42
4.0 30.76 -1.10
4.5 11.52
5.0 42.28 -0.61
5.5 12.13
6.0 54.41 -0.16
6.5 12.29
7.0 66.70 -0.29
7.5 12.00
8.0 78.70 -0.75
8.5 11.25
9.0 89.95 -1.20
9.5 10.05

10.0 100.00
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Section A – Kinematics of motion

A6 GRAPHICAL PRESENTATION OF
KINEMATIC DATA – NUMERICAL
INTEGRATION

Key Notes

Numerical integration is the name given to a method for calculating the
total change of one variable with respect to another, usually time. It does
this using data collected during an experiment. In sport and exercise
biomechanics the variables most widely used are acceleration and
velocity. The integration of acceleration with respect to time gives the
total velocity change. The integration of velocity with respect to time
gives the total displacement change. There are several algorithms for
performing this calculation but a common one is the Trapezium Rule.
This process is best illustrated graphically.

The area under a data curve between two points in time the gives the
total change in that variable from the  rst point in time to the second
point in time. For a velocity–time graph, the area under the curve between
two points in time gives the distance traveled during this time period.

The area under a velocity-time curve can be broken down into small
slices representing the distance traveled during each small time interval.
Each of these slices can be represented by a trapezium (a rectangular
shape with one side longer than the other). The area of a trapezium is
easily calculated and so the total area under the curve is given by the sum
of the areas of all of the trapezia. This area is an estimate of the total area
so the distance computed represents an estimate of the total distance
traveled. As the time interval for each small slice reduces, the estimate
becomes better and ultimately becomes an accurate value.

Integration In section A5 it has been shown that the process of differentiation allows the 
velocity to be determined from displacement, and acceleration to be determined
from velocity. Integration is the reverse of differentiation and allows the deter-
mination of velocity from acceleration and displacement from velocity. In other
words:

Differentiation allows Displacement � Velocity � Acceleration
Integration allows Acceleration � Velocity � Displacement

Whilst differentiation measures the gradient of the appropriate curve at a
given instant, integration measures the area under a curve. This is demonstrated
in the velocity–time graphs presented in Fig. A6.1.

Numerical
integration

Area under a curve

Accurate and
estimated

displacements – the
Trapezium Rule



Fig. A6.1a represents an object moving with constant velocity. Between two
points in time, t1 and t2, we know from section A5 that:

(A5.1)

Where v is the object’s velocity, s2 – s1 is the change in displacement (Ds) between
instants 1 and 2, and t2 – t1 is the change in time. Therefore:

s2 - s1 = v(t2 - t1) = area of the rectangle ABCD

The velocity data in Fig. A6.1b is more complex. This may be approximated by a
number of smaller rectangles of width dt. The area of a single rectangle (given by
v · dt) must be approximately equal to the change in displacement over the time
dt. The area under the curve, and hence the change in displacement over the
period from t1 to t2 can then be approximated by adding together the areas of all
such rectangles between t1 and t2. This is only an approximation as the velocity is
assumed to be constant during each small time interval dt, but the approximation
gets closer to reality the smaller dt is, and is exact if dt = 0.

The ideal case, when the time intervals become so small that their sum re ects
the exact area under the curve, is illustrated in Fig. A6.1c, and this equals the
change in displacement that occurs between t1 and t2. This is written as:

Where Ds is the change in displacement (note: D is the Greek upper case letter
delta and is often used in mechanics to indicate a change in some quantity), v is
velocity, and t is time. The symbol ò is the symbol for integration. The letter d
indicates the variable over which the change is being measured (in this case time,
t) and t1 and t2 are termed the limits of integration.

Using similar reasoning, it can be shown that the area under an acceleration
time curve between two points in time must be equal to the change in velocity
that occurs and hence:

where a is acceleration.

Dv a dt
t

t

= ò .
1

2

Ds v dt
t
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Numerical In sport and exercise biomechanics the data that are most commonly available  
integration for which the process of integration is appropriate are data from force platforms

and accelerometers. The force data from force platforms can be used to compute
acceleration following Newton’s second law (F = ma). The process of integration
enables the velocity to be obtained, and the process can be repeated on this
velocity data in order to obtain displacement. Integration of this type of data is
best done using numerical integration. The term numerical integration
describes a process of  nding the area under the data curve, represented by the
thin columns in Fig. A6.1b, which are summed together to provide an approxi-
mation for the true area under the curve. There are a number of numerical inte-
gration techniques that can be used but the most commonly used is the
trapezium rule.

Fig. A6.2 illustrates a velocity–time graph in which the velocity data have been
sampled at equal intervals Dt. The curve may be represented by a series of trapez-
iums. A trapezium is a rectangular shape with one side longer than the other. The
area under the curve may then be considered to be equal to the sum of the areas
of the trapezia. The area of a trapezium is equal to half the sum of its two sides
multiplied by its base. If, for a set of discrete data, the base of each trapezium is
equal to the time between samples (Dt), and the sides are de ned by the
magnitude of adjacent samples (vi and vi+1), the area under a single trapezium
= Dt.(vi + vi+1)/2, and for n samples, the total area under the velocity curve is given
by:

Area = S (Dt.(vi + vi+1)/2) for i=1 to n-1 (A6.1)
= Ds

and is equal to the change in displacement (Ds) from t1 to tn . The term S means
sum all terms between the stated limits, here from 1 to n-1. Similarly, if we were
working with acceleration–time data,

Area = S (Dt.(ai + ai+1)/2) for i=1 to n-1 (A6.2)
= (Dv)

and is equal to the change in velocity (Dv) from t1 to tn. An example is given in
Fig. A6.3 which shows how the increase in distance can be calculated based on the
above equations.
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The Trapezium Rule is only an approximation of the true area under the curve
because it assumes that the curve between two adjacent samples is a straight line.
If the curve is not a straight line this will result in an error. These errors will be
reduced if the time interval between samples is reduced. (The narrower the
trapezium, the more closely the curve between the sides of the trapezium will
approximate to a straight line). Although some error will always persist, for most
practical purposes in biomechanics this method of integration is considered
suitable.
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Time (s) Velocity (m/s)

0.0 0
0.5 2.2
1.0 3.3
1.5 4.0
2.0 4.6
2.5 5.1
3.0 5.5

Problem
Determine the distance traveled (i.e., the change in displacement s) of the sprinter
over the first 3 s given the velocity data in the table

Solution
From the Trapezium Rule: s = S ( t.(m mi + i+1)/2)    for i = 1 to 6

s = ((0.0 + 2.2)/2) · 0.5
+ ((2.2 + 3.3)/2) · 0.5
+ ((3.3 + 4.0)/2) · 0.5
+ ((4.0 + 4.6)/2) · 0.5
+ ((4.6 + 5.1)/2) · 0.5
+ ((5.1 + 5.5)/2) · 0.5
= 0.55 + 1.375 + 1.825 + 2.15 + 2.425 + 2.65

therefore
s = 10.825 m

Fig. A6.3. Example of numerical integration



Section A – Kinematics of motion

A7 UNIFORMLY ACCELERATED AND
PROJECTILE MOTION

Key Notes

Newton’s Second Law of Motion dictates that bodies which experience a
constant force also accelerate at a constant rate. The most common
example of this occurring on Earth is when a body is airbourne; where
the attractive force between the body and the Earth provides an
acceleration equal to -9.81 m·sec-2.

A body subjected to a constant acceleration will experience a linear
change in velocity and a curvilinear change in position when viewed over
time. At any point in time the motion of a body (e.g., its position or
velocity) that is accelerating constantly can be calculated using one of
Galileo’s equations of uniformly accelerated motion. These equations can
be used to  nd, for example, the height raised by an athlete’s center of
gravity (CG) during a jump.

A projectile is a body that is unsupported (i.e., a ball in  ight) and only
affected by the forces associated with gravity and air resistance.
Projectiles generally have both horizontal and vertical velocity
components during  ight. If air resistance can be ignored, the horizontal
velocity remains constant and the vertical velocity is affected by the
constant acceleration due to gravity; which results in the projectile having
a parabolic  ight path.

For a body that lands at the same height that it was projected from, its
range is dependent upon both its velocity and angle of projection at take-
off. More speci cally, range is proportional to the square of the take-off
velocity; so higher velocities will result in proportionally greater gains in
range. At any velocity, a take-off angle of 45° will result in the greatest
range.

For projectiles that are released from and land at different heights the
optimal angle of projection is dependent upon both the take-off height
and velocity. In the more common situation in sport, where the height of
take-off is greater than landing (e.g., shot putt), the optimal angle is
always less than 45°. The smaller the distance between take-off and
landing heights, the closer the optimal angle gets to 45°. Similarly, for
greater velocities, the optimal angle approaches 45°.

Introduction In the examples of movements that occur with the body in contact with the
ground (e.g., the take-off phase of the standing vertical jump (SVJ)) the accelera-
tion of the body is rarely constant, or uniform, because of the changing forces
that act on it. Section B describes such forces and explains the effect that they
have on the motion of the body.

Introduction

Effects of constant
acceleration

Projectile motion

Maximizing the
range of a projectile

Projectiles with
different take-off and

landing heights



However, in situations where the forces acting on the body are constant, it
experiences a constant acceleration. An obvious example of this is when a body
is in  ight (e.g., the time when a shot putt or a long jumper is airborne) and the
only force acting on it is attractive or gravitational force that exists between it
and the Earth (this force is further explained in section B). This is assuming that
the effect of air resistance (see section D), is negligible; which it can be for
bodies of large mass traveling at low speeds. The acceleration that a body expe-
riences as a consequence of the gravitational force varies slightly depending on
its position on Earth (it is slightly greater at the poles than the equator) but is
generally agreed to be equal to 9.81 m·sec-2. It should also be referred to as
negative (i.e., -9.81 m·sec-2) because the acceleration acts in a downwards direc-
tion, towards the surface of the Earth. However, other constant acceleration
situations can occur when a body is not airborne. For example, a cyclist who
stopped pedaling on a  at road would experience a fairly constant horizontal
deceleration. Similarly, providing it was traveling up or down a smooth incline,
a bobsleigh would also experience an approximately constant deceleration or
acceleration.

Effects of When a body is moving in one direction in a straight line under constant 
constant acceleration (e.g., a car experiencing approximately constant acceleration at the 
acceleration start of a race) its velocity increases in a linear fashion with respect to time and

thus its position changes in a curvilinear (exponential) manner, as shown in Fig.
A7.1. The situation is more complicated when a body moves in two directions,
again in a straight line. An example of this is when someone jumps directly up
and then lands back in the same place (e.g., a SVJ), and experiences the constant
acceleration due to gravity during both the ascent and descent. In this situation
the velocity of the body decreases linearly to zero at the apex of the jump and
then increases in the same manner until landing. Their position changes in a
curvilinear fashion, as shown in Fig. A7.2.

Equations of uniformly accelerated motion
The changes in position and velocity of a constantly accelerating body were  rst
noted by an Italian mathematician called Galileo in the early 17th century. Galileo
also derived the following equations that can be used to generate the curves
shown in Figs A7.1 and A7.2, and therefore to describe the motion of bodies expe-
riencing constant acceleration.

v2 = v1 + at (A7.1)
d = v1t + 1 2 at2 (A7.2)
v2

2 = v1
2 + 2ad (A7.3)

d = 1 2 (v1 + v2)t (A7.4)

The equations include linear kinematic variables that are de ned as follows:

v1 = initial velocity
v2 =  nal velocity
d = change in position or displacement
t = change in time

Applications of equations of uniformly accelerated motion
Sport and exercise biomechanists often wish to analyze the motion of a body
whilst it experiences constant acceleration. It may be important to know, for
example, how high somebody jumped, what velocity they would experience after
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a certain time, or how long it would take them to reach that velocity. Any of the
equations above (A7.1–A7.4) can be used to answer such questions. For example,
consider someone performing a SVJ with a take-off velocity of their center of mass
(c of m) of 2.4 m·sec-1. What would be the displacement of their c of m between the
instant of take-off and the highest point of their c of m (i.e., how high do they
jump)? The best way to answer this question is to break it down into a series of
steps:
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Fig. A7.1. Horizontal position and velocity of a body when experiencing a constant
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Step 1. Decide which of the equations (A7.1–A7.4) is appropriate.
In this case we have the take-off velocity (v1) and we also know that the c of m will
have a velocity of zero when it reaches the apex of its  ight before the person falls
back to the ground; so v2 = 0. We also know that the acceleration of the c of m during
 ight is -9.81 m·sec-2. Thus the only equation that we can use to determine the
displacement (d) of the c of m is number A7.3. All of the other equations either do
not include what we wish to  nd (i.e., equation A7.1 does not include d) or include
variables that aren’t available to us (i.e., equations A7.2 and A7.4 include t).

Step 2. Rearrange the equation, if necessary.
Sometimes the variable that you want to  nd is already isolated on the left-hand
side of the equation and the equation does not need to be rearranged. However,
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in our situation, we do need to rearrange the equation to isolate d. The stages
involved in this are shown in the box below:
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v2
2 = v1

2 + 2ad

Subtract v1
2 from both sides of the equation:

v2
2 - v1

2 = 2ad

Divide both sides of the equation by 2a:

= d
v2

2 - v1
2

2a

Step 3. Insert the known variables and calculate the unknown variable.

d = 

d = 

d = 

d = 0.29 m

Thus, the c of m rose by 0.29 m between the instant of take-off and the highest
point of the jump.

Suppose that the equipment required to obtain take-off velocity (i.e., a force
platform or video camera) was not available but that the time that the person spent
in the air was able to be recorded using (e.g., a jump mat); and was 0.489 sec.
Assuming that the time the c of m spent rising the instant after take-off was the
same as the time that it spent lowering the instant before touchdown, equation
A7.2 can be used to calculate the displacement of the c of m instead. Thus v1

becomes the velocity of the c of m at the apex of the  ight phase (i.e., zero), t is half
of the  ight time (i.e., 0.488/2 = 0.244 sec), and therefore d is the displacement of
the c of m between this point and landing. The equation does not need rearranging
so d can be calculated by inserting the known variables into equation A7.2:

d = v1t + 1 2 at2

d = (0 · 0.244) + (1 2 · -9.81 · (0.2442))
d = -0.29 m

Unlike the (upward) displacement that was calculated before using the take-off
velocity, this displacement is negative as it is the downward displacement of the
c of m between the apex and landing.

Projectile motion In the examples described above, the body in question was moving in the same
direction (e.g., the horizontal motion of a car during the start of a race) or along
the same line (e.g., the vertical motion of the c of m during a SVJ). However, in
many situations (e.g., the  ight of a soccer ball or javelin) the body has both a
horizontal and vertical component of velocity at the point of release or take-off,

-5.76
�

02 - (2.4)2

��

v2
2 - v1

2

�
2a



and thus moves horizontally and vertically in  ight. A body or object that is
unsupported (i.e., in  ight) and only affected by the forces associated with
gravity and air resistance is known as a projectile. If air resistance is ignored, as
it often is for bodies of relatively large mass traveling at low speeds, the  ight
path or trajectory of a projectile follows that of a parabola, which is symmetrical
about its highest point. The greater the vertical in relation to horizontal com-
ponent of velocity that the projectile has at release or take-off, then the more
peaked its trajectory will be, as shown in Fig. A7.3.
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Fig. A7.3. Effect of different horizontal and vertical components of take-off velocity on the
trajectory of the projectile

Horizontal and vertical acceleration of a projectile
If the effect of air resistance is neglected there are no other horizontal forces acting
on a projectile and its horizontal acceleration is zero. Thus, a shot putt or someone
doing a standing broad jump will have the same horizontal velocity when
landing as they do at release or take-off. Conversely, the vertical motion of a
projectile is affected by the gravitational force which, as stated above, on Earth
provides an acceleration of -9.81 m·sec-2. Thus, if a projectile has a positive
velocity at take-off or release, the effect of this downward acceleration will be to
decrease this velocity to zero at the apex of the trajectory. The projectile then gains
negative (i.e., downward) velocity until landing. If the projectile lands at the same
height that it was released from, then it will have the same magnitude of velocity
at the start and end of its trajectory. Fig. A7.4 shows how the pattern of both
horizontal and vertical velocity of a projectile alter throughout its trajectory.



Maximizing the Often in sport, the aim is to maximize the range, or horizontal displacement, of a 
range of a projectile (e.g., soccer goal kick). The range of a projectile that lands at the same 
projectile height that it is released from is given by the following equation, which can be

derived from the equations of uniform acceleration:

R = (A7.5)

where:

R = range or horizontal displacement
v = resultant take-off or release velocity
q = take-off or release angle, de ned as the angle between the horizontal compo-

nent of velocity and the resultant velocity vectors at take-off or release
g = acceleration due to gravity (i.e., -9.81 m·sec-2)

From equation A7.5 it is evident that, for a given take-off angle, the range of a
projectile will increase in proportion to the square of the take-off velocity, as
shown in Fig. A7.5.

v2 sin 2q
g
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Fig. A7.4. Change in horizontal and vertical velocity of a projectile during flight
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Fig. A7.5. Effect of take-off velocity on the range of a projectile, at three different take-off angles



The same equation also reveals the optimum take-off angle for a projectile (i.e.,
the angle that will result in the greatest range). The sine of 90∞ is equal to 1, and
any angle either smaller or larger than this will result in a sine of the angle that is
less than 1. Thus as equation A7.5 contains the expression “sin 2q”, a take-off
angle of 45∞ will result in a value for this expression of 1 and, therefore, produce
the optimum range; as shown in Fig. A7.6. For any given take-off velocity a take-
off angle that is a particular number of degrees less than 45∞ will result in a range
that is identical to that produced by an angle that is the same number of degrees
greater than 45∞. For example, as shown in Fig. A7.6, if the take-off velocity of a
projectile is 20 m·sec-1 its range will be 38.3 m if the take-off angle is either 35∞ or
55∞.
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Fig. A7.6. Effect of take-off angle on the range of a projectile, at three different take-off
velocities

Calculating the height and flight time of a projectile
Often in sports biomechanics it is the height (H) that a projectile reaches (e.g.,
volleyball blocker) or the time (T) that it is in the air (e.g., a soccer pass) that is of
greater importance. These variables can be calculated using equations A7.6 and
A7.7, which also can be derived from the equations of uniform acceleration:

H = 
(A7.6)

T = (A7.7)

Thus, for a volleyball blocker who has a take-off angle of 80∞ and velocity of 3.2
m·sec-1, the height raised by the c of m during  ight can be calculated by inserting
the known variables into equation A7.6:

H = 

H = 

H = 0.51 m

10.24 · 0.97
��

19.62

3.22 · sin280
��

2v sin q
�g

(v sin q)2

�



Using equation A7.7, the  ight time of a soccer ball kicked with a velocity of 16
m·sec-1 at an angle of 56∞ can be calculated:

T = 

T = 

T = 2.70 sec

Projectiles with Most of the projectiles used as examples in the previous sections landed at the 
different take-off same height as they were released from (e.g., a soccer goal kick or pass that is  
and landing not intercepted by another player). However, in many sports the projectile is  
heights more commonly released from a greater height than it lands at (e.g., shot putt,

long jump) or less frequently lands at a greater height than is was projected
from (e.g., basketball free throw). Equations A7.5–A7.7 can only be used in situ-
ations where the release height is the same as the landing height, and two new
equations (A7.8 and A7.9) are needed to calculate the range and  ight time of a
projectile that has different release and landing heights:

R = (A7.8)

T = (A7.9)

In such situations the optimal angle of take-off or release is no longer 45∞, as it
is for projectiles that have the same take-off and landing heights. For projectiles
that have a higher take-off than landing height (e.g., shot putt) the angle that will
result in the greatest distance is always less than 45∞. Conversely, bodies that land
higher than they are released from (e.g., basketball free throw) have an optimal
release angle of more than 45∞. The actual optimal angle of projection in either
situation is dependent on both the difference in height between take-off and
landing, and the take-off velocity; as shown in equation A7.10:

cos 2q = (A7.10)

In the more common situation experienced by long jumpers and shot putters
and so on, the optimal angle of take-off or release decreases with the difference
between take-off and release height. For example, for a given release velocity,
shot putters with a high release height will have a lower optimal release angle
than those athletes who release the shot from a lower height. The optimal angle
also depends on the take-off or release velocity of the projectile. The higher the
velocity the closer the angle gets to, but never reaches, 45∞. Fig. A7.7 shows the
effect that both the height and velocity of release have on the optimal release
angle. This  gure shows that at low velocities (less than 5 m·sec-1) small changes
in velocity have a large affect on the optimal angle of projection. At higher veloc-
ities, that are more realistic for shot putters (10–15 m·sec-1), Fig. A7.7 also shows
that the same changes in velocity or release height have a much smaller in uence
on the optimal angle of release.

gh
�
v2 + gh

v sin q + ÷(v sin q)2 + 2gh
g

v2 sin q cos q + v cos q ÷(v sin q)2 + 2gh
g

32 · 0.829
��

9.81

2 · 16 · sin 56
��

9.81
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Section B – Kinetics of linear motion

B1 FORCES

Key Notes

Forces can be divided into either attractive forces or contact forces. An
example of an attractive force is the gravitational force of attraction that
exists between any two objects that have mass. An example of a contact
force would be the contact of the foot with a soccer ball or the contact of
the foot with the ground during running. All forces will produce or alter
motion although this alteration in motion (i.e., acceleration or
deceleration) will not always be apparent. The pushing of a book across a
table will not occur unless you apply enough force to overcome the
frictional force between the book and the table.

Forces can also be categorized as both external and internal forces. An
external force would be the force on the tennis ball that is exerted by the
racket, whereas an internal force would be the forces occurring in the
elbow joint when you hit the ball with the racket.

An application of force is required to cause a change in movement of an
object (i.e., an acceleration or deceleration). Inertia is the reluctance of an
object to change its state of motion. Inertia is directly related to mass. The
more mass an object has the more inertia it has. If you push a massive
book across a table it will take more force to accelerate the book at a rapid
rate than it would to accelerate a less massive book at the same rate.

Mass is the measure of the number atoms or molecules in an object. Mass
is relatively constant over time. If you have a mass of 75 kg on Earth you
will have a mass of 75 kg wherever you are. Weight is the measure of
force acting on an object. It is dependent on the position of the object on
the planet and also on which planet the object is located on. An object on
Earth will weigh more than the same object on the Moon.

Vector quantities have both magnitude and direction. A force can be
expressed as a vector quantity. This can be either mathematically
expressed or graphically represented on paper by a line drawn to scale.
The length of the line would be the magnitude of the force and the
position/angle/orientation of the line would be its direction.

Several forces acting simultaneously on an object can be resolved into one
force. This resolution of force can be carried out by a mathematical
method or by using a graphical technique called “tip to tail.” Forces can
be resolved in both two and three dimensions. The resolution of forces is
critical for an understanding of both performance and injury prevention.

Attractive and The consideration of forces within human movement can be broadly de ned 
contact forces into two categories: attractive and contact forces. Attractive forces, such as in

the case of gravity, are the result of any two masses acting upon each other. In

Attractive and
contact forces

External and
internal forces

Force and inertia

Mass and weight

Vector quantities

Resolution of forces



the case of the Earth’s gravitational force, the earth is acting on the human body.
Similarly, although, with much less affect, the human body is acting on the
Earth. Contact forces can be used to describe most other forms of force encoun-
tered within human movement, such as the frictional force between the foot and
the ground when walking. Contact forces can involve both “pushes” and
“pulls” and they cause some form of change in direction or movement
(speeding up or slowing down). However, it is important to point out that
although all forces will produce or alter motion, this motion is not always
apparent. Some examples of contact forces within human movement include:
the reaction force between the feet and the ground during landing from a jump,
the impact force between two players colliding in soccer, the force applied to a
tennis ball by the racket of the tennis player or the force exerted across the knee
joint when the quadriceps muscle contracts during movement.

Within the human body these forces can be further de ned into being either
external or internal forces. External forces include all the forces that exist outside
of the body: such as in the case of kicking a soccer ball and internal forces include
all those that act inside the body: such as the forces across the anterior cruciate
ligament in the knee when a player is tackled in rugby. Often many of the external
forces are responsible for the internal forces that are experienced by the muscles,
bones, joints, ligaments, and tendons. Both external and internal forces act at
various places all over the body during movement. Without the existence of these
forces we would not be able to move with any acceleration. Similarly, to achieve
a speci c performance such as in the case of sprinting 100 m in less than 10
seconds requires the careful execution and control of force. However, such forces
can also cause injury and a more thorough understanding of them will help in
both the improvement in performance and future prevention of injury. Consider
Fig. B1.1 and see if you can identify some of the different external and internal
forces that are occurring in these activities.
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Fig. B1.1. Forces acting within sport



Force and inertia Any change in a body’s motion (considered without rotation at this stage) that is
brought about by the application of a force will incorporate a change in speed
and/or a change in direction (i.e., changing its velocity which was identi ed in
section A2). In order to start an object moving we need to apply a force to the
object. Inertia is de ned as the reluctance of an object to undergo any change in
velocity (that is to either change its current state of velocity or begin any state of
movement). The amount of inertia possessed by a body is directly proportional
to the amount of mass possessed by the body. Mass is de ned as the quantity of
matter (atoms and molecules) present in a body (the term body is used to
describe both the human body and any objects associated with it). Inertia is
directly proportional to mass, which is measured in kilogrammes (kg). The mass
of a body remains relatively constant over time (relative of course to how much
you eat and drink in the case of the human body) and it is the same for an object
that is on the Moon as it is for the same object when it is on the Earth. For
example, if you have a mass of 55 kg on the Earth you will also have a mass of
55 kg on any other planet or indeed a mass of 55 kg when you are not on any
planet at all.

In the context of understanding the term inertia, imagine trying to push a
book across a table surface. Initially the book will be stationary but as you apply
a force the book will begin to move (accelerate). The resistance you feel to your
“pushing” of the book is a measure of the frictional force that exists between the
book and the table. The frictional force is derived from the weight of the book.
The more mass the book has, the more weight the book will have. Since the
inertia possessed by the book is related to how much mass the book has, the
more force you will need to apply to accelerate the book at a greater rate. At
the beginning of this action you may notice that you applied a force and yet the
book did not move. This would be because you did not apply enough force to
overcome the frictional force between the book and the table. Next, place
another book on the same table but this time use a book that is much heavier.
Now try the experiment again. This time you will see that you need to exert a
much greater force to accelerate this new book across the table at the same rate
as the original book. The new book has more mass and hence more inertia, and
thus a greater reluctance to change its current state of motion (i.e., accelerate
across the table).

This same understanding of inertia and force applies to the movement of the
human body. If you try to push over (or accelerate) another individual you will
feel a resistance to your efforts to this “pushing”. This resistance will be
dependent upon the mass of the person you are trying to push over and the
frictional force between them and the ground. Trying to push over someone who
is 110 kg is much more dif cult than trying to push over someone who is 52 kg
(although the relative heights and positions of their respective centre of gravity
will also have an effect on this exercise).

Mass and weight As we have already observed mass is the term used to describe the quantity of
matter in an object (a measure of the number of atoms and molecules in the
object) and it is relatively constant. Weight is the effect of the Earth’s gravi-
tational force acting on a body (again the term body can be used for the human
body or any object). Mass and weight are different quantities and the units of
measurement for each quantity are also different. Mass is measured in kilo-
grammes and weight (by virtue of the fact that it is a measure of the force acting
on a body) is measured in Newtons (N). The unit of 1 Newton (named after the
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English mathematician Isaac Newton 1642–1727) is derived from the force
required to accelerate a mass of 1 kg at a rate of 1 m/s2.

1 Newton (N) = 1 kilogramme (kg) · 1 m/s2

The terms mass and weight are different, and should not be used to describe
the same quantity. How often have you heard people say: How much do you
weigh? The correct answer to this would be to work out the force acting on your
body (your weight) by virtue of the fact that you are being pulled to the center of
the Earth by the gravitational force of the planet. Since, the acceleration due to
gravity at sea level is given as 9.81 m/s2 we should, if we know our mass, be able
to accurately work out our weight (Fig. B1.2).

However, if you were asked this question while you were standing on the
Moon then the answer would be very different. The Moon has a much smaller
mass than that of the earth and, therefore, it will have a much smaller gravita-
tional affect on your body. Although, you will still have the same mass on the
Moon as you did on the Earth you will actually weigh much less.

The product of mass multiplied by the acceleration (acceleration due to gravity
in the calculation to determine weight) of the object is a measure of the force.

F = ma

Where
F = force (measured in Newtons (N))
m = mass (measured in kilogrammes (kg))
a = acceleration (measured in meters per second squared (m/s2))

And, as we have seen, this equation is often re-written to express the calcula-
tion of the weight of a body that is being acted upon by gravitational acceleration.

W = mg

Where
W = weight (measured in Newtons (N))
m = mass (measured in kilogrammes (kg))
g = acceleration due to gravity (measured in meters per second squared

(m/s2))

Now, think back to the experiment of pushing the book across the table; once
the book is moving it will have accelerated or be accelerating (i.e., it was stationary
before you pushed it and now it is moving across the table – hence its velocity has
changed – and it therefore must have accelerated). The product of the mass of the
book multiplied by the acceleration possessed by the book as it changed its velocity
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Determine the weight of a 75 kg person

Weight = force acting on a person by virtue of the gravitational
pull of the planet Earth and at sea level this is expressed as an
acceleration due to gravity which is 9.81 m/s2

Weight = mass · acceleration due to gravity

For the 75 kg person

Weight  = 75 kg · 9.81 m/s2

Weight = 735.75 Newtons (N)

Fig. B1.2. Calculation of weight



will be a measure of the amount of force that you exerted (or are currently exerting)
on the book to move it. Note: to keep the book accelerating you will need to
continue to apply force (F = ma). This same understanding is applicable to many
aspects of human movement: If you accelerate your leg/foot down onto the
ground quickly you will feel a larger force than if you move it towards ground
contact slowly, or if you hit a ball with a heavier racket or bat you will produce
more force acting on the ball and again you will feel a force in a reaction on your
arms. Such, understanding of force and its relationship with mass and accelera-
tion is a very important concept in human movement and will be expanded in
more detail in the sections concerned with impulse and Newton’s laws of motion.

Vector quantities Since a force has both magnitude (the amount of force you exert or is exerted
upon you) and direction (the speci c direction in which the force occurs or is
applied) it can be expressed either mathematically or graphically on paper using
straight lines. A vector quantity, such as force, can be identi ed as an arrow that
has both magnitude (length) and direction (angle – position). Fig. B1.3 illustrates
this vector representation of a force in more detail.

A vector quantity has both magnitude and direction and, as we have seen,
force (because it is a vector quantity) can be represented by a single line with an
arrow indicating a position and direction. The length of the line (usually drawn to
a scale) is the magnitude (size) of the force. When two forces are acting vertically
upwards the composition (or resultant) of these two forces can be de ned as the
summation of their magnitudes. Similarly, when two forces are acting horizont-
ally (in the same direction) the resultant can be expressed as the sum of their two
parts. The same principle applies for any number of forces that are acting parallel
to each other and in the same direction (see Fig. B1.4). Similarly, if two forces are
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The length of the line (when drawn to a scale) would
represent the magnitude of the force and the angle
– position would represent the direction of the force

55N

45°

45N

90°

60°

75N

Fig. B1.3. Force expressed as a vector quantity

=

45N

30N

90° 90°

75N

90°

Fig. B1.4. Composition of force expressed as vector quantities (not drawn to scale)



acting in direct opposition to each other the sum of their respective parts (i.e.,
upward minus downward) will indicate the resultant of the two and the direction
in which it occurs (i.e., positive or negative value).

However, imagine trying to move a box that is placed on a table: if you push
the box with ONE force it will generally (provided you apply enough force) move
off in the direction of this single force. But if you push the box with TWO forces it
will now move off in the resultant direction of the two forces. Similarly, it will
move off with an acceleration (changing from rest to movement) that is
proportional to the magnitude of the resultant of the two forces that you are
applying to the box (see Fig. B1.5).

In order to determine the resultant of these two forces (or any number of forces)
it is necessary to either solve this problem mathematically or graphically.
Graphically the solution is achieved by drawing each force to a speci c scale on a
piece of paper and using the “tip to tail” method of resolution. This method (which
works for any number of co-planar forces) is achieved by carefully drawing each
force with the next force drawn on the tip of the previous force. In addition, it does
not matter in what order you draw the force vectors, as the solution (resultant) will
always be the same. In this context, it is important to point out that the resolution
of forces will also work for forces that are acting in several planes simultaneously
(i.e., three-dimensional). Fig. B1.6 illustrates the graphical “tip to tail” method in
more detail.
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(acceleration)
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Fig. B1.5. Resultant of force application
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Fig. B1.6. Resolution of forces vectors (graphical solution)
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Using the same forces as presented in Fig. B1.6

35N

15N
20N 50N

90° 30° 60° 20°

1 2 3 4

Express all the forces at a single point

1

2 4
3

Note: that forces opposing each other should be subtracted
and forces acting in the same direction summated. In this case
ALL forces have an upward component (with force 1 being
perfectly vertical). However, force 3 has a left component while
forces 2 and 4 have a right component. Hence they should be
subtracted. Note force 1 has no left or right component

Positive

Negative Positive

Negative

3 2

1

4

Note: in this configuration it is possible to divide the diagram
into positive and negative components as identified above.
This process will help determine the direction of the magnitude
of the resultant force at the end of the calculation

Fig. B1.7a. Mathematical resolution of force application (composition of force vectors solution)

Fig. B1.7b. Mathematical resolution of force application (composition of force vectors solution)

Fig. B1.7c. Mathematical resolution of force application (composition of force vectors solution)

These force vectors can also be solved mathematically using trigonometry and
this involves  rst resolving the forces into a single vertical and single horizontal
component. Next, the vertical and horizontal components are resolved into one
resultant force. Figs B1.7a–h illustrate this method in more detail.
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Note: all forces are
acting upwards

hence all positive

1 35N at 90°
2  15N at 30°
3  20N at 60°
4  50N at 20°

Sum of all forces (vertically) = F sin q

F sin q
= 35 sin 90° + 15 sin 30° + 20 sin 60° + 50 sin 20°
= (35 · 1.0) + (15 · 0.5) + (20 · 0.866) + (50 · 0.342)

= 35 + 7.5 + 17.32 + 17.1

= 76.92N (vertical component of all the above forces)

1

3 2 4

Note: force 3 is acting
left and forces 2 and 4
are acting right hence
consider 3 as negative

1 35N at 90°
2  15N at 30°
3  20N at 60°
4  50N at 20°

Sum of all forces (horizontally) = F cos q

F cos q
= 35 cos 90° + 15 cos 30° + (–20 cos 60°) + 50 cos 20°
= (35 · 0) + (15 · 0.866) + (–20 · 0.5) + (50 · 0.939)

= 0 + 12.99 + (–10) + 46.95

= 49.94N (horizontal component of all the above forces)

1

3 2 4

A

C

B

b
a

c

Note: sin 90° = 1 and cosine 90° = 0

q

Note: the following two equations for vertical (a) and horizontal (c)
resolution of forces were derived from the following trigonometric
functions in a right-angled triangle (b would equal the force vector)

cos q = c
b
–

sin q = a
b
–

Cosine =
adjacent

hypotenuse
––––––––––

Sine = opposite
hypotenuse
––––––––––

Fig. B1.7d. Mathematical resolution of force application (composition of force vectors solution)

Fig. B1.7e. Mathematical resolution of force application (composition of force vectors solution)

Fig. B1.7f. Mathematical resolution of force application (composition of force vectors solution)



Application Consider the forces acting underneath the foot as a person walks or runs along
the ground. Fig. B1.8 identi es the forces that are acting in the sagittal plane and
frontal plane (three-dimensional) during walking when a person’s foot hits the
ground. From consideration of Fig. B1.8 it is possible to see that there are two
forces acting in the sagittal plane and two forces acting in the frontal plane (with
the vertical force being common to both planes). The forces in the sagittal plane
are classi ed as the vertical force (acting straight upwards) and the
anterior–posterior force (acting posteriorly (as a braking force) when the foot
hits the ground at heel strike when it is moving forwards). In the frontal plane it
is possible to also see another force, which is classi ed as the medial–lateral
force (depending on whether it is going medially or laterally with respect to the
foot) is also acting. In the same diagram the resolution (resultant) of all these
three forces is also shown. This force is known as the ground reaction force and
it is the force that is acting at a speci c direction and with a speci c magnitude.
This is the force that can be important for injury considerations. The ground
reaction force is the resultant force, which is derived from the composition of the
three planar forces described previously. Speed of running, running shoes, type
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It is now possible to see that the graphical representation of the resultant force
is the same as the mathematical representation of the resultant force

Graphical solution Mathematical solution

57.0°

91.71N

Determination of the resultant force (using Pythagoras’ theorem)

Resultant force = ÖFV2 + FH2

Where
FV = vertical force
FH = horizontal force

Angle of application of
resultant force

tan q = FV
FH
–––

R = ÖFV2 + FH2

= Ö76.922 + 49.942

= Ö5916 + 2494
= 91.71N

tan q =

tan q =

tan q = 1.54

q = INV TAN (1.54)

q = 57.0°

76.92
49.94
–––––

FV
FH
––-

=

=

Fig. B1.7g. Mathematical resolution of force application (composition of force vectors solution)

Fig. B1.7h. Mathematical resolution of force application (composition of force vectors solution)



of running style, type of surface of contact, type of foot contact, and previous
injury can all affect these forces. From both an improvement in performance and
injury prevention perspective it is important that the development and attenua-
tion of these forces is fully understood by the student of biomechanics.
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Resultant ground
reaction force

(GRF) Fy
Anterior–posterior

force

Fz
Vertical force

Fx
Medial–lateral

force

Fig. B1.8. Application of force vectors (composition) during heel strike with the foot and
ground during walking
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B2 NEWTON’S LAWS OF MOTION –
LINEAR MOTION

Key Notes

Isaac Newton formulated three laws of motion that can be applied to the
study of human movement

Every object will remain at rest or continue in its state of uniform motion
unless it is acted upon by an external force. For example, a ball on the
penalty spot in soccer is exerting a force on the ground which is balanced
by the force acting from the ground on the ball (net affect = zero). In the
absence of gravity an object that is thrown or projected into the air will
continue along the line of projection (resultant velocity) with constant
uniform velocity (unless it is acted on by an external force).

When a net force acts on an object the change in motion that is produced
(the acceleration) takes place in the direction of the net force. This
acceleration is proportional to the net force and inversely proportional to
the mass of the object. For example, push an object across a table with a
force. The acceleration of the object will be dependent on the amount of
net force that was applied to the object. The more massive an object the
more net force is required to accelerate it at the same rate as an object
with less mass.

When a force is exerted on an object there will be an equal and opposite
force exerted by the second object on the  rst. For example, when the
head of a soccer player contacts the soccer ball there will be a force
exerted on the soccer ball from the player and an equal and opposite
force exerted on the head of the soccer player from the ball.

The formula derived from Newton’s second law. The summation of all
the forces acting on an object (i.e., the net force) is equal to the mass of the
object multiplied by the acceleration of the object.

When the net force acting on an object is equal to zero the forces will be
balanced and the object will not move. When the net force acting on an
object is greater than zero the object will accelerate.

The net force represents the sum of all the external forces acting on an
object and the net force will be the reason why the object does or does not
accelerate (i.e., speed up, slow down, start moving or stop moving).

Newton’s Laws Isaac Newton (1642–1727) formulated three laws of motion that created the basis
of Newtonian mechanics and which can be directly applied to human move-
ment and the study of biomechanics. These are summarized as follows:

Newton’s laws

1. Law of inertia

2. Law of acceleration

3. Law of reaction

∑F = ma

Balanced and
unbalanced forces

External forces



Law 1: The law of inertia
Every object will remain at rest or continue with uniform motion unless it is
acted upon by an unbalanced force.

Law 2: The law of acceleration
When a force acts on an object the change of motion (momentum) experienced by
the object takes place in the direction of the force, is proportional to the size of
the force and inversely proportional to the mass of the object.

This law indicates that if a net external force acts on an object it will accelerate
(i.e., speed up, slow down, start moving, or stop moving) in the direction of the
net external force. This acceleration is proportional to the net external force and is
inversely proportional to the mass of the object.

Law 3: The law of reaction
Whenever an object exerts a force on another there will be an equal and opposite
force exerted by the second object on the first.

In order to understand these laws in more detail, and in particular their relevance
to human movement, it is necessary to consider an application of each of the three
laws separately.

1. The law of inertia: application to human movement.
Newton’s  rst law states that a body at rest will remain at rest and a body in
motion will continue in motion unless it is acted upon by an unbalanced external
force. In relation to human movement it is important to divide the understanding
of this law into three components.

Unbalanced forces
Bodies that are not moving (i.e., stationary)
Bodies that are moving (i.e., in motion)

Note: the term body can be applied to the human body or any external body
associated with the human body such as a soccer ball, a basketball, a tennis racket
or a javelin.

Unbalanced Consider the experiment outlined in section B1, where you were asked to place a 
forces book on a table and then apply a force to overcome friction and cause the book

to move across the table. In this experiment the force you applied to the book
must have been greater than the force offered in resistance. If these two forces
(your effort and the frictional resistance) were equal (i.e., balanced) the book
would not have moved. When considering balanced and unbalanced forces it is
important to understand the term net force. The term net is de ned as the  nal
number (subject to no more deductions or calculations) and in this case it refers
to the summation (positive and negative) and result of all the forces acting on an
object. Remember, from section B1, that forces are vector quantities and have
both magnitude and direction, and it is possible that two forces act in an
opposite direction to each other. These forces would be summated (i.e., they
have positive and negative signs) to produce the net effect. If the net effect is
zero then the force system is balanced and there is no movement (or no
acceleration). If the net effect is not zero then the forces are unbalanced and
movement (acceleration) will take place (except of course when the force you
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exert on the book does not overcome the frictional effects and the book remains
stationary). In terms of you pushing a book across a table you will have to over-
come the frictional force before you can move it and then once it is moving you
will have to overcome the inertial effects to keep the object accelerating. In
addition, there is the force that acts to oppose this movement that is externally
provided from air resistance (although in the case of a book being moved across
a table this will be negligible (so small it is not considered signi cant)). In both
cases (moving and not moving) it will still be necessary to overcome the
frictional force that exists between the book and the table. Fig. B2.1 helps to illus-
trate this understanding in more detail.

The same principle applies when trying to move any object within human
movement. For example, if you wanted to lift a barbell containing weights (in this
example the term weight is used to describe the weights attached to the bar) in an
upward vertical direction, you will need to exert a force on the barbell that is large
enough to overcome the gravitational effects acting on the barbell and weights
(because you are trying to move it vertically upwards and gravity will continually
oppose this movement – by pulling it downwards).

It is important to identify that gravity is only an external force when you are
trying to move an object vertically (i.e., upwards or downwards). If there is no
vertical movement to your action then gravity will not act as an external force
(although technically all objects on this planet are subjected to the vertical force of
gravity even when they are not moving).
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Fig. B2.1. Balanced and unbalanced forces

Bodies that are In this context Newton’s  rst law states that an object that is not moving will 
not moving (i.e., remain in a non-moving state (at rest) providing it is not acted upon by an 
stationary) unbalanced external force. In human movement it is dif cult to see how this

law can directly apply to any situation. For example, all objects that are on this
planet will be subjected to the vertical external force of gravity. If we did not
have the ground on which to stand, we would accelerate towards the center of



the Earth at a rate of approximately 9.81 m/s2 (which is stated as ‘approxi-
mately’ because this acceleration varies slightly depending on where you are on
the surface of the planet (i.e., in relation to the center of the Earth)). When we try
to jump off the ground, gravity will immediately pull us back down. Although,
this effect is actually happening all the time it is more obvious as soon as we are
in the air (unless of course you are able to exert enough force to overcome the
force of gravity and get away from the Earth’s gravitational pull – such as in the
case of a rocket and space shuttle traveling into space). Hence, in this static
example of Newton’s  rst law, it is dif cult to see how it can apply. Consider
the following examples: a soccer ball placed on the penalty spot, the book placed
on the table, the hurdle on the track in a 400 m hurdle race or the human body
sat in a chair, and it is obvious that all these are continuously subjected to the
force of gravity (i.e., they all have weight).

Bodies that are 1. The law of inertia: application to human movement.
in motion (i.e., In order to see how Newton’s  rst law of motion applies to human movement in 
moving) objects that are in motion it is useful to use the example of the long jumper.

During a long jump an athlete will leave the ground with both vertical and
horizontal velocity. This combination of velocities determines the angle of take-
off, the resultant velocity and primarily the distance jumped by the athlete. This
horizontal and vertical velocity produces a projectile motion (subjected to only
the external force of gravity) of the athlete during the  ight phase, which is
illustrated in more detail in Fig. B2.2.

As the athlete leaves the ground he/she will have both vertical and horizontal
velocity. Once in the air the athlete will be a projectile and the  ight path of the
athlete will already be pre-determined. The parabolic  ight path (see Fig. B2.2)
will be a result of the combination of vertical and horizontal velocities present at
the take-off point. Since the vertical motion of a body is affected by gravity, it is
necessary to consider the velocities (motions) separately in order to see an
application of Newton’s  rst law of motion during this movement.

In respect of the vertical motion of the athlete (or vertical velocity), the athlete
will travel both upwards and downwards while at the same time traveling
forwards (horizontal velocity). Gravity will affect the vertical component thus
allowing the athlete to reach a peak in the parabolic  ight path while constantly
being pulled back towards the ground (at a rate of 9.81 m/s2). However, because the
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athlete also has horizontal motion (or velocity) we can see that the athlete travels
forward and has the characteristic parabolic curved  ight path (see Fig. B2.3).

The body in  ight during the long jump is considered to be a projectile (like a
ball in soccer, or a javelin in athletics). In this example it could be argued that
other forces (as well as gravity) act on these objects during  ight. For example, air
resistance will also affect the parabolic  ight path of the long jumper. However,
for this example we can consider this air resistance to be negligible. In the context
of the horizontal motion of the long jumper it is possible to see that the athlete will
travel in a straight line (this can be seen more clearly when viewed from above
(plan view) in Fig. B2.4). In addition, during this straight line motion the athlete
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will also travel with a constant horizontal velocity. Hence, according to Newton’s
 rst law of motion, in the absence of an external force (as gravity will only affect
the vertical component) the body will continue in a straight line with uniform
(constant) velocity.

Although, it does not seem logical that Newton’s  rst law can apply to the
long jumper in  ight because the athlete will actually come to rest (a stop) in the
sand, it is in fact correct. The horizontal velocity of the long jumper is constant
and the path of the athlete will be in a straight line (when viewed from above).
The jumper will not speed up nor slow down (horizontally) and no matter what
the athlete does during the  ight phase the path will be pre-determined from the
point of take-off. The reason the athlete comes to rest (in the sand) is because
the vertical component of the jump is affected by gravity and this will pull the
athlete back towards the ground as soon as they leave it. Eventually, the athlete
will hit the sand pit and stop, and it is the force from the sand pit on the athlete
that would stop that motion. Therefore, in the absence of gravity the long
jumper would continue to travel both upward and horizontally in a straight line
with a constant velocity (note: upward and horizontally because the athlete
would follow the resultant take-off velocity vector; i.e., which is upward and
horizontal).

All projectiles that are thrown with horizontal and vertical velocity and that are
only subjected to the external force of gravity will have a parabolic  ight path that
is pre-determined and they will all obey this law. A soccer ball when kicked, a
basketball when thrown at the hoop, a tennis ball hit across court and even as
simple as a pen that is thrown a short distance, will all obey and demonstrate
Newton’s  rst law of motion. For a practical example, consider when you are
traveling on a bus and the bus suddenly comes to a stop. In this case you will
continue forward with the same velocity towards the front of the bus even though
the bus has stopped. Hence, in order to stop yourself from traveling forwards you
will need to hold on to something like a hand rail (i.e., thus applying an external
force). According to Newton’s  rst law you continued forward with uniform
velocity until you were acted upon by an external force (i.e., the gripping of the
hand rail to stop yourself moving forward). The exact same situation applies
when you are holding a cup of coffee and someone walks into you and the coffee
is spilt. In this example, the coffee continues in its state of rest and is spilt because
both you and the cup move in another direction. In this example the body (you)
and the cup are attached to each other and essentially move together (i.e., your
body, your arm, your hand, and the cup). However, the coffee although it is in the
cup, acts independently and continues its state of motion (i.e., at rest). Hence, the
coffee is split and Newton’s  rst law of motion has provided a scienti c reason
why this has happened.

2. The law of acceleration: application to human movement.
Newton’s second law of motion states that when a force is applied to an object
(and the result is a net force of greater than zero (i.e., unbalanced)) the change of
motion in the object (i.e., change in velocity (acceleration)) is proportional (as one
quantity increases in value so does the value of the other quantity) to the force
applied to the object. This movement takes place in a straight line and in the
direction in which the net force was applied. In addition, the law also states that
this change in motion (acceleration or rate of change in velocity) is inversely
proportional (as one value increases the other will decrease) to the mass of the
object. Fig. B2.5 helps to illustrate this law with a diagram.
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This law is the most powerful of Newton’s three laws of motion because it
allows us to use this in the calculation of dynamics (movement). For example,
how do the velocities of objects change when forces are applied to them? Using
Newton’s second law gives us the opportunity to calculate these changes. In the
understanding of this law it is, however, important to identify that the force
applied to an object only causes a change in velocity (an acceleration or
deceleration) and it does not maintain this velocity.

In order to put Newton’s second law of motion into a formula that we can use in
understanding human movement it is necessary to identify the following equation:

∑F = ma

Where
∑F = net external force (N)
m = mass of the object (kg)
a = acceleration of the object (m/s2)

Using the previous example of the long jumper (Fig. B2.4), which was used to
illustrate Newton’s  rst law, we observed that the horizontal velocity of the
athlete during  ight was constant. In addition, we also learned that once the
athlete had left the ground (at take-off) the  ight path was pre-determined ( xed).
How can this example be used to illustrate Newton’s second law? (Consider Fig.
B2.6.)
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At the point of take-off in the long jump we have seen that the athlete will have
both vertical and horizontal velocity. In order to have created the changes in
velocity (i.e., from horizontal during the run up to horizontal and vertical at take-
off (i.e., change in motion or acceleration)) the athlete will have applied a force to
the ground in order to drive himself or herself from the ground into the air. This
force application is developed from the change in the athletes stride patterns at or
just before the take-off point (athletes usually lower their center of gravity and
lengthen the second to last and shorten the last stride into the take-off board). This
adjustment of the body allows the athlete to be able to push his/her foot into the
ground at the take-off board. This will create a resistive force from the ground
that acts on the athlete. This ground reaction force will propel the athlete
upwards and forwards. The resulting acceleration of the athlete (upwards and
forwards) is demonstrated in horizontal and vertical velocity at the point of take-
off (Fig. B2.7). Remembering that forces are vectors, it is possible to see that this
propulsive force from the ground will have both vertical and horizontal compo-
nents, and it is these two components that create the horizontal and vertical veloc-
ities used to determine the angle and resultant velocity of take-off.

Now let us consider the point of take-off and in particular look at only the
vertical motion (change in velocity) of the long jumper (since we know from
Newton’s  rst law that the horizontal velocity is constant). As soon as the athlete
leaves the ground, the force of gravity will try and pull the athlete back down to
the ground. As soon as the athlete is airborne (at take-off) the only external force
acting on him/her (neglecting air resistance) is the force of gravity (i.e., what
causes the athlete to have weight). As the athlete travels upwards (remember we
are only considering the vertical component of the parabolic  ight path) the down-
ward pull (acceleration) of gravity is immediately slowing the vertical ascent of the
athlete. Even though the athlete is traveling upwards he/she is actually being
slowed down (decelerated). As the athlete is slowed down (vertically) they will
eventually come to a stop at the highest point in the  ight path (Fig. B2.3). The
acceleration of the athlete throughout his or her  ight is downward even though it
appears that they are going upward at the beginning (i.e., he/she is being slowed
down or always being pulled downwards at a constant rate).
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Now, since we know that the weight (the force acting on the athlete because
he/she has mass) of the athlete does not change and that the mass of the athlete
remains the same, we can therefore say that the acceleration of the athlete is
constant (derived from the previous equation F = ma). Next, we also know that
because of the mass of the Earth and its gravitational pull on objects towards its
center, this acceleration will be 9.81 m/s2 (remembering that it does vary slightly
between different positions on the Earth’s surface – depending on how close or
how far away you are from its center).

This means that as an athlete travels upwards at the beginning of the  ight
phase, they will be slowed down at a rate of 9.81 m/s for every second of move-
ment (i.e., 9.81 m/s2). Similarly, as the athlete begins to come back downward
again, in the second half of the  ight phase he/she will be accelerated downward
(speeds up) at a rate of 9.81 m/s for every second of motion (i.e., constant accel-
eration).

This constant vertical acceleration acts on all objects and will accelerate a heavy
object and a lighter object at exactly the same rate; which is why a heavy object
and lighter object dropped from the same height will hit the ground at the same
time (again obviously neglecting the affects of air resistance). In addition, this
downward acceleration is totally independent of any horizontal motion (like in
the case of the long jumper). It is unaffected by horizontal motion, nor does it
have any affect upon horizontal motion (the other reason why the horizontal
velocity of a long jumper in  ight is constant – Newton’s  rst law of motion). This
can be demonstrated by placing a pen on a table and also at the same time holding
another pen at the same height as the table. Next, get someone to push the  rst
pen off the table with a large force (i.e., accelerate the pen rapidly off the table). At
the same point as they push the pen off the table (at the same moment in time that
it leaves the table) drop the pen that you are holding. The pen on the table (that
has now been pushed off) will have horizontal (the push) and vertical (gravity)
velocity and it will have projectile motion towards the  oor. The pen you have
dropped should only have vertical motion and should drop to the  oor in virtu-
ally a straight line. However, both pens will hit the ground at the same time.
Hence, horizontal motion (velocity) does not affect vertical motion (velocity). A
further understanding of this constant vertical acceleration situation will be
explained in more detail in the section B5 of this text.

In this example of the long jumper, Newton’s second law of motion is used to
identify and explain constant vertical acceleration and how and why a long
jumper is pulled back towards the ground immediately after they have left it
(jumped into the air). However, there are many other applications of Newton’s
second law that are applicable to the understanding of human motion but these
will be discussed in more detail in section B3 entitled The impulse–momentum
relationship.

3. The law of reaction: application to human movement.
This law states that for every action (a force) there will be an equal and opposite
reaction (another force). In other words push on an object and you will feel the
object push back on you with an equal and opposite force. For example, if you
push on a wall you will feel an equal and opposite force that is coming from the
wall and acting along your hands and arms. Similarly, if you stamp your foot
against the ground you will feel a force through your leg that is exerted from the
ground on your foot. Fig. B2.8, illustrates this in a number of examples within
human movement.
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However, when attempting to understand Newton’s third law of motion it is
important to be aware of two important facts: First, the effects of the forces are not
canceled out (i.e., there is not a net effect of zero) because one acts on one object
while the reaction (or other force) force acts on the other and, second, although
the forces are both equal in magnitude and opposite in direction the effects of the
forces are not the same. This can be seen when we consider Fig. B2.7 (pushing into
the ground) previously. In some cases the objects will accelerate (change their
state of motion) and in other examples the objects will not accelerate (either move
with constant velocity or remain stationary), although in each case there is an
equal and opposite force acting (Newton’s third law). This is explained from the
consideration of the net force and the summation of the forces being balanced or
unbalanced.

One of the most common applications of Newton’s third law is seen in the
consideration of the ground reaction force during walking. As you walk across
the ground your foot exerts a force on the ground and consequently the ground
exerts a force back on your foot. As your foot hits the ground at heel strike during
walking it will do so with a force, which is derived from the mass of the foot and
how it is accelerated into the ground at impact (i.e., F = ma). As contact is made
and you drive your foot into the ground, an equal and opposite force will be
exerted from the ground on your foot (i.e., you will feel the impact throughout
your leg). However, the force from the ground (acting on your leg) will not cause
you to move off into the air, and neither will it cause you to stop (although the
effect will seem like a braking force on your body).

As you hit the ground at heel strike there are a number of forces that are acting
in this example. For example, there will be the force from the mass of your foot
and its acceleration into the ground once it has contacted the ground, there will
also be the force of gravity (pulling your foot directly vertically downward), then
there will be the ground reaction force from the ground on your foot (which will

78 Section B – Kinetics of linear motion

Reaction force
from ball

Tennis stroke

Action force
against ball

Force
into

ground

Heel strike walking

Ground
reaction

force

Force
against ball

Force
against hands

and arms

Basketball throw

Fig. B2.8. Newton’s third law



consist of the friction force between the foot and the ground (the anterior–
posterior force), the normal reaction force and the medial–lateral force), and there
will also be the force of the leg acting on the foot as it is driven over the foot
during the stance phase (heel strike to toe off). All these forces act together and it
is not simply a case of one force (the action) being opposed by an equal and
opposite force (the reaction). These are all external forces and it is the net sum of
all these external forces that will cause the body to accelerate or decelerate. In this
context it is important to express that it is the external forces that will cause the
internal forces within the joints. Hence, it is the external forces that cause the
resulting change in motion (acceleration or deceleration).

Action – reaction Although the terms action and reaction are widely used within biomechanics in 
forces the context of Newton’s third law, there is a slight confusion when these forces

are applied in sporting and/or other human movement situations. For example,
it is dif cult to determine which of the forces constitutes the action and which
constitutes the reaction. In addition, there is a degree of confusion in that these
forces (or terms action – reaction) when classi ed in this way could be misinter-
preted to be movement rather than force. For example, when the racket hits the
tennis ball during the ground stroke in the tennis game there will be a force
exerted on the ball by the racket. There will also be a force exerted from the ball
on to the racket. These forces are equal and opposite but it is the net effect of all
the external forces that produces the change in movement (i.e., the acceleration
or deceleration of one or both of the objects). The mass of the tennis ball is
relatively small compared to the mass of the racket and once all the net forces
are determined the net effect will be a force that causes the tennis ball to
accelerate in the direction that the player intended to hit the ball. This equal and
opposite force principle from Newton’s third law (action – reaction) appears to
falsely apply to movement as well as force. For example, if you are in the air
during the  ight phase of the long jump and you rapidly move your arms down
(essentially by a muscle force within your body) towards your legs the reaction
is that your legs will move upwards towards your arms (what appears to be an
equal and opposite action – reaction (i.e., it appears as a movement rather than a
force). However, this process is achieved by the equal and opposite torques
(moments of force) that are applied to the body in order to cause this movement
to happen. The torque that caused the trunk and arms of the athlete to move
downwards caused an equal and opposite torque that caused the legs to move
upward. Fig. B2.9 illustrates this and shows how athletes during the  ight
phase of the long jump prepare themselves for a better position during landing
(even though as we have seen they cannot change the pre-determined  ight
path).

This is the same principle used by a rocket and space shuttle to propel itself
into space. Although the rocket does not have anything to push against the
external vertical force that is being exerted downward (exerted by the jet engines)
onto or into the air causes an opposite (reaction) force to be exerted on the rocket.
The corresponding result (which is the net force) considering all the external
forces (i.e., the vertical force acting downward from the rocket, the opposite force
acting on the rocket upwards, the force of gravity pulling the rocket downward
and possibly air resistance, friction and drag) accelerates the rocket vertically into
the air and eventually into space. Similarly, the jet engines of a plane that are used
to propel it horizontally through the air (although there are other forces such as
aerodynamic lift and drag forces that also have a signi cant affect on the principle
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of  ight), are acting backward to its direction of motion (which is forward).
Fig. B2.10 illustrates some more examples of Newton’s third law of motion within
human movement.

The application of Newton’s laws of motion is seen in many examples of
human movement and an understanding of these laws can be important with
regard to both injury prevention and improvement in performance. For example,
how can a person reduce the potentially damaging impact force that is created
during the heel strike in running (i.e., the impact force that is experienced
throughout the leg that can be between 2 and 5 times your body weight) or how
can an athlete increase the ground reaction force acting on the athlete at the take-
off in a high jump, so that they can potentially jump higher?
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Section B – Kinetics of linear motion

B3 THE IMPULSE–MOMENTUM
RELATIONSHIP

Key Notes

This develops from Newton’s second law of motion (∑F = ma) and is an
important relationship within biomechanics.

The linear momentum possessed by an object is a measure of the object’s
mass multiplied by the object’s linear velocity. Since the mass of an object
remains relatively constant the change in momentum experienced by an
object represents a change in its velocity (increase or decrease).

Impulse is de ned as the force applied multiplied by the time of force
application. It is equal to the change in momentum possessed by an object
(Ft = m (v – u)). Impulse can be increased by either increasing the applied
force or increasing the time of force application. In certain situations
within human movement it is necessary to have a large force and small
time of application and in other examples it is valuable to have the
opposite situation.

The shot putter in athletics applies a force to the shot for a long period of
time in order to give the shot more impulse and hence a greater change in
momentum (i.e., more velocity at release). The vertical (high) jumper
applies a force to the ground in order to jump off the ground. The ground
applies a reaction force to the jumper in order for them to be able to leave
the ground. The net vertical impulse created during the preparation of
the vertical jump will affect how high the athlete is able to jump. When
catching a ball it is often necessary to increase the time of contact with the
ball in order to reduce the force of impact (between ball and hand). This
is achieved by following the ball’s direction with your hands as you make
the catch (as in the case of catching a cricket ball).

Impulse- The impulse–momentum relationship develops from Newton’s second law of 
momentum motion (∑F = ma) and it allows us to apply this law to situations where forces

are continually changing over time. For example, in many cases involving
human motion forces will continuously change (i.e., they are applied over a
period of time). Two rugby players who contact each other in a tackle situation
will exert changing forces over time. Similarly when you run and jump on the
ground you will apply forces that vary over time depending on a number of
related variables: the speed of running, the surface of contact, the shoe type, the
body position, and many other aspects.

In human movement it is usually the effect of these changing forces applied
over time with which we are concerned. It is these forces and their effects that will
be used to determine performance characteristics or injury potential (outcome

The impulse–
momentum relation-
ship (Ft = m(v – u))

Momentum

Impulse

Application



measures). As we apply a force over the ground with our foot during the contact
phase in running what will be the outcome of this application to our running
speed? Does our speed increase or do the forces acting on our legs increase to a
level that could develop a potential for injury? Similarly, in the athletic event of
the shot putt how does the athlete apply enough force to project the 16 lb (7.27 kg)
object through the air? Fig. B3.1 illustrates some other examples of this varying
force application over time within human movement.

Newton’s second law of motion allows us to be able to understand this
application of varying force over time (the impulse–momentum relationship) in
more detail.
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Fig. B3.1. Varying force application over time in human movement

From Newton’s second law (∑F = ma)

∑F = ma

where
∑F = force (net force)
m = mass
a = acceleration

But linear acceleration (a) is also expressed as:

a =
v - u
�
t2 - t1



where
a = linear acceleration (meters/second2)
v =  nal velocity (meters/second) measured at position t2

u = initial velocity (meters/second) measured at position t1

t2 = time at position t2 (seconds) for  nal velocity (v)
t1 = time at position t1 (seconds) for initial velocity (u)

Now substitute for a into [F = ma] equation from Newton’s second law

F = m

In order to cancel out the division component (on the right-hand side) we
multiply both sides of the equation by (t2 - t1) or t (since (t2 - t1) will produce a
single value for t (time)).

Ft = m (v - u)

Multiply out the brackets, and we have the equation for impulse:

Ft = mv - mu

where
Ft represents impulse measured in Newton second (Ns).
mv - mu represents the change in momentum measured in kilograms.

meters per second (kg.m/s).

Impulse Impulse is de ned as the force multiplied by the time (duration) for which the
force acts. Impulse can be derived by using the average force acting over the
same time period. Linear (translational) momentum is de ned as the objects
mass (kg) multiplied by the objects linear velocity (m/s). Hence, the faster an
object is moving, or the more velocity it has, the greater will be the object’s
linear momentum. Similarly, if you could increase the object’s mass you would
also produce the same effect and increase the object’s linear momentum.

In this example (Ft = mv - mu) we can see that the right-hand side of the
equation (mv - mu) is referring to a change in momentum, which in the case of
human movement is primarily brought about by a change in velocity (because the
mass will remain relatively constant). Similarly, by considering the left-hand side
of the equation (Ft) we see that this change in momentum can be affected by either
increasing or decreasing either the force or the time for which the force acts
(either increase or decrease F or t). If we increase the amount of force applied
(say in the example from Fig. B3.1 for the diver) the change of momentum would
also increase (we would have a greater change in velocity). Similarly, if we
increased the amount of time over which the force was applied we could also
increase the amount of change in momentum and hence also increase the velocity
(since the mass remains relatively constant). At this point it is also important to
identify that by using this principle we can also decrease either of these compo-
nents and thus cause a decrease in the change in momentum and hence a reduced
velocity of movement. Fig. B3.2 helps to illustrate this in more detail.

From the example in Fig. B3.2, where the soccer player applies a force to a soccer
ball (with the foot) for a speci c period of time (contact), we see that there are two
components to this application. For example, how would the soccer player either
increase his/her force applied to the ball or how would they increase the contact
time? Both aspects are important in the understanding of the impulse–
momentum relationship. Increasing the force applied is generally achieved by

(v - u)
�
t2 - t1
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either increasing the muscle strength of the player (and hence generally the
mass), although this can also be achieved by moving the leg much faster (∑F =
ma). The player can try to move the leg faster towards the ball and thus impart a
greater net kicking force applied to the ball at impact. However, how is it
possible to increase the contact time or time of application of this force? The
player would use technique and skill in attempting to increase contact time. For
example, they may try to hit the ball in such a position that allows them to follow
through the kick remaining in contact for longer – or indeed they may even
intentionally impart a degree of spin and lateral contact with the soccer boot. In
all these methods it is important to point out that it is not simply just a matter of
being able to apply a large force for a long period of time. Anyone who has ever
kicked a ball will understand that the contact time for the kicking of a ball is very
short and it happens in a fraction of a second. Similarly, it is not possible to apply
this large net kicking force all the time throughout this contact phase. The longer
you try to stay in contact with the ball the smaller will be the average force
applied and hence the smaller will be the impulse. As the foot makes contact with
the ball an external force (from the foot) is applied to the ball. As the contact time
increases the force applied is averaged over a longer period of time. Therefore, it
becomes a careful, skilled compromise of force application and contact time to
execute an ef cient kick. As an example, try kicking a soccer ball with a pillow
tied to your foot and you will see that you are unable to kick the ball with any
great speed (velocity) or very far at all. You will have reduced the impact force
(applied force) because the pillow is acting as a shock absorber for this force
application and although you have probably increased the contact time you have
much less average force and therefore much less impulse is acting on the ball. The
result is that the ball has a much smaller change in momentum (less velocity) and
will hence not travel as far or as quickly. Although this example is probably not
very practical (i.e., it is not easy to  x a pillow to your foot) it does, however,
clearly demonstrate the point. The same effect can be achieved (although it is
not as obvious) by changing your shoes: kick a ball with soccer boots or kick a
ball with large novelty furry slippers and see what happens.

Consider the example when you are performing a vertical jump from the
ground (for maximum height jumped as in, for example, volleyball). As you
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Fig. B3.2. Soccer player applying a contact force to a ball to change its state of motion



prepare for the jump (from a stationary standing position) you will sink down
into the ground while at the same time swinging your arms backwards. At the
bottom of the sinking downward period you would then drive your arms
forward and upward and push off with your legs, propelling yourself into the air
vertically. Fig. B3.3 illustrates this action in more detail.

In order to have achieved this action and jump into the air you will have
applied a force over the ground for a period of time (contact with the ground).
The ground reaction force (i.e., from the ground and acting on the person) would
be the force that is used to determine the amount of impulse that is acting on the
body (impulse = force · time). This impulse would provide a change in
momentum (because the two are related by Ft = mv - mu). Now, since your mass
is constant throughout this activity this change in momentum will result in a
change in velocity. The greater the impulse (the more positive the net result) and
the greater will be the change in velocity. Since at the beginning of the jump you
are not moving (zero velocity – stationary) the more impulse you can generate the
greater will be the take-off velocity in a vertical direction (since we are con-
sidering vertical impulse). The more take-off velocity you have, the higher you
will jump, although, as we know, gravity, which is acting throughout this whole
activity, will begin to slow you down at a constant rate as soon as you take-off.
However, if you have more vertical velocity to begin with it will take longer for
gravity to slow you down at a constant rate – hence you will jump higher.

Now let us use the equation (Ft = mv - mu) to look at this example in more
detail. Fig. B3.4 identi es this vertical jump example in a subject jumping from a
force platform (in order that we can actually measure the amount of impulse that
is created). In this  gure it is important to identify that we are considering vertical
impulse. As we have seen, gravity will affect the vertical components of move-
ment. Throughout this exercise (vertical jump) gravity will continue to act on the
person. At the beginning of the jump (as the person sinks down) the weight of the
body is not being supported and the body will accelerate downward (this appears
as a negative force effect as seen on the graph). At the point where the force trace
returns to the body weight line the body will have maximum downward velocity.
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Next, the deceleration (the stopping) of this downward velocity will occur in
order to stop the body at the lowest point prior to the body beginning the drive
phase (this is marked on the graph). In the case of the force trace shown in Fig.
B3.4, the force from gravity (an acceleration downward) is inclusive in this net
impulse calculation because the trace is presented about the subject’s body
weight (W = m · g) where gravity is acting on the subject throughout the jump.
The fact that the trace (vertical force trace) is plotted about the body weight line
accounts for this effect from gravity (i.e., the negative part (under the body weight
line) of the vertical force trace). Note: at this point it is important to clarify that in
the consideration of horizontal impulse (that would also be created in a vertical
jump) the effect of gravity is not considered as an external force (as it affects the
vertical component).

From consideration of Fig. B3.4 we can see that it is important to identify that
in the impulse–momentum equation force is a vector quantity (i.e., it has
magnitude and direction). An increase in impulse will cause a change in
momentum in a speci c direction (the direction of the force). For example, if you
create a force downwards (which is necessary to initiate a vertical jump) the
change in velocity (change in momentum but indicated as velocity because mass
is constant) will also be in the downward direction. In the example of the vertical
jump it is therefore possible to see that impulse will be created in both positive
and negative parts (directions). In the case of you sinking down into the jump you
are creating a negative impulse that is not contributing to the vertical component
of the jump. However, it is necessary for you to be able to initiate the push-off
propulsive phase. Hence, the downward (negative) impulse that is created is
subtracted from the positive impulse and the result will be either a positive or
negative net impulse. Considering Fig. B3.4, it is possible to calculate the vertical
velocity of take-off from the net impulse that is produced.

Athlete mass = 75 kg
Net impulse = 352 - (18 + 10) N.s

= [B - [A + C]] positive and negative components (= net impulse)
= 324 N.s (positive impulse)
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Substitute this impulse value and the athlete’s mass into the equation for
impulse–momentum:

Ft = m v – m u
324 = 75 (v – u)

Considering that u (initial velocity) is zero (because you started from a standing
stationary position) we can now see the following:

324 = 75 (v)

Divide both sides by 75 to get v ( nal velocity) on its own:

= v

4.32 = v
4.32 m/s = v (vertical velocity at take-off)

In this example (Fig. B3.4) the impulse derived was from the application of a
vertical force (although there will also be other forces acting in different direc-
tions: anterior posterior forces, medial–lateral forces, and obviously gravity)
acting over a period of time. In order to demonstrate the importance of this gener-
ation of impulse in human movement it is possible to adjust the values from Fig.
B3.4 to see what would happen if it were possible for us to create more positive
impulse. This could be achieved by either by increasing the force applied or by
changing our technique such that the application of the force was for a longer
period of time (providing the average force was not signi cantly less).
Alternatively, we could also have changed our technique such that we had less
negative impulse (perhaps by modifying the descent phase). Fig. B3.5 presents
revised data for the vertical force–time trace in the vertical jump example.

324
�
75
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Considering Fig. B3.5, what is the effect on the vertical velocity if we create
more positive vertical impulse?

Net Impulse = 400 – (22 + 15)
Net Impulse = [B – {A + C}]
Net Impulse = 363 Ns

Substitute this value and the athlete’s mass into the impulse–momentum equation.

Ft = mv – mu
363 = 75 (v – u)
363 = 75 (v) since u = 0 (stationary starting position)

= v

4.84 m/s = v (an increase on the previous value of 4.32 m/s)

Hence, in this application increase the amount of positive vertical impulse and
you will increase the vertical take-off velocity and jump higher.

In human movement there are many other examples of where increasing the
impulse will result in a greater change in momentum and hence greater velocity.
In the case of the shot putt the athlete applies a larger force (by virtue of their
strength (muscle size and muscle mass)) for a longer period of time (by virtue of
their technique). The athlete would start by leaning over the back of the throwing
circle and then by jumping backwards and rotating in the middle of circle  nally
to leaning over the front of the throwing circle. This would allow the athlete the
time to apply a force to the shot for a much longer period and potentially
(providing the average force was not substantially reduced) create more impulse
(that is, acting on the shot). This would result in a greater change in momentum
of the shot and hence more shot velocity (at release). The same applies in the sport
of javelin, where the athlete would also try to apply a force to the javelin for a long
period of time by leaning back into the run up to rotating and leaning forward
into the delivery phase (thus creating more impulse).

However, within human movement it is not always desirable to create large
amounts of impulse and it is sometimes the case that the net force needs to be
reduced (or averaged over time) in order to minimize the potential for injury.
Imagine trying to catch a cricket ball that is thrown at you. If you stand still and
hold your arms outstretched (and rigid) you will feel a large force acting on your
hands and arms as you catch the ball. Why? As it contacts your hand, the ball will
require an impulse that is applied to the ball in order for it to be stopped (i.e., to
change its momentum). The amount of impulse that will be required to change
the momentum possessed by the ball (i.e., it will go from traveling quickly to
almost a sudden stop) will be large, depending of course on its mass and velocity
(momentum) before impact. Hence, the reason you feel a large force is that you
have allowed the contact period (between your hands and the ball) to be a very
small period in time (by holding out your hands rigidly the ball will just hit your
hands and stop suddenly). The force that is applied to the ball in order to stop it
(and consequently to your hand – Newton’s third law) is high because it is acting
over a short period of time (contact time). Therefore, if you now try to catch the
cricket ball by moving your hands in the direction the ball is traveling, this time
as you begin to catch it you will increase the contact time and thus average out the
force (i.e., it will feel much easier to catch the ball this way).

As an example, an object with 50 units of momentum (say the ball) must
experience 50 units of impulse (from the hands) in order for it to come to a stop

363
�
75
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(Ft = m(v - u)). Any combination of force and time could be used to provide the 50
units of impulse needed to stop the ball. In this case if the contact time was 2 units,
the force would need to be 25 units. Similarly, if the contact time was increased to
4 units, the force would be reduced to 12.5 units. The same principle applies for
many other situations in human movement where it is important to increase
contact time to reduce potentially damaging impact/contact forces. Fig. B3.6
illustrates some of these examples in human movement.

The impulse–momentum equation is one of the most important principles in
biomechanics and it provides a method for understanding both improvement in
performance and injury prevention within human movement. Hence, it is
critical that the student should have a good working knowledge of this topic.
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Section B – Kinetics of linear motion

B4 CONSERVATION OF LINEAR
MOMENTUM

Key Notes

Linear momentum is the product of the mass of the body multiplied by
its linear velocity. To increase the linear momentum possessed by an
object we could either increase its mass or increase its velocity. Generally,
within human movement the component of mass remains constant and
therefore it is the change in velocity that is used to change the momentum
possessed by a body.

