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Preface

Information for readers

What is this book about and who is it for?

This is a book on classical mechanics for university undergraduates. It aims to cover
all the material normally taught in classical mechanics courses from Newton’s laws to
Hamilton’s equations. If you are attending such a course, you will be unlucky not to
find the course material in this book.

What prerequisites are needed to read this book?

It is expected that the reader will have attended an elementary calculus course and an
elementary course on differential equations (ODEs). A previous course in mechanics
is helpful but not essential. This book is self-contained in the sense that it starts from
the beginning and assumes no prior knowledge of mechanics. However, in a general
text such as this, the early material is presented at a brisker pace than in books that are
specifically aimed at the beginner.

What is the style of the book?

The book is written in a crisp, no nonsense style; in short, there is no waffle! The object
is to get the reader to the important points as quickly and easily as possible, consistent
with good understanding.

Are there plenty of examples with full solutions?

Yes there are. Every new concept and technique is reinforced by fully worked exam-
ples. The author’s advice is that the reader should think how he or she would do each
worked example before reading the solution; much more will be learned this way!

Are there plenty of problems with answers?

Yes there are. At the end of each chapter there is a large collection of problems. For
convenience, these are arranged by topic and trickier problems are marked with a star.
Answers are provided to all of the problems. A feature of the book is the inclusion
of computer assisted problems. These are interesting physical problems that cannot be
solved analytically, but can be solved easily with computer assistance.

Where can | find more information?

More information about this book can be found on the book’s homepage
http://www.cambridge.org/Gregory

All feedback from readers is welcomed. Please e-mail your comments, corrections and
good ideas by clicking on the comments button on the book’s homepage.



Xii Preface

Information for lecturers

Scope of the book and prerequisites

This book aims to cover all the material normally taught in undergraduate mechanics
courses from Newton’s laws to Hamilton’s equations. It assumes that the students have
attended an elementary calculus course and an elementary course on ODEs, but no more.
The book is self contained and, in principle, it is not essential that the students should
have studied mechanics before. However, their lives will be made easier if they have!

Inspection copy and Solutions Manual

Any lecturer who is giving an undergraduate course on classical mechanics can request
an inspection copy of this book. Simply go to the book’s homepage

http://www.cambridge.org/Gregory

and follow the links.

Lecturers who adopt this book for their course may receive the Solutions Manual.
This has a complete set of detailed solutions to the problems at the end of the chapters.
To obtain the Solutions Manual, just send an e-mail giving your name, affiliation, and
details of the course to solutions@cambridge.org

Feedback

All feedback from instructors and lecturers is welcomed. Please e-mail your comments
via the link on the book’s homepage

Acknowledgements

I am very grateful to many friends and colleagues for their helpful comments and sug-
gestions while this book was in preparation. But most of all I thank my wife Win for
her unstinting support and encouragement, without which the book could not have been
written at all.



Part One

NEWTONIAN MECHANICS
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Chapter One
. _________________________________________________________________________________________|

The algebra and calculus
of vectors

KEY FEATURES
The key features of this chapter are the rules of vector algebra and differentiation of vector
functions of a scalar variable.

This chapter begins with a review of the rules and applications of vector algebra.
Almost every student taking a mechanics course will already have attended a course on
vector algebra, and so, instead of covering the subject in full detail, we present, for easy
reference, a summary of vector operations and their important properties, together with a
selection of worked examples.

The chapter closes with an account of the differentiation of vector functions of a
scalar variable. Unlike the vector algebra sections, this is treated in full detail. Applica-
tions include the tangent vector and normal vector to a curve. These will be needed in
the next chapter in order to interpret the velocity and acceleration vectors.

1.1 VECTORS AND VECTOR QUANTITIES

Most physical quantities can be classified as being scalar quantities or vector
quantities. The temperature in a room is an example of a scalar quantity. It is so called
because its value is a scalar, which, in the present context, means a real number. Other
examples of scalar quantities are the volume of a can, the density of iron, and the pressure
of air in a tyre. Vector quantities are defined as follows:

Definition 1.1 Vector quantity If a quantity Q has a magnitude and a direction asso-
ciated with it, then Q is said to be a vector quantity. [Here, magnitude means a positive
real number and direction is specified relative to some underlying reference frame* that
we regard as fixed.]

The displacement of a particle’ is an example of a vector quantity. Suppose the
particle starts from the point A and, after moving in a general manner, ends up at the

* See section 2.2 for an explanation of the term ‘reference frame’.
A particle is an idealised body that occupies only a single point of space.
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FIGURE 1.1 Four different representations of each of the
vectors a, b ¢ form the twelve edges of the parallelopiped
box.

point B. The magnitude of the displacement is the distance AB and the direction of the
displacement is the direction of the straight line joining A to B (in that order). Another
example is the force applied to a body by a rope. In this case, the magnitude is the strength
of the force (a real positive quantity) and the direction is the direction of the rope (away
from the body). Other examples of vector quantities are the velocity of a body and the
value of the electric (or magnetic) field. In order to manipulate all such quantities without
regard to their physical origin, we introduce the concept of a vector as an abstract quantity.

Definition 1.2 Vector A vector is an abstract quantity characterised by the two proper-
ties magnitude and direction. Thus two vectors are equal if they have the same magnitude
and the same direction.”

Notation. Vectors are written in bold type, for example a, b, r or F. The magnitude of
the vector a, which is a real positive number, is written | a |, or sometimes’ simply a.

It is convenient to define operations involving abstract vectors by reference to some
simple, easily visualised vector quantity. The standard choice is the set of directed line
segments. Each straight line joining two points (P and Q say, in that order) is a vector

quantity, where the magnitude is the distance P Q and the direction is the direction of
—

Q relative to P. We call this the line segment PQ and we say that it represents some
abstract vector a.* Note that each vector a is represented by infinitely many different line
segments, as indicated in Figure 1.1.

* In order that our set of vectors should have a standard algebra, we also include a special vector whose
magnitude is zero and whose direction is not defined. This is called the zero vector and written 0. The
zero vector is not the same thing as the number zero!

1t is often useful to denote the magnitudes of the vectors a, b, ¢, ...by a, b, c, ..., but this does risk
confusion. Take care!

* The zero vector is represented by line segments whose end point and starting point are coincident.
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FIGURE 1.2 Addition, subtraction and scalar multiplication of vectors.

—-3b

1.2 LINEAR OPERATIONS: a + b AND \La

Since vectors are abstract quantities, we can define sums and products of vectors
in any way we like. However, in order to be of any use, the definitions must create some
coherent algebra and represent something of interest when applied to a range of vector
quantities. Also, our definitions must be independent of the particular representations
used to construct them. The definitions that follow satisfy all these requirements.

The vector sum a + b

Definition 1.3 Sum of vectors Let a and b be any two vectors. Take any representa-
—

—
tion PQ of a and suppose the line segment QR represents b. Then the sum a + b of a

—

and b is the vector represented by the line segment PR, as shown in Figure 1.2 (left).

Laws of algebra for the vector sum

i b+a=a+b (commutative law)

(i) a+(b+c)=(@+b)+c (associative law)

Definition 1.4 Negative of a vector Let b be any vector. Then the vector with the same
magnitude as b and the opposite direction is called the negative of b and is written —b.
Subtraction by b is then defined by

a—b=a+ (—b).

[That is, to subtract b just add —b, as shown in Figure 1.2 (centre).]

The scalar multiple Aa

Definition 1.5 Scalar multiple Let a be a vector and A be a scalar (a real number).
Then the scalar multiple Aa is the vector whose magnitude is |\ || a| and whose direction
is
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(1) the same as a if A is positive,
(i) undefined if A is zero (the answer is the zero vector),
(iii) the same as —a if A is negative.

It follows that —(Aa) = (—\)a.

Laws of algebra for the scalar multiple

1) AMua) = (An)a (associative law)
@) AM(a+b)=ra+Ab and A+ pw)a=Xra-+ ua (distributive laws)

The effect of the above laws is that linear combinations of vectors can be manipu-
lated just as if the vectors were symbols representing real or complex numbers.

Example 1.1 Laws for vector sum and scalar multiple

Simplify the expression 3(2a — 4b) —2(2a — b).

Solution
On this one occasion we will do the simplification by strict application of the laws. It

is instructive to decide which laws are being used at each step!
32a—4b) —2Q2a—b) = 3(2a n (—4)b) n (—2)(2a n (—1)b)
= (6a+(—12)b) + ((~4)a +2b)

_ (6a n (_4)a) n ((—12)b n 2b)
—2a+ (~10)b=2a—10b.m

Unit vectors

A vector of unit magnitude is called a unit vector. If any vector a is divided by its own
magnitude, the result is a unit vector having the same direction as a. This new vector is
denoted by @ so that

a=allal.

Basis sets

Suppose a and b are two non-zero vectors, with the direction of b neither the same nor
—_— —>

opposite to that of a. Let OA, OB be representations of a, b and let P be the plane
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A -

0) a A )\'a

FIGURE 1.3 The set {a, b} is a basis for all vectors lying in the plane O AB.

containing the triangle O AB. Then (see Figure 1.3) any vector v whose representation

—_—
OV lies in the plane P can be written in the form
v =Xia+ ub, (1.1)

where the coefficients A, wu are unique. Vectors that have their directions parallel to the
same plane are said to be coplanar. Thus we have shown that any vector coplanar with a
and b can be expanded uniquely in the form (1.1). It is also apparent that this expansion
set cannot be reduced in number (in this case to a single vector). For these reasons the pair
of vectors {a, b} is said to be a basis set for vectors lying* in the plane P.

Suppose now that {a, b, c} is a set of three non-coplanar vectors. Then any vector v,
without restriction, can be written in the form

v=Aia+ ub+vc, (1.2)

where the coefficients A, u, v are unique. In this case we say that the set {a, b, c} is a basis
set for all three-dimensional vectors. Although any set of three non-coplanar vectors forms
a basis, it is most convenient to take the basis vectors to be orthogonal unit vectors. In this
case the basis set' is usually denoted by {i, j, k} and is said to be an orthonormal basis.
The representation of a general vector v in the form

v=Al+pnj+vk

is common in problem solving.

In applications involving the cross product of vectors, the distinction between right-
and left-handed basis sets actually matters. There is no experiment in classical mechanics
or eletromagnetism that can distinguish between right- and left-handed sets. The differ-
ence can only be exhibited by a model or some familiar object that exhibits ‘handedness’,
such as a corkscrew.” Figure 1.4 shows a right-handed orthonormal basis set attached
to a well known object.

* Strictly speaking vectors are abstract quantities that do not /ie anywhere. This phrase should be taken to
mean ‘vectors whose directions are parallel to the plane P°.

T It should be remembered that there are infinitely many basis sets made up of orthogonal unit vectors.
_— > —>

* Suppose that the non-coplanar vectors {a, b, ¢} have representations O A, OB, OC respectively. Place
an ordinary corkscrew with the screw lying along the line through O perpendicular to the plane O AB,
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Ak L
FIGURE 1.4 A standard basis set {i, j, k} is . >
both orthonormal and right-handed. J
A
C a
C
FIGURE 1.5 The points A, B, C have position O
vectors a, b, ¢ relative to the origin O. b B

Definition 1.6 Standard basis set If an orthonormal basis {i, j, k} is also right-
handed (as shown in Figure 1.4), we will call it a standard basis.

Position vectors and vector geometry

Suppose that O is a fixed point of space. Then relative to the origin O (and relative to the

underlying reference frame), any point of space, such as A, has an associated line segment,
—

O A, which represents some vector a. Conversely, the vector a is sufficient to specify the
position of the point A.

Definition 1.7 Position vector The vector a is called the position vector of the point
A relative to the origin O, [It is standard practice, and very convenient, to denote the
position vectors of the points A, B, C, ...by a, b, ¢, and so on, as shown in Figure 1.5.]

Since vectors can be used to specify the positions of points in space, we can now use
the laws of vector algebra to prove™ results in Euclidean geometry. This is not just an aca-
demic exercise. Familiarity with geometrical concepts is an important part of mechanics.
We begin with the following useful result:

and the handle parallel to O A. Now turn the corkscrew until the handle is parallel to O B and note the
direction in which the corkscrew would move if it were ‘in action’. ( The direction of the turn must be
such that the angle turned through is at most 180°.) If OC makes an acute angle with this direction, the
set {a, b, c} (in that order) is right-handed; it OC makes an obtuse angle with this direction then the set
is left-handed.

* Some properties of Euclidean geometry have been used to prove the laws of vector algebra. However,
this does not prevent us from giving valid proofs of other results.
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FIGURE 1.6 The point X divides the line AB
in the ratio A : . @)

Example 1.2 Point dividing a line in a given ratio

The points A and B have position vectors a and b relative to an origin O. Find the
position vector x of the point X that divides the line AB in the ratio A : u (that is
AX/XB = \/p).

Solution
It follows from Figure 1.6 that x is given by*

RN )\' —_
x=a+AX=a+(—> AB
At

A Ab
a+<—>(b—a) _ hatrd
P P

In particular, the mid-point of the line AB has position vector %(a +b).m

Example 1.3 Centroid of a triangle

Show that the three medians of any triangle meet in a point (the centroid) which
divides each of them in the ratio 2:1.

Solution

Let the triangle be ABC where the points A, B, C have position vectors a, b, ¢
relative to some origin O. Then the mid-point P of the side BC has position vector
p= %(b + ¢). The point X that divides the median AP in the ratio 2:1 therefore has
position vector

a+2p a+b+c
241 3

The position vectors of the corresponding points on the other two medians can be
found by cyclic permutation of the vectors a, b, ¢ and clearly give the same value.
Hence all three points are coincident and so the three medians meet there. B

—>
* Strictly speaking we should not write expressions like a+ AX since the sum we defined was the sum
of two vectors, not a vector and a line segment. What we really mean is ‘the sum of a and the vector

—
represented by the line segment AX’. Pure mathematicians would not approve but this notation is so
convenient we will use it anyway. It’s all part of living dangerously!
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FIGURE 1.7 The bisector theorem:

Chapter 1 The algebra and calculus of vectors

a

aO
/\6
b

AP/PB =0A/OB. A P B

1.3

Example 1.4 The bisector theorem

In a triangle O AB, the bisector of the angle AO B meets the line AB at the point P.
Show that AP/PB = OA/OB.

Solution

Let the vertex O be the origin of vectors™ and let the position vectors of the vertices
A, B relative to O be a, b as shown in Figure 1.7. The point with position vector
a + b does not lie the bisector O P in general since the vectors a and b have different
magnitudes @ and b. However, by symmetry, the point with position vector @+ b does
lie on the bisector and a general point X on the bisector has a position vector x of the
form

o a b ba+ab ba+ab
—a@+p)=Ar(2+2 )= (2247) = (2297
x=1(@+9) <a+b> ( ab ) ( K )

where K = ab/A is a new constant. Now X will lie on the line AB if its position
vector has the form (ua + Ab)/(A + w), thatis, if K = a + b. Hence the position
vector p of P is

_ba+ab

P a+b

Moreover we see that P divides that line AB in the ratio a : b, thatis, AP/PB =
O A/OB as required. &

THE SCALAR PRODUCT a - b

—

Definition 1.8 Scalar product Suppose the vectors a and b have representations O A
—
and O B. Then the scalar product a - b of a and b is defined by

a-b=|al|b|cosH, (1.3)

where 6 is the angle between O A and O B. [Note that a - b is a scalar quantity.]

* One can always take a special point of the figure as origin. The penalty is that the symmetry of the
labelling is lost.
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Laws of algebra for the scalar product

i b-a=a-b (commutative law)
@) a-(b+c)=a-b+a-c (distributive law)
(i) (Aa) - b= A(a - b) (associative with scalar multiplication)

Properties of the scalar product
() a-a=|al?
(i1) The scalar product a - b = 0 if (and only if) a and b are perpendicular (or one of
them is zero).
(iii) If {7, j, k} is an orthonormal basis then
i-i=j-j=k-k=1, i-j=j-k=k-i=0.
(v) Ifay = Mi + pn1j +vikand ay = i + uoj + vok then

ap-ay =iy + (pu2 + vivo.

Example 1.5 Numerical example on the scalar product

Ifa=2i— j+2kand b =4i — 3k, find the magnitudes of @ and b and the angle
between them.

Solution

lal>=a-a= 2i—j+2k)-Qi—j+2k) =22+ (—1)>+2% = 9. Hence |a| = 3.

Similarly | b|? = 424-0%+(—3)? = 25so that |b| = 5. Also a-b = 84+0+(—6) = 2.

Since a - b = |a||b|cos0, it follows that 2 = 3 x 5 x cos 8 so that cos§ = 2/15.
Hence the magnitudes of @ and b are 3 and 5, and the angle between them is

cos™1(2/15). m

Example 1.6 Apollonius’s theorem

In the triangle O AB, M is the mid-point of AB. Show that (0 A)> + (OB)?> =
2(0M)? +2(AM)>.

Solution

Let the vertex O be the origin of vectors and let the position vectors of A and B be a
and b. Then the position vector of M is %(a + b). Then

4O0M?* =la+b>=(a+b)-(a+b)
—a-a+b-b+2a-b=|al*>+|b*+2a-b
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FIGURE 1.8 The component of v in the
direction of the unit vector n is equal to OV’
the projection of OV onto the line through
O parallel to n.

and

4(AM)> = (AB)> =|a—b>=(a—b)-(a—b)
—a-a+b-b—2a-b=|al*+|b|* —2a-b.

Hence
200M)* +2(AM)?* = |a|* + |b|> = (0A)* + (OB)?

as required. W

Components of a vector

Definition 1.9 Components of a vector Let n be a unit vector. Then the component
of the vector v in the direction of n is defined to be v - n. The component of v in the
direction of a general vector a is therefore v - @.

Properties of components

_
(i) The component v - n has a simple geometrical significance. Let OV be a represen-
tation of v as shown in Figure 1.8. Then

ven=|v||n|cosd =0Vcosd =0V,

where OV’ is the projection of OV onto the line through O parallel to n.
(i) Suppose that v is a sum of vectors, v = v| + v + v3 say. Then the component of
v in the direction of n is

ven=wW +vp+v3)-n=(;-n)+ (v2+n)+ (v3-n),

by the distributive law for the scalar product. Thus, the component of the sum of a
number of vectors in a given direction is equal to the sum of the components of the
individual vectors in that direction.

(iii) If a vector v is expanded in terms of a general basis set {a, b, ¢} in the form v =
ra+ ub+vc, the coefficients A, u, v are not the components of the vector v in the
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|
| + n
axb} B
ﬁ/if/
|
(&4

FIGURE 1.9 The vector product : > A
axb=(|a||b|sind)n. O | a

directions of a, b, c. However if v is expanded in terms of an orthonormal basis set
{i, j, k} in the form v = Li 4 u j + v k, then the component of v in the i-direction
is

Vei=(hi+tpjrvk)ei=aG i)+ pu(j-i)+vlk-i)
— 2 +0+0=1.

Similarly @ and v are the components of v in the j- and k-directions. Hence when
a vector v is expanded in terms of an orthonormal basis set {i, j, k} in the form
v = Al 4+ puj+ vk, the coefficients A, ju, v are the components of v in the i- j-
and k-directions.

Example 1.7 Numerical example on components

Ifv=6i—-3j+15kand a = 2i — j — 2k, find the component of v in the direction
of a.

Solution
|a|2 =a-a=22+(—1)2+(—2)2 = 9. Hence |a| = 3 and

a  2i-j-2k

="

|a| 3

The required component of v is therefore

~ , . 2i —j—2k 12+3—-30
v-a:(6t—3]+15k)-< ): =-5.n
3 3
1.4 THE VECTOR PRODUCT axb
—_
Definition 1.10 Vector product Suppose the vectors a and b have representations O A

—

and OB and let n be the unit vector perpendicular to the plane O AB and such that
{a, b, n} is a right-handed set. Then the vector product a x b of a and b is defined by

axb=(la||b|sinb)n, (1.4)
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where 0 (0 < 6 < 180°) is the angle between O A and O B. [Note that a x b is a vector
quantity.]

Laws of algebra for the vector product

(1) bxa=—axb (anti-commutative law)
(i) ax(b+c)=axb+axc (distributive law)
(i11) (Aa)xb = A(axb) (associative with scalar multiplication)

Since the vector product is anti-commutative, the order of the terms in vector prod-
ucts must be preserved. The vector product is not associative.

Properties of the vector product

(1) axa=0.
(i) The vector product ax b = 0 if (and only if) a and b are parallel (or one of them is
Zero).
(iii) If {i, j, k} is a standard basis then

ixj=k, kxi=j, jxk=Ii, iXi=jxj=kxk=0.
(v) Ifay = Ai + p1j +vikand ay = i + woj + vok then
i jk
ayxay =iy iy vy
A2 2 V2

where the determinant is to be evaluated by the first row.

Example 1.8 Numerical example on vector product

Ifa=2i— j+2kand b= —i — 3k, find a unit vector perpendicular to both @ and
b.

Solution
The vector a x b is perpendicular to both @ and b. Now
i j k
axb=| 2-1 2
-1 0-3
=3-0i—-((-0)—(-2)j+O0—-Dk
=3i+4j—k

The magnitude of this vector is (3% 4 4% + (—1)?) 12 _ (26)!/2. Hence the required
unit vector can be either of + (3i +4j — k) /(26)!/>. m
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1.5 TRIPLE PRODUCTS

Triple products are not new operations but are simply one product followed by
another. There are two kinds of triple product whose values are scalar and vector respec-
tively.

Triple scalar product

An expression of the form a - (bx c) is called a triple scalar product; its value is a scalar.

Properties of the triple scalar product
@)
a-(bxc)=c-(axb)=>b-(cxa), (1.5)

that is, cyclic permutation of the vectors a, b, c in a triple scalar product leaves its
value unchanged. [Interchanging two vectors reverses the sign.]
This formula can alternatively be written

a-(bxc)=(axb)-c, (1.6)

that is, interchanging the positions of the ‘dot’ and the ‘cross’ in a triple scalar
product leaves its value unchanged.
Because of this symmetry, the triple scalar product can be denoted unambiguously
by [a, b, c].

(i) The triple scalar product [a, b, ¢] = O if (and only if) a, b, ¢ are coplanar (or one

of them is zero). In particular a triple scalar product is zero if two of its vectors are
the same.

(iii) If [a, b, c] > O then the set {a, b, ¢} is right-handed. 1f [ a, b, c] < 0O then the set
{a, b, ¢} is left-handed.

(iv) If ay = Ai + 1 j + vik, ap = i + uaj + vak, a3 = Asi + 3 j + vk, where

{i, j, k} is a standard basis, then

Al p1 v
a1, a2, a3] = | Ay o v2|. (1.7)
A3 U3 V3

Triple vector product

An expression of the form ax(bxc) is called a triple vector product; its value is a vector.

Property of the triple vector product
Since b x ¢ is perpendicular to both b and ¢, it follows that a x (b x ¢) must lie in the
same plane as b and c¢. It can therefore be expanded in the form Aa + wb. The actual
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formula is
ax(bxc)=(a-c)b— (a-b)c. (1.8)

Since the vector product is anti-commutative and non-associative, it is wise to use this
formula exactly as it stands.

Example 1.9 Using triple products

Expand the expression (a x b) - (¢ x d) in terms of scalar products.

Solution

Use the triple scalar product formula (1.6) to interchange the first ‘dot’ and ‘cross’,
and then expand the resulting triple vector product by the formula (1.8), as follows:

(axb)-(cxd)=a-[bx(cxd)]=a-[(b-d)c— (b-c)d]
=(@-c)b-d)—(a-d)(b-c)m

1.6 VECTOR FUNCTIONS OF A SCALAR VARIABLE

In practice, the value of a vector quantity often depends on a scalar variable such
as the time 7. For example, if A is the label of a particle moving through space, then its
position vector a (relative to a fixed origin O) will vary with time, that is, @ = a(t). The
vector a is therefore a function of the scalar variable 7.

The time dependence of a vector need not involve motion. The value of the electric
or magnetic field at a fixed point* of space will generally vary with time so that E = E(¢)
and B = B(t). More generally, the scalar variable need not be the time. Consider the
space curve C shown in Figure 1.10, whose points are parametrised by the parameter c.
Each point of the curve has a unique tangent line whose direction can be characterised by
the unit vector ¢. This is called the unit tangent vector to C and it depends on «, that is,
t = t(«). In this case the independent variable is the scalar « and (just to confuse matters)
the dependent variable is the vector ¢.

Differentiation

The most important operation that can be carried out on a vector function of a scalar
variable is differentiation.

Definition 1.11 Differentiation of vectors Suppose that the vector v is a function of
the scalar variable «, that is, v = v(«). Then the derivative of the function v(«) with
respect to o is defined by the limit'

dv ) (v(a+Aa)—v(a) )
lim .

da  Aa—0 Ao

(1.9)

* We will not be concerned here with vector functions of position. These are called vector fields.
T Mathematical note: The statement u(«) — U as « — A means that |u(e) — U | — Oas o — A.
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This looks identical to the definition of the derivative of an ordinary real function, but there
is adifference. When o changes to o+ Ac, the function v changes from v(«) to v(a+Aw),
a difference of v(e¢+ Aa) —v(«). However, this ‘difference’ now means vector subtraction

and its value is a vector; it remains a vector after dividing by the scalar increment Ac.
Hence dv/dw, the limit of this quotient as Ao — 0, is a vector. Furthermore, since
dv/da depends on «, it is itself a vector function of the scalar variable «. The rules for
differentiating combinations of vector functions are similar to those for ordinary scalar
functions.

Differentiation rules for vector functions

Let u(a) and v(«) be vector functions of the scalar variable «, and let A(«) be a
scalar function. Then:

) i(u+v)=a+i; (i) i(m) =iu+ru
da da

d d
(i) —(w-v) =u-v+u-v (GAv) — (uxXv) =uxv+uxv
da da

where # means du/da and so on. Note that the order of the terms in the vector
product formula must be preserved.