This principle states that in any system where bodies (or objects) collide
or exert a force upon each other, the total momentum in any direction
remains constant unless an external force acts on the system. The term
system is used to describe two or more bodies that are in motion and that
exert a force on each other. In determining linear momentum it is
therefore important to specify the direction in which the momentum is
considered (i.e., consider all the forces that are acting in that direction:
vertically, anteriorly, and posteriorly, or medially and laterally
(horizontal)). The principle of conservation of linear momentum is only
valid when: 1) there is no external impulse acting on the system (i.e., no
external force) and 2) the total mass of the system remains constant
(before and after collision).

When a goalkeeper in soccer catches a ball in the air the momentum in
the system before the collision (where collision equals contact of
goalkeeper and ball) is equal to the momentum in the system after the
contact or collision (i.e., when goalkeeper and ball are together). The
example is given as “in the air” because when the goalkeeper is in contact
with the ground there would be other external forces acting on the
system.

Linear momentum Linear momentum is de ned as the product of the mass of the body multiplied
by its linear velocity:

Linear momentum = mass ¥ linear velocity
(kg.m/s) = (kg) ¥ (m/s)

In order to increase the linear momentum possessed by a body it would be neces-
sary either to increase its mass or increase its linear velocity. Generally, within
human motion it is dif cult to increase the mass of the body (as this remains
relatively constant), so in order to increase momentum we would therefore
increase the object’s linear velocity.

In human movement there are many situations where collisions between
objects or bodies occur. For example, two rugby players (or American football or

Linear momentum

Principle of
conservation of

linear momentum

Application



Australian rules players) collide with each other in a tackle situation and the
soccer player would collide with the ball on numerous occasions throughout a
game: such as in the case of receiving a chest pass or heading the ball. Fig. B4.1
illustrates some other examples of collisions with human movement.

Consider Newton’s  rst law of motion, the law of inertia where a body will
remain in a state of rest or constant velocity unless it is acted upon by an external
force. We can now extend this law for examples involving collisions to explain the
principle of conservation of linear momentum.

Principle of The principle of conservation of linear momentum states that in any system 
conservation of where bodies collide (and there can be more than two bodies) or exert a force 
linear momentum upon each other, the total momentum in any direction remains constant unless

some external force acts on the system in that direction. In this context the term
system can be used to describe two or more bodies in motion that exert forces on
each other. Fig. B4.2 illustrates this in the catching of a ball during goalkeeping in
soccer (the goalkeeper is shown catching the ball in the air because of the external
forces that would need to be considered if the goalkeeper was on the ground).

As we can see from Fig. B4.2, the momentum of the ball and the goalkeeper (the
system) before the collision (the catching of the ball) is equal to the momentum of
the system (the ball and the goalkeeper together) after the collision (the catch). For
simplicity the ball and the goalkeeper before contact could be termed system-1
and the ball and goalkeeper together after contact (when the goalkeeper holds the
ball) termed system-2.
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Before collision (momentum in system-1 equals)

Momentum of the ball + Momentum of the goalkeeper
[mass of ball · velocity (horizontal) of ball] + [mass of goalkeeper · velocity

(horizontal) of goalkeeper]

Note: it is important to point out that we are considering linear momentum in a
horizontal direction and, as we have seen previously, in Section B2 (for hori-
zontal motion), we can neglect the effects of gravity (an external force) as we are
only considering the momentum in this direction in this example.

After collision (momentum in system-2 equals)

Momentum of the ball + goalkeeper combined
[mass of ball and goalkeeper · velocity (horizontal) of ball and goalkeeper

combined]

Now according to the principle of conservation of linear momentum, the
momentum possessed by the system before the collision equals the momentum
possessed by the system after the collision (the amount of momentum is constant
– it is conserved). In order to prove this we can use the values for mass and
velocity as shown in Fig. B4.2.

Momentum before collision = Momentum after collision
(0.5 ¥ 15) + (75 ¥ 0) = (75.5 ¥ 0.1)

7.5 + 0 kg.m/s = 7.5 kg.m/s

Again, it is important to note that this is horizontal linear momentum that we
have determined. In addition, it is also possible to see that if we did not already
know the velocity for the ball and the goalkeeper after collision we could use this
equation to calculate the combined velocity.
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(in the air)



Application It is important to remember that linear momentum possessed by a system will
remain constant in both magnitude and direction, and that the principle of con-
servation of linear momentum is valid only if the following conditions are met:

1. There is no external impulse (since as we have seen impulse = force · time and
it is related to a change in momentum) in other words, no external force.

2. The total mass of the system (bodies that are colliding) remains constant.

To illustrate this principle in a more simpli ed form (i.e., not involving human
bodies or projectile objects such as soccer balls), Fig. B4.3 identi es a more
practical example.

Considering Fig. B4.3, we can see that ball A has a mass of 2 kg and is moving
towards ball B with a horizontal velocity of 8 m/s. Ball B is also moving in the
same direction away from ball A but with a velocity (horizontal) of 2 m/s. Ball B
has a mass of 1 kg.

As the balls collide, there will be an impulse exerted by one ball on the other
(i.e., a force applied for a period of time). In this case the contact time is expected
to be small and therefore it is likely that the force will be high. There will be a
change in momentum brought about by the impulse but the total amount of
momentum (before and after collision) will remain constant. Ball A will experience
an impulse in the direction from RIGHT to LEFT (as it will experience a force from
ball B (the action–reaction law)) whereas ball B will experience an impulse in the
direction from LEFT to RIGHT because it is ball A that is making the contact (the
action). The two balls (A and B) will experience a change in momentum that is
equal to the amount of impulse that is created and this change in momentum as we
have seen is dependent upon the force and the amount of time that it is applied for.
Similarly, we have seen that momentum is related to mass and velocity and in the
case of the ball with more mass (2 kg) there will be less change in velocity for a
given momentum. Similarly, for the ball with a smaller mass (1 kg) there would be
a greater change in velocity in a given direction. It is important to point out that
this change in momentum (or velocity in each case since the mass is constant) will
take place in the direction of the impulse (the applied force). For example, for ball
A there will be a change in momentum in the direction from RIGHT to LEFT
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whereas for ball B there will be a change in momentum in the direction from LEFT
to RIGHT. Again, it is important to reiterate that we are referring to horizontal
linear momentum in this application.

The impulse on ball A (from RIGHT to LEFT – is given a negative sign since it
is important to identify direction in this application) is equal to the change in
momentum of ball A (the difference between momentum before and after
collision) and this can be expressed as follows:

–Ft = mA vA - mA uA

where
–Ft = impulse in the RIGHT–LEFT direction

(given a negative value to indicate direction)
mA = mass of ball A
vA =  nal velocity of ball A (after collision)
uA = initial velocity of ball A (before collision)

The impulse on ball B (from LEFT to RIGHT – is given a positive sign since
again it is important to identify direction in this application) is equal to the change
in momentum of ball B (the difference between momentum before and after colli-
sion) and this can be expressed as follows:

+Ft = mB vB - mB uB

where
+Ft = impulse in the LEFT–RIGHT direction

(given a positive value to indicate direction – but there is no need to
express the + sign)

mB = mass of ball B
vB =  nal velocity of ball B (after collision)
uB = initial velocity of ball B (before collision)

Now, considering that the impulses acting on the two balls are of equal magni-
tude (i.e., the forces acting on each are the same (action–reaction) and the contact
time is the same for both balls) we can now express the equation to demonstrate
the conservation of linear momentum principle:

Ft = - (mA vA - mA uA) = (mB vB - mB uB)

(minus sign to indicate direction of momentum change)
Impulse = change in momentum of ball A = change in momentum of ball B

Rearrange this equation and we have:

mA uA + mB uB = mA vA + mB vB

Momentum before collision = Momentum after collision

which con rms the conservation of linear momentum principle that the
momentum in the system before collision or impact equals the momentum in the
system after the collision. Fig. B4.4 shows that the two balls (A and B) have
continued to move forwards but with different velocities.

Although each body will undergo a change in momentum separately (even
though they will experience a different change in velocity because their respective
masses are different (A = 2 kg and B = 1 kg)) this change in momentum will be
equal and in opposite directions. The conservation of linear momentum equation
in this example (where both balls continue but with different velocities) therefore
leaves us with one equation to  nd two unknown quantities (i.e., the two  nal
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velocities (v) of ball A and ball B). Therefore, we need one other equation to solve
this problem and hence we must know either of the following:

1. Either of the  nal velocities vA or vB

2. That there is no rebound and the two balls will continue forward coupled
together with a common velocity (vA = vB = v)

We can now rewrite the conservation of linear momentum equation for this
speci c case of two bodies that continue to travel, coupled together, with a
common velocity (which is often the case in many human movement applications).

Conservation of linear momentum (no rebound)
(mA ¥ uA) + (mB ¥ uB) = (mA + mB) v

Momentum before impact = Momentum after impact
(for cases where bodies continue coupled together with a common velocity (v))

Fig. B4.5 illustrates the many different collision situations that can occur within
human movement: objects travel on with different velocities, objects rebound and
objects or bodies travel on with a velocity that is combined.
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vA vB
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conservation of linear momentum

Fig. B4.4. The two balls after collision indicating the conservation of linear momentum principle
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We can now see that it is possible to use these equations, which have
developed from Newton’s  rst law and the conservation of linear momentum
principle, in many applications in human movement. For example, it is possible
to work out the momentum or change in momentum experienced by bodies that
collide or indeed the forces that are exerted due to the impulses that are created in
such collisions.
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Section B – Kinetics of linear motion

B5 GRAVITY, WEIGHT, AND
VERTICAL PROJECTION

Key Notes

This law states that any two objects that have mass exert an attractive
force on each other. This force is directly proportional to the mass of the
objects and inversely proportional to the distance between the objects.

The pages of this book and the person who is reading it will be exerting an
attractive force on each other. However, because of the relatively small
masses involved (i.e., the pages of the book and the human body) the force
will be very small and it will not be possible to observe its effects. The
planet Earth (due to its very large mass) exerts a signi cant force on the
human body. This force produces the weight of an individual or object.
The attractive force of the Moon on your body is less than the attractive
force you experience on the planet Earth (because the Moon has much less
mass than the Earth). Hence you will weigh less on the Moon although
your mass will be exactly the same. This is the reason that astronauts are
able to jump large distances when they are on the surface of the Moon.
The force of gravity is an external force that acts on all bodies.

The force of gravity is constantly acting on all bodies. The effect of the
force of gravity (in the balance of all external forces that are acting, i.e., the
net force) results in an acceleration of the body or object. The acceleration
on the planet Earth is given as –9.81 m/s2 (presented as a minus value
because the force of gravity from the Earth acting on the body will be
trying to pull the body downward toward the center of mass of the Earth).

On the planet Earth the effects of the force of gravity due to the mass of
the planet act on all objects that have mass. However, this effect will only
act on the vertical component of any movement. Any horizontal compo-
nent of movement will be independent of the external force of gravity. For
objects that are at or close to the surface of the Earth the acceleration of
–9.81 m/s2 is considered to be constant. This acceleration (because of the
position of the object in relation to the center of the Earth and because of
the Earth’s relative large mass compared to the object’s small mass) will
act on all objects with the same rate regardless of their mass. Hence,
dropping a hammer and a pen from the same height while on or at the
surface of the Earth will result in both objects hitting the  oor at the same
time (neglecting air resistance).

In some situations, within human movement and sport, the effects of air
resistance (as an external force) are not negligible. Air resistance will affect
the trajectory of a golf ball and the trajectory of a javelin during  ight. Often
long jumpers who have a strong “tail wind” during their jump are not
allowed the distance that they have achieved because of the contribution of
this external force (and often the jump is disallowed in competition).

Newton’s law
of gravitation

The force of gravity

Acceleration caused
by the force
of gravity

Air resistance



Newton’s In addition to developing the three laws of motion that we are familiar with, 
universal law Isaac Newton also formulated the universal law of gravitation. This law states 
of gravitation the following.

Any two objects exert a gravitational force of attraction on each other. The 
magnitude of this force is proportional to the masses of the two objects and 
inversely proportional to the square of the distance between them.

Numerically, this attractive force that each mass exerts on the other can be
expressed by the following:

F = 

where
G = the Newtonian gravitational constant (6.67 · 10–11 Nm2/kg2)
M = mass 1 (measured in kg)
m = mass 2 (measured in kg)
r = the distance between the centers of the two masses 

(measured in meters (m))

It is important to point out that we have seen that the inertia of an object (by
virtue of its mass) determines the force needed to produce a given acceleration of
the object. Gravitational mass determines the force of attraction between two
bodies. In mechanics the value referred to as the Newtonian gravitational
constant is the gravitational force that exists between two 1 kg objects separated
by a distance of 1 m. Hence 6.67 · 10–11 Newtons of force is an exceptionally small
attractive force.

This equation for the force of gravity can be further developed to express the
value for the acceleration (a) of mass 2 (m) as it is pulled towards mass 1 (M):

a = 

This law is stating that any two objects that have mass will exert an attractive
gravitational force on each other. Although it is hard to imagine this being the
case, you will be exerting an attractive force on the Earth as well as the one you
can feel from the Earth acting on you. Similarly, you will (because you have mass)
be exerting an attractive force on this book or computer as you read this text. The
book or computer will also exert an attractive gravitational force on you. All
objects that have mass will obey this universal law. Fig. B5.1 helps to illustrate this
attractive gravitational force with examples from human motion.

The force of As we stand and move about on the planet Earth we can experience the attractive 
gravity force of gravity quite regularly and very obviously. As we get up from a chair it

requires an effort because the force of gravity from the planet Earth is pulling us
downward (although, as we are clearly aware, gravity will be acting on us all the
time, even when we are just sitting in the chair and not moving). As we walk gravity
holds us to the Earth’s surface so that we are able to generate forces to overcome
external forces (such as friction) and move forward. As we throw a ball in the air
and then try to catch it again we experience gravity:  rst, in holding the ball in our
hand stationary, then in trying to get it in the air, then by trying to catch it and
 nally by holding it in our hand again (i.e., gravity is acting all the time). The grav-
itational attractive force of the Earth on our body will affect all activities we perform
on this planet or on any objects we choose to use while we are on it. The reason
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we can feel this force so obviously is that the Earth’s mass (current estimate is
5.9725 billion trillion tonnes (or 5.9725 · 1024) – where 1 metric tonne is 1000 kg) is
very large in relation to the mass of our bodies (or indeed all other masses on its
surface or close to its surface). Similarly, the reason we do not feel the pages of this
text pulling us toward them is because the two masses (the pages of the book and
our body) involved are relatively small (compared with the mass of the Earth).

Although this gravitational attraction between two bodies is a force, the effects
of this force (actually the effects of the net force acting on the bodies) is usually
expressed in the form of acceleration: for example, how much is one object accel-
erating (or pulling it) the other one towards it?

Acceleration At the surface of the Earth the gravitational acceleration (the pull towards its 
caused by center) on our bodies and all other objects that have mass (pens, books, soccer 
gravity balls, tennis balls, javelins, and so on) is given as close to 10 m/s2. In England the

acceleration due to the pull from the mass of the Earth is said to be 9.81 m/s2

(because of the relative large mass of the Earth when compared to the mass of an
object). This means that any object that is dropped towards the center of the Earth
(or towards the ground in our case) will increase its velocity by 9.81 m/s for every
second of motion. On the surface of the planet Earth this acceleration is consid-
ered to be constant and it is the same for an object that is 100 kg mass as it is for
an object that is 0.5 kg in mass. To illustrate this, try dropping two different
objects of obviously different masses from the same height and see which one
hits the  oor  rst? The gravitational force from the Earth acting on all objects is
directed vertically downward (or to be more correct is directed towards the
Earth’s mass center) and as we sit or stand on the Earth we are (in the balance of
net external forces) being accelerated vertically downward at 9.81 m/s2 (and
again to be technically precise this amount (9.81 m/s2) actually depends on where
exactly we are on its surface and on the magnitude of the two masses involved).
However, the reason we do not continue downward is because we have the
ground to stand on and the ground will be exerting an equal and opposite
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reaction force on us (upward). If there was no surface for the planet (the ground)
and there was a large hole towards its center we would continue to accelerate
down at this rate until we eventually came to a stop at its center (because at its
center there will be no more gravitational force pulling you downward as its mass
is equally distributed all around you).

The gravitational acceleration from the Earth will vary slightly depending on
the masses involved and on where you are on the planet’s surface. As we have
seen already, in England it is speci cally 9.81 m/s2 and because the Earth varies
from its width at the equator to its width at the poles (the Earth is approximately
43 kilometers wider at the equator than it is at the poles) the gravitational accel-
eration will also vary (because we will be nearer or further away from its center,
which is where the Earth’s mass is primarily concentrated). For example, it varies
by 1 part in 200 from the equator to the poles (i.e., 0.5%). Similarly, it will also vary
if you are either at sea level or if you are standing on the top of a mountain
(because on the top of the mountain you should be further away from its center
and the gravitational force (or effect (acceleration)) should be slightly less).
However, such variation (due to being at sea level or on a mountain at altitude) is
even smaller than that described previously because of the shape of the Earth.
This variation is said to be not more than a maximum of 0.001 m/s2. For example,
in human movement it is often argued that it is easier to jump higher at altitude
than it is to jump for height at sea level (i.e., many Olympic records in athletics
have been set at high altitude meetings such as in Mexico in 1968). While it is true
that the gravitational effects will be less at altitude it is unlikely that this small
difference (variation) will have any effect on your ability to jump higher into the
air. However, if you were on the surface of the Moon (which has only 1.23% of the
Earth’s mass) you would be able to jump much higher into the air because you
would be far enough away from the Earth (and much nearer the Moon’s center of
mass) for it not to signi cantly affect your jump (although the Earth will still be
pulling both you and the Moon towards it and you and the Moon will also be
pulling the Earth toward you). The ability to be able jump higher on the surface of
the Moon is because the Moon is unable to cause a gravitational acceleration like
that experienced on the surface of the Earth (having only 1.23% of the mass of the
Earth the Moon causes a gravitational acceleration of objects of only 1.6 m/s2

(about 1/6th the gravitational acceleration of the Earth)).
So as we can see on the surface of the Moon you would have the same mass

(because this is a measure of the quantity of matter in your body, i.e., the number
of atoms and molecules in your body) and you would also have the same strength
(related to muscle mass, size, and girth) but you would weigh much less (because
of the reduced downward gravitational pull from the Moon on your body).

Weight As we have already seen from section B1, the weight of a body is de ned as the
gravitational force acting on your body. Since this force is expressed as an accel-
eration value we can use this to calculate our weight.

Using the equation proposed by Newton to demonstrate this force of gravity
we can see the following:

F = 

If this is considered in the context of human movement where we are concerned
with the effects of the Earth’s gravity on our bodies or on the movement of our
bodies we can observe the following:
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F = the gravitational force acting on us because of the Earth’s mass and that we
move on or near to the surface of it (i.e., our weight)

G = the gravitational constant provided by Newtonian mechanics
m = the mass of our body
M = the mass of the Earth (a constant value)
r = the distance between the center of mass of our body and the center of mass of

the planet Earth. This value will also remain relatively constant even if we
jump into the air or are on the top of a mountain – as we have seen the variation
on gravity by virtue of position on the Earth is no more than 0.5% depending
on where you are on its surface or 0.001 m/s2 depending on how far away you
are from its center of mass (i.e., at sea level or on top of a mountain)

Since we have several constants in this equation we can now use this knowl-
edge to develop the equation to calculate our weight (or the force acting on our
body due to the gravity of the Earth), which is more relevant to our studying
human motion.

F = 

Since G = constant value, M = constant value which creates an acceleration at the
surface of the Earth of 9.81 m/s2, r = constant value we can rearrange this equation
to represent our weight on the surface of this planet.

Weight at the surface of the planet Earth.

W = m ¥ g

where

Weight (gravitational force) = mass · acceleration due to gravity
(Newton’s(N)) = kg · m/s2

For a 75 kg person standing on the surface of the planet Earth in England their
weight would be calculated as follows:

W = m · g
W = 75 · 9.81 m/s2

W = 735.58 Newtons (to two decimal places)

As an example it is also possible to calculate (in order to illustrate how weight
changes because of different gravitational forces) the weight of the same person
standing on the surface of the Moon. In this case their weight would be calculated as:

W = m · g
W = 75 · 1.6 m/s2 (the Moon’s gravitational acceleration)
W = 120 Newtons

In both cases the subject’s mass would be exactly the same (75 kg) and the
number of atoms and molecules that make up the person (the measure of their
mass) would also be exactly the same. However, this is a clear illustration of why
it is easier for astronauts to jump higher while they are on the surface of the Moon
(i.e., the reason why you see them able to take large leaps and bounds while Moon
walking). However, for the purpose of studying biomechanics the value for the
Earth’s gravitational acceleration should be considered as 9.81 m/s2.

Vertical projection Gravity, as we have seen previously, is an external force that affects only the
vertical component of projectile motion. In previous sections within this text we
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have seen that gravity does not affect the horizontal component of projectile
motion. The effect of the force of gravity in the balance of the net forces acting is
often expressed as an acceleration value (9.81 m/s2) and in the understanding of
vertical projection it is important to represent velocities and accelerations with
directional components (as they are vector quantities that have both magnitude
and direction).

If we throw a ball into the air, and we were able to throw this ball perfectly
vertically upwards (although in practice this is not so easy to achieve) gravity
would be acting on the ball (actually gravity is acting on both us and the ball all
the time). The acceleration due to gravity in this case would be expressed as –9.81
m/s2. The minus sign would denote that gravity is acting vertically downward
(i.e., trying to pull the ball downward towards the Earth’s mass center or trying to
slow down its vertical ascent when we throw it into the air). Fig. B5.2 helps to
illustrate this exercise in more detail.

In Fig. B5.2 the ball leaves our hand with a speci c amount of upward vertical
(+ve) velocity. This is created from how much net force was eventually applied to
the ball and for how long it was applied (i.e., net vertical impulse = force · time =
change in momentum (vertical momentum)). The amount of this vertical velocity
will determine how high the ball will travel (since the acceleration caused by
gravity is considered constant at or near to the surface of the Earth regardless of
the mass). Hence, the ball with the largest vertical velocity at the point of release
from the hand will travel to a higher point in its  ight path vertically upwards.

As the ball leaves the hand, the force applied to the ball to make it leave the
hand becomes zero and gravity will be the only force still acting on the ball
(ignoring air resistance). Although the ball will still travel upwards, gravity will
be acting by slowing down its vertical ascent (i.e., pulling it back downward).
Eventually, gravity will bring this ball’s vertical movement to a stop (it will have
slowed it down such that there will be no more positive vertical velocity upward)
and its vertical velocity at this point will become zero and it will instantly change
its direction of motion (zero positive vertical velocity at the peak height of the
 ight path upwards). The ball will now start to move downward and it will do so
at an acceleration rate of –9.81 m/s2, although it is important to remember that
throughout this action ( ight) it has always been accelerating downwards (i.e.,
from when it left our hand). Similarly, it will also have an accumulating negative
vertical velocity downward (negative indicating it is moving downwards). If you
manage to catch the ball at the exact same height as that at which you released it,
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you will  nd that at this point the ball will have the same vertical velocity as it
had when it left your hand (although it will now have a negative sign indicating
downward movement). Fig. B5.3 identi es this in more detail.

If the ball is not caught and it is allowed to continue until it hits the ground, it
will continue to accelerate at a rate of –9.81 m/s2 in this direction. The ball will
accelerate at –9.81 m/s2 until it is acted upon by some external force (i.e., it is
stopped by the force of contact with the ground (the force from the ground on the
ball) or by contact with any other object).

Now, if we take the same ball and this time throw it with both a vertical
velocity (the same as in our previous experiment) and a horizontal velocity (i.e., it
would now project at an angle) we could demonstrate exactly the same effect
from the force of gravity. Fig. B5.4 illustrates this in more detail.
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The ball will travel to the same height as it did in our experiment where we just
threw it vertically upward, but because it also has a component of horizontal
velocity it will travel in a parabolic  ight path (forward). If the ball is caught at
the same height it was released we know that it will have the same vertical velocity
as when it was released (even though it is now traveling in a parabolic  ight path
with horizontal displacement). We have also seen that from Newton’s  rst law of
motion this ball will travel forwards with constant (no acceleration) horizontal
velocity (in the absence of an external force and remember gravity is not consid-
ered to act as an external force on the horizontal component of motion) until it hits
the ground or any other object in its  ight path. This is why the space shuttle or
satellites continue to orbit the Earth, that is, although they are constantly being
pulled downward to Earth, because the direction of the gravitational effect from
the Earth is changing (i.e., the Earth is rotating and they are also moving around
the Earth) they continue to orbit the Earth in a circular path. The horizontal
component of its motion is completely independent of the vertical component of
its motion. Graphically for the ball experiment this can be shown in Fig. B5.5.

Considering Fig. B5.5 in terms of the vertical component of the ball’s motion,
we can see that it travels upward and downward (displacement/time graph; Fig.
B5.5: graph 1) with a decreasing vertical velocity (positive value) as it travels
upward. The ball then reaches the peak height of the  ight path and the velocity
changes direction (i.e., it stops going upward and instantly starts coming down-
ward) and throughout this action it has been accelerating at a constant rate (–9.81
m/s2) with a decreasing positive vertical velocity and an increasing negative
vertical velocity (graphs 2 and 3). This is exactly the same as when the ball that
was thrown perfectly vertically (providing the vertical release velocity was the
same in both experiments). Horizontally, the ball will be displaced as shown Fig.
B5.5: graph 4. It will travel forwards with constant horizontal velocity (graph 5) in
accordance with Newton’s  rst law and it will do so with zero horizontal
acceleration (constant velocity horizontally as in graphs 5 and 6). Hence, vertical
and horizontal motions during projectile  ight are independent of each other and
gravity affects the vertical component only.
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Air resistance In the understanding of vertical projection it is worth making a comment about
the effects of air resistance. Normally, in human motion we consider the effects
of air resistance to be negligible (particularly on the human body as it travels as
a projectile through the air). However, in certain applications the effects of air
resistance will not be negligible and will be considered as an external force that
affects motion. For example, in the case of dropping objects vertically, we know
from Newton’s law of gravitation that any object near to or on its surface regard-
less of its mass will accelerate toward the ground at a constant rate (i.e., two
objects of different masses when dropped at the same height will both hit the
ground at the same time). However, if you take the case of dropping a piece of
paper and a golf ball you will see that the golf ball will hit the ground  rst. In
this case air resistance will affect the piece of paper by a signi cant amount such
that its descent towards the Earth will be slowed down (air resistance becomes
an external force). Similarly, in sports such as javelin, hammer throwing, and
discus, and even to an extent in long jumping when there are “head and tail”
winds air resistance will have an effect. Often long jumps that are wind assisted
are not legitimate jumps (in this case the tail wind would be an external force of
assistance). Hence, in certain sports and movements it may be the case that the
air resistance effects should be considered to be more than negligible.
Experiment with dropping different objects from the same height to see if you
can demonstrate the effects of air resistance on the vertical downward acceler-
ation of objects caused by the force of gravity.
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B6 FRICTION

Key Notes

Friction forces act between any two surfaces in contact. This friction force
opposes the motion or sliding between the two objects. The frictional
force that exists between objects is an essential necessity for human
movement. Imagine trying to walk over the ground without the frictional
force that exists between the foot and the ground. As an example, when
walking on ice the frictional force between the foot and the ground is
reduced and the result is often the foot slipping or sliding across the ice.

The relationship that exists between the two surfaces in contact that gives
rise to the frictional force can be described by what is termed the
coef cient of friction. The symbol m (mu) is used to denote the coef cient
of friction between two surfaces in contact (m = Tan q). Increase the
coef cient of friction value between the two objects in contact and there
will be an increase in the maximum frictional force. Similarly, decrease
the coef cient of friction and the maximum frictional force is reduced.

The maximum frictional force (Fmax) that exists between two surfaces in
contact is the maximum force offered by friction in resistance to motion of
the body. Hence in order to move the body or object (i.e., slide one object
over another) the maximum frictional force must be overcome.

Friction can be classed as dry friction or  uid friction. Dry friction exists
between two surfaces that are not lubricated. Fluid friction exists between
two layers of  uid (i.e., water on water or air on water). Dry friction can
be both static and dynamic. Static dry friction is when the objects in
contact are not moving, and dynamic dry friction is when one or both of
the objects in contact are in motion. The frictional force, whether it is
static or dynamic, depends on the type and nature of surfaces in contact
(i.e., types of materials, smoothness or roughness of their surfaces). The
frictional force that exists between two surfaces in contact is, however,
independent of the area of contact between the two surfaces. The
maximal friction force that exists between a book and a table will be the
same if the book is closed or open (providing it is placed on the table with
its outside cover contacting the table in both applications).

The normal reaction force (N), which acts at 90° to the surface of contact,
increases when the mass of one of the objects increases. The normal
reaction force is proportional to the frictional force. Hence the frictional
force increases when the mass of one of the objects in contact increases.

Within human movement, athletes have a need to both increase and
decrease the frictional force that exists between two surfaces in contact. In
running, the grip between the running shoe and the ground is essential.
Whereas in swimming, the one-piece fast skin swimming suits are
designed to reduce the friction between the swimmer and the water.

Friction forces

The coef cient
of friction

Maximum frictional
force

Types of frictional
force

Application

Frictional force
and the normal
reaction force



Friction forces As we know, biomechanics is concerned with the study of forces and the effects
of these forces on living things. Most of the forces with which we are concerned
in biomechanics tend to be external forces that are acting on the body or object
of interest (the forces that cause the body to move). External forces are outside of
the body (external) and these can be both contact and non-contact type of forces
(gravity could be described as a non-contact external force). Internal forces are
forces that are within the body (internally) and these are usually forces that
result from the net effect of the external forces. The net force on the player’s foot
as he/she kicks a soccer ball would be an external force whereas the force on the
anterior cruciate ligament in the knee caused by the kicking action would be an
internal force. In mechanics (and biomechanics) it is important to distinguish
between these types of forces. For example, a force applied at part D in a body
or object will tend to distort some other part of the body (i.e., part E). The forces
between the two parts of the body (D and E) are called internal forces. If the
body is in equilibrium (when the algebraic sum of the all the forces or moments
acting is zero) under the action of external forces both the external and internal
force systems are separately in equilibrium.

Forces can be resolved into individual component parts, such as vertical and
horizontal forces. Fig. B6.1 shows the contact forces that exist between the foot
and the ground at heel strike during running (sagittal plane only).

The ground reaction force (GRF) that exists as a result of the foot contacting the
ground at heel strike in walking is the result of all the reaction forces acting
between the foot and the ground during this contact (i.e., in three dimensions).
This GRF, which is only shown in the sagittal plane (two dimensions) in Fig. B6.1,
can be resolved into two components which are shown as a vertical and
horizontal component. In this case it is again important to point out that we are
only considering this (Fig. B6.1) in two dimensions (about a single sagittal plane).
The actual forces acting in this case will be in three dimensions and there will be
a medial–lateral (side to side) force that will also be a component of the ground
reaction force.

The force that is perpendicular to the surface (vertical) is called the normal
force and this always acts at 90° to the contact surface. The force that is acting
parallel to the surface of contact (horizontal) is termed the friction force.

Friction forces act between any two surfaces that are in contact and the friction
force opposes motion or sliding between the two objects. Fig. B6.2 shows other
examples of contact forces and demonstrates that frictional forces would be
present in all these examples.
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Fig. B6.1. Normal and frictional forces at heel strike during walking (sagittal plane compo-
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Coefficient of The friction force is an essential necessity of human movement and locomotion, 
friction and without frictional forces between two objects it would be very dif cult to

initiate and maintain movement. For example, imagine trying to run across an ice
rink in normal shoes. The frictional force between the ice and the shoe is very
small and the result is a slipping of the foot during locomotion. The relationship
between the two surfaces in contact that gives rise to friction can be described by
what is termed the coef cient of friction. This is represented by the symbol m
(the Greek letter mu). Fig. B6.3 helps to de ne what is understood by the term
coef cient of friction (m).

In Fig. B6.3 the diagram (left) shows that if you place a brick on a surface and
try to apply a force (Q) to slide the brick across the surface the frictional force
(F) will resist the pushing of the brick. Hence, the brick will not move until you
have exerted enough force (Q) to overcome the maximum frictional force
(Fmax) created between the two surfaces. The coef cient of friction that
describes the friction between the two surfaces is determined by imagining that
you are able to tilt the surface on an angle (as shown in the diagram on the
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right of Fig. B6.3). As the surface is tilted upward there will be a point (an angle
of inclination) where the block (brick) will start to slide down the slope. At this
point the Fmax force between the two surfaces will be overcome (i.e., by the
force of gravity and in particular the component of this force that is parallel to
the surface of the ramp) and the block will slide down the slope. The tangent
(opposite divided by adjacent in right-angled triangles) of the angle that is
created when the block begins to slide is the measure entitled coef cient of
friction (m (mu) = tan q).

Example The angle of inclination required to start a 20 kg mass sliding down a plastic
covered surface is 35°. Calculate the coef cient of friction (m) and the maximum
frictional force (Fmax) which exists between the two surfaces in contact (the
20 kg mass and the slope).

In order to calculate the maximum frictional force (Fmax) we use the formula
that was developed in Fig, B6.3 (Fmax = m · N) but  rst we need to establish the
normal (N) reaction force acting between the two surfaces.

We can now use the equation N = W cos q to solve the problem for the
maximum frictional force (Fmax) that exists between the two surfaces in contact.

Friction can be classed as being either dry friction or  uid friction. Dry friction
is the force that exists between the surfaces of two objects in contact that are not
lubricated (i.e., they are dry). Fluid friction exists between two layers of  uid,
such as air and water, or water and water. This type of frictional force does not
occur frequently in sport or human movement and the mechanics involved in the
understanding of  uid friction are complex and are beyond the scope of this text
in biomechanics.

Normal force created
from ramp acting on

block (upwards to right)

N

m · g = W

F

q

Solution 2.
Normal reaction force (N) = cos q · W
Fmax = m · N
N = W cos q
where
N = normal reaction force
q = angle of inclination

W = weight of block (force
   due to gravity)

g = acceleration due to gravity
   9.81 m/s2

m = mass of block

20 kg

35°

Block slidesSolution 1.
m = tan q
m = tan 35°
m = 0.700 (coefficient of friction)
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Dry friction can be static dry friction (when objects are not moving) or
dynamic dry friction (when one or both of the objects in contact are in motion).
The friction force, whether in the static or dynamic situation, depends on the type
and nature of each surface in contact. For example, different surfaces in contact
will have different coef cients of friction. Similarly, different roughness of
surfaces in contact will also have different frictional properties: steel and plastic
(as used in arti cial hip joint replacements) have very low coef cients of friction
and move easily over each other; a rough surface acting on another rough surface
will have frictional properties different from two smooth surfaces acting together
and it should be easier to slide or move the smooth surfaces across each other.
Many of these examples can be seen throughout sport and human movement, for
example the type of grip on the javelin; the chalk used by weightlifters or
gymnasts for better grip; the table tennis bats with rough and smooth surfaces;
and even soccer boots with modi ed uppers for better contact and control of the
ball.

The frictional force that is created between the contact of two objects is
independent (not connected with) of the surface area of contact. For example,
place a book on a table and try to push it. Now open the outside covers of the
book place it  at on the table and try to push it again. The book with its covers
closed will create the same frictional force as the book open with both its outside

Fmax = 0.700 · (cos q · W)
= 0.700 · (cos 35° · (20 · 9.81))
= 0.700 · (0.819 · 196.2)
= 0.700 · 160.68
= 112.48 N

This is the maximum frictional force that exists between the two surfaces in contact.
This force would need to be overcome before one object could be pushed across
the surface of the other object. Hence you would need to exert a force of more than
112.48 N to start the block sliding (in the flat condition)

Solution 4.
Using
Fmax = m · N
N = W cos q

N

q

Inclined
plane

90 – q

90 – q
WH

q

Solution 3.
N = W cos q    formula is derived from

cos q =

cos q =

W cos q = N

N
W
––

adj
hyp–––

the following
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covers in contact (effectively doubling its contact area). The reason for this is that
although you have increased the surface area of contact (i.e., when you opened
the book) you have also distributed the same mass over a larger area of contact,
and have thus created a smaller average force because it is spread over a larger
area (the net result of both conditions is the same because you have not changed
the mass of the book). In other words, you have maintained the mass of the book
but spread it over a larger area thus making each small contact force less –
because you have spread the initial load over double the surface area.

Friction force From consideration of the equation in Fig. B6.3 we can see that the frictional force 
and normal is proportional to the normal reaction force. Hence, if you increase the normal 
reaction force reaction force you will increase the frictional force between the two objects. In the

case of the open and closed book you did not increase the normal reaction force
(you spread the same force over a larger surface area). The frictional force
between the two objects remains the same in both the open and closed book situ-
ations because the mass and the normal reaction force also remain the same. As a
further example of this you will see that by adding another book on top of the
initial closed book you increase the frictional force and it will be harder to push or
slide the two books across the table (i.e., you have increased the mass, the normal
reaction force, and also the frictional force between the two books and the table).
Since the frictional force resists motion between two objects it will be harder to
push the two books than it is to push one. Fig. B6.4 illustrates this in more detail.

Another example of this can be seen by placing your hand  at on a table and
then see how easy it is to initiate movement (i.e., slide it across the table). Next,
repeat the same experiment but this time press hard down onto the table. In the
latter example it will be more dif cult to slide your hand across the table because
you have increased the normal reaction force and thus the frictional force existing
between the two surfaces in contact (i.e., the hand and the table).

The normal reaction force (N) is proportional to the frictional force (Fmax)
as we can see from the equation Fmax = m ¥ N. The normal reaction force
increases when the mass of one of the objects in contact is increased. Hence, in this
case (increasing the mass of the object resting on another object or surface) the
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frictional force (Fmax) increases and it is harder to slide the object across the
surface of the other. In both static and dynamic friction situations the frictional
force between two objects is not affected by the surface area of contact. In
addition, it is more dif cult to start an object moving than it is to keep it moving.
Hence, the static friction between two objects is greater than the dynamic friction
between two objects.

Application The coef cient of friction describes the relationship between the two surfaces in
contact. Increase the coef cient of friction value and the frictional force between
the two objects will also increase (Fmax = m · N). Similarly, decrease the coef cient
of friction between the two objects and they will slide across each other more easily.
Within sport and exercise there are many examples where it is desirable both to
increase and decrease the coef cient of friction between two objects.

Running shoes with rubber soles are designed to grip the  oor so that the
athlete can push into the ground with a large enough force to cause a reaction
force from the ground which results in a net force applied to move the body
forward with speed. Arti cial joints, such as knees and hips, within the human
body require low coef cients of friction so that they are made to last for a number
of years before they begin to wear down. Table B6.1 presents some of the co-
ef cient of friction values for a number of different surfaces in contact.

Table B6.1.

Surfaces Coefficient of friction (m)

Rubber on concrete (dry) 0.60–0.85
Rubber on concrete (wet) 0.45–0.75
Polystyrene (plastic) on steel (dry) 0.35–0.50
Wood on wood (wet) 0.20–0.50

The force that opposes the motion of one solid surface of an object sliding over
another is termed kinetic or dynamic friction. The force that opposes the initial
movement of the object is slightly greater and is called static or limiting friction.

Kinetic friction occurs when two objects are moving relative to each other and
they rub together. The coef cient of kinetic friction for two objects is usually less
than the coef cient of static friction. The drag of air particles acting on a javelin
or the water particles acting on the swimmer are two examples of kinetic friction.
For a car tyre the coef cient of dynamic friction is much less than the coef cient
of static friction. The tyre provides the best traction with the road when it is not
sliding. However, in the case of the car “skidding” the tyres become less effective
because of the reduced sliding coef cient of dynamic friction. The coef cient of
kinetic friction for metal on metal (same type) can be as low as 0.15, which as you
can see is lower than any of the values presented for limiting or static coef cient
of friction shown in Table B6.1.

The frictional force between two objects is essential for initiation and main-
tenance of human motion. If the applied force equals the frictional force (Fmax)
then the objects in contact will not move over each other. It takes more force to
start an object moving over another than to keep an object moving in this way. As
long as the two surfaces in contact are at rest the coef cient of friction between the
objects remains constant. However, once motion begins the coef cient of friction
between the two objects has a lower value and hence it is easier to keep the
object/s moving. The frictional force can be any value from zero to Fmax
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depending upon how much force is being applied to move the two (or one of the
two objects in contact) objects. The direction of the frictional force is always oppo-
site to the intended direction of motion of one or both of the two objects.

Example A force of any more than 100 N is required to start a 70 kg mass sliding across a
wooden  oor. Calculate the coef cient of friction between the mass and the
wooden  oor.

Heat is often generated at sites of friction between two objects in contact.
Within the human body this heat can cause damage to the soft tissue structures.
Blisters would be an example of excessive amounts of friction between two
surfaces in contact in the human body. The body would respond by producing a
layer of  uid between the super cial and deep layers of skin, thus trying to
protect the deeper layers. In the long term often the super cial layer of skin is
thickened, as in the case of the skin on the ball of the foot. Lubrication of the
surfaces in contact helps reduce the amount of friction between objects in the dry
condition. Articulating joints within the body that are lubricated with synovial
 uid can produce a sliding system that is  ve times as slippery as ice on ice. As a
result human joints can last for well in excess of 70 years before signi cant wear
and tear issues occur (such as arthritis and joint degeneration). Finally, the one-
piece fast skin swimming suits, seen at many Olympic Games, are designed to
create a layer of water around the suit (eddy currents) that acts against the water
in the pool creating water on water friction situation. These allow the athlete to
slip and glide through the water much easier. Friction in sport and exercise is
essential and there, are many examples when it should be both increased and
decreased in order to perform more ef ciently and effectively.

Solution 5.
Fmax = m · N
100 N = m · (70 · 9.81)

= m

0.146 = m

100
686.7
–––––
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Section C – Kinetics of angular motion

C1 TORQUE AND THE MOMENT OF
FORCE

Key Notes

A torque is a twisting or turning moment that is calculated by
multiplying the force applied by the perpendicular distance (from the axis
of rotation) at which the force acts (the moment arm). Torques cause
angular accelerations that result in rotational movement of
limbs/segments.

Clockwise rotation is the rotary movement of a limb/lever/segment in a
clockwise direction (–ve). Clockwise is referring, in this case, to the hands
of a clock or watch. Anti-clockwise rotation is rotary movement in the
opposite direction (+ve).

A force couple is a pair of equal and opposite parallel forces acting on a
system.

This is a situation in which all the forces and moments acting are
balanced, and which results in no rotational acceleration (i.e., a constant
velocity situation).

This states that the sum of all the torques acting on an object is zero and
the object does not change its rotational velocity. Re-written, this
condition can be expressed as the sum of the anti-clockwise and
clockwise moments acting on a system is equal to zero (∑ACWM +
∑CWM = 0).

Swimmers are now utilizing a pronounced bent elbow underwater pull
pattern during the freestyle arm action. This recent technique change
allows the swimmer to acquire more propulsive force and yet prevent
excessive torques being applied to the shoulder joint (which were
previously caused by a long arm pull underwater pattern). Large torques
are needed at the hip joint (hip extensor and  exor muscles) to create the
acceleration of the limbs needed to kick a soccer ball.

Torque A torque is de ned as a twisting or turning moment. The term moment is the
force acting at a distance from an axis of rotation. Torque can therefore be
calculated by multiplying the force applied by the perpendicular distance at
which the force acts from the axis of rotation. Often the term torque is referred to
as the moment of force. The moment of force is the tendency of a force to cause
rotation about an axis. Torque is a vector quantity and as such it is expressed with
both magnitude and direction. Within human movement or exercise science
torques cause angular acceleration that result in the rotational movements of
the limbs and segments. These rotational movements take place about axes of

Torque

Clockwise and anti-
clockwise rotation

Force couple

Equilibrium

Second condition
of equilibrium

Application



rotation. For example, the rotational movements created in the leg while kicking
a soccer ball would occur about the ankle (the foot segment), the knee (lower leg
segment) and the hip (upper leg segment) joints or axes of rotation. If an object is
pushed with a force through its center of mass it will move in a straight line
(linear motion) in the same direction as the applied force. However, if an object is
pushed with a force at a perpendicular distance away from its center of mass it
will both rotate (about an axis of rotation) and its center of mass will translate
(move in a straight line). Figs C1.1, C1.2 and C1.3 illustrates this concept of torque
in more detail.

Clockwise and In Fig. C1.3 it is possible to see that when a force is applied at a perpendicular 
anti-clockwise distance from the center of mass (which in this example is considered to be the 
rotation axis of rotation), the box (object) will both rotate and move forwards. The torque

that is created as a result of applying this force at a perpendicular distance will
cause the box to rotate about its axis of rotation. However, the box will also move
forwards (translate) as the force is applied in a horizontal direction. Although the
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force is acting at a perpendicular distance from an axis of rotation and it will
create a torque or twisting moment, it will also have a horizontal component of
force acting on the box (because the force is being applied horizontally). When we
apply a force at a perpendicular distance to an axis of rotation we have seen that
we create a torque or twisting moment (a tendency to rotate). The perpendicular
distance from the center of rotation is called the moment arm. The torque that is
created causes a potential for the rotational acceleration and thus the resulting
rotation of the limb, lever or segment on which it is being applied. This rotation
can be described as being either clockwise rotation or anti-clockwise rotation
(described by reference to the direction of the movement of the “hands” on a
clock or watch). Within biomechanics clockwise rotation is usually given the
negative symbol (–ve) whereas anti-clockwise rotation is given the positive
symbol (+ve). In many situations within biomechanics it is often the case that
pairs of forces act about a segment and about an axis of rotation. Two equal and
opposite forces that are acting on a system create what is termed a force couple.
The term couple is therefore de ned as a pair of equal and opposite parallel
forces. Figs C1.4 and C1.5 are useful in clarifying these terms in more detail.
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Force couples In Fig. C1.5 it is possible to see the effect of a couple on two objects (a box and a 
lever arm). In each example in Fig. C1.5 a couple (a pair of equal and opposite 
parallel forces) is seen applied to the objects. In both cases the objects (a box and
a lever arm) rotate (and in these cases the objects only rotate because the only
forces acting on them are equal and opposite – obviously in this example we
have ignored the external force of gravity) in both a clockwise (the box) and
anti-clockwise (the lever arm) direction. The couples create rotation about the
axes of rotation. In these examples in Fig. C1.5 there is no translation (linear
motion) because the total net force on the systems is zero (i.e., the forces are
equal and opposite). According to Newton’s  rst law of motion an object will
remain at rest or continue with uniform linear motion unless it is acted upon by
an external force. In both these cases the net linear force on the objects from the
couples would be zero and the objects would remain in the same positions (i.e.,
they would not move linearly). However, they would rotate about their
respective axes of rotation because the couples cause torques and hence a
combined rotational effect.

Since torque is expressed as force multiplied by perpendicular distance from
an axis of rotation it can be expressed mathematically as follows:

Torque = force ¥ perpendicular distance
T = F ¥ d

where
F = force (measured in Newtons (N))
d = perpendicular distance from axis of rotation (measured in meters (m))
T = torque (measured in Newton meters (Nm))

Considering this equation, it is possible to see that in order to increase the
torque, and hence increase the turning moment (or rotational effect) applied to an
object, we can either increase the force applied or increase the distance from
which the force is applied (i.e., from the axis of rotation).
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Similarly, in order to decrease the amount of torque applied to a system we can
either reduce the force applied or shorten the distance from the axis of rotation
from which the force is applied. Both of these applications have particularly
important implications within Human Movement and Exercise Science.

Application There are many applications within human movement where is it bene cial
both to increase and decrease the amount of torque or twisting moment acting
on an object (or within a system where a system could be a group of leg
segments). For example, in the case of swimming freestyle you may notice that
many Olympic level swimmers now use a pronounced bent elbow action during
the pull phase of the freestyle stroke. Indeed, after the swimmer’s hand has
entered the water, the swimmer will immediately bend the elbow and pull
through the stroke almost entirely in this bent elbow position. This technique is
designed to allow the athlete to be able to create as much propulsion as possible
and yet at the same time protect the shoulder joint from excessive torque and
loading (which was the case when previously using an extended arm to pull in
freestyle (i.e., a long lever arm)). In the Athens Olympics in 2004 you may have
seen the Australian 1500 m freestyle swimmer Grant Hackett clearly adopt this
bent elbow technique.

Similarly, within the exercise of weightlifting, using the action of “arm curling”
with weights requires the consideration of torque. The arm curl is where the
elbow is  exed and extended while the athlete holds a weight in the hands. This
action requires the biceps brachii muscle in the arm to create a torque (or turning
moment) in order to resist the turning effect (or torque) created by holding the
weight at a distance from the elbow (i.e., in the hand). In order to perform the
action the athlete must exert a force in this muscle that creates a turning moment
that overcomes the turning effect (the torque) created by the weight at the hands
(due to its position in the hand from the axis of rotation (i.e., the elbow joint)). Figs
C1.6 and C1.7 help to illustrate this concept in more detail.

As with forces, torques are vector quantities and their properties have both
magnitude and direction (i.e., clockwise or anti-clockwise moments) and they can
be summated and resolved. In the example within Fig. C1.7 it is possible to see
that the system (the arm curling example with weights) has two moments acting
(in the sagittal plane and about transverse axis). A clockwise moment (–ve) which
is created by the weight and the distance this weight acts from the elbow axis of
rotation and an anti-clockwise moment (+ve) which is created by the muscle force
(biceps brachii) and the distance that this force acts from the elbow joint axis of
rotation. Note that it is important to point out that both moments are expressed
with reference to the same axis of rotation (i.e., the elbow joint).

Force applied = 35 N and the 
distance is 0.3 m
T = F ¥ d
F = 35 N
d = 0.3 m
T = 35 ¥ 0.3
T = 10.5 Nm

Force applied = 20 N and the 
distance is 0.3 m
T = F ¥ d
F = 20 N
d = 0.3 m
T = 20 ¥ 0.3
T = 6 Nm
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If the turning moment created by the muscle force equals the turning moment
created by the weight then the system will be in what is called equilibrium
(balanced forces and moments – resulting in no rotational acceleration – a
constant or no velocity situation). However, if the muscle force creates a larger
torque (turning moment) then the result is that the weight will be lifted and the
arm will move in  exion. Alternatively, if the weight creates the greater turning
moment then the arm will drop and the elbow will extend. This latter case
happens when athletes lower weights down in a controled manner (i.e., meaning
at a constant velocity (no acceleration) where the muscle is creating a moment
equal to the moment created by the weight). Throughout the action of arm curling
with weights, the muscle force exerted by the biceps brachii will need to continu-
ally change. The reason for this change is due to the position of the arm at various
points in the  exion–extension movement. In this case both the moment arm of
the weight and the moment arm of the muscle force will also continually change.
Since the “weight” has a constant mass and therefore a constant weight (force =
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mass ¥ acceleration due to gravity), the muscle force will need to change to
accommodate the different torque or twisting moment created by the differing
moment arms. Fig. C1.8 shows two positions of the arm in this example which
illustrate the changing lengths of the respective moment arms.
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The second The  rst condition of equilibrium that is derived from Newton’s  rst law of 
condition of motion states that an object in a state of equilibrium does not accelerate (i.e., 
equilibrium change its state of motion). In this case the sum of all the forces acting on the

object is zero and the object is in a state of balance (i.e., it does not accelerate
linearly in any direction).

Similarly, an object that is in a state of equilibrium does not change rotational
velocity and the second condition of equilibrium states that the sum of all the
torques acting on an object is also zero. Since the second condition of equilibrium
is related to torque or turning moments we can write the second condition of
equilibrium as:

Since we know that torques cause rotation and they are vector quantities (with
magnitude and direction) we can use this knowledge to expand the second
condition of equilibrium as follows:

∑ ACWM + ∑ CWM = 0

The sum of the anti-clockwise moments and clockwise
moments about a point (rotational point) is equal to zero.



where
∑ = the sum of
ACWM = anti-clockwise moments (+ve)

CWM = clockwise moments (–ve)

In this context, it is important to point out that this is referring to a system of torques
about a common axis of rotation. Hence, it is important to use the same origin
(point of rotation) for anti-clockwise and clockwise moments in the calculation of
the second condition of equilibrium. In the example in Fig. C1.7 we had a system
with two moments that were acting about a single axis of rotation (a common axis
or origin) which was the elbow joint. If we now add some values to this example it
would be possible to work out the muscle force that would be needed in order to
balance the system (i.e., hold the weight in the hand in a stationary position).

Consider the example in Fig. C1.7, with the arm held in the 90°  exion position.
The free body diagram would be represented as follows.

Free body diagram

where
d1 = the perpendicular distance to the muscle force (0.05 m)
d2 = the perpendicular distance to the weight force (0.45 m)
M1 = the muscle force (unknown)
W2 = the weight force. In this case the weight is a 5 kg dumbbell. Hence the force

acting would be determined by the mass multiplied by the acceleration due
to gravity (F = m ¥ g). For the weight this would be equal to 5 kg ¥ 9.81 m/s2

= 49.05 N.

Hence we can now use the formula for torque (T = f ¥ d) and the second
condition of equilibrium to solve the problem for the muscle force needed to hold
this weight stationary.

Clockwise moment or torque (–ve) = F ¥ d
Clockwise moment or torque (–ve) = W2 ¥ d2

Clockwise moment or torque (–ve) = 49.05 ¥ 0.45
Clockwise moment or torque (–ve) = –22.07 Nm
Anti-clockwise moment (+ve) = F ¥ d
Clockwise moment or Torque = M1 ¥ d1

Clockwise moment or Torque = +M1 ¥ 0.05

Now substitute these into the second condition of equilibrium equation:

∑ ACWM + ∑ CWM = 0
M1 ¥ 0.05 + (-22.07) = 0

(Note: the clockwise moment is given a negative sign.)

Anti-clockwise
rotation (+ve)

M1
Muscle force

Clockwise
rotation (–ve)

W2
Weight force

d2

d1

Elbow joint axis
of rotation

d1 = perpendicular distance of muscle force
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Now rearrange the equation to get M1

M1 = 

(Note: 22.07 has now become positive because we have moved it to the other side
of the equation and hence changed its sign.)

M1 = 441.4 N (Muscle force)

Therefore, it is clear that we have to exert 441.4 N of force in the biceps brachii
muscle in order to hold the weight in this static 90°  exion position. In order to
overcome this weight and  ex the joint further we would have to exert more force
than this and thus create a larger turning moment (anti-clockwise). In this
example it is useful to note that because the moment arm of the muscle force is
small (0.05 m) we have to exert a large force in the muscle to balance the effect
from the weight because it is acting at a much longer moment arm (0.45 m).

Probably the simplest way to understand clockwise and anti-clockwise
moments in action and their relationship with equilibrium is to imagine the
seesaw you probably sat on as a child. In order to balance the seesaw it was neces-
sary to move either person further in or further out from the center of the device
(the fulcrum or pivot point). The central point of the seesaw in this case would be
the axis of rotation. The weight of each person sitting on the seesaw created the
forces and the distances from the center of the seesaw at which each person sat
created the moment arm. One person would create a clockwise rotation
(moment) of the seesaw and the other would create an anti-clockwise rota-
tion (moment). In order to move the seesaw or balance the seesaw you either had
to move in, move out or push off the ground with a force (hence changing the
moment or torque created and moving the seesaw up or down).

Throughout human movement and exercise science there are numerous
situations of the use and application of torques and levers. For example, the
torques created at the joints during the pull phase in swimming; the torques on
the lower back during the golf swing; the levers and torques created by the
canoeist and paddle in white water slalom; and the torques needed in the limbs of
the soccer players effectively to kick a soccer ball with both speed and accuracy.
In many of these examples it is often desirable both to increase and decrease the
torques that are created. The use and application of levers is one example where
the consideration of torque is clearly applied and within human movement there
are many applications of different types of levers. These will be considered more
carefully in section C6.

22.07
�
0.05
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Section C – Kinetics of angular motion

C2 NEWTON’S LAWS OF MOTION –
ANGULAR MOTION

Key Notes

The angular momentum of a body remains constant unless a net external
torque is exerted on the body. The angular momentum (L) of a body can
be determined by the moment of inertia (I) multiplied by its angular
velocity (w). The moment of inertia of a body is described as the reluctance
of an object to start or stop rotating or change its state of motion. Moment
of inertia of a body is calculated from the distribution of mass (m) about
an axis of rotation (r). Moment of inertia = mass (m) ¥ radius2 (r2). The
further away from the axis of rotation a mass is distributed the larger will
be the moment of inertia.

The ice skater, in a jump, holds the arms close to the body during a
pirouette move (rotation about the longitudinal axis) which reduces the
moment of inertia of the body about this axis. This offers less resistance to
a change in its state of rotational motion (about this axis). If the skater
had created an amount of angular momentum before he/she left the ice
this angular momentum (in the absence of an external torque or force)
would remain constant. Since angular momentum = moment of inertia ¥
angular velocity a reduced moment of inertia would result in an
increased angular velocity (i.e., more rotations in a given time).

When a torque acts on an object the change in angular motion (angular
momentum) experienced by the object takes place in the direction of the
torque and this is proportional to the size of the torque and inversely
proportional to the moment of inertia of the object. Algebraically this is
expressed as T = I ¥ a (where T = torque, I = moment of inertia and a =
angular acceleration).

In the case of arm curling with weights, the biceps brachii muscle applies
a torque to the lower arm (the forearm). Depending on the moment of
inertia of the arm and the weights this torque may cause an acceleration
of the arm (anti-clockwise). The amount of this acceleration is dependent
on the moment of inertia offered in resistance to this movement. The
smaller the moment of inertia the greater will be the acceleration for a
given applied net torque.

Whenever an object exerts a torque on another there will be an equal and
opposite torque exerted by the second object on the  rst.

The torque created on the upper leg by the hip  exors during the kicking
action in soccer will create an equal and opposite torque that is exerted on
the pelvis. This has important implications for hamstring injury. The
torque that is created on the body by the shoulders and hips during the
backswing in golf will create a reaction torque acting in the lower back
(lower back injury implications).

Newton’s  rst law
of motion

(angular analog)

Application

Newton’s second
law of motion

(angular analog)

Application

Newton’s third law
of motion

(angular analog)

Application



As we have seen in section B2, Newton’s  rst law of motion relates to situations
where forces are balanced and the net effect of external forces acting on an object
is zero. As a reminder, Newton’s  rst law, which related to linear motion, states
the following.

Newton’s first Every object will remain at rest or continue with uniform motion unless it is 
law of motion acted upon by an unbalanced force.

This law can also be applied to the linear momentum of a body in that it is also
true that the momentum (mass ¥ velocity) possessed by a body is constant in the
absence of any external force. This law is saying that a body will either stay at rest
(with no momentum) or keep moving (with a constant momentum) unless it is
acted upon by an external force. An object in motion that is not affected by a net
external force will have a constant linear momentum because it has a constant
linear velocity and a  xed mass.

In angular terms this law can be reworded as follows and can be made applic-
able to angular motion:

The angular momentum of a body remains constant unless a net external
torque is exerted upon the body.

In this application we are dealing with rotation and rotational effects and the
term force has therefore been replaced by the term torque (a twisting or turning
moment). In this context, it is worth identifying that in the application of this law
to rotation it has purposefully not been stated in the context of constant angular
velocity (like in the case of the linear analog) because as we will see in the
rotational application for the human body (which is not a rigid body) this is not
necessarily the case.

The angular momentum (usually represented by the symbol L) of a body or object
can be expressed by the moment of inertia (the reluctance of the body to start, stop,
or change its rotational state) of the body multiplied by its angular velocity.

Angular momentum = Moment of inertia ¥ Angular velocity
L = I ¥ w (kg.m2/s)

L = Iw

Angular momentum is measured in the units of kilogramme meter squared
per second (kg.m2/s). The moment of inertia of an object is the reluctance of the
object to start or stop rotating, or to change its state of rotation. Moment of inertia
is measured in the units of kilogram meter squared (kg.m2). The concept of
moment of inertia will be covered in more detail in section C3 but for the purpose
of understanding the angular analogs of Newton’s laws it is necessary to provide
a brief description here.

The moment of inertia of an object refers to the object’s ability to resist rotation.
The larger the moment of inertia the more the object will resist rotation. Similarly,
the smaller the moment of inertia of an object the less will be its resistance to start,
stop, or change its rotational state. The moment of inertia is calculated from the
distribution of mass (m) about an axis of rotation (r). It can be expressed mathe-
matically as: I = mr2. The moment of inertia of a body is related to a speci c axis
of rotation and there will be different moment of inertia values for each axis that
the body is rotating about. For example, there may be a moment of inertia of the
whole body about a longitudinal axis or about an anterior–posterior axis. Also,
moment of inertia can be expressed for individual parts or individual segments of
a body (i.e., the upper leg can have a moment of inertia about the hip joint axis of
rotation or the lower leg a moment of inertia about the knee joint axis of rotation).
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In order to understand moment of inertia in a more detail, Figs C2.1 and C2.2
show moment of inertia conditions for different positions of the body and
different axes of rotation.

In Figs C2.1 and C2.2 it can be seen that when the mass is distributed much
closer to the axis of rotation the moment of inertia is reduced. In Fig. C2.2
(Example A) the arms are held close in tightly around the body. This has the effect
of distributing the mass (i.e., the mass of the arms) much closer to the axis of
rotation (the longitudinal axis). This reduces the moment of inertia of the body
about this axis of rotation. In the case of Example B the arms are held outward
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Example A
Small moment
of inertia

c of g

Bar
Rotation

Rotation

Moment of inertia is approx.
= 5 kg.m2

Moment of inertia is approx.
= 85 kg.m2

Example B
Large moment
of inertia

Note: moment of inertia (I) is the distribution of mass about the axis of rotation.
In Example A, which has a small moment of inertia, the mass is tightly collected
around the axis of rotation (which is through the center of gravity). However, in
Example B the mass is distributed away from the axis of rotation (which is the
bar) and the moment of inertia is much larger

Example A Example B

Longitudinal axis
of rotation

Longitudinal axis
of rotation

Arms are held in.
Smaller moment

of inertia

Arms are extended.
Larger moment

of inertia

Increased
angular velocity

Decreased
angular velocity

Fig. C2.2. Moment of inertia (longitudinal axis of rotation)

Fig. C2.1. Moment of inertia (transverse axis of rotation)



and this places the mass further away from the axis of rotation. This increases the
moment of inertia about this axis.

The angular analog of Newton’s  rst law states that the angular momentum of
a body will remain constant unless the body is acted upon by an external torque.
At this point it is particularly important to express that angular momentum is
related to a particular axis of rotation. If the body that is being considered is made
up of several parts then the total angular momentum is the sum of all the indi-
vidual momenta of each body part (that is acting about the same axis of rotation).

In angular terms the angular momentum can also be expressed by multiplying
the square of the distance of the object from the axis of rotation (r2) by the mass
of the object (m) and its angular velocity (w).

L = mr2 ¥ w

Since mr2 = the moment of inertia of an object then the angular momentum is the
moment of inertia (I) multiplied by the angular velocity of the object (refer to the
equation for angular momentum (L = Iw) shown previously). This angular
momentum will also occur about a particular axis of rotation.

Now imagine a diver taking off from the springboard in an attempt to perform
a double somersault before he/she enters the water. In order to perform this
effectively the diver will create angular momentum while still in contact with the
springboard. For example, he/she will have applied a force to the board which
will create a torque or twisting moment on the body (because of its position in
relation to the center of gravity or in this case the axis of rotation). This will enable
the diver to leave the board with angular momentum. Fig. C2.3 shows this in
more detail.

Once the diver is airborne and in the absence of any external torque they will
have a constant angular momentum (Newton’s  rst law). This angular
momentum will remain the same throughout the dive. Hence, in order to perform
the necessary somersaults the diver will need to adjust his/her moment of inertia.
The basic somersault takes place about the transverse axis (and in the sagittal
plane) and the angular momentum at board contact will be created about this axis
of rotation (although it could also be present about other axes of rotation). Since
the amount of somersaulting angular momentum is constant and the diver is able
to change his/her moment of inertia (by tucking up like a ball or by extending the
limbs), the angular velocity must change in order to maintain this constant
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Once the diver is airborne there is
(in the absence of external torque)

a constant angular momentum

Rotation

Note: in this example the c of g is located outside the body

c of g
(axis of rotation)

Reaction force from
board to athlete

Moment arm
of force

W = m · g

Fig. C2.3. Angular momentum and torque in diving (external forces acting)



angular momentum principle described by Newton’s  rst law. If the diver
reduces his/her moment of inertia (tucks up like a ball) the angular velocity will
increase and he/she will be able to perform more somersaults in a short space of
time (i.e., higher angular velocity). Conversely, if the diver wanted to enter the
water in a straight and controlled position (with limited rotation) he/she would
straighten the body and increase the moment of inertia. This would slow down
their rotation (i.e., reduce the angular velocity). During all this activity the
angular momentum of the diver will remain constant (Fig. C2.4 helps to show this
diagrammatically).

L = I w (constant angular momentum in the absence of any external
torques)

L = ≠I and Øw (increased moment of inertia and decreased angular velocity)
L = ØI and ≠w (decreased moment of inertia and increased angular velocity)
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Water

Athlete (diver)
Diving
board

Needed for completing
several rotations

(multiple somersaults)

decreased moment of inertia (l)
increased angular velocity (w)

increased moment of inertia (l)
decreased angular velocity (w)

Needed for controled
straight entry into the water

Constant amount of
angular momentum

Fig. C2.4. Angular momentum in diving

Angular Newton’s  rst law of motion states that in the absence of angular momentum 
momentum at and in the absence of any external torque the amount of angular momentum 
take-off (equals will remain constant (i.e., zero before take-off = zero after take-off). If this is 
zero) true, how is it that a diver without any angular momentum at take-off can still

initiate twists and turns in the air during the dive? Consider the case of the
diver in Fig. C2.3 and in particular what would happen if the athlete had zero
angular momentum at take-off and yet the athlete was still required to twist and
turn during the dive. This zero angular momentum would be where the reaction
force (from the board) was applied directly through the center of gravity of the
athlete (i.e., not at a distance (moment arm) from the axis of rotation). In this
example the diver would leave the board with no angular momentum. The
athlete could initiate twists and turns by using asymmetrical or symmetrical



movements of the arms or legs. For example, the diver could pull one of his/her
arms across the chest in a rotational movement about the longitudinal axis. This
would create a certain angular momentum (for part of the body and an angular
momentum in the opposite direction for the remainder of the body (i.e., summa-
tion of zero)) about a certain axes of rotation (i.e., the longitudinal axis) and in a
certain direction (i.e., clockwise or anti-clockwise). The arm would have a small
moment of inertia and would be moving with a large angular velocity. Hence,
the body would have some angular momentum about this axis (because as we
have seen before the equation for angular momentum is L = Iw). However, since
the diver had no initial angular momentum (at take-off) about the longitudinal
axis, Newton’s  rst law says that this directional angular momentum must be
counteracted by angular momentum in an opposite direction (i.e., making the
total angular momentum about this axis equal zero (the net angular
momentum)). In diving the twist that is initiated by the asymmetrical or
symmetrical arm movements is often counteracted by the legs in changing from
a rotational twist to a pike and then back to a straight controlled extended
position for entry into the water. In this application, there would be potentially
more control of the rotation in the air and at entry to the water because the
athlete controlled the amount of angular momentum he/she created by moving
the arm. Hence, since this must be balanced by angular momentum in an oppo-
site direction the athlete will experience opposite controlled angular momentum
to balance out the equation (because they had zero angular momentum to begin
with). Therefore, just before contact with the water (which would be an external
force) the net angular momentum would be equal to zero which is consistent
with the angular analog of Newton’s  rst law of motion.

Perhaps an easy way to remember and apply this is to imagine a cat falling
out of a tree backwards. As the cat falls it will have zero angular momentum
yet somehow it is still able to land on its feet (by twisting and turning in the
air). As the cat falls backwards it brings its front legs close to the head. This
reduces the moment of inertia about the longitudinal axis. This causes a large
rotation (angular velocity) of the upper body clockwise (approximately 180°).
At the same time the cat also extends the lower legs out away from the body
creating a large moment of inertia (about the longitudinal axis). This results in
only a small amount of angular rotation of the lower body in an opposite anti-
clockwise direction (approximately 5°). This balances the angular momentum
equation for both clockwise and anti-clockwise rotation about this speci c axis.
The upper body is now facing the ground and is ready for landing. However,
in order to get the lower part of the body facing the ground the cat does
exactly the same but opposite (it reduces the moment of inertia of the lower
body and increases moment of inertia of upper body). This gives the lower body
large clockwise rotation and the upper body only a small amount of anti-
clockwise rotation. The  nal result is that the cat lands on both its front and
back feet, and it does so with a net angular momentum of zero. However, like
the diver, it was clearly able to initiate a twist and turn in mid-air without
any initial angular momentum. Although this is not directly applicable to
human movement, it demonstrates that Newton’s  rst law applies to angular
motion.

Newton’s second As a reminder, Newton’s second law for objects in linear motion was concerned 
law of motion with bodies that are subjected to unbalanced forces and it is stated as follows:
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In the angular analog of this law we replace the term force with torque, the
term mass with moment of inertia and the term momentum with angular
momentum. This law can now be reworded as follows:

This can be expressed algebraically by the equation T = I ¥ a

where
T = net torque
I = moment of inertia
a = angular acceleration

Remembering that Newton’s second law is concerned with unbalanced forces
or torques we can see that if we apply a torque to an object, and the result of the
net torque acting on the object is not zero, the object will have angular accelera-
tion (Newton’s  rst law: where we apply an external torque and cause a rate of
change of angular velocity, i.e., an angular acceleration). The torque created a
twisting or turning moment and the object moved with an angular velocity (i.e., it
rotated). In the application of a net torque that is not zero the object would accel-
erate with angular acceleration (because it is rotating). The angular acceleration of
the object will take place in the same direction as the applied torque. The amount
of angular acceleration will be dependent on the amount of applied torque and
the moment of inertia of the object. As we have seen, the human body is not a
rigid body and as such it does not have a constant moment of inertia. The larger
the moment of inertia of the object the less angular acceleration it will have for a
given applied torque. Conversely, for a given applied torque (or net torque of
greater than zero), the smaller the moment of inertia of the object the greater the
angular acceleration it will have. Fig. C2.5 helps to illustrate this in more detail
with a diagram.

Considering Fig. C2.5 we can see that the biceps brachii muscle in the upper
arm exerts a force at a perpendicular distance to the axis of rotation (the elbow
joint). This creates a torque (a twisting and turning moment) in an anti-clockwise
direction. This torque causes the elbow joint to  ex and the lower arm to rotate in
an anti-clockwise direction (the same direction as the applied torque). As the arm
rotates it will have a certain angular velocity. The arm was initially held
stationary and the net torque applied to the arm in this case is not zero (i.e., the
muscle will exert a torque on the arm). Hence the arm will accelerate with an
angular acceleration anti-clockwise. The rate of change of angular velocity of the
arm (or the angular acceleration) will be dependent upon how much torque is
applied to the arm. The amount of angular acceleration will also be dependent on

When a torque acts on an object the change in angular motion (angular
momentum) experienced by the object takes place in the direction of the
torque, and this is proportional to the size of the torque and inversely
proportional to the moment of inertia of the object.

When a force acts on an object the change in motion (momentum)
experienced by the object takes place in the direction of the force and this
is proportional to the size of the force and inversely proportional to the
mass of the object.
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the moment of inertia of the arm. As the arm is rotated in an anti-clockwise
direction the moment of inertia of the arm will resist the rotation which is created
by the torque. The greater the moment of inertia of the arm the smaller will be the
angular acceleration of the arm. Conversely, the smaller the moment of inertia the
larger will be its angular acceleration. Hence for a given applied torque there
would be different angular accelerations for different moment of inertia values
for the arm (like in the case of different sized and different shaped arms). This has
important implications when exercising using weights and will be covered in
more detail in Section C3.

In this context it is important to point out that, as we have seen, angular
momentum (which is the object’s moment of inertia multiplied by its angular
velocity) is a vector quantity (i.e., it has magnitude and direction). Usually, we
are normally concerned with rotation about one axis of rotation and it is applic-
able therefore to refer to angular momentum about a single origin or a single axis
of rotation. In this manner we can consider it as a scalar quantity where we refer
to its direction as either positive (anti-clockwise rotation) or negative (clockwise
rotation). In addition, it is worth repeating that the total angular momentum of a
body about any axis of rotation is made up by adding all the angular momenta of
the various parts or segments of the body which are rotating about that axis.
Within biomechanics this has important implications for understanding human
movement and in more complex analyses the study of angular momenta about
multiple axes of rotation is required.

As we have seen, a net torque (that is not zero) that acts on an object will cause
an angular acceleration of the object in the direction of the net torque. The amount
of net external torque will equal the rate of change of angular momentum (i.e.,
from the angular analog of Newton’s second law).
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Fig. C2.5. Elbow flexion and extension movement



Torque (net) = 

Torque (net) = Rate of change of angular momentum

The change in angular momentum of an object can be determined by examining
the initial and  nal angular momentum possessed by the object:

Change in angular momentum = Angular momentum ( nal) – 
Angular momentum (initial)

Thus we can now include this in the equation for torque:

Torque (net) = 

Mathematically this can be expressed as:

T(net) = 

Rearranging this equation produces the following:

T(net) ¥ (t2 – t1) = L(f) – L(i)

This can now be expressed as the equation for angular impulse:

T(net) ¥ t = Angular impulse (torque multiplied by time)
L(f) - L(i) = Change in angular momentum ( nal – initial)
Angular impulse = Change in angular momentum

This equation has important implications for the effective execution of rotational
movements with human motion.

Application Considering the diver in Fig. C2.3 it is possible to see that the diver creates
angular momentum by applying a force at a distance from an axis of rotation.
Angular momentum is moment of inertia multiplied by angular velocity. As the
diver creates torque he/she will create rotation. The amount of this rotation will
depend on the torque created and the moment of inertia of the body. As we
have seen, a net external torque that is not zero causes angular acceleration.
Angular acceleration is the rate of change of angular velocity. The greater the
angular acceleration of the body the greater the rate of change of angular
velocity of the body (i.e., the more rotations we can create in a shorter space of
time). As the diver creates torque he/she applies a force on the board for a
certain length of time. In angular terms, since the reaction force is applied at a
distance from the axis of rotation (the moment arm), a torque will be created.
Now, as we have seen, the angular acceleration possessed by the object (the rate
of change of angular velocity) is related to the torque and the moment of inertia.
If the athlete has a large moment of inertia as he/she creates the torque, the rota-
tional component will be small. As the rotational component of the action is
small (i.e., reduced angular velocity) the athlete will be able to create a torque
for a longer period of time. This is achieved because they will have less rotation
effect and would be able to stay in contact with the board for longer before the
rotation would cause them to have to leave it into the dive. This application of
torque for a longer period of time will create a greater change in angular
momentum (i.e., they will have more angular momentum). Consequently, the
more angular momentum they have when they leave the take-off board into the

L(f) – L(i)
�

t2 – t1

Angular momentum ( nal) – Angular momentum (initial)
������

Change in time

Change in angular momentum
����

Change in time
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dive, the more they are able to rotate in the air. For example, because they have
a large angular momentum they can reduce their moment of inertia and perform
more rotational somersaults in a given time (i.e., they will be rotating faster
because once they leave the board and in the absence of external torque the
amount of angular momentum they have will be constant).