Example 1.10 Differentiating vector functions

(1) The position vector of a particle P at time ¢ is given by
r=Q02=50)i+ @t +2)j+1k,

where {i, j, k} is a constant basis set. Find dr/dt and d*r/dt*. (These are the
velocity and acceleration vectors of P at time ¢.)

(ii1) If @ = a(r) and b is a constant vector, show that
d [a-(axb)] (axb)
—[a- (ax =a-(axb).
dt

Solution
(i) Since i, j, k are constant vectors, it follows from the differentiation rules that
dr dr

(4t —5)i+4j+32%k, — =4i+6¢tk.
o ( Yi+4j+ ) i+
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~ chord joining A and A

tangent line at A

FIGURE 1.10 The unit tangent vector #(«) at a typical point A on the curve C,
defined parametrically by r = r(«).

(ii)

%[a-(dxb)] =d-(dxb)+a-<%(dxb)> =0+a- (axb+ax1})
=a-(axb+ax0)=a-(axb),

as required. W

1.7 TANGENT AND NORMAL VECTORS TO A CURVE

In the next chapter we will define the velocity and acceleration of a particle mov-
ing in a space of three dimensions. In order to be able to interpret these definitions, we
need to know a little about the differential geometry of curves. In particular, it is useful to
know what the unit tangent and unit normal vectors of a curve are.

Unit tangent vector

Consider the curve C shown in Figure 1.10 which is defined by the parametric equation

r = r(a). In general this can be a curve in three-dimensional space. Let A be a typical

point of C corresponding to the parameter « and A’ a nearby point corresponding to the
—

parameter @ + Aa. The chord A A’ represents the vector

Ar =r(a+ Aa) — r(a)

—

and so Ar/| Ar| is a unit vector parallel to the chord AA’. The unit tangent vector #(«)
at the point A is defined to be the /iixit of this expression as A" — A, that is

. Ar
t() = lim .
Aa—0 | Ar|
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2a

am 2aT

FIGURE 1.11 The cycloid x = a(6 — sinf), y = a(1 — cos9),
z=0,where 0 < 0 < 2m.

The tangent vector ¢ is related to the derivative dr/da since

dr . Ar , Ar . |Ar]

— = lim — = lim x lim

da Aa—0 A« Aa—0 | Ar| Aa—0 A«

. dr
=ta) x| lim —|=t(@) x |—/|,
Aa—0 do
that is,

dr dr £) (1.10)
_——= | — o). .
d do

Example 1.11 Finding the unit tangent vector

Figure 1.11 shows the cycloid x = a(f — sinf), y = a(l — cosf), z = 0, where
0 < 6 < 2m. Find the unit tangent vector to the cycloid at the point with parameter
0.

Solution

Let i, j be unit vectors in the directions Ox, Oy respectively. Then the vector form
of the equation for the cycloid is

r=a(@ —sinf)i +a(l —cosh)j.

Then
I 41 = cos0)i + (asind) j
d@ =da COS 1 a Sin _]
and

d
‘r = a(2—2cos)"/? = 2asin 16.

6
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Hence the unit tangent vector to the cycloid is
dr dr N Los s
) = 0 al= (sin 50)i + (cos 50) j,

after simplification. H

The formula (1.10) takes its simplest form when the parameter « is taken to be s, the
distance along the curve measured from some fixed point. In this case,

dr

|Ar|
—| = lim =
ds

= 1
As—0 As

so that ¢ (pointing in the direction of increasing s) is given by the simple formula

dr
t=—. 1.11
Is (L.11)

This is the most convenient formula for theoretical purposes.

Unit normal vector

Let ¢(s) be the unit tangent vector to the curve C, where the parameter s represents distance
along the curve. Then, since ¢ is a vector function of the scalar variable s, it has a derivative
dt/ds which is another vector function of s.

Since ¢ is a unit vector it follows that £(s) - £(s) = 1 and if we differentiate this identity
with respect to s, we obtain

O—d(t t)—dt t+t dt
T ds " ds ds

=z(ﬂ.t).
ds

It follows that d¢/ds is always perpendicular to ¢. It is usual to write d¢/ds in the form

— =Kn (1.12)

where k = |dt/ds|, a positive scalar called the curvature, and n is a unit vector called
the (principal) unit normal vector. At each point of the curve, the unit vectors #(s) and
n(s) are mutually perpendicular.

The quantities 7 and x have a nice geometrical interpretation. Let A be any point on
the curve and suppose that the distance parameter s is measured from A. Then, by Taylor’s
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theorem, the form of the curve C near A is given approximately by

dr 1 2 d’r 3
r(S)=r(0)+S|:$:|S:0+§S |:m:| O+O(S>,
§=

that is,
r(s) :a—i—st-i-(%Ksz)n-l-O <S3>, (1.13)

where a is the position vector of the point A, and ¢, « and n are evaluated at the point A.
Thus, near A, the curve C lies*™ in the plane through A parallel to the vectors t and n. We
can also see from equation (1.13) that, near A, the curve C is approximately a parabola.
To the same order of approximation, it is equally true that, near A, the curve C is given by

r(s) =a+ ! (sinks) t + ! (1 —cosks)n+ O <s3> . (1.14)

Thus, near A, the curve C is approximately a circle of radius « ~!; the vector ¢ is tangential
to this circle and the vector n points towards its centre. The radius « ~! is called the radius

of curvature of C at the point A.

Example 1.12 Finding the unit normal vector and curvature

Find the unit normal vector and curvature of the cycloid x = a(@ — sinf), y =
a(l —cosh),z=0,where 0 <0 < 2m.

Solution
The tangent vector to the cycloid has already been found to be
dr dr .1 . 1 .
t(@) = @/ ‘E = (Sln 29)1 + (cos 29)']
Hence, by the chain rule,

dt _dt/d9  dt/do  %(cos30)i— 5(sin30)j

ds — ds/d6 ~ |dr/d6] — 2a'sin 16

= (4a sin %9)_1 ((cos 19yi — (sin 16) j) .

Hence the unit normal vector and curvature of the cycloid are given by
-1
n(®) = (cos %Q)i — (sin %Q)j, k() = <4a sin %9) .

The radius of curvature of the cycloid is therefore 4a sin %9. [ |

* More precisely, this plane makes three point contact with the curve C at the point A.
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Problems on Chapter 1

Answers and comments are at the end of the book.

Harder problems carry a star ().

1.1 In terms of the standard basis set {i, j, k}, a = 2i — j — 2k, b = 3i — 4k and ¢ =
i—5j+3k.

(i) Find3a +2b—4cand |a — b|>.
(i1) Find |a|, |b]| and a - b. Deduce the angle between a and b.
(iii) Find the component of c¢ in the direction of a and in the direction of b.
(iv) Find ax b, bx c and (ax b) x (bx c).
(v) Find a - (bxc) and (ax b) - ¢ and verify that they are equal. Is the set {a, b, c} right-
or left-handed?
(vi) By evaluating each side, verify the identity ax (bxc) = (a-¢c)b — (a - b)c.

Vector geometry

1.2 Find the angle between any two diagonals of a cube.

1.3 ABCDEF isaregular hexagon with centre O which is also the origin of position vectors.
Find the position vectors of the vertices C, D, E, F in terms of the position vectors a, b of A
and B.

1.4 Let ABCD be a general (skew) quadrilateral and let P, O, R, S be the mid-points of the
sides AB, BC, CD, D A respectively. Show that P QRS is a parallelogram.

1.5 In a general tetrahedron, lines are drawn connecting the mid-point of each side with the
mid-point of the side opposite. Show that these three lines meet in a point that bisects each of
them.

1.6 Let ABC D be a general tetrahedron and let P, O, R, S be the median centres of the faces
opposite to the vertices A, B, C, D respectively. Show that the lines AP, BQ, CR, DS all
meet in a point (called the centroid of the tetrahedron), which divides each line in the ratio 3:1.

1.7 A number of particles with masses m 1, mz, ms, . .. are situated at the points with position
vectors ry, 12, r3, . .. relative to an origin O. The centre of mass G of the particles is defined
to be the point of space with position vector

miry +mory +m3r3 +---
mi+my+m3—+---

R =

Show that if a different origin O’ were used, this definition would still place G at the same
point of space.

1.8 Prove that the three perpendiculars of a triangle are concurrent.
[Construct the two perpendiculars from A and B and take their intersection point as O, the origin of position

vectors. Then prove that O C must be perpendicular to AB.]
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Vector algebra

1.9 Ifa) = i+ p1j+vik, ax = i+ prj+vak, az = A3i + n3 j + vk, where {i, j, k}
is a standard basis, show that

Al M1 V1
a)-(ayxaz) = A pa va |.
A3 U3 V3

Deduce that cyclic rotation of the vectors in a triple scalar product leaves the value of the
product unchanged.

1.10 By expressing the vectors a, b, ¢ in terms of a suitable standard basis, prove the identity
ax(bxc)=(a-c)b—(a-b)c.

1.11 Prove the identities

(1) (axb)-(cxd)=(a-c)(b-d)— (a-d)(b-c)
(i1) (axb)x(cxd)=[a,b,d]c—[a,b,cld
(i) ax(bxc)+cx(axb)+bx(cxa) =0 (Jacobi’s identity)

1.12 Reciprocal basis Let {a, b, ¢} be any basis set. Then the corresponding reciprocal
basis {a*, b*, ¢*} is defined by

«_ bxc « _ €Xa «_ axb
“ " la, b, c]’ " la, b, c]l’ ¢ " la, b, c]
(i) If {i, j, k} is a standard basis, show that {i*, j*, k*} = {i, j, k}.
(ii) Show that [a*, b*, ¢*] = 1/[a, b, c]. Deduce that if { a, b, ¢} is a right handed set then
sois {a*, b*, c*}.
(iii) Show that { (a*)*, (b™)*, (¢*)*]1 = {a, b, c}.
(iv) If a vector v is expanded in terms of the basis set { a, b, ¢} in the form

v=Aa+ub+ve,
show that the coefficients A, w, v are givenby A =v-a*, u =v - b*, v =v - ¢*.

1.13 Lamé’s equations The directions in which X-rays are strongly scattered by a crystal are
determined from the solutions x of Lamé’s equations, namely

x-a=1L, x-b=M, x.-c=N,

where {a, b, c} are the basis vectors of the crystal lattice, and L, M, N are any integers. Show
that the solutions of Lamé’s equations are

x=La*"+Mb*+ N c*,

where {a*, b*, ¢*} is the reciprocal basis to {a, b, c}.
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Differentiation of vectors
1.14 If r(t) = 3t> —4)i + 3 j + (t + 3) k, where {i, j, k} is a constant standard basis, find

7 and 7. Deduce the time derivative of r x r.

1.15 The vector v is a function of the time ¢ and k is a constant vector. Find the time deriva-
tives of (i) |v |2, (ii) (v + k) v, (iii) [ v, v, k].

1.16 Find the unit tangent vector, the unit normal vector and the curvature of the circle x =
acosf,y = asinf, z = 0 at the point with parameter 6.

1.17 Find the unit tangent vector, the unit normal vector and the curvature of the helix x =
acosf,y = asinf, z = b0 at the point with parameter 6.

1.18 Find the unit tangent vector, the unit normal vector and the curvature of the parabola
x =ap?, y = 2ap, z = 0 at the point with parameter p.



Chapter Two

Velocity, acceleration
and scalar angular velocity

KEY FEATURES
The key concepts in this chapter are the velocity and acceleration of a particle and the angular
velocity of a rigid body in planar motion.

Kinematics is the study of the motion of material bodies without regard to the forces
that cause their motion. The subject does not seek to answer the question of why bod-
ies move as they do; that is the province of dynamics. It merely provides a geometrical
description of the possible motions. The basic building block for bodies in mechanics is
the particle, an idealised body that occupies only a single point of space. The impor-
tant kinematical quantities in the motion of a particle are its velocity and acceleration.
We begin with the simple case of straight line particle motion, where velocity and accel-
eration are scalars, and then progress to three-dimensional motion, where velocity and
acceleration are vectors.

The other important idealisation that we consider is the rigid body, which we regard
as a collection of particles linked by a light rigid framework. The important kinematical
quantity in the motion of a rigid body is its angular velocity. In this chapter, we con-
sider only those rigid body motions that are essentially two-dimensional, so that angular
velocity is a scalar quantity. The general three-dimensional case is treated in Chapter 16.

2.1 STRAIGHT LINE MOTION OF A PARTICLE

Consider a particle P moving along the x-axis so that its displacement x from the
origin O is a known function of the time ¢. Then the mean velocity of P over the time

0 P

i

* @ > T
— v

FIGURE 2.1 The particle P moves in a straight line and
has displacement x and velocity v at time 7.
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interval 11 < t < 1; is defined to be the increase in the displacement of P divided by the
time taken, that is,

x(f2) — x(t1)

2.1
P— (2.1

Example 2.1 Mean velocity

Suppose the displacement of P from O at time ¢ is given by x = t> — 61, where x
is measured in metres and ¢ in seconds. Find the mean velocity of P over the time
interval 1 <t < 3.

Solution

In this case, x(1) = —5 and x(3) = —9 so that the mean velocity of P is ((—9) —

(-5)/3—-1H=-2ms'.m

The mean velocity of a particle is less important to us than its instantaneous velocity,

that is, its velocity at a given instant in time. We cannot find the instantaneous velocity of
P at time t; merely by letting o, = ¢ in the formula (2.1), since the quotient would then
be undefined. However, we can define the instantaneous velocity as the /imit of the mean
velocity as the time interval zends to zero, that is, as t, — 1. Thus v(¢1), the instantaneous
velocity of P at time 7| can be defined by

v(7) = lim <M)

hh—1 h—n

But this is precisely the definition of dx /dt, the derivative of x with respect to ¢, evaluated
at t = 1. This leads us to the official definition:

Definition 2.1 1-D velocity The (instantaneous) velocity v of P, in the positive x-
direction, is defined by

dx

= (2.2)

v

The speed of P is defined to be the rate of increase of the total distance travelled and is
therefore equal to | v |.

Similarly, the acceleration of P, the rate of increase of v, is defined as follows:
Definition 2.2 1-D acceleration The (instantaneous) acceleration a of P, in the posi-

tive x-direction, is defined by

dv  d*x

Example 2.2 Finding rectilinear velocity and acceleration

Suppose the displacement of P from O at time ¢ is given by x = > — 61> + 4, where
x is measured in metres and ¢ in seconds. Find the velocity and acceleration of P at
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time 7. Deduce that P comes to rest twice and find the position and acceleration of P

at the later of these two times.

Solution
Since v = dx/dt and a = dv/dt, we obtain

v =13t — 12t and a=06t—12

as the velocity and acceleration of P at time ¢.
P comes to rest when its velocity v is zero, that is, when

3t2 — 12t = 0.

This is a quadratic equation for # having the solutions = 0, 4. Thus P is at rest when
t=0sandt =4s.

Whent = 4s,x = —28 m and @ = 12 ms~2. Note that merely because v = 0
at some instant it does not follow that a = 0 also. B

Example 2.3 Reversing the process

A particle P moves along the x-axis with its acceleration ¢ at time ¢ given by
a =12t —6t + 6ms 2.

Initially P is at the point x = 4 m and is moving with speed 8 ms~! in the negative
x-direction. Find the velocity and displacement of P at time ¢.

Solution

Since a = dv/dt we have

d
0 122 6 46,
dr

and integrating with respect to ¢ gives
v=4r -3 461+ C,

where C is a constant of integration. This constant can be determined by using the
given initial condition on v, namely, v = —8 when ¢ = 0. This gives C = —8 so that
the velocity of P at time ¢ is

v=4r>—31> 461 —8ms~ !
By writing v = dx/dt and integrating again, we obtain
x=t*—13 43> -8+ D,

where D is a second constant of integration. D can now be determined by using the
given initial condition on x, namely, x = 4 when ¢t = 0. This gives D = 4 so that the
displacement of P at time ¢ is

x=t" - +3> -8 +4m.m
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v

N

FIGURE 2.2 The particle P moves in three-dimensional
space and, relative to the reference frame F and origin O,
has position vector r at time ¢.

2.2

GENERAL MOTION OF A PARTICLE

When a particle P moves in two or three-dimensional space, its position can be

described by its vector displacement r from an origin O that is fixed in a rigid reference
frame F. Whether F is moving or not is irrelevant here; the position vector r is simply
measured relative to F. Figure 2.2 shows a particle P moving in three-dimensional space

with position vector r (relative to the reference frame J) at time ¢.

Question Reference frames

What is a reference frame and why do we need one?

Answer

A rigid reference frame F is essentially a rigid body whose particles can be labelled
to create reference points. The most familiar such body is the Earth. Relative to
a single particle, the only thing that can be specified is distance from that particle.
However, relative to a rigid body, one can specify both distance and direction. Thus
the value of any vector quantity can be specified relative to F. In particular, if we
label some particle O of the body as origin, we can specify the position of any point
of space by its position vector relative to the frame F and the origin O.

The specification of vectors relative to a reference frame is much simplified if we
introduce a Cartesian coordinate system. This can be done in infinitely many different
ways. Imagine that F is extended by a set of three mutually orthogonal planes that are
rigidly embedded in it. The coordinates x, y, z of a point P are then the distances of P
from these three planes. Let O be the origin of this coordinate system, and {i, j, k}
its unit vectors. We can then conveniently refer to the frame F, together with the
embedded coordinate system O xyz, by the notation 7 {O ; i, j, k}. B

In general motion, the velocity and acceleration of a particle are vector quantities and

are defined by:
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Definition 2.3 3-D velocity and acceleration The velocity v and acceleration a of P
are defined by

v=— and a= —. (2.4)

Connection with the rectilinear case

The scalar velocity and acceleration defined in section 2.1 for the case of straight line motion are simply
related to the corresponding vector quantities defined above. It would be possible to use the vector for-
malism in all cases but, for the case of straight line motion along the x-axis, r, v, and @ would have the
form

where v = dx/dt and a = dv/dt. It is therefore sufficient to work with the scalar quantities x, v and a;

use of the vector formalism would be clumsy and unnecessary.

Example 2.4 Finding 3- D velocity and acceleration

Relative to the reference frame F{O ; i, j, k}, the position vector of a particle P at
time ¢ is given by

r=Q02=3)i+ @ +4)j+ @ +205k

Find (i) the distance O P when t = 0, (ii) the velocity of P when ¢t = 1, (iii) the
acceleration of P when t = 2.

Solution

In this solution we will make use of the rules for differentiation of sums and products
involving vector functions of the time. These rules are listed in section 1.6.

(i) Whent =0,r = —-3i+4jsothat OP = |r| =5.

(i1) Relative to the reference frame F, the unit vectors {i, j, k} are constant and so
their time derivatives are zero. The velocity v of P is therefore

v=dr/dt =4ti+4j+ B> +40)k.
Whent =1, v=4i+4j+7k.
(ii1) Relative to the reference frame F, the acceleration a of P is
a=dv/dt =4i+ (6t +4)k.
Whent =2,a=4i+ 16k. R

Interpretation of the vectors v and «

The velocity vector v has a simple interpretation. Suppose that s is the arc-length travelled
by P, measured from some fixed point of its path, and that s is increasing with time.*

* The arguments that follow assume a familiarity with the unit tangent and normal vectors to a general
curve, as described in section 1.7
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Then, by the chain rule,

dr dr ds
V= — = — X —

dt ds dt
=t

where ¢ is the unit tangent vector to the path and v (= ds/dt) is the speed™ of P. Thus,
at each instant, the direction of the velocity vector v is along the tangent to its path, and
|v| is the speed of P.

The acceleration vector a is harder to picture. This is partly because we are too accus-
tomed to the special case of straight line motion. However, in general,

dv d(@t) dvt+ dt dv ‘ + dt ds
= — = = — — = _— — X —
T ar T a T e T & U\as * ar

dv ‘ 2 2.5)
=|— — | n, .
dt P

where n is the unit normal vector to the path of P and p (= «~1) is its radius of curvature.

Hence, the acceleration vector a has a component dv/dt tangential to the path and a
component v?/ p normal to the path.

This formula is surprising. Since each small segment of the path is ‘approximately
straight” one might be tempted to conclude that only the first term (dv/dt)t should be
present. However, what we have shown is that the acceleration vector of P does not gen-
erally point along the path but has a component perpendicular to the local path direction.
The full meaning of formula (2.5) will become clear when we have treated particle motion
in polar coordinates.

Uniform circlular motion

The simplest example of non-rectilinear motion is motion in a circle. Circular motion
is important in practical applications such as rotating machinery. Here we consider the
special case of uniform circular motion, that is, circular motion with constant speed.

Consider a particle P moving with constant speed u in the anti-clockwise direction
around a circle centre O and radius b, as shown in Figure 2.3. At time ¢t = 0, P is at the
point B(b, 0). What are its velocity and acceleration vectors at time ¢?

The first step is to find the position vector of P at time ¢. Since P moves with constant
speed u, the arc length B P travelled in time  must be u¢. It follows that the angle 6 shown
in Figure 2.3 is given by 6 = ut/b. The position vector of P at time ¢ is therefore

r=>bcosfi+ bsind j,
= bcos(ut/b)i + bsin(ut/b) j.

* As in the rectilinear case, speed means the rate of increase of the total distance travelled, which, in the
present context, is ds/dt, the rate of increase of arc length along the path of P.
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FIGURE 2.3 Particle P moves with constant speed u
around a circle of radius b.

It follows that the velocity and acceleration of P at time ¢ are given by

d
- d—; — —usin(ut/b)i + ucos(ut /b) j,
D ot byi — " sinut /b j
= — = —— COS — — SIn .
a T p u i 5 in(u J

We note that the speed of P, calculated from v, is
2.2 2.2 172
[v| = (u cos“(ut/b) + u” sin (ut/b)) =u,

which is what it was specified to be.
The magnitude of the acceleration a is given by

1/2

22\ , 2\ , 2
la| = (?) cos“(ut/b) + <?> sin”(ut /b) >

and, since @ = —(u?/b>)r, the direction of a is opposite to that of r. This proves the

following important result:

Uniform circular motion
When a particle P moves with constant speed u around a fixed circle with centre

—
O and radius b, its acceleration vector is in the direction PO and has constant
magnitude u?/b.

This result is consistent with the general formula (2.5). In this special case, we have
v =uand p = b so that dv/dt = 0 and a = (u?/b)n.
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6

3)

J

y . P
FIGURE 2.4 The plane polar co-ordinates r, 0 1 0

of the point P and the polar unit vectors 7 - 0=0
and @ at P. O

Example 2.5 Uniform circular motion

A body is being whirled round at 10 ms~! on the end of a rope. If the body moves
on a circular path of 2 m radius, find the magnitude and direction of its acceleration.

Solution

The acceleration is directed towards the centre of the circle and its magnitude is
102/2 = 50 ms~!, five times the acceleration due to Earth’s gravity! W

2.3 PARTICLE MOTION IN POLAR CO-ORDINATES

When a particle is moving in a plane, it is sometimes very convenient to use polar
co-ordinates 7, 6 in the analysis of its motion; the case of circular motion is an obvious
example. Less obviously, polar co-ordinates are used in the analysis of the orbits of the
planets. This famous problem stimulated Newton to devise his laws of mechanics.

Figure 2.4 shows the polar co-ordinates r, 6 of a point P and the polar unit vectors
T, 9 at P. The directions of the vectors 7 and @ are called the radial and transverse
directions respectively at the point P. As P moves around, the polar unit vectors do not
remain constant. They have constant magnitude (unity) but their directions depend on the
0 co-ordinate of P; they are however independent of the r co-ordinate.* In other words,
7, 9 are vector functions of the scalar variable 6.

We will now evaluate the two derivatives d7/d0, da/ d6. These will be needed when
we derive the formulae for the velocity and acceleration of P in polar co-ordinates. First
we expandT T, 9 in terms of the Cartesian basis vectors {i, j}. This gives

T =cosOi+sind j, (2.6)
0 = —sinfi+cos j. 2.7)

Since 7, @ are now expressed in terms of the constant vectors i, j, the differentiations
with respect to 6 are simple and give

* If this is not clear, sketch the directions of the polar unit vectors for P in a few different positions.
T Recall that any vector V lying in the plane of i, j can be expanded in the form V = & i + f8 j, where the
coefficients o, 8 are the components of V in the i- and j-directions respectively.
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do
ao

I
)
|

7 (2.8)

S

Suppose now that P is a moving particle with polar co-ordinates r, 0 that are functions
of the time ¢. The position vector of P relative to O has magnitude O P = r and direction
7 and can therefore be written

r=rr. (2.9)

In what follows, one must distinguish carefully between the position vector r, which is
—

the vector O P, the co-ordinate r, which is the distance O P, and the polar unit vector 7.
To obtain the polar formula for the velocity of P, we differentiate formula (2.9) with
respect to ¢. This gives

podr_ 4 (r'\) (dr> T (f) (2.10)
dr dr
—iF+r (@) @.11)
d

We will use the dot notation for time derivatives throughout this section; 7 means dr/dt,
6 means d6 /dt, i means d*r/dt* and 6 means d?0/dt>.

Now 7 is a function of @ which is, in its turn, a function of . Hence, by the chain rule
and formula (2.8),

ar d" do
dar de " dr

If we now substitute this formula into equation (2.11) we obtain

.~

=0 x60=00.

v=77+(rd)9, (2.12)

which is the polar formula for the velocity of P.
To obtain the polar formula for acceleration, we differentiate the velocity formula

(2.12) with respect to ¢. This gives™
dv
a=E=—(rA)+— ((r6)8)

o~

R :dA iy o~ .. do
=Fr+7 E+(19+r9)0+(r9)5

=iT+7 (d—Axﬁ>+(9+ 6)0 + (r6) da a0
=T ae ) TV "\ao < ar
=i+ (70) 8 + (70 +r6) 8 — (-0°)7

= (F — 1’9'2)?4— (19 + 21‘9) 5,

* Be a hero. Obtain this formula yourself without looking at the text.
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which is the polar formula for the acceleration of P. These results are summarised
below:

Polar formulae for velocity and acceleration

If a particle is moving in a plane and has polar coordinates r, 6 at time ¢, then its
velocity and acceleration vectors are given by

v =T+ (r0), (2.13)
a=(¥—r6®)7+ (6 +270)8. (2.14)

The formula (2.13) shows that the velocity of P is the vector sum of an outward radial
velocity 7 and a transverse velocity r; in other words v is just the sum of the velocities
that P would have if r and 6 varied separately. This is nof true for the acceleration as it will
be observed that adding together the separate accelerations would not yield the term 2709.
This ‘Coriolis term’ is certainly present however, but is difficult to interpret intuitively.

Example 2.6 Velocity and acceleration in polar coordinates

A particle sliding along a radial groove in a rotating turntable has polar coordinates at
time ¢ given by

r=ct 0 = Qt,

where ¢ and Q are positive constants. Find the velocity and acceleration vectors of
the particle at time ¢ and find the speed of the particle at time ¢.

Deduce that, for r > 0, the angle between the velocity and acceleration vectors is
always acute.

Solution

From the polar formulae (2.13), (2.14) for velocity and acceleration, we obtain
V=CT+()Q0 = ¢ (’F—}— Qtﬁ)
and
a=(0-(@Q)T+©0+22)0 = cQ (-7 +20).

The speed of the particle at time ¢ is thus given by |v]| = ¢ (1 + taz)l/z .
To find the angle between v and a, consider
vea=c?Q(—Qr +2Q1) = Q%
>0

for t > 0. Hence, for ¢ > 0, the angle between v and a is acute. B
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General circular motion

An important application of polar coordinates is to circular motion. We have already
considered the special case of uniform circular motion, but now we suppose that P moves
in any manner (not necessarily with constant speed) around a circle with centre O and
radius b. If we take O to be the origin of polar coordinates, the condition » = b implies
that 7 = i = 0 and the formula (2.13) for the velocity of P reduces to

v=(p0)9. (2.15)

This result is depicted in Figure 2.5. The transverse velocity component b6 (which is not
necessarily the speed of P since § may be negative) is called the circumferential velocity
of P. Circumferential velocity will be important when we study the motion of a rigid
body rotating about a fixed axis; in this case, each particle of the rigid body moves on a
circular path.

The corresponding formula for the acceleration of P is

a=(0-b07)F++ (0 +0)8

=~ (06%) 7+ + (06) 8

2
— (%)?-ﬁ- +00

where v is the circumferential velocity b6. These results are summarised below:

General circular motion

Suppose a particle P moves in any manner around the circle r = b, where r, 6 are
plane polar coordinates. Then the velocity and acceleration vectors of P are given
by

v =0, (2.16)

v? ~
a=— > T+ 00, 2.17)

where v (= b6) is the circumferential velocity of P.

The formula (2.17) shows that, in general circular motion, the acceleration of P is the
(vector) sum of an inward radial acceleration v2 /b and a transverse acceleration v. This
is consistent with the general formula (2.5). Indeed, what the formula (2.5) says is that,
when P moves along a completely general path, its acceleration vector is the same as if it
were moving on the circle of curvature at each point of its path.
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FIGURE 2.5 The particle P moves on the circle with centre O
and radius b. At time ¢ its angular displacement is 6 and its
circumferential velocity is b6.

Example 2.7 Pendulum motion

The bob of a certain pendulum moves on a vertical circle of radius b and, when the
string makes an angle 6 with the downward vertical, the circumferential velocity v of
the bob is given by

v? = 2gbcosH,

where g is a positive constant. Find the acceleration of the bob when the string makes
angle 6 with the downward vertical.

Solution
From the acceleration formula (2.17), we have
v? ~ ~

a=— <—)?+ V0 = — (2gcosO) T+ v6.
It remains to express v in terms of 6. On differentiating the formula v> = 2gb cos 0
with respect to ¢, we obtain

200 = — (2gbsin0) 6,
and, since b = v, we find that
V= —gsin6.

Hence the acceleration of the bob when the string makes angle & with the downward
vertical is

a=—(2gcosh)T — (gsinb) o.m

2.4 RIGID BODY ROTATING ABOUT A FIXED AXIS

Some objects that we find in everyday life, such as a brick or a thick steel rod,
are so difficult to deform that their shape is virtually unchangeable. We model such an
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FIGURE 2.6 The rigid body B rotates about the fixed axis Oz and has angular
displacement 6 at time ¢. Each particle P of S moves on a circular path; the point
Py is the reference position of P.

object by a rigid body, a collection of particles forming a perfectly rigid framework. Any
motion of the rigid body must maintain this framework.

An important type of rigid body motion is rotation about a fixed axis; a spinning fan,
a door opening on its hinges and a playground roundabout are among the many examples
of this type of motion. Suppose B is a rigid body which is constrained to rotate about
the fixed axis Oz as shown in Figure 2.6. (This means that the particles of 5 that lie on
Oz are held fixed. Rotation about Oz is then the only motion of B consistent with rigid-
ity.) At time ¢, B has angular displacement 6 measured from some reference position.
The angular displacement 6 is the rotational counterpart of the Cartesian displacement x
of a particle in straight line motion. By analogy with the rectilinear case, we make the
following definitions:

Definition 2.4 Angular velocity The angular velocity o of B is defined to be v =
d6/dt and the absolute value of w is called the angular speed of B.

Units. Angular velocity (and angular speed) are measured in radians per second (rad s~ ).

Example 2.8 Spinning crankshaft 1

The crankshaft of a motorcycle engine is spinning at 6000 revolutions per minute.
What is its angular speed in S.I. units?

Solution

6000 revolutions per minute is 100 revolutions per second which is 2007 radians per
second. This is the angular speed in S.I. units. B

Particle velocities in a rotating rigid body

In rotational motion about a fixed axis, each particle P of 5 moves on a circle of some
radius p, where p is the (fixed) perpendicular distance of P from the rotation axis. It then
follows from (2.16) that the circumferential velocity v of P is given by p@, that is

vV=wp (2.18)
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Example 2.9 Spinning crankshaft 2

In the crankshaft example above, find the speed of a particle of the crankshaft that
has perpendicular distance 5 cm from the rotation axis. Find also the magnitude of its
acceleration.

Solution

In this case, |w| = 200 and p = 1/20 so that the particle speed (the magnitude of

the circumferential velocity v) is 107 ~ 31.4 ms~!.

Since the circumferential velocity is constant, |a| = v2/p = (1071)2/0.05 ~
2000 m s_z, which is two hundred times the value of the Earth’s gravitational accel-
eration! W

2.5 RIGID BODY IN PLANAR MOTION

We now consider a more general form of rigid body motion called planar motion.

Definition 2.5 Planar motion A rigid body B is said to be in planar motion if each
particle of B moves in a fixed plane and all these planes are parallel to each other.

Planar motion is quite common. For instance, any flat-bottomed rigid body sliding on a
flat table is in planar motion. Another example is a circular cylinder rolling on a rough flat
table.

The particle velocities in planar motion can be calculated by the following method;
the proof is given in Chapter 16. First select some particle C of the body as the reference
particle. The velocity of a general particle P of the body is then the vector sum of

(i) a translational contribution equal to the velocity of C (as if the body did not
rotate) and

(i1) a rotational contribution (as if C were fixed and the body were rotating with
angular velocity w about a fixed axis through C).

This result is illustrated in Figure 2.7, where the body is a rectangular plate and the refer-
ence particle C is at a corner of the plate. The velocity v of P is given by v = v¢ + vF,
where the translational contribution v€ is the velocity of C and the rotational contribution
vR is caused by the angular velocity w about C. Although the reference particle can be
any particle of the body, it is usually taken to be the centre of mass or centre of symmetry

of the body.

Example 2.10 The rolling wheel

A circular wheel of radius b rolls in a straight line with speed u on a fixed horizontal
table. Find the velocities of its particles.

Solution

This is an instance of planar motion and so the particle velocities can be found by
the method above. Let the position of the wheel at some instant be that shown in
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FIGURE 2.7 The velocity of the particle P belonging to
the rigid body B is the sum of the translational
contribution v¢ and the rotational contribution v®. The
reference particle C can be any particle of the body.

FIGURE 2.8 The circular wheel rolls from left to right on a fixed horizontal
table. The reference particle C is taken to be the centre of the wheel and
the velocity of a typical particle P is the sum of the two velocities shown.

Figure 2.8. The reference particle C is taken to be the centre of the wheel, and the
wheel is supposed to have some angular velocity w about C. The velocity v¥ of a
typical particle P is then the sum of the two velocities shown. In terms of the vectors

{i, j}
vl =ui + wp (cosBi — sinb j)
=W+ wpcosh)i — (wpsinb) j. (2.19)

In particular, on taking p = b and # = 7, the velocity v< of the contact particle Q is
given by

v9 = (u — wb)i. (2.20)
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If the wheel is allowed to slip as it moves across the table, there is no restriction on
v? so that u and w are unrelated. But rolling, by definition, requires that

v? = 0. (2.21)

On applying this rolling condition to our formula (2.20) for v€, we find that  must
be related to u by

(2.22)

and on using this value of w in (2.19) we find that the velocity of the typical particle
P is given by

o —u (1 +%cos@> i—u (gsin9> j. (2.23)
When P lies on the circumference of the wheel, this formula simplifies to
vP = u (1 +cos) i —usinb j, (2.24)
in which case the speed of P is given by
[vf | = 2u cos(6/2), (—7 <0 < 7).

Thus the highest particle of the wheel has the largest speed, 2u, while the contact
particle has speed zero, as we already know. B

2.6 REFERENCE FRAMES IN RELATIVE MOTION

A reference frame is simply a rigid coordinate system that can be used to specify
the positions of points in space. In practice it is convenient to regard a reference frame
as being embedded in, or attached to, some rigid body. The most familiar case is that in
which the rigid body is the Earth but it could instead be a moving car, or an orbiting space
station. In principle, any event, the motion of an aircraft for example, can be observed
from any of these reference frames and the motion will appear different to each observer.
It is this difference that we now investigate.

Let the motion of a particle P be observed from the reference frames F {0 i, j, k}
and F' {0’ i, j, k} as shown in Figure 2.9. Here we are supposing that the frame F’
does not rotate relative to F. This is why, without losing generality, we can suppose that
F and F’ have the same set of unit vectors {i, j, k}. For example, P could be an aircraft,
F could be attached to the Earth, and F’ could be attached to a car driving along a straight
road.

Then, r, ¥/, the position vectors of P relative to F, F’ are connected by

r=r'+D, (2.25)

where D is the position vector of O’ relative to F.
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FIGURE 2.9 The particle P is observed from the two reference frames F and F”'.

We now differentiate this equation with respect to ¢, a step that requires some care.
Let us consider the rates of change of the vectors in equation (2.25), as observed from the
frame F. Then

dr’
v=|(—] +V, (2.26)
dt )

where v is the velocity of P observed in F and V is the velocity of F’ relative to F.
Now when two different reference frames are used to observe the same vector, the
observed rates of change of that vector will generally be different. In particular, it is not

<d r ) (a’r/ )

dt ) r dt ) r

However, as we will show in Chapter 17, these two rates of change are equal if the frame
F does not rotate relative to F. Hence, in our case, we do have

(a’ r’ ) (d r’ ) ,
_— = —_— =17,
dr )~ \ar ) .
where v’ is the velocity of P observed in F'.

Equation (2.26) can then be written

generally true that

V=0 +V 2.27)

Thus the velocity of P observed in F is the sum of the velocity of P observed in F' and
the velocity of the frame F' relative to F. This result applies only when F’ does not
rotate relative to F.



42 Chapter 2 Velocity, acceleration and scalar angular velocity

This is the well known rule for handling ‘relative velocities’. In the aircraft example,
it means that the true velocity of the aircraft (relative to the ground) is the vector sum of
(1) the velocity of the aircraft relative to the car, and (ii) the velocity of the car relative to
the road.

Example 2.11 Relative velocity

The Mississippi river is a mile wide and has a uniform flow. A steamboat sailing at
full speed takes 12 minutes to cover a mile when sailing upstream, but only 3 minutes
when sailing downstream. What is the shortest time in which the steamboat can cross
the Mississippi to the nearest point on the opposite bank?

Solution

The way to handle this problem is to view the motion of the boat from a reference
frame F’ moving with the river. In this reference frame the water is at rest and the
boat sails with the same speed in all directions. The relative velocity formula (2.27)
then gives us the true picture of the motion of the boat relative to the river bank, which
is the reference frame F.

Let u® be the speed of the boat in still water and u” be the speed of the river, both
measured in miles per hour. The upstream and downstream times are just a sneaky
way of telling us the values of #? and u®. When the boat sails downstream, (2.27)
implies that its speed relative to the bank is u® 4 u®. But this speed is stated to be
1/3 mile per minute (or 20 miles per hour). Hence

ub +uR =20.

B

Similarly the upstream speed is u? — u® and is stated to be 1/12 mile per minute (or

5 miles per hour). Hence
ub —uf =5,
Solving these equations yields
ul =125 mph, uk =175 mph.

Now the boat must cross the river. In order to cross by a straight line path to the
nearest point on the opposite bank, the boat’s velocity (relative to the water) must be
directed at some angle « to the required path (as shown in Figure 2.10) so that its
resultant velocity is perpendicular to the stream. For this to be true, & must satisty

uB sina = uR,
which gives sina = 3/5. The resultant speed of the boat when crossing the river is
therefore u® cosa = 12.5 x (4/5) = 10 mph. Since the river is one mile wide, the
time taken for the crossing is 1/10 hour = 6 minutes. B
The relative velocity formula (2.27) can be differentiated again with repect to ¢ to give
a similar connection between accelerations. The result is that

a=a + A, (2.28)
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—>uR — U

> — uf uf — < B—»uR

R o

Downstream Upstream Across

FIGURE 2.10 The river flows from left to right with speed u® and the boat sails with speed
u® relative to the river. In each case the velocity of the boat relative to the bank is the
vector sum of the two velocities shown.

where a and @’ are the accelerations of P relative to the frames F and F’ respectively,
and A is the acceleration of the frame F ' relative to the frame . Once again, this result
applies only when F’ does not rotate relative to F.

Mutually unaccelerated frames

An important special case of equation (2.28) occurs when the frame F' is moving with
constant velocity (and no rotation) relative to 7. We will then say that F and F' are
mutually unaccelerated frames. In this case A = 0 and (2.28) becomes

a=ad. (2.29)

This means that when mutually unaccelerated frames are used to observe the motion of a
particle P, the observed acceleration of P is the same in each frame.
This result will be vital in our discussion of inertial frames in Chapter 3.

Problems on Chapter 2

Answers and comments are at the end of the book.

Harder problems carry a star ().

Rectilinear particle motion

2.1 A particle P moves along the x-axis with its displacement at time ¢ given by x = 612 —
13 + 1, where x is measured in metres and 7 in seconds. Find the velocity and acceleration of
P at time 7. Find the times at which P is at rest and find its position at these times.

2.2 A particle P moves along the x-axis with its acceleration a at time ¢ given by

a=6f—4ms 2.
Initially P is at the point x = 20 m and is moving with speed 15 ms™! in the negative x-
direction. Find the velocity and displacement of P at time ¢. Find when P comes to rest and
its displacement at this time.
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2.3 Constant acceleration formulae A particle P moves along the x-axis with constant
acceleration « in the positive x-direction. Initially P is at the origin and is moving with velocity
u in the positive x-direction. Show that the velocity v and displacement x of P at time ¢ are
given by*

v =u+ at, x=ut+%a12,
and deduce that

v? = u® + 2ax.

In a standing quarter mile test, the Suzuki Bandit 1200 motorcycle covered the quarter
mile (from rest) in 11.4 seconds and crossed the finish line doing 116 miles per hour. Are
these figures consistent with the assumption of constant acceleration?

General particle motion

2.4 The trajectory of a charged particle moving in a magnetic field is given by
r=>bcosQti+bsinQ2t j+ ctk,

where b, Q2 and ¢ are positive constants. Show that the particle moves with constant speed and
find the magnitude of its acceleration.

2.5 Acceleration due to rotation and orbit of the Earth A body is at rest at a location on the
Earth’s equator. Find its acceleration due to the Earth’s rotation. [Take the Earth’s radius at
the equator to be 6400 km.]

Find also the acceleration of the Earth in its orbit around the Sun. [Take the Sun to be
fixed and regard the Earth as a particle following a circular path with centre the Sun and radius
15 x 1010 m.

2.6 Aninsect flies on a spiral trajectory such that its polar coordinates at time ¢ are given by
r=be, 0=,

where b and 2 are positive constants. Find the velocity and acceleration vectors of the insect
at time 7, and show that the angle between these vectors is always /4.

2.7 A racing car moves on a circular track of radius b. The car starts from rest and its speed
increases at a constant rate «. Find the angle between its velocity and acceleration vectors at
time 7.

* These are the famous constant acceleration formulae. Although they are a mainstay of school mechan-
ics, we will make little use of them since, in most of the problems that we treat, the acceleration is not
constant. It is a serious offence to use these formulae in non-constant acceleration problems.
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2.8 A particle P moves on a circle with centre O and radius b. At a certain instant the speed
of P is v and its acceleration vector makes an angle « with P O. Find the magnitude of the
acceleration vector at this instant.

2.9% A bee flies on a trajectory such that its polar coordinates at time ¢ are given by

bt t
r=—Qt—1 0=— (0 <t <21),
T T
where b and 7 are positive constants. Find the velocity vector of the bee at time 7.
Show that the least speed achieved by the bee is »/7t. Find the acceleration of the bee at
this instant.

2.10% A pursuit problem: Daniel and the Lion The luckless Daniel (D) is thrown into a
circular arena of radius @ containing a lion (L). Initially the lion is at the centre O of the
arena while Daniel is at the perimeter. Daniel’s strategy is to run with his maximum speed u
around the perimeter. The lion responds by running at its maximum speed U in such a way
that it remains on the (moving) radius O D. Show that r, the distance of L from O, satisfies

the differential equation
o ur (U2,
’ - a_2 I/l_2 _’ ’

Find r as a function of ¢. If U > u, show that Daniel will be caught, and find how long this
will take.

Show that the path taken by the lion is an arc of a circle. For the special case in which
U = u, sketch the path taken by the lion and find the point of capture.

2.11 General motion with constant speed A particle moves along any path in three-
dimensional space with constant speed. Show that its velocity and acceleration vectors must
always be perpendicular to each other. [Hint. Differentiate the formula v - v = v? with respect
tot.]

2.12 A particle P moves so that its position vector r satisfies the differential equation
F=cxr,

where c is a constant vector. Show that P moves with constant speed on a circular path. [Hint.
Take the dot product of the equation first with ¢ and then with r.]

Angular velocity

2.13 A large truck with double rear wheels has a brick jammed between two of its tyres which
are 4 ft in diameter. If the truck is travelling at 60 mph, find the maximum speed of the brick
and the magnitude of its acceleration. [Express the acceleration as a multiple of g = 32 ft s72]

2.14 A particle is sliding along a smooth radial grove in a circular turntable which is rotating
with constant angular speed 2. The distance of the particle from the rotation axis at time ¢ is
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FIGURE 2.11 Cam and valve mechanism

FIGURE 2.12 Crank and piston mechanism

observed to be
r = bcosh Q¢

for t > 0, where b is a positive constant. Find the speed of the particle (relative to a fixed
reference frame) at time ¢, and find the magnitude and direction of the acceleration.

2.15 Figure 2.11 shows an eccentric circular cam of radius b rotating with constant angular
velocity w about a fixed pivot O which is a distance e from the centre C. The cam drives a
valve which slides in a straight guide. Find the maximum speed and maximum acceleration of
the valve.

2.16 Figure 2.12 shows a piston driving a crank O P pivoted at the end O. The piston slides
in a straight cylinder and the crank is made to rotate with constant angular velocity w. Find the
distance O Q in terms of the lengths b, ¢ and the angle 6. Show that, when b/c is small, O Q
is given approximately by

b2
0OQ =c+bcosO — 2—csin29,

on neglecting (b/c)* and higher powers. Using this approximation, find the maximum accel-
eration of the piston.

2.17 Figure 2.13 shows an epicyclic gear arrangement in which the ‘sun’ gear G; of radius
b1 and the ‘ring’ gear G, of inner radius b, rotate with angular velocities w1, w» respectively
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FIGURE 2.13 Epicyclic gear mechanism

O

L C
FIGURE 2.14 The pins P and Q at the ends w P
of a rigid link move along the axes O X, OY - X
respectively. O z >

about their fixed common centre O. Between them they grip the ‘planet’ gear G, whose centre
C moves on a circle centre O. Find the circumferential velocity of C and the angular velocity
of the planet gear G. If O and C were connected by an arm pivoted at O, what would be the
angular velocity of the arm?

2.18 Figure 2.14 shows a straight rigid link of length ¢ whose ends contain pins P, Q that
are constrained to move along the axes O X, OY. The displacement x of the pin P at time ¢
is prescribed to be x = b sin Q¢, where b and 2 are positive constants with » < a. Find the
angular velocity w and the speed of the centre C of the link at time ¢.

Relative velocity

2.19 An aircraft is to fly from a point A to an airfield B 600 km due north of A. If a steady
wind of 90 km/h is blowing from the north-west, find the direction the plane should be pointing
and the time taken to reach B if the cruising speed of the aircraft in still air is 200 km/h.

2.20 An aircraft takes off from a horizontal runway with constant speed U, climbing at a
constant angle « to the horizontal. A car is moving on the runway with constant speed u
directly towards the front of the aircraft. The car is distance a from the aircraft at the instant
of take-off. Find the distance of closest approach of the car and aircraft. [Don’t try this one at
home.]

2.21% An aircraft has cruising speed v and a flying range (out and back) of Ry in still air.
Show that, in a north wind of speed u (¢ < v) its range in a direction whose true bearing from
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FIGURE 2.15 The dog D chases the hare H
by running directly towards the hare’s current
position.

north is 6 is given by

Ro(v? — u?)
v(v? — u?sin?9)1/2°

What is the maximum value of this range and in what directions is it attained?

Computer assisted problems

2.22 Dog chasing a hare; another pursuit problem. Figure 2.15 shows a dog with position
vector P and velocity v” chasing a hare with position vector 7/ and velocity v. The dog’s
strategy is to run directly towards the current position of the hare. Given the motion of the hare
and the speed of the dog, what path does the dog follow?
Since the dog runs directly towards the hare, its velocity vD must satisfy
DD _ r H _ r D
2 | rH — rDI :

In terms of the position vector of the dog relative to the hare, given by R = rD —rH this equation becomes
. R
R=——vP —f
R

Given the velocity v of the hare and the speed vP of the dog as functions of time, this differential equation
determines the trajectory of the dog relative to the hare; capture occurs when R = 0. The actual trajectory
of the dog is given by r? = R + r!.

If the motion takes place in a plane with R = Xi + Y j then X and Y satisty the coupled differential
equations

UDX H 5 UDY _ UH
’ - (X2 +Y2)1/2 y

T2z

)

together with initial conditions of the form X (0) = xp and Y (0) = yp. Such equations cannot usually
be solved analytically but are extremely easy to solve with computer assistance. Two interesting cases to
consider are as follows. In each case the speeds of the dog and the hare are constants.

(1) Initially the hare is at the origin with the dog at some point (xg, yg). The hare then runs along the
positive x-axis and is chased by the dog. Show that the hare gets caught if vP > vH  but when vP = v
the dog always misses (unless he starts directly in the path of the hare). This remarkable result can be

proved analytically.
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(ii) The hare runs in a circle (like the lion problem). In this case, with vl = vl | the dog seems to
miss no matter where he starts.

Try some examples of your own and see if you can find interesting paths taken by the dog.

2.23 Consider further the piston problem described in Problem 2.16. Use computer assistance
to calculate the exact and approximate accelerations of the piston as functions of 8. Compare
the exact and approximate formulae (non-dimensionalised by w?b) by plotting both on the
same graph against 8. Show that, when b/c < 0.5, the two graphs are close, but when b/c
gets close to unity, large errors occur.



Chapter Three

Newton’s laws of motion
and the law of gravitation

KEY FEATURES
The key features of this chapter are Newton’s laws of motion, the definitions of mass and
force, the law of gravitation, the principle of equivalence, and gravitation by spheres.

This chapter is concerned with the foundations of dynamics and gravitation. Kine-
matics is concerned purely with geometry of motion, but dynamics seeks to answer the
question as to what motion will actually occur when specified forces act on a body. The
rules that allow one to make this connection are Newton’s laws of motion. These are
laws of physics that are founded upon experimental evidence and stand or fall accord-
ing to the accuracy of their predictions. In fact, Newton’s formulation of mechanics has
been astonishingly successful in its accuracy and breadth of application, and has survived,
essentially intact, for more than three centuries. The same is true for Newton’s universal
law of gravitation which specifies the forces that all masses exert upon each other.

Taken together, these laws represent virtually the entire foundation of classical
mechanics and provide an accurate explanation for a vast range of motions from large
molecules to entire galaxies.