This ability to create a torque in a controlled manner and to be able to apply this
torque for a long period of time results in a greater change in angular momentum.
If they had zero angular momentum before they started to apply the torque it
follows that they will have more angular momentum the longer time that they can
apply the torque (Angular impulse = Change in angular momentum). This has
very important implications within human movement and is applicable in many
examples within sport where the athletes use angular momentum and rotational
movements to generate both linear and angular velocities. For example, the
rotational component used by modern javelin throwers; the rotational running
across the circle technique used in discus throwers; the golfer using rotational
movements of hips and shoulders to generate torque that is transferred to the club
to accelerate it quicker; and the tennis player serving with rotational movements
about the longitudinal axis in order to impart large amounts of spin and velocity
to the ball. All these examples and more utilize the angular analog of Newton’s
second law of motion.

Newton’s third In linear terms this law is stated as follows:
law of motion

In angular terms this can be re-written as follows:

In the angular analog of this law the term force has been replaced by the term
torque. Torque as we know is a turning or twisting moment which causes an
angular acceleration of an object. In the context of this third law of motion it is
important to remember (as with the linear version) it is the forces or torques that
are equal and opposite and not the net effect of the forces or torques. The equal
and opposite torques will act on each body differently (because the two bodies are
different) and they will both act about the same axis of rotation. As with the linear
analog of this law of motion it is important to remember the consideration of
external and internal force or torque. If the body is in equilibrium (when the
algebraic sum of all the torques acting is zero) under the action of external torque
both the external and internal torque systems are separately in equilibrium. In
considering the net effect of external torques or forces acting on a body we
would summate only the external torques that are acting on that body. Hence, if
body A exerts an external force or torque on body B, body B will exert an external
reaction force or torque on body A. However, in considering the net effect on
body B we would only consider the external forces or torques acting on body B

Whenever an object exerts a torque on another there will be an equal and
opposite torque exerted by the second object on the  rst.

Whenever an object exerts a force on another there will be an equal and
opposite force exerted by the second object on the  rst.
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(which is the external force or torque provided from body A – this is of course
ignoring any other external forces such as gravity).

In the case of the arm in Fig. C2.5 which is undergoing a  exion movement (an
anti-clockwise rotation of the lower arm (the forearm)) the torque created by the
biceps brachii muscle exerts a torque on the lower arm. This torque causes the
lower arm to rotate in an anti-clockwise direction. The reaction torque to this will
be a torque in the opposite direction created on the upper arm. As the torque is
applied to the arm (to accelerate it anti-clockwise) there will be an equal and oppo-
site torque acting on the upper arm. This is why when you conduct an arm curl
during weightlifting you can feel the stress/strain in the upper arm. Because the
torques are equal and opposite and act independently on two different bodies (the
torque of the biceps acts on the lower arm (anti-clockwise) and the reaction torque
acts on the upper arm and the net result is zero (equal and opposite torques)) but
movement takes place because the torque acting on the lower arm is considered as
an external torque acting on that body (Newton’s second law). As we have seen
this movement is dependent upon the moment of inertia of the object. The torque
created is dependent upon the force applied and the moment arm at which the
force is applied (the perpendicular distance from the axis of rotation). The angular
analog of Newton’s third law has important implications with human movement
and in particular for consideration of injury. Fig. C2.6 shows some further example
of the action–reaction torque within sport and exercise.
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Fig. C2.6. Newton’s third law – action–reaction (angular analogs – torque)

Considering Fig. C2.6, it is possible to see three examples of the action–reaction
torque situation: the tennis forehand; the soccer kick, and the golf swing. In the
tennis forehand example, the torque provided by the muscles to the forearm
will create an equal and opposite torque acting on the upper arm. This has impor-
tant implications for the development of medial or lateral epicondylitis (“tennis



elbow” injury). In the soccer kick example, the torque is created on the upper leg
as it swings through in an anti-clockwise direction (created on the upper leg by
the hip  exors). This causes a reaction torque at the pelvis. This has important
implications for common hamstring injury problems experienced in soccer.
Finally, in the golf swing the torque that is created by rotating the hips and shoul-
ders through the backswing and downswing (both clockwise and anti-clockwise
directions) causes a reaction torque on the lower back which has potential for the
development of low back pain.

All the angular analogs of Newton’s laws of motion are critical in the under-
standing and effective execution of human movement and performance. In
addition they serve as a strong basis for more complex analyses of multi-axial and
rotational movements that are common to many sporting actions.

C2 – Newton’s laws of motion – angular motion 135



Section C – Kinetics of angular motion

C3 MOMENT OF INERTIA AND THE
CONSERVATION OF ANGUALR
MOMENTUM

Key Notes

Is the reluctance of an object or body to start rotating or change its state of
rotation (i.e., speed up or slow down). It is measured as the product of the
mass of the body and the distance of the mass from the axis of rotation 
squared (I = mr2). Double the axis of rotation of the mass and you will
quadruple the moment of inertia value. The moment of inertia value can
be changed by redistributing the body mass about the axis of rotation (such
as in the case of “tucking” or extending the body during a somersault).

This is a method of calculation that is used to determine whole body or
body part (such as the legs) moment of inertia. The parallel axis theory
states that the moment of inertia about a parallel axis is equal to the
moment of inertia of the segment in its original position plus the 
product of the mass and the square of the distance between the parallel
axis.

Is the product of the moment of inertia and angular velocity. It remains
constant in the absence of any external force and the principle of
conservation of angular momentum is derived from the angular analogue
of Newton’s  rst law of motion. In  ight the angular momentum
possessed by a body is constant and gravity is not considered to be an
external force affecting the amount of angular momentum present in a
system. In  ight gravity will act through the center of gravity point and
because the moment arm created will be zero – no external torque or
moment is present. Athlete’s can transfer angular momentum to different
body parts and different axis and planes of movement/rotation. Athlete’s
can also initiate angular momentum of some body part from a state of
having no whole body angular momentum (such as dropping an arm
during the  ight phase in diving). However, this angular momentum
must be counter balanced by angular momentum of some other body part
in the opposite direction (principle of conservation where angular
momentum was zero to begin with and must be zero at the end).
Individual segment angular momentum is determined by calculating the
angular momentum of the segment about its own center of gravity plus
the angular momentum of the segment about the whole body’s center of
gravity. Whole body angular momentum is the summation of all the
individual segment momenta. Angular momentum is affected by the
mass of the body, the distribution of this mass and its angular velocity
and it is plane and axis speci c. In addition, it has signi cant implications
for performance in sport.

Moment of inertia

Parallel axis theory

Angular momentum



This section is concerned with the calculation of the moment of inertia and the
interpretation of angular momentum and it is related to the topic of angular
kinetics (concerned with forces and the effect of these forces on angular move-
ment). As we have observed from Section B3 the linear momentum possessed by
the body is de ned as the product of its mass multiplied by its linear velocity
and it is measured in the SI units of kg.m/s (kilogramme meter per second).

Linear momentum = mass ¥ velocity (kg.m/s)

In angular terms, angular momentum is de ned as the product of the moment
of inertia of the body multiplied by its angular velocity, which is caused by the
body’s (or part of the body) mass and its distribution of mass in a circular motion
about an axis of rotation. It is measured in the SI units of kg.m2/s.

Angular momentum = moment of inertia ¥ angular velocity (kg.m2/s)

The angular momentum of an object about a particular axis will remain
constant unless the object is acted on by an unbalanced eccentric force (such as
another athlete, a ball, or an implement) or a couple (a pair of equal and opposite
parallel forces).

The value in understanding angular momentum and its concepts within sport
and exercise can be seen by considering how a soccer player learns to kick a ball
effectively; how a golfer transfers angular movement of a club to the golf ball or
indeed how a sprinter manages to move the limb quickly through the air in order
to make the next contact with the ground that is needed to push off and move
forward with speed.

Moment of inertia The inertia of an object is referred to as the resistance offered by the stationary
object to move linearly and it is directly proportional to its mass. The moment of
inertia, however, is de ned as the reluctance of an object to begin rotating or to
change its state of rotation about an axis. Moment of inertia is related to the
mass of the object (body or body part) and the location (distribution) of this
mass from the axis of rotation. Without speci c reference to a particular axis of
rotation the moment of inertia value has little meaning.

Fig. C3.1 shows the moment of inertia values in some selected athletic situations
during sport. It is important to reiterate that the moment of inertia values are
speci c to the axis of rotation about which the body is moving (e.g., either the
center of gravity (transverse) axis of the body as in diving or the high bar
(transverse axis) in gymnastics as portrayed in Fig. C3.1). Basically, as can be seen
from Fig. C3.1, the greater the spread of mass from the rotation center (axis) the
greater will be the moment of inertia. Note that the largest moment of inertia value
is determined when the body is in the position when it is rotating about the wrist
(hands) and the whole body is extended (i.e., the mass is distributed as far as
possible away from the axis of rotation which in this case is about the hands (an
axis of rotation through the hands)). Therefore, the moment of inertia of an object
or body about a particular axis depends upon the mass of the object or body and
the distribution of this mass about the axis of rotation. Speci cally, an equation for
moment of inertia about an arbitrary axis A can be give as:

Moment of inertia = mass ¥ radius2 (kg.m2)
(About an axis A)

IA = m ¥ r2
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Fig. C3.2 shows the moment of inertia calculation for a 15 kg mass (concen-
trated point mass) when it is rotating about two different axes of rotation (6 m and
4 m from the same axis of rotation). This clearly indicates that as the rotation axis
changes the mass is located farther away from the axis and as a result the moment
of inertia changes. In Fig. C3.2 it is possible to see that when the 15 kg mass is
moved closer to the axis of rotation (4 m away instead of 6 m away) the moment
of inertia value decreases. This has important implications in sport and again
looking at Fig. C3.1, it can be seen that the smallest moment of inertia value is
achieved when the body forms a tight “tuck” about the center of gravity axis of
rotation. In this case the mass distribution is close to the axis of rotation (the
center of gravity) and the moment of inertia value is the least (3.43 kg.m2 as
opposed to 80.99 kg.m2 in the extended position). Note that the calculation shown
in Fig. C3.2 only works for a concentrated point mass such as the 15 kg mass used
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Fig. C3.1. Moment of inertia values in diving and gymnastic positions (recalculated from orig-
inals in Hay 1978, p. 147). (Figures redrawn from Hay, J. G. (1978) p 147, which unfortunately
is now out of print [Hay, J. G. (1978) The Biomechanics of Sports Techniques. Prentice Hall,
Inc. Englewood Cliffs, NJ].)
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I = 15 · 42
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I = 15 · 62

= 540 kg.m2

Fig. C3.2. Moment of inertia calculation



in this example. The distribution of mass in the human body is not considered to
act as a concentrated point mass.

It is also important to note that because the equation for moment of inertia
contains the r2 (distance of the mass from the axis of rotation squared) component
it is clear that changing the position of the mass has a much greater effect than
changing the actual mass. For example, doubling the distance from the axis of
rotation for a given mass will quadruple the moment of inertia value. This has
important implications for human movement within sport and exercise.

Moment of inertia IA = mr2

calculation (from where
Fig. C3.2) IA = moment of inertia (kg.m2) about a particular axis A

m = mass (kg)
r = radius or distance of mass from axis of rotation (m)

For the 6m distance

I = mr2

= 15 ¥ 62

= 540 kg.m2

For the 4 m distance

I = mr2

= 15 ¥ 42

= 240 kg.m2

The moment of inertia value of regular shaped bodies about any arbitrary axis
A, is determined by taking a number of measurements of the mass distribution
about the axis of rotation and then by summating the result the moment of inertia
of the whole body is determined. Fig. C3.3 illustrates this is in a mathematically
regular shaped body.

Moment of inertia (A) = m1r1
2 + m2r2

2 + m3r3
2 +….+ mnrn

2

where n = the number of samples taken
IA = ∑ mnrn

2

This process is dif cult to do mathematically and for complex shapes, like the
limbs of the human body, these values have been computed by researchers so that
they are available for use by others. The data presented in Table C3.1 represents
values of moments of inertia for human limbs about their own center of gravity.
These values can be used in further calculations.
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Considering the moment of inertia of the whole body, it is clear (from Fig. C3.1)
that it is different depending on the axis about which the body is rotating. The
moment of inertia of the whole body would be different if it was rotating about a
longitudinal axis (such as in the case of a pirouette in ice skating) than it would be
if it were rotating about the transverse axis (as in the case of a somersault).
Similarly the moment of inertia of sports equipment can also vary for different
axes and different planes of rotation. Imagine a young child trying to swing an
adult golf club. In this case it is easy to see that the child has to move the hands
down the club and shorten the lever in order to have any chance of swinging the
club. In effect, the child is reducing the radius of rotation (i.e., the distance of the
axis of rotation to the center of gravity of the club) and thus decreasing
the moment of inertia (the resistance to change). In essence this is why it is easier
for an adult to swing a 9-iron club than it is to swing a longer club such as a driver.
The moment of inertia of the 9-iron when it is rotating about the frontal
(anterior–posterior) plane axis (although strictly speaking it is not a single planar
or single axis movement) is less than that of a driver and hence it is easier to
swing. The same principle applies to a soccer kick. The athlete  exes the leg
before the kick, thus shortening the radius of rotation and decreasing the moment
of inertia so it is easier to accelerate the limb quickly in order to impart greater
velocity to the stationary ball. As the leg is brought to the ball it is slightly
extended (more so after contact), which will slow down its rotation and allow
more control for an effective and accurate contact.

Determination of The parallel axis theorem is one method that allows us to be able to calculate 
whole body or the moment of inertia of the whole body or the sum of several body parts (such 
combined as the leg of a soccer player before contact with the ball) about a particular axis 
segment moment and plane of rotation (e.g., rotation at the hip in the sagittal plane (transverse 
of inertia (parallel axis) as in the soccer kick). Although it is important to add that these 
axis theorem) movements are never truly single axes or single planar activities, and even the

soccer kick would involve rotation about two or more planes and axes of move-
ment (i.e., it is a three-dimensional movement). However, the theorem identi es
that the moment of inertia about an axis that is parallel to the axis for which the
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Table C3.1. Moment of inertia values of selected
body segments about the transverse axis through
the center of gravity of the segment (adapted and
modified from Hay 1978, p. 145).

Segment Moment of inertia

Head 0.024 kg.m2

Trunk 1.261
Upper arm 0.021
Forearm 0.007
Hand 0.0005
Upper leg (thigh) 0.105
Lower leg 0.050
Foot 0.003

(Adapted and modified from Hay, J. G. (1978) page 145,
which unfortunately is now out of print [Hay, J. G. (1978)
The Biomechanics of Sports Techniques. Prentice Hall,
Inc., Englewood Cliffs, NJ]).



moment of inertia was derived equals the moment of inertia of the body
segment in its original position (i.e., about its own c of g) plus the product of the
mass and the square of the perpendicular distance between the parallel axes.
Thus the equation for the moment of inertia of the body or body segments is re-
written as follows:

Parallel axis theory of calculating moment of inertia

IA = I C of G + md2

where
IA = Moment of inertia of a body about an axis through a point, A
I C of G = Moment of inertia about a parallel axis through the center of gravity of

the body or segment
m = the mass of the body or segment
d = the distance between the parallel axes

Fig. C3.4 illustrates this theory in more detail and helps to show how the parallel
axes are determined in the example of the leg in the position of knee  exion before
contact with the ball during a soccer kick. Furthermore, Table C3.1 identi es the
moment of inertia values for the selected body segments which represents the
moment of inertia through an axis that is parallel to the axis of consideration and
that is through the segment’s center of gravity (I C of G).

Calculation of Considering Fig. C3.5, it is possible to see that in the case of the leg in this 
moment of inertia position (which would be before the contact phase in a soccer kick) the center of 
of a leg segment gravity of each segment is given as a distance from the center of rotation (i.e.,  
(using the parallel the hip joint). When the position of each segment’s center of gravity is given it is 
axis theory) possible to use the parallel axis theory to determine the moment of inertia about

any axis if the moment of inertia of each segment about their respective parallel
axis is known. This is an alternative method to using the radii of gyration
measure (which is essentially used for single segment moment of inertia calcula-
tions) and allows the calculation of the whole body or whole limb moment of
inertia (such as in the case of the leg).

Parallel axis theory IA = I C of G + md2

of calculating 
The above equation is applied individually to calculate the moment of inertia of 

moment of inertia
the upper leg, lower leg, and foot (Fig. C3.5) separately and the three values are
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Fig. C3.4. Parallel axis theorem to determine whole leg moment of inertia (transverse axis)



then summated to represent the moment of inertia of the whole leg in this
position. However, in order to determine the mass of each segment in this 75 kg
athlete it is necessary to use the anthropometric data presented in the work of
Winter (1990). Table C3.2 illustrates these values in more detail.
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Hip(A)

Mass of athlete = 75 kg
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0.38 m

0.55 m

0.85 m

Fig. C3.5. Moment of inertia of leg during a soccer kick (transverse axis – sagittal plane)

Table C3.2. Anthropometric data where m is body mass in kg (derived from data
presented in Winter 1990, p. 56)

Hand 0.006 ¥ m
Forearm 0.016
Upper arm 0.028
Forearm and hand 0.022
TOTAL ARM 0.050
Foot 0.0145
Lower leg 0.0465
Upper leg 0.100
Foot and lower leg 0.061
TOTAL LEG 0.161

(The values in the table are derived (and reproduced with permission) from data presented in Winter, D. A.
(1990) Biomechanics and Motor Control of Human Movement (2nd edition). Wiley-Interscience Publishers,
New York. (3rd edition published 2004))

Determine the A. Upper leg
moment of inertia IA = I C of G + md2

of the leg in this IA = 0.105 + ((0.100 ¥ 75) ¥ 0.382)
position (Fig. C3.5) IA = 0.105 + 1.083

IA = 1.188 kg.m2 (upper leg moment of inertia)

B. Lower leg

IA = I C of G + md2

IA = 0.050 + ((0.0465 ¥ 75) ¥ 0.552)
IA = 0.050 + 1.055
IA = 1.105 kg.m2 (lower leg moment of inertia)



C. Foot

IA = I C of G + md2

IA = 0.003 + ((0.0145 ¥ 75) ¥ 0.852)
IA = 0.003 + 0.786
IA = 0.789 kg.m2 (foot moment of inertia)

Total moment of inertia of leg in this position

IA = IA (upper leg) + IA (lower leg) + IA (foot)

IA = 1.188 + 1.105 + 0.789
IA = 3.08 kg.m2

The moment of inertia of the leg in this position and about the transverse axis
just before kicking a soccer ball would be 3.08 kg.m2. It is important to understand
that if the athlete could reduce the rotation axis (distribute the mass differently),
by  exing the leg more, the moment of inertia would be reduced and the limb
would be able to be moved (accelerated) much faster (rotationally) to generate
potentially more velocity that could be imparted to the ball. The same principle
will apply to a sprinter who wishes to bring the leg through quickly in order to
make contact with the ground again, or indeed the golfer while swinging the golf
club could bend the elbows to reduce the moment of inertia and hence increase
the angular velocity of the swing (reducing the resistance to change). This under-
standing will now be developed further with speci c reference to angular
momentum.

Angular Angular momentum is represented by the letter L or H and is determined by  
momentum the product of the moment of inertia and the angular velocity (measured in

radians/s) of a body or segment. It is expressed in the units of kg.m2/s (kilogram
meter squared per second).

Angular momentum = moment of inertia (kg.m2) ¥ angular velocity (rads/s)

L = I w (kg.m2/s)

Consider Fig. C3.6, which represents the 15 kg mass that was used previously
as an example to calculate the moment of inertia values. In Fig. C3.6, the mass is
now given an angular velocity of 3.5 rads/s. The angular momentum is the
product of moment of inertia (15 ¥ 62) and angular velocity (3.5) and is expressed
as 1890 kg.m2/s. If there was no angular velocity then there would also be zero
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= (15 · 62) · 3.5
= 1890 kg.m2/s

Fig. C3.6. Calculation of angular momentum



angular momentum. The radius of rotation also determines the angular
momentum and is a very important factor because of the mathematical squared
component. As we have seen before with moment of inertia, if we double the
distance (radius of rotation = 12 m) we quadruple the angular momentum to
7560 kg.m2/s (which is 4 ¥ the previous 1890 kg.m2/s value).

Angular momentum (as with the moment of inertia) must be expressed with refer-
ence to an axis of rotation and the calculation of the whole body angular momentum
is the sum of all its individual body segment momenta. For human body segments
that rotate about an axis other than their center of gravity the parallel axis theorem
is used and this is also applied to angular momentum calculations. We have seen
previously that for rotation about an arbitrary axis A, the moment of inertia is:

IA = I C of G + md2

Hence, angular momentum can also be expressed as:

LA = (I C of G + md2) w
LA = I C of G.w + md2 w

for the segment about its own C of G and for the segment about a
parallel axis

where
LA = Angular momentum (kg.m2/s) about axis of rotation A
I C of G = Moment of inertia about an axis through the center of gravity of the

segment
m = the mass of the body or segment
d = the distance between an axis through point A and a parallel axis

through the center of gravity of the segment
w = angular velocity (rads/s)

The calculation of whole limb (e.g., the leg complex) angular momentum about
the hip axis of rotation is determined by summating the angular momentum of
individual segments about an axis through their own center of gravity and the
angular momentum of the segment about the axis of rotation (i.e., the hip axis).
Fig. C3.7 helps to illustrate this concept in a little more detail. It is important to
reiterate that this calculation is axes and plane speci c.
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Fig. C3.7. Angular momentum of the limb (transverse plane)



Conservation and During movement of the body the total angular momentum possessed by the 
transfer of angular body (in the absence of any external force) remains constant. When the body is 
momentum in  ight, gravity is not considered to be an external force that affects angular

momentum because it does not cause any rotational component (i.e., it will act
through the center of gravity and have a moment arm of zero). This con-
servation of angular momentum principle is derived essentially from Newton’s
 rst law of motion, which in angular terms can be expressed as follows:

As an athlete prepares to jump into the air (such as in the case of a diver on a
springboard) the athlete, while in contact with the ground (or board), will
generate angular momentum (creating rotation – by applying forces at perpen-
dicular distances to axes of rotation – thus creating reaction torques or moments).
Once he/she is in the air (during  ight as in the case of the diver) and in the
absence of external forces (neglecting gravity effects) the athlete’s angular
momentum will remain constant. In this respect it is possible for the athlete to
change his/her moment of inertia in order to increase or decrease his/her angular
velocity. The diver will form a tight tuck around the center of gravity rotation axis
(transverse axis – sagittal plane) and the angular rotation (causing somersaults)
will increase because the athlete has decreased the moment of inertia of the body.
Similarly, if the athlete extends the body the moment of inertia will increase and
the angular rotation (angular velocity) will be reduced. This is one of the reasons
why the diver will extend suddenly at the end of the dive (i.e., to reduce the
angular rotation and enter the water with minimal rotation in a straighter, more
controlled, aesthetic position).

Similarly, it is possible to transfer the angular momentum possessed by the
body in one axis to another different axis of rotation within the body. This is how
divers initiate twist and tilt maneuvers in the air when they only seem initially to
have rotation about one axis and in one plane of movement. In addition, it is also
possible to see that mechanically divers can initiate angular momentum for one
part of the body while in the air (remembering that the overall momentum of the
body must remain constant). For example, a diver who leaves the board with zero
angular momentum can vigorously move or rotate an arm in a particular axis of
rotation. The corresponding effect will be that the athlete will generate angular
momentum (for this segment) about this axis and plane of motion. This angular
momentum must therefore (because of the conservation of angular momentum
principle) be balanced by an angular momentum in an opposite direction by
another part or segment (i.e., zero or  xed whole body angular momentum).
Hence, it may be the case that the athlete is seen to have to counteract this new
angular momentum created in the arms by a simultaneous rotation and move-
ment in the legs. In this context it is important to reiterate the effects of moment
of inertia. Segments or body parts (such as the legs) that have large moments of
inertia will thus have smaller angular rotations. Therefore, the high angular
rotation created by a diver vigorously dropping an arm in mid- ight may be
balanced by what appears only a small rotation of the legs (because the legs can

Every object will remain in a non-rotating state or will continue to rotate
about a particular axis with uniform angular velocity unless acted upon
by an unbalanced eccentric force or couple.
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have a much larger moment of inertia than the arms and the amount of angular
momentum must remain constant).

Fig. C3.8 shows a diagram that helps to explain this principle of conservation of
angular momentum in more detail. It is important to remember when considering
this diagram that the angular momentum is determined from the product of
moment of inertia and angular velocity (L = Iw) and it is constant in the absence
of any external force or torque. Thus, it can be seen that if I increases, then w must
decrease. Similarly, if I is decreased, then w must increase.
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Fig. C3.8. Conservation of angular momentum (a forward 11⁄2 somersault during diving)
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There are many examples in sport and exercise where moment of inertia and
angular momentum are important and throughout this section we have seen
examples such as soccer kicking, the leg drive in sprinting, the golf swing, and
diving. However, the following provides some more examples of these principles
and concepts in application.

● The ice skater pirouetting on the ice with the arms out would have a high
moment of inertia and small angular velocity. Bringing the arms in will
reduce the moment of inertia and increase angular velocity (rotation speed).

● The gymnast performing several somersaults and twists in the air would
need to reduce the moment of inertia about different axes in order to increase
rotation velocity and have any chance of performing the number of twists
and somersaults before landing.

● The downhill racing skier using long skis (having a large moment of inertia)
will  nd it dif cult to initiate turns easily (neglecting friction effects).
Whereas the slalom skier with shorter skis (smaller moment of inertia) will
 nd turning much easier.

● The young child using a set of shorter shafted golf clubs or the tennis racket
with a shorter handle and lighter head will  nd it easier to play golf or
tennis.



● The basketball player performing a “slam dunk” shot is forced to counteract
the rotation initiated in the arms by movement in the legs.

● The elite tennis player serving with a bent arm action in order to reduce the
moment of inertia of the arm and racket, and increase rotational velocity
which results in a faster serve.
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C4 CENTER OF GRAVITY AND
CENTER OF MASS

Key Notes

This is the point in an object at which the entire weight of an object is
assumed to act. More precisely it is the point at which the force of gravity
for the entire object is considered to act such that it would behave in the
same way as when the force of gravity is distributed across the entire
object.

This is de ned as the point which represents the mean position for the
concentration of the entire mass of the body.

The center of gravity and center of mass are imaginary points, and they
do not physically exist and hence they cannot be seen.

The center of gravity position in the human body may continually change
(or it may also be stationary). It is a point that can be located within the
body or it is a point that can be located outside of the body. The high
jumper will allow the center of gravity to pass under the bar during the
high jump clearance phase. Stability is the ability of an object to maintain
its static equilibrium. The stability of an object is affected by the position
of the center of gravity. Stability is achieved when the center of gravity (c
of g) of the object lies nearer the lower part of the object. If the vertical
line through the c of g falls within the base of support the object is
considered to be stable. If the c of g falls outside the base of support then
the object is considered to be unstable.

The center of gravity of the human body can be calculated by various
methods. The center of gravity board is one method that can easily
determine the position of the center of gravity in static postures.
Alternative methods involving 3D computation using video digitization
of body landmarks can determine c of g position used in the analysis of
human movement. The center of gravity position in either two or three
dimensions or in static or dynamic conditions is determined from the
principle of moments. Moments about different axes are taken in order to
calculate the whole body center of gravity position/location. Individual
segment center of mass data is used in the determination of whole body
center of gravity calculations. Different techniques exist that are used to
determine individual segment center of mass positions.

An understanding of the center of gravity position within the human
body is critical for the application of biomechanics to the study of human
movement. The center of gravity movement patterns over the hurdle are
an important consideration for the athletics coach. Similarly, the center of
gravity movement pattern in the child’s pathological walking gait has
important implications for clinical assessment.

The center of gravity

The center of mass

Imaginary points

Human body center
of gravity position

Calculation of
human body

c of g

Application



The center of The center of gravity (c of g) of an object is de ned as the point at which the 
gravity entire weight of an object is assumed to be concentrated. This can be further

clari ed to mean the following: the center of gravity of an object is de ned as the
point at which the force of gravity for the entire object can be placed so that the
object will behave the same as in the actual case when the force of gravity is
distributed across the entire object. The term center of mass (c of m) is de ned as
the point which corresponds to the mean (average) position for the concentration
of the entire matter in the body. Within biomechanics the two terms are often
used synonymously (i.e., having the same meaning). The terms center of gravity
and center of mass are used for imaginary points (i.e., they do not physically
exist as a point that can be seen) that describe concentrations of weight or matter.

Every object has a center of gravity and for bodies of uniform density (where
density is de ned as the mass per unit volume) the center of gravity is at the
geometric center of the object. However, for bodies with non-uniform density the
center of gravity has to be calculated. As we know the human body has non-
uniform density and it is an irregular shape and it assumes many different
positions during sport and movement. Hence, the center of gravity may be
constantly moving (although it can also be stationary). This center of gravity
position can be either within or outside of the body. For example, in the high
jump athletes often allow the center of gravity to move outside of the body so it
can pass under the bar while the athlete travels over the bar. Fig. C4.1 shows some
of the considerations for the center of gravity in more detail.

Stability is the ability of an object to maintain its beginning static equilibrium
posture. The stability of an object is affected by the position of the center of
gravity and generally if a vertical line through the c of g passes within the base of
support the object is stable and it is unstable if the c of g falls outside the base
of support. Stability is achieved when the c of g lies near the lower part of the
object. An increase in the area of the base of support will provide greater stability.
Additionally, a heavier object is generally more stable than a lighter object
because the torque needed to topple the heavier object would be greater. For
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Fig. C4.1. The center of gravity (c of g)



example, imagine the position of the c of g while you are standing upright (i.e., it
will be at approximately 55–57% of your height (vertically) if you are standing
symmetrically) and then imagine the position of the c of g if you lie  at on the
 oor. The example where you are lying  at will cause the c of g to be closer to the
ground and this will offer a much greater degree of stability than when you are
standing upright. For example, it will be more dif cult to topple you over when
you are lying  at (i.e., an increased base of support and a lower c of g position
(closer to the base of the support)). Within human movement many situations
require the body to be able to move from a stable to an unstable situation. For
example, the 100 m sprinter is required to be in an unstable a position at the start
of the race (without causing a false start) so that they can quickly move off into the
sprint race. Similarly, once the athlete is moving ideally they need to also be in an
unstable position so that it is easier to move quickly into each different stride. Figs
C4.2 and C4.3 illustrate some examples of static and dynamic (moving) stability in
relation to the c of g.
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c of g c of g 

W W

q = 30° q = 50°

Object will fall
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fall over

(unstable)

Lower c of g position
Larger area for base of support

High c of g position
Small area for
base of support

Object is easy
to topple over

Object is more
difficult to
topple over

Fig. C4.2. Stable and unstable positions

Calculation of the The vertical position of the center of gravity of the body can be calculated by 
center of gravity using the principle of moments. Consider Fig. C4.4 where the human body is

lying  at on what is termed a center of gravity board.
Using the principle of moments (∑CWM = ∑ACWM from section C1) the

following equation can be developed (in this equation the full stop is used to
represent a multiplication process). Remember that a moment is de ned as a force
(weight) multiplied by a perpendicular distance from an axis of rotation (the
fulcrum in this case).

W1 . x1 + W2 . x2 = W3 . d



When W3 (the recorded weight (mass ¥ gravity) on the scales) equals zero and the
subject is not lying on the c of g board, then the equation can be rearranged as
follows. Note: it is important to clarify that the scales are actually set to zero
(when the board alone is in place) in this instance (and if not set to zero) they
would actually record in part the weight of the board (i.e., the effect of gravity on
the board acting at a position from the fulcrum because one end of the board is
already supported).

W2 . x2 = 0

Hence, we can now eliminate (W2 . x2) from the previous equation (because it is
zero).

W1 . x1 = W3 . d
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Fig. C4.3. Static and dynamic stability
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where
W1 = Weight of human body acting at c of g position
W2 = Weight of board acting at board’s c of g position
x1 = Horizontal distance from fulcrum to body c of g (weight line)
x2 = Horizontal distance from fulcrum to board’s c of g position (weight line)

   (probably half of the board length above)
d = Distance from fulcrum to scales (center)

W3 = Weight reading on the scales

Fig. C4.4. Calculation of the center of gravity



Rearrange this equation to produce the formula for x1 (the position of the body’s
center of gravity from the fulcrum) and we have the following.

x1 = 

x1 represents the vertical height (actually expressed as horizontal position in our
example because the athlete is lying  at) of the subject’s center of gravity from the
feet. Note: in this example we are only calculating the vertical position of the c of
g from the feet. The effect (i.e., the difference between one position and another)
on the c of g position by movement of the legs and arms can then be calculated by
the same method but by taking the difference between the scale readings for the
two relative positions. For example, if the arms are moved down to the side of the
body we would expect the c of g position to move lower down the body. Similarly
the athlete could stand on the board or lie in a different direction on the board to
determine the c of g position in other planes and axes of the body (but this
method would still only give one position in one direction (i.e., in one plane and
one axis) at a time).

Within human movement the c of g has a location that will depend on the
position of the body. The c of g is constantly moving (although remember it can
also be stationary) depending upon the body position and as we have seen it can
often lie outside the body. In this case we would need to modify the c of g board
experiment in order to take account of this lateral or medial deviation of the c of
g (i.e., we need to use a c of g board that has both vertical and horizontal axes (i.e.,
x and y axes)).

In this case the same method of calculation applies but the athlete would
assume a position on a board that had weighing scales at each of two positions on
the board (i.e., a three-point reaction board – two scales and a fulcrum). Using the
same principle of moments described previously the two-dimensional (2D)
position (x and y coordinates) of the c of g for various body orientations on the
board can now be calculated. Fig. C4.5 illustrates this application in more detail.

In Fig. C4.5 moments are taken about both OX and OY axes in order to calcu-
late the position of the c of g during various body orientations that are assumed
on the c of g board. The same method of calculation used for Fig. C4.4 is used but
with the addition of taking the moments about each different axis (i.e., length and
breadth of the c of g board or the OX and OY axes).

W3 . d
�

W1
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Fig. C4.5. 2D calculation of the center of gravity



Throughout human movement the c of g location may be constantly changing
and in order to determine the c of g in various body positions throughout human
movement we must use an alternative method to the c of g board. Usually this is
achieved by taking a digital video sequence of the athlete performing an activity
and then digitizing (the location of body landmarks – shoulder, elbow, hip, knee,
ankle, etc.) each  eld of this sequence in order to produce a two-dimensional
“stick  gure” model of the human body. This can also be achieved in a 3D
analysis of human movement (section F on measurement techniques explains this
in more detail). In this respect the human body is drawn as a “stick  gure” that is
made up of various body segments represented by lines (or “sticks”). The c of g
for each of these segments is plotted along each “stick” length that represents a
limb or segment of the body. The location of the joint positions needed to create
the “stick  gures” are presented in Table C4.1 (which are derived (and reproduced
with permission) from data presented in the book Biomechanics and Motor Control
of Human Movement (2nd edition) by David Winter published in 1990 by Wiley-
Interscience publishers, New York, 3rd edition, 2004).

Table C4.1

Segment Location

Head and neck C7–T1 (vertebra) and 1st rib/ear canal
Trunk Greater trochanter/glenohumeral joint
Upper arm Glenohumeral axis/elbow axis
Forearm Elbow axis/ulnar styloid
Hand Wrist axis/knuckle II middle finger
Upper leg (thigh) Greater trochanter/femoral condyles
Lower leg Femoral condyles/medial malleolus
Foot Lateral malleolus/head metatarsal II

The c of g of each segment (Table C4.2) can now be expressed at a point that is
a percentage of the length of the segment (from both a proximal and a distal
location). These percentage lengths are again derived from data presented by
David Winter in the book described above. Figs C4.6 and C4.7 illustrate the
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Fig. C4.6. “Stick figure” human body representation



meaning of these two tables in more detail. Note: it may be important to indicate
that there are also other methods of locating center of mass positions which are
derived from techniques such as magnetic resonance imaging (MRI) and mathe-
matical modeling.

In order to determine the center of gravity position of the whole body in the
example shown in Fig. C4.7 moments about each axis for each body segment are
taken. For example, the moment about the OX axis for the left upper arm
(because it is a frontal plane anterior view of the body) would be the distance
from this axis to the segment center of mass position multiplied by the mass of
this particular segment. For a 75 kg athlete and the left upper arm position
shown in Fig. C4.7 this would be as follows.

154 Section C – Kinetics of angular motion

Table C4.2

Segment Location of center of mass 
Proportion of total body 

(expressed as a % of the 
weight (expressed as a % 

distance from each end)
for each individual 

Proximal Distal segment)

Head and neck 100 0 8.1
Trunk 50 50 49.7
Trunk, head, and neck 66 34 57.8
Upper arm 43.6 56.4 2.8
Forearm 43 57 1.6
Hand 50.6 49.4 0.6
Upper leg (thigh) 43.3 56.7 10.0
Lower leg 43.3 56.7 4.65
Foot 50 50 1.45
Total (all segments) 100.00

Y

0,0

dx = 150 cm

dy
 =

 1
20

 c
m

c of m location (left upper arm)
43.6% proximal and 56.4% distal
of total segment length

Total body c of g is calculated
by taking moments about all
body segments and about each
OX and OY axis
Moment = force (weight) ·
perpendicular distance

= whole body c of g

Fig. C4.7. Center of mass (c of m) location for each segment (frontal plane – anterior view of
body)



Taking moments Moment = force ¥ perpendicular distance from axis of rotation
about OX Moment (upper arm) = ((0.028 ¥ 75) ¥ 9.81) ¥ 1.20

where
0.028 = the percentage of mass of the whole body for this segment expressed as a

decimal (i.e., a proportion of 1.0)
75 = athlete’s mass in kilograms (kg)
9.81 = acceleration due to gravity expressed in m/s2

1.20 = perpendicular distance from OX which is 120 cm expressed in meters (m)

Moment about OX (left upper arm) = ((0.028 ¥ 75) ¥ 9.81) ¥ 1.20
= 24.72 Nm

Moment about OY (left upper arm) = ((0.028 ¥ 75) ¥ 9.81) ¥ 1.5
= 30.90 Nm

In order to calculate the center of gravity of the whole body in this position all the
moments for each segment about each axis of rotation are calculated and
summated (i.e., sum the moments about OX and OY separately). Next, since we
know that the sum of the center of gravity of all the segments will equal the total
center of gravity of the whole body (i.e., 100% of the weight) we can divide these
respective summed moment values by the athlete’s body weight in order to  nd
the respective OX and OY coordinate positions of the whole body center of
gravity. This can then be drawn on the diagram shown in Fig. C4.7 as the inter-
section of two lines from the respective OX and OY axes (see Fig. C4.7).

This method of determining the center of gravity of the whole body is used
extensively in many software digitization packages that present whole body c of
g calculations. The same principle is applied in 3D analysis of human movement
but in this case moments are also taken about a third OZ axis. Finally, it may be
important to add that there are a number of different anthropometric tables that
are used to determine the relative mass and relative center of mass positions for
the various body segments. These are often evident in different software
packages that are used to calculate the whole body center of gravity and hence as
a result they present slight differences in each of their respective calculations of
the location of the whole body center of gravity (c of g).

Application An understanding of the c of g calculation and the movement patterns
associated with the whole body c of g during activity is critical. Such appli-
cations range from the learning of how a child begins to walk to how an athlete
can effectively clear a hurdle in athletics. The movement patterns of the c of g of
the whole body are used extensively in coaching and sports science.
Furthermore, they are frequently used in the study of pathological movement
disorders by doctors, physiotherapists, and biomechanics specialists. Hence, it is
important in a text of this nature that the meaning of the center of gravity is
understood in detail. This indepth study will be incorporated throughout this
text as many of the sections will use the center of gravity and center of mass of
both whole body and individual body segment analysis.
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Section C – Kinetics of angular motion

C5 EQUILIBRIUM, BALANCE, AND
STABILITY

Key Notes

When a body is in a state of rest or is in a state of uniform motion (i.e.,
constant velocity) it is in a condition of equilibrium. Static equilibrium is
concerned with when the object is not moving and dynamic equilibrium
is a condition where the object is in a state of movement with constant
velocity (i.e., not accelerating).

These conditions can be used to solve for forces that are needed to
maintain equilibrium. The  rst condition of equilibrium is concerned with
when the sum of the external forces acting on an object is zero (∑F = 0)
whereas the second condition of equilibrium is concerned with when the
sum of the moments (force ¥ perpendicular distance from axis of rotation
to the applied force) acting on a system is zero (∑CWM + ∑ACWM = 0).

Balance is described as the state of equilibrium and it can be used to
describe how the condition of equilibrium can be controlled. Stability is
the quantity of being free from any change (i.e., a resistance to a
disruption in equilibrium). Balance and stability can be affected by the
position of the center of gravity in relation to the base of support. If the
vertical line through the center of gravity falls outside the base of support
the object will be unstable. Alternatively, the larger the base of support
and the more massive the object, generally the more stability the object
will possess.

The swimmer on the blocks at the start of the sprint race will assume an
unstable position such that he/she will easily be able to move from this
starting position into the dive (i.e., quickly). Similarly, the sprinter at the
start of the 100 m sprint race will be in an unstable position ready to drive
off into the sprint at the sound of the starting signal. However, the boxer
will assume as stable a position as possible in order to prevent being
knocked over. Often, however, it is necessary throughout sport to be able
to change the stability possessed by the body. For example, in gymnastics
it is necessary to have both stable and unstable positions during different
movements and exercises.

Equilibrium When a body is in a state of rest (not moving) or is in a state of constant velocity
(moving but not accelerating) it is said to be in a condition of equilibrium. When
the body is at rest it is in a state of static equilibrium and when it is moving with
constant velocity it is in a state of dynamic equilibrium. The  rst condition of
equilibrium is concerned with the sum of forces acting on a body (∑F = 0). When
the sum of all the external forces acting on a body is equal to zero and the body
does not translate (linear motion) the object is in static equilibrium.

Equilibrium

The  rst and
second condition

of equilibrium

Balance and stability

Application



Considering Fig. C5.1, when an object is placed on a table the external forces
that are acting consist of the weight of the object acting downward (caused by
gravity) and the force from the table acting upwards on the object. The sum of the
external forces acting on the object is equal to zero and the object does not move
(static equilibrium).

The object in Fig. C5.2 is subjected to several forces simultaneously and the sum
of these forces acting on the object is zero. In this case the object will not move and
it will stay in its state of equilibrium. The forces can be expressed as a polygon (a
plane  gure formed by three or more segments (lines) – or they can also be
expressed by any shape (and in any order) where they are presented in the “tip to
tail” closed method of representation of force vectors). If two or more forces act
on an object and the object does not move, the  rst condition of equilibrium can
be used to solve the situation for the resultant of these two forces.
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W (F1)

20 kg

Where (external forces acting)

W = weight of the object (caused by gravity)
   20 kg · 9.81 m/s2 is acting on the table.

        The force from the table (F2) is acting on
        the object

First condition of equilibrium (SF = 0)
W(F1) = 20 · 9.81 = –196.2 N

(negative sign indicates force is
directional (acting downwards))
Calculate force from table acting

        on object SF = 0
        –196.2 + F2 = 0
F2 = +196.2 N (acting upward)

Force from
table acting
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F3
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F2

F4 F3

Concurrent application of
four forces to an object.
Object does not move
and is in a state of static
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Polygon of force vectors

SF = 0 static equilibrium

Fig. C5.1. Static equilibrium

Fig. C5.2. Static equilibrium (polygon of forces)



In Fig. C5.3, two co-planar (occupying the same plane), forces act on an object
and the object does not move. Hence, there must be a third force that acts (unless
the forces applied are equal and opposite) in order to maintain equilibrium. To
calculate the third force, the resultant (one force that would have the equivalent
effect of the two forces, i.e., the sum of two or more vectors (having both magni-
tude and direction)) of the two forces must be determined. This can either be
solved graphically (by drawing a scaled diagram) or mathematically by resolving
the forces and then using the  rst condition of equilibrium (∑F = 0) to determine
the third force (the force needed to maintain equilibrium).

In order to determine the resultant force (R) of these two forces (F1 and F2) in
Fig. C5.3, the concurrent forces are expressed at a point using a free body diagram
(which is a diagram where all external forces on the body/object are represented
by vectors). The resultant of these two forces can now be determined graphically
or mathematically (Figs C5.4, C5.5 and C5.6).

First and second In the previous examples the forces that were examined were represented within 
condition of the linear force system with concurrent, co-planar forces. However, within 
equilibrium human motion forces do not always act in the same plane and they often act on

bodies as force couples (pairs of equal and opposite parallel forces). In this latter
case we use the parallel force system to determine static equilibrium. The forces
that act at parallel positions will often cause rotations of objects about speci c
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resultant (R) to be determined.
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60NF2
F1
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R
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Fig. C5.3. Co-planar forces acting on an object (object does not move)

Fig. C5.4. Free body diagram of concurrent forces



axes. Hence, in this situation we use moments (force ¥ perpendicular distance)
to solve the equilibrium condition. The second condition of equilibrium states
that the sum of the moments (torques) acting on an object is equal to zero
(∑Clockwise moments (CWM) + ∑Anti-clockwise moments (ACWM) = 0). Fig.
C5.7 illustrates this in more detail in an example using the  exion and extension
movement of the arm. This  gure shows a position (approximately 90°of elbow
 exion) of the arm during the  exion/extension movement. The biceps muscle is
exerting a force (F1) which holds the arm in this position. The weight of the arm
and hand create a force (F2) acting at a distance from the axis of rotation which
opposes the moment created by the muscle force. The weight of the arm creates a
clockwise moment (i.e., it would have a tendency to rotate the arm in a clockwise
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F2

65° 32°

F1

45N +ve

–ve +ve

60N

Sum of vertical components
Using F sin q
(sin q = opp/hyp) (hyp · sin q = opp)
= 45 sin 65° + 60 sin 32°

(plus sign because both forces
are going in the same direction
vertically, i.e., upward)

= 40.77 + 31.74
= 72.51N

Sum of horizontal components
Using F cos q
(cos q = adj/hyp) (hyp · cos q = adj)
= 60 cos 32° – 45 cos 65°

(minus sign because they are going
in different directions horizontally,
i.e., right and left)

= 50.88 – 18.99
= 31.89N

Opp

Adj

Vertical = 72.51N
(upwards because of
the positive value)

Horizontal = 31.89N
(to the right because of
the positive value)

Resolved to horizontal
and vertical components

Resultant
R = 79.21N

F2 = 45N

F1 = 60Nq = 66.25°

The resultant force (R) is equal to 79.21N
acting at an angle of 66.25° to the horizontal.
This is the one force that is the equivalent of
the other two forces (F1 and F2)

Force determined by SF = 0
+ 79.21N – F = 0
F = –79.21N (acts opposite to resultant)

Resultant force

R = ÖV2 + H2

R = Ö72.512 + 31.892

R = Ö6274.6
R = 79.21N

Angle of application

tan q = opp/adj
tan q = V/H
tan q = 72.51/31.89
tan q = 2.273

Inv tan q = 66.25°

Fig. C5.5. Mathematical resolution of forces

Fig. C5.6. Mathematical resolution of forces



direction) whereas the muscle force creates an anti-clockwise moment or torque.
Fig. C5.8 shows the second condition of equilibrium (∑Moments = 0) which is
used to solve the condition of equilibrium (no movement) and calculate the
muscle force needed to hold the arm stationary in this position.

The muscle force needed to hold the arm in this static equilibrium is 382.59 N.
This force creates an anti-clockwise moment that balances the clockwise moment
created by the weight of the arm and hand. The result is that the arm remains
stationary and the limb is in a position of static equilibrium.
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d2 = perpendicular distance
weight = 0.39 m

Elbow joint
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rotation)

Muscle
force (F1)

Biceps brachii
muscle (upper arm)
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Determine the muscle force
needed to hold this static
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SCWM + SACWM = 0
–((5 · 9.81) · 0.39) + (M · 0.05) = 0

Muscle force = 382.59N

M =
((5 · 9.81) · 0.39)

0.05
–––––––––––––––

W · d2 = clockwise moment (negative)
M · d1 = anti-clockwise moment (positive)

Fig. C5.7. Elbow flexion/extension position (static equilibrium)

Fig. C5.8. The second condition of equilibrium ( M = 0)



Dynamic When a body is in motion and it is not accelerating it is said to be in dynamic 
equilibrium equilibrium. The same conditions as for static equilibrium apply and can now

be re-written to include this motion component. The  rst and second conditions
of equilibrium are presented as follows for dynamic equilibrium. This approach
can also be used to determine the force necessary to accelerate an object (hence
the inclusion of the acceleration component shown for dynamic equilibrium
equations) and will be developed in more detail in section C9.

First condition of equilibrium (dynamics)

∑F – ma = 0

(however it is relevant to note that if the object is in equilibrium the acceleration
of the object will be zero and this equation will become ∑F = 0).

Second condition of equilibrium (dynamics)

∑M – Ia = 0

where
∑ = the sum of
F = forces
M = moments
m = mass
a = linear acceleration
I = moment of inertia
a = angular acceleration

Similarly, in equilibrium this angular acceleration component will be zero and
the second condition is written as ∑M = 0.

Balance and Balance is de ned as a state of equilibrium and it can often be used to describe 
stability how the condition of equilibrium is controlled. Stability is the quality of being

free from any change. More speci cally this can be classed as the resistance to
the disruption (disturbance) of equilibrium. The more stable an object the more
resistance it will offer to being disturbed (i.e., moving out of the state of
equilibrium). Balance and stability within sport are important concepts and an
athlete will often use these components to achieve speci c movement patterns.
The swimmer on the blocks during a sprint start will have a small degree of
stability such that they can easily be disturbed from their state of equilibrium
(i.e., the ability to be able to move quickly into the dive from reacting to the
starting signal). Similarly, the 100 m sprinter will be in the same situation at the
start of the race (balanced but with a small amount of stability) such that they
can easily move into the race by driving off from the blocks (this point of limited
stability is often very close to the point of making a false start). The boxer will
create a high level of stability such that they are unable to be knocked over
during the  ght, and the gymnast will often need to be in both stable and
unstable positions depending on the particular task that they are required to
perform. Quick movements from one activity to another in gymnastics would
require less stability whereas slow controlled movements (i.e., like during a
landing) require greater stability. Fig. C5.9 illustrates some examples of balance
and stability within human movement.
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Application The mass of an object affects its stability and generally the more mass an object
has the greater will be its stability. The more mass possessed by an object the
more force will be required to move it (i.e., disturb its equilibrium). The base of
support of the object is also related to the amount of stability offered by an object.
The larger the area for the base of support of an object and generally the more
stable the object becomes. Try standing on one leg and then see the difference in
your balance and stability when you stand on two legs. In the example, where
you stood on two legs you increased the base of support and are in a more stable
position. In terms of balance when the center of gravity of the object moves out
from being over the base of support the more unbalanced and unstable the object
becomes. The closer the center of gravity is to the extremities (outer edges) of the
base of support the less stable the object. Finally, the lower the center of gravity
(i.e., the nearer to the base of support) the more balanced and stable the object.
Fig. C5.10 identi es some of these concepts in more detail.

Equilibrium, balance and stability are critical within the study of sport and
human movement and these concepts will be discussed in more detail
throughout many of the sections within this text. Hence, it is important that you
have a good understanding of their application.
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Section C – Kinetics of angular motion

C6 LEVERS

Key Notes

A more detailed mechanical understanding and application of levers can
be achieved through the study of moments and the second condition of
equilibrium. This section provides an applied approach that is useful for
explanation in non-technical terms (i.e., possibly to coaches, clinicians,
athletes, and even children).

Levers can be de ned as rigid bars that rotate about axes or fulcrums.
Generally a force is applied to a lever in order to move or overcome a
resistance. In the human body the bone or limb segment would be the
rigid bar and the joint would be the fulcrum or point of rotation. The
muscles would provide the force (effort) and the resistance (i.e., external
force provided by gravity, contact, or collision) would be the load.

A  rst class lever is de ned when the force and resistance are located on
separate sides to the fulcrum (axis of rotation). An example of this within
human movement would be the nodding action of the head. The force
provided by the muscles in back of the neck is located at the opposite side
of the fulcrum (the rotation point in the middle of the neck, i.e., the
skeletal atlas point) than the resistance (which would be primarily
provided by the weight of the head).

A second class lever is de ned when the force and resistance are located
on the same side from the fulcrum but when the force is located further
away from the fulcrum than the resistance. An application of this within
human movement would include raising up onto the toes of your foot.
The calf muscle (gastrocnemius) through the Achilles’ tendon provides
the force and the resistance is provided by the weight of the foot/body
acting through the ball of the foot area. The fulcrum in this case would be
the point of rotation at the toes.

A third class lever is de ned when the force and resistance are located on
the same side from the fulcrum but when the force is nearer to the
fulcrum than the resistance. An application within human movement
would be an arm  exion action during arm curling in weightlifting. The
bicep muscle would provide the force and the weight in the hand (and
the lower arm) would provide the resistance. The fulcrum would be at
the elbow joint.

At this point it is perhaps important to indicate that the study of levers is really
only an applied practical example of the study of moments. All the problems and
considerations concerned with levers can actually be solved by using clockwise
and anti-clockwise moments and the second condition of equilibrium (as we have
seen in previous sections within this text). The student of biomechanics should
become more familiar with the application and understanding of moments than

The study of levers

Levers

First class lever

Second class lever

Third class lever



with the classi cation of simple lever systems. Nevertheless, often as bio-
mechanists’ and exercise scientists we are regularly required to explain principles
(i.e., to coaches, to clinical practitioners, to athletes, and even to children) in a
language that is not technical. This application of levers would be a non-technical
example of expressing the principle of moments.

Levers Levers can be de ned as rigid bars that rotate about axes or fulcrums. In the
human body the bone or the limb/segment would act as the rigid bar, and the
joint would act as the axis of rotation or fulcrum. A fulcrum can be de ned as
the pivot about which a lever turns. Generally, a force is applied to a lever in
order to move or overcome a resistance (i.e., another force). Within the human
body the muscles often provide the force and the resistance (i.e., the other force)
is provided by other external forces acting on the system (i.e., gravity, collision,
contact, and load). Fig. C6.1 illustrates this in diagrammatic form.

Levers are classi ed into one of three types. These are termed  rst, second, or
third class levers. A  rst class lever is when the force and the resistance are located
at separate sides of the fulcrum. A second class lever is when the force and the
resistance are located on the same side from the fulcrum position. However, in this
case the force is further away (at a greater distance) from the fulcrum than the resis-
tance. A third class lever is similar to the second class lever (with the force and
resistance on the same side from the fulcrum position) but this time the force is
nearer to the fulcrum than the resistance. In the  rst class lever system the distances
of the force and the resistance that act either side of the fulcrum do not need to be
equal. Fig. C6.2 shows the three lever systems in more detail.

Within the human body, levers play an important role in the application of
force and overcoming resistance (another force) in order to initiate or continue
movement. Each lever classi cation ( rst, second, and third) can have different
applications. The following identi es some of the applications both in general
and within human movement.

C6 – Levers 165

Mechanical example

Human body example

Fulcrum
Rigid bar

Force

Muscle
force

Rigid bar (lower arm)

Axis of
rotation or

fulcrum
(elbow joint)

Resistance
(i.e., another force)

Resistance
(i.e., force of
gravity acting
on arm (W = m · g))

Fig. C6.1. Levers (mechanical and within the human body)



First class lever This lever classi cation is similar to the seesaw that children would play on in
the park or playground. In this situation you would observe that a child is
sitting at each side from the point of rotation of the seesaw (i.e., the fulcrum).
The children (depending on their respective mass) would move further in or
further away from the fulcrum in order to balance the see-saw. If they both sat at
equal distances from the fulcrum the seesaw would move downward at the end
with the heavier child. In more general terms a pair of scissors would represent
a situation in which a  rst class lever is used. The fulcrum would be the axis of
rotation of the scissors (i.e., approximately in the middle), and the force would
be provided at one end by the hands in order to overcome a resistance at the
other end (i.e., the cutting of the paper or object). Within the human body there
are many applications of the  rst class lever. For example, the rotating of the
head (or “nodding”) forward and backward would be an example of a  rst class
lever within the body. Similarly the overarm throwing action of a ball would
also be an example of a  rst class lever within human movement. These exam-
ples can be seen in more detail in Fig. C6.3.

Second class In the second class lever the force and the resistance are located on the same side 
lever (from the fulcrum position) but the force moment arm (distance) is greater than

the resistance moment arm. For an equal and opposite resistance this would
mean that the force required to move the resistance would be less than the
resistance. In this case there would be a mechanical advantage in the favor of
the force being applied. Within human movement examples of second class
levers include raising up onto your toes or the simple action of lifting the
screen on your laptop computer. However, the more common general example
of the second class lever shown in many biomechanics text books would be the
use of a wheelbarrow to move a load. Fig. C6.4 shows these examples in more
detail.
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Third class lever In the third class lever system again we can see that the force and the resistance
are located on the same side from the fulcrum. However, this time the force is
nearer to the fulcrum than the resistance. This would mean that more force
would be required to move a given resistance. One of the most common
examples of this within human movement is the action of  exion of the elbow
joint. The bicep muscle acts at a position that is close to the fulcrum (i.e., the
elbow joint) whereas the resistance acts at a point further away from the fulcrum
(usually a load held in the hand such as an object or weights when doing arm
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curl exercises). In more general terms the use of a shovel would be a good
example of a third class lever and the use of a paddle while canoeing would be
another example within human movement. Fig. C6.5 shows these examples in
more detail.
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Mechanical Mechanical advantage is de ned as the ratio of the force moment arm (distance 
advantage from the fulcrum) divided by the resistance moment arm (distance from the

fulcrum). When the moment arm (perpendicular distance) of the applied force
is greater than the moment arm of the resistance (i.e., for a given
resistance/force) then the force needed to move the resistance is less than the
force offered by the resistance (i.e., there is a mechanical advantage). This is the
case in the second class lever example. Conversely, when the moment arm of
the applied force is less than the moment arm of the resistance then more force
is needed to move the given resistance (i.e., there is a mechanical disadvantage).
This is the case in the third class lever example. A further explanation of this can
be observed using the previously identi ed example of the seesaw in the
children’s playground. Fig. C6.6 represents a  rst class lever as in the case of the
seesaw on the children’s playground.

Two children sit one at each end of a seesaw. One of the children has a mass of
28 kg and the other a mass of 35 kg. The child who weighs 35 kg is sitting at a
point that is 1.2 m away from the fulcrum position. This child is sitting to the
right-hand side of the fulcrum and would cause a clockwise moment (i.e., a
tendency to cause a clockwise rotation of the seesaw). At what distance must
the child who is 28 kg sit in order to balance the seesaw? This problem can be



solved by using the second condition of equilibrium (∑M = 0) and considering the
mechanical advantage principle associated with levers.

Mechanical advantage = 

Considering Fig. C6.7 we can see that when the force moment arm is greater
than the resistance moment arm there is a mechanical advantage and less force is
required to overcome a given resistance. However, it may be important to add
that the use of the terms mechanical advantage and mechanical disadvantage in
this context are very much speci c to the function and purpose of the levers that

Force distance (moment arm)
����
Resistance distance (moment arm)
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Fig. C6.6. The seesaw example (first class lever)
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are being used. For example, although there may be mechanical advantages to
using a certain type of levers in particular applications it may be the case that such
an application is not the most appropriate (i.e., lifting within industry is an
example where it is not always possible to use the most mechanically advanta-
geous lever system).

Considering this principle it is clear that the child who is sitting to the left must
be sitting at a distance greater than 1.2 m in order to overcome the moment created
by the child that is sitting to the right (because the child on the left has much less
mass). The child who is sitting at a distance of 1.2 m to the right has a mass of 35
kg which would represent a weight of 343 N (weight = mass ¥ acceleration due to
gravity). This would create a clockwise moment of 412 Nm (343 N ¥ 1.2 m). In
order to balance the seesaw we can use the second condition of equilibrium to
solve this problem. The child who is sitting to the left and who is 28 kg will create
a weight force of 274 N.

Clockwise moments + Anti-clockwise moments = 0
F1 ¥ d1 + F2 ¥ d2 = 0

Re-arrange equation

F1 ¥ d1 = F2 ¥ d2

d1 = 

d1 = 

d1 = 1.50 m

We can now see that the child on the left must sit at a distance of 1.5 m from the
fulcrum in order to balance the seesaw. In terms of mechanical advantage this can
now be expressed in the context of the formula that is related to levers.

Mechanical advantage = 

For the seesaw example in Fig. C6.6 this is as follows (considering Child 1 as the
force and Child 2 as the resistance).

Mechanical advantage = 

Mechanical advantage = 1.25m

When the ratio of the force moment to resistance moment arm is greater than
1.0 then there is a mechanical advantage in favor of the force. In this case the ratio
is 1.25 and the force required to move (or in this case balance) the resistance would
be less than the resistance. As we can see by considering the actual  gures this is
correct as the force created by the child on the left (child 1) sitting at a distance of
1.5 m is only 274 N, while the force created by the child on the right (child 2) who
is sitting at a distance of 1.2 m is 343 N. There is a mechanical advantage in favor
of the child who is sitting on the left (child 1). This can be applied to any situation
concerning levers and the movement or overcoming of a resistance (load).

In the second and third class lever systems the same principle for the calcu-
lation of mechanical advantage applies (see Figs C6.8 and C6.9). However, in
second class levers the ratio would always be greater than 1.0 (a mechanical
advantage in favor of the force (effort)). Whereas in third class levers the ratio

1.5 m
�
1.2 m

Force distance (moment arm)
����
Resistance distance (moment arm)

412 Nm
�
274 N

F2 ¥ d2
�

F1
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would always be less than 1.0 representing a mechanical advantage in favor of
the resistance (load). In this context it may seem that the application of the third
class lever would always be inef cient. However, Figs C6.8 and C6.9 show some
further considerations for the use of these two lever systems in terms of
mechanical advantage. In the second class lever system, although there is a
mechanical advantage in favor of the force (effort), it is clear that the force must
be applied through a large (linear) displacement in order to move the resistance
only a small amount (linear displacement). In the case of the third class lever
the effect is opposite and, although a larger force is needed to move a given
resistance, this force is only applied over a small displacement (linear) in order
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(distance from fulcrum) is greater than the moment arm of the resistance. The force
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Fig. C6.8. Mechanical advantage (second class lever)
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to move the resistance a larger linear displacement. Hence, there are advantages
and disadvantages to using each lever system within human movement.

Application Within the body, muscles can often operate at different mechanical advantages
and there are applications when the muscle is required to operate at an
advantage and also at a disadvantage. For example, the bicep muscle in the
upper arm which causes a  exion rotation about the elbow joint will function
throughout the movement creating both maximum and minimum amounts of
torque, i.e., the twisting moment that may cause rotation ( exion). This mech-
anical advantage and disadvantage can be seen in more detail by considering
section C1 where Fig. C1.8 shows the bicep muscle in two positions of different
mechanical advantage. When the perpendicular distance of the muscle line of
pull from the joint axis (elbow joint) of rotation is larger the more torque will be
created for a given muscle force. When the perpendicular distance to the muscle
line of pull is less the torque that is created (as in the case of an extended arm
position shown in Fig. C1.8) is much smaller.

The moment arm of the bicep’s force at different points in the movement of
 exing the arm will change. This will create more or less torque for a given effort.
This principle of torque generation and mechanical advantage through levers is
applied in the design of many modern exercise machines. For example, many
devices will be able to accommodate the different torque generating capacities of
a muscle during exercise. The machines will often change the loading patterns at
various points in the exercise in order to accommodate to the changing torques.
Similarly, machines will often load muscles more at the points of their greatest
torque generating capacity. An example of the application of levers and exercise
devices will be identi ed in section F8 on Isokinetic Dynamometry.

Within the human body there are many applications of  rst, second, and third
class levers. Often muscles will act in opposition to each other during the
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operation of a lever system (agonist and antagonist muscle actions). For example,
the quadriceps muscle in anterior part of the upper leg will extend the lower leg
at the knee joint, whereas the hamstring muscle which is in the posterior part of
the upper leg will oppose this movement acting as an antagonist muscle to the
quadriceps (the hamstring muscle causes  exion of the lower leg at the knee
joint). Fig. C6.10 shows the action of kicking a ball in more detail with respect to
anatomical levers within the body.

In the action of kicking a ball the quadriceps muscle creates a third class lever
system (see Fig. C6.10) however, after the kick is completed the antagonist action
of the hamstrings creates a second class lever system by providing some resist-
ance (control) to this motion (to slow the leg rotation (extension caused by quadri-
ceps) and control the follow through phase of the kick). Within human movement
there are many applications of levers and some of these will be used as further
examples within this text.
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C7 CENTRIPETAL FORCE AND
CENTRIPETAL ACCELERATION

Key Notes

The centripetal force (Fcentripetal ) is a force directed to the center of rotation
when objects move in a circular path. This force is always required to
make objects move in a circular path. Conversely, if an object moves in a
circular path, the centripetal force must be acting.

Newton’s second law (F = ma) tells us that whenever a force (F) acts this
produces an acceleration (a). So when the centripetal force acts this must
produce a centripetal acceleration.

There are two main formula to describe the centripetal force. These are:

Fcentripetal = m. r. w2

Fcentripetal = m. v2 / r

It can be seen that the centripetal force is dependent on the radius of
rotation of the circle (r), and the angular (w) or linear (v) velocity. The
force is also dependent on mass (m). So the heavier, faster, and more
distant the object is to the center of rotation, the greater the centripetal
force needs to be in order to produce circular motion.

Centripal force Newton’s  rst law states that an object will continue in at rest or in uniform
motion unless some external force acts on it to change its state of motion. This
implies that if an object deviates from a straight line (i.e., moves in a curved
path) then some force must act to cause this to happen. When an object moves in
a circular path (e.g., when a hammer thrower rotates the hammer before release,
Fig. C7.1), the force causing circular motion is said to be the centripetal force
(Fcentripetal). This term describes that the force is a center-seeking force.

Centripetal force

Centripetal
acceleration

What is the
centripetal force
dependent on?

Centripetal
force

wr

Fig. C7.1. Centripetal force during the rotation of a hammer



The centripetal force will cause an acceleration in the direction of the force
according to Newton’s second law and this is called centripetal acceleration
(acentripetal) which is de ned by

Fcentripetal = m. acentripetal (C7.1)

This centripetal acceleration causes the object to move in a circle. If an object
rotates about a circle of radius of rotation (r) and constant angular velocity (w)
then the centripetal acceleration is given by the equation

acentripetal = r. w2 (C7.2)

As v = w . r (see Section A4) then equation C7.2 can be developed to give an alter-
native expression for the centripetal acceleration as

acentripetal = r. (v2 / r2) = v2 / r (C7.3)

Equations C7.2 and C7.3 can be substituted into equation C7.1 as appropriate to
provide two expressions for the centripetal force.

Fcentripetal = m. r. w2 (C7.4)

Fcentripetal = m. v2 / r (C7.5)

How is the centripetal force applied? In sports and exercise this is normally
provided by some linkage which can physically apply a force to the object of
interest. Consider the case of a hammer thrower (Fig. C7.2a) at the start of the
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Fig. C7.2. The tension in the hammer wire and its components (a) during the increase in
hammer head speed and (b) at maximum velocity before release
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movement when the hammer is increasing in speed. The force that causes the
hammer to rotate around the athlete is supplied by the wire. This force has two
components, one acting in the direction toward the center of rotation (the
centripetal force) and the other tangential to the circular path. The centripetal
force causes motion of the hammer head in a circle while the tangential force
component causes its acceleration (i.e., increase in speed) around the circle. Once
hammer head speed has been developed, the athlete must maintain that speed in
preparation for release. Constant speed of rotation is achieved when the
centripetal force alone acts (Fig. C7.2b).

The term centrifugal force (center- eeing force) often crops up in the literature
and much unnecessary confusion exists over the correct use of the term. From
Newton’s third law every force has to have an equal and opposite reaction force.
The tension in the hammer wire supplies the centripetal force to the hammer head
(Fig. C7.3). The same tension also applies an equal and opposite reaction force to
the thrower and, as this is directed away from the center, it is called the
centrifugal force. Thus, the hammer thrower experiences a force pulling away
from the hands and it is this sensation which sometimes makes people think the
force acting on the hammer is also in the same center- eeing direction.
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Fig. C7.3. The centrifugal force acting on the hammer thrower
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Application 1 – In the performance of the grand circle in men’s gymnastics, the body rotates 
Gymnastics – The about the high bar (Fig. C7.4). The force which keeps the body moving in a circle 
grand (or giant) is supplied by the tension in the arms and is the source of the centripetal force. 
circle This tension will vary during the performance but will be a maximum when the

angular velocity is a maximum (equation C7.4) which is when the gymnast
swings directly beneath the bar.

The centripetal force acting at the gymnast’s hands pulls the body towards the
bar and is given by equation C7.4. The component of the gravitational force
acting on the center of mass and along the direction of the body inclined at an
angle q to the vertical (m.g.cos q) pulls the gymnast away from the bar. This
increases the tension (T) in the arms which is given by the sum of these two
opposing forces as

T = m. R. w2 + m.g.cosq

The tension in the arms is maximal when q = 0 and the equation can be written
in terms of body weight (m.g)

T = m.g [ R. w2/g + 1]



For typical values of R (1.3 m) and w (5.5 rad/s) the maximum value of T is about
 ve times body weight. Such a high force explains why the gymnast needs to be
very strong, particularly in grip strength, and can sometimes fall off if the grip is
not strong enough.

Application 2 – When running around the bend on a  at track, athletes are seen to lean into the 
Running around bend. This leaning action causes a lateral frictional force which is the source of 
a bend on a flat the centripetal force. The lean will continue until the athlete reaches an angle q
track where there is suf cient friction force produced to enable the athlete to round

the bend comfortably. This situation can be analyzed by considering the
moments set up by the frictional force (F) and the normal reaction (N) force
about the center of mass.

The free body diagram is drawn in Fig. C7.5. As the athlete is balanced the
moments about the center of mass are equal’:

Equating moments N.x = F.y
Therefore F / N = ¥ / y = tan q (1)
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Fig. C7.4. Free body diagram of a gymnast
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Fig. C7.5. Free body diagram of an athlete rounding a bend



Resolving vertically N – m.g = 0 (2)

The friction force is the source of the centripetal force

so F = m. v2 / r (3)

Combining (1), (2) and (3) gives

F / N = v2 / r.g = tan q

and so q = tan–1 (v2/ r.g)

This equation allows the prediction of the angle of lean of a runner for any
velocity, v, and cornering radius r. Typically for an athlete running at 10 m/s (a
200 m race) around an athletics track of radius of rotation 40 m, the angle of lean
would be 14°. If the athlete performed on an indoor track of radius of rotation
20 m then the angle of lean would increase to 27°.

Application 3 – A In indoor athletics, the track is often banked on the bends so that the athlete 
runner cornering does not have to lean at large angles and run the risk of slipping and falling, 
on a banked track possibly into other competitors. The ideal angle of banking is such that there is

no lateral friction force at the athlete’s foot. The analysis is performed in the
same way as in the previous example using the following relationships from Fig.
C7.6.

Resolving vertically N cos q – m g = 0 (1)

The component reaction force is the source of the centripetal force

so N sin q = m v2 / r (2)

Dividing (2) by (1) gives tan q= v2 / r.g

Which is the same as found in the previous example.

Note that the angle of banking indoors will be greater than the angle of lean
outdoors, due to the reduced radius of the bend for indoor athletics. For indoor
cycling the angle of banking must increase as the speed of the cyclist increases,
leading to a curved banking pro le, where slow speeds are completed lower
down the bank which is more shallow, while sprints are completed higher up the
bank where the angle is greater.
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Fig. C7.6. Free body diagram of an athlete rounding a bend on a banked track

Normal
force N

m.g

y

x

q



Application 4 – In the examples considered previously, the curved motion was achieved by the 
Golf application of a force which was the source of the centripetal force (tension in

the wire for the hammer thrower; friction at the foot for the runner). There is an
important class of movements in sports that are used to attain high end speed
velocity by controlling the point at which the centripetal force is released. This
occurs in ball kicking, the golf drive, the tennis serve, throwing actions, and
many more. This type of action is also characterized by a proximal-to-distal
sequence.

In all of these movements the active limb is made up of two or three segments
(e.g., thigh and shank in kicking; upper arm, lower arm, and racket in tennis). The
segments are  exed and constrained to rotate about the body during the initial
stages of the movement. At some critical point in the movement the centripetal
force responsible for holding the segments in place is released and the end
segment moves outwards from the circular path and in doing so increases the
radius of rotation and hence the linear velocity of the end point.

This is seen in golf, where the downswing is considered to occur in two parts:
the  rst part is where the arms and club retain the same orientation to each other
with a constant wrist angle; the second is where the wrist angle is allowed to
increase enabling the club to extend prior to impact (Fig. C7.7).
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Fig. C7.7. A–B The first part of the downswing in which the arms and club remain fixed with
respect to each other. B–C The wrist is relaxed removing the centripetal force and so the club
head moves outwards to increase its end point velocity

(A) (B) (C)

The movement of the club head outward is sometimes wrongly thought to be due
to a force acting to pull it outward, and this “center- eeing” force is mistakenly
identi ed as the centrifugal force. It should be noted that it is not the centrifugal
force causing outward motion but the absence of the centripetal force.
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C8 THE ESTIMATION OF MUSCLE
AND JOINT FORCES – STATIC
APPLICATION

Key Notes

Static calculations are related to the dynamic calculations that form the
basis of complex inverse dynamics approaches that are used in
biomechanics for the modeling of joint and muscle forces. They are
valuable in providing an understanding of injury potential and
performance characteristics.

A free body diagram is de ned as a picture (a diagram) of all the forces
that act on an object or mass. This is probably the most important method
for the representation of forces acting on any system. If all the external
forces acting on the system (i.e., an object or selected mass) are drawn or
represented by vectors then the  rst (∑F = 0) and second (∑M = 0)
conditions of equilibrium can be used to solve force and moment
problems.

Determined using the second condition of equilibrium where the sum of
the clockwise and anti-clockwise moments is zero. Muscles are the active
stabilizers of joints.

Determined using the  rst condition of equilibrium where the sum of the
forces is zero. Ligaments offer passive restraint to motion in a joint (i.e.,
they provide passive stability). Passive is de ned as receiving or
subjected to an action without responding or initiating an action. Muscles
provide dynamic (active) stability.

Such muscle and joint forces in a single leg standing posture can exceed
body weight and can result in the potential for injury.

It is important to understand the muscle forces in static calculations in
order to be able to assess the training effect in activities such as
weightlifting.

Static Static calculations are useful in that they form the basis of inverse dynamics 
calculations calculations that are used in many modeling programs in today’s biomechanics

world of computer simulation. Understanding the basic calculation of the forces
that act on a joint during various forms of human movement is essential if we are
to have any understanding of injury mechanisms and/or performance character-
istics. Although, these calculations are primarily based on a two-dimensional
approach and are presented in the sagittal plane they are nevertheless valuable

Static calculations

Free body diagrams

Muscle forces

Joint forces

Summary
● Injury

● Performance



for the student of biomechanics in providing an understanding for more complex
three-dimensional problems. In some applications, they are valid, as in the case of
estimating the loads on the joint during squatting in weightlifting or alternatively
estimating the forces on the elbow during the holding of the arm in the 90° posi-
tion (as when doing an arm curl in weightlifting). The methods used are derived
from standard mechanics, the application of trigonometry and the use of free
body diagrams and they provide the reader with skills that can be used to model
loads and forces that could be responsible for injury.