3.1 NEWTON’S LAWS OF MOTION

Isaac Newton’s* three famous laws of motion were laid down in Principia, written
in Latin and published in 1687. These laws set out the founding principles of mechanics
and have survived, essentially unchanged, to the present day. Even when translated into
English, Newton’s original words are hard to understand, mainly because the terminology

* Sir Isaac Newton (1643—-1727) is arguably the greatest scientific genius of all time. His father was com-
pletely uneducated and Isaac himself had no contact with advanced mathematics before the age of twenty.
However, by the age of twenty seven, he had been appointed to the Lucasian chair at Cambridge and was
one of the foremost scientists in Europe. His greatest achievements were his discovery of the calculus, his
laws of motion, and his theory of universal gravitation. On the urging of Halley (the Astronomer Royal),
Newton wrote up an account of his new physics and its application to astronomy. Philosophiae Naturalis
Principia Mathematica was published in 1687 and is generally recognised as the greatest scientific book
ever written.
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of the seventeenth century is now archaic. Also, the laws are now formulated as applying
to particles, a concept never used by Newton. A particle is an idealised body that occupies
only a single point of space and has no internal structure. True particles do not exist’ in
nature, but it is convenient to regard realistic bodies as being made up of particles. Using
modern terminology, Newton’s laws may be stated as follows:

Newton’s laws of motion

First Law When all external influences on a particle are removed, the particle
moves with constant velocity. [This velocity may be zero in which case the particle
remains at rest. |

Second Law When a force F acts on a particle of mass m, the particle moves with
instantaneous acceleration a given by the formula

F = ma,

where the unit of force is implied by the units of mass and acceleration.

Third Law When two particles exert forces upon each other, these forces are (i)
equal in magnitude, (ii) opposite in direction, and (iii) parallel to the straight line
joining the two particles.

Units

Any consistent system of units can be used. The standard scientific units are SI units in
which the unit of mass is the kilogram, the unit of length is the metre, and the unit of
time is the second. The unit of force implied by the Second Law is called the newton,
and written N. An excellent description of the SI system of units can be found on

http://www.physics.nist.gov/PhysRefData

the website of the US National Institute of Standards & Technology.

In the Imperial system of units, the unit of mass is the pound, the unit of length is the
foot, and the unit of time is the second. The unit of force implied by the Second Law is
called the poundal. These units are still used in some industries in the US, a fact which
causes frequent confusion.

Interpreting Newton’s laws

Newton’s laws are clear enough in themselves but they leave some important questions
unanswered, namely:

(1) In what frame of reference are the laws true?

T The nearest thing to a particle is the electron, which, unlike other elementary particles, does seem to be a
point mass. The electron does however have an internal structure, having spin and angular momentum.
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(ii) What are the definitions of mass and force?

These questions are answered in the sections that follow. What we do is to set aside
Newton’s laws for the time being and go back to simple experiments with particles. These
are ‘thought experiments’ in the sense that, although they are perfectly meaningful, they
are unlikely to be performed in practice. The supposed ‘results’ of these experiments are
taken to be the primitive governing laws of mechanics on which we base our definitions of
mass and force. Finally, these laws and definitions are shown to be equivalent to Newton’s
laws as stated above. This process could be said to provide an interpretation of Newton’s
laws. The interpretation below is quite sophisticated and is probably only suitable for
those who have already seen a simpler account, such as that given by French [3].

3.2 INERTIAL FRAMES AND THE LAW OF INERTIA

The first law states that, when a particle is unaffected by external influences, it
moves with constant velocity, that is, it moves in a straight line with constant speed.
Thus, contrary to Aristotle’s view, the particle needs no agency of any kind to maintain
its motion.* Since the influence of the Earth’s gravity rules out any verification of the
First Law by an experiment conducted on Earth, Newton showed remarkable insight in
proposing a law he could not possibly verify. In order to verify the First Law, all external
influences must be removed, which means that we must carry out our thought experiment
in a place as remote as possible from any material bodies, such as the almost empty space
between the galaxies. In our minds then we go to such a place armed with a selection of
test particles” which we release in various ways and observe their motion. According to
the First Law, each of these particles should move with constant velocity.

Inertial reference frames

So far we have ignored the awkward question as to what reference frame we should use to
observe the motion of our test particles. When confronted with this question for the first
time, one’s probable response is that the reference frame should be ‘fixed’. But fixed to
what? The Earth rotates and is in orbital motion around the Sun. Our entire solar system
is part of a galaxy that rotates about its centre. The galaxies themselves move relative
to each other. The fact is that everything in the universe is moving relative to everything
else and nothing can properly be described as fixed. From this it might be concluded that
any reference frame is as good as any other, but this is not so, for, if the First Law is
true at all, it can only be true in certain special reference frames. Suppose for instance
that the First Law has been found to be true in the reference frame JF. Then it is also
true in any other frame F’ that is mutually unaccelerated relative to F (see section 2.6).
This follows because, if the test particles have constant velocities in JF, then they have

* Such a law was proposed prior to Newton by Galileo but, curiously, Galileo did not accept the conse-
quences of his own statement.
T Since true particles do not exist, we will have to make do with uniform rigid spheres of various kinds.
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zero accelerations in F. But, since F and F’ are mutually unaccelerated frames, the
test particles must have zero accelerations in F” and thus have constant velocities in F”.
Moreover, the First Law does not hold in any other reference frame.

Definition 3.1 Inertial frame A reference frame in which the First Law is true is said
to be an inertial frame.

It follows that, if there exists one inertial frame, then there exist infinitely many, with
each frame moving with constant velocity (and no rotation) relative to any other.

It may appear that the First Law is without physical content since we are saying that
it is true in those reference frames in which it is true. However, this is not so since inertial
frames need not have existed at all, and the fact that they do is the real physical content of
the First Law. Why there should exist this special class of reference frames in which the
laws of physics take simple forms is a very deep and interesting question that we do not
have to answer here!

Our discussion is summarised by the following statement which we take to be a law
of physics:

The law of inertia There exists in nature a unique class of mutually unaccelerated refer-
ence frames (the inertial frames) in which the First Law is true.

Practical inertial frames

The preceding discussion gives no clue as to how to set up an inertial reference frame and,
in practice, exact inertial frames are not available. Practical reference frames have to be tied
to real objects that are actually available. The most common practical reference frame is the
Earth. Such a frame is sufficiently close to being inertial for the purpose of observing most
Earth-bound phenomena. The orbital acceleration of the Earth is insignificant and the effect of
the Earth’s rotation is normally a small correction. For example, when considering the motion
of a football, a pendulum or a spinning top, the Earth may be assumed to be an inertial frame.
However, the Earth is not a suitable reference frame from which to observe the motion of
an orbiting satellite. In this case, the geocentric frame (which has its origin at the centre of
mass of the Earth and has no rotation relative to distant stars) would be appropriate. Similarly,
the heliocentric frame (which has its origin at the centre of mass of the solar system and has
no rotation relative to distant stars) is appropriate when observing the motion of the planets.

Example 3.1 Inertial frames

Suppose that a reference frame fixed to the Earth is exactly inertial. Which of the
following are then inertial frames?

A frame fixed to a motor car which is

(i) moving with constant speed around a flat race track,

(i1) moving with constant speed along a straight undulating road,
(iii) moving with constant speed up a constant gradient,

(iv) freewheeling down a hill.
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FIGURE 3.1 The particles P} and P> move under their
mutual interaction and, relative to an inertial reference
frame F, have accelerations a> and aj| repectively.
These accelerations are found to satisfy the law of mutual
interaction.

Solution

Only (iii) is inertial. In the other cases, the frame is accelerating or rotating relative
to the Earth.

3.3 THE LAW OF MUTUAL INTERACTION; MASS AND
FORCE

We first dispose of the question of what frame of reference should be used to
observe the particle motions mentioned in the Second Law. The answer is that any inertial
reference frame can be used and we will always assume this to be so, unless stated
otherwise. As stated earlier, the problem in understanding the Second and Third Laws is
that the concepts of mass and force are not defined, which is obviously unsatisfactory.

Our second thought experiment is concerned with the motion of a pair of mutually
interacting particles. The nature of their mutual interaction can be of any kind* and all
other influences are removed. Since each particle is influenced by the other, the First Law
does not apply. The particles will, in general, have accelerations, these being independent
of the inertial frame in which they are measured. Our second law of physics is concerned
with the ‘observed’ values of these mutually induced accelerations.

The law of mutual interaction Suppose that two particles Py and Pj interact with each
other and that P, induces an instantaneous acceleration aiy in Py, while Py induces an
instantaneous acceleration a>y in Py. Then

(1) these accelerations are opposite in direction and parallel to the straight line joining
P and P;,

* The mutual interaction might be, for example, (i) mutual gravitation, (ii) electrostatic interaction, caused
by the particles being electrically charged, or (iii) the particles being connected by a fine elastic cord.
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(i1) the ratio of the magnitudes of these accelerations, |ayi|/|a12| is a constant inde-
pendent of the nature of the mutual interaction between Py and P>, and indepen-
dent of the positions and velocities™ of Py and P».

Moreover, suppose that when Py interacts with a third particle P3 the induced accelera-
tions are ap3 and a3y, and when P) interacts with Pz the induced accelerations are a3
and a31. Then the magnitudes of these accelerations satisfy the consistency relation®

laxi|  laz|  lags]
X X =
laia|  laxs|  lazi]

(3.1)

Definition of inertial mass

The law of mutual interaction leads us to our definitions of mass and force. The qualita-
tive definition of the (inertial) mass of a particle is that it is a numerical measure of the
reluctance of the particle to being accelerated. Thus, when particles P, and P, interact,
we attribute the fact that the induced accelerations a7 and a;| have different magnitudes
to the particles having different masses. This point of view is supported by the fact that the
ratio |az1|/|a12| depends only upon the particles themselves, and not on the interaction,
or where the particles are, or how they are moving. We define the mass ratio m/m»> of
the particles Py, P> to be the inverse ratio of the magnitudes of their mutually induced
accelerations, as follows:

Definition 3.2 Inertial mass The mass ratio m|/m> of the particles Py, P> is defined
to be
mi _ |a]

== (3.2)
my  |ays|

There is however a possible inconsistency in this definition of mass ratio. Suppose
that we introduce an third particle P3. Then, by performing three experiments, we could
independently determine the three mass ratios m/my, my/m3 and m3/m and there is no
guarrantee that the product of these three ratios would be unity. However, the consistency
relation (3.1) assures us that it would be found to be unity, and this means that the above
definition defines the mass ratios of particles unambiguously.

In order to have a numerical measure of mass, we simply choose some particle A as
the reference mass (having mass one unit), in which case the mass of any other particle
can be expressed as a number of ‘A-units’. If we were to use a different particle B as the
reference mass, we would obtain a second measure of mass in B-units, but this second
measure would just be proportional to the first, differing only by a multiplied constant. In
SI units, the reference body (having mass one kilogram) is a cylinder of platinum iridium
alloy kept under carefully controlled conditions in Paris.

T This is true when relativistic effects are negligible.
* The significance of the consistency relation will be explained shortly.
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Example 3.2 A strange definition of mass

Suppose the mass ratio my/m| were defined in some other way, such as

12
mp <|¢121|> /
my laiz]

Is this just as good as the standard definition?

Solution

For some purposes it would be just as good. It would lead to the non-standard form
F =m’a

for the second law, and, for the motion of a single particle, the theory would be essen-
tially unaffected. We will see later however that, if mass were defined in this way, then
the mass of a multi-particle system would not be equal to the sum of the masses of its
constituent particles! This is not contradictory, but it is a very undesirable feature and
explains why the standard definition is used. B

Definition of force

We now turn to the definition of force. Qualitatively, the presence of a force is the reason
we give for the acceleration of a particle. Thus, when interacting particles cause each
other to accelerate, we say it is because they exert forces upon each other. How do we
know that these forces are present? Because the particles are accelerating! These state-
ments are obviously circular and without real content. Force is therefore a quantity of
our own invention, but a very useful one nonetheless and an essential part of the New-
tonian formulation of classical mechanics. It should be noted though that the concept of
force is not an essential part of the Lagrangian or Hamiltonian formulations of classical
mechanics.*

In mutual interactions, the forces that the particles exert upon each other are defined
as follows:

Definition 3.3 Force Suppose that the particles Py and P, are in mutual interaction
and have accelerations ay> and a>; respectively. Then the force F 13 that Py exerts on Py,
and the force F oy that Py exerts on Py are defined to be

Fiy =miay, Fy = mpan, (3.3)

where the unit of force is implied by the units of mass and acceleration.

It follows that, in the case of two-particle interactions, the Second Law is true by
the definition of force. Also, since a1 and aj; are opposite in direction and are parallel

* This fact is important when making connections between classical mechanics and other theories, such as
general relativity or quantum mechanics. The concept of force does not appear in either of these theories.
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FIGURE 3.2 The law of multiple interactions. In the presence of interactions
from the particles P;, P, P3, the acceleration a of particle Py is given by
ap = ao| + ap + aops.

to the line Py P>, so then are F > and F»p; thus parts (ii) and (iii) of the Third Law are
automatically true. Furthermore

|F 12| = milaiz| = malaz| = [Fal,

on using the definition (3.2) of the mass ratio m/m>. Thus part (i) of the Third Law is
also true. Hence the law of mutual interaction, together with our definitions (3.2), (3.3) of
mass and force, implies the truth of the Second and Third Laws.

3.4 THE LAW OF MULTIPLE INTERACTIONS

Our third and final thought experiment is concerned with what happens when a
particle is subject to more than one interaction.

The law of multiple interactions Suppose the particles Py, P1, ... P, are interacting with
each other and that all other influences are removed. Then the acceleration ag induced in
Py can be expressed as

ap = ap +apx + - -+ aon, (3.4)

where a1, ag . . . are the accelerations that Py would have if the particles Py, Py, ... were
individually interacting with Py.

This result is sometimes expressed by saying that interaction forces act indepen-
dently of each other. It follows that

moag = mo (ao1 + a2 + -+ + aon)
=Foi+Fon+---+ Fon,
on using the definition (3.3) of mutual interaction forces. Thus the Second Law remains
true for multiple interactions provided that the ‘effective force’ Fq acting on Py is under-

stood to mean the (vector) resultant of the individual interaction forces acting on Py, that
is

Fo=Foy +Fop+---+ Fon.
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This result is not always thought of as a law of physics, but it is.* It could have been
otherwise!

Experimental basis of Newton’s Laws

1. We accept the law of inertia, the law of mutual interaction and the law of
multiple interactions as the ‘experimental’ basis of mechanics.

2. Together with our definitions of mass and force, these experimental laws imply
that Newton’s laws are true in any inertial reference frame.

3.5 CENTRE OF MASS

We can now introduce the notion of the centre of mass of a collection of particles.
Suppose we have a system of particles Py, Py, ..., Py with masses my, my, ..., my, and
position vectors ry, ra, ..., ry respectively. Then:

Definition 3.4 Centre of mass The centre of mass of this system of particles is the
point of space whose position vector R is defined by

N N
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where M is the sum of the separate masses.

The centre of mass of a system of particles is simply a ‘weighted” mean of the position
vectors of the particles, where the ‘weights’ are the particle masses. Centre of mass is an
important concept in the mechanics of multi-particle systems. Unfortunately, there is a
widespread belief that the centre of mass has a magical ability to describe the behaviour
of the system in all circumstances. This is simply not true. For instance, we will show in
the next section that it is not generally true that the total gravitational force that a system
of masses exerts on a test mass is equal to the force that would be exerted by a particle of
mass M situated at the centre of mass.

Example 3.3 Finding centres of mass

Find the centre of mass of (i) a pair of particles of different masses, (ii) three identical
particles.

Solution
(1) For a pair of particles Pj, P>, the position vector of the centre of mass is given by

miry+mary
R=—-"—-4"-.
mi +mp

* Tt certainly does not follow from the observation that ‘forces are vector quantities’!
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It follows that the centre of mass lies on the line P P, and divides this line in the ratio
my :mj.

(ii) For three identical particles Py, P>, P3, the position vector of the centre of mass
is given by

R_mr1+mr2+mr3 _ rp+ry+r3
B m-+m-+m N 3

It follows that the centre of mass lies at the centroid of the triangle Py P, P3. B

The centres of mass of most of the systems we meet in mechanics are easily deter-
mined by symmetry considerations. However, when symmetry is lacking, the position of
the centre of mass has to be worked out from first principles by using the definition (3.5),
or its counterpart for continuous mass distributions. The Appendix at the end of the book
contains more details and examples.

3.6 THE LAW OF GRAVITATION

Physicists recognise only four distinct kinds of interaction forces that exist in
nature. These are gravitational forces, electromagnetic forces and weak/strong nuclear
forces. The nuclear forces are important only within the atomic nucleus and will not
concern us at all. The electromagnetic forces include electrostatic attraction and repul-
sion, but we will encounter them mainly as ‘forces of contact’ between material bod-
ies. Since such forces are intermolecular, they are ultimately electromagnetic although
we will make no use of this fact! The present section however is concerned with
gravitation.

It is an observed fact that any object with mass attracts any other object with mass
with a force called gravitation. When gravitational interaction occurs between particles,
the Third Law implies that the interaction forces must be equal in magnitude, opposite
in direction and parallel to the straight line joining the particles. The magnitude of the
gravitational interaction forces is given by:

The law of gravitation

The gravitational forces that two particles exert upon each other each have magni-
tude

mimaG

o (3.6)

where m, my are the particle masses, R is the distance between the particles, and
G, the constant of gravitation, is a universal constant. Since G is not dimensionless,
its numerical value depends on the units of mass, length and force.




60 Chapter 3 Newton’s laws of motion and the law of gravitation

This is the famous inverse square law of gravitation originally suggested by Robert
Hooke,* a scientific contemporary (and adversary) of Newton. In ST units, the constant of
gravitation is given approximately by

G =6.67x 107" Nm’kg™2, (3.7)

this value being determined by observation and experiment. There is presently no theory
(general relativity included) that is able to predict the value of G. Indeed, the theory of
general relativity does not exclude repulsion between masses!

To give some idea of the magnitudes of the forces involved, suppose we have two
uniform spheres of lead, each with mass 5000 kg (five metric tons). Their common radius
is about 47 cm which means that they can be placed with their centres 1 m apart. What
gravitational force do they exert upon each other when they are in this position? We
will show later that the gravitational force between uniform spheres of matter is exactly
the same as if all the mass of each sphere were concentrated at its centre. Given that
this result is true, we can find the force that each sphere exerts on the other simply by
substituting m; = mo = 5000 and R = 1 into equation (3.6). This gives F' = 0.00167 N
approximately, the weight of a few grains of salt! Such forces seem insignificant, but
gravitation is the force that keeps the Moon in orbit around the Earth, and the Earth in
orbit around the Sun. The reason for this disparity is that the masses involved are so much
larger than those of the lead spheres in our example. For instance, the mass of the Sun is
about 2 x 10°" kg.

3.7 GRAVITATION BY A DISTRIBUTION OF MASS

It is important to be able to calculate the gravitational force exerted on a particle
by a distribution of mass, such as a disc or sphere. The Earth, for example, is an approxi-
mately spherical mass distribution. We first treat an introductory problem of gravitational
attraction by a pair of particles and then progress to continuous distributions of matter.
In all cases, the law of multiple interactions means that the effective force exerted on a
particle is the resultant of the individual forces of interaction exerted on that particle.

Example 3.4 Attraction by a pair of particles

A particle C, of mass m, and two particles A and B, each of mass M, are placed as
shown in Figure 3.3. Find the gravitational force exerted on the particle C.

Solution

By the law of gravitation, each of the particles A and B attracts C with a force of
magnitude F’ where
mMG

[
F=—%

* It was Newton however who proved that Kepler’s laws of planetary motion follow from the inverse square
law.
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FIGURE 3.3 The particle C, of mass m, is
attracted by the particles A and B, each of
mass M. The resultant force on C points
towards O.
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where R = (a® + x2)1/2 is the distance AC (= BC). By symmetry, the resultant
force F points in the direction C O and so its magnitude F can be found by summing
the components of the contributing forces in this direction. Hence

F_ZrnMGcosoz_2 MG Rcosa oM MG X
= R2 =m g3 )= (@ + x2)32

for x > 0. [The angle « is shown in Figure 3.3.] Thus the resultant force exerted on
C looks nothing like the force exerted by a single gravitating particle. In particular, it
is not equal to the force that would be exerted by a mass 2M placed at O. However,
on writing F' in the form

we see that

5 m@MG

y2

when x/a is large. Thus, when C is very distant from A and B, the gravitational
force exerted on C is approximately the same as that of a single particle of mass 2M
situated at O.

The graph of the exact value of F as a function of x is shown in Figure 3.4.
Dimensionless variables are used. /' = 0 when x = 0, and rises to a maximum when
X =a /«/5 where FF = 4mM G/3\/§a2. Thereafter, F' decreases, becoming ever
closer to its asymptotic form m(2M)G /x>. B

General asymptotic form of F as r — oo

The asymptotic result in the last example is true for attraction by any bounded™ distribution
of mass. The general result can be stated as follows:

* This excludes mass distributions that extend to infinity, such as an infinite straight wire.
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FIGURE 3.4 The dimensionless resultant force
(mMG /a*)~'F plotted against x /a.

Let S be any bounded system of masses with total mass M. Then the force F exerted
by § on a particle P, of mass m and position vector® r, has the asymptotic form

mMG _

F ~ — r,
2

asr — oo, wherer = |r|and* =r/r.

In other words, the force exerted by S on a distant particle is approximately the same
as that exerted by a particle of mass equal to the total mass of S, situated at the centre of
mass of S.

Example 3.5 Gravitation by a uniform rod

A particle P, of mass m, and a uniform rod, of length 2a and mass M, are placed as
shown in Figure 3.5. Find the gravitational force that the rod exerts on the particle.

Solution

Consider the element [x, x + dx] of the rod which has mass M dx/2a and exerts
an attractive force of magnitude

m(M dx/2a)G
R2

on P, where R is the distance shown in Figure 3.5. By symmetry, the resultant force
acts towards the centre O of the rod and can be found by summing the components of
the contributing forces in the direction P O. Since the rod is a continuous distribution

* The result, as stated, is true for any choice of the origin O of position vectors. However, the asymptotic
error is least if O is located at the centre of mass of S. In this case the relative error is of order (a/ r)2,
where a is the maximum ‘radius’ of the mass distribution about O.
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FIGURE 3.5 A particle P, of mass m, is
attracted by a uniform rod of length 2a and
mass M. The resultant force F on P points
towards the centre O of the rod.

of mass, this sum becomes an integral. The resultant force exerted by the rod thus has
magnitude F given by

mMG (% cosa mMG [ Rcosa
F = dx = dx
2a J_, R? 2¢ J_, R3

_ mMG /“ bdx
T 2u —a (x2 + b2)3/2’

where b is the distance of P from the centre of the rod. This integral can be evaluated
by making the substitution x = b tan 6, the limits on 6 being 6 = £, where tan § =
a/b. This gives

mMG (2sin mMG 2a
F = =
2a b 2a b(b% + a?)1/2

mMG -
b(b% 4 a?)1/2"

Example 3.6 Gravitation by a uniform disk

A particle P, of mass m, is situated on the axis of a uniform disk, of mass M and
radius a, as shown in Figure 3.6. Find the gravitational force that the disk exerts on
the particle.

Solution

Consider the element of area dA of the disk which has mass M dA/ma® and
attracts P with a force of magnitude

m(M dA/rwa*)G
R2 ’

where R is the distance shown in Figure 3.6. By symmetry, the resultant force acts
towards the centre O of the disk and can be found by summing the components of the
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FIGURE 3.6 Left: A particle P, of mass m, is attracted by a uniform disk of mass M and
radius a. The resultant force F on P points towards the centre O of the disk. Right: The
element of area d A in polar cordinares r, 6.

contributing forces in the direction P O. The resultant force exerted by the disk thus
has magnitude F given by

mMG cosa
F = ——dA,
wa’ J4 R?

where the integral is to be taken over the region A occupied by the disk. This integral
is most easily evaluated using polar coordinates. In this case dA = (dr)(r df) =
r dr df, and the integrand becomes

cosa R cos _ b
R2 ~— R3 (,.2 + b2)3/2’

where b is the distance of P from the centre of the disk. The ranges of integration for
r,9are0 <r <aand 0 <6 < 2mw. We thus obtain

mMG r=a 0=2m
= g / /9 ( bz)%ﬂ)rdrde.

Since the integrand is independent of 0, the f-integration is trivial leaving

mMG ("% 2mbrdr 2mMG r=a

F=—_ _ [—b 242 —1/2]
na? /,.:0 (r? + b%)3/2 a? o+ r=0

_ 2mMG b

- (@2 +b2)12

a?

Gravitation by spheres

Because of its applications to astronomy and space travel, and because we live on a nearly
spherical body, gravitation by a spherical mass distribution is easily the most important
case. We suppose that the mass distribution occupies a spherical volume and is also spher-
ically symmetric so that the mass density depends only on distance from the centre of the
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O

FIGURE 3.7 Left: A particle P, of mass m, is attracted by a symmetric sphere of radius « and total
mass M. Right: The element of volume dV in spherical polar coordinates r, 0, ¢.

sphere. We call such a body a symmetric sphere. The fact that we do not require the
density to be uniform is very important in practical applications. The Earth, for instance,
has a density of about 3,000 kg m™—> near its surface, but its density at the centre is about
16, 500kgm~3. Similar remarks apply to the Sun. Thus, if our results were restricted to
spheres of uniform density, they would not apply to the Earth or the Sun, the two most
important cases.

The fundamental result concerning gravitation by a symmetric sphere was proved by
Newton himself and confirmed his universal theory of gravitation. It is presented here as
a theorem.

Theorem 3.1 The gravitational force exerted by a symmetric sphere of mass M on a
particle external to itself is exactly the same as if the sphere were replaced by a particle
of mass M located at the centre.

Proof.  Figure 3.7 shows a symmetric sphere with centre O and radius a, and a particle P,
of mass m, exterior to the sphere. We wish to calculate the force exerted by the sphere on the
particle. The calculation is similar to that in the ‘disk’ example, but this time the integration
must be carried out over the spherical volume occupied by the mass distribution.