Application of In the upright standing posture as viewed in the sagittal plane the line of gravity 
statics (knee joint falls approximately through the knee joint axis of rotation as shown in Fig. C8.1. 
and quadriceps The moment arm at the knee joint (force ¥ perpendicular distance) is considered 
muscle forces) to be zero (0) and at this point there is no or minimal muscular force required to

maintain this position. The limbs are said to be in a position of equilibrium
(balanced). Electromyographic activity of the quadriceps and hamstring
muscles during standing in this position has been shown to be negligible. In
order to calculate the static muscle and joint forces around the knee during
standing or balancing on one leg the following sequence of calculation is
required.
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F
F = force acting directly
over knee joint through
the center of rotation of
the knee joint (i.e., does
not cause any rotational
component). Force is
derived from the proportion
of the body (mass) above
knee joint that is acting
through the thigh (upper leg)

Fig. C8.1. Force acting over knee in static standing posture

Q. What is the single joint compressive force that is acting on the knee in this
standing position in a 75 kg athlete?

Weight (W) = mass (kg) ¥ acceleration due to gravity (m/s2)

Acceleration due to the gravitational attractive force from the Earth varies by a
small amount (negligible) according to your position on the surface of the Earth
however, in this example we will consider it to be 9.81 m/s2. Therefore we can
now calculate the weight of the athlete. It is important to note that weight will
have the units of Newtons (N) because it represents the force acting on the athlete
by virtue of gravitational effect caused by the mass of the Earth. 

Free body The free body diagram represents a picture (diagram) of all the forces (external 
diagrams forces) which are acting on a system. This method of force representation

(discussed elsewhere) is probably the  rst and most important process for



solving force problems. In a free body diagram all the forces acting on the
system (i.e., an object or a mass) are represented graphically by drawing vectors
(i.e., lines representing force with both magnitude and directional components
shown). Then by using the  rst (∑F = 0) and second (∑M = 0) conditions of
equilibrium (derived from Newton’s laws) it is possible to analyze and describe
the resulting force actions and motions. Some of the types of forces that can be
expressed using free body diagrams include weight, applied, contact, normal,
tensional, compressive, joint, frictional, ground reaction, and muscle. In
drawing or developing free body diagrams it is important  rst to isolate the
body, then draw and label all the external forces acting on the body, then
mark all the angles and magnitudes of force, and  nally choose (or use a
conventional) a coordinate system for positive and negative forces or moments.
By adopting this approach to the solution of force and torque it is possible to
analyze any system in either two or three dimensions.

Determine the Weight = mass ¥ acceleration
weight of the W = m ¥ g
athlete

In the case of our 75 kg athlete on the Earth with an acting acceleration due to
gravity of 9.81 m/s2 this is determined as follows:

W = m ¥ g
W = 75 ¥ 9.81
W = 735.75 Newtons (N)
W = 736 N

This is the weight that is experienced by the athlete. If the athlete stood on a force
platform (see section F5) the weight recorded by the platform would be 736 N.
The weight is, however, acting over both feet and if the subject were to stand on
two force platforms (one under each foot) separate forces would be recorded of
368 N. Fig. C8.2 illustrates this in more detail.
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Weight of
athlete 736N

Hip

Knee

Force from ground
368N 368N

75 kg athlete

Ankle

Fig. C8.2. Lower body frontal plane view



In order to determine what is the single compressive force acting over each
knee joint it is necessary that we take off the weight (or effect) of one lower leg
and foot. The anthropometric details for the weight of one lower leg and foot can
be determined from the data presented in Table C8.1.
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Table C8.1. Anthropometric data where m is body mass in kg
(derived from data presented in Winter 1990, p. 56)

Hand 0.006 ¥ m
Forearm 0.016 m
Upper arm 0.028 m
Forearm and hand 0.022 m
TOTAL ARM 0.050 m
Foot 0.0145 m
Lower leg 0.0465 m
Upper leg 0.100 m
Foot and lower leg 0.061 m
TOTAL LEG 0.161 m

(The values in the table are derived (and reproduced with permission)
from data presented in Winter, D. A. (1990) Biomechanics and Motor
Control of Human Movement (2nd edition). Wiley-Interscience
Publishers. New York. (3rd edition published 2004))

From the table we can see that the anthropometric mass for one lower leg and
foot segment is presented as 0.061 ¥ m (where m is the body mass of the athlete
which is 75 kg in this case). Hence the weight of one lower leg and foot is
determined as follows:

Foot and lower leg = 0.061 ¥ m
= 0.061 ¥ 75
= 4.58 kg

To determine the weight of this foot and lower leg we multiply by the
acceleration due to gravity.

Weight of foot and lower leg = m ¥ g
= 4.58 ¥ 9.81
= 44.93 N
= 45 N

This, therefore, is the weight of each lower leg and foot combination.
Hence, in order to determine the single joint (over one knee) compressive force

acting over the knee joint during standing in a 75 kg athlete it is necessary to take
the force value (i.e., the weight) of one lower leg and foot from the force acting
over each foot (or under each foot from the ground). This will give the value
acting over each knee (the summation of forces in the free body diagram).

It is clear that in a 75 kg athlete, 368 N of force will be acting under each foot
(i.e., from the ground on the foot (the ground reaction)). It is also clear that in a 75
kg athlete the single compressive force acting over each knee joint can be
calculated as follows:



Free body diagram (∑F = 0)
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1.

2.

3.
Summation of
external forces

3. Forces from ground acting on
body (one leg) = 368 N (+ve)
or 1/2 body weight

1. Force acting on knee joint
from weight of body through
the thigh
i.e. upper leg (–ve) = unknow

2. Force acting from weight
of lower leg and foot
(–ve) W = m · g (4.58 · 9.81)
= 45 N (–ve)

Single joint ∑F = 0
compressive 368 + (–F1) + (–45N) = 0
force acting over 368 – 45 = F1

each knee 323 N = F1 (acting over each knee joint (downward (–ve))

At this stage it is important to identify what is de ned by the term compres-
sion in this context of knee joint forces. Fig. C8.3 helps to illustrate this in more
detail.

The force that has just been determined is the single joint compressive force
acting over the knee during standing. It is the force that will cause the tibia
(lower leg) and the femur (upper leg) to be compressed together (i.e., it is the
force acting downwards over the joint; because the athlete is standing on
the ground there will be a force acting vertically upwards thus causing this
compression).

As the knee  exes the line of gravity will fall behind the knee joint line (i.e.,
behind the point in Fig. C8.1) and it will create a moment arm about which the
force acts (Fig. C8.4). For most of the stance phase during walking the knee will
 ex through less than 20º of movement. Throughout this action of walking the
muscle force in the quadriceps and hamstrings will be continuously changing to
accommodate the moment (and the imbalance) caused about the knee joint.
Muscle forces are affected by many factors which include friction, the
momentum and mass of body and the velocity of the movement. Therefore, in
order to understand statics it would be useful if we could  rst determine what
muscle force would be required to hold the body in a position of  exion in a
static posture.

COMPRESSION TENSION

Compressive
force

Tensile
force

Fig. C8.3. Compressive and tensile forces



Muscle forces Q. What is the muscle force required to maintain a static position of 20° of
knee  exion during a unilateral stance (on one leg)?

Taking the previous example of the 75 kg athlete we will now try to work out the
muscle force in the quadriceps muscle needed to hold a position of standing on
one leg when the knee is in 20º  exion. Although during walking the action is
dynamic (movement) this speci c position will be assumed many times during
the gait cycle in walking. In this process we  rst need to determine the single joint
compressive force acting over the knee joint when a moment is created (such as in
the case of knee  exion). Remember, however, in this case the athlete is standing
on one leg only. Fig. C8.5 illustrates the position in more detail.
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W

Fig. C8.4. Moment arm during knee flexion

10°

80°

10°

80°

Fig. C8.5. 20∞ knee flexion position (standing on one leg)



Calculation of (Super-incumbent means lying on top of and imposing pressure on something 
super-incumbent else).
weight over one 

75 ¥ 9.81 = 736 N (weight of athlete)
knee

0.061 ¥ 75 = 4.58 kg (mass of one lower leg and foot)
4.58 ¥ 9.81 = 45 N (weight of one lower leg and foot)
736 – 45 = 691 N (weight acting over one knee – standing on one leg)

In order to use this value to calculate the muscle force needed to hold this static
posture it is necessary to determine the perpendicular distance (dw) from the
joint center (knee) to the line of action of this force (weight) which in this example
is caused by the gravity. In addition, it is also necessary to determine the perpen-
dicular distance from the joint center (knee) to the muscle line of pull (dm). Fig.
C8.6 illustrates these components in more detail.
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Y

dw

W

M

dm
X

YX = axes
W = weight
M = muscle force

dw = distance (moment
          arm) weight
dm = distance (moment
          arm) muscle force

where:
WF = weight body (c of g)

above knee
FF = Force from femur contact

JRF = Joint reaction force
MF = Muscle force

Note: J FR  and FF have no
rotational effect on knee joint

WF
FF

MF

JRF

Not drawn to scale

Free body diagram

Fig. C8.6. Moments and forces acting about the knee joint

These values (moment arms or perpendicular distances) are usually provided
from either kinematic measurements using video digitization techniques (to
determine dw) or from radiological measurements (to determine dm). In this case
we can use the following values for dw and dm respectively 0.064 m and 0.05 m.

dw = 0.064 m (given)
dm = 0.05 m (given)

We now have a force system established in which we can utilize the second
condition of equilibrium; which states that the sum of the moments are zero. That
is, clockwise moments plus anti-clockwise moments equal zero (∑M = 0; no
movement, static consideration) to solve the problem for the muscle force. Fig.
C8.7 helps to illustrate this system in more detail.



Second condition W.dw + M.dm = 0
of equilibrium 

where W.dw equals the anti-clockwise moment (+ve) and M.dm equals the 
( M = 0)

clockwise moment (–ve) – remembering that a moment is de ned as a force ¥ a
perpendicular distance.

Substitute from previous values:

W.dw + (–M.dm) = 0

(691 ¥ 0.064) + (–M ¥ 0.05) = 0
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dw Femur

W

M
dmTibia

Clockwise
moment

Anti-clockwise
moment

Fig. C8.7. Force/moment system in the knee during standing (one leg-static posture)

dw = 0.064 m 

N

Anti-clockwise
moment (+ve)

Clockwise
moment (–ve)

M = ?
W = 691 

dm = 0.05 m

Note the positive sign in this case denotes an anti-clockwise moment.

(44 Nm) + (-M ¥ 0.05 Nm) = 0
44 Nm = M ¥ 0.05
44/0.05 = M
880 N = M

This represents the muscle force needed in the quadriceps muscle in order to
maintain this static position while standing on one leg with 20° of knee  exion as
shown in Fig. C8.5. Hence, for a 75 kg athlete standing on one leg and holding this
position of 20º knee  exion the quadriceps muscle force would be 880 N (1.20 ¥
the subject’s body weight).

In the calculation of this force it is important to note several factors.

● That the muscle force throughout walking is actually continually changing
and the situation is not really one of a static consideration.

● That other factors play a role in the changing muscle and joint forces such as:
friction of the foot and ground; friction in the joint; muscle line of pull;
muscle complex arrangement; momentum and movement possessed by the
body and equipment/shoes (external forces and torques).



● The problem should not really be considered as a two-dimensional problem
(in the sagittal plane as in our calculations) and it is really a three-dimensional
problem where all the force vectors are considered.

● Finally, it is important to add that very rarely is the problem or consideration
of muscle and joint force purely static. An example of when the force may be
potentially considered as static would be in the case of weightlifting where
the athlete squats to the bottom of the weightlifting squat exercise with a bar
and weights and then momentarily stops before beginning to rise again. At
the moment that the body has stopped its descent (i.e., the vertical velocity
downward will be zero) and at the point before it begins (i.e., providing the
velocity has stayed zero momentarily) to rise this static calculation may be
considered valid to work out muscle and joint force (although there will have
been some momentum and velocity possessed by the body directly before
this point and also an eccentric–concentric muscle contraction). However, in
order to understand the dynamics of the problem it is important to have a
good working knowledge of static applications of this method of calculation.

Calculation of Fig. C8.8 shows the diagrammatic representation of the muscle force M, which 
joint forces we have just determined for the 75 kg athlete standing on one leg in the static

position. The next stage is to determine the joint reaction force that is acting on
the knee joint. In order to do this we need to consider both the muscle force M
and the ground reaction force G (i.e., which are both acting upward on the lower
leg – co-planar non-parallel external forces).

In order to solve a system where there are two non-parallel co-planar forces
acting and the system is in equilibrium (i.e., static not moving in this case) we can
use the  rst condition of equilibrium (∑F = 0) to  nd the resultant of these two
forces (the one force that is the equivalent of the two and the force that must be
opposing the effect from the two non-parallel co-planar forces in order to
maintain equilibrium). This can be achieved by constructing a free body diagram
and expressing the two known forces at a point and then resolving for the third.
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M  880N

Where
R = joint reaction force
M = muscle force
G = ground reaction force G 736N G

M

R

G

MR

Fig. C8.8. Co-planar force system around the knee (standing on one leg)

Resolution of a The question that we need to answer in this example is what force is needed that 
force system would have the same effect as the two forces currently known. For example, if

you push a box along a table with two forces (say one from each hand) and you
push the box in a different direction and with a different force from each hand
(independently and simultaneously) the box will move off in a resultant direction



by an amount/distance that is dependent on the two applied forces. What single
force and what single direction would be required to have the same effect as
the two other forces that you have just applied? In the case of the knee joint the
solution is achieved by using the same resolution of force system seen in Section
C5. We currently have two forces that are acting on the joint (namely the muscle
force (M) and the ground reaction force (G)) and we wish to  nd out the effect of
these two forces on the joint (namely the joint reaction force (R)). In order to do
this we can express the known forces at a point and using the  rst condition of
equilibrium and basic trigonometry we can resolve these two forces into a single
force which is the effect or the resultant of the other two.

However, before we can resolve these forces it is important to know at what
angle or position the quadriceps muscle force (M) is acting. This can be deter-
mined again by either calculated kinematics of body position using video-digiti-
zation techniques or by radiological methods (i.e., such as x-ray or ultrasound
techniques which, although primarily used to identify bone (x-ray), can be used
to determine muscle and tendon line of pull (especially ultrasound techniques)).
Fig. C8.9 helps to illustrate the position and angle of the muscle force in more
detail.

From Fig. C8.9 it is clear that the muscle force needed from the quadriceps to hold
this static position will act through the patella tendon. The patella tendon is attached
to the quadriceps muscle (together the tendons of the four quadricep muscles form the
patella tendon) and it is also attached to the tibial tuberosity (a bony eminence on the
anterior part (front) of the lower leg). When the quadriceps muscle contracts it causes
a tensile force in the tendon (i.e., because the tendon is attached at the tibia). This force
from the quadriceps acts through the patella tendon and it is this position that we use
in the resolution of force system. It can be noted from Fig. C8.9 that the quadriceps
tendon (patella tendon) is acting at 60° to the right horizontal in this example.
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Quadriceps femoris

Knee joint

muscle force

60°

dm
0.05 m

dw
0.064 m

W
691N

60°

M

Fig. C8.9. Quadriceps Femoris muscle force (M) line of pull/action 

Resolution of Both forces (muscle force (M) and ground reaction force (G)) are now expressed  
forces at a point (see Figs C8.10 and C8.11) and it is important to identify that in this

case the ground reaction force (which is usually a resultant of three forces) is
acting vertically upwards. Normally during movement or dynamic action this
would not be the case and the ground reaction force would be acting at an angle

(not drawn to scale)



Therefore, resolving for two forces at a point:

Sum of vertical components (Fv)
F = F sin q

= 736 + 880 sin 60°
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Ground reaction
force (G)
Note: acting vertical since there
is no movement (standing stationary)

Muscle
force (M)

60°

Fig. C8.10. Resolution of Muscle and ground reaction forces

Vertical component
of GRF

R

Horizontal component
of muscle force

Vertical component
of muscle force

60 degrees

(Note: it is not necessary to include the 90° angle for the vertically acting ground
reaction force because the sin of 90° is equal to 1.)

= 736 + 880 ¥ 0.8660
= 736 + 762

Fv = 1498 N

G = 736N
M = 880N

60°

Note: that the ground reaction force is now the
whole body weight force (75 · 9.81) because the

athlete is standing on one leg

Fig. C8.11. Muscle and ground reaction forces expressed at a point

as it would be a resultant effect from a vertical, horizontal, and medial or lateral
component. However, in this case (no movement static position) the ground
reaction force can be expressed as a single force acting vertically.



Sum of horizontal components (Fh)

F = F cos q
= 880 cos 60°

(Note: the vertical ground reaction force is acting perfectly vertically and hence
it does not have a horizontal component.)

= 880 ¥ 0.5
Fh = 440 N

Magnitude of the resultant

R = √ Fv2 + Fh2 (Pythagoras)

where Fv equals the vertical component calculated previously and Fh equals the
horizontal component calculated previously.

R = √ 14982 + 4402

= √ 2437604
= 1561.3 N

This force represents the resultant of the two forces shown in Fig. C8.11. It is the
one force that will have the same effect as the two forces expressed in this  gure.
It is now important to establish the angle (direction) at which this force (which is
a vector quantity) is acting.

Determination of angle
Tan q = Fv

Fh

= 

Tan q = 3.40
Tan q = (inverse tangent) 3.40
Tan q = 73.61°

= 73° 36’ (expressed as degrees and minutes)

1498
�
440
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Derived from

R
1498 N

440 N

Tan q =
opp
adj
–––

q

This is the angle at which the 1561.3 N resultant force is acting. It is now impor-
tant that we transfer this force and its position to a diagram of the knee in order
to understand how the joint is loaded. The joint reaction force which is created at
the knee by the application of the ground reaction force and the muscle force will
be equal and opposite to this resultant force. Fig. C8.12 illustrates this in more
detail.

From Fig. C8.12 it is possible to see the joint reaction force in place around the
knee joint. The force is 1561.3 N, which is 2.12 ¥ the subject’s body weight and it



is acting at an angle of 74° (73.61°) to the right horizontal (in this case). This joint
reaction force will cause a shear and compression force that is acting on the actual
structures of the knee (such as the ligaments and other soft tissue structures). In
order to calculate the shear and compression we use the same method as is
applied to determine the joint reaction force.

Determination of The compressive force is found to be perpendicular to the tibial plateau and is 
knee joint parallel to the long axis of the tibia. It is expressed as Rc.
compressive and The shear force is found to be parallel to the tibial plateau and it is known as 
shear forces Rs.

With the knee in this 20°  exion position, the thigh and lower leg form an angle
of 10° with the vertical (see Fig. C8.5). Hence, the tibial plateau would also form
an angle of 10° with the horizontal (because of the lower leg angle with the
vertical). It is important to point out that in the many different angles/positions
of knee  exion these angles (formed with the vertical) are not always equal. Fig.
C8.12 helps to show this in particular detail.

The compressive and shear forces are resolved from the joint reaction force
expressed at a point, however, it is important to use the correct angles in this inter-
pretation. In order to resolve this single joint reaction force into both the vertical and
horizontal components (the other way around from what we did previously) we
need to use the angle that is formed between the joint reaction force and the long axis
of the tibia. Fig. C8.13 identi es this angle of 6° (derived from 90° – (74° + 10°)) in
more detail.

Calculation of joint compressive force (using q = 6∞)

Rc = R cos q
= 1561 cos 6°
= 1561 ¥ 0.994
= 1552 N
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Fig. C8.12. Knee joint reaction, shear and compressive forces
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Calculation of joint shear force (using q = 6°)

Rs = R sin q
= 1561 sin 6°
= 1561 ¥ 0.104
= 162 N

In this static calculation we have determined the muscle force needed to hold the
limb stationary while standing on one leg for a 75 kg athlete. In addition, we have
determined the joint reaction force and the compression and shear force compo-
nents of the joint reaction force. The shear force in this example would be
pushing the tibia backwards (i.e., causing the tibia to translate backward –
posteriorly) with respect to the femur and therefore it would be stressing
(placing a load on) the posterior cruciate ligament (Fig. C8.14). The posterior
cruciate ligament is attached from its posterior location on the tibia to an anterior
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Rs (shear force
along here)

Rc (compression
force along here)

q

q = 6°

2

q1

In all cases q1 and q2 are equal
because the tibial plateau is
at right angles to the long

axis of the tibia

20° flexion static position
uni-lateral stance

10°
6°

10°

10°

74°

Joint reaction
force R (1561N)

Fig. C8.13. Resolution of joint shear and compression force

Derived from the following
right angled triangle

Rc
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R6°
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plateau



location on the femur and it provides a passive restraint to posterior (backward)
movement of the tibia relative to the femur. However, if the joint reaction force
was at such an angle that when it was plotted onto the knee diagram with respect
to the horizontal, it went past the vertical compression force which acts down the
longitudinal axis of the tibia, the shear force created would be going in the
opposite direction and it would move the tibia anteriorly (i.e., forward) with
respect to the femur. In this case the motion (of the tibia) would be placing stress
on the anterior cruciate ligament. Ligaments connect bone to bone and they act
passively to resist motion in a joint (i.e., provide stability). For example, the
passive restraint (where passive is de ned as receiving or being subjected to an
action without responding or initiating an action) offered in resistance to the
drawer of the tibia anteriorly with respect to the femur is provided by the ante-
rior cruciate ligament. The cruciate ligaments in the knee are described by their
attachments on the tibia. The anterior cruciate ligament is attached anteriorly at
the front of the tibia and it extends backward and upward to be attached poste-
riorly on the femur. Hence, drawing or moving the tibia forwards relative to the
femur (i.e., as in the case of the anterior drawer test used by many clinicians,
which is termed the “Lachman” test) will place the anterior cruciate ligament
under load (because it will resist this action). The ligaments of the knee provide
passive support/stability (they are like pieces of string) whereas the muscles
surrounding the knee provide dynamic (active) support/stability. Within biome-
chanics this passive and active role of ligaments and muscles can often be misun-
derstood. Although this application is two-dimensional and is statically
determined (i.e., not moving), it is however showing an important mechanism for
potential injury and knee ligament rupture.

Summary In this static, one-legged (unilateral) standing posture we have calculated the
following forces acting on and around the knee joint:
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Joint reaction
force 1561N

PCL Joint shearTibia movement
(translation) relative

to femur
force 162N

Joint compression
force 1552N

If the joint reaction force goes past
the vertical (Rc) the shear force

would go in the opposite direction

Fig. C8.14. Posterior tibial translation relative to femur



● Quadriceps muscle force needed to hold this static position – 880N (1.20 ¥
body weight)

● Knee joint reaction force – 1561 N (2.12 ¥ body weight)
● Knee joint compression force – 1552 N (2.10 ¥ body weight)
● Knee joint shear force – 162 N (0.22 ¥ body weight)

In addition, we have also seen that some of these forces may be responsible for
injury development (such as in the case of the joint shear force where the force is
trying to slide the tibia and femur apart). In particular it was clear that the
position of this force can change and thus load different ligaments within the
knee causing different injury potential mechanisms. Finally, in this single leg
example, with no weights the quadriceps muscle force needed to hold this posi-
tion was 1.20 ¥ the subject’s body weight which causes a joint reaction force of
2.12 body weights. This may have important loading implications for injury
potential.

Applied example 
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EX 1 An athlete has a mass of 90 kg and begins to rise from a squatting
position with a bar containing 150 kg (composite mass of the weights
and bar 170 kg). The mass is distributed equally on both feet with the
line of gravity falling 0.30 m behind the knee joint axis. The thigh is
horizontal forming a 50° angle with the lower leg. The perpendicular
distance from the joint center to the patella tendon line of action is
0.05 m. The patella tendon forms an angle of 35° with the horizontal.

Q. What is the quadricep muscle force necessary to maintain this position
and what are the tibio-femoral and patella-femoral joint reaction forces?
Calculate the tibio-femoral shear and compressive forces and express
your answers in terms of % body weight and absolute values.

Draw the free body diagrams to illustrate your answer.
Take the quadriceps tendon to be horizontal.

Schematic diagram

W
Quad tendon

0.05 m

50°

0.3 m

35°

M

Patella tendon



Applied example 
solution
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Solution to question
Mass of athlete 90 kg
Weights and bar 170 kg
Shank and lower leg                0.061 · m (anthropometric data)

Weight over each leg
90 + 170 = 260 kg
260 · 9.81 = 2550.6 N

Divide by 2 per leg (i.e., under each foot)
1275.3 N ground reaction through each leg

Minus weight of 1 lower leg + foot
0.061 · 90 = 5.49 kg
5.49 · 9.81 = 53.86 N
1275.3 – 53.86
= 1221.44 N  Acting over each knee
= 1221.44 N

Determination of quadriceps femoris muscle force
2nd condition of equilibrium SM = 0
W.dw + M.dm = 0
1221.44 · 0.30 + M · 0.05 = 0
366.43 + M · 0.05 = 0

M = –

M = –7328.6 N

Body weight = 90 · 9.81 = 882.9

% Body weight =

= 8.30 · Bw

366.43
0.05

––––––

7328.6
882.9
––––––
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Calculation of joint reaction force

R
M

G

1275.3 N
7328.6 N

35°

Sum of vertical
F sin f
1275.3 + 7328.6 sin 35°
1275.3 + 7328.6 · 0.573
1275.3 + 4199.29
+5474.59 N

Sum of the horizontal
F cos f
7328.6 cos 35°
7328.6 · 0.819
+6002.12 N

Express at a point

Ground reaction force
    = 2550.6 ∏ 2
    = 1275.3 N
    Muscle force = 7328.6 N

5474.59
6002.12
–––––––

FV
FH
–––

Determination of resultant
R = ÖFV2 + FH2

= Ö5474.592 + 6002.122

= Ö65996580.16
= 8123.83 N  (9.20 · Bw)

Angle of joint reaction force

tan f =

=

= 0.9121
f = 42.36°
f = 42°22'

Transfer to diagram

not drawn to scale

50°

40°

40°

Rc
R

Rs

f1  42°22'

f1 = 42°22'
f2 = 90° - (40° - f1)

f 2
 7°38'
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Compression force
R cos f
8123.83 cos 7°38'
8123.83 · 0.9911
8151.52 N                   (9.23 · Bw)

Shear force
R sin f
8123.83 sin 7°38'
8123.83 · 0.1328
1078.84 N                          (1.22 · Bw )

Calculation of patella joint reaction force

Sum of vertical
F sin f
–7328.6 sin 35°
–7328.6 · 0.5735
–4202.95 N

Quads tendon
7328.6 N  (Muscle force)

7328.6 N

35°
Patella tendon

Sum of horizontal
F cos f
7328.6 + 7328.6 cos 35°
7328.6 + 7328.6 · 0.8191
7328.6 + 6002.86
+13331.46

Resultant
R = ÖFV2 + FH 2

R = Ö4202.952 + 13331.462

R = Ö17664788.7 + 177727825.7
R = Ö195392614.4
R = 13978.29         (15.83 · Bw )
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Angle of application
Actually bisects the angle contained between
quadriceps and patella tendons 
ie. 35° ‚ 2 = 17.5°

tan f =

=

= 0.3152
= 17.49°
= 17° 29' 24.00"

Summary
Muscle force 7328.6 N  (8.30 · Bw)
Joint reaction force 8123.83 N  (9.20 · Bw)
Compressive force 8151.52 N  (9.23 · Bw)
Shear force 1078.8 N  (1.22 · Bw)
Patella femoral force 13978.29  (15.83 · Bw)

FV
HV
–––

4202.95
13331.46
––––––––

Quadriceps tendon

35°

35°
Patella tendon

alternate angles between
two parallel lines
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C9 THE ESTIMATION OF MUSCLE
AND JOINT FORCES – SIMPLE
DYNAMIC APPLICATIONS

Key Notes

Inverse dynamics calculations form the basis of mathematical approaches
that are used in simulation and modeling within biomechanics.
Dynamics utilize the acceleration approach to solving problems and they
allow the biomechanist to be able to determine realistic muscle and joint
forces.

Required for calculation of dynamic forces.
The moment of inertia for regular shaped bodies (where the mass is

essentially point center located) is determined by:

I = ∑ m r2

The moment of inertia for the human body is determined by using the
radius of gyration:

I = mk2

Required for the calculation of dynamic forces.
The radius of gyration is the distance between the axis of rotation and

the point at which the mass of a non-rigid body (i.e., a distributed mass)
is considered to be concentrated. It is important to determine about which
axis the limb or joint is rotating (proximal or distal). The lower arm
segment can rotate about the distal axis of rotation (i.e., the wrist/hand)
or it can rotate about the proximal axis of rotation (i.e., the elbow joint).
Distal is the point that is furthest away from the attachment of the part to
the body and proximal is the point that is nearer to the point of
attachment of the part to the body.

Use the  rst and second conditions of equilibrium.

Combine these with the acceleration approach.
In static situations the acceleration will be equal to zero whereas in

dynamic situations there is a potential for acceleration (i.e., there could
also be a constant velocity situation where the acceleration would be
zero).

∑CWM + ∑ACWM = Ia

where Ia = torque and when a = 0 the equation becomes ∑M = 0 (second
condition of equilibrium).

Introduction

Moment of inertia

Radius of gyration

For static solutions

For dynamic
solutions

Dynamic solution



Inverse dynamics can show that the forces on the joints during movement
either increase or decrease (i.e., they can decrease under the effect of
gravitational acceleration) when the limb is to be accelerated in a speci c
direction. This change in velocity (i.e., acceleration) and the potential
increase in joint and muscle forces can lead to the possibility of injury. For
example, weightlifting, when the athlete has to accelerate the weight and
the limbs during an arm curling exercise, can lead to increased muscle
and joint forces.

Introduction Dynamic calculations form the basis of complex inverse dynamics approaches
that are used extensively in both modeling and simulation applications in biome-
chanics. The acceleration approach is used to solve kinetic problems and deter-
mine the cause–effect of movement (acceleration) from muscle and joint forces
and torques. In static applications the clockwise moments (CWM) or torques are
balanced by the anti-clockwise moments (ACWM) resulting in a zero angular
acceleration (i.e., no movement). In dynamic applications the net torque
produced is not equal to zero and its effect is to produce an angular acceleration.
The net torque has the same causal relationship to angular acceleration that net
force has to linear acceleration. The resistance to changes in angular velocity is
quanti ed by the moment of inertia and it is an important consideration in these
calculations.

Moment of inertia Moment of inertia is de ned as the resistance of an object to start or stop
rotating and for bodies where the mass is concentrated at a point, it is deter-
mined by how the mass of the object is distributed around the axis of rotation. It
is generally de ned by:

I = ∑ m r2 (C9.1)

where
I = moment of inertia
m = mass
r = distance of mass center from the axis of rotation

If the object is rotated about a different axis or if the mass is redistributed then
the moment of inertia changes (as the distance of r will change).

The moment of inertia is different for different body shapes and unless a
de ned axis of rotation is identi ed, the moment of inertia has little meaning.
Generally the moment of inertia is de ned by an axis passing through the center
of gravity of the object (ICofG) and this provides a reference value for the object
from which further calculations can be made. This would be necessary, for
example, when there is a change in the axis of rotation from the center of gravity
to, say, some other point such as the end of an object (e.g., the handle of a racket
or the end of a body segment such as the shank). For a more thorough under-
standing of this concept the reader is referred to section C3.

Segments of the human body (e.g., shank, thigh, forearm, or head) rotate about
axes of rotation at the end of the segment which are referred to as proximal or
distal. The proximal end is de ned as the point that is nearest to the point of
attachment of the limb/segment to the body while the distal end is the point
farthest away from the point of attachment of the limb/segment to the body.
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Summary



Sometimes the body rotates about either proximal or distal ends. For example, in
the case of the subject doing a cartwheel the rotation of the body/segments would
be about the wrist (the distal end) whereas in the case of doing an arm curl with
weights the rotation would be at either the elbow or the shoulder (the proximal
end for the lower arm and upper arm segment, respectively).

The reference moment of inertia value (ICofG) can now be revised to include the
effect of the new axis of rotation using the parallel axis theorem.

IA = ICofG + md2 (C9.2)

where
IA = moment of inertia of the body or segment about an axis through a point, A
ICofG = the moment of inertia about a parallel axis through the center of gravity of

the object
m = mass
d = radius of rotation (the distance from the axis of rotation A to the center of

gravity of the object)

Radius of To simplify this calculation, the new moment of inertia (IA, equation C9.2) is 
gyration equated to the general form of the formula as given in equation C9.1

IA = mk2 (C9.3)

where k is termed the radius of gyration. The use of the radius of gyration is
helpful in calculations as once a segment mass is known (from segmental data –
see Table C3.2) the radius of gyration (which is also given as segmental data – see
Table C9.1) can be used easily to calculate the moment of inertia of a segment
without having to perform the larger number of calculations that would be
required by equation C9.2.
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Table C9.1. Radii of gyration as percentages of segmental lengths (derived from Winter
(1990), pp. 56–57)

Segment From proximal end % From distal end %

Head, neck, and trunk 83.0 60.7
Arm (upper) 54.2 64.5
Forearm 52.6 64.7
Hand 58.7 57.7
Upper limb 64.5 59.6
Forearm and hand 82.7 56.5
Thigh 54.0 65.3
Leg 52.8 64.3
Foot 69.0 69.0
Lower limb 56.0 65.0
Leg and foot 73.5 57.2

(The values in the table are derived (and reproduced with permission) from data presented in Winter, D. A.
(1990) Biomechanics and Motor Control of Human Movement (2nd edition). Wiley-Interscience Publishers.
New York. (3rd edition published 2004))



Calculation of Consider Fig. C9.1 and the free body diagram shown in Fig. C9.2, which shows 
muscle and joint the  exion of the elbow (90°) with the forearm in the horizontal position in a 
forces during a 75 kg athlete. The distance of the center of gravity (Fw) of the forearm to the 
dynamic proximal axis of rotation (elbow joint) is 0.154 m and the muscle force (FM) acts 
movement at 80° to the limb and 0.05 m from the proximal joint axis. The joint reaction

force (FJ) acts at the proximal joint. A question we may ask is: What is the muscle
force required to maintain this position with the horizontal and what is the
muscle force required to accelerate the limb in  exion (i.e., counter clockwise)
at 80 rads/s2? In each case the joint reaction force can also be determined.
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0.154 m

0.43 m

0.05 m

80°

Where
FJ = joint reaction force
FM = muscle force
FW = weight (forearm
and hand)

FJ

FM

FW = m · g

FJ

FW

FM

Free body diagram

Fig. C9.1. Arm in 90º position of flexion (lower arm horizontal)

Fig. C9.2. Free body diagram for muscle and joint force calculation (static calculations in the
first instance)

FJ

FM

0.154 m

0.05 m
FW

Case 1. No segment acceleration (static situation)
First, determine the combination of forearm and hand weight.

The anthropometric value for the mass of the forearm and hand is given as the
segmental mass ratio ¥ body mass (determined from Table C3.2). Hence

Mass of forearm and hand = 0.022 ¥ body mass = 0.022 ¥ 75 = 1.65 kg
Weight of forearm and hand W = m ¥ g = 1.65 ¥ 9.81 = 16.19 N



From Fig. C9.1 we can see that the combined center of mass (forearm and hand)
is located 0.154 m from the elbow joint center of rotation. The elbow  exor muscle
pulls at an angle of 80° to the left horizontal and it inserts 0.05 m from the joint
center of rotation (see free body diagram, Fig. C9.2).

We can now solve for the static situation (no movement – to hold the position)
Using the second condition of equilibrium and the free body diagram

– ∑CWM + ∑ACWM = 0
– (16.19 ¥ 0.154) + (FM ¥ sin80 ¥ 0.05) = 0

Note: the convention is that the anti-clockwise moment is positive and the
clockwise moment is negative. The sin 80° (in the anti-clockwise moment) deter-
mines the perpendicular distance that the muscle force is acting from the elbow
joint center of rotation. Re-arranging and evaluating gives:

(FM ¥ 0.984 ¥ 0.05) = (16.19 ¥ 0.154)
(FM ¥ 0.049 = 2.49
(FM = 2.49 = 50.82 N

= 0.049

This represents the muscle force that is required in the biceps brachii muscle
(elbow  exor) in order to hold the limb in the static position of 90° elbow  exion.
In addition, it is now possible (using ∑F = 0) to calculate the joint reaction force
acting on the ulna/radius (lower arm) from the contact with the humerus (upper
arm). This is illustrated in Fig. C9.3. However, it is important to remember that
this is only a two-dimensional application and for a more detailed understanding
of the joint and ligament forces, a three-dimensional approach is needed.
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Note: the joint reaction force FJ
is moved slightly for clarity

FM = 50.82 N

FMy

80°

FMx

FJx

FJy

FW = 16.19 N
FJ

q

The muscle and joint forces are divided into
their vertical and horizontal components
respectively (FMy, FMx, FJy, FJx)

The vertical component of muscle force is
FMy = FM sin q = 50.82 sin 80 = 50.05 N
The horizontal component of muscle force is
FMx = FM cos q = 50.82 cos 80 = 8.82 N

Using SF = 0 (i.e., SFx = 0 and SFy = 0)

the net vertical force (SFy = 0)
Fy = FMy – FJy – FW = 0

therefore
    FJy = FMy – FW
          = 50.05 – 16.19 = 33.86 N

the net horizontal force (SFx = 0)
Fx = –FMx + FJx = 0

therefore
    FJx = FMx = 8.82 N

Therefore the resultant elbow joint force
= Ö(FJx

2 + FJy
2) at tan–1 (FJy/FJx)

= Ö(33.862 + 8.822) at tan–1 (33.86/8.82)
= 35 N at an angle q = 75.4°

Fig. C9.3. Calculating the joint reaction force (FJ ) at the elbow



Case 2. Determine the muscle force when the limb is being accelerated counter-
clockwise (anti-clockwise) at 80 rads/s2

As the muscle force increases, the forearm  exes. To achieve a rapid  exion (i.e.,
with an angular acceleration of 80 rads/s2) the muscle force must be quite high. In
order to determine the muscle force required to produce this acceleration it is
necessary to combine the second condition of equilibrium with the acceleration
approach to produce the following equation:

– ∑CWM + ∑ACWM = Ia

where
I = moment of inertia of segment about a speci c axis of rotation
a = angular acceleration (rads/s2)

Remembering from section C2 that Ia = torque and when a = 0 (the static case)
the second condition of equilibrium is evident (∑M = 0). This equation (shown
above) contains the moment of inertia of the limb, so it has to be calculated  rst.
To calculate the moment of inertia of the forearm and hand when it rotates about
the elbow (proximal) joint the formula developed at equation C9.3 is used:

Ielbow = mforearm+hand * k2
elbow (C9.3)

The mass of the forearm and hand was calculated previously. So it is necessary
to calculate the radius of gyration (k elbow):

Forearm and hand length = 0.43 m (total length – see Fig. C9.1)
Axis of rotation = elbow (proximal joint)
Radius of gyration (k elbow) = 82.7% of segment length (Table C9.1, proximal)

= 82.7% ¥ 0.43  = 0.356 m from axis of rotation
therefore
Moment of inertia (Ielbow) = mk2 = 1.65 ¥ 0.3562 = 0.209 kg.m2

Now substituting this into the formula (noting that the clockwise moment is
negative):

– ∑CWM + ∑ACWM = Ia
– (16.19 ¥ 0.154) + FM ¥ 0.049 = 0.209 ¥ 80

Note: the left-hand side is the same as the static case, so evaluating we have the
following:

–2.49 + FM ¥ 0.049 = 16.72
FM = (16.72 + 2.49) /0.049
FM = 19.21/0.049
FM = 392.0 N

Hence, it can be seen that the muscle force required in the biceps brachii to
accelerate the limb counter-clockwise at 80 rads/s2 is 7.7 ¥ the muscle force
required to keep the limb stationary (50.82 N (stationary) and 392.0 N (moving)).
Considering this increasing force, which is evident in the dynamic situation, the
importance and signi cance for injury potential becomes apparent.

Calculation of the joint reaction force
The joint forces can be calculated in a manner similar to the static case illustrated
in Fig. C9.3, but taking into account the acceleration of the center of mass in the
vertical and horizontal direction (i.e., it is necessary to combine the  rst condition
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of equilibrium with the acceleration approach to produce the following
equations):

∑Fx= m.ax

∑Fy= m.ay

where ax and ay are the linear accelerations in the horizontal (x) and vertical (y)
directions. In this example the angular acceleration is chosen to be constant, but
as the limb rotates about the joint the linear accelerations will vary depending on
the angle made by the limb. It is possible to calculate the accelerations for any
angle of the limb, using the relationships covered in section A4 on linear-angular
motion. The accelerations are given as:

ax = –r.a.sinf
ay = r.a.cosf

where r is the radius of rotation of the limb’s center of mass about the axis of
rotation (0.154 m), a is the angular acceleration (80 rads/s2), and f is the angle of
the limb to the horizontal.

In this example we shall calculate the joint reaction force for the limb’s starting
position where f = 0. This means that ax = 0 and ay = 12.32 m/s2. The revised free
body diagram for an accelerating system can now be seen in Fig. C9.4.

It should be noted in this example some real characteristics of the joints are
ignored because they are generally considered to be small and have little in uence
on the calculations. For example, the friction occurring at the joint is ignored as the
synovial  uid between the joint surfaces reduces this to a negligible amount.
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The muscle and joint forces are divided into
their vertical and horizontal components
respectively (FMy, FMx, FJy, FJx)

The vertical component of muscle force is
FMy = FM sin q = 392.0 sin 80 = 386.0 N
The horizontal component of muscle force is
FMx = FM cos q = 392.0 cos 80 = 68.1 N

Using SF = ma (i.e., SFx = max and SFy = may)

the net vertical force (SFy = may)

    SFy = FMy – FJy – FW = may
therefore
    FJy = FMy – FW – may
          = 386.0 – 16.19 – (1.65)(12.32)
          = 349.5 N

the net horizontal force (SFx = max = 0)

    SFx = –FMx + FJx = 0
therefore
    FJx = FMx = 68.1 N

Therefore the resultant elbow joint force
= Ö(FJx

2 + FJy
2) at tan–1 (FJy/FJx)

= 356.1 N at an angle q = 79.0°

Note: the joint reaction force FJ
is moved slightly for clarity

a = 80 rad/s2 ay

ax

FM = 392.0 N

FMy

80°

FMx

FJx

FJy

FW = 16.19 N
FJ

q

Fig. C9.4. Calculating the joint reaction force (FJ ) at the elbow when accelerating



Applied question The following problem tries to calculate the muscle force required to accelerate
the limb in  exion (i.e., anti-clockwise) with a 10 kg mass held in the hand (as in
the case of an arm curl during weightlifting). The following question addresses
this issue using a typical weightlifting example and requires you to calculate the
muscle and joint forces using the method shown previously.

Q. Figs C9.5 and C9.6 (free body diagram) identify an athlete holding a 10 kg
weight (mass) in the hand 0.35 m from the elbow joint axis. What is the
muscular force required to maintain this static position with the horizontal
when the athlete is holding this 10 kg weight stationary and what is the muscle
force required when the limb is being accelerated counter-clockwise at 80
rads/s2? The elbow joint reaction forces are present in each case.

The athlete has a mass of 75 kg (as in the previous example shown in this section).
Use the anthropometric, radii of gyration and inertia data given in the text thus
far (i.e., this section and section C8). The distance from the elbow joint center to
the hand is considered to be 0.43 m (total length), which is used for the calculation
of the radii of gyration (even though the weight is at a position 0.35m from the
elbow joint center of rotation).
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FJ

FM

a = 80 rads/s2

q = 80°

0.154 m

0.43 m

0.05 m FW1

0.35 m

FW2

FJ

FW1

FM

FW2

a = 80 rads/s2

Fig. C9.6. Free body diagram of accelerated arm shown in Fig. C9.5

Fig. C9.5. Applied example



Static case
The combination of forearm and hand weight = 16.19 N as calculated in the
previous case. The 10 kg weight (mass) is located 0.35 m from the elbow joint (see
Fig. C9.5). Using the second condition of equilibrium and the free body diagram:

– ∑CWM + ∑ACWM = 0
– (16.19 ¥ 0.154) – (10 ¥ 9.81 ¥ 0.35) + (FM ¥ sin80 ¥ 0.05) = 0

Rearranging FM = (2.49 + 34.3) / 0.049
and evaluating FM = 750.8 N

The muscle and joint forces are divided into their vertical and horizontal
components respectively (FMy, FMx, FJy, FJx).

The vertical component of muscle force is

FMy = FMsinq = 750.8 sin80 = 739.4 N

The horizontal component of muscle force is

FMx = FMcosq = 750.8 cos80 = 130.4 N

Using ∑F = 0 (i.e., ∑Fx = 0 and ∑Fy = 0)

Net vertical force ∑Fy= FMy – FJy – FW1 – FW2 = 0
Therefore FJy = FMy – FW1 – FW2

= 739.4 – 16.19 – 98.1 = 625.1 N
Net horizontal force ∑Fx= – FMx + FJx = 0
Therefore FJx = FMx = 130.4 N

Therefore the resultant elbow joint force = √ (FJx
2+ FJy

2) at tan–1(FJy/FJx)
= √(625.12+130.42) at tan–1(625.1/130.4)
= 638.6 N at an angle q = 78.2º

Dynamic case
The moment of inertia of the system (forearm plus weight) around the elbow is

Ielbow = mforearm k2
forearm + mweight.r2

weight

Ielbow = 1.65 ¥ (82.7% ¥ 0.43)2 + 10 ¥ (0.35)2

Ielbow = 0.209 + 1.225 = 1.434 kg.m2

The location of the forearm plus weight centre of mass from the elbow axis of
rotation, D, is given by

(mforearm + mweight).D = mforearm(0.154) + mweight.(0.35)
therefore D = 0.322 m

Now using the second condition of equilibrium and the free body diagram for the
dynamic case:

–∑CWM + ∑ACWM = Ia
– (16.19 ¥ 0.154) – (10 ¥ 9.81 ¥ 0.35) + (FM ¥ sin80 ¥ 0.05) = 1.434 ¥ 80

Rearranging FM = (2.49 + 34.3 + 114.72) / 0.049
and evaluating FM = 3092 N

The joint forces can be calculated in a manner similar to the static case and with
the arm in the starting position (i.e., f = 0), the arm centre of mass acceleration is
ax = 0 and ay = a D = 25.76 m/s2.
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The muscle and joint forces are divided into their vertical and horizontal
components respectively (FMy, FMx, FJy, FJx)

The vertical component of muscle force is:

FMy = FMsinq = 3092 sin80 = 3045N

The horizontal component of muscle force is:

FMx = FMcosq = 3092 cos80 = 536.9N

Using ∑F = ma (i.e., ∑Fx = max and ∑Fy = may ), the net vertical force (∑Fy = may) is

∑Fy = FMy – FJy – FW1 – FW2 = may

Therefore FJy = FMy – FW1 – FW2 – may

= 3045 – 16.19 – 98.1 – (1.65 + 10)(25.76)
= 2631N

The net horizontal force (∑Fx = max = 0)

∑Fx = – FMx + FJx = 0

Therefore FJx = FMx = 536.9N

Therefore the resultant elbow joint force = √ (FJy
2+ FJx

2) at tan–1(FJy/FJx)
= √(26312 + 536.92) at tan–1(2631/536.9)
= 2685 N at an angle q = 78.5º
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Section D – Special topics

D1 WORK, POWER, AND ENERGY

Key Notes

Work refers to overcoming resistance by the application of a force.
Evidence that the resistance has been overcome is seen from the
movement of the point of application of the force. Thus, the work done
(W) by a force is de ned as the product of the force (F) applied to an
object and the amount of displacement (d) of the object in the direction of
the force and is given by the equation W = F.d. The units of work are
Joules (J).

When the direction of the force is in the same direction as the motion of
its point of application, positive work is being done (e.g., lifting a barbell
from the ground). For humans to do positive work they need to expend
chemical energy through their muscles. When the direction of the force is
in the opposite direction to the motion of its point of application, negative
work is being done (e.g., lowering a barbell from the ground). For
humans to do negative work they also need to expend chemical energy
through their muscles, but often some of this work can be stored as strain
energy in the body’s tendons.

Power (P) is a term used to describe the rate at which work is being done.
For example, lifting a barbell slowly is different from lifting it rapidly,
even though the  nal outcome in terms of the height lifted is the same.
When the movement is completed more rapidly, greater power is needed.
Power is de ned as the rate at which work is being done and if the work
is done (W) in a time interval t, then an equation for power can be given
as P = W/t. The units of power are Watts (W) – note this has the same
symbol as work. The former is a unit while the latter is a mechanical
concept.

Energy is de ned as the capacity to do work or to perform some action
and can be considered a something that is “stored” or “possessed”. The
units of energy are Joules, which is the same as for work. There are
different forms of energy. The most important to sport and exercise
biomechanics are potential energy (gravitational and strain) and kinetic
energy (linear and angular).

Work and energy have the same units and are closely related. Energy can
be stored but work cannot. Essentially work is energy in motion. Energy
changes from one form to another by the process of doing work.

Work The term work is commonly used in everyday language loosely to refer to the
effort or exertion expended in performing a task. However, when used in a
scienti c context the term work takes on a speci c meaning and refers to the
movement of an object by the application of a force. Thus, the mechanical work
(W) done by a force is de ned as the product of the force (F) applied to the

Work

Positive and
negative work

Power

Energy

Work and energy



object and the amount of displacement (d) of the object in the direction of the
force. This can be written as:

mechanical work = force . displacement
W = F. d (D1.1)

If the force is measured in Newtons and the displacement in meters, then the
units of work are Joules (J).

A question that is often asked is “if work is being done where does it go?”
Work is not a quantity that can be seen, but its effects can be. Usually the effects
of doing work are to see a change in the position of an object, often by being
moved upward against gravity, or being deformed, or by increasing its velocity
(see Examples in Figs D1.1 and D1.2).
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Problem
A person is performing a bench press and trying to move a load of 60 kg. With
great effort the barbell slowly moves from the chest to a full lock out position,
a distance of 40 cm.
How much work is done? Where does this work go?

Solution
The work done is given by the relationship W = F.d
The force applied to the barbell is equal to the gravitational load of the weights
(as the load is moved slowly, i.e., is not accelerated) given by F = 60. g Newtons.
The displacement of the force is given by the distance moved by the hands
placed on the barbell (40 cm) which is 0.4 meters.
Therefore the work done is given by W = (60. g) . (0.4) = 235.4 Joules.
Where does the work go? It goes into raising the barbell against gravity.

Problem
A force of 1000 N is applied to a soccer ball during a kick and it deforms 10 cm
How much work has been done on the ball? Where does this work go?

Solution
The work done is given by the relationship W = F.d .
The force applied to the ball is given as 1000 Newtons.
The displacement of the force is given by the deformation of the ball (10 cm)
which is 0.1 meters.
Therefore the work done is given by W = (1000) . (0.1) = 100 Joules.
Where does the work go? It goes into deforming the ball.

Fig. D1.1. Example 1

Fig. D1.2. Example 2



Positive and An important implication of the above de nition of work is that if a force is acting 
negative work but does not move the object, that is, it does not move its point of application, then

no work is done. Thus, if a person tries to lift a barbell but is unable to do so, then
no work is done even though a lot of effort has been expended. The muscles of the
body have contracted and much muscular effort has been expended but this has
not resulted in the object being overcome, so from the point of view of the barbell
no work has been done on it.

The work done can be classi ed as either positive work or negative work
depending on whether the force moves in the direction of movement of the object
or in the opposite direction. In the case of the bench press example, lifting the
barbell upwards results in positive work being done on the barbell as the force of
the hand applied to the barbell is in the same direction as the movement. The
outcome of this positive work is that the barbell has changed its position against
gravity. On the downward movement the force applied by the hand is in the same
upward direction, but the direction of movement of the barbell is downwards.
This introduces a negative sign into equation D1.1 and so the work done becomes
negative. This means that when the barbell is being lowered, the barbell is doing
work on the person, rather than when it is being lifted where the person is doing
work on the barbell. Where does this negative work go? Often it is dissipated as
heat in the muscles so it is lost. Of interest in sports performance is the fact that
some of this work can be used to deform structures of the body (most notably the
muscles and tendons) which, given the right technique, can be recovered again
during their shortening. This phenomenon can explain a range of observations in
sport from why people “cheat” when doing tasks such as a barbell bench press
(by bouncing the bar off the chest) to the greater ef ciency of running compared
with walking at certain speeds (due to the stretching and recoil of the tendons of
the leg).

Power Power (P) is a term used to describe the rate at which work is being done. For
example, lifting a barbell slowly is different from lifting it rapidly, even though
the  nal outcome in terms of the height lifted is the same. A second example
would be a cyclist climbing up a hill either slowly or quickly where again the
outcome is the same but the effort involved is greater when the hill is climbed
more rapidly. The difference between the two movements in each case is the
power generated. When the movement is completed more rapidly, a greater
power is needed. Power is de ned as the rate at which work is being done. If the
work (W) is done in a time interval t, then an equation for power can be given
as:

Power = work / time
P = W / t (D1.2)

If the work is measured in Joules and the time in seconds, the units of power are
Watts (W). Note that this has the same symbol as work – they are differentiated by
the context they are used in and rarely cause confusion (see Fig D1.3).

This equation can be developed by including the expression for work as
de ned in equation D1.1.

From equation D1.1 W = F.d

Substituting into equation D1.2 P = F.d/t

as d/t = v, then P = F.v (D1.3)
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Energy Energy is de ned as the capacity to do work or to perform some action. Energy
can be considered a something that is “stored” or “possessed” so it is possible to
account for it in different ways. The units of energy are Joules, which is the
same as for work, so there are important links between energy and work.

There are many different forms of energy, including the chemical energy that
enables muscles to contract, but there are two mechanical forms of energy that
are relevant to biomechanics. These are potential energy which relates to the
energy associated with position or deformation, and kinetic energy which relates
to the energy associated with motion.

Potential energy has two forms. One is gravitational potential energy (EGPE)
which is the energy that is stored as a result of position in a gravitational  eld. If
an object is at a height (h) above the ground then its gravitational potential energy
is given by the equation:

EGPE = m.g.h (D1.4)

In  gure D1.1 the barbell was lifted 0.4 m above its resting position and so it
now has an energy of m.g.h = 60. g. 0.4 = 235.4 J more than it had in its resting
position. This is the same as the work done in moving the barbell to this position
and illustrates the close relationship between the work done and the energy
stored. It is worth noting that the energy that enabled the work done in the  rst
place came from the chemical energy sources available in the muscle. This
example also illustrates the way that energy can be converted from one form
(chemical) into another (gravitational potential energy).

The second form of potential energy is strain energy (ESE) which is the energy
that is stored due to the deformation of a material. It is dependent on the amount
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Problem
(a) What is the power produced in the bench press example of Fig. D1.1 if it is

completed in 2 s?
(b) A cyclist climbs a 50 m high hill in 3 min 45 s. If cyclist and cycle have a combined

mass of 100 kg, what power is being developed?

Solution (a)
The power is given by P = W/t
The work done on the barbell has been calculated as 235.4 J
The time taken for completing the action is 2 s
Therefore the power P = 235.4/2 = 117.7 Watts

Solution (b)
The power is given by P = W/t
The work done in climbing the hill is calculated as W = F.d = (100.g) . (50) = 49,050 J
The time taken for completing the action is 225 s
Therefore the power P = 49,050/225 = 218 Watts

Fig. D1.3. Example 3

This is an extremely useful equation as many biomechanical methods enable both
the force and velocity to be measured together (see Fig. D1.3 and D1.4).



of deformation (d) and the stiffness (k) of the material being deformed and is
given by the equation:

ESE = 1 2 k . d2 (D1.5)

The stiffness is one of the mechanical properties of a material (see section D3) and
is determined by physical size, material composition, and construction. In
example of  gure D1.2, the stiffness of the ball is determined by the pressure of
the ball. If the pressure is low the ball is easy to deform and appears “soft”,
conversely if the pressure is high the ball is dif cult to deform and appears
“hard”. Equation D1.5 is non-linear due to the d2 term. This means that as the
deformation increases more and more energy is stored and so more and more
work has to be done. A good example of this is spring-loaded exercise equipment.
Springs are easy to extend at the start of their extension but become harder and
harder to stretch as their length increases and more energy has to be stored for
small additional displacements.

Kinetic energy also has two forms which are related to an object’s linear and
angular velocity. The  rst form is termed linear kinetic energy (ELKE) and is
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Problem
What is the power output generated during a counter movement vertical jump?

Solution
A force record needs to be obtained from a force platform as the jump takes place.
The force record is shown on the graph as the solid line. From an integration of the
net force (ground reaction force minus body weight) the acceleration and velocity of
the center of mass can be computed (see section A6). The power (dash curve) is 
given as the product of force and velocity following equation D1.3. Note that for a 
short period the instantaneous power reaches over 6000 Watts.
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determined by the linear velocity (v) and the mass (m) of an object. It is given by
the equation:

ELKE = 1 2 m . v2 (D1.6)

Linear kinetic energy expresses the work which has to be done to for an object
to move and so re ects the energy stored in the object due to its motion. For
example, in the sprint start the sprinter has to supply muscle energy on each
stride to increase the body’s velocity. The energy is similar for each leg on each
drive but the effect on the increase in the sprinter’s velocity diminishes as speed
increases (see Fig. D1.5). This is due to the non-linear term v2 in equation D1.6. As
speed increases it becomes increasingly dif cult to increase speed further. It
requires four times more energy to increase the sprinter’s speed from 2.3 to 4.6
m/s than it does from 0 to 2.3 m/s (see Fig. D1.5) even though the change in speed
is the same in each case. Another issue worth noting is that an object which has
some linear kinetic energy needs to have that energy dissipated in order to stop
(i.e., the linear kinetic energy needs to be reduced to zero). To do this we adopt
special techniques. In running for example, we brake our forward motion by
extending out a leg; when landing from a jump we  ex the ankle, knee, and hip
joints; when catching a ball we stretch out to meet the ball then absorb the ball
into the body. All of these actions are designed to reduce energy in a controlled
manner. Usually muscular chemical energy is expended in performing these
actions, so muscular chemical energy is required to both increase and reduce the
kinetic energy. Thus, movements that involve a lot of starting and stopping (like
games play or racket sports, for example) also require high levels of chemical
energy expenditure. Equation D1.6 also indicates that linear kinetic energy is
related to body mass and so in these examples the heavier person will have a
more dif cult job to stop. Heavier people are generally considered to be less agile.
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Problem
Calculate the velocity of a 75 kg sprinter over the first 5 strides and the change in
velocity per stride if the energy delivered by each drive of the legs is 200 J.

Solution
The linear knetic energy of the sprinter is given by ELKE = 1⁄2 m.v2 so the velocity of
the sprinter is given by v = Ö (2.ELKE/m)

Stride Energy Velocity Change in
(J) (m/s) velocity

0 0  –
1 200 2.31 2.31
2 400 3.27 0.96
3 600 4.00 0.73
4 800 4.62 0.62
5 1000 5.16 0.54

The greatest change in velocity is on the first stride. Even though the energy applied
to each stride is the same, the benefit (indicated by the change in velocity) reduces
as speed increases.

0

Fig. D1.5. Example 5



The second form of kinetic energy is termed rotational (or angular) kinetic
energy (ERKE) and is determined by the angular velocity (w) and moment of inertia
(I) of an object and is given by the equation:

ERKE = 1 2 I . w2 (D1.7)

Most sports actions involve rotation of the limbs about a joint and so during these
actions energy is contained in the rotation of the limbs. As joints  ex and extend
(e.g., the knee joint) the limb segments move forward and backward, changing
their direction on each cycle. Muscular chemical energy is required to increase the
angular velocity of the limbs, but also to slow them down and to change their
direction. Thus, actions that require a lot of limb movement (for example,
sprinting) require high levels of chemical energy expenditure.

Work and energy It has already been noted that work and energy are closely related and that they
have the same units of Joules. Energy can be stored, work cannot. In essence
work is the process of changing energy from one form to another and that
enables relationships between work and energy to be de ned. The basic
relationship is that the work done (W) equals the change in energy (DE) and is
given by the equation:

work done = DE = E nal – Einitial (D1.8)

where the change in energy is de ned by the energy value at the start of when
work is being done until its end. In the example of Fig. D1.5 the energy change
between strides is 200 J which is due to the work done during the drive on each
stride. Fig. D1.6 provides another example.
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Problem
A high jumper of mass 70 kg applies an average force of 2000 N over a distance
of 0.4 m. Calculate the jumper’s velocity at take-off.

Solution
The high jumper has a zero vertical velocity at the lowest point of the jump (initial)
and maximum vertical velocity at the moment of take-off (final).

Relationship Work done = change in kinetic energy
Formula F.d = [1⁄2 m.v2]final – [1⁄2 m.v2]initial
As initial KE = 0 F.d = [1⁄2 m.v2]final

2000 ¥ 0.4 = 1⁄2 70.v2

therefore v2 = 22.85
and v2 = 4.78 m/s         ANSWER

Fig. D1.6. Example 6
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D2 THE CONSERVATION OF ENERGY

Key Notes

The law of conservation of energy states that energy can be neither
created nor destroyed and expresses the fact that the total amount of
energy remains constant as it changes from one form to another. This law
is one of the cornerstones of science and helps us to develop a better
understanding of the world around us. Although this law applies to the
energy exchanges that occur in sports and exercise in practice its
application is rather limited because the possible energy combinations are
too numerous, but a more restricted form of the law can be identi ed that
does have value.

The conservation of mechanical energy refers to the speci c form of the
law of conservation of energy which is of value in sport and exercise
science as it uses only mechanical forms of energy. It refers to exchanges
between just two types of energy: the gravitational potential energy, and
linear and angular kinetic energy. In general the conservation of
mechanical energy applies to projectile  ight where air resistance can be
neglected. It cannot be applied where there are obvious energy losses due
to friction or other resistances.

Law of The law of conservation of energy states that energy can be neither created nor 
conservation of destroyed and expresses the fact that the total amount of energy remains 
energy constant as it changes from one form to another. This law is one of the corner-

stones of science and helps us to develop a better understanding of the world
around us. Although this law applies to the energy exchanges that occur in
sports and exercise in practice its application is rather limited, but a more
restricted form of the law can be identi ed which does have value.

In section D1 several forms of mechanical energy were identi ed, principally
gravitational potential energy, strain potential energy, linear and angular
kinetic energy. The examples used the idea that chemical energy is used by the
muscles to generate muscle tension. The muscle is essentially a device which
converts chemical to mechanical energy. When energy changes from chemical to
mechanical a certain amount of heat is given off. The heat is a by-product of the
energy conversion process and while it may have some biological value in main-
taining body temperature it does not generally contribute to the performance and
so is considered a waste product. Energy conversion processes often produce heat
as a by-product. For example, when a ball is dropped it is compressed as it hits the
ground and after the recoil never quite reaches the same height from which it was
dropped. This failure to regain the original drop height is due to a loss of energy
as a result of the compression and is indicative of the ef ciency of energy con-
version which, if heat is generated, is always less than 100%. If that compression
were repeated many times the ball would warm up, a characteristic which is used

Law of conservation
of energy

Conservation of
mechanical energy



to good effect in the game of squash where the warm ball rebounds with greater
speed than a cold ball.

One energy conversion process, though, is not associated with the generation
of heat. The conversion of gravitational potential energy to kinetic energy can be
achieved without the production of heat and is 100% ef cient. This provides a
valuable tool for studying mechanical energy exchanges which is particularly
useful in the biomechanical study of sports and exercise as many activities utilize
this speci c form of energy exchange.

The conservation The speci c form of the law of conservation of energy which has the property of 
of mechanical perfect energy exchange between its components is referred to as the conservation 
energy of mechanical energy. This refers to exchanges between just two types of energy –

the gravitational potential energy (EGPE ) and kinetic energy (linear, ELKE and
angular, ERKE) and is given by the equation:

EGPE + ELKE + ERKE = total mechanical energy (D2.1)

where the total mechanical energy is a constant.
It is important to state the conditions where equation D2.1 does not apply. It

does not apply to strain potential energy as the process of deformation causes
molecules to rub across each other and to lose energy due to the process of
friction. It does not apply to other situations in which there is a loss of energy due
to friction, such as an object sliding down a surface (e.g., a child’s slide, or ski
slope). It cannot be used if the in uence of air resistance is important, in practice
if relative air speeds exceed 5–6 m/s.

Situations in which it does apply are mainly to do with projectile  ight where
the body or a projectile moves slowly in the air. Situations such as athletics
jumping, gymnastics, diving, trampolining, throwing actions, and many other
activities can all be investigated using this relationship. It can also be used to
understand techniques used to play shots in racket sports where in a looped
forehand or backhand drive the gravitational force is used to help generate racket
head speed. The principle can also explain the manner in which limbs are used in
walking and running actions. In short, the conservation of mechanical energy has
widespread application to sport and exercise situations.

An application
Consider a trampoline movement in which the trampolinist is just about to leave
the bed and perform a straight bounce (i.e., no rotation) (Fig. D2.1). The vertical
velocity is the greatest at this point. As the trampolinist rises in the air the height
increases but the velocity reduces. This continues until the velocity becomes zero
and the greatest height is reached. The descent now begins with the velocity
increasing in the negative direction and the height reducing until contact is made
once again with the trampoline bed.

In this example, the energy according to equation D2.1 remains constant so we
can equate the energy conditions at two points (the take-off and the top of  ight)
to give:

[EGPE + ELKE ]take-off = [EGPE + ELKE ]top of  ight

As the EGPE is zero at the start and ELKE is zero at the top of  ight we have:
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[ELKE ]take-off = [ EGPE ]top of  ight (D2.2)

or using the full expressions for each energy term:

1 2 m . v2
take-off = m.g.h top of  ight

Canceling the term “m” and re-arranging gives:

v = √ (2.g.h) (D2.3)

which is a general expression linking the velocity and height for any projectile
motion.

If a high jumper takes off with a velocity v = 4.78 m/s (see example in section
D1) the height raised by the center of mass will be 1 2 v2/ g = 1.16 m. To this, of
course, must be added the starting height of the center of mass – probably around
1 m so the maximum possible jump height would be around 2.16 m. Of course the
jumper must rotate the body in order to clear the bar.

In a dive from the 10 m board, with what velocity would the diver hit the
water? Using equation D2.3 it can be easily calculated that the diver will have a
velocity:

v = √ (2.g.h) = √ (2.g.10) = 14.01 m/s.

In all of the above examples, air resistance has been ignored. As velocity
increases this becomes a less reasonable thing to do. Earlier it was stated that
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speeds greater than 5–6 m/s are likely to have an effect on the motion of an object.
The detail of this depends on a number of factors considered in more detail in
section D6. For the purposes of using equations D2.1–D2.3 it is suf cient to be
aware of the limitation. So, in the above example of the diver, the velocity
calculated represents the maximum velocity that would be achieved. In practice,
due to the effects of air resistance, the velocity will be a little smaller – but
probably unlikely to have an effect on the general point being made – that impact
with the water is fast!

Adding rotation Up to now any rotation that might be present has been ignored. If in the
trampoline case the performer also rotated, some of the energy would be taken
up with rotation and so less energy would be available for the linear kinetic
energy, thus reducing the height which could be reached. Consequently, the
more rotation the less height. This is the reason that trampolinists start their
routine with a series of straight bounces to gain height, as when they perform
their stunts involving rotation they progressively lose height. After two or three
movements the trampolinist has lost some height and, to regain it, they have to
perform an “easy” bounce so that they can focus on regaining height for the next
complex series of stunts in their routine.

Another example, of perhaps novelty value, is to consider the velocity with
which a person would hit the ground if they were simply to fall over. The person
keeps rigid and rotates about the feet. To solve this problem we need to know a
few things about the person such as their mass (70 kg), the location of their center
of mass (1.0 m from the ground) and moment of inertia (I = 80 kg/m2) about the
feet. During the rotational fall the person has only rotational kinetic energy, so
equation D2.1 can be developed in the same way as equation D2.2 but using only
the rotational kinetic energy rather than the linear kinetic energy. In this case,
using the ground level as the reference zero level, the gravitational potential
energy at the start is equal to the rotational kinetic energy at the end, in other
words:

m.g.h = 1 2 I . w2

so :

w = √ (2.m. g. h / I )

Therefore

w = ÷2.70 ¥ 9.81 ¥ 1/80

w = ÷1373.4/80

w = ÷17.16

w = 4.14 rad/s

The unit of angular velocity here is the radian per second (rad/s). The radian is
a scienti c unit for measuring angles and is derived from the number of times the
radius of a circle goes into its circumference. Thus, one circle is equal to 360°
which is equal to 2p radians, giving 1 rad = 57.3°.

The linear velocity of the center of mass rotating at 1.0 m from the axis of
rotation with an angular velocity of 4.14 rad/s is given by v = r. w = 4.14 m/s.
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So the body would make contact with the ground at around 4.14 m/s; the top
of the body will make contact with the ground even faster (6–7 m/s). If the
hands were placed outwards to support the body as it hit the ground the hands
would make contact with a similar velocity. As the arms do not have the same
strength as the legs for stopping the body falling, it is unlikely that the arms
will provide much protective effect. In fact the impact associated with this type
of fall often leads to a collar bone fracture in the young and more serious prob-
lems in the elderly.

m.g.h = 1 2 k. Dx2 = 1 2 m.v2
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D3 THE MECHANICAL
CHARACTERISTICS OF
MATERIALS

Key Notes

Material solids can sustain applied loads but they have a tendency to
deform. Depending on the load applied their state will be one of tension
and have a tendency to extend; compression and tend to shorten; shear
and tend to slide; or torsion and tend to twist.

Stress is de ned as the force per unit area and describes the way the force
is distributed through the material. Strain is de ned as the increase in
length divided by the original length and is often expressed as a
percentage.

For many materials, stress is linearly related to strain, and this
relationship is known as Hooke’s law. This relationship holds until a
material reaches its elastic limit or yield point where the material begins
to disintegrate.

Elasticity describes the way in which a material deforms and then returns
to its original shape. Materials that do this well are called elastic (e.g., an
elastic band or spring). Materials that do this poorly are called inelastic
(e.g., putty or a de ated soccer ball).

The elasticity of a material can be computed from the way it deforms
under load. If the force which causes a deformation is used, their ratio is
the stiffness. If the stress (force per unit area) and strain (percentage
length change) are used, their ratio is called the modulus of elasticity. The
stiffness is more widely used in sport and exercise biomechanics.

When an object is deformed and then allowed to return to its original
state a certain amount of energy is lost. This energy loss is termed
hysteresis.

Surfaces in sport can be characterized as area elastic or point elastic
depending on how they deform. Area elastic surfaces deform over a large
area and  oors which are designed to be area elastic are generally
referred to as sprung  oors. These have advantages in terms of energy
return to the player and are generally more comfortable to play on. Point
elastic surfaces deform locally and typify playing  elds and arti cial
playing surfaces. These are generally less comfortable to perform on.

Load and
deformation

Hooke’s law

Elasticity

Stiffness and
modulus of elasticity

Hysteresis

Area elastic and
point elastic surfaces

Stress and strain



Introduction Materials are classi ed as either solids or  uids. The latter will be dealt with
more fully in section D6. Material solids have certain mechanical properties that
affect their function and determine how they in uence performance and injury
in sport and exercise.

Load and The mechanical properties of a material are determined by the way it reacts to a 
deformation load. The applied load can be categorized as a force or a torque (or twisting

moment) or a combination of these. The applied load can either be gradual (such
as when lifting a barbell), or impulsive (such as heel strike impact in running).
The applied load can either be applied once (acute loading) or several times
(repetitive loading). These latter two load characteristics are useful when
considering the injury effects of loading, as an acute load can lead to a fracture
of the bones or a torn tendon, while a repetitive load can lead to an overuse
injury.

When an applied load acts on a material it causes the material to deform, and
the nature of this deformation can be described and related to its function. When
the forces applied to the two ends of a material are directed away from each other,
the material is said to be in tension (Fig. D3.1a) and has a tendency to extend.
When the forces are directed towards each other the material is said to be in
compression (Fig. D3.1b) and has a tendency to shorten. When the forces are
directed along different lines of action (Fig. D3.1c) then shear is created. When
torques (or twisting moments) act at each end of the material in opposite
directions then torsion is created (Fig. D3.1d) causing the material to twist.
Combinations of forces and torques lead to more complex types of deformation
but these do not need to be considered here.

Examples of common load deformation conditions occur in the snatch event
in weightlifting. As the weight is lifted from the ground the arms are in tension.
When the weight is supported above the head the arms are in compression. The
force of the arms act upwards to support the bar. The force from the weight
plates act down due to gravity so a shear force is produced on the bar, in this
case causing it to bend.
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(a) Tension (b) Compression (c) Shear (d) Torsion

Fig. D3.1. Types of material deformation

Stress and strain Consider a material that is in tension due to the application of force at each end
causing it to extend (Fig. D3.2). If the force (F) is applied over an area (A) then
material experiences a stress which is de ned as the force per unit area (i.e.,
F/A) and describes the way the force is distributed through the material.
Similarly, the material experiences a deformation (in this case an extension)
which is termed the strain and is de ned as the increase in length divided by
the original length. Strain is often expressed as a percentage. For example, one



might expect the Achilles’ tendon to stretch 3% during the contact phase in
running which would be a measure of its strain. For many materials stress is
linearly related to strain, and this relationship is known as Hooke’s law (Fig.
D3.2). This relationship holds until a material reaches its elastic limit or yield
point, where the material begins to deform easily for a small increase in stress
and then  nally the fracture point where the material fails. For the tendon this
will occur at a strain of about 10%.

Elasticity Elasticity describes the way in which a material deforms and then returns to its
original shape. Materials that do this well are called elastic (e.g., an elastic band
or spring). Materials that do this poorly are called inelastic (e.g., putty or a
de ated soccer ball). Materials used in sports and exercise have a range of
elasticity depending on their function. Materials with good elasticity would be a
trampoline bed with springs, or a bow used in archery. Materials with moderate
elasticity would be a gymnastic beat board, or  berglass pole for pole vaulting.
Materials with poor elasticity would be a squash ball or the human foot.

The linear region of Hooke’s law (Fig. D3.2) implies that as the force (or stress)
increases the deformation (or strain) increases in the same proportion and so the
force-to-deformation ratio and the stress-to-strain ratio are constant. This
constant is known as the stiffness when the force and deformation are used to
describe the behavior of the material, and the modulus of elasticity when the
stress and strain are used. In sport and exercise science it is more common to
measure force (F) and deformation (d) so the  rst term, stiffness (k) is often used
and is expressed as:

Force (F) = stiffness (k). deformation (d)

F = k. d (D3.1)

As the force is applied it moves its point of application and, following the
principles established in section D1, the force does work. The work done on the
material is stored as elastic energy (ESE) given previously by equation D1.5.

ESE = 1 2 k . d2

The stored elastic energy is also given by the area under the force deformation
graph (shaded area in Fig. D3.3a).

When the load is removed the extension is reversed with the subsequent
shortening called restitution. There is a loss of force during this phase that can be
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Fig. D3.2. Stress (force) – Strain (deformation) relationship for a material.



seen when the load deformation during elongation is plotted onto the same graph
as the force deformation during shortening (shaded areas in Fig. D3.3b). The
darker shaded area represents the energy returned during restitution and is a
measure of the resilience of a material. The lighter shaded area represents the
energy lost during the recoil, and is termed hysteresis. A good example of
hysteresis energy loss is when a ball bounces on the  oor. If the ball is dropped
from a certain height it will never rebound to exactly the same height. The energy
stored during compression allows the ball to bounce back. Some of this energy is
lost due to friction between the molecules that develop heat during the com-
pression, and so the recoil energy is never quite enough to get the ball back to the
same height from which it was dropped. The same principle applies to the contact
between a tennis ball and tennis racket. The tennis racket and tennis ball are poor
devices for returning energy, but the strings are excellent, allowing the de cien-
cies of the ball and racket to be overcome. Gut strings are often preferred by
experts as they are more elastic and have better energy return properties,
although they are more expensive and have a shorter lifespan.

Other characteristics
A special note should be given to sports surfaces. In sports like gymnastics and
tumbling the surfaces are described as area elastic, that is they deform over a
large area when jumped on and have good elasticity to aid the performer.
Wooden gymnasium  oors that are “sprung” are also area elastic. Surfaces like
real or arti cial turf are considered point elastic, that is they deform in a localized
region when jumped on (Fig. D3.4). Generally point elastic surfaces have poor
elasticity.

Permanent deformations are referred to as set, and describe the plastic
behavior of materials. Set can be important in some sport materials, for example
those used in the midsoles of running shoes. The expanded foam material that is
used to provide cushioning as the foot makes contact with the ground gradually
permanently deforms through use. This happens because the normally closed
cells which make up the foam material gradually fracture and release their
internal pressure, and ultimately collapse. When this happens the running shoe
becomes thinner and harder. A worn shoe is a known injury risk factor as it is
likely to increase the impact force on heel strike. Shoes that show any sign of this
type of wear should be replaced.

There are other properties of materials relevant to sport and exercise. The term
hardness is used to describe how much resistance a material has to penetration,
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stretching and wear. A material that is dif cult to penetrate (such as the ball
bearing in the bearing race of a bicycle) is very hard. Conversely a “crash” mat
used in gymnastics is very soft. As there is such a wide range of hardnesses in
common materials there are various “scales” used to measure these. For inter-
mediate materials, such as the midsole material of a running shoe, the Shore “A”
scale is used. A measurement is made by a device which has a spring loaded blunt
pointer which is impressed into the surface (as in Fig. D3.4b) . The amount of
penetration is recorded and used as the measurement. Clearly, the strength of the
spring has to match the general deformability of the surface tested. For very hard
surfaces a much stronger spring is used. Running shoe midsole materials range
from a Shore “A” value of 20 (hard) to 50 (soft) with 35 being a commonly found
value.
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(a) Area elastic (b) Point elastic

Fig. D3.4. Point and area elastic surfaces
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D4 IMPACTS

Key Notes

Impacts are characterized by large forces over small times of contact.
Impacts can be mechanically analyzed using the two impact equations,
the conservation of momentum and the coef cient of restitution.

The conservation of momentum is an important law in science that
de nes how objects behave when they interact and represents the general
situation of a collision in sport. The conservation of momentum law states
that the momentum in a system before an interaction takes place is the
same as that after the interaction, in other words momentum has been
conserved. An equation for this can be written and used in the analysis of
a problem. The conservation of momentum is the  rst impact equation.

The coef cient of restitution (e) is a term which quanti es how the energy
stored in a deformed material is returned. It provides a numerical value
that re ects the elasticity of a material, or more speci cally a material
combination as the coef cient of restitution is dependent on both
materials in a collision. The smallest value “e” can have is zero, when an
object sticks to the  oor when dropped. The largest value it can have is 1,
when the ball returns to its original height. In practice, this latter situation
represents an ideal case and never actually happens. The coef cient of
restitution gives the second impact equation.

A collision describes the way in which two objects interact with each
other during an impact. There are may ways this can happen but one
important class of collision is known as central impact where the
velocities of the center of mass of each object are directed towards each
other along a line of impact. In other words, a head-on collision.

Impacts Impacts are de ned by large forces that act over short periods of time.
Examples of impacts are propelling a ball with the head in a soccer header,
hitting a ball with a racket in tennis, and the contact between club and ball in a
golf drive. In all these cases the time of contact between the striking device and
object is small ranging from about 20 ms in the case of heading the soccer ball, to
5 ms in tennis and 0.5 ms in golf. In addition, the forces applied are also large,
ranging from approximately 1000 N when heading the ball to 10 000 N in golf.

The different contact times and contact forces in these examples indicate that
the nature of impact is dependent on both objects involved in the collision.
Generally speaking, the softer the object the longer the impact takes and the lower
the force generated. In order to understand the speci c nature of impact it is
necessary to consider the conservation of momentum and the coef cient of resti-
tution relationships. These lead to two equations which are known as the impact
equations.

Impacts

The conservation
of momentum

The coef cient
of restitution (e)

Collisions and
central impact



The conservation The conservation of momentum (see also section B4) is an important law in  
of momentum science that de nes how objects behave when they interact. The law applies to a

system that may contain many objects but for the purpose of this text the interac-
tion between just two objects will be considered. These two objects can represent,
for example, the head and ball in soccer heading, or the ball and racket in tennis,
or the club and ball in golf. In other words, they represent the general situation of
a collision in sport.

Consider two masses (mA and mB) each moving with an initial velocity vA and
vB (Fig. D4.1). If these two objects collide then after the collision their velocities are
found to be v’A and v’B . The conservation of momentum law states that the
momentum of a system (of two objects) before an interaction takes place is the
same as that after the interaction, in other words momentum has been conserved.
This can be expressed in equation form as:

mA . vA + mB . vB = mA . v’A + mB . v’B (D4.1)

system total momentum before = system total momentum after

This rather complex looking equation is the  rst impact equation and an example
of its application will be given after the next topic.
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vA v'AvB v'B

mA mB mA mB

Before impact After impact

Fig. D4.1. An illustration of the conservation of momentum

Coefficient of The coef cient of restitution (e) is a term which quanti es how the energy 
restitution stored in a deformed material is returned. It provides a numerical value which

re ects the elasticity previously described in section D3. Elasticity was de ned
in general terms and an example was given of a ball bouncing from the  oor
after having been dropped from a certain height. If the ball was dropped from a
height Hdrop and it rebounded to a height Hrebound then the coef cient of restitu-
tion is given as:

e = √ (D4.2)

It can be appreciated from this equation that the smallest value “e” can have is
zero, when the ball sticks to the  oor and Hrebound is zero. The largest value it can
have is 1, when the ball returns to its original height. In practice, this latter
situation represents an ideal case and never actually happens, even though with
a “super ball” the rebound height can come close to the original drop height.

Recall the expression linking height of drop and velocity of impact from
section D2.

v = √ (2.g.h) (D2.3)

If this expression is substituted into equation D4.2 then the expression for “e” is
made a little simpler:

e = 
vrebound
�
vdrop

Hrebound
�
Hdrop



In this equation, it should be remembered that the direction of the velocity when
dropping is opposite to that when rebounding, so the directions of motion need
to be taken into account where necessary. This relationship can be applied to the
more complex situation in which two objects collide, such as the situation that led
to equation D4.1. When such an impact takes place, momentum is conserved and
there is a relationship between the masses and velocities before and after impact.
If the velocity terms used in equation D4.1 are used in the expression for “e”
previously, then the more general form of the coef cient of restitution equation
can be written as:

e = (D4.3)

Equation D4.3 is the second impact equation. This equation takes into account
the relative velocities before impact (vA – vB) and the relative velocities after
impact (v’A – v’B) and, through the use of a negative sign (taken into account by
reversing vA and vB on the denominator), the direction of drop, which is opposite
to the direction of rebound. In fact, if the rebound situation described in  gure
D4.1 is applied to equation D4.3, then, if the  rst mass represents the ball (mA) and
the second mass the  oor (mB), whose velocity is zero both before (vB = 0) and
after (v’B = 0), equation D4.3 becomes:

e = 

with the negative sign representing the change in direction of the ball after
impact.

It is relatively easy to undertake experiments in which the drop and rebound
height of a ball is measured. These experiments show that the coef cient of
restitution for various sports ball which are dropped onto a concrete  oor range
from 0.75 (basketball and soccer ball) through to 0.67 (tennis ball) to 0.32 (cricket
ball). When the ball is dropped onto a softer surface (such as a wooden or grass
 oor) the coef cient of restitution is found to be smaller. This  nding indicates
that the coef cient of restitution is not a  xed value for a sports ball, but is
dependent on the nature of both it and the impacting surface. The softer the
surface, the lower will be the coef cient of restitution, and hence the lower the
rebound height. Similarly, the softer the ball or the lower its pressure, the lower
the coef cient of restitution will be.

Collisions When two objects collide they may do so in two main ways, described as central
impact or oblique impact. The latter type of impact will be considered in the
next section. In central impact the velocities of the center of mass of each object
are directed towards each other, along the line of impact (Fig. D4.2). This repre-
sents a head-on collision. Given some information about the objects involved in
the collision, it is possible to  nd out further information by using the two

v’A
�
–vA

v’A – v’B
�
vB – vA
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Fig. D4.2. Line of impact



impact equations (equations D4.1 and D4.3). In these equations there are seven
terms (mA, mB, vA, vB, v’A, v’B and e) . As there are two impact equations, these can
be used to  nd a maximum of two unknowns. In other words, in a collision  ve
further pieces of information are needed for a complete solution. An example is
given in Fig. D4.3.

D4 – Impacts 231

Problem
A 60 kg rugby wing is moving at a speed of 8 m/s to the right and collides with
a 100 kg forward who is at rest. If after collision the rugby forward is also
observed to move to the right at a speed of 3.6 m/s determine the velocity of
the wing after collision and the coefficient of restitution between the two players.
Assume no interaction with the ground.

Solution
Known variables mA = 60, mB = 100, vA = +8, vB = 0, v'A = ?, v'B = +3.6 = ?

Using the conservation of momentum equation
                               mA.vA + mB.vB = mA.v'A + mB.v'B
                               60(8) + 100(0) = 60v'A + 100(3.6)

Using the coefficient of restitution equation
e = (v'A – v'B) /(vB – vA)
e = (3.6 – 2.0)/(8.0 – 0)

therefore e = 0.2

therefore v'A = 2.0 m/s

Fig. D4.3. Example

Application to An interesting fact about some forms of impact is that the mass being hit can 
soccer kicking have a velocity after impact greater than the hitting mass. In other words, there

seems to be a velocity gain. This is true in soccer when the foot has an impact
velocity of around 20 m/s while the ball is propelled with a velocity of 25 m/s
or more. Why does that occur and is it possible to get something for nothing?

The two impact equations can be rearranged so that they are expressed in
terms of the ball velocity and foot velocity. In the two impact equations, consider
the mass A to be the foot and the mass B to be the ball and there is no in uence of
the leg on the foot. Remember that when kicking a stationary ball, the initial
velocity of the ball (vball ) is zero. These equations now become:

mfoot . vfoot = mfoot . v’foot + mball . v’ball

and

e = 
v’foot – v’ball
��

– vfoot



It is possible to re-arrange these equations in order to isolate the velocity of the
ball after impact (v’ball ) and express this in terms of the velocity of the foot before
impact (v’foot), as:

v’ball = vfoot {[mfoot /(mfoot + mball )] ¥ [1 + e]}

The term [mfoot /(mfoot + mball )] represents the mass proportions of the foot and
ball and for typical values for an adult male foot and a soccer ball, the term has a
value of around 0.8. The term [1 + e] represents the effectiveness of the impact due
to the hardness of the ball (as a result of its pressure) but also the rigidity of the
foot (due to its tendency to deform and  ex at the ankle). A typical value for this
term is around 1.5. (Note: the coef cient of restitution for a soccer ball on the foot
is lower then when dropped onto concrete.) Substituting these values into the
above equations:

v’ball = 1.2 vfoot

This relationship suggest that in a typical kick (maximal instep kick by a
competent player) the ball should travel about 20% faster than the foot travels.
This speed gain is the result of the greater mass of the foot compared with the ball.
If a player can increase the mass of the foot (by a heavier boot) or can increase the
quality of impact (by having a more rigid foot) then the ball should  y off even
faster. A low percentage gain would indicate a poor skill level.
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D5 OBLIQUE IMPACTS

Key Notes

Oblique impact is a class of collision where the velocities of the two
objects are not directed along the line of impact. Oblique impact is a more
general case of central impact. It is important to appreciate that the same
two impact equations as used in central impact (the conservation of
momentum and the coef cient of restitution) apply to oblique impact. As
each object in a two object collision has its own direction of travel before
collision and after collision, there are a further four variables that make
up an oblique impact problem. In order to solve this with just the two
impact equations, quite a lot of information about the collision is
required.

For the mechanical analysis illustrated in this section it is assumed that
there is no frictional interaction between the two objects that collide. This
condition is referred to as a “smooth” interaction and means that the
velocity of the object perpendicular to their line of impact remains
unchanged as no friction force acts to slow it down. Thus, when applied
to each object two further equations are obtained, making an analysis of a
collision problem easier to complete.

When one of the objects involved in a collision is a surface, the problem
becomes easier to solve. A further advantage of this type of analysis is
that it gives insight into how balls may bounce off surfaces in sports like
tennis, table tennis, and soccer. It should be noted that in the real case,
surface friction has to be included and the spin of the ball needs to be
taken into account. These are quite complex issues, which are outside of
the scope of this text.

Oblique impact In central impact the velocities of the center of mass of two objects (A and B) are
directed towards each other along the line of impact. In oblique impact the
velocities of the center of mass of each object are directed towards each other at
an angle (qA and qB) to the line of impact as illustrated in Fig. D5.1. Immediately
after impact the objects move away from each other again but with different
velocities and different angles (q’A and q’B). Compared with the problem of
central impact in which there were seven terms (mA, mB, vA, vB, v’A, v’B and e) in
oblique impact there are 11 terms (additionally qA , q’A , qB and q’B).

In order to solve this problem it is necessary to divide the velocities into
components, one along the line of impact and one perpendicular to the line of
impact as illustrated in Fig. D5.2.

In the direction along the line of impact the collision is a central impact and
can be dealt with by resolving along the line of impact. In the conservation of
momentum (equation D4.1):

mA . vA + mB . vB = mA . v’A + mB . v’B (D4.1)

Oblique impact

An assumption of
oblique impact

Contact with
a surface



the velocity components terms in Fig. D5.2 are substituted to give:

mA . vA.cosqA + mB . vB .cosqB = mA . v’A.cosq’A + mB . v’B .cosq’B (D5.1)

Similarly, using the coef cient of restitution (equation D4.3) and substituting the
velocity components of Fig. D5.2 gives:

e = (D5.2)

In the direction perpendicular to the line of impact, the velocity is not affected
as the interaction between the two objects in this direction is considered friction-
less so there is no interacting force to slow the velocities in this direction. In other
words, their momentum in this direction is conserved so the following can be
written:

vA.sinqA = v’A.sinq’A (D5.3)

vB.sinqB = vA.sinqA (D5.4)

Equations D5.1–D5.4 enable four unknowns to be calculated provided the
other seven variables (of the 11 which make up these problems) are known. An
example is given in Fig. D5.3.

Contact with When an object such as a ball makes contact with a surface, the ball will bounce 
a surface off with a reduced angle due to the loss of vertical velocity through energy loss,

while the horizontal velocity, in the ideal case, remains unchanged (Fig. D5.4).
The same principles as discussed above are used to solve these types of
problems. An example is given in Fig. D5.5 for a squash ball making an impact
with a vertical wall.

v’A.cosq’A – v’B.cosq’B
���

vB.cosqB – vA.cosqB
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Fig. D5.1. An illustration of oblique impact in the instant before contact and the instant after contact

Fig. D5.2. Velocity components for oblique impact in the instant before contact and the instant after contact
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Problem
Two identical smooth balls collide with velocities and direction as shown. If the
coefficient of restitution e = 0.9 determine the magnitude and direction of each
ball after impact.

Solution
First obtain the component velocities before impact

(VA)x = VA .cos 30 = 26.0 m/s (VB)x = –VB.cos 60 = –20.0 m/s
(VA)y = VA .sin 30 = 15.0 m/s (VB)y = VB.sin 60 = 34.6 m/s

(i) Consider velocities perpendicular to the line of impact (i.e., y direction) after
impact. Since no force acts (smooth balls) then these remain unchanged, in other words

(V'A)y = 15.0 m/s          (V'B)y = 34.6 m/s

(ii) Consider velocities parallel to the line of impact (i.e., x direction). This is governed
by the conservation of momentum and coefficient of restitution equations.

(a) Conservation of momentum gives

mA (VA)x + mB (VB)x = mA (V'A)x + mB (V'B)x

as masses are equal, these cancel, and substituting values for (VA)x and (VB)x

gives (V'A)x + (V'B)x = 6.0 m/s (1)

(b) The coefficient of restitution equation gives

e =

therefore (V'A)x – (V'B)x = –41.4 m/s (2)

Solving equations (1) and (2) simultaneously gives (V'A)x = –17.7, (V'B)x = 23.7 m/s

Using the values for the velocities in the y direction, the vector velocities after impact
are

V'A = Ö[(V'A)x2 + V'Ay2] = 23.2 m/s, V'B = 41.9 m/s

at angles qA = tan–1 [(V'A)y/(V'A)x] = 40.3°, qB = 55.6°

(V'A)x – (V'B)x
(VB)x – (VA)x
––––––––––––

Line of
impact

30°
VA = 30 m/s

mA mB

60°

VB = 40 m/s

y

x

Fig. D5.3. Example 1

In the real case, the condition of a frictionless impact does not apply. The ball
will have a tendency to slide over the  oor during the time of contact. This can be
seen with the skid marks left by a tennis ball on a clay court. As the ball skids, a
friction force acts on it to slow down its horizontal velocity. Thus, the ball will lose
speed in both the perpendicular and parallel directions with the surface. This
could lead to the ball rebounding at a higher angle than the incident angle
although its velocity will be considerably reduced. This tendency to “sit up” on



contact is a feature of some tennis courts (mainly shale and clay type surfaces and
are described as “slow”). Other tennis courts, such as grass, do not slow the ball
down as much as the ball slips more easily on the grass surface, particularly when
damp. The ball has a tendency to come off “low” (as in the example in Fig. D5.4)

236 Section D – Special topics

Problem
A squash ball is hit against a smooth vertical wall with velocity V = 20 m/s at an
angle of 60°. If the coefficient of restitution e = 0.4 determine the magnitude and
direction of the ball’s velocity after impact.

Solution
Resolve the initial velocity of the ball into components

Horizontal x Vx direction = 20.cos 60 = 10 m/s
Vertical y Vy direction = 20.sin 60 = 17.3 m/s

Vertical motion after impact:
since the wall is smooth, there is no change in the vertical motion

therefore V'y = 17.3 m/s

Horizontal motion after impact:
this is covered by the coefficient of restitution applied to the velocities normal to
the wall (x direction). Note that the wall has velocity = 0

e =             =

therefore V'x = e.Vx = (0.4)  ¥  (10) = 3 m /s

The resultant velocity is given by adding the two velocity components

V' =Ö [(V'x)2 + (V'y)2] = 17.8 m/s,

and the angle of rebound

q = tan–1 (V'y/V'x) = 77.0°

The squash ball rebounds with a lower speed and an angle closer to the wall.

V'x – 0
0 – Vx
––––––

Line of
impact

20 m/s

60°

y

x

Fig. D5.5. Example 2

Vincident
Vrebound

Fig. D5.4. Oblique impact of a ball with a surface



and as the velocity is substantially maintained these courts are described as
“fast”. The large differences between tennis court surfaces is a considerable skill
challenge to players, some of whom do well only on one type of surface. It is
because of these differences that the International Tennis Federation have
recently introduced different types of balls, which have different rebound quali-
ties.

It should also be noted that when the ball skids on the surface the friction force
which slows down its velocity parallel to the surface, also has a tendency to
impart top spin. This spin may also be important in games, such as tennis and
table tennis. In particular it can add to the spin that the ball already has in order
to affect its total spin. Further, if the ball already has spin, then this spin will
in uence the ball’s interaction with the surface and in uence its  nal direction of
travel. In games such as tennis, table tennis, and cricket the “break” of the ball
after hitting the surface is a major tactical aspect of the game. The detailed
mechanics of these situations is complex and beyond the scope of this text.
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Section D – Special topics

D6 FORCES IN A FLUID

Key Notes

A  uid is de ned by the particles that make up the  uid. It has no  xed
shape and distorts under the action of a shear force. Fluids can be
categorized as liquids and gases.

The two main properties of a  uid are its density, given by the ratio of its
mass and volume, and its viscosity, which describes how easily the  uid
 ows.

Fluid  ow is either laminar (where the  uid  ows as if it were in sheets)
or turbulent (where the particles of the  uid move perpendicular to the
direction of  ow). Turbulent  ow is also associated with the formation of
eddy currents.

Buoyancy, or upthrust, is a force that acts perpendicular to a  uid
surface, which normally means that it acts vertically upwards. Its value is
given by Archimedes’ principle and is equal to the weight of the  uid
displaced. The buoyancy force acts at the center of buoyancy, which is the
geometrical center of the submerged volume. Thus, the center of
buoyancy will change its location as a function of the submerged volume.

When an object  oats the buoyancy force must equal the gravitational
force. If the gravitational force is greater than the maximum buoyancy
force (i.e., when the object is fully submerged) the object will sink. The
stability of a  oating object is dependent on the location of the center of
gravity and center of buoyancy of an object, and how the buoyancy and
gravitational forces interact.

Bernoulli’s equation links the velocity and pressure of a  uid together.
Essentially it explains why the pressure of a  uid drops as the velocity of
a  uid increases. Knowing this it is possible to appreciate why pressure
differences occur around an object helping to understand why the drag
and lift forces occur.

The  uid drag force is a force that is developed when an object moves
relative to a  uid (either the object can be stationary and the  uid  ows,
or the  uid can be stationary and the object moves) and is directed
opposite to the direction of motion of the  uid. In air this is termed air
resistance, while in water this is termed hydrodynamic resistance. The
 uid drag force is dependent on the coef cient of drag (a term describing
how streamlined the object is), the  uid density, the cross-sectional area
of the object in the direction of motion and the square of the velocity. A
formula for  uid drag force can be given which links these variables
together.

Fluids

Properties of a  uid

Fluid  ow

Buoyancy (U)

Bernoulli’s equation

Flotation
and stability

The  uid drag force



The  uid lift force is a force that is developed when a  uid  ows around
an object in such a way as to cause a pressure difference perpendicular to
the direction of  uid  ow. The lift force is directed perpendicular to the
direction of motion of the  uid. This can occur due to: 1) inclination of a
plate shape to the direction of  ow so that the  uid is de ected away
from the direction of  ow; 2) an aerofoil (or hydrofoil) where the  uid
has asymmetrical  ow around the surface creating a pressure differential;
3) spinning ball creating a pressure differential – this is called the Magnus
effect; and 4) unevenness of surfaces on one side of a ball compared with
the other and which applies speci cally to the swing of a cricket ball. The
 uid lift force is dependent on the coef cient of lift (a term describing
how effective the object is at creating lift), the  uid density, the cross-
sectional area of the object in the direction of motion and the square of
the velocity. A formula for  uid lift force can be given that links these
variables together.

Fluids A simple distinction between solids and  uids is that solids have a  xed shape,
and individual particles are arranged in a  xed structure, while  uids have no
 xed shape and  ow freely, so individual particles have no  xed relationship
with each other. Fluids can be subdivided into liquids and gases. A liquid will
change shape but retain the same volume, while a gas will expand to  ll the
available volume (i.e., its density is not  xed). In sport and exercise science the
main liquid of interest is water while the main gas of interest is air.

Properties of a An important characteristic of a  uid is density (r) and is de ned as the mass 
fluid (m) per unit volume (V) of that substance, in other words,

r = kg/m3 (D6.1)

In liquids the density decreases with increasing temperature. This will affect
buoyancy. Density is increased by mineral impurities, for example a 1% salt
concentration leads to a 2.3% increase in density. Density is little affected by pres-
sure, and so a liquid is known as an incompressible  uid. A typical value for
water density = 1000 kg/m3.

In gases the density decreases with increasing temperature, but increases
with increasing pressure. Therefore, a gas is known as a compressible  uid.
Compressibility is important to the air we breathe, which is compressed at depths
below sea level, and expands above sea level. A typical value for air density = 1.2
kg/m3.

Fluid flow The main feature of a  uid is that it will distort under the action of even a very
small shear force. In a solid, a shear force is a force that tends to produce
twisting or rotation but in a  uid it causes it to  ow (Fig. D6.1a). For example, a
shear force may act due to gravity when the  uid is allowed to  ow down a
slope. This ability for  uids to distort under the action of a force provides a
varied environment for the performance of sports in air and water.

Fluid  ow is either laminar or turbulent. The feature of laminar  ow is that the
 uid  ows, as if it were, in sheets, one sliding on top of the other. In turbulent

m
�
V
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 ow particles of the  uid move perpendicular to the main direction of  ow. This
often occurs through the formation of eddy currents as depicted in Fig. D6.1b.

The viscosity of a  uid describes how easily or not a  uid  ows. A  uid like
syrup  ows very slowly and is said to have high viscosity. A  uid like alcohol
 ows freely and is said to have low viscosity. In effect, the viscosity of a  uid
describes the interaction between layers of the  uid as they slide over each other,
and is best thought of as the friction between these layers. A typical value for the
viscosity of air is = 1.8 ¥ 10–5 Pa.s and for water is = 1.00 ¥ 10–3 Pa.s (Pascals.seconds).

Buoyancy The hydrostatic pressure in a  uid increases with depth. This can be experienced
during a dive to retrieve an object on the bottom of a swimming pool. The pressure
on the ears and lungs is felt to increase as depth increases, as the air inside the ears
and lungs is compressed. This pressure acts over the surface of any object under
water and creates a force or upthrust known as the buoyancy force (U) given by:

U = V. r.g Newtons (D6.2)

An expression for the buoyancy force is also obtained from “Archimedes
principle”, which states that the buoyancy force or upthrust (U) acting on an
object submerged in a  uid is equal to the weight (W = m.g) of the  uid
displaced. As the weight of the  uid is given by W = m.g, and the mass from
Equation D6.1, then the upthrust is equal to U = W = m.g = V.r.g.

The buoyancy force is a  uid static force. If the weight of the object submerged
is greater than the upthrust then the object will sink. If the weight is less than the
upthrust, the object will rise in the water until the upthrust is equal to the weight.
This condition describes  oating.

As an example, consider the upthrust acting on a beach ball of radius 15 cm
(volume = 0.014 m3) submerged in water which can be calculated as U = 0.014  ¥
1000 ¥ 9.81 = 137 N. This is quite a high value and some effort is needed to keep
the ball submerged.

There are some interesting applications in sport and exercise.

Floating
Some people have great dif culty in  oating in fresh water because their density
is too high. This can happen because of low body fat and high bone mineral
density. Breathing in and out can have a major effect on buoyancy. Those who
have little buoyancy will have greater dif culty in learning to swim. Also the
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Fig. D6.1. Shear forces cause a fluid to flow



body  oats higher in sea water than in fresh water due to the higher density of sea
water and the greater buoyancy force.

Scuba diving
The wet suit contains bubbles of air both within its construction and between the
suit and the body. As the depth of dive increases these bubbles compress and
reduce buoyancy. When this happens the diver has to get rid of some ballast,
which has been used initially to enable him/her to descend in the water, other-
wise the diver will continue to sink.

Airborne objects
Objects in any  uid have a buoyancy force acting on them, even objects in air,
although this force is quite small. An example is the hot air balloon, which rises
due to the volume of hot air that is less dense than the colder surrounding air.

Flotation and The buoyancy force acts at the center of buoyancy (C o B), is located at the center 
stability of the geometric area submerged, and it is directed vertically upwards. It should

be noted that the center of buoyancy and the center of gravity (C o G) are not in
the same place. This leads to some interesting situations in sport and exercise
due to the interaction between the gravitational and buoyancy forces and this
affects an object’s  oating stability. If the downward force (G) acting on the
center of gravity is below the upward force (U) acting on the center of buoyancy
the object is stable. In Fig. D6.2 the hull of a ballasted keel yacht is stable because
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the two forces act in this way. Conversely, in canoeing the gravitational force
can be above the center of buoyancy (in some canoes) and so is inherently
unstable as when the canoe tilts the force acts to capsize the canoe.

When a person  oats in the water the buoyancy force (U) and gravitational force
(G) also interact to in uence the way the body lies in the water (Fig. D6.3). The
buoyancy force acts at a location closer to the head than the gravitational force
because of the lungs which make the upper body less dense. As the buoyancy force
acts at a higher point in the body than the gravitational force the feet tend to sink.
This is counteracted by the use of leg kick to keep the feet close to the surface.
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Fig. D6.3. The orientation of a swimmer floating

The fluid drag When an object moves through a  uid or a  uid  ows past an object a force is 
force experienced. This force is a dynamic force, due to the movement of the object

relative to the  uid, and is generally referred to as the drag force. In air, this
force is usually termed air resistance while in water it is termed hydrodynamic
resistance. The drag force (Fdrag) is dependent on a number of factors and is
written in the following form:

Fdrag = CD. 0.5. r. v2. A (D6.3)

where r =  uid density, v =  uid velocity relative to the object, A = cross-sectional
area, and CD = coef cient of drag (which relates to the shape of an object). These
factors illustrate what contributes to air resistance and water resistance. This
equation applies to both air and water and, as the density of water is about 1000
times that of air, the drag force in water is about 1000 times that of air.

The drag force can be controlled by controlling the terms in equation D6.3. For
example, if it is necessary to reduce the drag force in cycling, the bicycle and
cyclist could be streamlined thereby reducing the coef cient of drag (by using
tri-spoke wheels, aero helmet, and lycra clothing, for example). The cyclist could
also use drop handlebars to reduce the cross-sectional area in the direction of
travel. Little can be done about the air density (except to cycle at altitude where
some world records have been broken) and of course the velocity needs to
maximized so it is not possible to reduce that, although when fatigued, cyclists do
reduce their speed to reduce the resistive forces they have to overcome.

Streamlining is an effective way to reduce the drag force. Well designed objects
have a CD around 0.1. Sports balls may have a CD around 0.5 although this
changes as a function of speed and other  uid  ow factors. Poorly designed
objects will have a CD greater than unity.

How the drag The drag force occurs because of a difference in pressure between the front and 
force is caused back of the object as it moves through a  uid. To understand how this happens

it is necessary to consider some important concepts.



Flow around an object – the boundary layer
When a  uid  ows in a laminar manner over a surface there is a part of the  uid
that sticks to the surface due to the viscosity of the  uid (see Fig. D6.4). This leads
to a region of  uid  ow that is called the boundary layer. The  ow of one layer of
 uid over another causes an energy loss due to the friction generated between the
layers.

Bernoulli’s Bernoulli’s equation – pressure and velocity
equation It is found that as the  uid velocity increases its pressure drops and Bernoulli’s

equation is useful for describing the relationship between  uid velocity and
pressure. Speci cally, as a  uid  ows around a sphere (Fig. D6.5) there is a
region of very high pressure at the front of the sphere as the  uid impacts the
sphere. The  uid is forced around the outside of the sphere and as it does so its
speed increases. As a result of this, the pressure drops (low pressure L in Fig.
D6.5). As the  uid moves to the rear of the object it tries to regain its natural
 ow lines. In doing so the  uid velocity reduces and its pressure increases. This
creates a region of higher pressure, but this pressure is not as high as it was at
the front of the sphere. The  uid fails to reach its original  ow lines due to the
energy lost on its diversion around the sphere and the  uid breaks off and
leaves a turbulent wake. This creates a pressure differential between the front
and back of the sphere. Bernoulli’s equation gives a speci c link between  uid
velocity and pressure and takes the form:

P + 0.5 r.v2 + r.g.h = constant (D6.3)

where P = external compressive pressure, the term 0.5 r.v2 is called the dynamic
pressure due to the motion of the  uid, and the term r.g.h is the hydrostatic
pressure.

In the case of the  uid  owing around a sphere, the hydrostatic pressure can be
considered constant, therefore the equation becomes P + 0.5 r.v2 = constant. This
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means that as the velocity (v) increases, the compressive pressure must reduce to
keep the sum of the terms constant.

The difference in pressure between the front and back of the sphere creates a
pressure drag which is the cause of the drag force. If  uid can be encouraged to
 ow around the sphere more ef ciently (i.e., with less energy loss) then the  uid
has a better chance of regaining its original  ow state and produce a smaller
turbulent wake. Thus, streamlining encourages the  uid to pass over the object
with minimal energy loss, so producing a smaller drag force.

Turbulence in the boundary layer
An interesting phenomena in sport is that sports balls can sometimes be made to
travel faster and farther than they would normally. This effect can be explained
by turbulence in the boundary layer. If the  uid  ow is very fast, or if the surface
is rough, then the laminar  ow, which makes up the boundary layer, becomes
turbulent (Fig. D6.6). This is actually an advantage, as energy from the free
stream velocity can enter into the boundary layer region, giving it more energy
than it would otherwise have so enabling it to  ow better around the sphere. The
important consequence is that as the turbulent wake reduces, the pressure drag
also reduces, in other words there is a lower drag force. Whether turbulence in
the boundary layer will occur or not for a sports ball depends on the size of the
ball and its surface roughness. A soccer ball will easily go “turbulent” and this
enables goalkeepers to make a kick from goal to almost the other end of the pitch.
In table tennis the ball is too small and smooth ever to be able to generate turbu-
lent  ow and take advantage of a reduced drag force. In cricket the ball can be
made to go turbulent by a fast bowler as the ball becomes roughened during play.
The dimples of a golf ball help it to go turbulent and increase the distance of a
drive, although the dimples also have an important in uence on  ight due to the
ball’s spin (see below).
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Fig. D6.6. Turbulence in the boundary layer

The fluid lift force Under certain circumstances the  uid  ow can cause a force to be generated
perpendicular to the direction of  ow, and this force is termed the lift force.
The lift force can act in any direction, not just upward. The lift force is
responsible for a range of effects seen in sport from the aquaplaning of water
skis, to the  ight of aircraft, to the slice and hook experienced in golf. The lift
force (Flift ) has the same general form as the drag force, in other words,

Flift = CL. 0.5. r. v2. A (D6.4)

where CL = coef cient of lift (dependent on the shape), r =  uid density, v =
relative velocity, A = cross-sectional area, and these are similar to those used for
the drag force. The different causes of the lift force are detailed.



Deflection of fluid from the main direction of flow
When an object is angled to the direction of  ow, some of the  uid is forced away
from the direction of motion, causing the object to be forced in the opposite
direction (Fig. D6.7). This type of lift is created when a plate travels over the
surface of water as in water skiing or when a boat “planes”. If an object is
immersed in a  uid (either air or water) then the effect can be maximized by
careful design of the shape (Fig. D6.8). Fluid traveling over the top surface has a
greater distance to go than that traveling over the bottom surface. As a result,
there is greater velocity on the top surface, and, according to Bernoulli’s equation,
there is lower pressure. This creates a pressure differential causing lift. The
aerofoil is a key shape in modern life enabling  ight. The same applies in water
with the hydrofoil, enabling boats to travel faster and more ef ciently.
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Fig. D6.7. Fluid hitting a plate cause lift

The spin of an object – the Magnus force
When a sphere moves through a  uid and it spins, it increases the speed of  uid
on one side, and reduces it on the other (Fig. D6.9). As the speed of a  uid is
inversely related to its pressure (from Bernoulli’s equation) there is a pressure
difference at right angles to the direction of  ow causing a lift force known as the
Magnus force. The Magnus force is found to increase non-linearly with the
angular velocity of the ball (typically it is related to the square of the spin).
The Magnus force acts in the direction of spin where there is the lowest pressure
(i.e., or highest  uid velocity).

The Magnus force explains the motion of sports balls as they spin. For example,
the topspin and backspin in tennis and table tennis; the hook and slice in golf; the
torpedo swerve in rugby; the spin swing in cricket; the swerve of a soccer ball or
volleyball.



The variation in surface roughness – the “swing” of a cricket ball
A cricket ball is observed to “swing” at high speeds. This is quite a crucial aspect
of the game. It is found in practice that as a new ball begins to deteriorate through
use, it has a tendency to “swing” more. As it further deteriorates, its ability to
swing is lost.

The “swing” of a cricket ball can be explained by the asymmetrical roughness
on one side of the ball. The bowler has to keep one side smooth and allow one side
to become rough. There are various legal (and non-legal) ways of doing this. On
the smooth side, the  uid  ow is laminar while on the rough side it can become
turbulent. Turbulence is encouraged by the presence of the seam (Fig. D6.10).
Fluid  ows more easily over the turbulent side (higher velocity) leading to a
lower pressure (from Bernoulli’s equation). The ball therefore swings in the
direction of the seam. As the ball ages it becomes rough on both sides and
turbulence occurs on both sides of the ball. When this happens the asymmetry is
destroyed and the ball no longer swings.
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Section E – Applications

E1 BIOMECHANICAL
CHARACTERISTICS OF WALKING

Key Notes

Describes the style of locomotion. For walking this is divided into
support (when the foot is on the ground) and swing (when the foot is off
the ground) phases. The support phase contains periods of single support
(one foot on the ground) and double support (both feet on the ground).

The movement from when one foot touches the  oor to when the same
foot next touches the  oor. Each stride is made up from two steps.

The speed of walking is found from the stride frequency (number of
strides per second) multiplied by the length of each stride.

The vertical ground reaction force during walking typically peaks at a
little above body weight. The force rises relatively slowly as the load is
transferred from one foot to the other during the periods of double
support (when both feet are on the  oor). The horizontal force is initially
negative, indicating that it acts in the opposite direction to the movement
and serves as a braking action. During the latter half of the support phase
the horizontal force becomes positive to propel the body forward into the
next step.

During walking the arms swing in the opposite direction to the legs such
that when the left leg is forward the left arm is back. This movement
helps to overcome the angular momentum of the lower body and to
reduce the energy cost of walking.

The gait cycle In the analysis of any skill it is important to understand the role of the various
joint movements and body segments involved. Walking is no exception. The joint
and segmental interactions involved in walking are so complex that it takes most
humans a year to be able to “toddle” and a further 3 to 4 years to perfect walking.

Gait (the style of locomotion) is de ned according to the sequence of swing
and support phases of the legs when the foot is either in the air (swing) or in
contact with the  oor (support or stance). Walking is characterized by the occur-
rence of a period of double support with both feet in contact with the ground,
separating periods of single support when the other leg is swung forwards to
make the next step. There is no time at which both feet break contact with the
ground at the same time, in other words no  ight phase.

Stride One complete gait cycle, for example, from right heel strike (when the heel of the
right foot contacts the  oor) to the next right heel strike, is known as a stride (Fig.
E1.1). Each stride is made up from two steps, each step covering the period from

The gait cycle

Stride

Speed

Forces during
walking

Upper body
movement in

walking



one heel strike to heel strike of the contralateral limb (other leg). The distance
covered in a stride is known as the stride length, the rate at which strides are
taken is referred to as the stride frequency or cadence, measured as the number of
strides per unit of time (strides per second). Based on the stride length and
frequency it is possible to calculate the velocity at which someone is walking:

Stride length ¥ Stride frequency = Velocity

Example
If the stride length was 1.2 m and the stride frequency 1.5 Hz (1.5 strides per
second or 3 strides every 2 seconds) then the velocity could be found by:

1.2 m · 1.5 Hz = 1.8 m.s–1 (~4 miles per hour)

Speed An increase in the speed of walking must result from an increase in the stride
length and/or an increase in stride frequency.

Gait cycle To try to understand human gait it is important to perform a kinesiological
analysis of the movements. This involves the description of movement in terms
of the sequencing and range of joint movements and the muscle actions
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Fig. E1.1a. The phases of the walking gait cycle. One full stride of the right leg is shown from
heel strike to heel strike

1 step

1 step

1 step

1 stride

Fig. E1.1b. The composition of the gait cycle into steps and strides. One stride is made up
from two consecutive steps



involved. To assist this form of analysis it is normal to break the action down
into phases and consider it joint by joint.

Before starting to describe the movements of the gait cycle it is necessary to
break the action down into phases (smaller segments), each phase needs to have
a clear start and end point, and the phases need to  t together to give a contin-
uous sequence of movement.

In gait the  rst division of the movement is to separate the cycle into swing and
stance phases, in other words, the periods when the foot is either in the air or in
contact with the ground. The ratio of stance to swing times is a useful measure for
quantifying normal and abnormal gaits. The normal ratio of stance to swing
during walking is 60% stance/40% swing.

However, these phases are too long to allow us to perform a useful analysis so
these are further divided to sub-phases. A common division of the gait cycle is
into  ve phases, these same phases can be used to describe both walking and
running actions (Fig. E1.2).
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Fig. E1.2. The five phases of the gait cycle

These can be de ned with the following start and end points:

The movements associated with each of these phases are summarized in the
following tables.

Swing phase From Toe-off
To Foot strike

Early swing From Toe-off
To The start of knee extension

Late swing From The start of knee extension
To Foot strike

Stance phase From Foot strike
To Toe-off

Loading phase From Foot strike
To Foot  at

Mid-stance From Foot  at
To Heel raise

Drive-off From Heel raise
To Toe-off



Swing phase

Early swing
Joint Movement Range of motion
Hip Flexion 9∞ ext–30∞  ex
Knee Flexion 30∞  ex–60∞  ex
Ankle Dorsi- exion 5∞ PF–0∞ DF

Late swing
Joint Movement Range of motion
Hip Extension 30∞  ex–25∞  ex
Knee Extension 60∞  ex–10∞  ex
Ankle Dorsi- exion 0∞ DF–5∞ DF

Stance phase

Loading phase
Joint Movement Range of motion
Hip Flexion 25∞  ex–30∞  ex
Knee Flexion 10∞  ex–20∞  ex
Ankle Plantar- exion 5∞ DF–10∞ PF

Mid-stance
Joint Movement Range of motion
Hip Extension 30∞  ex–0∞ ext
Knee Extension 20∞  ex–5∞  ex
Ankle Dorsi- exion 10∞ PF–20∞ DF

Drive-off
Joint Movement Range of motion
Hip Extension 0∞ ext–9∞ ext
Knee Flexion 5∞  ex–30∞  ex
Ankle Plantar- exion 20∞ DF–5∞ PF

DF = Dorsi- exion
PF = Plantar- exion

These movements of the lower limb are representative of normal walking.
However, it should be noted that whilst the general pattern of walking is quite
characteristic there will be notable inter-individual variability in the absolute joint
angles moved through. The values in the table above are indicative of the pattern
of movement and should not be interpreted as representing a set of normative
data.

Movements of the limbs are powered by the contractions of the musculature.
Fig. E1.3 summarizes the muscle activity associated with walking. The muscles
are mainly involved in the initiation and cessation of limb movements. Much of
the action for swinging the leg is achieved by the pendulum effect of the gravity
and does not require a signi cant muscular effort.
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With the average person taking nearly 2000 steps per mile while walking, it is
important to understand the processes involved in the contact between the body
and the ground. Application of Newton’s  rst law states that a force must be
acting in order for the movements associated with walking to take place. The
study of the forces associated with gait therefore forms an important part of any
gait analysis.

Fig. E1.4 shows a typical ground reaction force trace for normal walking. The
trace shows the periods of single and double support characteristic of walking
and the way that the forces are transferred from one foot to the other. The double
support phase, where the load is transferred from one foot to the other, allows the
loading rate (slope of the curve) to be controlled and therefore kept relatively low.
The vertical force remains relatively close to body weight throughout the periods
of single support, with peak forces at impact and drive-off of only slightly above
body weight. These peaks result from the body decelerating at impact (heel
strike) and then accelerating at toe-off; during mid-stance the trough results from
a net downwards acceleration of the center of mass as it passes over the foot.

The anterior–posterior forces (Fig. E1.5) show the forces acting along the
direction of movement, these are known as either braking or driving forces
dependent upon their direction. At impact the force is acting in the opposite
direction to the movement and is therefore a braking force. The magnitude of the
braking force will  uctuate as the gait style changes. As the center of mass passes
over the foot and the forward drive begins, so the force becomes positive and acts
as a driving force. The point at which the force changes from braking to driving is
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normally between 45% and 50% of the total stance time. Variations from this
normal pattern will be suggestive of an abnormal gait.

The role of the upper body during gait is to act as a stabilizer to limit the
changes in the angular momentum of the body and to thus conserve energy.
If there were no upper body then there would be large positive and negative
swings in the angular momentum of the body as the legs rotated forward and
backward.

The arms swing in a contralateral fashion in exact anti-phase to the legs, in
other words the right arm reaches maximum shoulder and elbow  exion when
the right leg reaches toe-off and maximum shoulder and elbow extension at right
heel strike. Thus the upper body is being rotated in the opposite direction to the
pelvis. This out of phase action of the arms generates an opposite angular
momentum value to the legs and so reduces the change in the angular
momentum of the whole body.
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Note: despite the greater mass of the legs the arms are able to generate a
momentum almost equal in magnitude to that of the legs. This is possible because
the arms are positioned further from the mid-line of the body and so require less
mass to achieve the same moment of inertia.

Angular momentum (H) = Moment of inertia (I) · Angular velocity (w)

In the horizontal plane, the arms have no effect as they act in opposite direc-
tions, in other words one forward and one back. Vertically the arms contribute
approximately less than 5% to the total lift of the body.
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Section E – Applications

E2 BIOMECHANICAL
CHARACTERISTICS OF RUNNING

Key Notes

Describes the style of locomotion. For running this is divided into support
(when one foot is on the ground) and swing (when the foot is off the
ground) phases. There are also periods of  ight when both feet are off the
ground simultaneously.

Running speed is the product of stride length and stride frequency.
Increases in speed are normally achieved by increasing stride length up to
approximately 7 ms–1 after which changes in stride frequency are required.
Changes in stride frequency are normally accompanied by an increase in
the energy cost per unit distance covered (economy).

During running the subtalar joint (the joint between the talus and the
calcaneus at the bottom of the leg) experiences a pattern of movement
known as pronation and supination. Pronation involves the  attening of
the foot to the  oor by the combination of eversion, adduction and
dorsi exion. Supination raises the arch off the  oor by inversion,
adduction and plantar- exion.

The typical range of motion during running is from 10° supination at foot
strike to 10° pronation by mid-stance.

The peak vertical impact force during running is typically about 2–2.5
times body weight. The size of the impact force varies with body weight
and the speed of running. The force rises rapidly and reaches a peak
within the  rst 50–100 ms after foot strike.

Running on soft surfaces or in cushioned shoes generally leads to a
reduction in the vertical impact forces.

The horizontal force initially acts as a braking force slowing the body. At
about 50% of the support phase the force becomes positive and serves to
accelerate the body into the next  ight phase.

Running gait is often described according to which part of the foot makes
 rst contact with the ground. In most runners the  rst contact is in the
rear third of the foot and these runners are described as “heel strikers”. A
“mid-foot striker” makes  rst contact in the middle third of the foot and a
“toe striker” in the front third.

Mid-foot and toe strikers typically produce a vertical force trace
without an obvious impact peak. Rather the initial impact is absorbed by
the muscular structures of the lower limb.

Gait cycle As with walking, the running action is made up from a series of steps in which
forward progress is made by sequentially planting the left and right feet on the

The gait cycle

Running speed

Pronation

Forces during
running

Foot strike



ground. The style of movement is described as the gait and can be considered
to be a cyclic (repeated) movement and is thus referred to as the gait cycle.
The running gait cycle is divided according to the sequence of swing (when the
foot is in the air) and support/stance (when the foot is on the ground) phases
of the legs. During running the periods of single support (where only one
foot is on the ground) are separated by a  ight phase in which there is no
ground contact and there is no double support phase (no periods when both
feet are on the  oor at the same time). In running the ratio of stance to swing
rises to approximately 40% stance and 60% swing. The exact ratio depends
upon speed, with the relative duration of stance decreasing as speed increases
such that in maximal sprinting stance occupies only about 20% of the gait
cycle.

Running speed To increase running speed requires an increase in the stride length (the distance
covered in each step) and/or an increase in stride frequency (the number of
strides taken in each unit of time). Up to a speed of approximately 7 m.s–1 most
of the increase is achieved through increasing the stride length while main-
taining a nearly constant stride frequency. Above this speed the stride frequency
increases. It is suggested that the reason why stride length is usually increased
 rst with changes in stride frequency reserved until higher velocities is because
there is an optimum stride frequency at which the energy cost of running is
least. If the stride frequency is changed, then the energy cost per unit distance
increases making the athlete less energy ef cient.

Despite the obvious logic, there is only a low correlation between the stride
length of an athlete at a given speed and the anthropometric measures of that
person. There is a stronger relationship with factors such as strength and
 exibility.

The running gait cycle can be broken into similar phases as walking to facilitate
kinesiological analysis. The following is a summary of the typical movements
seen in running. Note that the range of motion indicates the start and end points
of the joint in each phase and that the absolute ranges of motion are dependent
upon speed and generally increase as speed increases.

Swing phase

Early swing

Joint Movement Range of motion
Hip Flexion 9∞ ext–55∞  ex
Knee Flexion 25∞  ex–90 ∞  ex
Ankle Dorsi- exion 20∞ PF–10∞ DF

Late swing
Joint Movement Range of motion
Hip Extension 55∞  ex–45∞  ex
Knee Extension 90∞  ex–20∞  ex
Ankle Plantar- exion 10∞ DF–5∞ DF
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Stance phase

Loading phase
Joint Movement Range of motion
Hip Flexion 45∞  ex–50∞  ex
Knee Flexion 20∞  ex–40∞  ex
Ankle Dorsi- exion 5∞ DF–20∞ DF

Mid-stance
Joint Movement Range of motion
Hip Extension 50∞  ex–15∞  ex
Knee Flexion 40∞  ex–40∞  ex
Ankle Dorsi- exion 20∞ DF–30∞ DF

Drive-off
Joint Movement Range of motion
Hip Extension 15∞  ex–9∞ ext
Knee Extension 40∞  ex–25∞  ex
Ankle Plantar- exion 30∞ DF–20∞ PF

DF = Dorsi- exion
PF = Plantar- exion

Although they share certain similarities the movements involved in running differ
from walking in a number of ways. The major differences are described below.

Hip: at foot strike the hip is  exed to approximately 45∞ (greater than in
walking where this is typically 30∞), this angle is maintained during early
stance by knee  exion. During drive-off the hip extends to approximately 9∞ at
toe-off (the same as walking). Flexion during the swing phase reaches about
55∞ (only reaching 25∞ during walking).
Knee: At heel strike the knee is  exed to an angle of approximately 25∞; it is
never straight at impact (knee  exion of 10∞ during walking). The knee  exes
to about 40∞ by mid-stance (only 20∞ during walking). From mid-stance the
knee extends to toe-off. During swing the maximum knee  exion reaches 90∞
(maximum  exion of 60∞ during walking).
Ankle: the ankle reaches maximum dorsi exion of about 30∞ by mid-stance.
Plantar  exion at toe-off is signi cantly greater than in walking reaching 20∞
compared with only 5∞ in walking.

As speed increases, the  exion of hip and knee joints during the swing phase
increases, this serves to reduce the moment of inertia of the limb, thus allowing
for a faster swing. There may also be a slight increase in the degree of knee  exion
at impact.

The phasing of muscle activity in running is shown in Fig. E2.1. In general,
muscles are most active in anticipation for and just after initial contact. Muscle
contraction is more important at this time than it is for the preparation for and the
act of leaving the ground. As the speed of gait increases so the degree of muscle
activity increases. The swing phase becomes more active with a greater muscular
contribution to the movement. The increased ranges of joint movement result in a
greater period of muscle activity during all phases of the cycle.
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So far, only the major movements of the lower limb in the sagittal plane (side
view) have been considered. While these are clearly the largest movements that
occur there are other, smaller movements that are of equal or greater importance
to a consideration of injury.

The movements of the subtalar joint have been the focus of much attention in
the research literature due to their suspected role in the etiology of injury. The
subtalar joint lies just below the ankle joint and is formed by the talus above and
calcaneus (heel bone) below. It is at this joint that the movements of inversion
(turning the sole of the foot inwards) and eversion (turning the sole of the foot
outward) mainly occur.

Pronation During any form of gait the motions of the subtalar joint and the other plane
joints in the foot and ankle act to serve a shock absorbing function. Just prior to
impact the foot is positioned in a supinated position (inverted, adducted and
plantar  exion) such that the outside portion of the heel makes  rst contact with
the  oor. Immediately following impact the foot  attens as the whole of the foot
is placed onto the  oor and the subtalar joint moves from inversion to eversion.
This movement is known as pronation. As this happens the plantar fascia (liga-
ments and tendons of the sole of the foot) becomes stretched and the supporting
musculature works eccentrically to resist this  attening. These actions help to
reduce the impact force by effectively softening the impact and slowing the
descent of the body more gradually.
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Once in mid-stance the foot remains in the pronated position as the body
weight moves over the foot, before re-supinating to form a rigid lever for toe-off.
Fig. E2.2 shows a “typical” trace for the rear foot (pronation/supination) angle
during a single stance phase. Note that most of the pronation happens during the
 rst 0.05–0.1 s after foot strike. It is therefore a very rapid movement. The normal
range of motion is from ~10∞ supination to ~10∞ pronation.
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If the foot strikes the ground in a pronated position, or if the muscles and
plantar fascia are loose then there will be little resistance to the normal range of
pronation and the shock absorbing function of the foot will be lost. The nature of
the subtalar joint means that if the foot pronates then there must be an accompa-
nying rotation of the tibia. Pronation leads to an internal rotation of the tibia while
supination leads to an external rotation. Excessive pronation >20∞ will lead to an
excessive internal rotation of the tibia. This will disrupt the normal loading of the
ankle joint and may lead to malalignment problems at the knee leading to ante-
rior knee pain.

There are a number of factors which have been suggested to be related to the
amount and the rate of pronation during gait. The greater the body weight of an
individual, the greater will be the load during stance. Excessive body weight will
tend to lead to a more  attened arch position and either greater or more rapid
pronation of the foot. As running speed increases, the foot strikes the ground in a
more supinated position whilst pronation ends at more-or-less the same  nal angle
at all speeds. This will give a greater range of motion and, because stance time
decreases with running speed, the rate of pronation is greater at faster speeds.

Forces during During running, the vertical movement of the body is greater than in walking as 
running a consequence of there being a  ight phase. As the body will be falling from a

greater height it will have a greater vertical velocity at foot strike. The slope of
the force–time curve (loading rate) is also greater, reaching a peak after only
about 0.05 s (whereas in walking this peak does not occur until about 0.15 s).



This will mean that the tissues of the body are loaded more rapidly and a
greater stress placed upon them. During running the impact is onto a single leg
rather than a gradual transfer from one leg to the other as seen during the
double support phase of walking.

The vertical forces experienced during running are directly related to body
weight. This is logical, as Newton’s second law states that the force is proportional
to the mass of the body. Typically vertical ground reaction forces in running are of
the order 2–2.5 times body weight. Similarly, as the speed increases so the impact
peak force increases, with an accompanying rise in the rate of force loading. The
vertical ground reaction impact force increases by about one times body weight
(from ~2 · body weight to ~ 3 · body weight) when running speed is increased
from 3 to 6 m.s–1 (9 minute mile pace to 4.5 minute mile pace). The vertical drive-
off force is unaffected by the increase in running speed. As the contact time with
the ground decreases as speed increases there is also a signi cant rise in the rate at
which the force is applied to the body.

Foot strike The “normal” force trace presented in Fig. E2.3 showed the characteristics of a
heel to toe runner, this is the style used by about 80% of runners. Running style
is classi ed according to which part of the foot makes  rst contact with the
ground. If the point of  rst contact lies in the rear third of the foot then the
runner is classi ed as a rear foot striker;  rst impact in the mid third of the foot
is classi ed as a mid-foot strike and  rst contact in the forward third is classi ed
as a fore-foot strike. Runners with a mid- or fore-foot impact will tend to
experience a lower impact force as the loading is cushioned by the active
contraction of the calf muscles.

It is widely accepted that modern running shoes act to reduce the impact forces
seen during walking and running. The various cushioning devices found in the
shoes function to prolong the impact and reduce the stress on the musculoskeletal
system. The choice of running surface will also have a signi cant effect on the
magnitude of the forces. The harder a surface the greater will be the forces
experienced. More compliant surfaces give a greater time to stop the downward
motion of the body and so reduce the impact force. However, running on a soft
surface uses up more energy and will lead to a slower pace or earlier fatigue.
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As the body rises and falls and speeds up and slows down during the gait cycle
there are changes in the potential and kinetic energies in the body. Potential
energy describes the energy due to a body’s position and is related to its weight
and height above the ground (mass · gravity · height). Kinetic energy is the
energy due to the body’s motion and is related to the mass and the velocity of the
body (1/2 mass · velocity2). In running the changes in these two energies are in
phase, such that when potential energy is high so is kinetic energy. Running has
been likened to an individual on a pogo stick, propelling the body from a low
point during the middle portion of stance (stance phase reversal) to a peak during
the  ight phase. To reduce the total energetic cost of running two mechanisms are
used:

1. the storage and later return of elastic potential energy by the stretch of elastic
structures;

2. the passive transfer of energy from one body segment to another.

These seek to ensure that the amount of metabolic energy required to run is
minimized. During the initial period of ground contact the body’s energy
decreases as the velocity slows during the braking phase and the mass center is
lowered by hip and knee  exion. Some of this energy can be stored in the tissues
of the lower limb, for example, the Achilles’ tendon in the form of elastic potential
energy. Later, during the drive-off phase this energy can be returned to contribute
to the increase in center of mass height and velocity. In so doing this storage and
reuse of energy reduces the requirement for the work to be performed by active
muscular contraction.
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Section E – Applications

E3 BIOMECHANICS OF JUMPING

Key Notes

Most forms of jumping are initiated with a downward movement of the
body referred to as a “counter-movement”. This action serves to increase
by about 10% the distance which can be achieved in the jump. This
increased performance is attributed to a greater range of movement
during the propulsive phase and the use of the stretch–shorten cycle.

The stretch–shorten cycle describes the sequence of movement whereby
an active muscle is  rst stretched by an eccentric contraction and then
shortened by concentric action. The stretching phase results in a more
forceful shortening of the muscle than if there had been no pre-stretch.

In a standing vertical jump the height achieved is directly proportional to
the vertical velocity at take-off such that:

Jump height = 

The vertical velocity is related to the vertical impulse generated during
the contact period such that:

Take-off velocity = 

The impulse can be determined by recording the vertical ground reaction
force and integrating this.

Swinging the arms is believed to add between 10% and 20% to the height
or distance achieved in a jump. This is related to both a direct
contribution to mass center momentum and to the creation of greater
ground reaction forces. The mass center momentum is a summation of
the individual segmental momenta. If the arms are being swung upwards
and forwards they will contribute to the mass center’s forward and
upward motion.

During the  ight phase of a jump the body will tend to rotate
(somersault) in accordance with the body’s angular momentum at take-
off.

Angular momentum = Moment of inertia · Angular velocity

In order to control the rate of rotation jumpers manipulate their moment
of inertia by changing the orientation of their limbs. Adopting an
elongated body position increases the moment of inertia and hence slows
the rate of rotation. Alternatively rotating the arms and legs in a forwards
direction (a hitch-kick) will slow the rate of forward body rotation by use
of a transfer of momentum.

Force · Time
��

Mass

Take-off velocity2

��

The counter-
movement

The stretch–
shorten cycle

Jump height

Arm swing
in jumping

Control of angular
momentum



Jumping is a movement fundamental to a large number of sports. The goal of
which may be to try to achieve the greatest possible distance, either horizontally or
vertically, as in the long-jump or high-jump events; or the jump may be performed
in order to intercept an object, for example to head a soccer ball. Jumps can be
performed either from a standing position or following a run-up and might
involve a take-off from one or both feet. As a consequence there is no single
description for the movements involved in jumping. However, there are suf cient
similarities in the movements to allow a separate analysis of two-footed and
single-footed jumps.

Standing two-footed jumps are the simplest form of jump to analyze. The basic
movements are the same whether the objective is for maximum vertical height or
horizontal distance. The movement can be broken down into the following
phases:

Counter-movement From First movement
To Maximum knee  exion

Propulsion From Maximum knee  exion
To Take-off

Flight From Take-off
To Landing

Landing From Landing
To End of the movement

The counter- During the counter-movement phase the hip, knee, and ankle joints all undergo 
movement a period of  exion. The amplitude of the  exion will depend upon the demands

of the task and the speci c situation in which the jump is performed. However,
generally for greater jump heights there will be a greater range of hip  exion.
The amount of knee and ankle  exion remains more-or-less constant.

The counter-movement serves two purposes: the  rst is to move the body into
a better position to start the propulsive phase and the second is to stimulate the
stretch–shorten effect. If the start position is upright standing it is obvious that
there is very limited potential for the performer to generate lift from this position
as the joints of the lower limb are at, or close to, their end of range of movement.
To jump from this position can only really be achieved by ankle plantar  exion.
By performing a counter-movement the joints are initially  exed, thus permitting
a greater range of movement for the propulsive phase.

The greater range of motion allows for the creation of a larger impulse during
the propulsive phase as the force can be applied for a greater time. The impulse
(force · time) is directly related to the change in velocity of the body. Thus a
greater impulse will result in a higher take-off velocity and thus a greater jump
distance.

Stretch–shorten During the counter-movement the main muscular actions are the eccentric 
cycle contraction of the hip, knee, and ankle extensors. These muscles work to resist

the  exion at the joints which will occur as a natural consequence of the gravi-
tational force. Hence, the muscles are producing a resistive force whilst their
length is increased. This eccentric contraction is often referred to as a pre-stretch,
as the stretch of the muscles precedes the use of the same muscles in the
following propulsive phase. Pre-stretching a muscle before it is shortened leads
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to an increase in the force that the muscle can produce. This increase in force
following the pre-stretch is known as the stretch–shorten cycle. The faster the
stretch and the shorter the delay between the stretch and the shortening the
greater will be the enhancement in the muscle force produced. It is important
that the counter-movement is performed rapidly, and that there is a minimal
delay between the end of the counter-movement and start of the propulsive
phase.

Jump height If the body is lowered slowly, into a position comparable to that achieved at the
end of the counter-movement, and this position is held prior to the upward
movement, the jump is described as a squat jump; as the jump begins from a
squat position. The jump distance achieved in squat jumps is usually about 10%
less than that achieved from a comparable counter-movement jump. Thus
suggesting that the counter-movement adds about 10% to the distance that can
be achieved.

During the propulsive phase, the joints of the lower limb (hip, knee, and ankle)
undergo extension. The hip is always the  rst joint to start to extend, accelerating
the large, heavy trunk segment. Extension at the knee and ankle joints follows
after a short delay, the initiation of knee and ankle extensions may happen either
simultaneously or in sequence (knee then ankle, or ankle then knee). However,
there is no clear evidence to suggest that performance is better with any particular
sequence for the initiation of knee and ankle movements.

Arm swing in In addition to the movements of the lower limb, the arms play an important part 
jumping in the performance of standing jumps. During the counter-movement phase the

arms are swung downward and backward before swinging forwards and
upwards in the propulsive phase. Arm swing has been shown to add between
10% and 20% to the distance achieved in a jump. To be effective, the arm swing
must be timed appropriately, such that take-off occurs as the point when the
arms are at, or close to, maximum velocity.

The exact mechanism through which the arm swing contributes to jumping
performance has not been determined. However, it is believed to be related to
both a direct contribution to mass center momentum and to the creation of greater
ground reaction forces. If the body is considered as a series of individual
segments, then it is possible to calculate the velocity and hence momentum (mass
· velocity) of each of these. The mass center velocity, and hence momentum, is a
consequence of the summation of these individual segmental velocities and
momenta. If the arms are being swung upwards and forwards then they will
contribute to the mass center’s forward and upward motion.

Standing vertical jumps are often used as an assessment of athletic perform-
ance. The height of a standing vertical jump is determined by the vertical velocity
at take-off which is, in turn, related to the vertical impulse such that:

Impulse = Change in momentum

Force (N) ¥ Time (s) = Mass (kg) ¥ Change in velocity (m.s–1)

In a standing jump the initial velocity can be considered to be zero, as the
performer starts from a stationary position, and so the change in velocity is in fact
equal to the take-off velocity. Thus:

Force ¥ Time = Mass ¥ Take-off velocity
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And therefore:

Take-off velocity = Force ¥ Time / Mass

After take-off the body will experience a negative acceleration due to gravity
(-g) which will cause the body to slow and come to rest at the apex of the jump.
At this moment the vertical velocity will once again be zero. It is possible to
calculate the height of the jump based on the take-off velocity using the equations
of uniformly accelerated motion:

V2 = U2 + 2 · a · S

where V =  nal velocity, U = initial velocity, a = acceleration and S = displacement

This can be rearranged to  nd S:

S = (V2 – U2) / (2 · a)

In this case, V will be the velocity at the apex of the jump and is thus zero; U is
equal to the take-off velocity; a is the acceleration due to gravity (–g) and S is the
height of the jump. Therefore:

S = U2 / 2g

Jump height = Take-off velocity2 / 2 ¥ gravity

The most accurate method for obtaining measures of the take-off velocity is to
use a force platform to record the vertical ground reaction force. From the force-
time data it is thus possible to determine the impulse as the start point for the
calculation above. Another common method used to determine the height of a
vertical jump is to measure the  ight time and use this to calculate the height
achieved. This calculation also makes use of the equations of uniformly
accelerated motion.

S = U ¥ T + 1 2 a ¥ T2

where S = displacement, T = time, a = acceleration
If it is assumed that the take-off and landing are performed at the same relative

height, then the apex of the jump will occur at exactly half the  ight-time at which
point the velocity will be zero, and the acceleration will be due to gravity (-g).
Therefore, at the apex of the jump the body will have a zero velocity and, from
this point to landing, the body will experience a displacement equal to the height
jumped in a time of 1 2 T. Therefore:

U = 0, T = 1 2  ight time, a = g (note the minus sign has been 
dropped as the direction of the displacement is not important)

S = 0 · t + 1 2 · g · (1 2 T)2

S = 1 2 · g · (1 2 T)2

In many athletic events and other sports, jumping actions are performed from
a single leg and following a run-up. Performance in running jumps, is also deter-
mined by the velocity of the body at take-off. Unlike in standing jumps, the body
will posses an initial velocity as a consequence of the run-up and thus the take-off
velocity will be determined by the combination of the run-up velocity and the
change in velocity due to the take-off impulse. In the case of horizontal jumps, for
example, the long jump, the athlete will attempt to generate a large initial velocity
during the run-up. Correlation coef cients of 0.8–0.9 are found between run-up
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speed and jump distance indicating that generally jump distance increases with
increasing run-up speed.

Despite the strength of the relationship between run-up speed and distance it
is worthy of note that athletes do not achieve maximum running speed in the run-
up. Each individual will have an optimal run-up speed somewhere below their
maximum running speed. Increasing the run-up speed above this leads to a
decrease in performance as the athlete is unable to generate suf cient impulse
during the take-off phase.

The actions of the take-off leg in single-legged jumps are similar to those in the
two-legged jumps; after heel strike the hip, knee, and ankle of the take-off leg
experience an initial  exion followed by extension. These movements give rise to
what are commonly described as compression and drive-off phases. The
compression phase is comparable with the counter-movement and involves
similar mechanisms, although the range of joint motion is much less than seen in
two-legged jumps.

In addition to the action of the take-off leg, the contralateral (other) leg also
makes an important contribution to the take-off velocity. The non-take-off leg is
often referred to as the “free leg” as it is free to swing in space. The motion of the
free leg and the arms contribute to the take-off velocity in a similar way to that
described for the arms in standing jumps. The momentum within these segments
increases mass center velocity by 10–15% provided that the movements are timed
correctly.

Control of angular During the take-off phase of a jump the body experiences a combination of 
momentum horizontal and vertical forces. As the line of action of these does not always pass

through the center of mass there is a resultant moment about the mass center
tending to cause rotation. Generally the ground reaction forces act to create a
forward, somersaulting moment. Therefore, during take-off, the body is
subjected to a torque impulse (Torque · Time) which leads to a change in its
angular momentum (Moment of inertia · Angular velocity). Once in the air, the
body will tend to rotate forwards and the performer has to take action to control
the consequences of this rotation on their performance.

In the long and triple jump events, the athlete is required to control the rate of
forward rotation to allow them to achieve an optimal landing position. As the
amount of angular momentum is constant during  ight (there is no possibility to
apply a corrective torque whilst the body is in the air) there are two methods by
which the rotation can be controlled. The  rst requires a simple consideration of
the de nition of angular momentum:

Angular momentum (kg.m2.s–1) = Moment of inertia (kg.m2) ¥
Angular velocity (rad.s–1)

As the angular momentum is constant the rotation of the body during  ight
will depend upon the moment of inertia and hence the body position. If the
moment of inertia is maximized by adopting an elongated body position in  ight
the angular velocity will be minimized and only a small degree of rotation will
occur during the  ight. This is seen in the long jump by athletes adopting a
“hang” technique where the arms are extended above the head and the legs
extended.

The other method for controlling angular motion during  ight requires an
analysis of the segmental contributions to whole body angular momentum. If the
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body is considered as a series of individual segments, the angular momentum of
each segment can be calculated and used to determine the whole body angular
momentum. If one group of segments are rotated in such a way as to generate an
angular momentum equal to the whole body angular momentum there would be
no net rotation about the mass center. This is what happens in the “hitch-kick”
technique where the athlete performs a running leg action in the air. The angular
momentum generated by rotating the legs makes a suf cient contribution to
whole body angular momentum to prevent the forwards rotation of the body.
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E4 MECHANICAL CHARACTERISTICS
OF THROWING

Key Notes

The throwing action can be broken down to preparation, pulling/driving
and follow-through phases. It is common to divide the pulling phase to
early and late pull. The time duration and range of motion in these
phases will vary according to the purpose of the throw.

The preparation phase provides a longer pulling path for accelerating the
arm and serves to pre-stretch the musculature. Both of these allow a
greater impulse (force · time) to be developed during the pulling phase.

During this phase the muscles of the anterior shoulder region become
stretched by the abduction and horizontal extension of the shoulder.
These eccentric contractions facilitate the use of the stretch shortening
cycle to enhance the force of the early preparation phase and thus
increase the velocity of the movement.

The pulling phase is where the velocity of the throw is developed. Initial
pelvic and then trunk rotations accelerate the shoulder axis in the
horizontal plane and cause the  exed lower arm to lag behind by external
rotation of the shoulder. The shoulder then internally rotates and the
elbow extends in the late pulling phase.

The pulling phase is the primary phase for accelerating the motion of
the upper limb. There is a sequential acceleration of the joints and a
transfer of momentum from proximal to distal segments.

During the early pull those muscles stretched during the preparation
phase overcome the external force and begin to contract concentrically to
rotate and  ex the trunk.

The follow through acts to bring the throwing action to a controlled stop.
Muscle actions in this phase are mainly eccentric. The shorter the follow
through the more forcefully the muscles have to contract.

Many sports involve the use of some form of overarm throwing or striking action.
There are many variants to the throwing action depending upon the object used
and the requirements of the skill. It would be unrealistic to try to cover all of
these, therefore this section will focus upon the general movement patterns and
highlight how these can be varied to achieve different goals.

Throwing is considered to be an open chain movement. Open chain movements
are those where the distal end of the moving segment is free to move in space. In
the case of throwing the hand is the distal segment and can be moved freely to any
position. This is in contrast to closed chain movements where the distal segment
is constrained such that it is not free to move relative to the other parts of the body,
for example, the foot during weight bearing. The differentiation of movement into

The pulling phase

The follow through

The phases
of a throw

The preparation
phase



“open” and “closed” chains is somewhat contrived and the terms are more
commonly used in the context of physiotherapy than biomechanics.

The phases of a The throwing action can be broken down into preparation, pulling/driving and 
throw follow-through phases. As the movements in the throwing action are rather

complex it is possible further to divide these phases. A common division of the
pulling phase is into early and late pull.

Preparation From First backward movement of the hand
To Maximum horizontal extension of the shoulder

Pulling phase From Maximum horizontal extension of the shoulder
To Release of object

Follow through From Release of object
To Maximum shoulder extension

The pulling phase can be further divided into:

Early Pull From Maximum horizontal extension of the shoulder
To Maximum external rotation of the shoulder

Late Pull From Maximum external rotation of the shoulder
To Release of object

Each of the different variants of the throwing action will have different relative
lengths of these phases. As with most open chain exercises, the freedom of the
distal segment allows substantial variation in the performance of the skill. During
the analysis of the movement and muscle actions of throwing it is important to
consider the role of each phase to be able to understand why different throwing
and striking actions utilize different relative phase lengths.
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Preparation phase
Joint Movement
Trunk Lateral  exion (to left)

Rotation (to right)
Hyper-extension

Shoulder Horizontal extension
Abduction

Elbow Flexion
Wrist Extension

Early pull phase
Joint Movement
Trunk Rotation (to left)

Flexion
Shoulder Horizontal  exion

External rotation
Elbow No movement
Wrist No movement

Table E4.1.



These movements are common to all of the variations of the throwing action.
The techniques differ in the degree of motion at each joint dependent upon the
goal of the action. The functions for each movement phase are described
below.

The preparation phase provides a longer pulling path for accelerating the arm
and serves to pre-stretch the musculature.

The pulling phase is where the velocity of the limb is developed. This
involves a sequential movement of the trunk and upper limb. Initial pelvic and
then trunk rotations accelerate the shoulder axis in the horizontal plane and
cause the  exed lower arm to lag behind, thus inducing greater external rota-
tion of the shoulder. Many coaches teach that the thrower should “lead with the
elbow”. This in reality does not happen. The elbow remains behind the
shoulder axis throughout the throw and it is the initial trunk rotation that
generates the external rotation and the lagging behind of the lower arm. The
degree of external rotation at the shoulder is also related to the elbow angle. If
the elbow is allowed to  ex beyond the 90∞ position the moment of inertia of
the limb will decrease and a smaller rotational torque will be exerted on the
shoulder. It is therefore important that the elbow angle can be maintained
during the early preparation phase.

The late pulling phase demonstrates a rapid elbow extension as the radius of
the arm is increased to generate maximum linear velocity in the distal segment.

During follow-through the rapid arm movements are gradually slowed. The
longer this phase the lower the force that is required to slow the limb.

The movements of the preparation phase are initiated by a forceful contrac-
tion of the prime movers for each action (concentric contraction). If a run-up is
used before the throw this will help to create momentum within the body and
make the preparatory movements faster and require less muscular effort to
initiate. As the body reaches the end position of the preparation phase the

Late pull phase
Joint Movement
Trunk Rotation (to left)

Flexion
Shoulder Internal rotation
Elbow Extension
Wrist Flexion

Follow-through phase
Joint Movement
Trunk Rotation (to left)

Flexion
Shoulder Adduction

Internal rotation
Extension

Elbow Flexion
Wrist Flexion

Pronation
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rotator muscles of the trunk become stretched and the stretch re ex stimulates
an eccentric contraction. Similarly, the muscles of the anterior shoulder region
become stretched by the abduction and horizontal extension of the shoulder.
These eccentric contractions facilitate the use of the stretch-shortening cycle to
enhance the force of the early preparation phase and thus increase the velocity
of the movement.

The pulling phase is the primary phase for accelerating the motion of the upper
limb. There is a sequential acceleration of the joints and a consequent transfer of
momentum from proximal to distal segments. During the early pull those
muscles stretched during the preparation phase overcome the external force and
begin to contract concentrically to rotate and  ex the trunk. The muscles of the
anterior shoulder region continue to work eccentrically as the forward rotation of
the trunk tends to leave the arm lagging behind. During this early preparation
phase the triceps reach their peak activity, although no movement is seen at the
elbow. They contract in an isometric/eccentric fashion to resist the  exion of the
elbow during this phase. It is important that the elbow remains at about 90∞ to
maintain the moment of inertia of the lower arm and to promote external rotation
of the shoulder.