Consider the element of volume dv of the sphere which has mass p dv and attracts P with
a force of magnitude

m(p dv)G
Rz

where R is the distance shown in Figure 3.7. By symmetry, the resultant force acts towards

the centre O of the sphere and can be found by summing the components of the contributing

forces in the direction P O. The resultant force exerted by the sphere thus has magnitude F
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given by

pcosa
F=mG / —zdv,
v R
where the integral is to be taken over the region V occupied by the sphere. This inte-
gral is most easily evaluated using spherical polar coordinates r, 6, ¢. In this case dv =
(dr)(r dO)(r sinf d¢) = r?sin6 dr do d¢, and the integrand becomes

pcosa  pRcosa p(r) (b —rcosb)
R2 ~—  R3  (r2+4b2—2rbcosh)3/?’

on using the cosine rule R? = r? + b> — 2rbcos6, where b is the distance of P from the
centre of the sphere. The ranges of integration for r, 8, ¢ are 0 < r < a,0 < 6 < 7 and
0 < ¢ < 2m. We thus obtain

r=a O=m ¢:27r . b . 9
F:mG/ / / ( 2'0(’)2( rcos )32)r23in9drd9d¢.
r=0 Jo=0 Jp=0 (r2 + b2 — 2rbcos0)3/

This time the ¢-integration is trivial leaving

r=a rO=m 2 N (b —r Ja}
F =mG/ / 7o) (b =1 cosh) 5 o dr do
—0 Jo—o (2+b%—2rbcos0)3/?

r=a 0=m :
b— 0 0 do
= anG/ rzp(r) / ( r cos6) sin dr,
=0 o—0 (r2+b%—2rbcosh)3/2

on taking the f-integration first and the r-integration second.
The 6-integration is tricky if done directly, but it comes out nicely on making the change
of variable from 6 to R given by

R2=r2+b2—2rbc059, (R > 0).

(In this change of variable, r has the status of a constant.) The range of integration for R is
b—r <R <b-+r. Then

2RdR =2rbsin6 do,

2b%* — 2rbcosf B R+ (b2 —r?)
2b N 2b '

b—rcosf =

and the 0-integral becomes

bR+ (0P —r?)\ RdR 1 [Pt b — 2 2
= 1+ dR = =,
ber 2bR3 rb 2rb2 J,_, R? b?

on performing the now elementary integration.

Hence
G r=a
F="2 471/ r2p(r) dr
b? r=0

and this is as far as we can go without knowing the density function p(r). The answer that we
are looking for is that F = mMG /b>, where M is the total mass of the sphere. Now M can
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also be calculated as a volume integral. Since the mass of the volume element dv is p dv, the
total mass M is given by

r=a prO0=m pr¢p=21
M = f pdv = / / f r2p(r)sin@ dr do dg
4 r=0 J6=0 $=0

r=a
—an [ rpwar
r=0
on performing the 6- and ¢-integrations.
Hence, we finally obtain

which is the required result.

Since there is no reason why the density p (') should not be zero over part of its range, this
result also applies to the case of a particle external to a hollow sphere. The case of a particle
inside a hollow sphere is different (see Problem 3.5). B

Spheres attracted by other spheres

Since any element of mass is attracted by a symmetric sphere as if the sphere were a parti-
cle, it follows that the force that a symmetric sphere exerts on any other mass distribution
can be calculated by replacing the sphere by a particle of equal mass located at its centre.
In particular then, the force that two symmetric spheres exert upon each other is the same
as if each sphere were replaced by its equivalent particle. Thus, as far as the forces of
gravitational attraction are concerned, symmetric spheres behave exactly as if they were
particles.

3.8 THE PRINCIPLE OF EQUIVALENCE AND ¢

Although we have so far not mentioned it, the law of gravitation hides a deep and
very surprising fact, namely, that the force between gravitating particles is proportional
to each of their inertial masses. Now inertial mass, as defined by equation (3.2), has no
necessary connection with gravitation. It is a measure of the reluctance of that particle
to being accelerated and can be determined by non-gravitational means, for instance, by
using electrostatic interactions between the particles. It is a matter of extreme surprise
then that a quantity that seems to have no necessary connection with gravitation actually
determines the force of gravitation between particles. What we would have expected was
that each particle would have a second property m*, called gravitational mass (not the
same as m), which appears in the law of gravitation (3.6) and determines the gravitational
force. For example, suppose that we have three uniform spheres of gold, silver and bronze
and that the silver and bronze spheres have equal inertial mass. Then the law of gravitation
states that, when separated by equal distances, the gold sphere will attract the silver and
bronze spheres with equal forces, whereas we would have expected these forces to be
different.
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FIGURE 3.8 A particle of mass M is attracted m; e
by the gravitation of the system S which M e, ST o °
consists of N particles with masses S o - T ° °
(mi}) (1 <i < N). re ’

The question arises then as to whether m and m™ are actually equal or just nearly
equal so that the difference is difficult to detect. Newton himself did experiments with
pendulums made of differing materials, but could not detect any difference in the period.
Newton’s experiment could have detected a difference of about one part in 103. However,
the classic experiment of Eotvos (1890) and its later refinements have now shown that any
difference between m and m* is less than one part in 10!, This leads us to believe that m
and m™ really are equal and that the law of gravitation means exactly what it says.

The proposition that inertial and gravitational mass are exactly equal is called the
principle of equivalence. Although we accept the principle of equivalence as being true,
we still have no explanation why this is so! In this context, it is worth remarking that
Einstein made the principle of equivalence into a fundamendal assumption of the theory
of general relativity.

The gravitational acceleration g

Suppose a particle P of mass M is under the gravitational attraction of the system S, as
shown in Figure 3.8. Then, by the law of gravitation, the resultant force F that S exerts
upon P is given by

N
Mm G Mm>G MmnyG m;G
F = e+ —2 e2+~-—|——NeN=M(E : e,~>

2 2 2
1 r I'n

:Mg"

where the vector g, defined by

g=ZmIIZG i,

i=1 1

is independent of M. Then, by the Second Law, the induced acceleration a of particle P
is determined by the equation

Mg = Ma,

that is,
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Thus the induced acceleration g is the same for any particle situated at that point. This
rather remarkable fact is a direct consequence of the principle of equivalence. Tradition
has it that, prior to Newton, Galileo did experiments in which he released different masses
from the top of the Tower of Pisa and found that they reached the ground at the same
time. Galileo’s result is thus a colourful but rather inaccurate verification of the principle
of equivalence!

Gravitation by the Earth (rotation neglected)

In the present treatment, the rotation of the Earth is neglected and we regard the Earth as
an inertial frame of reference. A more accurate treatment which takes the Earth’s rotation
into account is given in Chapter 17.

When the system S is the Earth (or some other celestial body) it is convenient to
introduce the notion of the local vertical direction. The unit vector k, which has the
opposite direction to g, is called the vertically upwards unit vector relative to the Earth.
In terms of k, the force exerted by the Earth on a particle of mass M is given by

F =—-Mgk,

where the gravitational acceleration g is the magnitude of the gravitational acceleration
vector g. Both g and k are functions of position on the Earth.

Weight

The positive quantity Mg (which is a function of position) is called the weight of the
particle P. It is the magnitude of the gravity force exerted on P by the Earth. Thus the
same body will have different weights depending upon where it is situated. However, at
a fixed point of space, the weights of bodies are proportional to their masses. This fact,
which is a consequence of the principle of equivalence, enables masses to be compared
simply by comparing their weights at the same location (by using a balance, for instance).

The approximation of uniform gravity

It is easy to see that the Earth’s gravitational acceleration g and the vertical direction k
depend upon position. The Earth is approximately a symmetric sphere which exerts its
gravitational force as if all its mass were at its centre. Thus, if the value of g at a point on
the Earth’s surface is g1, then the value of g at a height of 6,400 km (the Earth’s radius)
must be g;/4 approximately. On the other hand, the vertical vector k changes from point
to point on the Earth’s surface. These changes will be significant for motions whose
extent is significant compared to the Earth’s radius; this is true for a ballistic missile, for
instance. However, most motions taking place on Earth have an extent that is insignificant
compared to the Earth’s radius and for which the variations of g and k are negligible.
Simple examples include the motion of a tennis ball, a javelin or a bullet.

The approximation in which g and k are assumed to be constants is called uniform
gravity. Uniform gravity is the most common force field in mechanics. Many of the
problems solved in this book make this simplifying (and accurate) approximation.
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FIGURE 3.9 An elevator contains a ball B / r "ok
and both are freely falling under uniform F I J F
gravity. F is an inertial reference frame and 0O ¢ .
F' is a reference frame attached to the falling ¢ o) t
elevator.

Numerical values of g

The value of g at any location on the Earth can be measured experimentally (by using a
pendulum for instance). The value of g is not quite constant over the Earth’s surface since
the Earth does not quite have spherical symmetry and different locations have differing
altitudes. At sea level on Earth, g = 9.8 ms™2 approximately, and a rough value of
10 ms~2 is often assumed. The corresponding value for the Moon is 1.6 ms~2, roughly
a sixth of the Earth’s value.

Example 3.7 Particle inside a falling elevator

An elevator cable has snapped and the elevator and its contents are falling under
uniform gravity. One of the passengers takes a ball from his pocket and throws it to
another passenger.* What is the motion of the ball relative to the elevator?

Solution

Suppose that the ball has mass m and that the local (vector) gravitational acceleration
is —gk. Then the motion of the ball relative to an inertial reference frame F (fixed to
the ground, say) is determined by the Second Law, namely,

ma = —mgk,

where a is the acceleration of the ball measured in F.
Let the frame F’ be attached to the elevator, as shown in Figure 3.9. Then the
acceleration @’ of the ball measured in F” is given (see section 2.6) by

a=d + A,

where A is the acceleration of the frame F’ relative to F. But the elevator, to which
the frame F’ is attached, is also moving under uniform gravity and its acceleration A
is therefore, by the principle of equivalence, the same as that of the ball, namely,

A= —gk.

* People do react oddly when put under pressure.
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Hence a = a’ — gk and so
a=0.

Thus, relative to the elevator, the ball moves with constant velocity. To observers
resident in the frame F’, gravity appears to be absent and F” appears to be an inertial
frame. This provides a practical method for simulating conditions of weightlessness.
Fortunately for those wishing to experience weightlessness, there is no need to use an
elevator; the same acceleration can be achieved by an aircraft in a vertical dive!

This result is of considerable importance in the theory of general relativity. It
shows that, locally at least, a gravitational field can be ‘transformed away’ by observ-
ing the motion of bodies from a freely falling reference frame. B

Problems on Chapter 3

Answers and comments are at the end of the book.

Harder problems carry a star ().

Gravitation

3.1 Four particles, each of mass m, are situated at the vertices of a regular tetrahedron of side
a. Find the gravitational force exerted on any one of the particles by the other three.

Three uniform rigid spheres of mass M and radius a are placed on a horizontal table and
are pressed together so that their centres are at the vertices of an equilateral triangle. A fourth
uniform rigid sphere of mass M and radius a is placed on top of the other three so that all four
spheres are in contact with each other. Find the gravitational force exerted on the upper sphere
by the three lower ones.

3.2 Eight particles, each of mass m, are situated at the corners of a cube of side a. Find the
gravitational force exerted on any one of the particles by the other seven.

Deduce the total gravitational force exerted on the four particles lying on one face of the
cube by the four particles lying on the opposite face.

3.3 A uniform rod of mass M and length 2a lies along the interval [—a, @] of the x-axis and
a particle of mass m is situated at the point x = x’. Find the gravitational force exerted by the
rod on the particle.

Two uniform rods, each of mass M and length 2a, lie along the intervals [—a, a] and
[b — a, b + a] of the x-axis, so that their centres are a distance b apart (b > 2a). Find the
gravitational forces that the rods exert upon each other.

3.4 A uniform rigid disk has mass M and radius a, and a uniform rigid rod has mass M’ and
length b. The rod is placed along the axis of symmetry of the disk with one end in contact
with the disk. Find the forces necessary to pull the disk and rod apart. [Hint. Make use of the
solution in the ‘disk’ example.]

3.5 Show that the gravitational force exerted on a particle inside a hollow symmetric sphere
is zero. [Hint. The proof is the same as for a particle outside a symmetric sphere, except in
one detail.]
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3.6 A narrow hole is drilled through the centre of a uniform sphere of mass M and radius
a. Find the gravitational force exerted on a particle of mass m which is inside the hole at a
distance r from the centre.

3.7 A symmetric sphere, of radius ¢ and mass M, has its centre a distance b (b > a) from an
infinite plane containing a uniform distribution of mass o per unit area. Find the gravitational
force exerted on the sphere.

3.8% Two uniform rigid hemispheres, each of mass M and radius a are placed in contact with
each other so as to form a complete sphere. Find the forces necessary to pull the hemispheres
apart.

Computer assisted problem

3.9 A uniform wire of mass M has the form of a circle of radius @ and a particle of mass
m lies in the plane of the wire at a distance b (b < a) from the centre O. Show that the
gravitational force exerted by the wire on the particle (in the direction O P) is given by

_ mMG /2” (cos® — &)de
- 2wa?

{1 +£2 —2Ecosh)3/2’

where the dimensionless distance & = b/a.

Use computer assistance to plot the graph of (dimensionless) F against £ for 0 < & < 0.8
and confirm that F is positive for & > 0. Is the position of equilibrium at the centre of the
circle stable? Could the rings of Saturn be solid?
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Problems in particle dynamics

KEY FEATURES

The key features in this chapter are (i) the vector equation of motion and its reduction to
scalar equations, (ii) motion in a force field, (iii) geometrical constraints and forces of con-
straint, and (iv) linear and quadratic resistance forces.

Particle dynamics is concerned with the problem of calculating the motion of a particle
that is acted upon by specified forces. Our starting point is Newton’s laws. However, since
the First Law merely tells us that we should observe the motion from an inertial frame,
and the Third Law will never be used (since there is only one particle), the entirety of
particle dynamics is based on the Second Law

ma=Fi+Fy+---+Fy,

where F, F,, ..., Fy are the various forces that are acting on the particle. The typical
method of solution is to write the Second Law in the form

mZ—;}:F1+F2+~-+FN, 4.1)
which is a first order ODE for the unknown velocity function v(¢) and is called the equa-
tion of motion of the particle. If the initial value of v is given, then equation (4.1) can
often be solved to yield v as a function of the time . Once v is determined (and if the
initial position of the particle is given), the position vector r of the particle at time ¢ can
be found by solving the first order ODE dr/dt = v. The sections that follow contain
many examples of the implementation of this method. Indeed, it is remarkable how many
interesting problems can be solved in this way.

Question When can real bodies be modelled as particles?

Newton’s laws apply to particles, but real bodies are not particles. When can real
bodies, such as a tennis ball, a spacecraft, or the Earth, be treated as if they were
particles?
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)

mg

After time ¢

—_—

FIGURE 4.1 The particle is initially at the
origin and is projected vertically upwards
with speed u. The particle moves in a vertical
straight line (the axis Oz) under the uniform
gravity force mg and possibly a resistance (or U
drag) force D. At time ¢ the particle has |n|t|a||y T 1 0
upward velocity v.

i

Answer

This is quite a tricky question which is not fully discussed until Chapter 10. What we
will show is that the centre of mass of any body moves as if it were a particle of mass
equal to the total mass, and all the forces on the body acted upon it. In particular,
a rigid body, moving without rotation, can be treated exactly as if it were a particle.
For example, a block sliding without rotation on a table can be treated exactly as if it
were a particle. In other cases we gain only partial information about the motion. If
the body is a brick thrown through the air, then particle dynamics can tell us exactly
where its centre of mass will go, but not which point of the brick will hit the ground
first. W

4.1 RECTILINEAR MOTION IN A FORCE FIELD

Our first group of problems is concerned with the straight line motion of a particle
moving in a force field. A force F is said to be a field if it depends only on the position of
the particle, and not, for instance, on its velocity or the time. For example, the gravitational
attraction of any fixed mass distribution is a field of force, but resistance forces, which are
usually velocity dependent, are not.

If the rectlinear motion takes place along the z-axis, the equation of motion (4.1)
reduces to the scalar equation

D _ 42
mo = (2), (4.2)
where v is the (one-dimensional) velocity of the particle and F (z) is the (one-dimensional)
force field, both measured in the positive z-direction.

First we consider the problem of vertical motion of a particle under uniform gravity
with no air resistance. This is fine on the Moon (which has no atmosphere) but, on
Earth, the motion of a body is resisted by its passage through the atmosphere and this will
introduce errors. The effect of resistance forces is investigated in section 4.3.

Example 4.1 Vertical motion under uniform gravity

A particle is projected vertically upwards with speed u and moves in a vertical straight
line under uniform gravity with no air resistance. Find the maximum height achieved
by the particle and the time taken for it to return to its starting point.
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Solution

Let v be the upwards velocity of the particle after time #, as shown in Figure 4.1. Then
the scalar equation of motion (4.2) takes the form

dv

m— = —-—mg,
dt 8

since the drag force D is absent. A simple integration gives
v=—gt+C,

where C is the integration constant, and, on applying the initial condition v = u when
t = 0, we obtain C = u. Hence the velocity v at time ¢ is given by

v=u—gt.

To find the upward displacement z at time #, write

dz ,
— =v=u— gt.
dt §

A second simple integration gives
1.2
z=ut — 58t + D,

where D a second integration constant, and, on applying the initial condition z = 0
when t = 0, we obtain D = (. Hence the upward displacement of the body at time ¢
is given by

z=ut— 581"

The maximum height z,,,« is achieved when dz/dt = 0, that is, when v = 0.
Thus zpax is achieved when ¢ = u/g and is given by

(5) -2 (5) =5
z =ul-)—5gl—-) =—.
max g 2 g 2g
The particle returns to O when z = 0, that is, when

t(u— %gt) =0.

Thus the particle returns after a time 2u/g.

For example, if we throw a body vertically upwards with speed 10 ms™!, it will
rise to a height of 5 m and return after 2 s. [Here we are neglecting atmospheric
resistance and taking g = 10 ms™2.] ®
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Question Saving oneself in a falling elevator

An elevator cable has snapped and the elevator is heading for the ground. Can the
occupants save themselves by leaping into the air just before impact in order to avoid
the crash?

Answer

Suppose that the elevator is at rest at a height H when the cable snaps. The elevator
will fall and reach the ground with speed (2gH)!/2. In order to save themselves, the
occupants must leap upwards (relative to the elevator) with this same speed so that
their speed relative to the ground is zero. If they were able do this, then they would
indeed be saved. However, if they were able to project themselves upwards with this
speed, they would also be able to stand outside the building and leap up to the same
height H that the elevator fell from! Even athletes cannot jump much more than a
metre off the ground, so the answer is that escape is possible in principle but not in
practice. W

Uniform gravity is the simplest force field because it is constant. In the next example

we show how to handle a non-constant force field.

Example 4.2 Rectilinear motion in the inverse square field

A particle P of mass m moves under the gravitational attraction of a mass M fixed at
the origin O. Initially P is at a distance a from O when it is projected with speed u
directly away from O. Find the condition that P will ‘escape’ to infinity.

Solution

By symmetry, the motion of P takes place in a straight line through O. By the law of
gravitation, the scalar equation of motion is

dv mMG

m-—— = )
dt r2
where r is the distance O P and v = 7. Equations like this can always be integrated
once by first eliminating the time. Since

dv dv dr dv

—=— X —=v—,

dt dr dt dr
the equation of motion can be written as

dv MG
V— = ————,
dr r?
a first order ODE for v as a function of 7. This is to be solved with the initial condition
v = u when r = a. The equation separates to give

/vdv:—MG/d—;,
-

G
%vzz —+C,
.

and so
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where C is the integration constant. On applying the initial condition v = u when
r = a, we find that C = (u2/2) — (MG /a) so that

2 (2 2MG> 2MG
v =|u"— +

a r

This determines the outward velocity v as a function of r.
Whether the particle escapes to infinity, or not, depends on the sign of the brack-
eted constant term.

(i) Suppose first that this term is positive so that

, 2MG
u — =
a

VZ

where V is a positive constant. Then, since the term 2M G /r is positive, it follows
that v > V at all times. It further follows that » > a + V¢ for all ¢ and so the particle
escapes to infinity.

(i) On the other hand, if u> — QMG /a) is negative, then v becomes zero when

a

=)
1 — (u2a/2MG)

after which the particle falls back towards O and does not escape.

(iii) The critical case, in which u?> = 2M G /a is treated in Problem 4.10; the result is
that the particle escapes.

Hence the particle escapes if (and only if)

s _ 2MG
u- > .n

a

Question Given u, find rmax and the time taken to get there

For the particular case in which u> = MG /a, find the maximum distance from O
achieved by P and the time taken to reach this position.

Answer

For this value of u, the equation connecting v and » becomes

2 2 1
vV =MG|[-—-——-).
rooa
Since r = rmax When v = 0, it follows that the maximum distance from O achieved

by P is 2a.
To find the time taken, we write v = dr/dt and solve the ODE

(7) =ue (3-2)
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with the initial condition r = a when t = 0. After taking the positive square root of
each side (dr/dt > 0 in this motion), the equation separates to give

2a ar 1/2 T
f ( ) dr = (MG)W/ dr.
a 2a —r 0

(Here we have introduced the initial and final conditions directly into the limits of
integration; 7 is the elapsed time.) On simplifying, we obtain

2a ar 1/2
T = (MG)_1/2/ (2 ) dr.
a a — 7

This integral can be evaluated by making the substitution 7 = 2a sin” 8; the details
are unimportant. The result is that the time taken for P to progress from r = a to
r=2ais

Question Speed of escape from the Moon

A body is projected vertically upwards from the surface of the Moon. What projection
speed is neccessary for the body to escape the Moon?

Answer

We regard the Moon as a fixed symmetric sphere of mass M and radius R. In this case,
the gravitational force exerted by the Moon is the same as that of a particle of mass M
situated at the centre. Thus the preceding theory applies with the distance a replaced
by the radius R. The escape speed is therefore (2M G /R)'/?, which evaluates to
about 2.4 kms™!. [For the Moon, M = 7.35 x 10?2 kg and R = 1740 km.] m

CONSTRAINED RECTILINEAR MOTION

Figure 4.2 shows a uniform rigid rectangular block of mass M sliding down the

inclined surface of a fixed rigid wedge of angle «. The initial conditions are supposed
to be such that the block slides, without rotation, down the line of steepest slope of the
wedge. The block is subject to uniform gravity, but it is clear that there must be other
forces as well. If there were no other forces and the block were released from rest, then

the block would move vertically downwards. However, solid bodies cannot pass through
each other like ghosts, and interpenetration is prevented by (equal and opposite) forces
that they exert upon each other. These are material contact forces which come into play
only when bodies are in physical contact. They are examples of forces of constraint,
which are not prescribed beforehand but are sufficient to enforce a specified geometrical
constraint. Tradition has it that the constraint force that the wedge exerts on the block is
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FIGURE 4.2 A rigid rectangluar block slides down the
inclined surface of a fixed rigid wedge of angle «. Note
that k"' is the vertically upwards unit vector, while i and k
are parallel to and perpendicular to the inclined surface of
the wedge.

called the total reaction force R. It is convenient to write this force in the form
R =—-Fi+ Nk,

where the unit vectors i and k are parallel to and normal to the slope of the wedge. The
scalar N is called the normal reaction component and the scalar F is called the frictional
component.*

The equation of motion of the block is the vector equation (4.1) which becomes

Md(vi) _
dt

—mgk” — Fi + Nk,

where k" is the vertically upwards unit vector. The easiest way of proceeding is to take
components of this vector equation in the i- and k-directions (the j-component gives

nothing). On noting that k¥ = — sina i + cos « k, this gives
dv .
ME=mgsmoz—F and 0=N —mgcosa.

The second of these equations determines the normal reaction N = mg cos «. However,
in the first equation, both v and F are unknown and this prevents any further progress
in the solution of this problem.* One can proceed by proposing some empirical ‘law of
friction’, but such laws hold only very roughly. It is not surprising then that, in much of
mechanics, frictional forces are neglected. In this case, the total reaction force exerted by
the surface is in the normal direction and we describe such surfaces as smooth, meaning

* The minus sign is introduced so that ' will be positive when the scalar velocity v is positive.
* This reflects the fact that we have said nothing about the roughness of the surface of the wedge!
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FIGURE 4.3 The idealised string is depicted
here as having a small circular cross-section.
At each cross-section only tensile stresses
exist and their resultant is the tension 7' in the
string at that point.

‘perfectly smooth’. Doing away with friction has the advantage of giving us a well-posed
problem that we can solve; however the solution will then apply only approximately to
real surfaces.

If we now suppose that the inclined surface of the wedge is smooth, then F = 0 and
the first equation reduces to

dv .
— = gsina.
ar ¢
Thus, in the absence of friction, the block slides down the plane with the constant accel-

eration g sin«.

Inextensible strings

Another agency that can cause a geometrical constraint is the inextensible string. If a
particle P of a system is connected to a fixed point O by an inextensible string of length
a then, if the string is taut, P is constrained to move so that the distance O P = a. This
geometrical constraint is enforced by the (unknown) constraint force that the string applies
to particle P. Our ‘string’ is an idealisation of real cords and ropes in that it is infinitely
thin, has no bending stiffness, and is inextensible. The only force that one part of the string
exerts on another is the tension 7 in the string, which acts parallel to the tangent vector ¢
to the string at each point (see Figure 4.3).

It is evident that, in general, T varies from point to point along the string. Suppose
for example that a uniform string of mass p per unit length is suspended vertically under
uniform gravity. Then, since the tension at the lower end is zero, the string will not be in
equilibrium unless the tension at a height z above the lowest point is given by T = pgz;
the tension thus rises linearly with height.

The situation is simpler when the mass of the string is negligible; this is the case of
the light inextensible string.™ In this case, it is obvious that the tension is constant when
the string is straight. In fact, the tension also remains constant when the string slides over
a smooth body. This is proved in Chapter 10. The tension in a light string is also constant
when the string passes over a light, smoothly pivoted pulley wheel.

* In this context, ‘light’ means ‘of zero mass’.
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FIGURE 4.4 Attwood’s machine: two bodies
of masses m and M are connected by a light i v
inextensible string which passes over a mg

smooth rail.

Example 4.3 Attwood’s machine

Two bodies with masses m, M are connected by a light inextensible string which
passes over a smooth horizontal rail. The system moves in a vertical plane with the
bodies moving in vertical straight lines. Find the upward acceleration of the mass m
and the tension in the string.

Solution

The system is shown in Figure 4.4. Let v be the upward velocity of the mass m. Then,
since the string is inextensible, v must also be the downward velocity of the mass M.
Also, since the string is light and the rail is smooth, the string has constant tension 7.
The scalar equations of motion for the two masses are therefore

dv dv
m— =T —mg, M—=Mg—T.
dt dt

It follows that

dv_ M —m and T — 2Mm =
i \M+m)¢ BAVET YA

Question The monkey puzzle

Suppose that, in the last example, both bodies have the same mass M and one of them
is a monkey which begins to climb up the rope. What happens to the other mass?

Answer

Suppose that the monkey climbs with velocity V' relative to the rope. Then its upward
velocity relative to the ground is V' — v. The equations of upward motion for the mass
and the monkey are therefore

dv d(V —v)
M~— =T — Mg, mM—

=T —Mg.
dt dt g
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L

!
D<—/—>v

FIGURE 4.5 The drag D and lift L on a body moving through a
fluid.

On eliminating 7', we find that

dv
dt

dv

_1
2dr’

so that, if the whole system starts from rest,
Vv, and V—-v=

v = V.

D=
=

Thus the monkey and the mass rise (relative to the ground) with the same velocity;
the monkey cannot avoid hauling up the mass as well as itself! B

4.3 MOTION THROUGH A RESISTING MEDIUM
The physics of fluid drag

When a body moves through a fluid such as air or water, the fluid exerts forces on the surface
of the body. This is because the body must push the fluid out of the way, and to do this the body
must exert forces on the fluid. By the Third Law, the fluid must then exert equal and opposite
forces on the body. A person wading through water or riding a motorcycle is well aware of
the existence of such forces, which fall into the general category of material contact forces.
We are interested in the resultant force that the fluid exerts on the body and it is convenient to
write this resultant in the form

F=D-+L,

where the vector drag force D has the opposite direction to the velocity of the body, and the
vector lift force L is at right angles to this velocity. The existence of lift makes air travel
possible and is obviously very important. However, we will be concerned only with drag since
we will restrict our attention to those cases in which the body is a rigid body of revolution
which moves (without rotation) in the direction of its axis of symmetry. In this case, the lift is
zero, by symmetry. We are then left with the scalar drag D, acting in the opposite direction to
the velocity of the body.

The theoretical determination of lift and drag forces is one of the great unsolved problems
of hydrodynamics and most of the available data has been obtained by experiment. Even for



4.3 Motion through a resisting medium 83

the case of a rigid sphere moving with constant velocity through an incompressible* fluid, a
general theoretical solution for the drag is not available. In this problem, the drag depends
on the radius a and speed V of the sphere, and the density p and viscosity p of the fluid.
Straightforward dimensional analysis shows that D must have the form

v
D = pa®V2F (—p a) ,
n

where F is a function of a single variable.

Definition 4.1 Reynold’s number The dimensionless quantity R = pVa/u is called the
Reynolds number.” It is more commonly written R = Va/v, where the quantity v = ju/p is
called the kinematic viscosity of the fluid.

The function F (R) has never been calculated theoretically, and experimental data must be
used. It is a surprising fact that, for a wide range of values of R (about 1000 < R < 100, 000),
the function F is found to be roughly constant. Subject to this approximation, the formula for
the drag becomes

D = C,anVZ,

where the dimensionless constant C is called the drag coefficient for the sphere; its value is
about 0.8.

A similar formula holds (with a different value of C) for any body of revolution moving
parallel to its axis. In this case a is the radius of the maximum cross sectional area of the body
perpendicular to the direction of motion. For example, the drag coefficient for a circular disk
moving at right angles to its own plane is about 1.7. We thus obtain the result that (subject
to the conditions mentioned above) the drag is proportional to the square of the speed of the
body through the fluid. This is the quadratic law of resistance.

This result does not hold for low Reynolds numbers. This was shown theoretically by
Stokes® in his analysis of the creeping flow of a fluid past a sphere. Stokes proved that, as
R — 0, the function F (R) ~ 67 /R so that the drag formula becomes

D ~ 6rauV.

On dimensional grounds, a similar formula (with a different coefficient) should hold for other
bodies of revolution. Thus at low Reynolds numbers' the drag is proportional to speed of the
body through the fluid. This is the linear law of resistance.

Which (if either) of these laws is appropriate in any particular case depends on the
Reynolds number. However, it is quickly apparent that the low Reynolds number condition
requires quite special physical conditions, as the following example shows.

* In this treatment, the effects of fluid compressibility are neglected. In practice, this means that the speed
of the body must be well below the speed of sound in the fluid.

T After the great English hydrodynamicist Osborne Reynolds 1842—-1912. At the age of twenty six he was
appointed to the University of Manchester’s first professorship of engineering.

% The drag coefficient C p used by aerodynamicists is 2C /.

§ George Gabriel Stokes 1819-1903, a major figure in British applied mathematics.

' Low means R less than about 0.5.
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Table 1 Some fluid properties relevant to drag calculations (Kaye & Laby [14]).

Density p Kinematic viscosity v Sound speed

(kgm™?) (m?s~h) (ms™")
Air (20°C, 1 atm.) 1.20 1.50 x 107 343
Water (20°C) 998 1.00 x 107 1480
Castor oil (20°C) 950 1.04 x 1073 1420

Example 4.4 Which law of resistance?

A stainless steel ball bearing of radius 1 mm is falling vertically with constant speed in
air. Find the speed of the ball bearing. [The density of stainless steel is 7800 kgm™>.]
If the medium were castor oil, what then would be the speed of the ball bearing?

Solution

Suppose the ball bearing is falling with constant speed V. (We will later call V' the
terminal speed of the ball bearing.) Then, since its acceleration is zero, the total of
the forces acting upon it must also be zero. Thus

mg+D=m'g,

where m’ is the mass of the ball bearing, m is the mass of the displaced fluid, and
D is the drag. The term m’g is the gravity force acting downwards and the term mg
is the (Archimedes) buoyancy force acting upwards.* (In air, the buoyancy force is
negligible.)

Hence, if the linear resistance law holds, then

6mapvV = 3ma® (o' - p) g.

where a is the radius of the ball bearing, and p’, p are the densities of the ball bearing
and air respectively. This gives

/
y o2 ('0——1).
v P
On using the numerical values given in Table 4.3 we obtain V = 940 ms~! with the
corresponding Reynolds number R = 63, 000. Quite apart from the fact that the cal-
culated speed is nearly three times the speed of sound, this solution is disqualified on
the grounds that the Reynolds number is 100,000 times too large for the low Reynolds

number approximation to hold!
On the other hand, if the quadratic law of resistance holds then

Cpa*v? = %na3 (o' —p)s.

* It is not entirely obvious that the total force exerted by the fluid on the sphere is the sum of the drag and
buoyancy forces, but it is true for an incompressible fluid.
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where C is the drag coefficient for a sphere which we will take to be 0.8. In this case

V2 dmag /o_/_1
3¢ \p '

This gives the value V = 19 ms~! with the corresponding Reynolds number R =
1250. This Reynolds number is nicely within the range in which the quadratic resis-
tance law is applicable, and so provides a consistent solution. Thus the answer is that,
in air, the ball bearing falls with a speed of 19 ms~!.

When the medium is castor oil, a similar calculation shows that it is the linear
resistance law which provides the consistent solution. The answer is that, in castor
oil, the ball bearing falls with a speed of 1.5 cms™!, the Reynolds number being
0.015.

This example illustrates the conditions needed for low Reynolds number flow:
slow motion of a small body through a sticky fluid. Perhaps the most celebrated
application of the low Reynolds number drag formula is Millikan’s oil drop method
of determining the electronic charge (see Problem 4.20 at the end of the chapter). B

Example 4.5 Vertical motion under gravity with linear resistance

A body is projected vertically upwards with speed # in a medium that exerts a drag
force —m K v, where K is a positive constant and v is the velocity of the body.* Find
the maximum height acheived by the body, the time taken to reach that height, and
the terminal speed.

Solution

On including the linear resistance force, the scalar equation of motion becomes

dv

m— =—mg —mKv,
dt §

with the initial condition v = u when ¢t = 0 (see Figure 4.1). This first order ODE for

v separates in the form
d
/ ; - / dt’
g+Kv

and, on integration, gives

1
—1 Kv)=—t+C,
X n(g + Kv) +

where C is the integration constant. On applying the initial condition v = u when
t =0, we obtain C = K ~'In(g + Ku) and so

1 g+ Ku
t=—1In .
K g+Kv

* This is the vector drag force acting on the body; hence the minus sign. The coefficient is taken in the
form mK for algebraic convenience.
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This expression gives ¢ in terms of v, which is what we need for finding the time taken
to reach the maximum height. The maximum height is achieved when v = 0 so that
7, the time taken to reach the maximum height, is given by

1 Ku
r:—ln<1+—).
K g

The expression for ¢ in terms of v can be inverted to give

v=ue K — £ (1 — e_Kt)
K

for the upward velocity of the body at time ¢.
The terminal speed of the body is the limit of |v| as ¢ — oo. In this limit, the
exponential terms tend to zero and

N

K
Thus, in contrast to motion with no resistance, the speed of the body does not increase
without limit as it falls, but tends to the finite value g/K . Thus the terminal speed of
the body is g/K.

The terminal speed can also be deduced directly from the equation of motion.
If the body is falling with the terminal speed, then dv/dt = 0 and the equation of
motion implies that 0 = —mg — mKv. It follows that the (upward) terminal velocity
is —g/K.

The maximum height z;,x can now be found by integrating the equation
dz/dt = v and then putting + = t. However we can also obtain zp,x by starting
again with a modified equation of motion. For some laws of resistance, this trick is
essential. If we write

dv dv dz dv

— = X =v—,
dt dz dt dz
the equation of motion becomes

dv K
v— =—g — Kv,
dz g

with the initial condition v = u when z = 0. This equation also separates to give

e[ mw  (E)
g+[(v g—l—Kv

In(g + Kv) + D,

“K K 2
where D is the integration constant. On applying the initial condition v = u when
z = 0, we obtain

z:——+ 1n(g+Kv)+ Kzln(g-l—Ku)

K K2
g+Ku)

1
— - -2
K(u v) K2 (g+Kv




4.3 Motion through a resisting medium 87

This expression cannot be inverted to give v as a function of z, but it is exactly what
we need to find z,x. Since zyax 1S achieved when v = 0, we find that the maximum
height acheived by the body is given by

u g ! Ku
ZmaXZE—Fn 1+? .n
Question Approximate form of zymax for small Ku /g

Find an approximate expression for zyax when Ku/g is small.

Answer

When Ku/g is small, the log term can be expanded as a power series. This gives
u g | Ku | [(Ku 2 1 [ Ku 3
ek ke ) i) T
— ﬁ _2 Q 4.
28 g '

In this expression, the leading term u?/2g is just the value of zpyax in the absence
of resistance. The first correction term has a negative sign which means that zy,x is
reduced by the presence of resistance, as would be expected. B

Question Ball bearing released in castor oil

The ball bearing in Example 4.4 is released from rest in castor oil. How long does it
take for the ball bearing to achieve 99% of its terminal speed?

Answer

Recall that the linear law of resistance is appropriate for this motion. Since the motion
is entirely downwards, it is more convenient to measure v downwards in this problem,
in which case the solution for v becomes

v = i(l —e_K’) =V <1 —e_g’/v>,

where V is the terminal velocity. When v = 0.99V, ¢~$//V = 0.01 and so the time
required is

t = In(100)V /g,

which evaluates to about 7 milliseconds on using the value for V calculated in Exam-
ple4.4.m

Note on the sign of resistance forces In the last example we used the same scalar equation of
motion whether the body was rising or falling. This is correct in the case of linear resistance
since, when the sign of v is reversed, so is the sign of Kv. In the case of quadratic resistance
however, when the sign of v is reversed, the sign of K v* remains unchanged and so the correct
sign must be inserted manually. Thus, for quadratic resistance, the scalar equations of motion
for ascent and descent are different. The same is true when the drag is proportional to any
even power of v.
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FIGURE 4.6 A particle, initially at the origin, v
is projected with speed u in a direction —mg k
making an angle « with the horizontal. The
particle moves under the uniform gravity Q
force —mgk and the resistance (drag) . - T
force D. > 17

4.4 PROJECTILES

A body that moves freely under uniform gravity, and possibly air resistance, is called
a projectile. Projectile motion is very common. In ball games, the ball is a projectile, and
controlling its trajectory is a large part of the skill of the game. On a larger scale, artillery
shells are projectiles, but guided missiles, which have rocket propulsion, are not.

The projectile problem differs from the problems considered in section 4.3 in that projec-
tile motion is not restricted to take place in a vertical straight line. However, we will continue
to assume that the effect of the air is to exert a drag force opposing the current velocity of
the projectile.” It is then evident by symmetry that each projectile motion takes place in a
vertical plane; this vertical plane contains the initial position of the projectile and is parallel
to its initial velocity.

Projectiles without resistance

The first (and easiest) problem is that of a projectile moving without air resistance. This is fine
on the Moon, but will be only an approximation to projectile motion on Earth. The effect of
air resistance can be very significant, as our later examples will show.

Example 4.6 Projectile without air resistance

A particle which is subject solely to uniform gravity is projected with speeed u« in a
direction making an angle o with the horizontal. Find the subsequent motion.

Solution

Suppose that the motion takes place in the (x, z)-plane as shown in Figure 4.6. In the
absence of the drag force, the vector equation of motion becomes
dv
m— = —mgk,
dr §
with the initial condition v = (u cos)i + (usina)k when r = 0. If we now write
v = vyi + v,k and take components of this equation (and initial condition) in the

* This will be true if the projectile is a rigid sphere moving without rotation.
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i- and k-directions, we obtain the two scalar equations of motion

dv X d vz
= 07 = _g7

dt dt

with the respective initial conditions v, = ucosw and v; = usina when t = 0.

Simple integrations then give the components of the particle velocity to be

Uy = U COSK, v; = usina — gt.
The position of the particle at time ¢ can now be found by integrating the expressions
for vy, v, and applying the initial conditions x = 0 and z = 0 when ¢ = 0. This gives

x = (ucosa)t, z= (usina)t — gt*,

the solution for the trajectory of the particle. B

Question Form of the path
Show that the path taken by the particle is an inverted parabola.

Answer
To find the path, eliminate ¢ from the trajectory equations. This gives
8 2
z = (tano) x — <—>x )
( ) 2u? cos? «

which is indeed an inverted parabola. B

Question Time of flight and the range
Find the time of flight and the range of the projectile on level ground.

Answer

On level ground, the motion will terminate when z = 0 again. From the second
trajectory equation, this happens when (u sin«) ¢ — % gt?> = 0. Hence the time of
flight t is given by T = 2usinw/g. The horizontal range R is then obtained by

putting # = 7 in the first trajectory equation, which gives
u? sin 2a

8

Question Maximum range
Find the value of « that gives the maximum range on level ground when u is fixed.

Answer

R is a maximum when sin 2o = 1, that is when o = /4 in which case Ry,x = uz/g.
Thus, if an artillery shell is to be projected over a horizontal range of 4 km, then the
gun must have a muzzle speed of at least 200 ms~!. m

There is a myriad of problems that can be found on the projectile with no air resistance,
and some interesting examples are included at the end of the chapter. It should be noted



90 Chapter 4 Problems in particle dynamics

though that all these problems are dynamically equivalent to the problem solved above. Any
difficulties lie in the geometry!

Projectiles with resistance

We now proceed to include the effect of air resistance. From our earlier discussion of fluid
drag, it is evident that in most practical instances of projectile motion through the Earth’s
atmosphere, it is the quadratic law of resistance that is appropriate. On the other hand, only
the linear law of resistance gives rise to linear equations of motion and simple analytical
solutions. This explains why mechanics textbooks contain extensive coverage of the linear
case, even though this case is almost never appropriate in practice; the case that is appropriate
cannot be solved! In the following example, we treat the linear resistance case.

Example 4.7 Projectile with linear resistance

A particle is subject to uniform gravity and the linear resistance force —m K v, where
K is a positive constant and v is the velocity of the particle. Initially the particle is
projected with speed u in a direction making an angle « with the horizontal. Find the
subsequent motion.

Solution
With the linear resistance term included, the vector equation of motion becomes

with the initial condition v = (ucosa)i + (usina)k when t = 0. As in the last
example, this equation resolves into the two scalar equations of motion
dv, dv,

Kv, =0,
dt LR dt

+KUZ :_gv

with the respective initial conditions v, = ucosa and v, = usina when ¢t = 0.
These first order ODEs are both separable and linear and can be solved by either
method; if they are regarded as linear, the integrating factor is ¢X’. The equations
integrate to give the components of the particle velocity to be

vy = (ucosa)e K, v, = (usina)e K — % (1 — e_K’> )

The position of the particle at time ¢ can now be found by integrating the expressions
for vy, v, and applying the initial conditions x = 0 and z = 0 when ¢ = 0. This gives

X = ucosa (1 — e_K[), z = —Ku sine + ¢ (1 - e_Kt) - ét, 4.3)
K K? K

the solution for the trajectory of the particle. Figure 4.7 shows typical paths taken
by the particle for the same initial conditions and three different values of the dimen-
sionless resistance parameter A (= Ku/g). (The case A = 0 corresponds to zero
resistance so that the path is a parabola.) It is apparent that resistance can have a
dramatic effect on the motion. B
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FIGURE 4.7 Projectile motion under uniform gravity and linear
resistance. The graphs show the paths of the particle for « = /3 and
three different values of the dimensionless resistance parameter A

(= Ku/g). Except when A = 0, the paths have vertical asymptotes.

Question Vertical asymptote of the path
Show that the path has a vertical asymptote.

Answer

Since e X7 decreases and tends to zero as t — 00, it follows from equations (4.3) that
the horizontal displacement x increases and tends to the value u cosa/K ast — oo,
while the vertical displacement z tends to negative infinity. Thus the vertical line
x = ucosa/K is an asymptote to the path. In terms of the dimensionless variables
used in Figure 4.7, this is the line (#?/g)~'x = cosa/A. W

Question Approximate formula for the range when ). is small

Find an approximate formula for the range on level ground when the resistance param-
eter A is small.

Answer

Since the particle returns to Earth again when z = 0, it follows from the second of equations (4.3)
that the flight time 7 satisfies the equation

(Kusina + g) (1 - e_Kr) —Kgr =0,
which can be written in the form
Gosina + 1) (1-e7K7) — Kz =0, 4.4)
where L(= Ku/g) is the dimensionless resistance parameter. Unfortunately, this equation cannot

be solved explicity for t, and hence the need for an approximate solution. We know from the
last example that, in the absence of resistance, the flight time 7 is given by t = 2usina/g. Itis
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FIGURE 4.8 The ratio R /Ry plotted against A sin «.

4.5

reasonable then, when A is small, to seek a solution for 7 in the form

r:zuzn“ [1+blx+b2A2+~--], (4.5)
where the coefficients by, by, ... are to be determined. To find the expansion coefficients we
substitute the expansion (4.5) (truncated after the required number of terms) into the left side of
equation (4.4), re-expand in powers of A, and then set the coefficients in this expansion equal to
zero. The corresponding formula for the range can then be found by substituting this approximate
formula for 7 into the first equation of (4.3) and re-expanding in powers of A. The details are
tedious and, in fact, such operations are best done with computer assistance. The completion
of this solution is the subject of computer assisted Problem 4.34 at the end of this chapter. The
answer (to three terms) is that the range R on level ground is given by

R 4sina 14sina) 3
—=1- A A+ 0o0d),
Ry ( 3 ) +< 9 ) 00

where Ry is the range when resistance is absent. Figure 4.8 compares two different approxima-

tions to R with the ‘exact’ value obtained by numerical solution of equation (4.4). As would be

expected, the three term approximation is closer to the exact value. l

CIRCULAR MOTION

In this section we examine some important problems in which a body moves on a

circular path. Our first problem is concerned with a body executing a circular orbit under the
gravitational attraction of a fixed mass. This is a fairly accurate model of the motion of the
planets™ around the Sun.

Example 4.8 Circular orbit in the inverse square field

A particle of mass m moves under the gravitational attraction of a fixed mass M
situated at the origin. Show that circular orbits with centre O and any radius are

* The orbits of Mercury, Mars and Pluto are the most elliptical with eccentricities of 0.206, 0.093 and 0.249
respectively. The eccentricity of Earth’s orbit is 0.017.
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possible, and find the speed of the particle in such an orbit. Deduce the period of the
orbit.

Solution

Note that we are not required to find the general orbit; we may assume from the start
that the orbit is a circle. Suppose then that the particle is executing a circular orbit
with centre O and radius R. We need to confirm that the vector equation of motion
can be satisfied. Take polar coordinates r, 8 with centre at O. Then the acceleration a
of the particle is given in terms of the usual polar unit vectors by the formula (2.14),
that is,

a= (i" - réz)?+ (19 + 2#6.’)79\

for motion on the circle r = R, where the circumferential velocity v = RO. The
equation of motion for the particle is therefore

va —~ mMG __
m —Er—l—vO = — T,

R2
which, on taking components in the radial and transverse directions, gives

2
v MG
— = — and v =0.
R R?
Hence the equation of motion is satisfied if v is a constant given by
2 _ MG
R

v

Thus a circular orbit of radius R is possible provided that the particle has constant
speed (MG /R)"/2.
The period 7 of the orbit is the time taken for one circuit and is given by

2R (47r2R3>1/2

T = =
v MG

Thus the square of the period of a circular orbit is proportional to the cube of its
radius. This is a special case of Kepler’s third law of planetary motion (see Chapter
7).m

A particle may move on a circular path because it is constrained to do so. The simplest
and most important example of this is the simple pendulum, a mass suspended from a fixed
point by a string.

Example 4.9 The simple pendulum

A particle P is suspended from a fixed point O by a light inextensible string of length
b. P is subject to uniform gravity and moves in a vertical plane through O with the
string taut. Find the equation of motion.
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O
T 0
\
| b T ’é
l 7
l P | \
FIGURE 4.9 The simple pendulum mg ?

Solution

The system is shown in Figure 4.9. Since the string is of fixed length b, the position
of P is determined by the angle & shown. The acceleration of P can be expressed in
the polar form

a=—(b6%)7+ (bd)9,
(06) 7+ (00

where 7 and 8 are the polar unit vectors shown in Figure 4.9.

P moves under the uniform gravity force —mgk and the tension T in the string
which acts in the direction —7. It should be noted that the tension T is a force of
constraint and not known beforehand. The equation of motion is therefore

m [— <bé2)?—|— (bQ) 5] =-—mgk—TT.

If we now take components of this equation in the radial and transverse directions we
obtain

—mbb? = mgcost — T, mb = —mg sin6.

The second of these equations is the effective equation of motion in terms of the
‘coordinate’ 6, namely,

i+ (%) sinf =0, (4.6)

while the first equation determines the unknown tension 7' once 6 (¢) is known.

Equation (4.6) is the exact equation of meotion for the simple pendulum.
Because of the presence of the term in sin#, this second order ODE is non-linear
and cannot be solved by using the standard technique for linear ODEs with constant
coefficients. W

Question The linear theory for small amplitude oscillations

Find an approximate linear equation for the case in which the pendulum undergoes
oscillations of small amplitude.
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Answer

If 6 is always small then sin 6 can be approximated by 6 in which case the equation
of motion becomes

i+ (%) 6 =0. “.7)

This is the linearised equation for the simple pendulum, which holds approximately
for oscillations of small amplitude. Although we do not cover linear oscillations
until Chapter 5, many readers will recognise equation (4.7) as the simple harmonic
motion equation and will know that the period t of the oscillations is given by 7 =
27(b/g)'/?, independent of the (small) amplitude. W

Question Period of large oscillations

Find the period of the pendulum when the (angular) amplitude of its oscillations is
o, where o may not be small.

Answer

This requires that we integrate the exact equation of motion (4.6). We start with a familiar trick.
If we write Q2 = 6, then

. dQ  dQ  do ds2
= — = — X — = Qi
dt do  dt de

and the equation of motion becomes

a2 g\ .
— = (7) sinf.
do b
This is a separable first order ODE for 2 which integrates to give

%QZ = (%) cosf +C,
where C is the constant of integration. On applying the initial condition 2 = 0 when 6 = «, we
find that C = —(g/ b)l/ 2 cosa and the integrated equation can be written

(@) = () oo “
R =17 (cosf —cosa), .

where we have now replaced 2 by d6/dt.

Since the pendulum comes to rest only when d6/dt = 0O (that is, when 6 = +) it follows
that & must oscillate in the range —a < 6 < «. The period t is the time taken for one complete
oscillation but, by the symmetry of equation (4.8) under the transformation 6 — —#, it follows
that the time taken for the pendulum to swing from 6 = 0 to 0 = 4+« is 7/4. To evaluate this time
we take the positive square root of each side of equation (4.8) and integrate over the time interval
0 <t < /4. This gives

« do 2\ /2 /4
_— = - dl‘7
_/(; (cos® — cosa)l/? ( b ) /0

12 e
- <%) / L 4.9)
g 0 (cosO — cosa)l/?

so that
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This is the exact period of the pendulum when the amplitude of its oscillations is «. It is not
possible to perform this integration in terms of standard functions® and so the integral must either
be evaluated numerically or be approximated.