As the upper arm reaches its peak velocity in the late pulling phase the elbow
rapidly extends. This motion does not involve a muscular action of the triceps; the
elbow would extend at the same time and with the same velocity even if the
triceps had not been functioning. The movement is performed by the transfer of
momentum from the trunk and upper arm to the lower arm segment. If the
muscle were to be active it would be unable to generate much force due to the
high velocity of the movement.

The gradual slowing of the movements requires eccentric contractions of the
antagonistic muscles. If the movements are brought to an abrupt halt then the
tension developed in the antagonists will be great and the risk of injury greater. A
long gradual follow-through is the most desirable, but is not always practical
within the sporting context.

There are many different variations to the throwing action, which are
distinguished by small changes in the length of the movement phases and the
orientation of the various segments. These variations give rise to techniques such
as:

● overarm throwing
● round arm throwing
● bowling
● overhead striking/serving/smashing

Within each of these different techniques there are many more variations that
make the task of de ning them all impossible. Essentially the techniques are
differed by the orientation of the trunk and the degree of abduction of the
shoulder. These differences in limb orientations will lead to some differences in
the prime mover muscles involved in the action. However, the general phasing
and the nature of the muscle actions will be consistent across all of the variants of
the throwing action.

To calculate the average force acting on the object (ball) during a throw it is
necessary to apply the impulse momentum relationship. For example, a ball of
mass 0.5 kg, change in ball speed of 30 m.s–1 is achieved with a pulling phase
lasting about 0.1 s.

The impulse momentum relationship gives:
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Force ¥ Time (impulse) = Mass ¥ Change in velocity (change in momentum)

So in this example:

Force = (0.5 · 30) / 0.1

Force = 150 N

It is possible to determine the relative importance of each of the joint move-
ments involved in a throw by calculating the degree to which they lead to the
development of ball velocity. This can be achieved by analyzing both the angular
velocity at the joint and the perpendicular distance between the axis of rotation
and ball. The product of angular velocity and radius gives the linear velocity:

V = w.r

So for the upper limb summing the linear velocity contributions from each joint
would give the  nal velocity of the ball such that :

V release = V shoulder + V humerus + Vforearm + V hand

V shoulder is considered to be the velocity of shoulder segment relative to the ground
due to the run-up and movements of the lower body and trunk.

For the remaining segments their contribution to the linear velocity (V) will be
related to the angular velocity (w) and radius (r):

Vhand = w(rad/ulna).r + w( ex/ext).r

Vforearm = w (pro/sup).r + w( ex/ext).r

Vhumerus = w (int/ext rot).r + w ( ex/ext).r + w (abd/add).r

When applied to overarm throwing the following contributions have been
reported:

For a release speed of 28 m.s–1

Internal rotation of humerus = 8 m.s–1

Wrist  exion = 7 m.s-1

Horizontal  exion of humerus = 6.5 m.s–1

Forearm pronation = 4 m.s–1

Forward motion of shoulder = 2.5 m.s–1

Shoulder  ex/ext, ulna deviation and elbow extension do not make a signi -
cant contribution to release speed. They may, however, be important to ensuring
that the release of the object is optimal in terms of angle, orientation, or spin.
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E5 PROPULSION THROUGH A FLUID

Key Notes

Within biomechanics propulsion through a  uid can involve the
movement of a body or object through air or through water. The activity
of swimming will be used to explain concepts regarding movement
through  uids. Some of the principles described will also apply to the
movement of other objects through other types of  uid (i.e., such as a
discus through air).

This is de ned as the speed at which a swimmer is able to achieve through
the water. The swimming velocity of a swimmer depends on the stroke
rate (SR) and the distance per stroke or stroke length (DPS). Hence
swimming velocity (V) is given as SR · DPS. Stroke rate is determined
from the time it takes the swimmer to complete the pulling and recovery
phase of the arm stroke. Distance per stroke is governed by the propulsive
and resistive forces that act on the swimmer.

These are a direct consequence of drag and they can be classi ed as form,
wave, and surface drag. Form drag is related to the cross-sectional area of
the body that is exposed to the water, the shape of the body and the
relative velocity of the  uid  ow. Form drag can be reduced by adopting a
more streamlined position in the water. This type of drag is probably the
most signi cant in terms of resistive forces offered to a swimmer’s
progression through the water. Wave drag is related to the waves that are
created at the interface between the swimmer and the water. Large bow
waves (a v-shaped wave caused by an object moving through a  uid) act
to drag the swimmer backwards. Any fast movements, such as arm
recovery, need to be performed in the air rather than in the water. Many
swimmers now adopt as much of the race as they can underwater in order
to reduce such bow waves. Surface drag is related to the amount of
surface area actually in contact with the water during swimming. The
wearing of the fast-skin shark suits now seen in many competitions is
designed to reduce surface drag. These suits claim to create eddy currents
of water around the body that cause a water on water interaction rather
than a swimmer on water interaction (i.e., less friction).

Propulsive forces take the form of drag and lift propulsion. Drag
propulsion through the water is achieved by pushing the water directly
backwards (i.e., the swimmer moves forward) whereas lift propulsion
utilizes the same principle of lift force that is used to cause airplanes to  y.
Swimmers use a combination of both drag and lift propulsion to propel
them through the water. Modern techniques utilize complex underwater
pull patterns that optimize the maximum amount of propulsion that can
be achieved through these two methods. Many modern elite swimmers in
freestyle now adopt a pronounced bent elbow pull pattern that is like the
action used to climb a ladder.

Propulsion through
a  uid

Swimming velocity

Resistive forces

Propulsive forces



Propulsion In this section the activity of swimming will be used to explain concepts 
through a fluid regarding propulsion through a  uid. Although this is speci cally related to

movement through water many of the principles will apply to movement
through other  uids such as air.

Swimming velocity Swimming velocity can be de ned as the speed which a swimmer is able to
achieve through the water by movements of the body. This velocity is depen-
dent upon two factors: stroke rate (stroke frequency) and distance per stroke
(stroke length).

Swimming velocity (V) = Stroke rate (SR) · Distance per stroke (DPS)

V = SR ¥ DPS

The stroke rate of a swimmer is determined by the time it takes to complete
both the pulling and the recovery phase of the stroke. Distance per stroke is
governed by the propulsive and resistive forces that act on the swimmer as they
move through the water.

In order to increase swimming velocity an athlete can increase either or both of
the components described previously (stroke rate or distance per stroke).
However, an increase in one component should not be achieved at a loss or
detriment in the other.

Stroke rate (frequency) can be improved by increasing the number of strokes
for each length (lap) of the pool (cadence). However, one of the main drawbacks to
increasing swimming velocity by this method is that the more hurriedly the
swimmer tries to swim the more likely there will be deterioration in the swimmer’s
technique.

Distance per stroke can be achieved by increasing the propulsive forces while
reducing the effect of the resistive forces. Hence, it is critical to understand these
two types of forces in more detail.

Resistive forces Resistive forces are a direct consequence of drag which can be classi ed into
three types: form, wave, and surface drag.

Form drag is concerned with the cross-sectional area of the body that is
exposed to the oncoming  ow of water, the shape of the body, and the relative
velocity of the  uid  ow. Wave drag is involved when the swimmer moves at the
interface between the air and the water. During wave drag some of the energy of
the swimmer is transformed into wave motion. This wave motion also acts to
drag the swimmer backward. Surface drag is concerned with the amount of body
surface area, the smoothness of the body’s surface, and the relative velocity of the
oncoming  ow (frictional drag). Figs E5.1, E5.2, and E5.3 illustrate these three
forms of drag in diagrammatic form.

Form drag can be reduced by adopting a more streamlined shape as in the case
of the swimmer in Example A in Fig. E5.1. Reduced form drag would be achieved
by a more streamlined body shape in the water. In Example A the athlete is lying
almost  at in the water (level with the surface of the water). This would create less
frontal resistance to the oncoming  ow of water (note: the athlete actually moves
forward and the oncoming water is stationary). Form drag is probably the largest
resistive force in swimming and the most effective way to reduce form drag is to
try and adopt a more streamlined (hydrodynamic) body position. The ability to
be more streamlined is, however, closely related to the amount of buoyancy
(ability to  oat) possessed by the swimmer. The more buoyant a swimmer the
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easier it is to maintain a more streamlined body shape. In the context of form drag
it may be important to point out that some elite athletes do not swim in the most
streamlined position. Elite swimmers who have a very powerful leg kick will
adopt a more angled swimming position (higher upper body and lower leg posi-
tion) in order to utilize the leg kick more effectively.

Wave drag probably accounts for the next most signi cant resistive force in
swimming. The method used to reduce this type of drag would be to reduce the
size of the bow wave (a V-shaped wave created by an object moving across a
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Sagittal plane view: Example (A)

Sagittal plane view: Example (B)

Reduced form drag
(streamlined shape)

Increased form drag
(non-streamlined shape)

Sagittal plane view

Transverse plane view

Bow wave

Bow wave

Waves formed above the water and at each
side of the swimmer, which are caused by

excessive movements (splashing) of the arms
(inefficient technique) and the forward motion

of the swimmer through the water

Fig. E5.1. Drag forces in swimming (form drag)

Fig. E5.2. Drag forces in swimming (wave drag)



liquid surface) created by the swimmer. Any fast movements of the body, such as
arm recovery, should be performed in the air rather than while in contact with the
water. Large bow waves in swimming result from excessive vertical and lateral
movements of the body. Crashing the arms and hands into the water during entry
can create large bow waves. The hands should slip and glide into the water. In
freestyle (which is the most common swimming stroke) the hand should be
initially placed side on and the arm should glide into the stroke through the same
hole (path) made in the water by the hand entry. Often, large amounts of wave
drag are created by the side to side movements through the water (like a snake
type movement) which is a common fault seen in adult swimmers. The reduction
in wave drag and the effect on performance can be seen by observing that many
elite swimmers now spend as much of the race as possible, within the de ned
rules, under the water (from the start and at each turn). Indeed many modern
competitive strokes now utilize more underwater actions, for example, modern
breastroke which now uses undulating under water movements that resemble
the butter y stroke.

Surface drag is created by the amount of surface area actually in contact with
the water during swimming (Fig. E5.3). In this context very little can be done to
reduce surface drag during swimming apart from the wearing of the friction
reducing shark suits developed by sports companies such as Speedo and Adidas.
These suits aim to create a surface that causes eddy currents to form around the
swimmer as he/she moves through the water. These eddy currents reduce the
friction by allowing water on water interaction (i.e., the eddy currents around the
suit and the surrounding water act on each other reducing frictional drag). The
result is that the swimmer is able to slip, slide, and glide through the water more
effectively. Other methods, such as wearing swimming caps and body shaving,
are also used to reduce surface drag. However, these techniques are probably
only really helpful at the elite level of the sport. In swimming 90% of the drag
comes from the shape of the swimmer as he/she moves through the water (form
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Sagittal plane views

Direction of swimmer

Water line

Surface area of contact

Example A

Example B

Example B shows a larger surface area of contact with the water.
This example would have an increased amount of surface drag.

Direction of swimmer

Water line

Surface area of contact

Fig. E5.3. Drag forces in swimming (surface drag)



drag) and only 10% is attributed to the friction caused between the skin, the
costume, and the water. However, at the elite level this 10% would mean the
difference between breaking a world record and not. In 1875 Mathew Webb,
while swimming the English Channel, wore a swimming costume that weighed
(mass) 4.5 kg (10 lb). In Athens, at the 2004 Olympic Games, the body suits
weighed (mass) only a few ounces (0.09 kg) saving over 98% in weight (mass)
since the original swimming costume used in 1875. It is speculated that there is an
8% reduction in drag resistance while wearing these suits, and they are even
better than swimming with no suit on at all.

Propulsion forces Prior to the 1970s, propulsive forces in swimming were thought to be due
entirely to the action–reaction method (i.e., push backward in the water and you
moved forward – Newton’s third law). This was termed drag propulsion as it
relied on the large surface area of the hand to push the water backward (like the
paddle wheel propulsion used in small boats). However, in the years that
followed the 1970s, the term lift propulsion was introduced. This was primarily
attributed to the work of James Counsilman in the USA, and it involved both
lateral and vertical movements of the hand through the water. This technique is
still used by many elite level swimmers today.

The term lift gives a slightly false impression as to how the principle works in
swimming. It implies that the force is always directed upward (i.e., to lift the
body). In swimming this is not necessarily the case and the lift force can act in
almost any direction. Therefore it is more accurate to indicate that the lift force
acts at right-angles (at 90°) to the direction of movement of the object (or  uid
 ow) that is causing the lift force to be created. Since it is the hand that would
cause the lift force to be created in swimming it is clear that this force can occur in
any direction.

Lift is based around Bernoulli’s principle of  uid dynamics, which is more
commonly seen applied to aerodynamics (movement through air) and the move-
ment or  ight of aeroplanes. Fig. E5.4 helps to explain this principle in more
detail.

Fig. E5.4 shows the cross-sectional view of an aeroplane wing. When the wing
moves forward (propelled by the jet engines of the plane) the layers of air that are
oncoming to the wing separate. Some travel over the top and others below the
wing. Due to the shape of the wing the path over the top of the wing is longer than
the path underneath the wing. The shape of the wing and its inclination causes the
air over the top of the wing to travel faster than the air underneath the wing (it
also has a greater distance to travel). The result is that this difference in the speed
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Lift force

Low pressure

High pressure

Wing movement
(direction of travel)

Air (fluid) travels
faster over the top

of the wing

Fig. E5.4. Propulsive forces (lift) aeroplane wing



of air travel causes a pressure differential to occur. A high pressure is created
below the wing and a low pressure is created above the wing. According to
Bernoulli’s principle, which relates to the pressure differential and the association
of lower pressure with a faster  uid velocity, the result is a “lift” force that acts at
right-angles to the direction of  uid  ow or in this case the direction of the aero-
plane wing (since it is traveling forward). As we have seen the wing is traveling
forward and here the lift force is acting upwards (at 90° to the forward motion). It
is this lift force that enables the aeroplane to take off the ground and  y through
the air (i.e., the lifting the wings). This continues to occur in  ight as the wing is
still being propelled through the air ( uid) by the engines of the aeroplane.

In swimming the hand performs the same function as the aeroplane wing and
it can also create a lift force if it is moved through a  uid (water) in a certain
manner (i.e., shape and angle). As an example the next time you are a passenger
in a moving car try carefully holding your hand out of the car window in a shape
like an aeroplane wing (cup your hand to create the shape seen in Fig. E5.4). The
result will be that your hand will lift upwards as the car travels forwards. In this
case the hand is stationary and the car is traveling forward which provides the
 ow of air over your hand. If you angle your hand at different positions to the
oncoming air  ow you will see the effect of different lift forces. At some positions
and angles of the hand you can even create a lift force that is directed downward
and not upward. This downwardly directed lift force is often used on racing cars
by having the spoiler on the back of the car angled and positioned in a certain
way. This creates a downward lift force that helps to keep the car  rmly attached
to the ground offering better traction when it is traveling at high speeds.

In the case of the swimmer, although the hand is moved through the water at
much slower speeds it can still create enough lift force to propel the body forward
through the water. As a practical example position yourself vertically in the water
and use the horizontal sculling action of your hands to keep you a oat. This
method of  otation is primarily dependent upon the lift forces that you create
while your hands are sculling horizontally under the water. In the freestyle
stroke, the hand is angled and moved in an elliptical pull pattern throughout the
arm pull phase of the stroke. Depending on the hand position as you pull it
through the water it will create different amounts and directions of lift force. If the
hand movement is in the appropriate direction the lift forces that are created can
be directed either to help keep you in a  at horizontal position or indeed propel
you forwards through the water. Fig. E5.5 shows the lift forces created by the
positioning of the hand as it is moved through the water (which is analogous to
the aeroplane wing).

During swimming, the advantages of this application are signi cant. In the old
action–reaction method of propulsion (drag propulsion) half of the stroke was
classi ed as recovery because you could not always be pushing directly back-
ward at every point throughout the pull phase. However, by combining the lift
(lift propulsion) and drag method of propulsion (drag propulsion) the whole of
the pulling phase can be utilized to propel the body forward through the water.
In the modern swimming stroke, athletes use lift and drag propulsion to swim
more effectively.

The direction in which the hand is inclined in the water is termed the angle of
attack and increasing the angle of attack will increase the lift forces. However,
with increasing lift forces there will also be increased drag forces that will act
against the movement of the hand through the water. The angle of attack position
can reach a limit before there would be less lift force created. In aerodynamics the
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optimum lift to drag ratio can be achieved with an angle of attack of between 4°
and 15°. However, in swimming the angle of attack is at an optimum between 30°
and 50°. This occurs because the swimmer is prepared to generate greater lift at
the cost of trying to overcome the larger drag forces. Distance swimmers trade off
some propulsive lift by having a smaller angle of attack of the hand (i.e., less lift
force). This has the bene t of reducing the energy cost of the stroke because the
swimmer does not have to overcome so much drag force during the movements
of the arms/hands. Sprinters, on the other hand, use a larger angle of attack
position because the race is much shorter and the increased lift is imperative for
greater propulsion (i.e., faster progression). Each swimmer has to develop a
“feel” for the water and it is important to note that the drag force does not act
against the direction of the swimmer but acts against the direction of the move-
ment of the hand or object that is creating it. Fig. E5.6 helps to show the lift and
drag force ratios during the different pitches of the hand or aeroplane wing.

In modern swimming the lift and drag propulsion method is used throughout
all the four competitive strokes. Athletes adopt complex pull patterns under the
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Fig. E5.5. Propulsive forces (lift) during swimming
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Note the associated drag force with each lift force component.

Fig. E5.6. Lift to drag ratios during hand/wing pitch “angle of attack”



water to utilize these principles more effectively. Today, in freestyle, many elite
swimmers will use a pronounced bent arm pattern throughout the arm pulling
phase. This is a similar action to that used in climbing a ladder. Distance swim-
mers in particular will be seen utilizing the bent arm pull pattern. However, most
strokes will still have common features for effective propulsion through water.
These are summarized as follows: curved elliptical pull patterns; an extend –
“catch the water” –  ex – extend pull pattern; a high elbow position (bent arm);
hand entry to create minimum splash; utilization of both lift and drag propulsion;
and streamlined body alignments (with the exception of the strong powerful leg
kicking athletes). Two objectives are apparent for effective propulsion in
swimming: 1) to propel the body forwards with respect to the hands (using an
optimum combination of lift and drag propulsion); and 2) to minimize resistance
to the propulsion of the body (reduce drag and maintain optimum body align-
ment). Fig. E5.7 shows the pull patterns of the four modern competitive
swimming strokes.
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Freestyle Backstroke

Butterfly Breaststroke

Elliptical (curved) pull patterns of the various swimming strokes utilizing
the lift and drag propulsion.

Note the lateral (sideways) and vertical directions of the pull patterns
in the different strokes.

Fig. E5.7. Underwater elliptical pulling path of modern swimming strokes

In swimming it is speculated that 85% of the propulsion comes from the arm
movement through the water. However, there are many that would argue that
the legs are a far more signi cant contributor to propulsion than only 15%. As
already mentioned, many athletes with powerful leg kicks will angle their body
downward to utilize this propulsive force provided by the legs. Throughout the
leg kick the same principle for lift and drag propulsion also applies (depending
on the angle, position, and direction of movement of the foot). Arm action in
swimming should not be totally classi ed as either lift or drag propulsive. When
the hand moves predominantly backward it is likely that the majority of
propulsion would be drag propulsion. Conversely, when the hand is moved



laterally and vertically lift propulsion would be more prominent. An effective
coach would be tolerant of different techniques and should always be prepared to
change a swimmer’s technique if inef ciencies are detected. However, this can
only be achieved with a good working knowledge of the biomechanics of
effective propulsion through a  uid such as water.

280 Section E – Applications



Section E – Applications

E6 MECHANISMS OF INJURY

Key Notes

Athletes often run between 50 and 100 miles every week in training. This
intensity subjects their limbs to over 100 000 impacts with the ground. In
many countries throughout the world the number of recreational runners
is increasing. In addition there is an increase in the number of associated
running related injuries.

Excessive and insuf cient amounts of pronation and supination are
problematic, and can be the cause of injury. Prolonged pronation is a
more signi cant concern than supination problems. Patellofemoral
syndrome is a common running injury which develops in the anterior
part of the knee joint and which can result from over-pronation problems.

Patellofemoral syndrome is pain in and around the knee which is
increased when climbing stairs. Athletes often hear an audible “click”
both within and around the knee joint. Treatment includes: changes in
training programs; anti-in ammatory medication; running shoe
prescription, and, as a last resort, surgery.

Orthotic devices can correct excessive and prolonged pronation problems.
These devices can be totally controlling or they can be shock absorbing.
There is still current debate on their effective use/function.

This section presents a biomechanical consideration of sports injury. By the end of
the section it is expected that you will have an understanding of the basic
biomechanics associated with some of the different types of injury in sports, (i.e.,
possible biomechanical mechanisms and preventative measures).

Patellofemoral Running
syndrome during Runners subject their bodies to a considerable amount of loading during the 
running course of their running career. Many athletes run between 50 and 100 miles

(approximately 80–160 km) every week. Consider the fact that much of this
running is carried out on concrete surfaces and aspects of injury become evident
very quickly: these athletes could be subjecting their limbs to over 100 000
weekly impacts with the ground. This loading effect, over time, could be respon-
sible for a variety of problems. Involvement in running does not seem to be
diminishing – the London Marathon, for example, regularly attracts over 80 000
applications every year. In recent years the entry to this event has been capped
for safety reasons (i.e., 46 500 runners).

Search the Internet to see if you can  nd out how many athletes completed the
London Marathon in 2006 and indeed how many actually applied to take part?

Running

Mechanism of injury

Symptoms
and treatment

Orthotic devices



Middle distance runners usually contact the ground with the heel and then adopt
a heel–mid-foot–toe stance pattern. Most runners (80%) will be heel strikers and
they will land on the lateral (outside) edge of the heel. Once the foot has made
contact with the ground (in a supinated position) the foot is required to pronate
(this occurs at the subtalar joint in the foot). This pronation allows for a shock
absorption process. After the foot has reached the maximum pronation point it
then undergoes supination in which it forms a rigid lever for toe-off. This is
needed so the athlete can push off the ground. This is a normal component of foot
function, whether in walking or running. The foot initially pronates then it is
required to supinate. This speci c biomechanical detail has been identi ed in
section E2 (biomechanical characteristics of running).

Mechanism of injury
Excessive pronation can be a problem for runners, as can insuf cient amounts of
pronation. Similarly, excessive and insuf cient amounts of supination can also be
a serious concern. However, it is important to point out that these excessive or
insuf cient components of pronation and supination can also be the direct effect
from another problem regarding the runner’s gait. This is an important consider-
ation for clinicians.

The relationship with pronation and supination and rotation of other
structures is shown in some detail in Table E6.1. It is important to note that this is
a ratio representation and that, for example, for every degree of pronation that
occurs there would be 2.5∞ of internal rotation of the tibia and  bula complex
(1:2.5 ratio). By comparison for every degree of supination there is only 0.5∞ of
tibia and  bula external rotation (2:1 ratio). This is one of the many reasons
why over-pronation is more of a problem for injury development in running than
over-supination. For example, for 10∞ of pronation the tibia and  bula complex
would internally rotate approximately 25∞.

Excessive and insuf cient amounts of both pronation and supination can be a
problem for runners. Problems can be associated with the shins, knees, hips, and
even the back. The amounts of pronation and supination are affected by the type
of running shoe the athlete is wearing, the surface they are running on, their running
style and the type and intensity of training they undertake. For example,
running on a beach or cross-country will affect the runner’s foot movement.
Similarly, and adding more complexity to the problem, excessive and insuf cient
amounts of pronation and supination can manifest from an injury to another struc-
ture. Therefore the athlete may be excessively pronating by necessity in order to
keep running without pain.
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Table E6.1 Pronation and supination relationship with other
structures of the leg

SUPINATION 2:1 ratio with fibula and tibia rotation
(External rotation) 1:1.5 ratio with femoral rotation 

1:1 ratio with pelvic rotation

PRONATION 1:2.5 ratio with fibula and tibia rotation 
(Internal rotation) 1:1.5 ratio with femoral rotation

2:1 ratio with pelvic rotation



Correcting the degree of over-pronation may indeed not be the correct solution
for the medical practitioner. It becomes a careful balance and interpretation of the
exact cause of the excessive or insuf cient pronation and supination.

Many injuries result from or cause excessive or insuf cient amounts of
pronation and supination. An excessive pronator may land on the ground in a
rolled over or pronated position (i.e., on the medial (inside) edge of the heel or
mid-foot) and then continue to pronate too much and for far too long into the
stance phase. On the other hand, an excessive supinator may land on the lateral
edge of the heel and then not pronate at all. This athlete may roll outwards on the
outer edge of the heel from heel strike all the way through to toe-off. These are
two extreme cases of over-pronation and over-supination. Injuries such as patella
tendinitis, plantar fasciitis, shin splints, illio-tibial band friction syndrome, and
patellofemoral syndrome are just a few of the many that can manifest from
pronation and supination concerns. However, one of the more problematic
injuries, and one that is often seen in many runners, is that of patellofemoral
syndrome (in the anterior part of the knee joint).

When the foot moves from heel strike to mid-stance the foot normally under-
goes a pronation movement. The ankle dorsi- exes, the calcaneus everts and the
forefoot abducts causing the tibia and  bula complex (lower leg) to rotate
internally (Fig. E6.1). When the foot pronates past the point of mid-stance and,
indeed when the foot pronates too much (usually measured by the amount of ever-
sion of the calcaneus), the lower leg is internally rotating excessively and for too
long. This pronation continues into the stance phase and past the point of mid-
stance. The leg (knee) reaches a point of maximum knee  exion and the quadriceps
cause a pull on the patella that attempts to move this bone laterally (towards the
outside – away from the body mid-line). However, because the lower leg is still
internally rotated and the foot is still pronated, this lateral pull causes the patella to
laterally track over the lateral femoral condyle of the knee. Normally the lower leg
would be externally rotating and the foot supinating, which would mean that the
patella could be pulled naturally within the groove contained between the femoral
condyles.

To add to this problem, as the knee is  exed during mid-stance the ankle
normally undergoes a degree of dorsi- exion. This movement is decelerated by
the gastrocnemius and soleus muscle complex. If the athlete has a tight
gastrocnemius–soleus muscle complex then normal amounts of ankle dorsi-
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Lateral (outside)
pull of patella by

quadriceps muscle

Internal rotation
of tibia (lower leg)

Prolonged
pronation of foot

Fig. E6.1. Lower leg and foot movement
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Increased knee flexion required
to accomodate ankle problem

Patella is pushed onto
femur (thigh bone) and
rides laterally (outside)

Restricted ankle dorsiflexion
during mid-stance caused by
tight calf muscle

Tight calf
muscle complex

exaggerates
the problem

Fig. E6.2. Tight gastrocnemius – soleus muscle complex

 exion are prevented. This has the result of making the athlete increase the
amount of knee  exion, which further forces the patella down onto the femur.
This creates additional aggravated knee pain. This problem is commonly referred
to as having a “tight heel cord” (see Fig. E6.2).

Symptoms and treatment
Symptoms of patellofemoral syndrome are generally described as pain in and
around the knee joint. This pain is increased when the athlete climbs stairs, walks,
or even just sits. Often an audible “click” may be heard as the knee moves. In
addition to this, continued patellofemoral syndrome may lead to an in ammation
of the bursa underneath the patella and a painful knee swelling. If not treated this
can also produce a degeneration of the patella bone. Finally, it is important to
remember that patellofemoral syndrome may result from a problem that is
evident in another structure of the body (e.g., in the back) and indeed may be a
symptom caused by another injury.

The treatment rationale for this problem consists of recommending changes to
training programs and potentially training on more cushioned surfaces. Often
anti-in ammatory medicine is applied. Sometimes it may be necessary to
consider surgery, for if the patella is constantly being pulled laterally, it may need
re-attaching in a more biomechanically optimum position to minimize this
problem. However, this is rarely recommended as routine and is a last resort.
Other non-invasive methods include the use of recommended running shoes
and/or the prescription of orthotic devices to control the excessive and prolonged
amounts of pronation.

Some of the aspects/components of the running shoe that help to reduce the
onset or condition of patellofemoral syndrome include: an extended medial
support that aims to prevent excessive inward rolling (calcaneal eversion);
increasing the density of the mid-sole in the shoe, again to try and control the
excessive inward roll; and prescribing a shoe with little or negative heel  are. The
heel  are is the angle made by the sole component of the shoe when viewed from
the rear. Older shoe models, such as the Brooks Rage for women (which are no
longer manufactured) possessed a speci c roll bar at the mid-foot of the shoe.
This was really effective in controling prolonged and pronounced pronation.



Using the Internet, search for speci c types of anti-pronating shoes that are
currently available to athletes.

Orthotic devices
Orthotic devices are another method for controling excessive pronation and
prolonged pronation (note: they can also be designed to correct for supination
problems). They are a type of insole, usually made by a podiatrist, that is placed
inside the shoe. Orthotics can take on many different forms and can range from
rigid orthotics with limited shock absorbing capacity to soft orthotics that are shock
absorbing. The type of orthotic device depends very much on the problem and the
type of foot strike of the athlete. Currently, there is a scienti c debate as to whether
orthotic devices are actually a form of management or a form of treatment. For
example, if the orthotic devices are taken away from the athlete after a period of
use, will the foot continue to function as though the orthotics were still present?

Search the Internet for information on orthotic devices for running shoes and
see whether you can  nd any information or research that may help answer this
question.

Key Notes

Isolated anterior cruciate ligament (ACL) or combined ACL/medial
collateral ligament (MCL) is probably the most common knee injury in
soccer. Female soccer players seem to be more at risk than their male
counterparts. The ACL supports the knee in both anterior drawer (of the
tibia with respect to the femur) and rotational movement.

This typically involves a forced valgus rotation of the knee with an
internally rotated femur and/or externally rotated tibia on a  xed foot
(often with the force of contact from another player).

This is carried out by an orthopedic surgeon using one or more of the
following: clinical tests, diagnostic history, MRI scan, arthroscope,
arthrogram, KT1000/2000 testing, and isokinetic muscle evaluation.

These consist of muscle strengthening programs; anti-in ammatory
medication, and knee braces and supports.

These can be autograft or allograft procedures: for example, either using
tissue from the subject (autograft) or using tissue from a donor (allograft).
These can take the form of a bone–patella tendon–bone or a semi-
tendinosus graft. In addition, it is also possible to use an arti cial
ligament replacement using such materials as dacron and gortex.

Rehabilitation is prescribed and carried out by a quali ed
physiotherapist. Muscle strengthening and proprioceptive training are
often used in the rehabilitation process. In addition, the use of a Cybex or
Kincom isokinetic dynamometer can be bene cial. Rehabilitation is often
sports speci c. The use of hydrotherapy and knee bracing can also be a
function of this process.
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Anterior cruciate Knee ligament injuries
ligament rupture The knee is the most complex synovial joint in the human body and the forces 
in soccer transmitted across it during participation in fast athletic activity like soccer are

considerable. Hence it is not surprising that when an athlete is tackled and the
knee is placed in a vulnerable position that the ligaments of this joint can easily
be injured. The most common knee injury in soccer players is rupture of the
anterior cruciate ligament (ACL) and/or a combined rupture of the anterior
cruciate and medial collateral ligament (MCL). Recent research in this area has
shown that female soccer players are particularly at risk and there is a more
regular incidence seen in females than in their male counterparts. This section
will concentrate on the isolated ACL rupture.

The ACL is one of the main supporting ligaments of the knee and it is respon-
sible for supporting the knee in a movement known as anterior tibial translation,
where the tibia is moved anteriorly (forward) with respect to the femur. In addi-
tion, the ligament also provides a degree of rotational stability to the joint. The
ligaments, together with the muscles, provide joint support and stability and
injury to these ligaments of the knee can seriously affect a player’s career. Fig. E6.3
shows the ACL ligament in more detail.
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Fig. E6.3. The anterior cruciate and medial collateral ligament

Mechanism of injury to the ACL
The typical mechanism of injury for the ACL during soccer is where the athlete’s
leg is in a forced valgus position (often in a contact tackle situation) during which
the knee is  exed and there is a degree of internal rotation of the femur on an
externally rotated tibia, which is  xed to the ground by the soccer boot. In
addition, the ACL can easily be torn when the leg is positioned in severe hyper-
extension and the force of another player causes the hyperextension to go beyond
that normally allowed by the knee joint (i.e., causing excessive anterior transla-
tion of the tibia with respect to the femur). Combine these positions with sudden
deceleration and any degree of internal or external rotation on a  xed foot
(usually because of the studs or bars in the soccer boot) and the ligament is



susceptible to partial or complete rupture. The player usually experiences an
audible “popping” sound, or a feeling of the knee “giving way” or swelling. Figs
E6.4 and E6.5 illustrate these positions in more detail.
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ACL rupture mechanism in soccer

Contact force from
another player

Valgus rotation

Lateral external rotation of the tibia

Foot fixed

Internal
rotation
of femur

Fig. E6.4. Valgus and external rotation injury in soccer (ACL injury)

Fig. E6.5. Knee hyperextension injury in soccer (ACL injury)

Diagnosis
This is usually carried out by an orthopedic surgeon and consists of a clinical test
(most often the Lachman test for anterior drawer), a full diagnostic medical
history which includes details of other player contact, direction of foot and leg
movement, any swelling or audible sounds and any previous history of injury to
the knee. Following this assessment the surgeon will usually support his/her
diagnoses with one or more of the following techniques: an arthroscopy (cameras
are placed inside the knee to view the structures); arthrography (opaque dye is
injected in the knee and x-rays are taken); an MRI scan (a magnetic resonance
image of the soft tissues structures in the knee); or a KT1000/2000 knee arthrom-
eter test (a device for assessing knee instability). In addition, there are other
machines, located in specialized centers, that can also provide an assessment of
ligamentous instability. The surgeon may also require the player to have an isoki-
netic dynamometer assessment to identify the strength of the quadriceps and
hamstring muscles and in particular to see if any muscle wasting has occurred.
The output from these diagnostic tools provides very important information,
which the physiotherapist will use for a successful rehabilitation process.

Non-operative treatment
If the ACL is not considered by the surgeon to be ruptured (either partially or
wholly) the surgeon may prescribe non-operative treatment. In this case physio-
therapy is used to strengthen the quadriceps and hamstring muscle groups that



support the knee. Other forms of non-operative treatment include the use of knee
braces and anti-in ammatory injections. However, there is considerable debate as
to the effectiveness of non-operative treatment regimens and in the case of most
ACL injuries surgical repair or reconstruction is often required.

Operative treatment
Currently the two most widely used operative procedures for ACL repair include
an intra-operative procedure that attempts to reconstruct the ACL as close as
possible to the original anatomy of the ligament. Such procedures include either
an autograft (harvested from the patient’s own tissues) or an allograft (from other
human donors) reconstruction/replacement process. Autograft ligament
procedures consist of the surgeon using either the bone-patella tendon-bone
(BPTB) or the hamstring graft (usually from the tendon of the semi-tendinosus
(ST) muscle). Both methods have advantages and disadvantages, and both have
currently been shown to be very successful in being able to restore the knee to a
stability where athlete is able to return fully functional to sport. Finally, there are
a number of arti cial ligament replacement methods using such materials as
dacron, gortex, and combinations of different  ber composites. However, use of
such man-made materials is limited and it is more common nowadays for a
surgeon to use either the patient’s own biological tissue or that of a donor.

Rehabilitation
This is a critical component of the process of ACL reconstruction and is usually
carried out or supervised by a quali ed physiotherapist. However, the current
strengthening and proprioceptive routines vary signi cantly. For example, some
surgeons require the patients to be moving and weight bearing as soon as
possible after the operation, whereas others require a lengthy period of rest and
immobilization. Techniques used by physiotherapists include: strength training
using isokinetic machines such as a Cybex or Kincom; neuromuscular and
proprioceptive exercises involving balance boards and other devices such as
wobble boards; plyometric exercises; hydrotherapy; and agility training and
speci c exercises that prepare the subject for return to their chosen sport. The
surgeon may also recommend that a supportive knee brace is worn during this
critical rehabilitative procedure.

Search the Internet to see if you can  nd information on how the two autograft
surgical procedures (BPTB or ST (hamstring)) are carried out.
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Key Notes

In the year 2000 there were over 27 million golfers playing in the USA
alone. Injuries are related to the repetitive nature of the swing or poor
swing mechanics. Professional golfers are prone to injuries in the lumbar
spine and wrist whereas amateur golfers are more susceptible to
problems of the elbow and back.

The range of movement and hip and shoulder rotation are important
components during this phase.

The transition between the top of the back-swing and the start of the
down-swing is a critical point for injury development. Peak muscle
activity and peak spinal loading (force and torque) is often seen during
this phase.

The modern method of coaching is to teach the “leading with the hips”
technique which places the spine in a vulnerable position where the
potential for spinal loading is higher.

Modi cations in technique and muscle conditioning are two methods of
prevention and rehabilitation. Golf speci c conditioning exercises are
required for effective rehabilitation. Conditioning of the important spinal
stabilizing muscles (i.e., transversus abdominus and multi dus) is
essential.

Low back pain Golf injuries
in Golf In Australia it is estimated that there are over 500 000 playing members of golf

clubs around the country and that there are at least four times this amount
playing golf at least once every year (2 million golfers). Statistics show that the
average amateur golfer playing will have at least one golf related injury per
year. In the USA the number of golfers playing in the year 2000 was over 27
million and this number has been increasing ever since. A person can start
playing golf from as early as 5 years old and continue to play to well over 60
years of age. Hence, a golfer’s playing career can often last as long as 50 years.
As a result, injury is complex and can involve a variety of conditions and causes.
Professional golfers injure their lumbar spine and wrist more often than amateur
golfers who are more prone to problems in the elbow and back. Injuries in golf
are increasing as a result of increased participation and they are generally
related to either the repetitive nature of the swing or poor swing mechanics.

The phases of the golf swing
The golf swing is generally divided into either three or four phases: the take away
or the back-swing; forward-swing or down-swing; early follow-through and late
follow-through (although these latter two are often classi ed simply as the
follow-through). In the right-handed golfer, during the take away, it is the left
external oblique muscle that is responsible for the initial twisting of the trunk.
This activity in the external oblique muscle is proportional to the axial loading on
the lumbar spine. From the top of the back-swing to impact the muscles of the

Down-swing

Follow-through

Mechanism of injury
Back-swing

Prevention and
rehabilitation

Golf injuries



right side of the trunk (primarily right external oblique) are responsible for
leading the swing. In this phase the peak muscle activity is linked with the peak
loading on the lumbar spine and this is the phase where injury potential is at a
maximum. This is particularly true of the point at the very start of the down-
swing where there is transition between back-swing and down-swing. During
follow-through, after the ball has left the tee, the stroke is primarily governed by
the muscles of the shoulder and upper trunk (infraspinatus and supraspinatus,
and latissimus dorsi and pectoralis major).

Lower back injury in golf
In the injury-free golfer the right and left para-spinal muscles will  re simul-
taneously, which is important in their function in stabilizing the lumbar spine.
However, in golfers presenting with low back pain this combined action does not
take place and there is a non-synchronized pattern of muscle activity. In
particular, current research has shown that in a group of male golfers with low
back pain there is a delay in the onset of the contraction of the external oblique
muscle with regard to the start of the back-swing.

Rehabilitation and prevention
Golfers presenting with low back pain problems are usually subjected to a
substantial strength training conditioning program that is both general and golf
speci c in nature. The muscles of the lumbo-pelvic region (namely the
transversus abdominus and the multi dus) are conditioned using golf speci c
treatment regimens. Once abdominal muscle control has been achieved the
subject can then start golf functional rehabilitation. Such rehabilitation for golf
would include arm and leg extension exercises in a supine and four-point
kneeling position (alternate extensions of the legs and arms in these positions
help to condition the transversus abdominus muscle which is an important spinal
stabilizing muscle). Next, thoracic and lumbar rotation exercises can be
performed in the sitting position using a theraband resistance to standing
positions using the same resistive methods. Finally, the subject is put through a
series of golf speci c conditioning exercises that are designed to establish a
degree of functionality in the golf swing (such as a progressive hitting program).

In the rehabilitation process it is important to point out the importance of
correct biomechanics of the golf swing. In the modern game of golf, coaching
involves developing a technique that uses a considerable amount of hip and
shoulder rotation during the swing. For example, modern players are taught to
“lead with hips” so they can generate large amounts of rotational torque which is
transferred to the club head and consequently to golf ball velocity. However,
current research suggests that this technique is one that can potentially lead to
lower back problems and it is biomechanically more advantageous (from an
injury perspective) to hit the ball with a more squared hip and shoulder position.
This is rather like the old method of hitting a golf ball which was used by many
early professional golfers. Although this technique may not generate great ball
speed and consequently great ball distance, it may serve in the amateur player to
prevent future injuries.
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Key Notes

During training and competition swimmers can complete over 1 million
shoulder rotations per year. The potential for injury due to poor
technique and over-use is high. Shoulder impingement in swimming is a
common problem and involves: shoulder instability, in ammation of the
supraspinatus and/or bicep tendon, and impingement of sub-acromial
structures.

A large extension moment is experienced at the shoulder which has
potential for injury.

A dropped elbow position can lead to excessive shoulder rotation and
increased risk of injury.

A high risk phase for “swimmer’s shoulder” where the timing and
magnitude of external shoulder rotation are critical.

The effective coach would consider technique modi cations and body
position corrections/alterations. The use and amount of body roll and
unilateral and bilateral breathing are important components in any
assessment of injury. Consideration should be made of the possible
detrimental use of hand paddles. The possible reduction in training
distance together with the conditioning of the shoulder rotator muscles
could be helpful.

Shoulder pain Swimming injuries
during swimming Swimming velocity can be de ned as the speed a swimmer is able to achieve

through the water by the movement of the body. This velocity (speed) is
dependent upon two factors: stroke rate (stroke frequency) and distance per
stroke (stroke length). The stroke rate is determined from the time it takes to
complete both the pulling and the recovery phase of the stroke, whereas the
propulsive and resistive forces that act on the swimmer govern the distance
traveled per stroke. An increase in one component should not, however, be
accomplished at the cost or detriment of the other. Stroke frequency can be
improved by increasing the number of strokes per pool length (cadence) but one
drawback is potential poor technique and possible injury.

Considering the fact that competitive swimmers can easily complete more than
1 million shoulder rotations per year (up to 10 000 m training per day with
between 15–25 strokes per 25 m distance) it is inevitable that this will potentially
result in injury. Shoulder injury to swimmers is often described by the medical
professions as one or more of the following: shoulder joint (glenohumeral joint)
instability; in ammation of the supraspinatus tendon and often also the biceps
tendon and sub-acromial impingement (impingement of the soft tissue structures
lying below the acromion), which are more commonly known or classi ed as
“swimmer’s shoulder” (Fig. E6.6).

Prior to 1970, propulsive forces in swimming were thought to be generated
entirely from action–reaction (Newton’s third law) methods, i.e., push backward
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and you move forward. This was termed drag propulsion. However, the term lift
propulsion was developed in the late 1970s through the research work of James
Counsilman (USA) and the modern swimming stroke today has developed into
one of a complex combination of both drag and lift propulsion. However, there is
still debate as to the exact contribution from both methods of propulsion through
water.

The modern arm action in most swimming strokes is a precise sequence that
involves the following:  rst on entry to the water extend the arm, then “catch” the
water, next pull the arm through the water in a path that allows elbow bend and
inward and outward sweeping movements of the hand, and then  nally recovery
where the arm is prepared for re-entry into the water. The result has become a
modern technique that involves a complex pull and recovery pattern through and
over the water in order to generate and utilize both the lift and drag propulsive
forces most effectively. Fig. E6.7 shows an example of this pull sequence in more
detail in the different strokes of a modern competitive swimmer.
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Fig. E6.6. Anatomical structures involved in swimmer’s shoulder
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Mechanism of injury

The “catch” phase (arm entry to the water)
During the initial extension of the arm and “catch” phase of the front crawl
swimming stroke the shoulder is required to internally rotate and abduct. The
large moment experienced during extension and catch tends to cause the arm to
be forcibly elevated.

The “catch” and pull phase
During the pull phase the shoulder is adducted and internally rotated and often
the arm follows an inverted question mark pattern under the water. This
allows the application of a force for a longer period of time, utilizing the lift
principle of propulsion. This action causes the head of the humerus to move
under the coracoacromial arch, which can lead to a potential impingement situa-
tion. One of the most common technical faults during this phase is the “dropped
elbow”. The dropping of the elbow during the pull phase causes increased
unwanted external shoulder rotation. However, the “high elbow” technique,
which provides the muscles with a mechanical advantage, may also present an
associated impingement risk. From initial “catch” the hand sweeps down and
slightly outwards while ideally maintaining a high elbow position to the deepest
point of the stroke. Next, the hand sweeps inwards and upwards until an angle of
approximately 90° of the upper arm and forearm is reached. The in-sweep phase
may take the hand past the mid-line of the body or under the outside edge of the
body. From the mid-stroke position the hand is  rst sweep outwards and then
backwards  nishing at the end of the pull past the hips as it exits the water. An
increased acceleration of the hand towards the end of the pull and internal rota-
tion and adduction of the shoulder may present a potential impingement
problem (Fig. E6.8 shows both the dropped and high elbow position during the
modern front crawl swimming pull phase).
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Fig. E6.8. The dropped and high elbow position during the front crawl pull phase



The recovery phase
Following the pull phase the arm leaves the water usually elbow  rst (elbow lift)
and is required to undergo a recovery phase. During this time the shoulder is
required to abduct and externally rotate as the arm is prepared for re-entry in the
water. However, the arm at the beginning of this phase is often still internally
rotated. The recovery phase is one of the more important phases in terms of risk
for possible shoulder impingement. The shoulder is required to rotate externally
and abduct to clear the arm over the water and then quickly to prepare for
extension and entry to the “catch” phase position. The timing of the external
rotation and the magnitude of this action during the recovery is a critical
component of risk associated with shoulder impingement and it has been shown
that swimmers who execute the recovery phase with a large amount of initial
internal rotation of the shoulder are susceptible to potential increased shoulder
impingement. External rotation of the shoulder is needed to allow for complete
abduction and thus to prevent the greater tuberosity of the humerus making
contact with the acromion.

Prevention and rehabilitation
Excessive internal rotation of the shoulder during the pull phase combined with
late external rotation during the recovery phase is said to lead to increased risk of
shoulder impingement. In addition, reaching across the mid-line on entry,
insuf cient body rolling, one-sided breathing and asymmetrical muscle balance
also contribute to the problem.

Possible solutions to a shoulder impingement problem include the following:
during the entry and pull phase of the stroke the swimmer should try and avoid
a large elevation angle at entry and rather increase the tilt angle of the arm to
achieve the optimum position. Similarly, the swimmer should avoid a fully
extended elbow on entry. The swimmer could also help to resist the forcible
elevation caused by entry and catch by developing the shoulder extensor
muscles: namely latissimus dorsi, pectoralis major, teres major, and triceps
brachii. Also, a streamlined hand entry position is advisable. During recovery the
swimmer should try to achieve external rotation of the shoulder early in the
recovery phase in order to have time to prepare the hand and arm for re-entry to
the water.

Other factors which are also recommended for the prevention of shoulder
impingement in swimming include not using hand paddles if there is a current
problem and possibly changing from distance swimming training to sprint
training in order to reduce the number of stroke cycles in a training session.
Finally, the swimmer could adopt a bilateral (both sides) breathing technique,
assume as horizontal a position as possible in the water (i.e., feet up) and allow
some degree of body roll (although there are still current issues of debate as to
how much body roll is required for optimum performance and injury
prevention).
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F1 VIDEO ANALYSIS

Key Notes

Video analysis can either be a qualitative or a quantitative process. When
analyzing movements that essentially occur in a single plane (i.e.,
two-dimensional or 2D), quantitative analysis can be achieved using a
single camera. If the motion occurs in more than one plane, three-
dimensional (3D) techniques that include more than one camera should
be used. Both 2D and 3D techniques require the video images, or  elds, to
be digitized and further processed before kinematic variables can be
calculated.

The PAL and NTSC video systems, which are used respectively in the UK
and the USA, vary in the number of horizontal lines that constitute the
image (625 vs. 525) and the number of video  elds recorded per second
(50 vs. 60). Digital video formats also provide a greater horizontal
resolution than more age-old formats, and hence a better image.
Regardless of the video system or format used, the electronic high speed
shutter should be adjusted to suit the nature of the motion being
analyzed, and manual rather than automatic focusing used.

When using 2D techniques, it is vital for later scaling of the image to life-
size that the optical axis of the camera is aligned at 90∞ to the plane of
motion and that the camera is placed as far from the plane of motion as
possible to reduce perspective error. With 3D analysis, if only two
cameras are used their optical axes should intersect at approximately 90∞.
In both types of analysis, a calibration object needs to be included within
the  eld of view. This can be a simple scaling object, such as a 1 m rule,
for 2D analysis but needs to be a more sophisticated array of control
points for 3D analysis.

The process of digitizing involves converting body landmarks, on the
video image stored in a computer, into digital · (horizontal) and y
(vertical) coordinates. The resolution of video digitizing systems is
usually 768 · 576, but can be greater than this to allow improved
accuracy of coordinates.

In 2D analysis, digitized coordinates of body landmarks are converted
into real-life sized horizontal and vertical positions through a scaling
factor that is obtained by digitizing the scaling object. The more complex
Direct Linear Transformation (DLT) is used to convert the two, or more,
sets of 2D coordinates into life-sized x, y, and z positions in a 3D analysis.
This involves  rst digitizing the control points and using their
coordinates in the DLT equations to provide the 11 calibration
coef cients. These coef cients are then used in the DLT equations, along
with the digitized coordinates from body landmarks, to determine the x,
y, and z positions.
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Introduction Video analysis can either be qualitative and/or quantitative depending on the
aims of the investigation. Qualitative analysis involves observation of video and
diagnosis of particular aspects of technique that may subsequently be altered for
clinical bene t or performance gain. It is a subjective process that seldom
requires the camera to be located in a speci c or stationary position and often
does not require any additional equipment. Quantitative analysis requires
kinematic information (i.e., linear position, velocity and acceleration of body
segment endpoints and angular position, velocity and acceleration of body
segments – see section A) to be obtained from video. Similar to qualitative
analysis, following an intervention, such information can be monitored with a
view to changing an individual’s technique in order to reduce risk of injury or
improve performance. Qualitative and quantitative analyses are often
combined, particularly by coaches, and a number of software packages are
commercially available that allow the user to display a number of images on the
same screen, for purposes of comparison, and calculation of simple kinematic
variables.

Kinematic information obtained from quantitative analysis can also be used, in
combination with body segment parameters (see section C) to calculate center of
mass kinematics, segmental energy levels and power (see section D), and joint
moments and forces (see sections B and C). Quantitative analysis generally
requires the video camera(s) to be stationary and located in a speci c position(s),
and the images subsequently to be stored in and displayed on a computer. Each
image is then digitized to provide horizontal (x) and vertical (y) coordinates of
selected points on the body, usually segment end points. These coordinates are
then scaled (2D) or reconstructed (3D) to provide real-life coordinates, and
smoothed to reduce errors that are inevitably incurred during their collection (see
section F). They are also often combined with temporal information to obtain
velocities and accelerations. The following text details how video cameras should
be used quantitatively to analyze motion that essentially occurs in a single plane
(e.g., cycling, running) and multiple planes (e.g., cricket bowling, shot put), as
well as digitizing and scaling/reconstruction of coordinates. Smoothing of coor-
dinates will be dealt with in section F3.

Video systems, The video system used in the UK is the Phase Alternating Line or PAL System. 
formats and Each video frame consists of 625 horizontal lines, which is often referred to as 
camera settings the vertical resolution of the system (see Fig. F1.1a), although only 576 of these

are available for recording the action. During recording of a video frame the odd
number lines (i.e., 1, 3, 5, etc.) are scanned from the top to the bottom and from
the left to the right of the picture at approximately the same time. The remaining
even number lines (i.e., 2, 4, 6, etc.) are scanned 0.02 sec later. Each set of odd
and even numbered scanned lines constitute a separate image or video  eld,
separated by 0.02 s, that belongs to the same video frame. During playback, each
image can be displayed sequentially to provide 50  elds per sec or 50 Hz, with a
time between  elds, or temporal resolution, of 0.02 sec. The National Television
System Committee (NTSC) system used in the USA has a lower vertical
resolution (525 scan lines) but a greater number of  elds per sec (almost 60 Hz).
High speed video cameras are also commercially available that are able to
record more than 1000 images per sec. Such cameras are particularly important
for recording detail during rapid movements that would be missed if conven-
tional cameras were used. Irrespective of the video system, the horizontal reso-
lution depends on the video format used and is typically considered as the

296 Section F – Measurement techniques



number of dots, or pixels, that constitute each of the horizontal lines (see Fig.
F1.1b). With only 240 dots, VHS should be considered to have too low a resolu-
tion to be used for quantitative video analysis, whilst SVHS (up to 400 dots) and
digital video (DV – up to 500 dots) formats provide acceptable resolution.

The high speed shutter facility on a video camera should be used to prevent
blurred or smeared images of moving bodies. Most cameras have variable
electronic shutters which open for 1/120th, 1/250th, 1/500th, and at least
1/1000th of a sec (0.008, 0.004, 0.002, or 0.001 sec respectively), and which allow
light to pass into the camera for progressively shorter lengths of time. Rapid
movements, such as the motion of a golf club around ball strike, will only
appear non-smeared if shutter speeds in excess of 1/1000th of a sec are used; but
for slower movements, such as walking, 1/250th of a sec is adequate. The disad-
vantage of using higher shutter speeds (e.g., 1/500th or 1/1000th of a sec) is
that, depending on the light available, the image can appear dark due to the lack
of light entering the camera. This is not usually a problem when  lming
outdoors, but in conditions of poorer light, that typically occur indoors, addi-
tional  ood lighting may need to be used to improve the quality of the image.
High speed shutter settings should not be confused with the temporal resolution
of the video system/camera. Fig. F1.2 demonstrates the relationship between
two different high speed shutter settings and temporal resolution for a conven-
tional video camera operating under the PAL System. Much larger high speed
shutter settings (i.e., greater fractions of a second) are required for high speed
video cameras and are often as high as 1/100 000th of a sec (i.e., 0.000 01 sec or
0.01 msec or 10 msec).

The manual focus setting on a video camera should also be used when
conducting a quantitative analysis. In automatic focus mode, to which cameras
often default, the lens is focused on the object nearest to it, which may not be the
subject of interest. Thus, with the camera positioned appropriately (see Video
recording procedures that follow) and the camera set to manual focus, the tele-
photo lens should be used to zoom in as close as possible to the participant
standing in the center of the activity area. The focusing ring on the lens is then
rotated until the image of the participant is sharp, and the telephoto lens is then
used to zoom out to the required image size. This will ensure that the lens
remains focused in the plane of motion.

Whilst the high speed shutter and manual focus settings are the most impor-
tant when using video cameras for quantitative analysis, the quality of the
image will also be affected by the white balance setting and other features (e.g.,
 lters for recording in different environments) that are now commonly available
on video cameras.
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Fig. F1.1. Depiction of vertical, and horizontal resolution video (see text for details of actual
resolution)



Video recording The same video formats and camera settings discussed previously can be used 
procedures regardless of whether a two-dimensional (2D) or three-dimensional (3D) video

analysis is to be undertaken. A 2D analysis typically uses only one camera to
record activities that are essentially planar in nature, and in which the plane of
motion coincides with the photographic plane (i.e., at 90∞ to the optical axis of
the camera). Alternatively, a 3D analysis uses two or more cameras and should
always be used to investigate activities that do not occur in a single plane. The
procedures used to record images for 2D and 3D analyses are generally different
and are therefore largely dealt with separately.

2D analysis

● The camera should be positioned as far from the plane of motion as possible
to reduce the effects of perspective error. The telephoto zoom lens can then
be used to bring the image of the participant to the required size in the  eld
of view. This should not be too large, so as to cut some of the activity, or too
small so that the individual cannot be digitized accurately. Perspective error
occurs when objects or parts of objects that are closer to the lens appear larger
than those that are further away. It can be demonstrated by closing your
non-dominant eye and looking at your hand, at arm’s length, through your
dominant eye. If the hand is rotated to a sideways position and moved
towards the eye, the thumb appears progressively larger than the little  nger,
which is further away, even though the two digits are approximately the
same length. One of the effects of perspective error (shown in Fig. F1.3) is the
apparent shortening of body segments when they move out of the plane of
motion, which inevitably occurs during even the most planar of activities
(e.g., running). In addition, perspective error results in angles between
segments becoming more obtuse when they are moved out of the plane (see
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Fig. F1.4). As stated above, 3D analysis should be used when the motion of
body segments does not occur in a single plane and information gained from
a 2D analysis would largely be inaccurate due to perspective error.

● The optical axis (i.e., an imaginary line passing through the middle of the
lens) also needs to be oriented at 90∞ to the intended plane of motion (see Fig.
F1.5). Assuming that the plane of motion is vertical (e.g., during running),
this can be partly achieved by placing a spirit level on top of the camera and
positioned both parallel and perpendicular to its optical axis. This is, of
course, assuming that the top surface of the camera is both horizontal and
level. If not, the height of the center of the lens can be measured and a marker
placed in the plane of motion at the same height. The telephoto lens can then
be used to zoom in on the marker, which should remain in the mid-line of the
image. When the required  eld of view size is established, the bottom of the
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image should also be parallel with a line that is known to be horizontal (e.g.,
the ground). A 3–4–5 triangle (or multiples thereof) can be used to ensure
that the optical axis is aligned at 90∞ to the plane of motion, in the horizontal
plane (see Fig. F1.5b). A plumb-line should be used to ensure that the apex of
the triangle, or a line extending from this point, is positioned directly below
the center of the lens (i.e., the optical axis).

● Vertical and horizontal scaling objects (e.g., a 1 m rule) need to be placed in
the photographic plane/plane of motion and included in the  eld of view
during recording. A vertical reference (e.g., a plumb-line) should also be
recorded.

● If the action occurs over a relatively long path (e.g., long jump or bowler’s
run-up) use of a single camera will result in a  eld of view where the indi-
vidual is too small to be digitized accurately. In such conditions a number of
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synchronized cameras can be used, with their  elds of view overlapping
slightly.

● In conditions of poor lighting (e.g., indoors with a high speed shutter setting
in excess of 1/250th of a sec) the action should be illuminated with  ood
lights positioned at approximately 30∞ to the plane of performance.

2D and 3D analysis

● The camera should be mounted on a rigid tripod and, normally, once in the
required position should not be moved during recording.

● An information board should be included in the  eld of view of all cameras
including the date, time, participant code, trial number, and so on.

● Following recording, body segment end points (often joint centers) are
digitized, as detailed later. To facilitate this process, individuals should
ideally wear minimal and tight  tting clothing that contrasts with the color of
the background during recording. The background should also be un-
cluttered and non-re ective. Joint centers can also be marked on the skin,
either directly with a soluble pen or using stickers that contrast with the color
of the skin. While such markers are useful in identifying joint centers, they
should not be relied upon accurately to represent the underlying segment
end points; particularly when segments rotate out of the photographic plane.

3D analysis

● Two or more cameras should be used to  lm the activity. Ideally their optical
axes should intersect at approximately 90∞, but this angle can range between
60–120∞ (see Fig. F1.6).

● Ideally, the cameras should be gen-locked so that their shutters open at
exactly the same time, enabling video  elds from separate cameras to be
synchronized. If this is not possible, due to the cabling required (see Fig. F1.6)
between the cameras, a timing device should be included within the  eld of
view of all cameras.

F1 – Video analysis 301

(a)

(b)

Optical axis

Photographic plane
(coinciding with
plane of motion)

Optical axis 4 m

5 m
3 m
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viewed from the side, and (b) when viewed from above



● In replacement of the scaling object used in 2D analysis, at least six control
points should be distributed throughout the volume in which the activity
takes place. Use of more than six points provides more accurate recon-
struction of real-life positions of body markers from digitized coordinates.
For activities that occur in a relatively small volume the control points are
usually contained within a calibration frame that can be dismantled after use
(see Fig. F1.7). The exact location of each control point must be known, and is
usually expressed in relation to one of the points on the frame that forms the
origin of three orthogonal (X, Y, and Z) axes (see Figs F1.6 and F1.7). Where
the activity takes place in a larger volume, the frame can be repositioned
throughout it, or alternatively a series of poles containing control points can
be used. Each control point must be visible by all cameras, and the structure
containing them obviously must be removed prior to the activity being
recorded.

● Similar to 2D analysis, in conditions of poor lighting (e.g., indoors with a
high speed shutter setting in excess of 1/250th of a sec) the action should be
illuminated with  ood lights positioned beside each camera.
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Digitizing Once video images have been stored in the computer’s memory in digital
format, in the PAL System they are made up of 768 horizontal pixels and 576
vertical pixels. The process of digitizing essentially places an imaginary grid
over the video  eld, or image, with the same number of coordinates as pixels.
The bottom left-hand corner of the grid coincides with that of the image and
shows the x and y coordinates as 0,0 (see Fig. F1.8). From this point each of the
grid’s horizontal lines or pixels represents a new vertical or y coordinate, which
increases from the bottom to the top of the image. Similarly, each vertical line or
pixel constitutes a different horizontal or x coordinate that increases from left to
right. The process of digitizing involves using the computer mouse to move a
cursor over the image to locate points of interest, which are usually body
segment end points. Clicking a mouse button then records the x and y co-
ordinates of the point (see Fig. F1.9). If the kinematics of the whole body center
of mass are required then 18 points on the body are typically digitized, although
this depends on the anthropometric model used (see section C4). Digitized
points are often joined together by the computer to form a stick  gure (see Figs
F1.8 and Fig F1.9) or more humanoid  gure.
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The number of x and y coordinates that form the digitizing grid is known as
the resolution of the digitizing system, which represents the smallest change in
position that it can detect. Digitizing systems with a resolution of 768 · 576 are
generally considered to yield less accurate coordinates than those that can be
obtained from systems used to digitize 16 mm cine  lm. However, recent soft-
ware developments that enable the image to be zoomed and allow multiple
coordinates to be obtained from single pixels have improved the resolution of
video systems. The advantage of improved digitizer resolution (see Fig. F1.10)
improves the accuracy of the digitized coordinates.
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Fig. F1.10. Effects of improved resolution of the digitizing system from (a) to (b)

(a) (b)

Scaling and Digitized coordinates need to be converted into real-life horizontal and vertical 
reconstruction positions of body landmarks. This is commonly referred to as “scaling” in 2D

video analysis and, assuming that the plane of motion coincides with the photo-
graphic plane, is achieved by  rstly digitizing the horizontal and vertical scaling
objects that were included in the  eld of view. The length of the scaling object
(in meters) is then divided by the number of coordinates that it represents to
produce a scaling factor, ideally for both horizontal and vertical directions.
Coordinates of body landmarks are then multiplied by the respective scaling
factor to give their true position (in meters) in relation to the origin, which
usually coincides with the bottom left corner of the image.

In a 3D analysis, following digitizing, 2D coordinates of body landmarks are
obtained from the images recorded by each camera. Before these sets of x–y
coordinates can be reconstructed into real-life horizontal (X and Y) and vertical
(Z) positions, it is imperative that the images from each camera are synchro-
nized. If the cameras are not gen-locked, then the timing device included in the
 elds of view can be used for synchronization. This can be done by selecting one
of the cameras to be the time base. A curve consisting of a series of third degree
polynomials, known as a cubic spline, is then  tted to the coordinate time data
from the other camera(s) and the data interpolated to the same time base.

Now that two (or more) sets of synchronized x-y coordinates have been
obtained they can be reconstructed into a single set of X, Y, Z real-life coordi-
nates. This is most commonly done using the Direct Linear Transformation
(DLT) that was  rst introduced by Abdel-Aziz and Karara (1971) and is repre-
sented in the equations following. 



The 11 calibration coef cients: or parameters (L1–L11) included in the DLT
equations above represent the location and orientation of the camera and the
characteristics of the digitizing system, and replace the scaling factor used in 2D
analysis. In order to calculate these parameters,  rst the six (or more) control
points that were included within the  eld of view of each camera need to be
digitized. Assuming that only six control points were used, this results in 12
new equations for each camera; one for each digitized x and y coordinate from
each control point. As the X, Y, and Z coordinates of each control point are
known, the 12 equations can be solved using a least squares approach to obtain
the 11 DLT parameters.

With the 11 DLT parameters known, the DLT equations can now be used to
 nd the X, Y, and Z coordinates of the digitized body landmarks. Again
assuming that only two cameras were used, each body landmark will have two
pairs of digitized x–y coordinates. These are inserted into the DLT equations to
form four new equations, which can be re-arranged and solved to  nd the X, Y,
and Z real-life coordinates of the body land marks.

The scaled, life-sized coordinates, whether 2D or 3D, need to be smoothed
(see section F3) to reduce errors incurred in the digitizing process, prior to any
linear or angular kinematic variables being calculated.

Reference Abdel-Aziz, Y.I. and Karara, H.M. (1971) Direct linear transformation from
comparator coordinates into object space coordinates in close-range
photogrammetry. In: ASP Symposium on Close Range Photogrammetry.
American Society of Photogrammetry, Falls, Church, pp. 1–18.
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F2 OPTOELECTRONIC MOTION
ANALYSIS

Key Notes

Optoelectronic motion analysis uses a series of cameras which project
infra-red light onto re ective spheres called targets. The re ected light is
optically registered by the cameras and electronically converted to
information registering the location of the targets in space. This
optoelectronic process can automatically register the location of the
targets in space thus making the process of motion analysis more simple
and less time consuming than traditional manual methods. Further, by
using a suf cient number of cameras it is possible to obtain three-
dimensional (3D) data. The major advantage of optoelectronic motion
analysis is ease of data collection. The major disadvantage is cost of the
cameras and the need for specialized software.

The cameras used are based on video technology. Around the lens is a
series of infra-red light emitting diodes. Infra-red light cannot be seen by
the human eye so using this type of light does not affect the performer.
When these diodes  ash, infra-red light is re ected back from the targets
and recorded by the camera. This makes an “image” for that  ash. This
image is then transmitted back to the host computer as digital
information. The cameras can repeat this operation quickly with sample
rates of 240 Hz being common, and sample rates of up to 1000 Hz
possible.

The passive targets are usually made from polystyrene balls covered in
re ective tape. The targets can be of any diameter depending on
application but typically need to cover about 1/200th of the  eld of view.
Thus, for a  eld of view of 3 m (3000 mm) the target diameter needs to be
around 15 mm. Target diameters available are as small as 3 mm to as
large as 30 mm.

The space within which the performer operates and in which the cameras
are able to detect targets must be calibrated before use. Each manufacturer
has developed their own system of calibration but a common method is to
place a calibration object on the  oor in the movement volume. A wand
with two or more markers of known separation is moved around the
whole of the movement volume to calibrate the volume. This process is
known as “dynamic calibration”. Using the manufacturer’s recommended
procedure it is possible to obtain reconstruction accuracies of less than 1
mm, and reconstruction precisions of around 0.2 mm.

Different target sets can be used for different applications. A 16 target set
for use in general whole body human movement analysis consists of
targets are placed on the 2nd metatarsal–phalangeal joint (2, left and
right), ankle joint (2), knee joint (2), hip joint (2), shoulder joint (2,
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biomechanical
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superior surface of the acromion), elbow joint (2), wrist joint (2), C7, and
vertex. These markers de ne a common 12 segment biomechanical model
consisting of foot (2), shank (2), thigh (2), upper arm (2), lower arm and
hand (2), torso, and head. One of the limitations of this target set is that
targets which are intended to represent the joint centers are placed on the
outside of the joint center. Some software “correction” is required to
account for this. A second limitation is that the full 3D motion of the
segments cannot be obtained unless more markers are placed on each
segment. Other target sets are available for detailed study of the lower
body and which overcomes these limitations.

Introduction Motion analysis is one of the major data collection tools in biomechanics. Its
main purpose is to collect data on objects (usually humans) as they move
around performing a task or activity. Data on their motion is obtained from a
recording of the motion (for example, frames from a video recording) and then
a registration of points (usually joint centers) from the video frame, a process
known as digitizing. This process based on video frames can be quite lengthy
and time consuming particularly if the digitizing is carried out manually.

Optoelectronic motion analysis tries to reduce the complexity of data
collection in motion analysis and speed up the process. This optoelectronic
process can automatically register the location of the targets in space thus making
the process of motion analysis more simple and less time consuming. Further, by
using a suf cient number of cameras it is possible to obtain three-dimensional
(3D) data. A “passive” system does this by using a series of cameras which project
infra-red light onto re ective spheres called targets. The re ected light is optically
registered by the cameras and electronically converted to information registering
the location of the targets in space. An “active” system uses cameras to receive
signals produced by energized targets. To energize the targets a power source is
needed which usually adds extra weight and complexity to the target set up,
although this does have some advantages when identifying targets. Most opto-
electronic systems used in biomechanics are passive systems so only these will be
considered in this section.

The major advantage of optoelectronic motion analysis is ease of data
collection. The major disadvantage is cost of the cameras and the need for
specialized software.

Optoelectronic A passive optoelectronic system is based on a number of cameras. Usually for a 
system and data 3D system 6–8 cameras are required which are spread around the volume in 
collection which measurements are to be made. A typical set up is illustrated in Fig. F2.1,

which shows the location of eight cameras around a measurement volume of
approximately 27 m3 (3 · 3 · 3 m) . At the center of the volume is a series of
points which represent the location of each target attached to the body. Fig. F2.1
also shows a close up of one of the cameras.

A typical human body marker placement for use in the analysis of a vertical
jump is illustrated in Fig. F2.2. (Note that the targets are bright because they
re ect the visible light generated by the camera  ash when taking the picture).

The targets are usually made from polystyrene balls covered in re ective
tape. The targets can be of any diameter depending on application but typically
need to cover about 1/200th of the  eld of view. Thus, for a  eld of view of 3 m
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(3000 mm) the target diameter needs to be around 15 mm. Target diameters
available are as small as 3 mm to as large as 30 mm.

The camera used is based on video technology. Around the lens is a series of
infra-red light emitting diodes. Infra-red light cannot be seen by the human eye
so using this type of light does not affect the performer. When these diodes
 ash, infra-red light is re ected back from the targets (in the same way as seen
in Fig. F2.2 for visible light) and recorded by the infra-red light sensitive chip
within the camera. The light is focused onto this chip by the camera lens in
exactly the same way as a normal camera. This makes an “image” for that  ash.
A typical image seen by one camera is given in Fig. F2.3. This image is then
transmitted back to the host computer as digital information. The cameras can
repeat this operation quickly with sample rates of 240 Hz being common, and
sample rates of up to 1000 Hz possible.

The data representing the location coordinates of each target are produced by
the manufacturer’s software. The host computer takes the images from all the
cameras and “reconstructs” the data to provide the coordinates for each target.
With the camera set up as in Fig. F2.1, 3D coordinates can be obtained. An
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Fig. F2.1. A typical optoelectronic camera configuration

Fig. F2.2. Typical target placements for a whole body movement



important condition is that each target must be seen by a minimum of two
cameras in order to do this. Thus one limitation of the optoelectronic system is
that targets must be “seen” by the cameras so cannot be placed in locations
which can be obscured, for example by loose  tting clothing or long hair. The
software also enables the markers to be identi ed and tracked. This is at best a
semi-automatic part of the system as human intervention is required to solve
data reconstruction dif culties that originate form target mis-identi cation,
cross-over of targets, and target drop out. For a well set-up system with appro-
priate activity and target placement these interventions should be minimal.

Operational Calibration
procedures As with any motion analysis system, the space within which the performer

operates must be calibrated before use. Each manufacturer has developed their
own system of calibration but a common method is to place a calibration object
on the  oor in the movement volume. A wand with two or more markers of
known separation is moved around the whole of the movement volume to
calibrate the volume (Fig. F2.4). This process is known as dynamic calibration.
Using the manufacturer’s recommended procedure it is possible to obtain recon-
struction accuracies of less than 1 mm, and reconstruction precisions of around
0.2 mm.

Target sets and biomechanical models
Different target sets can be used for different applications. A target set is depicted
in Fig. F2.2 for use in general whole body human movement analysis. This is a 16
point target set in which targets are placed on the second metatarsal–phalangeal
joint (2, left and right), ankle joint (2), knee joint (2), hip joint (2), shoulder joint (2,
superior surface of the acromion), elbow joint (2), wrist joint (2), C7, and vertex.
These markers de ne a common 12 segment biomechanical model consisting of
foot (2), shank (2), thigh (2), upper arm (2), lower arm and hand (2), torso, and
head. One of the limitations of this target set is that targets which are intended to
represent the joint centers are placed on the outside of the joint center. Some
software “correction” is required to account for this. A second limitation is that
the full 3D motion of the segments cannot be obtained unless more markers are
placed on each segment. Another target set is depicted in Fig. F2.5 which is for a
detailed study of the lower body and which overcomes these limitations.
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Fig. F2.3. A typical image of the targets seen by one camera



Calculation of kinematic variables
The main purpose of the optoelectronic system is to obtain the 3D (x, y, z) coordi-
nates of each target as a function of time. These data are usually output by the
system to a data  le. This data  le can be used as input to software (either from
the manufacturer or a third party) to compute a range of kinematic data. It is also
possible to access this data and to display it – or even perform calculations – using
commonly available spreadsheet programs.

Other applications
Optoelectronic systems collect kinematic data but other instruments can be
integrated into the data collection system. A common addition is the inclusion of
a force platform. Any other data system needs to be synchronized with the
kinematic data collected by the cameras but is usually provided for by the manu-
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Fig. F2.4. Wand calibration



facturer. If kinetic data is simultaneously collected then the software provided by
the manufacturer (or third party) enables complex biomechanical data, such as
joint moments and powers, to be computed. These data form the basis of gait
analysis, and integrated optoelectronic systems have a major role to play in this
area.
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Fig. F2.5. Twenty-seven point lower limb target set
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F3 DATA SMOOTHING

Key Notes

Data smoothing is required to reduce the effect of errors in the data that
occur in the process of data collection. These errors are particularly
troublesome when  rst and second derivatives (i.e., velocity and
acceleration) are computed. Several data smoothing algorithms are
available for use in computer analysis software to provide data
smoothing, a common one being the Hanning algorithm.

Motion analysis requires the digitization of points representing, for
example, the joints of the human body. The process of digitization
introduces errors in the data and these come from three main sources: 1)
image recording (foreshortening, depth and obliquity); 2) point location
and resolution; and 3) event timing.

The Hanning algorithm is one method that can be used to reduce the
effect of errors by “smoothing” the data. The Hanning algorithm gets
rid of the “jaggedness” associated with raw data and improves the
estimates of velocity and acceleration which may be computed through
the process of numerical differentiation. The Hanning algorithm is
sometimes referred to as a “moving average” algorithm as it is applied
over the  rst three points of the data (i.e., points 1, 2, and 3) and then
moves on one point to the next set of three (i.e., points 2, 3, and 4). This is
repeated over the whole data set. The Hanning algorithm has some
limitations and other algorithms are available, such as the Butterworth
4th order algorithm, which allow more  exibility in the smoothing
required.

Errors in Experimentally collected data in sport and exercise biomechanics always has 
experimental data some error associated with it. This error is introduced due to the process used to

collect data. It is most noticeable in motion analysis data but it exists in all other
forms of data. The error in motion data can come from a number of sources
categorized as 1) image recording errors, 2) digitization errors, and 3) timing
errors.

Image recording errors
These occur in two-dimensional (2D) analysis due to: 1) foreshortening error,
which is when a length is oriented towards or away from the camera and appears
to be smaller than it really is; 2) depth error, which is when a length closer to the
camera appears larger than when it is further away; 3) obliquity error, which is
the increased error in measurement at the edges of the image. These errors can be
minimized by  lming perpendicular to the plane of action, by making sure the
movement to be analyzed is planar in the plane of action, and by restricting the
action to the central area of the  lm (i.e., avoid making measurements at the edges
of the image).

Data smoothing

Errors in motion
analysis data

Hanning algorithm



Digitization errors
These occur due to 1) point location error, which is due to the dif culty of
identifying reference points and joint centers; 2) resolution errors, which are due
to the resolving ability of the digitizing system, the size of the image and the
actual size of the  eld of view.

Timing errors
These occur due to 1) timing mechanisms used, whether it be a clock or electronic
oscillator but this is usually very small, or 2) event timing error, which is usually
obtained to ±1 sample (for example, heel strike in running can only be judged to
±1 frame). Note: in video analysis both “frames” and “ elds” can be used where
two  elds make up one frame. In the context of this section the term frame is used
in the general sense and refers to successive images regardless of how they are
composed.

It is sensible when collecting data to try to reduce the errors as much as
possible by the use of appropriate procedures. It is impossible to remove all the
errors at source so various error reduction methods have been developed.

The effect of Errors in data make the data look “ragged” but the main problem is the inexact-
errors in data ness with which any single point can be estimated. For example, consider the

path of the center of gravity in the long jump take-off. The original or “raw”
data obtained from a motion analysis based on video are given in Fig. F3.1. On
this  gure is marked the frame at which touch-down and take-off occur. Due to
the raggedness of the curve it is not possible to be really sure about the height of
the center of gravity at touch-down or take-off.
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Fig. F3.1. Typical data for the height of the center of gravity during the touch-down to 
take-off phase in a long jump

A further problem is the effect that these errors have on the “processed” data.
In sport and exercise biomechanics displacement data are collected (as, for
example, in motion analysis) but other kinematic quantities are then required,
such as velocity and acceleration. Velocity is the rate of change of displacement
and acceleration is the rate of change of velocity and these are calculated
according to the equations:

velocity (v) = change in displacement (d2–d1)/change in time (t) (F3.1)

acceleration (a) = change in velocity (v2–v1)/change in time (t) (F3.2)



When these are implemented on data that contains errors the effect of the
error is magni ed in the velocity calculation and magni ed even further in the
acceleration calculation. This is illustrated in Fig. F3.2 for an object that is
moving at constant velocity. The left-hand panel shows displacement data and
the right-hand panel shows the corresponding velocity as calculated from
equation F3.1. When the data has no errors (top row), the result is a velocity
value that is constant, re ecting the constant velocity condition that is being
analyzed. When the data has one error (middle row – the error introduced by
the digitizing process) the effect is to overestimate one of the velocity calcu-
lations, but underestimate the next velocity calculation. This gives a spike in the
velocity data so, rather than a  at line, the velocity data now gives incorrect
values for some of the velocity points. This problem gets worse if the data has
two errors in it (bottom row) and it can be seen that the spike in the velocity
data becomes worse.

In the general case when all of the data have some error, it can be dif cult to
obtain a value for velocity that has any practical value. As noted above the
calculation of acceleration using equation F3.2 becomes more dif cult as it is
based on the already affected velocity data.
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Fig. F3.2. The effect of errors in the computation of velocity

Smoothing and The errors noted above can be reduced by applying an algorithm to smooth (or 
the reduction of  lter) the data. The algorithm has a similar effect to that achieved by hand when 
the effect of you draw a smooth curve through some ragged data.
errors in data A common smoothing algorithm is Hanning. This is described as a “moving

average” algorithm and has the form of:

yi = 0.25 xi-1 + 0.5 xi + 0.25 xi+1 for i = 1 to (N - 1) (F3.3)



where the variable x is the original data, the variable y is the newly computed
“smooth” value, and N is the number of frames. This formula is applied to all of
the data as a moving average. It can be applied more than once for increased
smoothing. To illustrate its application, consider the data from Fig. F3.1, which is
tabulated in Table F3.1.

Table F3.1 Typical raw data for a long jump take-off
with the smoothed data based on a Hanning algorithm.

Frame Raw data Smoothed data

1 0.970 0.955
2 0.940 0.928
3 0.860 0.898
4 0.930 0.898
5 0.870 0.904
6 0.945 0.915
7 0.901 0.943
8 1.025 1.012
9 1.095 1.137

10 1.333 1.296
11 1.423 1.403
12 1.433 1.448
13 1.501 1.487
14 1.512 1.497
15 1.463 1.486
16 1.505 1.501
17 1.532 1.503
18 1.443 1.473
19 1.473 1.463
20 1.463 1.448
21 1.393 1.428

The smoothed data (y) for frame 2 is calculated as:

Y2 = 0.25* (1) + 0.5* (2) + 0.25* (3)
Y2 = 0.25*(0.970) + 0.5*(0.940) + 0.25*(0.860)
Y2 = 0.928

Similarly, for frame 3

Y3 = 0.25*(0.940) + 0.5*(0.860) + 0.25*(0.930) = 0.898

This is a time consuming process so it is best done by computer, either in a
spreadsheet or a specially written computer program.

It should be noted that the moving average algorithm cannot calculate data
for the  rst or last data points in the array as it needs to have a data point to
represent the (i–1) or (i+1) data which does not exist for the  rst and last points
respectively. To overcome this, end point routines are used. For the Hanning
algorithm these are:

y1 = 0.5 *(x1 + x2) (F3.4)

yN = 0.5 *(xN-1 + xN) (F3.5)

The results of this are presented in Fig. F3.3.
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Other smoothing The Hanning algorithm has the advantage that it can easily be programmed on 
algorithms a spreadsheet or customized computer program. Although it does successfully

smooth the data, it is not very  exible for this purpose. Frequently in sport and
exercise biomechanics it is necessary to have greater smoothing than the
Hanning algorithm can supply. For this reason other algorithms have been
developed.

The Butterworth second order smoothing algorithm is an important algo-
rithm which uses similar principles to the Hanning, but is more  exible. It is
frequently referred to in the biomechanical literature as a Butterworth fourth
order, as this algorithm is often applied twice. This is because one of its side
effects is to cause a temporal distortion of the data (where the data are shifted
forward in time) which is corrected if the algorithm is applied for a second time
in the reverse direction (i.e., starting at the last data point and working forwards
to the  rst data point). The Butterworth fourth order algorithm is highly versa-
tile and very effective for smoothing a wide variety of biomechanical data.
Normally this algorithm will be available in the motion analysis software used
for producing kinematic data.

Splines are another method to produce effective smoothing of biomechanical
data. These come in two forms (cubic splines or quintic splines) with the latter
providing more  exibility for complex data structures. The essential principle of
this method is that the algorithm tries to  t a smoothed curve over three (cubic)
or  ve (quintic) adjacent data points and moves onto the next group of data and
repeats the data  tting until the end of the data structure is reached. This local-
ized smoothing is also very effective in smoothing out errors in the data. As this
is also a complex algorithm then it will also be available in the motion analysis
software used for producing kinematic data.
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F4 ACCELEROMETERS AND OTHER
MOTION MEASURING DEVICES

Key Notes

Acceleration is de ned as the time rate change in velocity. It is calculated
from the change in velocity divided by time and is the second derivative
of position–time data. Acceleration is a vector quantity, and has both
magnitude and direction.

Acceleration calculated from the double differentiation of
displacement–time data is often contaminated with high levels of noise
(errors) and is often unsuitable for analysis.

Accelerometers are devices which can be used to directly measure the
acceleration of a body.

Newton’s second law states that if a mass, m, experiences an acceleration,
a, then there must be a net force F acting on the mass such that:

F = m.a.

Hooke’s law states that if a spring of stiffness k is stretched from its
equilibrium position, then there must be a net force acting on the spring.
The force F is related to the stiffness and the degree of deformation such
that:

F = k.x

where x is the change in spring length.

Goniometry is the direct measurement of joint angles. The term
goniometer comes from the Greek word for angle which is gōniā. An
electro-goniometer is a device that responds to changes in angular
position by producing a detectible change in its electrical characteristics.

Acceleration Motion is described by displacement, velocity and acceleration. The displacement
and velocity can be measured with reasonable accuracy using kinematic methods
such as video analysis. Since these systems are based on the measurement of
position data some form of differentiation must be used to determine the velocity
and acceleration. Each time the original data set is differentiated the effect of any
small measurement error in the data is multiplied. To determine acceleration
from position data requires the calculation of the second differential (change in
displacement/time is the  rst differential: change in velocity/time is the second
differential) and consequentially acceleration data are often contaminated with a
large amount of error.

Suppose the velocity and acceleration of an athlete during an activity are to be
studied. By  lming the athlete side-on with a video camera and then measuring

Acceleration

Accelerometer

Hooke’s law

Goniometry

Newton’s 2nd Law



the displacement frame-by-frame (or  eld-by- eld if a 50 Hz analysis is
required), the information shown in Table F4.1 can be obtained. By calculating
the changes in displacement between consecutive frames and dividing by the
time (differentiating) it is possible to determine the velocity. The same process
can be followed to  nd the frame-to-frame changes in velocity to thus allow the
acceleration to be found.

In Table F4.1 the actual displacement data with the subsequent calculation of
velocity and acceleration can be seen. In Table F4.2 a small amount of error (plus or
minus 2 cm) has been added to the data. These errors occur as a consequence of the
measurement process. It can be seen than even very small amounts of error in the
displacement data lead to large errors in the acceleration making it necessary to
 nd an alternative approach to determining acceleration during movement.
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Table F4.1. Velocities and accelerations calculated from “error free” coordinate data

Frame Position/m Change in Change in Velocity/ms-1 Change in Acceleration/ms-2

displacement/m time/s velocity/ms-1

1 50.00
2 50.40

0.40 0.04 10.00
0.50 12.50

3 50.82
0.42 0.04 10.50

0.50 0.50
4 51.24

0.42 0.04 10.50
1.00 25.0

5 51.70
0.46 0.04 11.50

1.00 25.0
6 52.20

0.50 0.04 12.50

Table F4.2. Velocities and accelerations calculated from coordinate data containing small errors

Frame Position/m Change in Change in Velocity/ms-1 Change in Acceleration/ms-2

displacement/m time/s velocity/ms-1

1 50.02
2 50.38

0.36 0.04 9.00
2.50 62.5

3 50.84
0.46 0.04 11.50

2.00 –50.0
4 51.22

0.38 0.04 9.50
2.50 62.5

5 51.70
0.48 0.04 12.00

0.50 0.50
6 52.18

0.48 0.04 12.00

An alternative method for determining acceleration would be to measure the
forces acting upon a body and to use Newton’s second law (S F = m · a) to
calculate the resultant acceleration. However, this method is only possible when
it is practical to measure the contact forces acting upon the body of interest.
There are many applications where this is not possible either because the body
of interest is not in contact with any surfaces or the movement of interest occurs
in a situation where contact forces can not be easily measured.

However, obtaining accurate and reliable acceleration data is essential to
many areas of biomechanics. For example, good acceleration data are necessary
for the calculation of joint reaction forces (the internal forces acting across joints
in the human body obtained through the process of mathematical modeling).
There are also many applications of the use of acceleration data to drive control
devices in the automotive and aeronautical industries. To solve the dif culties



associated with obtaining acceleration indirectly using displacement or force
data an alternative method is to measure the acceleration directly. This involves
the use of an accelerometer.

In applications that involve  ight, such as aircraft and satellites, accelerometers
are very often based on the properties of rotating masses. However, the most
common design in human movement is based on a combination of Newton’s law
of mass acceleration and Hooke’s law of spring action.

Newton’s 2nd law Newton’s second law states that if a mass, m, experiences an acceleration, a, then 
and Hooke’s law there must be a net force F acting on the mass and this is given by F = m.a.

Hooke’s law states that if a spring of stiffness k is stretched from its equilibrium
position, then there must be a net force acting on the spring given by F = k.x
(where x is the change in spring length). If these two equations are combined it
reveals that the displacement of the spring will be proportional to the accelera-
tion such that:

F = m.a = k.x

Therefore:

a = k.x / m

The  gure below (Fig. F4.1) shows an accelerometer constructed of a small mass
attached to a spring. When there is no acceleration the spring rests at its natural
length (x1) and there is no force acting upon the mass. If the system is accelerated
to the right the spring must exert a force on the mass to bring about its acceleration.
This requires the spring to lengthen. As it lengthens force is developed until the
mass is experiencing an acceleration equal to that of the remainder of the system.
If the displacement of the mass is measured it is possible to calculate how great
the acceleration was using the equation a = k.(x2 – x1)/m from above.
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Fig. F4.1. A spring mass based accelerometer demonstrating the link between the
deformation of the spring (x2 - x1) and the acceleration (a = k (x2 - x1)/mass). Note that the
acceleration of the accelerometer to the right requires the spring to lengthen until such time as
the mass is experiencing a spring force sufficient to make it accelerate

The spring–mass principle is used in many accelerometer designs.
Accelerometers differ in how they measure the displacement of the mass.
Common types of accelerometer include:



Sensor category Key technologies
Capacitive Metal beam or similar produces capacitance; change in

capacitance related to acceleration
Piezoelectric Piezoelectric crystal mounted to mass–voltage output

converted to acceleration
Piezoresistive Beam or similar whose resistance changes with

acceleration
Hall Effect Motion converted to electrical signal by sensing of

changing magnetic  elds
Magnetoresistive Material resistivity changes in presence of magnetic  eld
Heat Transfer Location of heated mass tracked during acceleration by

sensing temperature

The most common accelerometers used in sport and exercise biomechanics are
either capacitive or piezoelectric. Piezoelectric accelerometers are generally more
expensive than those using capacitive technology.

It is important to remember that acceleration is a vector quantity and thus has
both magnitude and direction. In the example above, only the magnitude of the
acceleration in the direction that the spring is being stretched can be measured.
This means that the accelerometer is able to measure in one dimension only and
that the acceleration calculated is only representative of acceleration in that
direction. To gain a complete picture of the acceleration of a body it is necessary
to have three accelerometers, one aligned with each of the planes of motion.
Some accelerometers are produced containing separate sensors in each plane to
allow 3D measurements with a single device.

It is important to be aware of the effect that changing the orientation of the
accelerometer has on the output. Consider the spring-mass system described
previously; if the spring is oriented, as shown in Fig. F4.1, such that it is aligned
with the horizontal plane, then at rest there will be no force acting between the
spring and the mass. If the system is rotated 90∞, so the mass hangs down below
the spring (Fig. F4.2), then the spring will exert a force on the mass equal to its
weight. This force is the result of the acceleration due to gravity (F = m.g). In this
situation the baseline acceleration is said to be equal to 1g – where g represents
the acceleration due to gravity (9.81 ms-2).

If the system were oriented the opposite way around, the mass would
compress the spring and thus a negative displacement would be recorded. Here
an acceleration of minus (-) 1g would be recorded. It is thus important that
careful thought is given to the orientation of the accelerometer. Acceleration is
reported in either metres per second per second (m.s-2) or relative to the
acceleration due to gravity (g). Typical values for acceleration are given below.

Earth’s gravity 1 g
Passenger car in corner 2 g
Bobsled rider in corner 5 g
Human unconsciousness 7 g

When using accelerometers one of the most important considerations is the
mounting of the accelerometer on the body. For the accelerometer output to give
an accurate representation of the acceleration of the body it is essential that the
motion of the accelerometer is the same as that of the body being measured. This
requires a  rm mounting between the transducer and the body. In the case of
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human movement it is important to realize that not all parts of the body
experience the same motion, and that the movement of the soft tissues (skin, fat,
muscle) will be different to that of the skeletal system.

When measuring the accelerations associated with human movement it is
normal to see that the accelerometers are attached to the body at sites with
minimal soft tissue between the skin and the underlying skeleton. The malleoi,
head of  bula, greater trochanter, and acromion process are all common examples
of locations where accelerometers are  xed on the body. Accelerometers have also
been mounted on bite-bars held between the teeth. Even at these bony sites a  rm
mounting is necessary and combinations of bees wax and other mounting glues as
well as tape have been used to ensure good  xation. Some experiments have even
mounted accelerometers on pins driven into the bone to provide a close approxi-
mation between the accelerometer and bony movement.

When looking at the shock absorbing qualities of the body accelerations at
different parts of the body can be compared to see how these change as the force
is absorbed by the body tissues. The normal effect of the body systems is to
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Fig. F4.2. The effect of orientation on the output from an accelerometer



gradually dissipate the force and lower accelerations are found higher up the
body than at the foot (see table below).

Activity Location Acceleration
Walking barefoot Tibia ~2.5 g
Running barefoot Tibia ~9 g
Running in shoes Tibia ~8 g
Running in shoes Head ~3 g

Goniometry If the range and rate of joint motion, rather than the position or orientation of
the body in space are of most interest, then an alternative to video motion
analysis is to use goniometry. Goniometry is the direct measurement of joint
angles. The term goniometer comes from the Greek word for angle, which is
gōniā.

In the simplest form a goniometer can be thought of as a protractor with
extending arms (Fig. F4.3). To use this type of goniometer:

1. Align the fulcrum of the device with the fulcrum or the joint to be measured
2. Align the stationary arm of the device with the limb being measured
3. Hold the arms of the goniometer in place while the joint is moved through its

range of motion
4. The angle between the endpoints represents the entire range-of-motion.

Whilst this type of goniometer may provide a cheap and simple method for
measuring the range of motion at a single joint, under controlled conditions, it is
not suitable for measuring how joints move during dynamic activities. Here the
facility to sample the joint angle at regular intervals throughout the movement is
required. This is achieved through the use of electro-goniometers.

An electro-goniometer is a device that responds to changes in angular position
by producing a detectible change in its electrical characteristics. An example
would be an angular potentiometer. As the joint angle changes so the position of
the contacts on the potentiometer change and the resultant change in resistance
can be measured using a simple electric circuit. The size of the resistance change
would be proportional to the angular displacement. It is thus possible to gain a
record of joint motion without the need for laborious digitisation of video.
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Fig. F4.3. A long-arm goniometer showing the alignment of the two measurement arms along
the axes of the limbs and the central protractor



Despite their relative simplicity, goniometers have never formed a major role
in the analysis of human movement for a number of reasons. Initially goniome-
ters were only able to detect changes in angle about a single axis, thus requiring
multiple devices and separate mounting to detect movement about other axes.
For example, to measure plantar- exion/dorsi- exion and inversion/eversion at
the ankle would require two separate goniometers to be attached in the sagittal
and frontal planes respectively. This is dif cult at the ankle, especially if the
measurements were to be performed whilst the participant was wearing any
kind of footwear. This dif culty has been overcome to some extent with the
development of tri-axial goniometers where a single device is able to measure
angular displacement about three separate planes.

A further issue with goniometery is the dif culty of aligning the device with
the joint axis of rotation, especially in those joints where the axis is not
stationary. For example at both the knee and shoulder joints there is signi cant
gliding and rolling of the joint axis such that the axis of rotation changes
depending upon the joint’s absolute position. In addition, the data from the
goniometer only provides information of the relative orientation of the two
adjoining limbs and does not provide information about the absolute position of
the body in space, something that is often required.

To help address the problem of obtaining joint displacement data without the
need for the manual digitization of  lm or video various opto-electronic devices
have been developed. These devises use automated procedures to track markers
in space and to plot their coordinates. In essence the procedure is the same as
manual digitisation of  lm or video, however the identi cation of the points is
done automatically by computer.

The use for opto-electronic systems began as early at the 1960s but only
became really viable with the advancement of computer technology in the 1980s.
To work, opto-electric systems need to be able to identify the points of interest
in the body and hence require clear contrast between the background and the
desired object to be tracked. This is usually achieved by using re ective markers
attached to known body landmarks. The markers are illuminated by infra-red
light and tracked by infra-red sensitive cameras (e.g. Qualysis, Vicon, Elite
systems). Thus only the motion of the markers are detected and can be tracked
and plotted to provide motion data. An alternative approach has been to use
markers which light-up in sequence (e.g., CODA).

Opto-electronic systems have been widely used in sport and exercise, their
most common application being to the measurement of gait. However, they are
generally limited to laboratory based analysis and are not suitable to measure-
ment of competitive performances or  eld measures (see section F2).
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F5 FORCE PLATE

Key Notes

Force platforms measure the ground reaction force (GRF) which, in
accordance with Newton’s third law of motion, is equal in magnitude
and opposite in direction to the action force that is applied to the plate.
In the UK the vertical component of GRF is normally denoted as Fz,
and the two horizontal components are denoted as Fy and Fx. Force
plate transducers are usually piezoelectric or strain gauge types, which
display high linearity, low hysteresis and minimal cross-talk between
axes.

In accordance with Newton’s second law of motion, the sum of all of the
forces acting on a body in a particular direction is proportional to the
acceleration experienced by the body in the same direction. For example,
during running the magnitude of Fz minus the athlete’s body weight
determines the magnitude of the vertical acceleration of their center of
mass (C of M). Similarly, the magnitude of Fy minus the force of air
resistance determines the runner’s horizontal acceleration in the direction
of running.

In addition to peak forces, impulse and loading rate, a number of other
variables can also be obtained from force platform information. The
center of pressure (C of P) is the position of the resultant GRF vector in a
plane that is parallel to the surface of the plate. Two-dimensional
coordinates (Ay and Ax) are used to locate the C of P in relation to the
center, or origin, of the plate. The free moment (Tz or Mz’) is the turning
force or moment around a vertical axis through the C of P.

The force plate Newton’s third law of motion dictates that for every (action) force that is
applied by one body to another body, a (reaction) force is exerted by the second
body on the  rst that is equal in magnitude and opposite in direction, as
depicted in Fig. F5.1. In sport and exercise biomechanics the reaction force
exerted by the ground on an individual is often studied; and is termed the
ground reaction force (GRF). The force plate, or platform, embedded into the
ground in a variety of settings (e.g., a laboratory or athletics track) is used to
measure the GRF. Force data can be combined with the velocity of the C of M to
obtain the power of the whole body (see section D1), and with kinematic and
anthropometric data to determine joint reaction forces (see section C9).

Platforms measure force using transducers. When a force is applied to the
plate each transducer experiences a deformation that is proportional to the
magnitude of the force. A voltage, measured from the transducer, also alters in
proportion to the amount which the transducer has deformed. Thus, the change
in voltage measured by the transducer is proportional to the magnitude of force
that it experiences. Force plates used in sport and exercise biomechanics either

The force plate

Interpreting
GRF–time curves

GRF related
variables



use strain gauge or piezoelectric transducers. Piezoelectric platforms are more
sensitive to rapid changes in force, but suffer from a change in output voltage
with no change in applied force (i.e., drift). As such, they are more suited to
measure forces from relatively short-lived, dynamic activities such as walking,
running and jumping. Strain gauge plates are less susceptible to drift and are
not as sensitive as piezoelectric models, so are preferred for recording forces
from longer, less dynamic activities such as archery or shooting.

Regardless of the type of transducer used, there should ideally be a linear
relationship between the force applied to the platform and the measured voltage
(see Fig. F5.2a). Assuming linearity, the gradient of the relationship is effectively
the calibration coef cient, which is used to convert volts into Newtons. In
situations where the relationship is non-linear (see Fig. F5.2a), a higher order
polynomial (e.g., quadratic) can be  tted to the data points to provide the
calibration coef cient. Force plates should also display minimal hysteresis (see
Fig. F5.2b), so that the relationship between force and voltage that is observed
when the plate is loaded is the same as when it is unloaded. Transducers are
arranged in force plates so that they measure three components of GRF that are
parallel to the plate’s three orthogonal axes (see Fig. F5.3). There should be
minimal cross-talk, which is the detection of force by the transducers in one
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direction (e.g., parallel to the z axis) and also by those in one or both of the other
directions (i.e., parallel to the x and or y axes). In addition, the force plate should
have a natural frequency that is much higher than the highest frequency of the
signal being measured, and ideally higher than 800 Hz. This is so that the force
being applied to the plate does not cause it to vibrate, which would affect the
magnitude of the force being detected.

The voltage output from the transducers must be ampli ed before being
recorded and stored, usually on a computer. Sampling of the signal into a
computer should also use an analog-to-digital-converter (ADC) that has at least
12 bits (ideally 16 bits) to ensure that as small a change in force as possible can
be detected. To satisfy the Nyquist theorem, the signal should normally be
sampled at a minimum of 500 Hz, particularly if forces are recorded during
impacts.

Two conventions exist to identify the three components of GRF that force
plates measure. The convention shown in Fig. F5.4, which is commonly used in
the UK, labels positive Fz in the vertical upwards direction, normal to the
surface of the plate. Positive Fy acts along the forward horizontal direction,
parallel to the long axis of the plate, and positive Fx occurs in the positive right
lateral direction. It therefore follows that negative Fz, Fy, and Fx act downward,
backward and in the right medial direction. The convention adopted by the
International Society of Biomechanics (ISB) replaces Fz with Fy, Fy with Fx, and
Fx with Fz.
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Interpreting Knowledge of Newton’s laws of motion is imperative in understanding and 
GRF–time curves interpreting GRF–time curves. Forces acting on a runner during the stance phase

include the weight of the athlete (Fw), air resistance (Fa), and the components of
GRF (see Fig F5.5). In accordance with Newton’s second law of motion (see
section B2), the sum of all the forces acting in each (x, y, z) direction are propor-
tional to the acceleration experienced by the athlete in that direction (i.e., ∑F =
m·a); as shown in equations F5.1–3. Dividing both sides of each equation by the
mass of the runner would yield the acceleration of the runner’s c of m.
Assuming that both Fw and Fa are constant, the shape of the resulting accelera-
tion–time curves would be identical to that of the force–time curves.

Fz – Fw = m·az (F5.1)

Fy – Fa = m·ay (F5.2)

Fx = m·ax (F5.3)

Hypothetical Fz– and Fy–time curves are shown in Fig. F5.6, together with
free body diagrams that coincide approximately with three points during the
stance phase. The Fx–time curve has been omitted from Fig. F5.6 as the
magnitude of this component is much smaller than the other two and therefore
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has less effect on the acceleration of the body, and generally shows far greater
inter-individual variability. In the vertical direction, as the athlete’s foot  rst
contacts the ground the magnitude of the Fz component of GRF is smaller than
that of the body weight (i.e., Fz < Fw). In accordance with equation F5.1, this
results in a negative (i.e., downward) force and, therefore, acceleration acting on
the runner. As the runner is already moving downwards at this time, accelera-
tion in the same direction results in an increase in the downward velocity of the
c of m. This pattern is quickly reversed as Fz exceeds Fw, resulting in a positive
acceleration that acts in an upwards direction. Initially, this decreases the down-
wards velocity of the runner until it reaches zero and their downwards motion
is arrested. This occurs approximately halfway through the stance phase, after
which the positive acceleration causes the runner’s c of m to move upward, with
increasing velocity, until just before toe-off. Here, the magnitude of Fz again
drops below that of Fw, causing the acceleration to act in a downward direction.
However, unlike at the start of the stance phase the runner is moving upward at
this time so the negative acceleration causes the velocity to decrease in this
direction immediately before toe-off.

Interpretation of the Fy–time curve from the stance phase of running is
generally simpler than the Fz curve as motion only occurs in one direction (i.e.,
forward along a line parallel to the y axis). Assuming air resistance to be so small
as to be negligible, as the runner’s foot contacts the plate in front of their c of m, a
braking force (i.e., negative Fy, prior to point b in Fig. F5.6) is experienced that acts
in a backward direction. Again, in accordance with Newton’s second law (see
equation F5.2), this force acts to decelerate the forward motion of runner. This situ-
ation continues until the runner’s c of m passes over the point of support (i.e.,
point b in Fig. F5.6) and the reaction force changes from negative to positive (i.e.,
forward). Positive Fy (i.e., after point b in Fig. F5.6) causes a positive horizontal
acceleration that increases the forward horizontal velocity of the runner. Thus,
when running at an approximately constant velocity, a braking force (negative Fy)
acts during the  rst half of the stance phase that causes the horizontal velocity of
the runner to decrease. Through the second part of the stance phase a propulsive
force (positive Fy) dominates, which causes the runner’s c of m to accelerate in the
direction of motion.

Precisely how much the velocity of the runner’s c of m changes in any
direction during the stance phase can be determined using the impulse–
momentum relationship (see section B3). Graphical integration of the force–time
data, using Simpson’s or the Trapezium rule, would yield the area bounded by
the curves and hence the impulse (see Fig. F5.7). In accordance with the
impulse–momentum relationship, the change in velocity of the runner’s c of m
can be obtained by dividing the net impulse by his/her mass. With regard to the
forces acting in the direction of motion (i.e., Fy), if the braking impulse is greater
than the propulsive impulse (see Fig. F5.8a) the runner will lose velocity during
the stance phase. Conversely, if the braking impulse is less than the propulsive
impulse the runner will gain velocity as he/she passes over the plate (see Fig.
5.8b); and if the two impulses are equal (i.e., zero net impulse), then the runner
will complete the stance phase with the same velocity with which they started it
(see Fig. F5.8c). In the unlikely situation of a runner experiencing zero net
impulse over successive strides, their overall velocity would decrease due to
effect of air resistance during swing phases of each stride. Thus, in order to
maintain a constant running velocity, the propulsive impulse should be slightly
greater than the braking impulse during each stance phase.

328 Section F – Measurement techniques



GRF related The rate at which the vertical component of the GRF is applied to the body is 
variables often measured during running, landing, and so on, together with the peak

force, as an indication of the risk of chronic injury due to such activities. The
instantaneous loading rate can be obtained by measuring the gradient of a
tangent that is drawn at the point on the Fz–time curve where the rate of change
is considered to be greatest (see Fig. F5.9a). Alternatively, an average loading
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rate can be obtained by measuring the rate at which Fz rises by a force equal to
the participant’s body weight after an initial brief period whilst the body is
loaded with, for example, 50 N, as recommended by Miller (1990; see Fig. F5.9b).
This method obviously masks the peak loading rate provided by the instanta-
neous method, but produces a more reliable and objective measure due to the
systematic way in which it is calculated.

In addition to the three components of GRF and their impulses, the center of
pressure (c of p) and the free moment are often calculated from force plate data.
The c of p is the position of the GRF vector in relation to a plane parallel to and
just below the surface of the plate (see Fig. F5.10). Two coordinates (Ax and Ay)
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give its location in relation to the origin, or center, of the plate, as shown in Fig.
F5.10. Ax and Ay can be either positive (one side of the respective axis) or nega-
tive (the other side of the axis), which designates the quadrant of the plate in
which the c of p lies. If an individual runs across the platform or stands on it, the
c of p will lie somewhere beneath their foot (see Fig. F5.11a). Alternatively, if a
two footed stance is adopted then the c of p will lie roughly midway between
the two points of contact (see Fig. F5.11b). A common application has been to
examine the pattern of movement of the c of p beneath the foot during the
stance phase of running. Motion of the c of p also mirrors that of the c of m
during standing or during activities that require the body to be as stationary as
possible (e.g., archery or shooting), so it has also been used as a measure of
stability during such activities.

The free moment is the moment or torque about the vertical axis through the
c of p, which coincides with the Fz vector (see Fig. F5.12), and is commonly
referred to as either Mz’ or Tz. It must also be remembered that, like the
components of force, Mz’ is equal in magnitude but opposite in direction to the
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moment that is applied to the plate about the vertical axis. Mz’ is therefore often
used to measure the reaction to the moment exerted by individuals during
activities that involve twisting around a vertical axis.

Reference Miller, D.I. (1990) Ground reaction forces in distance running. In: Biomechanics of
Distance Running (P.R. Cavanagh ed.). Champaign, IL.: Human Kinetics, pp.
203–224.
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F6 PRESSURE MEASUREMENT

Key Notes

Pressure is de ned as force per unit area such that:

Force (N) / Area (m2) = Pressure (N/m2)

There are a number of common units used to report pressure, all are
derived from the basic units of Newtons per meter squared (N/m2).

The Pascal (Pa) is the pressure created by a force of 1 N acting on an
area of 1 m2. Since 1 Pa represents a relatively low force spread over a
large area it is more common to see Kilopascals (kPa) reported, where 1
kPa is equal to 1000 Pascals.

Atmospheric or barometric pressure is the pressure caused by the
weight of the air in the Earth’s atmosphere. Standard pressure is a
pressure of one normal (standard) atmosphere de ned as:

1 Atmosphere = 101325 Pa or 101.325 kPa

If measured using a mercury barometer pressure may be reported as the
height in mm of the column of mercury (Hg).

1 Atmosphere = 760 mmHg at 0°C (32°F)

Pressure Pressure is a mechanical parameter that is relevant in many applications.
Pressure is de ned as force per unit area and thus has units derived from this:

Force (N) / Area (m2) = Pressure (N/m2)

Another common unit used to describe pressure is the Pascal (Pa). One Pascal
is the pressure created by a force of 1 N acting on an area of 1 m2. Since 1 Pa
represents a relatively low force spread over a large area and in many appli-
cations would yield very high values it is not uncommon to see Kilopascals
(kPa) reported, where 1 kPa is equal to 1000 Pascals.

An alternative to the use of Pascals for the reporting of pressure is to compare
the measured pressure with the ambient pressure due to the Earth’s atmosphere.
Atmospheric or barometric pressure is the pressure caused by the weight of the
air in the Earth’s atmosphere. Imagine a column of one square meter cross-
section extending from the Earth’s surface to the edge of the atmosphere. This
column will contain a certain number of air particles that will collectively create
a force due to their weight. The force will depend upon the air density and the
distance between the Earth’s surface and the atmosphere.

Standard pressure is a pressure of one normal (standard) atmosphere de ned as:

1 Atmosphere = 101325 Pa or 101.325 kPa

or 1 Atmosphere = 760 mmHg at 0°C (32°F) (this de nition will be explained later)

The pressure experienced in any situation will be dependent upon both the
magnitude of the applied force and area over which it acts. For example, if a

Pressure

Units of pressure



person of body weight 750 N were to stand on one foot, and the area under the
foot was 0.01 m2 then the pressure would be:

Force / Area
750 N / 0.01 m2 = 75,000 N/m2 = 75 kPa

or

75 kPa / 101.325 kPa = 0.74 Atmospheres

If the same person were to put on a pair of shoes with a pointed heel (e.g.,
stilettos) the area in contact with the ground would decrease. If the new contact
area was 0.002 m2 the pressure in this situation would be:

750 N / 0.002 m2 = 375,000 N/m2 = 375 kPa

or

375 kPa / 101.325 kPa = 3.70 Atmospheres

In both the above situations the force was the same but the pressure differed signi -
cantly. This is important in the study of human movement as looking at pressure
gives an indication of the distribution of the load. From the injury perspective, the
body is more likely to suffer damage and pain from a force concentrated in a small
area (and thus a high pressure) than if the same load was distributed more widely.
For example, it is more painful to have your foot trodden on by someone wearing
stilettos than someone wearing  at shoes.

In many situations it is desirable to reduce the pressure by increasing the
contact area, this is seen in the design of protective equipment such as helmets,
shin pads, and so on that serve to distribute the load over a larger area and thus
reduce the pressure exerted on the underlying tissues and so lower the potential
for injury. When moving on a soft or fragile surface, for example, snow or ice, it
is advantageous to spread the load to prevent the surface collapsing; this is seen
in the design of snow shoes, skis, and so on.

By contrast there are situations where it is desirable to maximize the pressure
and to have as small an area of contact as possible. Many cutting or piercing
tools have an obvious point to focus the load into a small area to allow penetra-
tion without the necessity for a large force.

To measure pressure it is necessary to have an indication of both the area and
the force applied. There are many different approaches to measuring pressure; a
number of the common methods are addressed below.

The simplest method for measuring pressure is a manometer. A manometer
generally consists of two connected columns of  uid; when both columns
experience an equal pressure the  uid in each will rest at the same level (Fig. F6.1).
If a greater pressure is experienced on one side than the other, the level of  uid on
that side will go down and the level on the other side will rise (Fig. F6.2). The
difference in height of the two columns of  uid will be related to the applied pres-
sure, the cross-sectional area of the column and the density of the  uid, such that:

Weight of  uid column = Volume of  uid ¥ Density (r) ¥ gravity (g)

Volume = height (h) ¥ cross-sectional area (a)

Weight of  uid column = r ¥ h ¥ a ¥ g

Pressure = Force / Area

Pressure = r ¥ h ¥ a ¥ g / a = r ¥ h ¥ g
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If the reference end of the manometer is sealed in a vacuum then the height
of the  uid will represent the absolute pressure. This is the case in the design of
the common mercury barometer. Pressure is sometimes reported in the units
mmHg which represents the height in millimeters of a column of mercury (Hg
is the chemical symbol for mercury) in a manometer. At a pressure of 1
Atmosphere (101.325 kPa) the column height would be 760 mmHg. The
common reference to blood pressure as 180/60 (or similar) is recorded in rela-
tion to the height of a mercury column and thus should properly read as 180
mmHg/60 mmHg.

Thus far, pressure measurements under steady-state conditions have been
considered. These are called static pressure measurements, or steady-state
measurements. This technique is useful in applications in which equilibrium or
only very slow changing conditions are experienced. If the rate of change or
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pattern of change of pressure over short intervals of time is required these are
called dynamic pressure measurements.

To measure dynamic pressure changes usually requires the use of an electro-
mechanical pressure sensor. Electromechanical pressure sensors, or pressure
transducers, convert motion generated by a pressure sensitive device into an
electrical signal. The electrical output is proportional to the applied pressure.
The most common pressure transducer types are strain gauge, variable capaci-
tance, and piezoelectric.

A common application of dynamic pressure measurement is in the analysis of
the pressure distribution beneath the foot during standing or gait. Pressure
sensitive insoles are made up from a thin layer of material containing a large
number of pressure sensors distributed throughout the sole. These allow detec-
tion of areas of high and low pressure beneath the foot at any moment during
movement. The pressure pro le created is usually presented as a series of colors
to represent the different pressures (Fig. F6.3) or using a 3D graph with bars of
different heights to indicate the magnitude of the pressure. Foot pressure
analysis has been widely used to investigate the effect of different types of
footwear and the link between pressure patterns and different injury patterns.
Generally, higher pressures are indicative of a greater risk of injury.
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F7 ELECTROMYOGRAPHY

Key notes

Electromyograms (EMGs) are recordings of electromyographical signals
that emanate from muscle  bers prior to their contraction. Surface
electromyography in sport and exercise biomechanics invariably involves
recording signals from muscle  bers belonging to many different motor
units.

EMGs are usually detected using a pair of recording electrodes that are
connected to a differential ampli er, which ampli es the difference
between the signals detected from the two electrodes. Ampli ers can be
connected directly to a PC for storage of EMGs (hard-wired system).
Alternatively, ampli ed signals can be sent via radio waves to a receiver
connected to a PC (telemetry system), or stored in a memory card before
later being transferred to a PC (data logger system).

Surface electrodes should ideally be located between a motor point and a
tendon, parallel to the direction of the underlying muscle  bers. Prior to
this the skin should be shaved, washed, and ideally rubbed with an
alcohol wipe to reduce skin–electrode impedance. Unwanted signals
emanating from other adjacent muscles (cross-talk) should be minimized
prior to recording EMGs.

To quantify the magnitude of muscle activity over time, the raw EMG can
be processed using the Average Recti ed Value (ARV), Root Mean
Square (RMS) or Linear Envelope. Both the ARV and the RMS are
typically calculated over time windows that have a width of between 10
and 200 msec. The Linear Envelope typically constitutes a second order
Butterworth  lter with a cut-off frequency between 3 and 80 Hz.

EMGs that have been processed in the time domain can only be compared
with those from the same muscle at different times without removal of
electrodes. To compare EMGs between different muscles and individuals,
processed EMGs should be normalized by dividing them by the EMG,
processed in exactly the same way, from a reference contraction. This can
be an isometric submaximal or maximal voluntary contraction.
Alternatively, if the aim is to improve the homogeneity of EMGs from a
group of individuals, then each processed EMG should be normalized by
dividing it by the mean or peak processed EMG from the same task.

The frequency content of the raw EMG can be revealed by a Fast Fourier
Transform (FFT). Typically the FFT is calculated over intervals of 0.5–1 s,
and the median frequency (MDF) is obtained from the resulting Power
Density Spectrum. Changes in the MDF over time have traditionally been
used as a measure of the fatigue state of the muscle. More recently,
concerns over the use of the FFT on non-stationary signals has led to the
development of more sophisticated joint time–frequency domain analysis
techniques (e.g., wavelet analysis).

The electromyogram
(EMG)

Electromyography
equipment

Recording EMGs

Time domain
processing

Normalizing EMGs

Frequency domain
processing



The The fundamental unit of the neuromuscular system is the motor unit, which 
electromyogram consists of the cell body and dendrites of a motor neuron, the multiple branches 
(EMG) of its axon, and the muscle  bers that it innervates. Prior to tension being

developed within a muscle, an action potential is generated by the motor neuron
which propagates along the axon and then the muscle  ber. At rest, muscle
 bers have a potential difference of –60 to –90 mV with respect to the outside of
the muscle. Propagation of the action potential along the muscle  ber reduces
the potential difference (depolarization) until it becomes positive (i.e., hyper-
polarization) before it returns to the resting level (repolarization) after the action
potential has passed. During a sustained muscle contraction repeated cycles of
depolarization and repolarization, also known as the  ring rate, often occur in
excess of 20 times per sec.

Changes in the electrical potential of muscle  bers can be detected using
electrodes placed either inside the muscle ( ne-wire electrodes) or on the surface
of the skin overlying the muscle (surface electrodes). The majority of sport and
exercise science applications use surface electrodes which, depending on their
size, can detect the signal from thousands of muscle  bers belonging to many
(e.g., 20–50) different motor units. More recently, arrays containing many tiny
surface electrodes have been developed that have the potential to be able to
detect signals from  bers belonging to individual motor units. Regardless of the
type of electrodes used, once the detected signal has been ampli ed and
recorded, it is known as the electromyogram (EMG). A typical raw EMG
recorded using surface electrodes is shown in Fig. F7.1.
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Fig. F7.1. Typical raw electromyogram (EMG)

Electromyography It is generally accepted that the peak amplitude of the raw EMG recorded using 
equipment surface electromyography does not exceed 5 mV and that its frequency spectrum

is between 0–1000 Hz; with most of the usable energy limited to below 500 Hz and
the dominant energy between 50–150 Hz. When detecting and recording EMGs a
major concern should be that the  delity of the signal is maximized. This is partly
achieved by maximizing the signal-to-noise ratio (i.e., the ratio of the energy in the
electromyographical signal to that in the noise). Noise can be considered as any
signals that are not part of the electromyographical signal and can include move-
ment artifacts, detection of the electrocardiogram, ambient noise from other



machinery, and inherent noise in the recording equipment. Maximizing the
 delity of the EMG is also achieved by minimizing the distortion (i.e., alteration of
the frequency components of the signal) that it receives during detection and
recording. Both the equipment and procedures used to detect and record EMGs
have a major in uence on their  delity, and should be given careful consideration.

Most commercially available electromyographical systems can be classi ed as
either hard-wired, telemetry, or data logger systems. A data logger or telemetry
system is necessary if data are to be collected away from the main recording
apparatus; however data loggers typically do not allow on-line viewing of
EMGs as they are being recorded and telemetry systems can be prone to
ambient noise and cannot be used in areas with radiated electrical activity.
Hardwired systems do not suffer from these limitations, but obviously preclude
data collection outside of the vicinity of the recording apparatus. The  delity of
the recorded EMG is dependent on the characteristics of the (differential)
ampli er that is connected to the electrodes, which are listed below together
with recommended minimum speci cations.

● Input Impedance (>100 MW)
● Common Mode Rejection Ratio (CMRR) (>80 dB [10,000])
● Input Referred Noise (<1–2 mV rms)
● Bandwidth (20–500 Hz)
● Gain (variable between 100 and 10,000)

Whilst the requirements of ampli ers are generally agreed on by electromyo-
graphers, the con guration of electrodes and the material from which they are
made are not. Some prefer pre-gelled silver/silver chloride (Ag/AgCl) elec-
trodes that are circular with a diameter of 10 mm and a center-to-center distance
of 20 mm. Others recommend silver bar electrodes that are 10 mm long, 1 mm
wide, have a distance of 10 mm between them and are attached without the use
of a gel. Fig. F7.2 shows a schematic diagram of the equipment needed to detect
and record EMGs.
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Fig. F7.2. Depiction of (a) hard-wired, (b) telemetry, and (c) data logger electromyography
systems
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Recording EMGs In order to maximize the amplitude of the EMG the recording electrodes should
be located between a motor point and a tendon. If the motor point cannot be
located using, for example, a stimulator, electrodes can be placed in the center of
the belly of the muscle whilst under contraction; although it should be recog-
nized that this location could coincide with a motor point. Differential ampli ers
subtract the signal detected by one recording electrode from that detected by the
other. Thus, locating electrodes either side of a motor point will lead to the
cancellation of symmetrical action potentials that are traveling in opposite
directions from the neuromuscular junction and that reach the electrodes at
approximately the same time. However, if both electrodes are placed to one side
of a motor point the signal is not canceled to the same extent, as one electrode
detects the signal slightly earlier than the other (see Fig. F7.3). Following the
location of an appropriate site, the electrodes should be oriented along a line
that is parallel to the direction of the underlying muscle  bers.

An improvement in the input impedance that is offered by many of today’s
ampli ers has diminished the need to reduce the skin–electrode impedance to,
for example, below 10 kW. Skin preparation techniques that involve abrasion
with  ne sandpaper or scratching with a sterile lancet are, therefore, now largely
redundant. Some preparation of the skin (to below 50 kΩ) is, however, still
necessary in order to obtain a better electrode–skin contact and to improve the
 delity of the recorded signal. Typically, this involves cleansing the skin with
soap and water and dry shaving it with a disposable razor. Additional rubbing
with an alcohol soaked pad and then allowing the alcohol to vaporize can be
used to reduce further impedance in individuals with less sensitive skin. In
addition to the recording electrodes, differential ampli ers require the use of a
reference electrode that must be attached to electrically neutral tissue (e.g., a
bony landmark). The degree of skin preparation given to the reference electrode
site should be the same as that afforded to the muscle site. Most
electromyographers also advise using an electrode gel or paste to facilitate
detection of the underlying electromyographical signal. This can be accom-
plished either through the use of pre-gelled electrodes or by applying a gel or
paste to the skin or electrode prior to attachment. Use of gel or paste is not
always necessary when using so-called “active electrodes” (i.e., those that are
mounted onto a pre-ampli er). Here, the electrolytic medium is provided by the
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Fig. F7.3. Depiction of the recording of a single muscle fibre action potential by a differential
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small amount of sweating that takes place when dry electrodes are applied to
the skin.

Even if surface electrodes are placed close to the belly of the muscle it is
possible that the detected signal may contain energy that emanates from other,
more distant muscles. This is particularly pertinent when recording EMGs from
muscles that are covered by thicker than normal amounts of subcutaneous fat,
such as the gluteals and abdominals. The presence of cross-talk has traditionally
been detected using functional tests that involve getting the participant to
contract muscles that are adjacent to the one under investigation, without
activating the one of interest. The detection of a signal from electrodes overlying
the muscle of interest is, therefore, an indication of cross-talk. If possible,
decreasing the size of the electrodes and/or the spacing between them reduces
the chances of recording cross-talk. However, the most effective way of reducing
it to almost negligible levels is to use a double differential, rather than a (single)
differential ampli er. This has three, rather than two, detecting electrodes that are
equally spaced apart, which calculates the difference between the signals
detected by electrodes 1 and 2, and electrodes 2 and 3. These two (single differen-
tiated) signals are then further differentiated (double differentiation) by the
ampli er. This procedure works by signi cantly decreasing the detection volume
of the three electrodes, and thereby  ltering out signals from further away.

The Nyquist theorem dictates that electromyographical signals, which are
detected using surface electrodes, should be sampled at a minimum of 1000 Hz
(ideally 2000 Hz) to avoid aliasing (i.e., loss of information from the signal).
Sampling of the signal into a PC should also use an analog-to-digital converter
(ADC) that has at least 12 bits (ideally 16 bits) to ensure that as small a change in
muscle activity as possible is able to be detected by the system.

Time domain Raw EMGs have been processed in numerous ways, particularly since the 
processing advent of computers. Today, if the electromyographer wishes to quantify the

activity of a muscle or investigate how this activity changes over time, raw
EMGs are processed in what is known as the time domain. This is achieved
using either the Average Recti ed EMG, Root Mean Square EMG or Linear
Envelope, all of which provide an estimate of the amplitude of the raw EMG in
mV or mV.

Calculation of the Average Recti ed EMG value (ARV) involves  rst either
reversing all of the negative phases of the raw EMG (full-wave recti cation). The
integral of the recti ed EMG is then calculated over a speci c time period, or
window (T), and the resulting integrated EMG is  nally divided by T to form
the ARV (see equation F7.1).

(F7.1)

where X(t) is the EMG signal
where T is the time over which the ARV is calculated

The Root Mean Square (RMS) EMG is the square root of the average power of
the raw EMG calculated over a speci c time period, or window (T) (see equation
F7.2).
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Both the ARV and RMS are recognized as appropriate processing methods
and are commonly used by electromyographers, although the RMS yields a
larger amplitude than the ARV (see Fig. F7.4).

As well as using a single calculation of the RMS or ARV, the raw EMG is
often processed by making successive calculations throughout its duration; with
the resulting series of values forming a type of moving average. For this, the
duration (or width) of successive time windows (T) can vary between 10 to 200
msec, depending on the duration and nature of the raw EMG. Selection of short
duration window widths (e.g., 10–50 msec) may allow the detection of rapid
alterations in activity, but the resulting curve will still resemble the recti ed
EMG (see Fig. F7.5). Thus, peak amplitudes from repetitions of the same task
will remain highly variable. Adoption of longer widths (e.g., 100–200 msec) will
reduce the variability of peak amplitudes, but the resulting curve will lose the
trend of the underlying EMG (see Fig. F7.6). As such, rapid changes in muscle
activity may go undetected. A possible solution is to use a moving average
(either RMS or ARV) in which the time windows overlap instead of including
discrete sections of the EMG. Overlapping the windows by a progressively
greater amount results in a curve that increasingly follows the trend of the
underlying recti ed EMG, but without the variable peaks that are evident in the
recti ed EMG (see Fig. F7.7).

The Linear Envelope is also a popular processing method for use on EMGs
from dynamic contractions. Similar to the moving average, this involves
smoothing the recti ed EMG with a low pass  lter (see section F3), and also
results in a curve that follows the trend of the EMG. When using the Linear

342 Section F – Measurement techniques

0.12

0.10

0.08

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 8

Time (sec)

R
M

S
 (m

V
)

(a)

A
R

V
 (m

V
)

0.12

0.10

0.08

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 8

Time (sec)

(b)

Fig. F7.4. The raw EMG in Fig. F7.1, processed using (a) the Root Mean Square (RMS), and
(b) the Average Rectified Value methods with a time window width of 100 msec



F7 – Electromyography 343

R
M

S
 (m

V
)

Time (sec)
0 1 2 3 4 5 6 7 8

0.20

0.15

0.10

0.05

0

Fig. F7.5. The raw EMG in Fig. F7.1, processed using the RMS method with a time window
width of 10 msec

0.10

0.08

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 8

Time (sec)

R
M

S
 (m

V
)

0.12

0.08

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 8

Time (sec)

R
M

S
 (m

V
)

0.10

Fig. F7.7. The raw EMG in Fig. F7.1, processed using the RMS method with a time window
width of 100 msec overlapped at 50 msec

Fig. F7.6. The raw EMG in Fig. F7.1, processed using the RMS method with a time window
width of 200 msec



Envelope the type, order and cut-off frequency need to be selected.
Traditionally, a second order Butterworth  lter has been applied with a cut-off
frequency between 3 and 80 Hz. Deciding on the cut-off frequency is similar to
choosing the width and amount of overlap of the time window when using a
moving average. A low frequency will result in a very smooth curve, which will
be unable to detect rapid changes in activation. Conversely, a higher frequency
will closely follow rapid changes in activity, but will still bear the peaks that
characterize the recti ed EMG.

Following processing the EMG is often used to estimate when a muscle is
active (i.e., on) or inactive (i.e., off). Typically, in order to determine the
amplitude threshold at which the muscle is considered to be active, the baseline
EMG (or noise) is treated as a stochastic (or random) variable. The mean of this
baseline is, for example, calculated over 50 msec and the muscle is deemed to be
active when the EMG amplitude exceeds 2 standard deviations above the mean
baseline activity for 20 msec or more.

Normalizing EMGs EMGs processed in the time domain can only be compared with those recorded
from the same muscle at another time without the removal of electrodes (i.e.,
during the same testing session). Re-location of electrodes over the same muscle
on subsequent occasions will invariably result in the detection of signals from
different motor units. The skin–electrode impedance will also differ between
sessions, regardless of how well skin preparation techniques are adhered to,
which will affect the shape of the underlying signal. These and other factors will,
therefore, affect the amplitude of the processed EMG. The amplitude of EMGs
recorded from the same muscle on different occasions, as well as from different
muscles and different individuals, cannot therefore be compared directly, even if
they have been processed using the same method. This problem can be solved by
normalizing EMGs after they have been processed; which involves expressing
each data point of the processed EMG from the speci c task as a proportion or a
percentage of the peak EMG from a reference contraction that has been processed
in the same way. The reference contraction is usually an isometric sub-maximal or
maximal voluntary contraction (MVC) of the same muscle. Use of the EMG from
an isometric MVC has the added potential of revealing the activity of a muscle, in
relation to its maximal activation capacity, during a speci c task (see Fig. F7.8).
However, in order to achieve reliable and valid EMGs from isometric MVCs indi-
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viduals must practice them extensively. Previously unrehearsed MVCs will result
in torque or force, and hence muscle activity, that is far from maximal.

Normalization can also been used to reduce inter-individual variability of
EMGs recorded from the same task. It is now well established that dividing each
data point within the task EMG by either the mean or the peak EMG from the
same task is the most effective way of improving group homogeneity. However,
due to the nature of the denominator used in their normalization equation,
normalizing EMGs in this manner cannot be used to compare the amplitude of
EMGs between different muscles and individuals.

Frequency domain Raw EMGs are processed in the frequency domain primarily to investigate 
processing changes in the signal that accompany muscular fatigue. It is now well

established that fatigue is associated with a compression of the frequency
spectrum towards the lower frequencies (see Fig. F7.9), that occurs largely due
to a decrease in the conduction velocity of action potentials.

Transformation of a raw EMG from the time domain to the frequency domain
is typically achieved using a Fast Fourier Transform (FFT), which is usually
performed between 0.5 and 1 sec. The output of the FFT is typically represented
as the power spectrum density (PSD), which shows the relative magnitudes of
the range of frequencies present in the raw signal (see Fig. F7.9). One of two
parameters is commonly obtained from the PSD in order to quantify it. The
median frequency (MDF) is de ned as the frequency that divides the PSD into
equal halves, and the mean frequency (MNF) is calculated as the sum of the
product of the individual frequencies and their own power divided by the total
power. The MDF is less sensitive to noise and more sensitive to spectral
compression than the MNF and, as such, is more commonly used.

Regardless of which parameter is chosen, it is typically obtained from consec-
utive time windows, to enable changes in the signal that occur as a consequence
of fatigue to be monitored. Successive values from the contraction period are
then analyzed using (linear) regression; with the intercept of the regression line
being the initial frequency and the gradient representing the fatigue rate. In
addition to fatigue, the frequency spectrum of the raw EMG is affected by a host
of other factors. Similar to analysis in the time domain, speci c frequencies (e.g.,
MDF) cannot, therefore, be compared directly when they are calculated from
EMGs recorded from different muscles or individuals, or from the same muscle
when the electrodes have been re-applied. However, comparisons can be made
between the gradient of the regression line in order to investigate differences in
fatigue rates between different muscles, occasions or individuals.
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The FFT should only be used on EMGs that display high stability; typically
those recorded from sustained force isometric contractions between 20% and
80% MVC. EMGs recorded from dynamic contractions typically reduce the
stability of the signals, largely as a consequence of recruitment and de-
recruitment of different motor units. As such, the FFT should only be used in
such circumstances when signal stability is reasonably high and parameters (i.e.,
MDF or MNF) should only be calculated at the same phase of repetitive cyclic
events. The problem of obtaining spectral parameters from non-stationary
signals has largely been overcome by using the joint time–frequency domain
approach which estimates the change in frequency as a function of time. The
simplest method that conforms to this approach is the short-time Fourier trans-
form, which splits the EMG into small continuous or overlapping time
windows, applies a FFT to each and calculates the MDF or MNF as above.
Recently, more sophisticated methods of time–frequency domain analysis have
been applied to EMGs. These include the Wigner–Ville transform from which
the instantaneous MDF or MNF is calculated, the Hilbert transform from
which the averaged instantaneous frequency is obtained, and wavelet analysis
which produces intensity spectra.
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F8 ISOKINETIC DYNAMOMETRY

Key Notes

This is a device that is used either to assess or exercise the agonist and
antagonist muscles that are located about the joints in the human body.
The device can be used to test almost all the joints of the human
body. The machine provides a constant pre-determined angular velocity
of movement. The limb of the body moves the lever arm of the machine
at this pre-determined angular velocity. Throughout the full range of
movement the limb will experience an equal and opposite resistance to
the force it is applying to the lever arm in order to move it. There are
various types of isokinetic dynamometers available and these are usually
presented in the form of rehabilitation devices that are located in
hospitals or universities. The device can examine the effectiveness of a
strength training program that is prescribed following surgery or injury
to a joint. Modern isokinetic dynamometers have the ability to test the
limb at various speeds and in either an isokinetic, isometric, or isotonic
mode of assessment.

Involves a  xed speed with a variable resistance. This occurs throughout
the full range of movement of the limb/lever system.

This is usually when the joint or position of the limb is held in a  xed
angular position. The muscle develops tension but there is no change in
the length of the muscle.

This involves a situation of an equal tension developed in the muscle
throughout the exercise. The muscle develops equal tension while the
muscle length changes. This is technically a very dif cult situation to
achieve accurately in practice.

The device can be used in sport to exercise muscles to an optimum
strength, or in medicine where it can be used to assess the degree of
muscle wasting following injury or surgery to a limb/joint. The device
can develop strength in a muscle throughout a full range of movement.
The various modes of testing and various pre-determined angular
velocities available allow a complex combination of both assessment and
exercise. These devices are expensive and are rarely seen in gymnasiums
that are solely used for exercise purposes.

The term isokinetic is a word used to describe muscle contraction when the rate
of movement (velocity) is held constant. The term dynamometer is a word used
to describe an apparatus for measuring force or power especially during
muscular effort. An isokinetic dynamometer is a device, which is usually electro-
mechanical (both electrical and mechanical) in operation, that assesses isokinetic
torque curves of muscles during different movement patterns.

Isokinetic

Isokinetic
dynamometer

Isometric

Isotonic

Application



Isokinetic Isokinetic dynamometers are used extensively within many forms of human 
dynamometers movement, for example within sports as exercise devices that develop speci c

muscles and muscle groups, and within rehabilitation and medicine to condition
muscles following injury or muscle wasting.

There are many different commercial companies that produce isokinetic
dynamometers and they can be used to test almost any joint of the human body.
Some examples of the more common commercial isokinetic dynamometer
testing machines include: KINCOM; ARIEL; CYBEX; BIODEX and AKRON. All
these machines will incorporate a device that will control the rate of movement
of the arm-crank of a machine to which the limb or lever of the body is attached.
Fig. F8.1 helps to illustrate this in more detail.

Isokinetic devices can be set up to examine almost any joint within the human
body. Fig. F8.1 shows an application on the shoulder during a  exion and
extension movement. The machine in this case would assess the agonist and
antagonist shoulder muscle function. The agonist muscle is de ned as the
muscle that contracts while another muscle resists or counteracts its motion (i.e.,
the antagonist). The antagonist muscle is de ned as the muscle that offers a
resistance during the action of the agonist muscle. This muscle contraction can
take the form of both concentric and eccentric types. Concentric contraction is
de ned as when muscle tension is developed and the muscle shortens. In this
case the muscle contracts concentrically and the  bers of the muscle shorten
(i.e., origin and insertion are drawn together). Eccentric contraction is when
muscle tension is developed and the muscle lengthens. As the muscle contracts
eccentrically its  bers lengthen and origin and insertion are drawn apart.
During the shoulder movement portrayed in Fig. F8.1 the machine would assess
the torque/strength possessed by both the  exor (pectoralis major and deltoid)
and the extensor (latissimus dorsi and teres major) muscles of the shoulder joint.

Muscular contribution to joint stability is invaluable and it is helpful in the
prevention of injuries. The knee joint is a typical example where muscular
contribution to stability is essential. At the knee joint, muscular stability is
provided by the quadriceps (extensors) and the hamstrings ( exors). Following
both injury and surgery to the knee joint (such as in the case of a ligament
replacement) the muscles usually undergo severe muscle wasting. The isokinetic
dynamometer is a device that can provide a measure of the amount of muscle
wasting and hence a measure of the rehabilitation that is needed to regain the
muscle balance (strength).
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The isokinetic device usually has the ability to subject the limb to one of three
testing or exercise modes: isokinetic, isometric, and isotonic.

Isokinetic Isokinetic assessment involves a  xed speed with a variable resistance that
accommodates the muscle’s ability to generate force. It is characterized by a
constant velocity at pre-selected rate. The resistance offered by the machine
varies to match the exact torque applied (or created) by the muscle (i.e., a force
applied at a distance from an axis of rotation). This also occurs throughout the
full range of movement (ROM). The unique application of this form of testing is
that the joint is tested throughout its full range of movement (i.e., a situation
that is similar to the actual condition within sport or exercise).

Isometric Isometric or static testing is a situation when the muscle develops tension and
there is no muscle length change (muscle contraction against resistance in which
the length of the muscle remains the same). Since in these cases the joint is
usually held in a  xed angular position (i.e., an isometric exercise where
isometric in this context means equality in dimension) the resistance automatic-
ally varies to match the force applied. An example of an isometric muscle
contraction would be in the case of pushing against a wall.

Isotonic Isotonic form of testing involves situations where there is equal tension developed
in the muscle (i.e., constant force). This type of exercise is technically dif cult to
achieve correctly and it involves muscle contraction in which the muscle remains
under constant tension while the length of the muscle changes. An example of this
type of muscle contraction/exercise could possibly be seen in the case of
performing free weights (i.e., the movement of the weights and bar in an arm curl
exercise). The weights ( xed amount) provide the constant tension and the athlete
moves the bar through  exion and extension at the elbow joint (depending on how
exactly you exercise with the weights). However, to be strictly de ned as isotonic
the velocity of the movement would need to be controled (i.e., no acceleration).

Isokinetic dynamometers are used in medicine when the limb requires regular
exercising after surgery to restore muscle power and prevent any seizing or limi-
tation of movement. They can also be used to monitor the effectiveness of phys-
iotherapy strength training programs. In sport the device can be used to exercise
and develop the power (strength) of certain muscle groups to an optimum level.
Maximal exercise can take place throughout a full range of movement. The
machine can be adjusted to simulate the exact movement used in the speci c sport
and even monitor the progress of an athlete in training and/or rehabilitation.

Within the modern gymnasium or training area there are often many machines
that use or are labeled with the term isokinetic. However, it is important to iden-
tify that these machines are not the same devices as the sophisticated rehabilita-
tion and training models produced by companies such as KINCOM and CYBEX.
The machines that are seen in the gymnasium are often only a modi ed exercise
device that uses the principle of Cams (where they are able to change resistance at
speci c joint angles or position) to create different exercise effects. It would be
unusual to see a true isokinetic dynamometer in this environment.

Operation of the The isokinetic dynamometer incorporates an electro-mechanical device which 
isokinetic keeps the limb at a constant pre-determined angular velocity during the move- 
dynamometer ment. Any effort applied encounters an equal and opposite resistance force. The

resistance developed is in proportion to the amount of force exerted. A maximal
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effort can be experienced as if a maximal load were being applied at all the points
throughout the arc of motion. The anatomical axis of rotation of the joint (where
the torque is created) is aligned with the machines axis of rotation (where the
torque is transmitted). Various arms and levers of adjustable length are available
so the device can accommodate most of the joints of the human body and varying
sizes of subjects. The results are presented as a measure of torque against angular
displacement. Torque values can be plotted against the position of the limb at any
instant. Fig. F8.2 depicts a torque against angular displacement trace for a knee
 exion–extension assessment using an isokinetic dynamometer.

Considering Fig. F8.2 it is possible to see that the trace begins at 90∞ of knee
 exion. As the quadriceps muscle extends the leg to full extension (180∞) the
device registers the torque generated by the quadriceps. Resistance is offered
from the machine at every single point (angular position or displacement)
throughout the full range of movement from 90∞ to full extension (i.e., the 180∞
position). This resistance matches the torque generated by the muscles. During
testing, the limb is set to move at a constant pre-determined angular velocity.
This angular velocity can be from as low as 30∞/s to in excess of 240∞/s. Angular
velocities that are low (30∞/s) are said to measure the endurance capacity of the
muscles. For example, it would be dif cult for a muscle to maintain maximum
force (torque) against a lever arm that is only moving very slowly (i.e., the
contraction and force application would be required for a longer period of time).
Conversely angular velocities that are high (> 240∞/s) are said to examine the
maximum strength capacity of the muscles. For example, at the 240∞/s speed the
muscle will reach its maximum torque very quickly and it will not have to main-
tain this for too long. The torque traces produced by the muscles at different
speeds (angular velocities) will be different.

Fig. F8.2 illustrates a trace measured at 120∞/s and it is possible to see the
maximum torque (force) generated by the quadriceps (left-hand trace) occurs at
approximately 110∞ of knee  exion (or after only 20∞ of extension movement
from the initial 90∞  exion position). Considering the torque created by the
hamstrings (right-hand side of the  gure) it is possible to see that the maximum
torque generated is less than that generated by the quadriceps and this occurs in
a distinctly different pattern. For example, the quadriceps produce a high
acceleration and high peak torque whereas the hamstrings produce less
acceleration (i.e., it takes longer for them to accelerate the lever arm to the pre-
determined velocity) and a lower peak torque that is maintained for a longer
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period of time. This indicates that the device is clearly able to show the
differences between the function of the two muscle groups that support the knee
joint. In this context it may be important to clarify how acceleration is produced
on a machine that provides a constant angular velocity of movement. At the
beginning of the movement the limb is stationary and the athlete is told to begin
the exercise. The lever arm of the machine must hence be accelerated in order
for it to reach this pre-determined angular velocity (i.e., going from a stationary
position to one of constant velocity). It is during this phase that the muscles
cause an acceleration of the lever arm.

Application Isokinetic dynamometers are able to measure several variables in relation to
muscle function during both exercise and rehabilitation. Such variables as peak
torque, angle of peak torque, time to peak torque, agonist to antagonist
muscle strength ratios, work done, power and torque decay rate are found on
most modern machines. In addition it is also possible to have different test
speeds for different functions of the muscle. For example, it is possible to assess
the quadriceps at a test speed of 120∞/s during their extension movement and
yet at the same time test the hamstrings at 30∞/s during their  exion movement.
Nevertheless, the machine does have a limitation in this respect and the
maximum angular velocity provided by these devices rarely exceeds 300°/s.
This is considerably less than the angular velocity encountered during dynamic
human movement activities such as in kicking a soccer ball.

However, within isokinetic exercise and testing two problems can occur if
they are not accounted for. These are identi ed as follows:

1. During the test the subject must exert a maximum effort throughout the full
range of movement. For example, for the machine to maintain the constant pre-
determined test speed (angular velocity) the subject must maintain a maximum
effort to the lever arm. In older type isokinetic machines it was possible for the
subject to exert an effort that was less than maximum and thus move the lever
arm at a test speed that was less than that of the pre-selected rate.

2. In the context of testing using an isokinetic dynamometer it is possible to
observe that sometimes the movement under test will be acting against
gravity (as in the case of knee extension) and sometimes the movement will
be acting with gravity (as in the case of knee  exion). In this case it would be
necessary to have to correct the torque generated by the muscles for the
effects of resistance or assistance due to gravitational acceleration.

Most modern isokinetic devices have these correction factors built into the soft-
ware that comes with the machines. It is now possible to see if the pre-set angular
velocity has in fact been achieved by the subject at all the points throughout the
movement. In this case it would be easy either to correct the subject’s movement
pattern by encouragement or at least be aware of the errors associated with not
reaching actual test speed values. Similarly in the case of gravity correction most
modern machines will allow the tester to weigh the subject’s limb before testing
begins. This information is then input into a formula within the software, which
is used to gravity correct all the torque values that are produced.

Isokinetic devices are a signi cant part of modern exercise testing and
prescription and they are becoming essential for rehabilitation following injury.
Unfortunately, however, the signi cant cost of these devices limits their avail-
ability to only those technologically advanced and  nancially viable universities,
hospitals, or private industry laboratories.
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F9 ANTHROPOMETRY,
BIOMECHANICS, AND SPORTS
EQUIPMENT DESIGN

Key Notes

Anthropometry is the measurement and study of the human body, its
parts, and capacities. Athletes body shapes are changing, and it is clear
that they are becoming stronger,  tter, and faster. These changes occur as
a result of the need to improve and the need to accommodate changes in
equipment design.

The technical demands of sports events are increasing and sports
equipment design can be used either to enhance performance or to
impede it.

Technological advances in the sport of cycling have developed from the
sport of triathlon. Both athlete posture and body orientation on the bike
are critical components to effective performance. It is clear that both the
rider and the bike can signi cantly affect performance. Current rules and
restrictions cause riders to have to modify riding positions in order to
achieve success.

The “new rules” javelin was introduced for safety reasons in 1986. This
introduction caused athletes to have to change their technique to
accommodate the new device. As a result the javelin event became more
technically demanding. Today, shorter more technical athletes may have
the advantage over the taller stronger athletes.

Differences in athlete anthropometry can create different requirements in
both the skill and the equipment used in tennis. It is evident that taller,
stronger players may have an advantage with respect to the service action.
Latest equipment is developing at a rapid rate which may allow athletes
of different anthropometries to potentially become world champions.

Anthropometry Anthropometry can be broadly de ned as the measurement and study of the
human body and its parts and capacities. Biomechanics is one area of study,
which combines anthropometry, and the design of sporting equipment particu-
larly well and although the terms biomechanics and anthropometry are relatively
new their applications have been used extensively to study, aid, and enhance
human movement for over 500 years.

As an example (and continuing from section E5 – Propulsion through a  uid),
the new body suit for swimmers has become one of the latest scienti c appli-
cations in sports equipment design, which is attempting to reduce world
records. Back in 1875, while swimming across the English Channel, Mathew
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Sports equipment
design

Cycling

Javelin

Tennis



Webb wore a swimsuit that would have weighed around 10 lbs (4.55 kg). In
2004, at the Athens Olympics the Speedo one piece (“Fastskin”) costume
weighed only a few ounces (0.09 kg), a saving of over 98% in weight since the
original costume of 1875. While wearing these suits, it is speculated that there is
an 8% lower drag resistance and they are even better than swimming with no
costume on at all. This lower drag resistance is achieved through a series of resin
stripes or ridges printed on the fabric, which cause tiny vortices of water to form
around the suit allowing the body to cut and glide through the water with
minimum friction (rather like the skin of a shark). In swimming 90% of the drag
resistance is caused by the shape of the swimmer and only 10% is attributed to
the friction caused between the skin, the costume and the water. Hence, not only
is the suit of critical importance but also is the swimmer’s anthropometric body
shape. As an example the Australian men’s 4 · 200 m freestyle relay team for
Athens 2004 had an average height of over 191 cm (over 6 feet 3 inches) and an
average weight (mass) of over 83 kg.

Considering these statistical facts it is clear that the sports person’s body
shape and size is continually changing and rapidly developing. As a result,
appropriate modi cations are required in sporting equipment. This section
examines some recent biomechanical applications towards changes and needs in
anthropometry.

Sports equipment There is no doubt that sporting equipment can signi cantly affect the perform-
design ance of athletes either detrimentally through injury or spectacularly through

world record performances. The future will see signi cant changes in sports
surface construction; sport environment development and sport equipment
design that will be needed to both prevent records being continually broken and
yet sometimes assist in their achievement. Further, there is also no doubt that
athletes are getting physically  tter, much stronger and signi cantly faster and
that their speci c anthropometry is rapidly changing. As a result, the technical
demands of the event and the equipment will dramatically change and it will be
interesting to see how the future will respond to these changes.

All this technology must inevitably pose the important social and scienti c
questions of how far will we go to enhance performance and when does the
point arrive that we are measuring the equipment and surroundings rather than
the individual athlete? Alternatively, has this day already arrived and it is the
“fast” pools like Sydney or Athens and the “sprint” track in Tokyo that will
decide how medals are won and lost?

This section concentrates on how sports equipment has changed to accom-
modate changes in body shape and structure and how body shape has changed to
accommodate new sports equipment. Again, for clarity the section will speci cally
look at selected sports. These will be examples from cycling, javelin, and tennis.

Cycling Technological advances in cycling have developed primarily from the growth of
the sport of triathlon (such as aerobars, steep seat angled frames, and forward
riding positions). This has caused the traditional racing time trial posture to be
subjected to much experimentation and change. The posture adopted on the
bike is a direct function of the cyclist’s body con guration and shape (hip, knee,
and ankle angles, body position (cyclist relative to pedals) and body orientation
(trunk angle with the horizontal)).

This speci c change and importance of posture and anthropometry probably
 rst emerged as a signi cant factor in 1989 when Greg Lemond cycled to a 57 s
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victory in the  nal time trial of the Tour de France. Lemond attributed this
success and signi cant average speed of 54.545 km/h to the new aerodynamic
riding position and posture.

In 1992 at the Barcelona Olympic Games, Chris Boardman (GBR) shocked the
cycling world with an astounding win in the 4000 m individual pursuit event.
This win with its new “cycling position” and “technological bike” from Lotus
created a revolution in bike design characteristics. The position adopted by
Boardman allowed the rider to rest the arms on the tri-handlebar arrangement,
which allowed an almost perfect time trailing combination of both athlete and
bike (Fig. F9.1).

This advance into bike design and body position continued to develop
rapidly after this historic ride by Chris Boardman in 1992, and many new
cycling positions and innovative bikes were suddenly seen evolving. However,
in 1993, while riding a homemade bike put together from spare mechanical
parts, one rider, Graeme Obree, established a riding position that was to stay
and change the shape of time trialing yet again. The “Obree” position allowed
the rider to rest the torso on the arms, which were tucked away underneath,
thus totally eliminating them from the aerodynamic equation and reducing the
drag by 15%. This theoretically would give a speed gain of more than 2 km/h at
speeds of 50 km/h. In addition, as a result of the particularly narrow bottom
bracket he managed to reduce the drag even further by riding almost totally
“knock-kneed”.