Numerical evaluation shows that the exact period is longer than that predicted by the lin-
earised theory. When o = 7 /6, the period is 1.7% longer, and when « = /3 it is 7.3% longer.
The period can also be approximated by expanding the integral in equation (4.9) as a power series
in «. This is the subject of Problem 4.35 at the end of the chapter. The answer is that, expanded

to two terms,
b\ 1/2 o2
=27~ 1+ —+0@H]|. (4.10)
g 16

This two term approximation predicts an increase in the period of 1.7% when ¢ = 7/6. Note
that there is no term in this expansion proportional to « and that the term in o2 has the small
coefficient 1/16. This explains why the prediction of the linearised theory is rather accurate even

when « is not so small! H

In our final example, we solve the important problem of an electrically charged particle
moving in a uniform magnetic field. It turns out that plane motions are circular, but the most
general motion is helical. The solution in this case differs from the previous examples in that
we use Cartesian coordinates instead of polars. This is because we do not know beforehand
where the centre of the circle (or the axis of the helix) is, which means that we do not know on
which point (or axis) to centre the polar coordinates.

Example 4.10 Charged particle in a magnetic field

A particle of mass m and charge e moves in a uniform magnetic field of strength By.
Show that the most general motion is helical with the axis of the helix parallel to the
direction of the magnetic field.

Solution

The total force F that an electric field E and magnetic field B exert on a charge e is
given by the Lorentz force formula’

F =¢E +evxB,

where v is the velocity of the charge. In our problem, there is no electric field and
the magnetic field is uniform. If the direction of B is the z-direction of Cartesian
coordinates, then B = Bok. The equation of motion of the particle is then

v
m— = eBov x k.
dt
If we now write v in the component form v = v,i + vy j + vk, the vector equation

of motion resolves into the three scalar equations

dvy dvy dv,
— = —Qu,, = =0, 4.11
dt dt o dt @.10)

= "Uy,

* The integral is related to a special function called the complete elliptic integral of the first kind.
T This form is correct in SI units.
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where
Q =eBy/m. (4.12)

The last of these equations shows that v, = V/, a constant, so that the component of
v parallel to the magnetic field is a constant. The first two equations are first order
coupled ODEs but they are easy to uncouple. If we differentiate the first equation
with respect to ¢ and use the second equation, we find that v, satisfies the equation

dzvx
dt?

+ Q2% = 0.

This equation is a second order ODE with constant coefficients and can be solved in
the standard way. However, many readers will recognise this as the SHM equation
whose general solution can be written in the form

vy = Asin(Q2r + «),

where A and « are arbitrary constants. It is more convenient if we introduce a new
arbitrary constant R defined by A = —QR, so that

vy = —QR sin(Q2f 4+ «).
If we now substitute this formula for v, into the first equation of (4.11), we obtain
vy = —QR cos(Q + a).

Having obtained the solution for the three components of v, we can now find the
trajectory simply by integrating with respect to ¢. This gives

x=Rcos(Q +a)+a, y=-—-Rsin(QU+a)+b, z=Vt+c,

where a, b, and ¢ are constants of integration. These constants may be removed by
a shift of the origin of coordinates to the point (a, b, ¢), and the constant « may be
removed by a shift in the origin of . Also, the constant R may be assumed positive;
if it is not, make a shift in the origin of # by v/ 2. With these simplifications, the final
form for the trajectory is

x = R cos Qt, y = —R sin Qt, z=Vt, (4.13)

where R is a positive constant and 2 = eBg/m. This is the most general trajectory
for a charged particle moving in a uniform magnetic field.

To identify this trajectory as a helix, suppose first that V = 0 so that the motion
takes place in the (x, y)-plane. Then the first two equations of (4.13) imply that
the path is a circle of radius R traversed with constant speed R|€2| and with period
27 /|2|. When V' # 0, this circular motion is supplemented by a uniform velocity V'
in the z-direction. The result is a helical path of radius R, with its axis parallel to the
magnetic field, which is traversed with constant speed (V2 4+ R?>Q%)!/2. m

The above problem has important applications to the cyclotron particle accelerator and
the mass spectrograph. The cyclotron depends for its operation on thefact that the constant
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2, known as the cyclotron frequency, is independent of the velocity of the charged particles.
The mass spectrograph is the subject of Problem 4.32 at the end of the chapter.

Problems on Chapter 4

Answers and comments are at the end of the book.
Harder problems carry a star ().

Introductory problems

4.1 Two identical blocks each of mass M are connected by a light inextensible string and can
move on the surface of a rough horizontal table. The blocks are being towed at constant speed
in a straight line by a rope attached to one of them. The tension in the tow rope is Tp. What is
the tension in the connecting string? The tension in the tow rope is suddenly increased to 47j.
What is the instantaneous acceleration of the blocks and what is the instantaneous tension in
the connecting string?

4.2 A body of mass M is suspended from a fixed point O by an inextensible uniform rope
of mass m and length b. Find the tension in the rope at a distance z below O. The point of
support now begins to rise with acceleration 2g. What now is the tension in the rope?

4.3 Two uniform lead spheres each have mass 5000 kg and radius 47 cm. They are released
from rest with their centres 1 m apart and move under their mutual gravitation. Show that they
will collide in /ess than 425 s. [G = 6.67 x 10711 Nm?kg~2.]

4.4 The block in Figure 4.2 is sliding down the inclined surface of a fixed wedge. This time
the frictional force F exerted on the block is given by F = N, where N is the normal reaction
and p is a positive constant. Find the acceleration of the block. How do the cases u < tan«
and & > tan « differ?

4.5 A stuntwoman is to be fired from a cannon and projected a distance of 40 m over level
ground. What is the least projection speed that can be used? If the barrel of the cannon is
5 m long, show that she will experience an acceleration of at least 4g in the barrel. [Take
g=10ms2]

4.6 In an air show, a pilot is to execute a circular loop at the speed of sound (340 ms™!). The
pilot may black out if his acceleration exceeds 8¢. Find the radius of the smallest circle he can
use. [Take g = 10 ms2.]

4.7 A body has terminal speed V when falling in still air. What is its terminal velocity (relative
to the ground) when falling in a steady horizontal wind with speed U ?

4.8 Cathode ray tube A particle of mass m and charge e is moving along the x-axis with
speed u when it passes between two charged parallel plates. The plates generate a uniform
electric field Egj in the region 0 < x < b and no field elsewhere.* Find the angle through

* This is only approximately true.
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which the particle is deflected by its passage between the plates. [The cathode ray tube uses
this arrangement to deflect the electron beam.]

Straight line motion in a force field

4.9 An object is dropped from the top of a building and is in view for time t while passing a
window of height 4 some distance lower down. How high is the top of the building above the
top of the window?

4.10 A particle P of mass m moves under the gravitational attraction of a mass M fixed at
the origin O. Initially P is at a distance a from O when it is projected with the critical escape
speed (2M G /a)'/? directly away from O. Find the distance of P from O at time ¢, and
confirm that P escapes to infinity.

4.11 A particle P of mass m is attracted towards a fixed origin O by a force of magnitude
my /r3, where r is the distance of P from O and y is a positive constant. [It’s gravity Jim,
but not as we know it.] Initially, P is at a distance a from O, and is projected with speed u
directly away from O. Show that P will escape to infinity if u*> > y /a?.

For the case in which > = y/(2a?), show that the maximum distance from O achieved
by P in the subsequent motion is /2a, and find the time taken to reach this distance.

4.12 If the Earth were suddenly stopped in its orbit, how long would it take for it to collide
with the Sun? [Regard the Sun as a fixed point mass. You may make use of the formula for the
period of the Earth’s orbit.]

Constrained motion

4.13 A particle P of mass m slides on a smooth horizontal table. P is connected to a second
particle Q of mass M by a light inextensible string which passes through a small smooth hole
O in the table, so that Q hangs below the table while P moves on top. Investigate motions
of this system in which Q remains at rest vertically below O, while P describes a circle with
centre O and radius b. Show that this is possible provided that P moves with constant speed
u, where u®> = Mgb/m.

4.14 A light pulley can rotate freely about its axis of symmetry which is fixed in a horizontal
position. A light inextensible string passes over the pulley. At one end the string carries a mass
4m, while the other end supports a second light pulley. A second string passes over this pulley
and carries masses m and 4m at its ends. The whole system undergoes planar motion with the
masses moving vertically. Find the acceleration of each of the masses.

4.15 A particle P of mass m can slide along a smooth rigid straight wire. The wire has one of
its points fixed at the origin O, and is made to rotate in the (x, y)-plane with angular speed €2.
By using the vector equation of motion of P in polar co-ordinates, show that r, the distance of
P from O, satisfies the equation

F— Q% =0,
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and find a second equation involving N, where N@ is the force the wire exerts on P. [Ignore
gravity in this question.]

Initially, P is at rest (relative to the wire) at a distance a from O. Find r as a function of ¢
in the subsequent motion, and deduce the corresponding formula for N.

Resisted motion

4.16 A body of mass m is projected with speed u in a medium that exerts a resistance force
of magnitude (i) mk|v|, or (ii) mK |v |2, where k and K are positive constants and v is the
velocity of the body. Gravity can be ignored. Determine the subsequent motion in each case.
Verify that the motion is bounded in case (i), but not in case (ii).

4.17 A body is projected vertically upwards with speed u and moves under uniform gravity
in a medium that exerts a resistance force proportional to the square of its speed and in which
the body’s terminal speed is V. Find the maximum height above the starting point attained by
the body and the time taken to reach that height.

Show also that the speed of the body when it returns to its starting point is uV /(V? +
u*)'/2. [Hint. The equations of motion for ascent and descent are different. See the note at the
end of section 4.3.]

4.18% A body is released from rest and moves under uniform gravity in a medium that exerts
aresistance force proportional to the square of its speed and in which the body’s terminal speed
is V. Show that the time taken for the body to fall a distance / is

K cosh™! (egh/v2> .
8

In his famous (but probably apocryphal) experiment, Galileo dropped different objects
from the top of the tower of Pisa and timed how long they took to reach the ground. If Galileo
had dropped two iron balls, of 5 mm and 5 cm radius respectively, from a height of 25 m, what
would the descent times have been? Is it likely that this difference could have been detected?
[Use the quadratic law of resistance with C = 0.8. The density of iron is 7500 kg m~3.]

4.19 A body is projected vertically upwards with speed # and moves under uniform gravity in
a medium that exerts a resistance force proportional to the fourth power its speed and in which
the body’s terminal speed is V. Find the maximum height above the starting point attained by
the body.

Deduce that, however large u may be, this maximum height is always less than 7V ?2/4g.

4.20 Millikan’s experiment A microscopic spherical oil droplet, of density p and unknown
radius, carries an unknown electric charge. The droplet is observed to have terminal speed v
when falling vertically in air of viscosity ;. When a uniform electric field E¢ is applied in the
vertically upwards direction, the same droplet was observed to move upwards with terminal
speed vy. Find the charge on the droplet. [Use the low Reynolds number approximation for
the drag.]
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Projectiles

4.21 A mortar gun, with a maximum range of 40 m on level ground, is placed on the edge of
a vertical cliff of height 20 m overlooking a horizontal plain. Show that the horizontal range
R of the mortar gun is given by

1

R =40 {sina + (1 + sin? oz)i } cosa,

where « is the angle of elevation of the mortar above the horizontal. [Take g = 10 m s72]

Evaluate R (to the nearest metre) when o = 45° and 35° and confirm that o = 45° does
not yield the maximum range. [Do not try to find the optimum projection angle this way. See
Problem 4.22 below.]

4.22 Tt is required to project a body from a point on level ground in such a way as to clear a
thin vertical barrier of height / placed at distance a from the point of projection. Show that
the body will just skim the top of the barrier if

2 2
84 2 84
~— Jtan“a —atanae + | =— +h | =0,
( 2u? ) ( 2u? )
where u is the speed of projection and « is the angle of projection above the horizontal.
Deduce that, if the above trajectory is to exist for some «, then # must satisfy

ut — 2ghu2 - gzaz > 0.

Find the least value of u that satisfies this inequality.
For the special case in which @ = +/3h, show that the minimum projection speed neces-

sary to clear the barrier is (3gh) %, and find the projection angle that must be used.

4.23 A particle is projected from the origin with speed u in a direction making an angle o
with the horizontal. The motion takes place in the (x, z)-plane, where Oz points vertically
upwards. If the projection speed u is fixed, show that the particle can be made to pass through
the point (a, b) for some choice of « if (a, b) lies below the parabola

M2 g2x2
z=—1[1- .
2g u*

This is called the parabola of safety. Points above the parabola are ‘safe’ from the projectile.

An artillery shell explodes on the ground throwing shrapnel in all directions with speeds
of up to 30 ms~!. A man is standing at an open window 20 m above the ground in a building
60 m from the blast. Is he safe? [Take g = 10 m s_z.]

4.24 A projectile is fired from the top of a conical mound of height / and base radius . What
is the least projection speed that will allow the projectile to clear the mound? [Hint. Make use
of the parabola of safety.]

A mortar gun is placed on the summit of a conical hill of height 60 m and base diameter
160 m. If the gun has a muzzle speed of 25 ms™!, can it shell anywhere on the hill? [Take
g=10ms2]
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4.25 An artillery gun is located on a plane surface inclined at an angle 8 to the horizontal.
The gun is aligned with the line of steepest slope of the plane. The gun fires a shell with speed
u in the direction making an angle o with the (upward) line of steepest slope. Find where the
shell lands.

Deduce the maximum ranges RV, R? up and down the plane, and show that

RY  1—sinp
RP  1+sing’

4.26 Show that, when a particle is projected from the origin in a medium that exerts linear
resistance, its position vector at time ¢ has the general form

r=—a()k+ B(t)u,

where k is the vertically upwards unit vector and u is the velocity of projection. Deduce the
following results:

(i) A number of particles are projected simultaneously from the same point, with the
same speed, but in different directions. Show that, at each later time, the particles all
lie on the surface of a sphere.

(i) A number of particles are projected simultaneously from the same point, in the same
direction, but with different speeds. Show that, at each later time, the particles all lie
on a straight line.

(iii) Three particles are projected simultaneously in a completely general manner. Show
that the plane containing the three particles remains parallel to some fixed plane.

4.27 A body is projected in a steady horizontal wind and moves under uniform gravity and
linear air resistance. Show that the influence of the wind is the same as if the magnitude and
direction of gravity were altered. Deduce that it is possible for the body to return to its starting
point. What is the shape of the path in this case?

Circular motion and charged particles

4.28 The radius of the Moon’s approximately circular orbit is 384,000 km and its period is
27.3 days. Estimate the mass of the Earth. [G = 6.67 x 10! Nm? kg_z.] The actual mass
is 5.97 x 10%* kg. What is the main reason for the error in your estimate?

An artificial satellite is to be placed in a circular orbit around the Earth so as to be ‘geo-
stationary’. What must the radius of its orbit be? [The period of the Earth’s rotation is 23 h 56
m, not 24 h. Why?]

4.29 Conical pendulum A particle is suspended from a fixed point by a light inextensible
string of length a. Investigate ‘conical motions’ of this pendulum in which the string maintains
a constant angle « with the downward vertical. Show that, for any acute angle «, a conical
motion exists and that the particle speed u is given by u? = ag sin« tan a.

4.30 A particle of mass m is attached to the highest point of a smooth rigid sphere of radius
a by a light inextensible string of length wa /4. The particle moves in contact with the outer
surface of the sphere, with the string taut, and describes a horizontal circle with constant
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speed u. Find the reaction of the sphere on the particle and the tension in the string. Deduce
the maximum value of u# for which such a motion could take place. What will happen if u
exceeds this value?

4.31 A particle of mass m can move on a rough horizontal table and is attached to a fixed
point on the table by a light inextensible string of length b. The resistance force exerted on
the particle is —m K v, where v is the velocity of the particle. Initially the string is taut and
the particle is projected horizontally, at right angles to the string, with speed «. Find the angle
turned through by the string before the particle comes to rest. Find also the tension in the string
at time 7.

4.32 Mass spectrograph A stream of particles of various masses, all carrying the same
charge e, is moving along the x-axis in the positive x-direction. When the particles reach the
origin they encounter an electronic ‘gate’ which allows only those particles with a specified
speed V' to pass. These particles then move in a uniform magnetic field By acting in the z-
direction. Show that each particle will execute a semicircle before meeting the y-axis at a
point which depends upon its mass. [This provides a method for determining the masses of
the particles.]

4.33 The magnetron An electron of mass m and charge —e is moving under the combined
influence of a uniform electric field Eoj and a uniform magnetic field Bok. Initially the
electron is at the origin and is moving with velocity u i. Show that the trajectory of the electron
is given by

x = a(Q2t) + b sin Q, y = b(1 — cos Qt), z =0,

where Q2 = eBg/m,a = Eo/ QBgand b = (uBo— Ep)/ 2Byp. Use computer assistance to plot
typical paths of the electron for the cases @ < b,a = b and a > b. [The general path is called a
trochoid, which becomes a cycloid in the special case @ = b. Cycloidal motion of electrons is
used in the magnetron vacuum tube, which generates the microwaves in a microwave oven.]

Computer assisted problems

4.34 Complete Example 4.7 on the projectile with linear resistance by obtaining the quoted
asymptotic formula for the range of the projectile.

4.35 Find a series approximation for the period of the simple pendulum, in powers of the
angular amplitude «. Proceed as follows:
The exact period 7 of the pendulum was found in Example 4.9 and is given by the integral (4.9). This

integral is not suitable for expansion as it stands. However, if we write cosf — cosa = 2(sin2(a/2) -
sin2(0/2)) and make the sneaky substitution sin(6/2) = sin(«/2) sin ¢, the formula for T becomes

12 pmj2 —1/2
T :4(9) / (1 —é2 sin2¢> / do
8 0

where € = sin(«/2). This new integrand is easy to expand as a power series in the variable € and the limits
of integration are now constants. Use computer assistance to expand the integrand to the required number

of terms and then integrate term by term over the interval [0, 7/2]. Finally re-expand as a power series
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in the variable . The answer to two terms is given by equation (4.10), but it is just as easy to obtain any

number of terms.

4.36 Baseball trajectory A baseball is struck with an initial speed of 45 ms™! (just over 100
mph) at an elevation angle of 40°. Find its path and compare this with the corresponding path
when air resistance is neglected. [A baseball has mass 0.30 kg and radius 3.5 cm. Assume the
quadratic law of resistance.]

Show that the equation of motion can be written in the form

dv v|v|
o ek ),
dt g< +V2)

where V' is the terminal speed. Resolve this vector equation into two (coupled) scalar equations for vy and
v, and perform a numerical solution. In this example, air resistance reduces the range by about 35%. It

really is easier to hit a home run in Mile High stadium!



Chapter Five

Linear oscillations

and normal modes

KEY FEATURES
The key features of this chapter are the properties of free undamped oscillations, free damped
oscillations, driven oscillations, and coupled oscillations.

Oscillations are a particularly important part of mechanics and indeed of physics as a
whole. This is because of their widespread occurrence and the practical importance of oscil-
lation problems. In this chapter we study the classical linear theory of oscillations, which
is important for two reasons: (i) the linear theory usually gives a good approximation to the
motion when the amplitude of the oscillations is small, and (ii) in the linear theory, most prob-
lems can be solved explicitly in closed form. The importance of this last fact should not be
underestimated! We develop the theory in the context of the oscillations of a body attached to a
spring, but the same equations apply to many different problems in mechanics and throughout
physics.

In the course of this chapter we will need to solve linear second order ODEs with constant
coefficients. For a description of the standard method of solution see Boyce & DiPrima [8].

5.1 BODY ON A SPRING

Suppose a body of mass m is attached to one end of a light spring. The other end of
the spring is attached to a fixed point A on a smooth horizontal table, and the body slides on

Equilibrium position . ’ . . 3

In motion | . . ‘ . | — 0

Forces

FIGURE 5.1 The body m is attached to one end of a light spring and moves in a
straight line.
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the table in a straight line through A. Let x be the displacement and v the velocity of the body
at time ¢, as shown in Figure 5.1; note that x is measured from the equilibrium position of the
body.

Consider now the forces acting on the body. When the spring is extended, it exerts a
restoring force S in the opposite direction to the extension. Also, the body may encounter
a resistance force R acting in the opposite direction to its velocity. Finally, there may be an
external driving force G (7) that is a specified function of the time. The equation of motion for
the body is then

dv
m— =—-8 - R+ G(). (5.1
dt

The restoring force S is determined by the design of the spring and the extension x. For
sufficiently small strains,”* the relationship between S and x is approximately /inear, that is,

S =awux, (5.2)

where « is a positive constant called the spring constant (or strength) of the spring. A
powerful spring, such as those used in automobile suspensions, has a large value of «; the
spring behind a doorbell has a small value of . The formula (5.2) is called Hooke’s law’ and
a spring that obeys Hooke’s law exactly is called a linear spring.

The resistance force R depends on the physical process that is causing the resistance.
For fluid resistance, the linear or quadratic resistance laws considered in Chapter 4 may be
appropriate. However, neither of these laws represents the frictional force exerted by a rough
table. In this chapter we assume the law of linear resistance

R =B, (5.3)

where B is a positive constant called the resistance constant; it is a measure of the strength
of the resistance. There is no point in disguising the fact that our major reason for assuming
linear resistance is that (together with Hooke’s law) it leads to a linear equation of motion that
can be solved explicitly. However, it does give insight into the general effect of all resistances,
and actually is appropriate when the resistance arises from slow viscous flow (automobile
shock absorbers, for instance); it is also appropriate in the electric circuit analogue, where it is
equivalent to Ohm’s law.

With Hooke’s law and linear resistance, the equation of motion (5.1) for the body
becomes

d*x dx
mﬁ +,BE +oax = G([),

* The strain is the extension of the spring divided by its natural length. If the strain is large, then the linear
approximation will break down and a non-linear approximation, such as § = a x + b x3 must be used
instead.

T After Robert Hooke (1635-1703). Hooke was an excellent scientist, full of ideas and a first class exper-
imenter, but he lacked the mathematical skills to develop his ideas. When other scientists (Newton in
particular) did so, he accused them of stealing his work and this led to a succession of bitter disputes. So
that his rivals could not immediately make use of his discovery, Hooke first published the law that bears
his name as an anagram on the Latin phrase ‘ut tensio, sic vis’ (as the extension, so the force).
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where « is the spring constant, § is the resistance constant and G (¢) is the prescribed driving
force. This is a second order, linear ODE with constant coefficients for the unknown displace-
ment x(t). We could go ahead with the solution of this equation as it stands, but the algebra is
made much easier by introducing two new constants 2 and K (instead of « and ) defined by
the relations

o =mS B =2mK.

The equation of motion for the body then becomes

x ok @y = RO (5.4)
R X = .
dt? dt

where F(t) = G(t)/m, the driving force per unit mass. This is the standard form of the
equation of motion for the body. Any system that leads to an equation of this form is called
a damped* linear oscillator. When the force F(¢) is absent, the oscillations are said to be
free; when it is present, the oscillations are said to be driven.

5.2 CLASSICAL SIMPLE HARMONIC MOTION

A linear oscillator that is both undamped and undriven is called a classical linear
oscillator. This is the simplest case, but arguably the most important system in physics! The
equation (5.4) reduces to

d%x
T2t Q% =0, (5.5)

which, because of the solutions we are about to obtain, is called the SHM equation.

Solution procedure

Seek solutions of the form x = e*'. Then A must satisfy the equation
MV 4+Q2=0,
which gives A = i Q2. We have thus found the pair of complex solutions
x = eH9
which form a basis for the space of complex solutions. The real and imaginary parts of the
first complex solution are

cos 2t
sin 2¢

* Damping is another term for resistance. Indeed, automobile shock absorbers are sometimes called
dampers.
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FIGURE 5.2 Classical simple harmonic motion
x = C cos(Q2t — y).

and these functions form a basis for the space of real solutions. The general real solution of
the SHM equation is therefore

x = Acos 2t + B sin Qt, (5.6)

where A and B are real arbitrary constants. This general solution can be written in the alterna-
tive form™

x = Ccos(2t —y), 5.7

where C and y are real arbitrary constants with C > 0.

General form of the motion

The general form of the motion is most easily deduced from the form (5.7) and is shown in
Figure 5.2. This is called simple harmonic motion (SHM). The body makes infinitely many
oscillations of constant amplitude C; the constant y is simply a ‘phase factor’ which shifts
the whole graph by y /<2 in the ¢-direction. Since the cosine function repeats itself when the
argument 27 increases by 27, it follows that the period of the oscillations is given by

_271

= (5.8)

The quantity €2, which is related to the frequency v by 2 = 2mv, is called the angular
frequency of the oscillations.

Example 5.1 An initial value problem for classical SHM

A body of mass m is suspended from a fixed point by a light spring and can move
under uniform gravity. In equilibrium, the spring is found to be extended by a distance
b. Find the period of vertical oscillations of the body about this equilibrium position.
[Assume small strains.]

* This transformation is based on the result from trigonometry that a cos § + b sin 6 can always be written
in the form ¢ cos(@ — y), where ¢ = (a2 + bz)l/2 andtany = b/a.
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The body is hanging in its equilibrium position when it receives a sudden blow
which projects it upwards with speed u. Find the subsequent motion.

Solution

When the spring is subjected to a constant force of magnitude mg, the extension is b.
Hence «, the strength of the spring, is given by o = mg/b.