In 1993, Graeme Obree set the 4000 m single pursuit time to a new world
record of 4 min 20.9 s beating the record previously held by Chris Boardman.
The following year saw the “Obree” position adopted by many other riders
together with the same and also often modi ed bike design (chest pad added to
aid comfort on the longer rides). Despite this interest and acceptance by many
riders, this new bike design and anthropometric racing position could still not
conquer the 1 h speed record set previously by Chris Boardman on the Lotus
bike. Nevertheless, on 27 April 1994 Graeme Obree returned using the new
“Obree” position, to set the 1 h speed record to an astounding 52.513 km/h.

Unfortunately, this success was to be limited, as in May 1994 the UCI (Union
Cycliste Internationale) decided that the position would be banned from the forth-
coming world championships. The position was still used in the triathlete circuit
where the UCI rules were not valid and many riders were seen taking between 3
and 5 s off each of their kilometer times.

Following the UCI ban Graeme Obree returned to the cycling circuit in 1995
with a new modi ed position and bike. This time, Obree used conventional
equipment: a normal bike with a particularly long stem, with aerobars extended
to their limits. The arms were now in an outstretched position with the hands
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Fig. F9.1. The cycling position first shown in 1992



about 30 cm in front of the front wheel hub. This position was now adopted and
termed what is known today as the “superman position”.

During the Atlanta Olympic Games in 1996, many other riders used the
“superman position” and the position achieved great success in both the men
and women’s 4000 m individual single pursuit titles. The world record for 4000
m had now been improved to a time of 4 min 19 s.

In the same year at the world championships in Manchester, England, Chris
Boardman was seen with an addition to his Lotus bike of 1992, which included a
custom-built handle bar that allowed him also to adopt the new “superman
position”. This combination of machine, athlete, and aerodynamics was too
much and the cycling world saw the 4000 m individual time trial record
plummet to 4 min 11.114 s. Then to add to this spectacular performance and
only 1 week after the world championships, Chris Boardman then set the 1 h
speed record to an outstanding 56.375 km/h.

However, to add more controversy and confusion, the UCI then decided also
to ban this “superman position” and they created rules that stated the handlebar
must not exceed the front wheel hub by more than 15 cm. In addition, they also
added that the distance between the front wheel hub and the bottom bracket
(i.e., at the pedals) could now be 75 cm. This value was exceptionally long
considering that most conventional bikes had only 60 cm distances. This new
value of 75 cm appeared to put the speci cations at a ridiculous level and all
that was needed for the new speci cations to adopt the banned “superman
position” was to lengthen the front part of the frame. However, it was still
particularly dif cult to achieve the exact same “superman position” previously
adopted by Graeme Obree, Chris Boardman, and now many other riders.

The years 1997 to 1999 saw a considerable number of changes to the rules
presented by the UCI and in 1999; they changed the speci cations yet again.
This time the maximum distance permitted between the front wheel hub and the
bottom bracket (i.e., at the pedals) was to be 65 cm. This change had a dramatic
effect and it meant that now it was only possible for smaller riders to have any
chance of reaching the previously successful “superman position”.

In the year 2008 at the Beijing Olympic Games we will see bike speci cation
and athlete position acquire more constraints, and perhaps even preventing
athletes from achieving what is considered to be any “normal” aerodynamic
position. Handlebar extensions may now not project more than 10 cm past a
vertical line which passes through the front wheel spindle (i.e., the front wheel
hub), which is a new regulation that means taller riders have no chance of
adopting any comfortable aerodynamic posture and the previous record breaking
“superman position” is, for these riders, now totally impossible to achieve.

Such signi cant changes in the speci cations by the UCI and the adoption of
only “standard” frame design will mean that the anthropometry of world class
riders will need to change. As a result record breakers will not be tall athletes
but will require the athlete to have a stature that suits the bike speci cations and
the need to achieve some degree of aerodynamic control within this new
restriction. Perhaps it may even be the case that the old records set with the
“superman position” will become like many other records set in conditions that
can now not be repeated. Thus, becoming a part of sport history when athletes,
coaches and spectators will only talk of records that were achieved at a speci c
track, with a particular bike and with a certain type of athlete. Perhaps this day
has already arrived and it is the equipment and conditions that are being judged
rather than the athlete who is taking part?
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Search the Internet to see if you can  nd the new speci cations presented by
the Union Cycliste Internationale for the Beijing Olympic Games in 2008.

Javelin The men’s javelin event and the method adopted in throwing it is a subject that
has a particularly stringent set of speci cations, rules, and conditions. Indeed,
optimization of training techniques has resulted in signi cant improvements in
the physical skills of the athlete. In addition, the evolution of the javelin from a
wooden implement to a device made of light alloys, that appears to  oat in the
air, has also contributed to this dramatic development. Fig. F9.2 identi es the
men’s javelin world record performance between the years 1912 and 1996.

In the years previous to 1984, the world record for the men’s javelin event was
set by Tom Petranoff (USA) at a distance of 99.72 m. At this time, the IAAF
(International Amateur Athletics Federation) expressed serious concern over the
distances that the male javelin throwers were achieving. The javelin would often
“ oat” through the air and then hit the ground and even slide onto the running
track, making the event dangerous for other competitors. In some cases, such as
with a strong cross-wind, the javelin would often land directly on the running
track. Then in 1984, an athlete from the German Democratic Republic, Uwe
Hohn threw the implement a massive distance of 104.80 m. This performance
 nally convinced the IAAF to change the javelin speci cations in order to make
the event safer.

The new speci cations javelin was introduced in April 1986 after much
controversy and confusion. The new device was to possess the same weight
(mass) as the old javelin but the center of gravity would be moved 40 mm
towards the metallic head of the spear. These factors in aerodynamics terms
meant that center of pressure in different angles of attack would be behind the
center of gravity, thus preventing it from “ oating” as in the old model.
Furthermore, it was speculated that based on a given set of release parameters,
the new javelin could only achieve distances that were 10% less than those
acquired with the old model. In addition, the new javelin would always land
point  rst, making it easier to record and also stopping it from sliding
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Fig. F9.2. The world record men’s javelin performance 1912 to 1996
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dangerously into the running track. Finally, it was also speculated that the
device would not be directly affected by cross winds and should therefore travel
in a straight line.

Around the time of this change many athletes expressed both genuine
concern and a degree of confusion as to the effects of the new model on the
sport. Many athletes thought that it would stop the event being technical and it
would now be dominated by the taller, heavier and stronger men. It was often
stated that it was now an unfair event as the smaller, more technical throwers
would not have any chance of winning the competitions using the new rules
javelin.

The ideal javelin athlete should have a combination of the components of
speed, strength, coordination,  exibility, and a good throwing arm with a
kinesthetic “feel” or “sense”. Furthermore, several mechanical factors are also
critical and these can be brie y summarized as: release speed; release angle;
release angle of attack; release angle of attitude; front foot to foul line distance;
angular velocity components about the longitudinal axis (spin); perpendicular
horizontal axis (pitch); and an axis mutually perpendicular to these two (yaw).

Considering these factors it is important to point out that almost all of them
can be affected by the anthropometric composition of the athlete. According to
some researchers the single most important component for success in javelin is
release velocity, however there are also many researchers who disagree with
this statement and claim that there are a number of critical components to
throwing success.

One clear anthropometric factor that will be affected by physical stature and
condition of the athlete is termed height of release. Table F9.1 identi es the
comparison of the height of release variable using both the old and the new
speci cation javelin.

Considering Table F9.1, it is interesting to note that the height of release of the
javelin using the new speci cation model has actually been reduced in order to
throw the implement with any degree of success. It is also interesting to note
that Petranoff is the only athlete to appear on both lists, perhaps indicating that
he was one of the few athletes who could make the transition from the old
model to using the new rules javelin.
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Table F9.1 Height of release variable for “old” and “new” model javelin

Athlete Old type javelin Athlete New “rules” javelin
Height of release (m) Height of release (m)

Nemeth 2.05 Raty 1.81
Megla 2.21 Zelezny 1.64
Ershov 1.97 Petranoff 1.72
Olson 1.82 Yevsyukov 1.71
Colson 2.01 Hill 1.69
Lusis 1.86 Mizoguchi 1.57
Luke 1.91 Wennlund 1.69
Zirnis 1.68 Shatilo 1.81
Petranoff 2.09

Mean 1.96 1.71
SD 0.16 0.01



Using the old speci cation javelin, it has been suggested by researchers that
there was a correlation between speed of release and the distance thrown. This
correlation was said to be 0.93. Whereas the correlation between speed of release
and distance thrown with the new implement may be signi cantly lower, with
values being reported to be in the range 0.80–0.87. Further, research on the topic
went on to suggest that the technical requirements of the new javelin may
actually be greater than those of the old model, which was in fact opposite to
what most athletes and coaches believed.

In 1987 the IAAF produced a technical report from the world championships,
which used the new rules javelin. Raty (Finland) won the event with a release
velocity of 29.6 m/s, Zelezny (USSR) with the highest release velocity came
third and Hill (GBR) with the next highest release velocity came 7th.

In summary, it would appear that the new rules javelin event was indeed not
dominated by the bigger, taller and stronger athletes and that the event had
actually become more technical. The difference in distance between the world
number 1 and the 50th place in 1985 with the old javelin was 12 m. In 1986, this
gap was reduced to only 8 m, making the competition much closer and perhaps
even re ecting greater accuracy in recording the distances by the of cials.
However, what is clear is that some throwers managed to adapt to the new
javelin better than others. Two examples of this were seen in the athletes
Yevsyukov (USSR) and Gampke (GDR) who following the introduction of the
new implement became world-class performers. Perhaps this clear adaptation
was due to the anthropometric composition of these athletes, which were better
suited to the technical demands of the new device.

Search the Internet to see if you can  nd out what is the current world record
for both the men and women’s javelin event.

Tennis The tennis serve is probably the most important stroke in the game. The action
involves a smooth, coordinated movement of different body parts delivered at
an optimum height. The body adopts a link system of movement, initiated from
the legs, which produces increases in velocities from one segment to the next.
Finally, this velocity is transferred to the hand and racket resulting in maximum
desired power of service.

According to empirical research the tennis serve makes up to 20–30% of all
shots in both singles and doubles and accounts for 12% of winning shots on clay
and 23% of winning shots on grass. Furthermore, it is the only stroke that the
opponent cannot directly affect and therefore it places the server at a distinct
advantage.

The inter-relationships between different body positions, different types of
service delivery ( at, topspin, and slice), different racket trajectories, segment
velocities and spin have all been analyzed previously. However, it is clear that
there is limited published research that directly measures changes in these
parameters due to contrasting anthropometry.

For an effective execution of the  at serve it is necessary for the ball to be
contacted as high above the ground as possible. This allows the ball to be struck
at a  at or downward trajectory. According to researchers this requires a contact
height of approximately 3 m to hit the service area with an adequate margin for
error. However, few players can achieve this height, so the optimum serve
becomes a compromise of compensation by varying projection angles by
between 4° and 7°. Fig. F9.3 illustrates the service action and identi es this
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height of contact position requirement and this  at or downward trajectory in
more detail.

In order to achieve maximum contact height during the service, almost
maximum extension of the joints such as the knee, hip, and elbow (180o) is
required. Research has suggested that contact heights in effective serves are
approximately 150% of the standing height, with joint extensions for the elbow
and knee at approximately 173o and 165o respectively. Further research work in
the area has identi ed that a number of elite players are actually off the ground
at the moment of ball and racket contact during the service action. This results
from the rigorous leg drive towards the ball, which increases contact height.

It is suggested by some that the taller players will serve harder, with a higher
velocity and with a much more controlled “ atter” trajectory. The smaller
players will therefore have to assume the “up” and “out” service method and
hitting the ball at a much reduced velocity. Furthermore, it is proposed that
because of this clear anthropometric difference, the smaller players will need to
use the “foot up” technique of serving in order to try and increase the impact
height relative to their standing posture. The taller players could therefore use
the “foot back” technique and hence assure faster progression towards the net,
as, for example, in the case of Pete Sampras from the USA.

As a result of the need for effective height during the serve action different
players, depending upon their anthropometry and technique, will be naturally
better at serving than others. Tables F9.2 and F9.3 indicate the basic anthro-
pometry (height and weight (mass)) of some of the world’s top tennis players
and the basic anthropometry of the fastest servers on the tennis circuit in the
year 1999.

It is interesting to note that the average height of the male and female top  ve
seeds in the 1999 US Open ATA (Association of Tennis Professionals) rankings
are 6 feet 1 inch for the men and 5 feet 11 inches for the women (indicating little
difference between the sexes).

Again, it is interesting to point out that of the men’s fastest servers at this time
none of them were in the top  ve seeds of the 1999 US Open ATA rankings,
whereas in the women’s data both Venus Williams and Monica Seles were both
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Fig. F9.3. The modern elite tennis service action



seeded. However, it is often argued that the great success achieved by Pete
Sampras (USA) was attributed to the powerful and accurate serve and volley
technique, which allows him clearly to dictate the pace of the game. Similarly,
Lindsay Davenport was also said to possess strokes which needed less power in
her racket. Both Sampras and Davenport have fast swing speeds and long
“loopy” type strokes, which is only usually observed in around 15% of top
tennis players today.

Consequently, because of these different anthropometric components (such as
the ability to possess long fast powerful strokes) within tennis players, each
player will adopt a technique and indeed a racket that suits their own individual
style and anthropometry in order to achieve optimum performance. For example,
players like Lleyton Hewitt (AUS), at a height of 5 feet 9 inches, are signi cantly
smaller than the average height of 6 feet 1 inch for the US Open top  ve seeds in
1999, yet he is still a very successful athlete and he has in more recent years
regularly been rated as the world number one player. Hence he must have
adopted a technique and indeed equipment that bene ts his particular game.
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Table F9.2 Basic anthropometry of the 1999 US Open top five seeded players

Athlete (seeded) Height (ft in) Weight (mass) – (lbs) Age (yrs)

Male
Pete Sampras (1) 6¢ 1† 170 27
Andre Agassi (2) 5¢ 11† 165 29
Yevgeny Kafelnikov (3) 6¢ 3† 179 25
Patrick Rafter (4) 6¢ 1† 175 26
Gustavo Kuerten (5) 6¢ 3† 167 22

Female
Martina Hingis (1) 5¢ 7† 130 18
Lindsay Davenport (2) 6¢ 2† 175 22
Venus Williams (3) 6¢ 1† 168 19
Monica Seles (4) 5¢ 10† 155 25
Mary Pierce (5) 5¢ 10† 150 24

Table F9.3 Basic anthropometry of some of the fastest servers in the world in 1999

Athlete Height Weight (mass) Service speed 
(ft in) (lbs) (mph)

Male
Greg Rusedski 6¢ 4† 190 143
Mark Philippoussis 6¢ 4† 202 142
Julian Alonso 6¢ 1† 180 140
Richard Krajicek 6¢ 5† 190 139

Female
Venus Williams 6¢ 1† 168 124
Brenda Schultz–McCarthy 6¢ 2† 170 123
Jana Novotna 5¢ 9† 139 116
Kristie Boogert 5¢ 10† 142 111
Monica Seles 5¢ 10† 155 109



The tennis racket has evolved dramatically since the wooden rackets of the
1970s, when the most popular choice was Canadian Ashwood, which was cut
into long strips and then steam glued and pressed together. In addition, metal
rackets molded from aluminum (chosen for the high strength to weight ratio)
were also a popular choice among players, for example, Jimmy Connors of the
USA in the late 1970s. The typical racket of 1970 possessed a string area of 70
square inches (450 cm2); it had a weight (mass) of 12.5 ounces and a racket frame
of approximately 18 mm deep. Today, tennis rackets are complex highly
engineered components that are subjected to much research and development.
However, the question that should be asked is: can these technological advances
in racket design really make up for the signi cant differences in performance
created from different anthropometry and in particular differences in serving
power and speed?

In 1976, the Prince racket emerged and was to create a revolution in tennis
racket design and construction. The aluminum Prince racket head was almost
double the original size with a string area of 130 square inches (839 cm2). The
resulting years saw many copies of the Prince racket develop, some of which had
an even larger surface area. This continued until 1980 when the ITF (International
Tennis Federation) limited the string area to a maximum of 15.5 inches in length
(approx 40 cm) and 11.5 inches in width (approx 30 cm). This was hence to set a
theoretical maximum available area of 178 square inches (1148 cm2).

This standardization had a dramatic effect on the industry and the resulting
years saw manufacturers molding rackets of graphite and glass  ber, which
produced a racket that was to be far more powerful than the older wooden
rackets, yet at the same time was also signi cantly lighter.

At this time research into racket design at Pennsylvania University in the
USA showed that increasing the mass of the racket head by 33% produced only
a 5% rise in the speed of the ball once it had been struck. However, a 33%
increase in racket head speed increased the ball speed by 31%. This clearly
showed the important link between the athlete and the racket (as the athlete is
required to accelerate the racket to the ball) and the critical importance of lighter
rackets (i.e., so the athlete can use the same force but move the racket much
quicker). In 1984, racket development then observed another signi cant change
when an inventor from Southern Germany (Siegfried Kuebler) developed the
wide-bodied frame. The theory was that the racket could be made even stiffer
and lighter by increasing the frame depth or side cross-section, while narrowing
the front pro le. Basically, the stiffer the racket the more energy is returned to
the ball. When ball and racket connect, there is only a short time of contact and
any  ex in the racket is wasted energy.

Stiffer rackets generate more power and also have signi cantly larger “sweet
spots”, which help with directional control. The “sweet spot” is considered to be
the most responsive part of the racket’s frame. If a ball and racket make contact
at the “sweet spot” it produces the most powerful shot with no, or very little,
vibration or shock. Current rackets will have a very large “sweet spot”, which is
nowadays located at the top part of the racket where most top players in the
modern game will hit the ball.

As with the Prince racket design many manufacturers rushed into producing
racket head frames up to 39 mm deep and only 10 mm wide. Materials such as
kevlar and complex thermo-plastics were used in construction which helped
allow the strings of the racket to act almost independently of the frame, leading
to a reduced ball contact time, less lost energy and consequently more power.
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In the year 1992, the modern racket had a surface area of 115 square inches
(742 cm2); it was 39mm thick with an aerodynamic pro le and all with a weight
(mass) of only 10 ounces. Compared with the wooden racket of the 1970s, it was
64% bigger, 116% thicker and yet 20% lighter. The racket of the future will have
an even larger “sweet spot” and it will probably contain multiple “sweet spots”,
which will account for shots that are even miss-hit. This racket will provide
good ball speed without effort, will be easy to maneuver, be aerodynamically
ef cient, and will not cause unnecessary fatigue. It will be constructed of
titanium or hyper carbon and  nally will not be responsible for any injury to the
athlete. To add to all this it will interact with the anthropometry of the player
providing performance or rebound ef ciency, movability, precision, power and
at the same time comfort.

Today’s elite tennis players will select a racket that is carefully balanced to
their particular needs and indeed to some extent individual anthropometry. For
example, if they are a powerful serve and volley player it is likely that this
player will use a different racket to a player whose strength is to play from the
baseline. This customization and precise selectivity will continue to play a
critical role in the development and progression of the sport of tennis into and
beyond the 21st century.

References Bartlett, R. M. and Best, R. J. (1988) The Biomechanics of Javelin Throwing: a
review. Journal of Sports Sciences 6, 1–38.
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of the fastest and most feared serves in men’s tennis. Australian Tennis
Magazine 21 (6), 46–47.

Faria, I. E. (1992) Energy expenditure, aerodynamics and medical problems in
cycling. Sports Medicine 14 (1), 43–63.
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APPENDIX I FREE BODY
DIAGRAMS

Free body diagrams are pictures (diagrams) of forces acting on a body. They
allow us to be able to analyze the effect of all the external forces acting on a body
more easily (i.e., the effect of the net force). As we have seen within human
movement there are a number of different types of forces that can act on a body:
gravitational force (weight); frictional force; normal reaction forces; applied
contact forces; tensile, shear and compressive forces; muscle and joint forces; and
centripetal, tangential and centrifugal forces. In human movement it is often the
case that several forces will act on the body simultaneously. As we have seen
earlier, force is a vector quantity and thus a force can be expressed or represented
by lines with both magnitude and direction. The net effect of these forces (the
resultant) acting on a body can be determined through representing all the forces
acting on a body using a free body diagram.

In drawing free body diagrams there are a number of steps that we should go
through in order to assist us in the accurate representation of all the forces acting
on a system or body. These can be outlined as follows:

First: isolate the body from its surroundings. Then draw the body upon which
the forces are considered to act. For example, if we are interested in the forces
on the lower arm (the ulna and radius) then only draw the ulna and radius. Do
not draw any other body that the body of interest may or may not be in contact
with.
Second: take time to identify all the external forces that are acting on the body
or system. This is usually the most dif cult part. As a guide, it is useful to
systematically go through the different forces that could be acting. For
example, if the body has mass then there will be a weight force acting and this
will be through the center of mass of the body; if the body is in contact with
any other body there must be a normal force (acting perpendicular to the
surfaces in contact) and a frictional force (acting along/parallel to the surface
of contact) acting between the two bodies; when there is no rotational com-
ponent of force (torque) the position and location of our force vectors is not so
important so long as we maintain consistent lines and directions of force
(orientation) application; when expressing forces on a free body diagram the
line of action of the force is located through the point of application; if two
forces are equal and opposite and they lie on the same line of action the
resultant effect of the forces will be zero and we could represent these forces
anywhere along the line of action; often it is useful to break the forces down
into their component parts (i.e., horizontal and vertical components of a
resultant force).
Third: once all the components in the second stage have been classi ed then
the next stage is to draw all these forces on the diagram and include the
magnitude and direction (angles and orientations) of each known force. In
addition represent all the unknown forces on the diagram.
Finally: select a coordinate system of conventional representation in order to
identify the positive and negative components of the force.

Note: if we are concerned with torques and moments the positioning of these
components on the free body diagram is critical.



Example A mass (i.e., a body) is being pushed up an inclined plane by a horizontally
directed force (i.e., parallel to the inclined plane). Draw the free body diagram of
the external forces acting on the body.
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APPENDIX II SAMPLING THEOREM

During the analysis of movement it is often important to collect data at more than
one single moment. Indeed, in most biomechanical analyses it is important to be
able to record changes in the key variables over a period of time. Most measure-
ment devices work by sampling and recording data at regular intervals during
the measurement period. The number of samples in any given period is known as
the sample frequency and is usually recorded in hertz (Hz), that is, the number
of measures per second. For example most video recorders operate at 25 frames
per second (25 Hz) which can allow for analysis on a  eld by  eld basis at 50 Hz,
while it is common to sample force platform data at around 1000 Hz.

Consider the following simple example to illustrate the effect of sample rate on
the data recorded. If the changes in the knee angle and the vertical ground
reaction force during a drop-jump take-off are recorded, the input signal being
recorded is the knee angle and this is changing in a continuous fashion, in other
words there is always a knee angle present that could be recorded. When data are
sampled a series of “snap shots” of these data are recorded creating a discontin-
uous record of the magnitude of the knee angle (see Fig. App2.1).

By looking at these two graphs it is possible to see that whilst it may be accept-
able to sample the knee angle data at 25 Hz it would not be acceptable for the
force data as key moments in the input signal are missed. This is because the knee
angle and forces change at different rates and are said to have a different
frequency content.

The frequency content describes the make-up of the signal and re ects the rate
at which changes in the magnitude of the variable happen. In the case of the knee
angle data it is clear that the knee angle undergoes a gradual change from  exion
to extension with only one major direction change in the movement. On the other
hand the force data are more complex with more rapid changes in the magnitude.
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Fig. App2.1 Knee angle and vertical ground reaction forces during a drop-jump. Original data
sampled at 50 Hz for the knee angle and 1000 Hz for the force. Note the knee angle would be
largely unaffected by the change in sample rate whilst the force data would produce a very
different result particularly for the early part of the movement



In order to record all such changes it is important to sample at a suf ciently fast
rate.

To understand better frequency content it is often helpful to consider how a
signal may be composed. Fig. App2.2 shows how three separate signals can be
added together to form a composite, by adding together the three sets of data. If
the three input signals are sampled separately these would create the three data
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sets shown in the  gure; each has a different frequency of oscillation. If these
three signals were each part of a single composite signal then the data set
produced would be the summation of the three independent signals at each
moment in time (i.e., at each sample moment the three input signals would be
added together). The  nal wave form would look different from each of the three
initial graphs. The frequency content of the  nal waveform would have a lower
value of 1 Hz and an upper value of 8 Hz.

Before starting an experiment it is therefore important that some thought is
given to selecting the most appropriate sample frequency. This can be done by
applying the sampling theorem. The sampling theorem is sometimes called the
Nyquist–Shannon sampling theorem or Whittaker–Nyquist–Kotelnikov–
Shannon sampling theorem after the scientists credited with its development.
The theorem was  rst formulated by Harry Nyquist in 1928 but was only
formally proved by Claude E. Shannon in 1949. The theorem states that:

The sampling frequency must be greater than twice the bandwidth of the input
signal in order to be able to reconstruct the original perfectly from the sampled
version.

It is important to note that the theorem refers to the bandwidth of the signal and
not simply to the greatest frequency within the signal. The bandwidth is con-
sidered to be the range captured between the highest and lowest frequencies in
the signal. In Fig. App2.2 this would refer to the range between 1 Hz and 8 Hz.
Thus the bandwidth is 7 Hz, whereas the upper frequency would give 8 Hz.
Whilst in human movement the law is often simpli ed by only considering the
upper frequency value, there are other sampling conditions where consideration
of the actual bandwidth is critical to ensure that the appropriate sample
frequency is used.

If the sampling condition is not satis ed, then frequencies will overlap and the
nature of the recorded signal will be different from the input signal. This overlap
is called aliasing. To prevent aliasing, either 1) increase the sampling frequency
or 2) introduce an anti-aliasing  lter or make the anti-aliasing  lter more
stringent. The anti-aliasing  lter is used to restrict the bandwidth of the signal to
satisfy the sampling condition. This holds in theory, but cannot be satis ed in
practice as there may be some elements of the real signal that fall outside of the
sampled range and thus the recorded signal will not include all of the real signal.
However, in most situations the amount of information lost may be small enough
that the aliasing effects are negligible.

If the sampling frequency is exactly twice the highest frequency of the input
signal, then phase mismatches between the sampler and the signal will distort the
signal. For example, sampling cos(p * t) at t = 0,1,2... will give a discrete signal
cos(p * n), as desired. However, sampling the same signal at t = 0.5,1.5,2.5... will
generate a constant zero signal, because the cosine of 90o, 270o, 450o (0.5 p , 1.5 p ,
2.5 p ) and so on, will be zero. These two sets of samples, which differ only in
phase and not in frequency, give dramatically different results because they
sample at exactly the critical frequency. It is thus important that the selected
sample frequency is more than twice the signal bandwidth and not exactly twice
this value.
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Appendix III MATHS REVISION:
ALGEBRAIC
MANIPULATION

The revision examples within this section are those that are commonly used
within biomechanics and are representative of some of those that have been used
within this text.

Algebra Algebra refers to the branch of mathematics that generalizes arithmetic by using
variables for numbers (i.e., · + y = y + x).

The Rules of Signs + x + = + PLUS
+ x – = – MINUS
– x + = – MINUS
– x – = + PLUS

Any number multiplied by zero (0) equals zero (0)

Example of multiplication of different signs
–8 x 3 x –6 =

Carry out parts of the calculation  rst and introduce brackets.
(–8 x 3) x –6 =
(–8 x 3) = –24 (Part 1)
–24 x –6 = +144 (Part 2)

(Note: it is not normally necessary to put the plus sign before a number)

Summary of rules for division of positive and negative integers
An integer is classi ed as a number that may be expressed as the sum or differ-
ence of two natural numbers. A natural number is any positive integer (i.e., 1, 2,
3, 4 etc.).

+a ÷ +b = + (a/b)
+a ÷ –b = – (a/b)
–a ÷ +b = – (a/b)
–a ÷ –b = + (a/b)

Example
64 ÷ 8 ÷ –2 ÷ 2 =

(64/8) ÷ –2 ÷ 2 =
(8/–2) ÷ 2 =

–4 ÷ 2 = –2

Solution of Rules of precedence:
problems involving

1. Evaluate terms in brackets
two or more 

2. Multiplication and division
arithmetic

3. Addition and subtractionoperations



Order of working can be remembered by using the BODMAS rule
B O D M A S
( ) of ÷ x + –

First Last

BODMAS tells you the order in which to perform calculations if you have a
choice. Brackets  rst, then of (such as square root of 4 or 3 to the power of 5 (i.e.,
operations)), then divide, multiply, add and subtract.

Example
3 (2 + 5) + 6 (7 – 4) =
3 (7) + 6 (3) =
21 + 18 = 39

Percentages
32%  of 69

= 

= 22.08

What % of 79 is 37?

· 100

= 46.84%

Decimals

Stating to the correct number of speci ed decimal places

1st decimal place

2nd decimal place

5 decimal places56.01871

3 decimal places9.678

2 decimal places0.56

1627.9485

Thousand

Hundred

Ten

Unit

Ten thousandths

Thousandths

Hundredths

Tenths

37
�
79

32 · 69
�

100
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Rules
The last decimal place that is speci ed is unchanged if the digit that follows it is
4 or less. The last decimal place speci ed is increased by 1 if the digit that follows
it is 5 or more.

Example

Powers
4 · 4 Raised to the power of 2 or squared
4 · 4 · 4 Raised to the power of 3 or cubed
6 · 6 · 6 · 6 Raised to the power of 4

Written expression

Rules of indices

Multiplication rule

This works when the base numbers are the same

However when the base numbers are not the same

22 ·    24    =    26

4 ·    16    =    64

34 ·    55        =    81 ·    3125

81 ·    3125    =    253125

102 ·    104    =    106 Add the indices

Four squared

Four cubed

42

43

64 Index or exponent

Base number

19.3864

0.01337

Stated as 19.386 when specified
to 3 decimal places

Stated at 0.0134 when specified
to 4 decimal places
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Any number expressed to the power of zero equals 1.

Division rule

Raising indices to a power rule

Multiply indices

Summary

Applies when base numbers are the same

for all numbers

RAISING TO A POWER    (am)n =   am·n

DIVISION                 am ‚   an   =   am–n

MULTIPLICATION    am ·   an   =   am+n

a0 =   1

subtract indices

multiply indices

add indices

(103)2 =    103·2    =    106

(84)3       =      84·3 =     812

This works when the base numbers are the same

However when the base numbers are not the same

(2 decimal places)

28 ‚    24    =    24

256 ‚    16   =    16

84 ‚    36      =    4096 ‚    729

4096 ‚    729   =    5.62

105 ‚    102    =    103 Subtract the indices

6.650   =    1
30         =    1
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Transposition of formula

General rules regarding transposition of formula
Negative quantity on one side of the equation becomes a positive quantity when
it is transferred (transposed) to the other side of the equation. Similarly a divisor
on one side of the equation becomes a multiplier when it is transferred to the
other side of the equation (i.e., either side of the equal sign).

Example
9x + 8 – 4 = 6x
9x – 6x + 8 – 4 = 0
9x – 6x = –8 + 4
3x = –4

x = –

x = –1.33

4
3 .

3x + 4 = 2
3x       = 2 – 4

x         =

x         = – 2
3

2 – 4
3

3 (6x – 10) = 3x
18x – 30 = 3x
18x – 3x – 30 = 0
18x – 3x = 30
15x = 30

x =

x = 2

30
15

Multiply both sides by 3 to remove the fractional component

Cancel out

3(6x – 10)   =   3

3(6x – 10)   =   3x

3x
3

3(6x – 10)   =   3 3x
3

6x   –   10   =

Solve for x

3x
3
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Powers

ay2 means a · y · y
2ay means 2 · a · y

Multiply out brackets

4(4x + 9) + 3(3x + 7) = 3 · 4 · 11

16x + 36 + 9x + 21 = 3 · 4 · 11

16x + 9x = (12 · 11) – 36 – 21

25x = 132 – 57

25x = 75

x =

x = 3

75
25

Solve for x when

Determine the lowest common denominator = 3 · 4

Reduce the fractions by multiplying both sides 3 · 4

Multiply out brackets

Cancel out where possible

4x + 9
3

3x + 7
4

= 11+

=+
4x + 9

3( )3x + 7
43 · 4 3 · 4 · 11

3 · 4 · = 3 · 4 · 11+ 3 · 4 3x + 7
4( )4x + 9

3( )

3 · 4 · = 3 · 4 · 11+ 3 · 44x + 9
3( ) 3x + 7

4( )

Solve for x

8(x + 2) = 3(x – 3) + 45

Multiply out the brackets

8x + 16 = 3x – 9 + 45

Transpose formula

8x – 3x = –9 + 45 – 16
5x = 20

x =

x = 4

20
5
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Expressions containing two or more terms
(2a + 2)(4a + 3)

4.

3.

(2a + 2)(4a + 3)

1.

2.

Order of operation

= 8a2 + 6a + 8a + 6
= 8a2 + 14a + 6

Power (indices)
4b3 · 3b2 = 12b5

6bc2 · 5b4c3 = 30b5c5

2xy5 · 8x = 16x2y5

3y2 · 4x3y4 = 12x3y6

Multiplication and Division of algebraic functions
(–a) · (–b) = +ab
(+a) · (+b) = +ab
(–c) · (+d) = –cd
(+c) · (–d) = –cd
To multiply two or more expressions the rule is, find the
product of the coefficients and prefix this product by the
sign obtained from applying the rule of signs

Examples
4b · 2b = 8b2

–3a · 4a = –12a2

–4x · –6x = 24x2

+5y · y = 5y2

Example 1

Find the value of

xy + 2yz + 3zx

When x = 3, y = 2 and z = 1

= (3 · 2) + (2 · 2 · 1) + (3 · 1 · 3)

= 6 + 4 + 9

= 19

Solution of an Expression

Example 2

Find the value of

When a = 6, b = 3 and c = 2

=

=

=

= 5

12 + 72 + 6
6 + 6 + 6

90
18

(2 · 6) + (4 · 6 · 3) + (3 · 2)
6 + (2 · 3) + (3 · 2)

2a + 4ab + 3c
a + 2b + 3c
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Example 1
(3x2 + 6)(4 – 2x)
12x2 – 6x3 + 24 – 12x

Example 2
(2x2 + 4y – 2)(2 + 3x – 4y)
4x2 + 6x3 – 8x2y + 8y + 12xy – 16y2 – 4 – 6x + 8y

Combine like terms
4x2 + 6x3 – 8x2y + 16y + 12xy – 16y2 – 4 – 6x
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APPENDIX IV MATHS REVISION:
TRIGONOMETRY

Throughout biomechanics there is a considerable use of trigonometry and it is
important to have a good understanding of the more common relationships.
Essentially this will be a revision of the trigonometry used within mathematics
studied at school level, however it is important in the context of this text.

Many of the principles used within biomechanics are based on the right-angled
triangle which is shown in the following examples.

Right angled triangle

b
a

c
A

C

B

Hypotenuse

Opposite

Adjacent

Pythagoras Rule
b2 = a2 + c2

b = Öa2 + c2

a = opposite
b = hypotenuse
c = adjacent

Lengths of the sides of the triangle

C

A
B

Right angled triangle

q
90°

90° – q

Right angle

Sum of the angles of a triangle = 180°



Within biomechanics there are also many examples where the application of
trigonometry is required in triangles that are not right-angled. The following
formulae are useful in this context.

Right angled triangle

b
a

c
A

C

B

Hypotenuse

Opposite

Adjacentq

Tan q = Sin q
Cos q

Sin (90 – q) = Cos q
Cos (90 – q) = Sin q

Sin2 q + Cos2 q = 1

Other important trigonometrical
relationships

Right angled triangle

b
a

c
A

C

B

Hypotenuse

Opposite

Adjacentq

opposite
hypotenuse

a
b

Sin q = =

c
b

adjacent
hypotenuseCos q = =

Tan q = =
opposite
adjacent

a
c
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Example 1
Using the sine rule in the following example solve the problem for the length of
the sides a and b.

Example 1 – solution

b
a

c
A

C

B

A°

C°

B°

Sine Rule

= =b
Sin B

a
Sin A

c
Sin C

Using

=a
Sin A

c
Sin C

Calculate the lengths of
the sides a and b

A = 28°
C = 32°
c = 23 cm

Solution

=a
Sin 28°

23 cm
Sin 32°

= 23
0.53

a
0.47

a = 0.47 · 23
0.53

a = 20.40 cm

Application of Trigonometry – all triangles

b

a

c
A

C

B

A°

C°

B°

Sine Rule

= =b
Sin B

a
Sin A

c
Sin C

Cosine Rule

a2 = b2 + c2 – 2bc Cos A
b2 = a2 + c2 – 2ac Cos B
c2 = a2 + b2 – 2ab Cos C
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Solution – distance b

b
a

c
A

C

B

A°

C°

B°

Solution using the Sine Rule
Angle B = 180° – (28 + 32)
Angle B = 120°

= 23 cm
Sin 32°

b = 0.886 · 23
0.53

b = 37.58 cm

= 23
0.53

b
0.866

b
Sin 120°
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2D motion analysis 298–301,
304, 312

3D motion analysis 301–2,
304–5, 307–11, 320

a see Average angular
acceleration

m see Coef cient of friction
w see Average angular velocity
Abduction 3, 4
Absolute joint angles 28–9
Acceleration

calculations 17–20, 317–18
centripetal force 175
data error effects 314, 317–18
de nition 17
dynamic equilibrium 161
force/mass relationship 62–3
graphical presentations 40–3
gravitational attraction 99
human body effects 320–2
impulse–momentum

relationship 82–3
integration 45, 46
measurement 317–21
numerical differentiation 43–4
uniformly accelerated motion

49–58
see also Angular acceleration;

Newton’s second law of
motion

Accelerometers 317, 319–21
Achilles tendon 164, 225, 260
ACL see Anterior cruciate

ligaments
Action–reaction see Newton’s

third law of motion
Acute loading 224
ADCs see Analog-to-digital

converters
Adduction 3, 4
Aerofoils 245, 276–7
Agonist muscles 173, 348, 351
Air

atmospheric pressure 333, 335
buoyancy 241
lift forces 244–6

magnus force 245
turbulence 244, 246

Air resistance
balancing forces 71
drag forces 242–4
energy conversion 219, 221
projectile motion 54, 73
vertical projection 105

Algebraic manipulation 368–75
Aliasing, sampling theorem 

367
Analog-to-digital converters

(ADCs) 326, 341
Anatomical descriptors of

motion 1–10
Anatomical position 7
Angles

absolute versus relative joint
angles 28–9

attack angle in water 277–8
coef cient of friction 108–10
degrees and radians 23
joints 22–9, 322–3
projectile take-off 55–8

Angular acceleration
calculations 26–7, 28
dynamic equilibrium 161
linear acceleration

relationship 36–7
muscle/joint force

calculations 205–6
Angular displacement

de nition 24, 26
isokinetic dynamometry 350
linear velocity relationship

31–2
Angular impulse 132
Angular kinetic energy 217,

221–2
Angular momentum

angular impulse relationship
132

calculations 143–4
conservation 136, 145–7
de nition 125, 137
jumping 265–6

moments of inertia
relationship 143–4

Newton’s  rst law of motion
125–9

Newton’s second law of
motion 130–3

parallel axis theorem 144
walking 252–3

Angular motion
de nition 12, 22–3
kinetics 115–209
linear motion relationship

30–7
mechanical descriptors 

22–9
Newton’s laws of motion

124–35
Angular velocity

angular momentum
relationship 125, 127

calculations 25–6
energy conversion 221–2
kinetic energy 217
linear velocity relationship

35–6
see also Angular acceleration

Ankles
movement terms 3–4
patellofemoral syndrome

283–4
running 255–6, 257, 258
walking 250

Antagonist muscles 173, 270,
348, 351

Anterior cruciate ligaments
(ACL) 193–4, 285–8

Anthropometry 352–3
body segment mass

proportions 142, 183–4
center of gravity calculations

154, 155
cyclists 353, 355
javelin throwers 357, 358
radii of gyration 202
tennis players 358–60, 362

Anti-aliasing  lters 367

INDEX

Bold type is used to indicate the main entry where there are several.



Anti-clockwise rotation 23–4,
117–18, 120–3

Arc lengths 33–5
Area elastic surfaces 226, 227
Areas under curves 45–8
Arm curls

action–reaction torques 134
isotonic movement 349
linear/angular movement

relationship 34
muscle/joint force

calculations 207–9
static muscle/joint forces 181
torque 119–23

Arms
anatomical levers 167, 168,

172
angular momentum 130–1
jumping 263–4, 265
moments of inertia 140
muscle/joint force

calculations 203–9
static equilibrium 159–60
swimming 275, 277–80, 291–4
throwing 267–71
walking 252–3

ARV see Average recti ed value
Atmospheric pressure 333, 335
Attractive forces 59–60, 97–104
Autografts 288
Average angular acceleration a

26, 36–7
Average angular velocity w

25–6, 35
Average linear acceleration 36–7
Average linear velocity 35
Average loading 329–30
Average recti ed value (ARV),

electromyography 341–2
Average speed 13–14, 15
Average velocity 16, 39
Axes of rotation

fulcrums 165
moments of inertia 125–6
multiple 131
terminology 6–9, 22–3
torques 115–16

Back injuries 134, 135, 289–90
Backstroke 279
Balance 161–3, 166, 168–9

see also Equilibrium; Stability
Balanced forces 70

Balls
air turbulence 244, 246
angular to linear motion

relationship 30–7
bouncing 226, 229–30
central impacts 229–32
coef cient of restitution

229–30, 232
conservation of linear

momentum 91–5
energy conversion 218–19
hysteresis energy loss 226
impacts 228–37
impulse–momentum

relationship 83–4, 88–9
Newton’s third law 78, 79, 

80
oblique impacts 234–7
roughness 244, 246
spin 237, 245–6
stiffness 215
surface impact friction 235–7
throwing 167, 267–71
vertical projection 101–5
see also Soccer kicks

Bandwidth, sampling theorem
367

Banked tracks 178
Barometric pressure 333, 335
Base of support 149–50, 162–3
Basketball 147
Bench press 212, 213
Bent elbow, swimming 279, 292,

293
Bent knee, joint/muscle force

calculations 185–99
Bernoulli’s principle 243, 276–7
Biceps brachii

angular motion 34, 119–20,
130–1

levers 167, 168, 172
muscle force calculations 204,

205
static equilibrium 159–60

Biceps tendon 291, 292
Bicycle design 353–5
Biomechanics, de nition 

11–12
Boardman, Chris 354, 355
Boats 241–2, 245
Bodies in  ight see Projectile

motion
Body, use of term 22, 68, 70

Body contact
conservation of linear

momentum 90–1, 95
impact equations 231
knee ligament injuries 286–7
Newton’s third law 80

Body position
anatomical position 7
cycling 353–5
swimming 273–4, 279, 294

Body segments
center of mass data 154
centripetal force 179
combined moments of inertia

140–3
de nitions 153
moment of inertia data 140
optoelectronic motion

analysis 307–8, 309, 311,
323

proportion of body mass data
142, 154

radii of gyration 202
Bone-patellar tendon-bone

(BPTB) autografts 288
Boundary layers in  uids 243,

244
Bowling 270
Boxing 161
BPTB see Bone-patellar tendon-

bone
Braking, walking/running 67,

216, 251–2, 260, 327–9
Breaststroke 275, 279
Buoyancy 240–2, 273–4
Butter y stroke 279
Butterworth smoothing

algorithms 316, 344

Calibration
optoelectronic motion

analysis 309
video analysis 300, 302, 

304–5
Cameras

optoelectronic motion
analysis 307, 308, 323

video analysis 296–8
Canoes 241, 242
Catch phase, swimming 279,

292–3
Cats falling 129
Center of buoyancy 241
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Center of gravity 148–55
calculation 150–5
center of buoyancy

relationship 241–2
de nition 149
javelins 356
moments of inertia 201
stability 149–50, 162–3

Center of gravity boards 150–2
Center of mass 116, 149
Center of pressure 330–1
Central impacts 230–2
Centrifugal force 176, 179
Centripetal force 174–9
Chemical energy 214, 216, 217
Chord length 32–4
Circular paths 174–9
Circumduction 5
Clockwise rotation 23–4, 117–18,

120–3
Closed chain movements 

267–8
Coef cient of friction (Ì) 108–10,

112, 113
Coef cient of restitution 228–32,

234, 235, 236
Collisions 90–6, 230–2, 233–7
Combined force calculations

157–8
Combined segment moments of

inertia 140–3
Common velocity, conservation

of linear momentum 95
Compression 5, 224
Compressive forces 181–4, 185,

191–3, 194
Computers

center of gravity analysis
153–5

data smoothing 315–16
electromyography 341
force platform data 326
optoelectronic motion

analysis 308–9, 310, 323
video analysis 303–4

Concentric muscle contraction
348

Conservation of angular
momentum 136, 145–7

Conservation of energy 218–22
Conservation of linear

momentum 90–6, 228–32,
233–4, 235

Conservation of mechanical
energy 219–22

Constant acceleration 49–58
Contact forces 60, 107, 318
Contact time 84, 88–9
Control points, video analysis

302, 305
Coordinate systems 6–7, 9–10,

326
Counter movement 215, 

262–3
Coupled forces 117–18, 158
Cricket ball swing 246
Cruciate ligaments 193–4
Curves see Graphical

presentations
Curvilinear motion 50, 51, 52,

53–8
Cycling

banked tracks 178
 uid drag forces 242
power 213, 214
riding position 353–6

Data errors 312–16, 317–18,
338–9

Data logger electromyography
systems 339

Data processing see Computers
Data smoothing 312, 314–16
Davenport, Lindsay 360
Deformation

coef cient of restitution
228–32

elasticity 225–6
energy conversion 219
hardness 226–7
mechanical characteristics

224–7
set 226
stiffness 215, 225
strain energy 214–15

Degrees of freedom 5
Density of  uids 329
Design see Sports equipment
Diagonal plane 5
Differentiation 38–44
Digitization

center of gravity calculations
153–5

video images 303–4, 313
Direct Linear Transformation

(DLT) 304–5

Displacement
de nition 14
graphical presentations 

39–41
integration methods 45–8
work 212

Dissipation of energy 216,
218–19

Diving
angular momentum 127–9,

132–3
center of gravity 151
conservation of angular

momentum 145–6
mechanical energy

conservation 220, 221
moments of inertia 138
stability 161–2

Diving (scuba) 241
DLT see Direct Linear

Transformation
Dorsi exion 3
Double support phase of

walking 247, 251, 252
Drag forces 242–4, 273–6, 278
Drag propulsion, swimming

276, 277
Drag/lift propulsion,

swimming 276–80, 292–3
Drive-off phase, gait 249–50, 

256
Driving force 251–2
Drop-jumps 365
Dropped elbow, swimming 293
Dry friction 109–10
Duration see Time
Dynamic equilibrium 156, 161
Dynamic forces

 uids 242–6
friction 110, 112
joints 200–9
pressure measurements 336

Dynamometers 347–51

Early pull phase, throwing 268
Early swing phase, gait 249–50,

255
Eccentric muscle contraction

348
Eddy currents 275
Elastic energy 225, 260
Elastic limits 225
Elasticity 225–7, 229
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Elbow
dynamic force calculations

203, 205–6, 207–9
epicondylitis 134–5
 exion/extension 119–23,

130–1, 168
levers 168
static equilibrium 159–60
static force calculations 203–4,

207–8
swimming 279, 292, 293
throwing 268–70, 271
torques 119–23

Electro-goniometers 322
Electro-mechanical isokinetic

dynamometers 349–50
Electro-mechanical pressure

sensors 336
Electromyography 337–46
Energy

chemical 214, 216, 217
conservation 218–22
dissipation 216, 218–19, 226
hysteresis 226, 325
kinetic 215–17
law of conservation 218–22
potential 214–15
storage 225, 260
transfer 260
work relationship 217

Epicondylitis 134–5
Equilibrium 156–63

dynamic 156, 161
external/internal forces 107
resistance to disturbance 161
stability 149–50, 161–3
static 149, 156–60
turning moments 120, 121–2

Errors 312–16, 317–18, 338–9
External forces 60, 107
External oblique muscles 289–90
External rotation 3, 4

Falling
angular velocity calculation

221–2
cats 129
see also Gravitation force

Fast Fourier Transform (FFT)
345–6

Feet
foot pressure analysis 336
moment of inertia 140

pronation/supination 3–4,
257–8, 282–5

running 257–9
see also Shoes

Female soccer players 285
FFT see Fast Fourier Transform
Filters, data smoothing 314
Finite difference method of

differentiation 43–4
First class levers 165–6, 167,

168–70
First condition of equilibrium

121, 156–7, 161
First impact equation 229
First law of motion see

Newton’s  rst law of
motion

Flight, see also Projectile motion
Flight phase, running 255, 258
Flotation 240–2
Fluids

buoyancy 240–2
de nition 239
drag forces 242–4, 273–6
 ow 239–40, 242–6
 ying 276–7
forces 238–46
friction 109
lift forces 244–6, 276–7
properties 329
propulsive forces 276–80
swimming 272–80

Fmax see Maximum frictional
force

Follow-through 268, 269, 270,
289–90

Footwear see Shoes
Force couples 117, 158
Force platforms (plates) 324–32

center of pressure 330–1
free moments 331–2
GRF–time curves 327–9
loading rates 329–30
optoelectronic analysis

combination 310
power output calculation 215

Forces 59–68
acceleration relationship 

62–3
balanced/unbalanced 70–1,

78
conservation of linear

momentum 90–6

deformation characteristics
224–7

dynamic calculations 201–9
dynamometers 347–51
 uids 238–46
free body diagrams 363–4
friction 106–13
impulse–momentum

relationship 81–9
independent

horizontal/vertical
components 77

inertia relationship 61
levers 165
mass/weight relationship

61–3
moments 115
net force 70, 78, 79
Newton’s laws of motion

69–80
reducing impact forces 88–9
running 258–9
static equilibrium 156–60
throwing 270–1
types 59–61
vector resolution 63–7
walking 251–2
work/power/energy 211–17

Forearm 140, 270, 271
Form drag 273–4
Fracture point 225
Free body diagrams 181–2,

363–4
dynamic force calculations

203, 207
joint force calculations 181–2,

184, 186, 195
moments of inertia 131
muscle force caclulation 122
running 327
static equilibrium 158

Free leg, running jumps 265
Free moments, force platforms

331–2
Freestyle swimming 119, 274,

275, 277–80, 292–4
Frequency 345–6, 365–7
Friction 106–13

balls on surfaces 235–7
coef cient 108–10, 112–13
energy conversion 219
 uid drag forces 243, 275–6
forces 70–1

384 Index



human body effects 113
importance 108, 113
maximum frictional force 108,

109, 110, 113
swimming 275–6

Front crawl see Freestyle
swimming

Fulcrums 165–72

Gait 247–60, 311
Galileo’s equations 50
Gases

 uid forces 238–46
see also Air

Gastrocnemius–soleus muscle
complex 283–4

GCS see Global coordinate
system

General motion, de nition 12
Glenohumeral joint 291–4
Global coordinate system (GCS)

9–10
Golf

angular to linear motion
relationship 31, 36, 37

centripetal force 179
injuries 134, 135, 289–90
moments of inertia 140, 143,

146
swing mechanics 289–90

Goniometry 322–3
Gradients of curves 38–44
Gradual loads 224
Grand circle (giant circle) 

176–7
Graphical presentations

differentiation 39–43
force vectors 63–4, 67, 158
integration 45–8
velocity/acceleration

calculations 17, 19–20
Gravitational force 59–60,

97–105
balancing forces 71
Earth’s surface variation 100
isokinetic dynamometry 351
mass/weight relationship

61–2
Newton’s second law 76–7
Newton’s universal law of

gravitation 98–100
potential energy 214, 219–20
standing vertical jumps 85–6

uniformly accelerated motion
50, 54

vertical projection 101–4
weight relationship 100–1
see also Center of gravity

Ground reaction force (GRF)
force platforms 324–32
friction 107
joint force calculations 188–91
Newton’s second law 76
Newton’s third law 78
related variables 329–32
running 256
standing vertical jumps 85
three components 325–6
time curves 327–9
walking/running 67–8, 251,

252
Gymnastics 138, 146, 161–2,

176–7
Gyration radius 202

Hammer throwing 175–6
Hamstrings

action–reaction torques 134,
135

autografts 288
isokinetic dynamometry 348,

350–1
knee ligament injuries 287–8
soccer kicks 172, 173

Hands 88, 140, 277–8
“Hang” technique 265
Hanning algorithm 314–16
Hard-wired electromyography

systems 339
Hardness (materials) 226–7, 230
Head on collisions see Central

impacts
Heat 113, 218–19
Height

athletes 355, 357, 359, 360
jumping 263–4
projectiles 56, 57–8, 357
tennis serves 358–9

Hewitt, Lleyton 360
High jump 217, 220
Hip joint

action–reaction torques 134,
135

angular kinematics 24–9
movement terms 3
running 255–6

walking 250
“Hitch-kick” technique 266
Hooke’s law 225, 319
Hydrodynamic resistance

242–4, 272–6
Hydrofoils 245
Hydrostatic pressure 240
Hyperextension 3, 4, 286–7
Hysteresis 226, 325

IAAF see International Amateur
Athletics Federation

Ice skating 146
Image recording 295–305,

306–11, 312
Imaginary points 149
Impacts 228–37

central 230–2
impulse–momentum

relationship 88–9
oblique 233–7
running 257–9, 281
soccer tackles 286–7

Impingement, shoulder injuries
291–4

Impulse de nition 83
Impulse loads 224
Impulse–momentum

relationship 81–9, 93–4,
270–1, 328–9

Included angles, relative joint
angles 28

Independent
horizontal/vertical forces
77

Independent
vertical/horizontal motion
104

Indoor tracks 178
Inelastic materials 225
Inertia 61, 70–4, 91

see also Moments of inertia;
Newton’s  rst law of
motion

Inertial reference system see
Global coordinate system

Infra-red light 308, 323
Injuries 281–94

action–reaction torques 134–5
back 134, 135, 289–90
foot pressure analysis 336
golf 289–90
ground reaction force 67–8
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impulse–momentum
relationship 88–9

joint shear forces 194–5
knees 285–8, 348
loading 224
patellofemoral syndrome 281,

283–5
rehabilitation 288, 290, 294,

348, 349, 351
running 226, 257, 258, 281–5
shoulder 291–4
soccer 285–8
swimming 291–4
tendons 225
throwing 270

Instantaneous acceleration 40,
43–4

Instantaneous loading 329–30
Instantaneous velocity 16, 36,

39, 43–4
Integration 45–8, 215, 341
Internal forces 60, 107
Internal rotation 3, 4
International Amateur Athletics

Federation (IAAF) 356–8
International Society of

Biomechanics (ISB) 326
International Tennis Federation

(ITF) 361
Inversion 3, 4
Isokinetic dynamometry 347–51
Isokinetic exercise machines 349
Isokinetic muscle contractions

347, 349
Isometric muscle contractions

344–5, 346, 349
Isotonic muscle contractions 349
ITF see International Tennis

Federation

Javelin 356–8
Joints

absolute versus relative joint
angles 28–9

angular kinematics 22–9
angular kinetic energy 217
arm  exion force 203–8
compressive forces 181–4,

185, 191–3, 194
dynamic force calculations

200–9
friction 113
goniometry 322–3

markers for motion analysis
301, 307–8, 309, 311, 323

movement terms 3–5
muscular stabilization 348
reaction forces 188–91, 194
running 255–6
shear force 191–2, 193–4
static force calculations

180–99
walking 250

Joules 212, 214
Jumping 261–6

basketball 147
mechanical energy

conservation 219–20
movement analysis 365
running 264–6
standing 262–4

Kicking
swimming 274, 279
see also Soccer kicks

Kinematics 1–58
Kinetic energy 214, 215–17,

219–20, 260
Kinetic friction 112
Kinetics

angular motion 115–209
de nition 11, 12
linear motion 59–113
optoelectronic motion

analysis 311
Knees

anatomy 286
angular kinematics 24, 27–9
 exion graphs 41–3
hyperextension 286–7
injuries 285–8, 348
isokinetic dynamometry 348,

350–1
ligaments 193–4, 285–8
movement analysis 5, 365
patellofemoral syndrome 281,

283–5
running 255–6, 258
static force calculations

181–99
walking 250

Laboratory coordinate system
9–10

Lachman test 194, 287
Laminar  ow 239–40

Late pull phase, throwing 268,
269

Late swing phase, gait 249–50,
255

Law of acceleration 70, 74–7
Law of conservation of energy

218–22
Law of gravitation 98–100
Law of inertia 70–4
Law of reaction 70, 77–80
Laws of motion see Newton’s...
LCS see Local coordinate system
Legs

anatomical levers 172, 173
angular kinematics 24–9
angular momentum

calculations 144
joint/muscle force

calculations 180–99
jumping 261–6
knee ligament injuries 285–8
moments of inertia 140, 141–3
optoelectronic motion

analysis 311
pronation/supination injuries

281–5
running 254–60
swimming 274, 279
walking 247–53

Lever arms 116, 118, 119
Levers 164–73
Lift forces,  uids 244–6, 276–7
Lift propulsion, swimming 276,

277–80, 292–3
Ligaments 193–4, 285–8
Limited stability 161–3
Limiting friction 112
Line of action 189
Line of impact 230, 233
Linear acceleration 36–7
Linear displacement in rotating

objects 32–5, 171–2
Linear Envelope processing 342,

344
Linear kinetic energy 215–16
Linear momentum 83, 90–6
Linear motion

angular motion relationship
30–7

de nition 11–12
equilibrium 156–61
kinetics 59–113
mechanical descriptors 11–21
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Linear velocity
angular velocity relationship

35–6
calculations 15
conservation of linear

momentum 90–6
tangential 36

Linearity of force platforms 325
Liquids see Fluids
Loading 224–7, 329–30
Loading phase, gait 249–50, 256
Local coordinate system (LCS)

9–10
Long jump 264–6

angular momentum 265–6
Newton’s  rst law 72–4
Newton’s second law 75–7
Newton’s third law 79, 80
velocity 264–5
video analysis data 313, 315

Lower arm 140, 270, 271
Lower back 134, 135, 289–90
Lower leg 24, 27–9, 140
Lower limbs see Legs

Magnus force 245–6
Manometers 334–5
Markers, motion analysis 301,

307–8, 309, 311, 323
Mass

body segment proportions
142, 183–4

center of mass 116, 149
conservation of linear

momentum 90, 93
force/acceleration

relationship 62–3
inertia relationship 61
stability relationship 162
universal law of gravitation

98–100
weight relationship 61–2, 101

Material characteristics 215,
223–7

Mathematics revision
algebraic manipulation

368–75
trigonometry 376–9

Maximal voluntary contraction
(MVC) 344–5

Maximum effort 351
Maximum frictional force

(Fmax) 108, 109, 110, 113

MCL see Medial collateral
ligament

Measuring techniques 
296–362

Mechanical advantage 166,
168–72

Mechanical characteristics
coef cient of restitution

228–32
elasticity 225–7
 uids 238–46
hardness 226–7
solid materials 223–7
stiffness 215, 225–6
viscosity 240

Mechanical descriptors
angular motion 22–9
linear motion 11–21

Mechanical energy
conservation 219–22
kinetic energy 214, 215–17,

219–20
potential energy 214–15,

219–20
Mechanical work 211–12
Medial collateral ligament

(MCL) 286
Mercury barometers 335
Mid-stance phase, gait 249–50,

256
MmHg 335
Modulus of elasticity 225
Moment arms

de nition 117
examples 120–1, 123
 exed knee forces 184
levers 166, 168–71, 172

Moments
center of gravity 150, 152,

154–5
de nition 115
dynamic equilibrium 161
of force 115
free moments 331–2
levers 164–5
static equilibrium 159–60

Moments of inertia
angular kinetic energy 217
angular momentum

relationship 125, 127,
143–4

body segment data 140
calculations 138–43

conservation of angular
momentum 136, 145–7

de nition 125–6, 137, 201
dynamic force calculations

201–2, 205, 208
Newton’s second law of

motion 130
parallel axis theorem 140–3
segmental data 202

Momentum
conservation 90–6, 228–32,

233–4, 235
de nition 83
impulse–momentum

relationship 81–9, 93–4,
270–1, 328–9

see also Angular momentum
Moon 100, 101
Motion

anatomical descriptors 1–10
force relationship 60, 61
kinematics 1–58
kinetic energy 215–17
mechanical descriptors 

11–29
Newton’s laws 69–80
see also Angular motion;

Linear motion
Motion analysis

accleration calculations
317–18

acclerometers 319–22
data smoothing 312–16
goniometers 322–3
optoelectronic 306–11, 323
sampling theorem 365–7
smoothing data 312–16
video analysis 295–305

Moving average algorithm
314–16

Multiple axes of rotation 131
Muscle forces

arm  exion 203–4, 205, 207–8
dynamic calculations 200–1
joint reaction force

calculations 188–91
legs 180, 185–8
line of action 189
static calculations 180, 185–8,

203–4, 207–8
static equilibrium calculations

160
torque 119–23

Index 387



Muscles
chemical energy 214, 216, 217
electromyography 337–46
golf swings 289–90
isokinetic contractions 347,

349
isokinetic dynamometry

347–51
isometric contractions 344–5,

346, 349
isotonic contractions 349
joint stability 348
jumping 262–3
maximal voluntary

contraction 344–5
running 256–7
walking 250–1
wasting 348
see also individual muscles

MVC see Maximal voluntary
contraction

National Television Systems
Committee (NTSC) system
296

Negative gradients 40
Negative rotation (clockwise)

23–4
Negative work 213
Net force 64–7, 70, 74, 78, 79, 

118
Net impulse 86
Newton, Isaac 62, 69
Newtonian gravitational

constant 98
Newtons (N), de nition 61–2
Newton’s  rst law of motion

70–4
angular motion 124–9
centripetal force 174
conditions of equilibrium

121–2
conservation of angular

momentum 145
conservation of linear

momentum 91, 96
projectile motion 104

Newton’s second law of motion
70, 74–7

acceleration measurement
318, 319

angular motion 124, 129–33
centripetal force 175

GRF–time curves 327
impulse–momentum

relationship 81–3
Newton’s third law of motion

70, 77–80
angular motion 124, 133–5
centripetal/centrifugal forces

176
force platforms 324

Newton’s universal law of
gravitation 98–100

Non-uniform motion 15
Normal forces 107, 109, 111–12
Normalizing data 344–5
NTSC see National Television

Systems Committee
Numerical differentiation 38–44
Numerical integration 45–8
Nyquist theorem 326, 341, 367
Nyquist–Shannon theorem 367

Oblique impacts 233–7
Obree, Graham 354–5
Open chain movements 267–8
Optical axis, video analysis

299–300
Optoelectronic motion analysis

306–11, 323
Orthotic devices 284, 285
Overarm throwing 267–71
Overhead striking 270

PAL see Phase Alternating Line
Parabolic  ight paths 54–7,

72–3, 75, 103–4
Parallel axis theorem 140–3, 144,

202
Parallel forces 158

see also Coupled forces
Pascals 333
Passive restraint 193–4
Patella 283–4, 286
Patella tendon 189
Patellofemoral syndrome 281,

283–5
Peak loading rate 329
Permanent deformations 226
Perspective errors, video

analysis 298–9, 300, 312
Petranoff, Tom 356, 357
Phase Alternating Line (PAL)

system 296, 303
Physiotherapy 287–8, 290, 349

Pivots see Axes of rotation
Planes of motion 6–9, 298–300
Plantar fascia 257
Plantar- exion 3
Plastic behavior 226
Point elastic surfaces 226, 227
Points of in ection 41–3
Points of maxima/minima 

41–3
Polygons of forces 157
Positive gradients 40
Positive rotation (anti-

clockwise) 23–4
Positive work 213
Posterior cruciate ligament 193
Potential energy 214–15, 219–20,

260
Power 213–14, 215
Power spectrum density (PSD)

345
Pre-stretching 262–3, 269
Preparation phase, throwing

268, 269
Pressure

de nition 333
drag 243–4
electro-mechanical sensors

336
 uid  ow 243–6
foot pressure analysis 336
lift forces 276–7
manometers 334–5
measurements 333–6
standing 334, 336
units 333

Projectile motion 49, 53–8
 ight times 56–7
gravitation effects 101–5
height calculation 56
mechanical energy

conservation 219–20
Newton’s  rst law 72–4
Newton’s second law 75–7
range calculation 55–6, 57

Pronation 3–4, 257–8, 282–5
Propulsion

running 328–9
swimming 276–80

PSD see Power spectrum
density

Pulling phase
swimming 279, 292, 293
throwing 268–71
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Quadriceps muscle
isokinetic dynamometry 348,

350–1
knee ligament injuries 287–8
soccer kicks 172, 173
static force calculations 185–7,

194
Qualitative/quantitative motion

analysis 295

Radians 23
Radius of gyration 202
Range calculations, projectile

motion 55–6, 57
Range of joint motion 322
Reaction forces see Ground

reaction force; Joint,
reaction forces; Newton’s
third law of motion

Rebound 95
Recoil 226
Reconstruction, video analysis

304–5
Recovery phase, swimming 292,

294
Regulations

cycling 354–6
javelin 356–8
tennis 361

Rehabilitation, injuries 288, 290,
294, 348, 349, 351

Relative joint angles 28–9
Release angle 55–8
Release height 56, 57–8, 357
Release velocity 55–8, 358
Repetitive loading 224
Resilience 226
Resistive forces 70–1, 273–6
Resolution, video analysis

296–7, 304, 313
Restitution 225–6
Restitution coef cient 228–32
Right-angled triangles 376–7
Right-handed coordinate

systems 9–10
Root mean square (RMS) 341–3
Rotation

angular kinematics 22–9
centripetal force 174–9
energy conversion 221–2
foot pronation/supination

282–5
golf swing 289–90

knee ligament injuries 286–7
shoulders 293–4
throwing 268–70, 271
torque 115–23
see also Angular motion

Rotational energy see Angular
kinetic energy

Roughness (materials) 244, 246
Round arm throwing 270
Rugby 162, 231
Run-up 264–5, 269
Running 254–60

center of pressure changes
331

energy changes 260
foot strike styles 259
force platform data 327–31
forces 258–9
GRF–time curves 327–9
ground reaction force 67–8
injuries 281–5
joints/muscles 255–6
loading rates 329–30
Newton’s third law 80
patellofemoral syndrome 281,

283–5
pronation/supination 257–8,

282–5
strides/speed 255
tracks 177–8
walking comparison 256
see also Sprinting

Sampling theorem 365–7
Sampras, Pete 359, 360
Scalar quantities 13, 23
Scaling, video analysis 300, 302,

304–5
Scuba diving 241
Second class levers 165–7, 170,

171, 172, 173
Second condition of equilibrium

121–2
dynamic 161
levers 169
muscle force calculations

186–7
static 159–60

Second differentials 40
Second impact equation 230
Second law of motion see

Newton’s second law of
motion

Seesaws 123, 166, 168–9, 170
Segmental data, radii of

gyration 202
Seles, Monica 359, 360
Semi-tendinosus (ST) muscle

autografts 288
Service action (tennis) 270,

358–9
Set deformations 226
Shank see Lower leg
Shannon (Nyquist–Shannon

theorem) 367
Shear forces 191–3, 224, 239–40
Shock absorption 258, 259
Shoes

foot pressure analysis 336
impact forces 259
material characteristics 226,

227
patellofemoral syndrome

correction 284–5
Shore “A” scale 227
Short-time Fourier transform

346
Shot putt 88
Shoulder

injuries 291–4
isokinetic dynamometry 348
movement terms 5
swimming 291–4
throwing 268–70, 271

Signal composition 366–7
Single-legged jumps 264–5
Skiing 146
Skin–electrode contact 340–1
Sliding see Shear
Smashing balls 270
Smoothing data 312–16
Soccer injuries 134, 135, 285–8
Soccer kicks

action–reaction torques 134,
135

anatomical levers 172, 173
angular kinematics 24–8
angular momentum

calculations 144
impact equations 231–2
impulse–momentum

relationship 83–4
moments of inertia 140, 141–3
work 212

Softness (materials) 226–7, 230
Software 155, 308–9, 310
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Solids 223–7, 239
Somersaults 127–8, 132–3, 145–6
Speed 13–14

see also Velocity
Spin of balls 237, 245–6
Spinal injuries 289–90
Splines 316
Sports equipment

anthropometry 352–62
bicycle design 354–5
javelins 356–8
swimsuits 275–6, 352–3
tennis rackets 361–2
see also Shoes

Sports surfaces
area elastic/point elastic 226,

227
coef cient of restitution 230
frictional properties 110, 112
running 259, 284
tennis courts 235–7

Springs 215, 319
Sprinting

angular momentum 143
data differentiation 43–4
data integration 48
kinetic energy 216
running phases 255
stability 150, 161
velocity/acceleration

calculations 15–20
Sprung  oors 226
Squash 236
Squat jumps 263
Squatting (weightlifting) 181,

188, 195–9
ST see Semi-tendinosus
Stability 161–3

center of gravity relationship
149–50

de nition 161
 otation 241–2
joints 348

Stance phase
gait 249–50, 255, 256–7, 327–8
see also Support phase

Standing
knee joint compressive force

181–4
pressure measurement 334,

336
unilateral/ exed knee force

calculations 185–7

Standing jumps 262–4
Standing vertical jumps

impulse–momentum
relationship 84–8

kinematics 49–50, 51–3
power calculation 215
velocity calculations 263–4

Static equilibrium 149, 156–60
Static forces

 uids 240
friction 110, 112
joint/muscles 180–99, 203–4,

208
pressure measurements 334–5

Stationary objects, Newton’s
 rst law 71–2

Steps, gait 247–8
Stiffness 215, 225
Strain

gauges 325
potential energy 214–15, 219
stress relationship 224–5

Streamlining 242, 273–4, 279
Strength measurement 350
Stress–strain relationship 224–5
Stretch-shortening cycles 262–3,

269
Strides 247–8, 255
Striking action 267, 270
Strokes, swimming 273, 275,

279, 292–4
Subtalar joint 257–8
Summation of speed principal

27–8
Super-incumbent weight 186
“Superman” position 355
Supination 3–4, 257–8, 282–3
Support phase, gait 247, 249,

251, 252, 255
Surface area, friction effects 111,

112
Surface drag, swimming 273,

275–6
Surface electrodes,

electromyography 338,
340–1

Surface roughness, balls 244,
246

Surfaces
area elastic/point elastic 226,

227
coef cient of restitution 230
frictional properties 110, 112

running 259, 284
tennis courts 235–7

Surgery 288, 348, 349
Swimming 272–80

arm movements 275, 277–80,
292–4

body positions 273–4, 279
costumes 275–6, 352–3
 otation 240–1, 242
hand positions 277–80
injuries 291–4
leg kicks 274, 279
propulsive forces 276–80
pull patterns 279
resistive forces 273–6
shoulder action 291–4
strokes 273, 275, 279, 292–4
suits 275–6, 352–3
torque 119

Swing
cricket balls 246
golf action 289–90

Swing phase, gait 247, 249–50,
255, 256–7

Synchronization
3D video analysis 301, 304
optoelectronic motion

analysis 310

Tackles see Body contact
Take-off angle/velocity 55–8
Tangential linear acceleration 

37
Tangential linear velocity 36
Tangents 36
Targets, optoelectronic motion

analysis 307–8, 309, 311
Telemetry electromyography

systems 339
Tendons 189, 225, 291–4
Tennis

anthropometry 358–60, 362
court surfaces 235–7
moments of inertia 146, 147
rackets 146, 226, 361–2

Tennis elbow (epicondylitis)
134–5

Tensile forces 184
Tension 5, 224
Terminology 1–21
Thigh see Upper leg
Third class levers 165–6, 167–8,

170–2, 173
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Third law of motion see
Newton’s third law of
motion

Three dimensional motion
analysis 301–2, 304–5,
307–11, 320

Throwing 267–71
hammers 175–6
javelins 356–8
joint movements 167, 268–70
phases 268–70
velocities 270–1
see also Projectile motion

Time
contact time effects 84, 88–9
electromyography data 341–4,

346
force/impulse relationship

83, 84, 87, 88–9
GRF–time curves 327–9
integration of

velocity–time/acceleratio
n–time curves 46

projectile  ight times 56–7
video analysis 301, 304, 313

Tip-to-tail method 63, 157
Top spin 237, 245
Torques 115–23

de nition 115
dynamic force calculations

201
isokinetic dynamometry 350,

351
jumping 265–6
Newton’s  rst law of motion

125–9
Newton’s second law of

motion 130
Newton’s third law 133–5
static equilibrium 159–60
torsion deformation 224

Trampolining 219–20
Transducers 324–6
Translational momentum 83
Trapezium rule of numerical

integration 47–8
Treatment for injuries 284–5,

287–8
Trigonometry

coef cient of friction 108–10
mathematical force resolution

64–7
maths revision 376–9

Triple jumps 265–6
Trunk

moment of inertia 140
throwing 268–9

Turbulent  ow 239–40, 243, 244,
246

Twisting see Torque; Torsion
Two dimensional motion

analysis 298–301, 304, 312
Two-legged jumps 262–4

UCI see Union Cycliste
Internationale

Unbalanced forces 70–1
Unbalanced torques 130
Uniform motion 15
Uniformly accelerated motion

49–58
Unilateral stance 185–7
Union Cycliste Internationale

(UCI) 354, 355, 356
Universal law of gravitation

98–100
Upper arm 140, 270, 271
Upper leg 140

Valgus rotation 5, 9, 286–7
Varus rotation 5
Vector quantities

angular motion 23
de nition 13, 14
forces 63–7
torque 115–23

Velocity
acceleration relationship

17–20
angular motion 24–5
ball rebounds 235–7
calculations 14–17
constant acceleration 50, 51,

52
data errors 314
gait 248, 255
graphical presentations 39–41
impact equations 229–30
integration 45–8
kinetic energy 215–17
mechanical energy

conservation 219–20
numerical differentiation 43–4
projectile take-off 55–8
speed comparison 14
swimming 273, 278

throwing 270–1
vertical/horizontal

components 31, 54–5
work relationship 217
see also Angular velocity;

Linear velocity
Velocity-time curves,

integration 46
Vertex, joint angles 28
Vertical projection 54–5, 101–5
Video analysis 295–305

alternatives 322–3
center of gravity 153–5
image recording errors 312
long jump data 313, 315
optoelectronic motion

analysis 306–11
velocity measurements 43

Viscosity 240

Walking 247–53
de nition 247
foot pressure analysis 336
forces 251–2
gait cycle 247–52
ground reaction force 67–8
joints/muscles 250–1
Newton’s third law 78–9
phases 249–52
static muscle/joint forces 184,

185, 187
strides 247–8
upper body 252–3

Water 240–4, 273–80
see also Fluids

Watts 214
Wave drag 273, 274–5
Weight

buoyancy 240
center of gravity 148–55
gravitational force 100–1
knee joint compressive force

calculation 182–4
mass relationship 61–2, 101
super-incumbent 186

Weightlifting
load deformation 224
muscle/joint forces 181, 188,

195–9, 207–9
work/power/energy

relationships 212, 213,
214

see also Arm curls
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Whittaker–Nyquist–Kotelnikov
–Shannon theorem 367

Whole body
center of gravity 149–55
moments of inertia 140

Williams, Venus 359, 360

Work
de nition 211–12
energy relationship 214, 

217
power relationship 213–14

Wrist 268–9, 271

X/y/z conventions 6–7, 9–10,
326

Yachts 241–2
Yield point (elastic limit) 225

Zero angular momentum 128–9
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