Let z be the downwards displacement of the body from its equilibrium position.
Then the extension of the spring is b + z and the restoring force is a(b + z) =
g(b + z)/b. The equation of motion for the body is therefore

d*z mg(b+z)
m—s =mg — ——
dt? § b

that is

d?*z g
— =)z=0.
dr? + (b) :

This is the SHM equation with Q> = g/b. It follows that the period  of vertical
oscillations about the equilibrium position is given by

27 p\'"?
Q g

In the initial value problem, the subsequent motion must have the form
x = Acos Qt + B sin Qt,

where = (g/b)'/?. The initial condition x = 0 when 7 = 0 shows that A = 0 and
the initial condition x = —u when ¢ = 0 then gives QB = —u, thatis, B = —u/<Q.
The subsequent motion is therefore

u .
X = —— sin ¢,
Q

where Q = (g/b)'/>. m

5.3 DAMPED SIMPLE HARMONIC MOTION

When damping is present but there is no external force, the general equation (5.4)
reduces to
d’x dx
— +2K— + Q% =0, 5.9
TE T ©9
the damped SHM equation.
The solution procedure is the same as in the last section. Seek solutions of the form
x = . Then A must satisfy the equation

2K+ Q% =0,
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that is
A+ K)?=K?>—Q°

We see that different cases arise depending on whether K < Q, K = Q or K > Q. These
cases give rise to different kinds of solution and must be treated separately.

Under-damping (sub-critical damping): K < Q
In this case, we write the equation for A in the form
(A +K)*=-Qp,
where Qp = (Q% — K?)V/2, a positive real number. The A values are then A = —K +iQp.

We have thus found the pair of complex solutions
x = e~ K Hir

which form a basis for the space of complex solutions. The real and imaginary parts of the

first complex solution are

‘- e Kt cosQpt
T le KisinQpr

and these functions form a basis for the space of real solutions. The general real solution of
the damped SHM equation in this case is therefore

x =e K (Acos Qpt + BsinQpr), (5.10)

where A and B are real arbitrary constants. This general solution can be written in the alterna-
tive form

x =Ce Kl cos(Qpr — y), (5.11)
where C and y are real arbitrary constants with C > 0.

General form of the motion

The general form of the motion is most easily deduced from the form (5.11) and is shown
in Figure 5.3. This is called under-damped SHM. The body still executes infinitely many
oscillations, but now they have exponentially decaying amplitude C e~X". Suppose the period
7 of the oscillations is defined as shown in Figure 5.3.* The introduction of damping decreases
the angular frequency of the oscillations from €2 to Qp, which increases the period of the
oscillations from 2/ €2 to

2 2

* The period might also be defined as the time interval between successive maxima of the function x(¢).
Since these maxima do not occur at the points at which x (¢) touches the bounding curves, it is not obvious
that this time interval is even a constant. However, it is a constant and has the same value as (5.12) (see
Problem 5.5)
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FIGURE 5.3 Under-damped simple harmonic motion
x =Ce Kt cos(Qpt —y).

Over-damping (super-critical damping): K > Q
In this case, we write the equation for X in the form
A+ K)> =82,
where § = (K2 — Q2)1/2, a positive real number. The A values are then A = —k % §, which

are now real. We have thus found the pair of real solutions

¥ = e—meiw’

which form a basis for the space of real solutions. The general real solution of the damped
SHM equation in this case is therefore

x=e K (A’ + Be™), (5.13)

where A and B are real arbitrary constants.

General form of the motion

Three typical forms for the motion are shown in Figure 5.4. This is called over-damped SHM.
Somewhat surprisingly, the body does not oscillate at all. For example, if the body is released
from rest, then it simply drifts back towards the equilibrium position. On the other hand, if
the body is projected towards the equilibrium position with sufficient speed, then it passes the
equilibrium position once and then drifts back towards it from the other side.

Critical damping: K = Q

The case of critical damping is solved in Problem 5.6. Qualitatively, the motions look like
those in Figure 5.4.
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\/"”

FIGURE 5.4 Three typical cases of over-damped simple
harmonic motion.

5.4 DRIVEN (FORCED) MOTION

We now include the effect of an external driving force G (#) which we suppose to be
a given function of the time. In the case of a body suspended by a spring, we could apply such
a force directly, but, in practice, the external ‘force’ often arises indirectly by virtue of the
suspension point being made to oscillate in some prescribed way. The seismograph described
in the next section is an instance of this.
Whatever the origin of the driving force, the governing equation for driven motion is
(5.4), namely

d’x dx 2
— +2K— 4+ Q°x = F(1), 5.14
o2 T 2K+ Q% () (5.14)

where 2mK is the damping constant, m$? is the spring constant and m F (¢) is the driving
force. Since this equation is linear and inhomogeneous, its general solution is the sum of (i)
the general solution of the corresponding homogeneous equation (5.9) (the complementary
function) and (ii) any particular solution of the inhomogeneous equation (5.14) (the partic-
ular integral). The complementary function has already been found in the last section, and
it remains to find the particular integral for interesting choices of F(¢). Actually there is a
(rather complicated) formula for a particular integral of this equation for any choice of the
driving force m F (t). However, the most important case by far is that of time harmonic forc-
ing and, in this case, it is easier to find a particular integral directly. Time harmonic forcing is
the case in which

F(t) = Fycos pt, (5.15)

where F( and p are positive constants; m F is the amplitude of the applied force and p is its
angular frequency.
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Solution procedure

We first replace the forcing term F cos pt by its complex counterpart Foe'?’. This gives the
complex equation

d? d ,
d—t;‘ + 21<d—): + Q2 = Foell". (5.16)

We then seek a particular integral of this complex equation in the form
x =ce?, (5.17)

where ¢ is a complex constant called the complex amplitude. On substituting (5.17) into
equation (5.16) we find that

Fy
c= - , (5.18)
Q2 — p2+42Kp
so that the complex function
Foeipt
(5.19)

Q% — p?2+2iKp

is a particular integral of the complex equation (5.16). A particular integral of the real equa-
tion (5.14) is then given by the real part of the complex expression (5.19). It follows that a
particular integral of equation (5.14) is given by

KPP = acos(pt —vy),

where a = |c| and y = — argc. This particular integral, which is also time harmonic with the
same frequency as the applied force, is called the driven response of the oscillator to the force
mFqcos pt; a is the amplitude of the driven response and y (0 < y < ) is the phase angle
by which the response lags behind the force. From the expression (5.18) for ¢, it follows that

Fo ZKp
a = 12 tany = PO (520)
(22 — p2)2 +4K2p?) Q—p
The general solution of equation (5.14) therefore has the form
x =acos(pt —y) +x°F, (5.21)
where x¢ 7 is the complementary function, that is, the general solution of the corresponding

undriven problem.

The undriven problem has already been solved in the last section. The solution took three
different forms depending on whether the damping was supercritical, critical or subcritical.
However, all these forms have one feature in common, that is, they all decay to zero with
increasing time. For this reason, the complementary function for this equation is often called
the transient response of the oscillator. Any solution of equation (5.21) is therefore the sum
of the driven response x” (which persists) and a transient response x¢¥ (which dies away).
Thus, no matter what the initial conditions, after a sufficently long time we are left with just
the driven response. In many problems, the transient response can be disregarded, but it must
be included if inital conditions are to be satisfied.
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Example 5.2 An initial value problem for driven motion

The equation of motion of a certain driven damped oscillator is

d*x dx
pTs} +3E +2x = 10cost

and initially the particle is at rest at the origin. Find the subsequent motion.

Solution

First we find the driven response x”. The complex counterpart of the equation of
motion is

d*x dx :
— 43— 4 2x = 10"
a0 + ar + 2x e

and we seek a solution of this equation of the form x = ce’’. On substituting in, we
find that

10
c =
14 3i

=1-3i.
It follows that the driven response x” is given by
PLIT [(1 - 3i)e"’] — cost + 3sint.

Now for the complementary function x¢*. This is the general solution of the
corresponding undriven equation

d*x dx
— +3— 4+2x =0,
dr? + dt o

which is easily found to be
x=Ae '+ Be_2t,

where A and B are arbitrary constants. The general solution of the equation of
motion is therefore
x =cost+3sint+ Ae” + Be %,

It now remains to choose A and B so that the initial conditions are satisfied. The
condition x = 0 when ¢t = 0 implies that

0=1+A+B,
and the condition x = 0 when ¢t = 0 implies that

0=3-A-2B.
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X
A
v
FIGURE 5.5 The solid curve is the actual
response and the dashed curve the driven
response only.
Solving these simultaneous equations gives A = —5 and B = 4. The subsequent

motion of the oscillator is therefore given by

X =cost +3sint —5e " +4e .

driven response  transient response

This solution is shown in Figure 5.5 together with the driven response only. In this
case, the transient response is insignificant after less than one cycle of the driving
force. The amplitude of the driven reponse is (1% 4 3%)!/2 = /10 and the phase lag
istan”!(3/1) ~ 72°. m
Resonance of an oscillating system
Consider the general formula
Fo
((QZ _ p2)2 + 4K2p2)

1/2

for the amplitude a of the driven response to the force m F cos pt (see equation (5.20)). Sup-
pose that the amplitude of the applied force, the spring constant, and the resistance constant
are held fixed and that the angular frequency p of the applied force is varied. Then a is a
function of p only. Which value of p produces the largest driven response? Let

f(q) = (2> —¢)* +4K?q.

Then, since a = Fy/+/ f (p?), we need only find the minimum point of the function f(¢) lying
ing > 0. Now

(@) = —2(2% —q) +4K> =2 (q (@ - 21(2))

so that f(g) decreases for ¢ < Q% — 2K? and increases for ¢ > Q2 — 2K 2. Hence f(g) has
a unique minimum point at ¢ = Q> — 2K 2. Two cases arise depending on whether this value
is positive or not.

Case 1. When ©2 > 2K?2, the minimum point ¢ = 92 — 2K? is positive and a has its
maximum value when p = p&, where

PR = (@2 —2k2)!2.
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FIGURE 5.6 The dimensionless amplitude (Fp/ QYa
against the dimensionless driving frequency p/ <2 for
(from the top) K /2 = 0.1,0.2, 0.3, 1.

The angular frequency p® is called the resonant frequency of the oscillator. The
value of a at the resonant frequency is

T 2K (Q2 - K12

Amax

Case 2. When Q% < 2K?2, a is a decreasing funcion of p for p > 0 so that a has no maximum
point.

These results are illustrated in Figure 5.6. They are an example of the general physical
phenomenon known as resonance, which can be loosely stated as follows:

The phenomenon of resonance

Suppose that, in the absence of damping, a physical system can perform free oscillations
with angular frequency 2. Then a driving force with angular frequency p will induce a
large response in the system when p is close to €2, providing that the damping is not too
large.

This principle does not just apply to the mechanical systems we study here. It is a general
physical principle that also applies, for example, to the oscillations of electric currents in
circuits and to the quantum mechanical oscillations of atoms.

Note that the resonant frequency p¥ is always less than 2, but is close to  when K /2
is small. The height of the resonance peak, amax, is given approximately by

Fy [ -1
a N —— —
max 2,Q2 K
in the limit in which K /2 is small; apax therefore tends to infinity in this limit. In the same

limit, the width of the resonance peak is directly proportional to K /€2 and consequently tends
to zero.
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General periodic driving force

The method we have developed for the time harmonic driving force can be extended to any
periodic driving force m F' (t). A function f(¢) is said to be periodic with period t if the values
taken by f in any interval of length t are then repeated in the next interval of length . An
example is the ‘square wave’ function shown in Figure 5.7. The solution method requires that
F () be expanded as a Fourier series.* A textbook on mechanics is not the place to develop
the theory of Fourier series. Instead we will simply quote the essential results and then give an
example of how the method works. To keep the algebra as simple as possible, we will suppose
that the driving force has period 27."

Fourier’s Theorem

Fourier’s theorem states that any function f(¢) that is periodic with period 27 can be
expanded as a Fourier series in the form

o
f()=3a0+ ) aycosnt + by, sinnt, (5.22)
n=1
where the Fourier coefficients {a,} and {b,} are given by the formulae

b4

1 [~ 1
P / Fycosntdt,  by==| F@)sinntdr. (5.23)
7 J_a T

-

What this means is that any function f(¢) with period 27 can be expressed as a sum of
time harmonic terms, each of which has period 27. In order to find the driven response of
the oscillator when the force mF (¢) is applied, we first expand F(¢) in a Fourier series. We
then find the driven response that would be induced by each of the terms of this Fourier series
applied separately, and then simply add these responses together. The method depends on the
equation of motion being linear.

Example 5.3 Periodic non-harmonic driving force

Find the driven response of the damped linear oscillator

d*x dx )
Y ok L Q= Fu
az TG T =0

for the case in which F (¢) is periodic with period 27 and takes the values

Fyb O<t<m),
—Fy (mr <t <2m),

F(t) = {

* After Jean Baptiste Joseph Fourier 1768—1830. The memoir in which he developed the theory of trigono-
metric series ‘On the Propagation of Heat in Solid Bodies’ was submitted for the mathematics prize of
the Paris Institute in 1811; the judges included such luminaries as Lagrange, Laplace and Legendre. They
awarded Fourier the prize but griped about his lack of mathematical rigour.

T The general case can be reduced to this one by a scaling of the unit of time.
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L (1)

—F,

FIGURE 5.7 The ‘square wave’ input function F (¢) is periodic with
period 2. Its value alternates between % Fj.

in the interval 0 < ¢ < 2. This function™ is shown in Figure 5.7.

Solution

The first step is to find the Fourier series of the function F (¢). From the formula
(5.23), the coefficient a,, is given by

1 (7 1 1 (7
a, = — F(t)cosntdt = — (—Fp)cosntdt + — / (+Fp) cosnt dt
T J_ . T J_» 7 Jo

=0,
since both integrals are zero for n > 1 and are equal and opposite when n = 0. In the
same way,

/g /g

1 1[0 1
b, = — F(t)sinnt dt = —/ (—Fp) sinnt dt + —/ (4+Fo) sinnt dt
T J_x T Jo

T J-x
2Fy (7 .
= — sinnt dt,
T 0

since this time the two integrals are equal. Hence

b _ 2Fy [—cosnt|"  2Fy (1—cosnm
"Ton n 0o T n

_2Fy (1—(=1)"
()

Hence the Fourier series of the function F (¢) is

F(t) = Z ? <1_;—_1)n> sin nt.

n=1

* This function is the mechanical equivalent of a ‘square wave input’ in electric circuit theory.
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2/Fo) (p?/ Fy)
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—27/p

2m/p —27/p 27/p

FIGURE 5.8 Driven response of a damped oscillator to the alternating constant force +=m Fy with
angular frequency p: Left Q/p = 1.5, K/p = 1. Right Q/p = 2.5, K/p = 0.1. The light
graphs show the first term of the exapansion series.

The next step is to find the driven response of the oscillator to the force
m (b, sin nt), that is, the particular integral of the equation

d’x X ok ® 92 —p sinne (5.24)
— — X = by sinnt. .
dr? dt "
The complex counterpart of this equaton is
d’x dx
dt2 +2Kd—+9 X_]’) €
for which the particular integral is ce!”’, where the complex amplitude ¢ is given by
bﬂ

‘TR 212K

The particular integral of the real equation (5.24) is then given by

N bye'™ b (2 — n?)sinnt + 2K n cos nt
S| —=—F——1] = )
Q2 —n?2+2iKn ! (Q2 — n2)2 +4K2n2

Finally we add together these separate responses to find the driven response of
the oscillator to the force mF (¢). On inserting the value of the coefficient b,, this
gives

¥ = (5.25)

2F) o= (1= (=1)" (22 — n?)sinnt + 2K n cos nt
E2 — ( n > ( (Q2 —n?)? +4K2n? )
In order to deduce anything from this complicated formula, we must either sum
the series numerically or approximate the formula in some way. When 2 and K are
both small compared to the forcing frequency p, the series (5.25) converges quite
quickly and can be approximated (to within a few percent) by the first term. Even
when Q2/p = 1.5 and K /p = 1, this is still a reasonable approximation (see Figure
5.8 (left)). However, for larger values of €2/p, the higher harmonics in the Fourier
expansion of F(¢) that have frequencies close to 2 produce large contributions (see
Figure 5.8 (right)). In this case, the series (5.25) must be summed numerically. B
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Equilibrium position Xi(t)

FIGURE 5.9 A simple seismograph for measuring vertical ground motion.

5.5 A SIMPLE SEISMOGRAPH

The seismograph is an instrument that measures the motion of the ground on which it
stands. In real earthquakes, the ground motion will generally have both vertical and horizontal
components, but, for simplicity, we describe here a device for measuring vertical motion only.

Our simple seismograph (see Figure 5.9) consists of a mass which is suspended from a
rigid support by a spring; the motion of the mass relative to the support is resisted by a damper.
The support is attached to the ground so that the suspension point has the same motion as
the ground below it. This motion sets the suspended mass moving and the resulting spring
extension is measured as a function of the time. Can we deduce what the ground motion was?

Suppose the ground (and therefore the support) has downward displacement X (¢) at time
¢t and that the extension x(¢) of the spring is measured from its equilibrium length. Then the
displacement of the mass is x + X, relative to an inertial frame. The equation of motion (5.9)
is therefore modified to become

d2(x +X) )
m— o = —(2m K) — (mQ)x,
that is,
d*x Y dx Lo d*x
dr? dt dt?’

This means that the motion of the body relative to the moving support is the same as if the
support were fixed and the external driving force —m(d*X /dt*) were applied to the body.

First consider the driven response of our seismograph to a train of harmonic waves with
amplitude A and angular frequency p, that is,

X = Acos pt.
The equation of motion for the spring extension x is then

d? d
dt); +2Kd—x + Q% = Ap2cospt.
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—> —»y

m m
FIGURE 5.10 Two particles are connected between three springs
and perform longitudinal oscillations.
The complex amplitude of the driven motion is

p*A
c= s
—p2+2iKp + Q2

and the real driven motion is
x =acos(pt —y),

where

A
cl = - 5T
|-142i(K/p)+ (2/p)?|

a=| (5.26)
Thus, providing that the spring and resistance constants are accurately known, the angular
frequency p and amplitude A of the incident wave train can be deduced.

In practice, things may not be so simple. In particular, the incident wave train may be a
mixture of harmonic waves with different amplitudes and frequencies, and these are not easily
disentangled. However, if K and Q2 are chosen so that K /p and 2/ p are small compared with
unity (for all likely values of p), then ¢ = —A and X = —x approximately. Thus, in this
case, the record for x(z) is simply the negative of the ground motion X (¢).* Since this result
is independent of the incident frequency, it should also apply to complicated inputs such as a
pulse of waves.

5.6 COUPLED OSCILLATIONS AND NORMAL MODES

Interesting new effects occur when two or more oscillators are coupled together. Fig-
ure 5.10 shows a typical case in which two bodies are connected between three springs and
the motion takes place in a straight line. We restrict ourselves here to the classical theory in
which the restoring forces are linear and damping is absent. If the springs are non-linear, then
the displacements of the particles must be small enough so that the linear approximation is
adequate.

Let x and y be the displacements of the two bodies from their respective equilibrium
positions at time #; because two coordinates are needed to specify the configuration, the system
is said to have two degrees of freedom. Then, at time ¢, the extensions of the three springs are
x, y —x and —y respectively. Suppose that the strengths of the three springs are o, 2o and

* What is actually happening is that the mass is hardly moving at all (relative to an inertial frame).
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4a respectively. Then the three restoring forces are ax, 2o (y — x), —4ay and the equations of
motion for the two bodies are

m¥ = —ax + 2a(y — x),

my

—2a(y —x) —4day,
which can be written in the form

¥+ 3ncx — 2n2y =0, (5.27)
j —2n%x 4+ 60y = 0, '

where the positive constant n is defined by n?> = «/m. These are the governing equations
for the motion. They are a pair of simultaneous second order homogeneous linear ODEs with
constant coefficients. The equations are coupled in the sense that both unknown functions
appear in each equation; thus neither equation can be solved on its own.

The solution procedure: normal modes

The solution procedure is simply an extension of the usual method for finding the comple-
mentary function for a single homogeneous linear ODE with constant coefficients. However,
rather than seek solutions in exponential form, it is simpler to seek solutions directly in the
trigonometric form

x = Acos(wt —y),
(5.28)
y = Bcos(wt — y),

where A, B, w and y are constants. A solution of the governing equations (5.27) that has
the form (5.28) is called a normal mode of the oscillating system. In a normal mode, all the
coordinates that specify the configuration of the system vary harmonically in time with the
same frequency and the same phase; however, they generally have different amplitudes. On
substituting the normal mode form (5.28) into the governing equations (5.27), we obtain

—w? A cos(wt — y)+ 3n% A cos(wt — y) — 2n% B cos(wt — y) =0,
—’ B cos(wt — y) — 2n° A cos(wt — V) + 6n°B cos(wt — y) =0,

which simplifies to give

Gn? —w*)A —2n’B =0,

—2n2A + (602 — w?)B = 0, 629
a pair of simultaneous linear algebraic equations for the amplitudes A and B. Thus a normal
mode will exist if we can find constants A, B and w so that the equations (5.29) are satisfied.
Since the equations are homogeneous, they always have the trivial solution A = B = 0,
whatever the value of w. However, the trivial solution corresponds to the equilibrium solution
x = y = 0 of the governing equations (5.27), which is not a motion at all. We therefore require
the equations (5.29) to have a non-trivial solution for A, B. There is a simple condition that
this should be so, namely that the determinant of the system of equations should be zero, that
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is,

3n2 —w? —2n2
det o 6n? o =0. (5.30)

On simplification, this gives the condition
ot —9n*w? +14n* = 0, (5.31)

a quadratic equation in the variable w?. If this equation has real positive roots a)%, a)%, then,
for each of these values, the linear equations (5.29) will have a non-trivial solution for the
amplitudes A, B. In the present case, the equation (5.31) factorises and the roots are found to
be

W =21, w3 = Tn?. (5.32)

Hence there are two normal modes with (angular) frequencies ~/2n and +/7n respectively.
These frequencies are known as the normal frequencies of the oscillating system.

Slow mode: In the slow mode we have w? = 2n? so that the linear equations (5.29) become

n?A —2n*B =0,
—2n%A +4n’B = 0.

These two equations are each equivalent to the single equation A = 2B. This is to be expected
since, if the equations were linearly independent, then there would be no non-trivial solution
for A and B. We have thus found a family of non-trivial solutions A = 2§, B = §, where § can
take any (non-zero) value. Thus the amplitude of the normal mode is not uniquely determined,
this happens because the governing ODEs are linear and homogeneous. The slow normal
mode therefore has the form

x =26 cos(ﬁnt -¥),

y = SCos(\/int —y), (5.33)

where the amplitude factor § and phase factor y can take any values. We see that, in the slow
mode, the two bodies always move in the same direction with the body on the left having twice
the amplitude as the body on the right.

Fast mode: In the fast mode we have w® = 7n” and, by following the same procedure, we
find that the form of the fast normal mode is

X = 8005(\/7111 - ),

y = —28 cos(v/Tnt —y), (5.34)

where the amplitude factor § and phase factor y can take any values. We see that, in the fast
mode, the two bodies always move in opposite directions with the body on the right having
twice the amplitude as the body on the left.

The general motion

Since the governing equations (5.27) are linear and homogeneous, a sum of normal mode
solutions is also a solution. Indeed, the general solution can be written as a sum of normal
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FIGURE 5.11 The two particles are attached to a light stretched
string and perform small transverse oscillations. The
displacements are shown to be large for clarity.

modes. Consider the expression

x =261 cos(ﬁnt —y1) + & cos(ﬁnt —¥2),

(5.35)
y= 81cos(v2nt —y1) — 283 cos(vTnt — y»).
This is simply a sum of the first normal mode (with amplitude factor §; and phase factor y1)
and the second normal mode (with amplitude factor §, and phase factor y»). Since it is possible
to choose these four arbitrary constants so that x, y, X, y take any set of assigned values when
t = 0, this must be the general solution of the governing equations (5.27).

Question Periodicity of the general motion
Is the general motion periodic?

Answer

The general motion is a sum of normal mode motions with periods 71, 75 respectively.
This sum will be periodic with period 7 if (and only if) 7 is an integer multiple of both
71 and 12, that is, if 71 /17 is a rational number. (In this case, the periods are said to be
commensurate.) This in turn requires that w; /w, is a rational number. In the present
case, wi/wy = (2/7)1/ 2 which is irrational. The general motion is therefore not
periodic in this case.

We conclude by solving another typical normal mode problem.

Example 5.4 Small transverse oscillations

Two particles P and Q, of masses 2m and m, are secured to a light string that is
stretched to tension T between two fixed supports, as shown in Figure 5.11. The
particles undergo small transverse oscillations perpendicular to the equilibrium line
of the string. Find the normal frequencies, the forms of the normal modes, and the
general motion of this system. Is the general motion periodic?
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Solution

First we need to make some simplifying assumptions.* We will assume that the trans-
verse displacements x, y of the two particles are small compared with a; the three
sections of the string then make small angles with the equilibrium line. We will also
neglect any change in the tensions of the three sections of string.

The left section of string then has constant tension Tp. When the particle P is
displaced, this tension force has the transverse component —7¢ sin @, which acts as
a restoring force on P; since 6 is small, this component is approximately —Tox /a.
Similar remarks apply to the other sections of string. The equations of transverse
motion for P and Q are therefore

Tox To(y — x
Tox o(y )’

2mx = —
a a
.. To(y —x) Toy
my=-———— —.
a 2a
which can be written in the form
2% +2n%x —n’y =0, (5.36)
2% — 2n%x 4+ 3n%y =0, (5.37)

where the positive constant 7 is defined by n> = Ty/ma.
These equations will have normal mode solutions of the form

x = Acos(wt — y),
y = Bcos(ot — y),

when the simultaneous linear equations

Qn* —20*)A —n*B =0,
(5.38)
—2n’A 4+ (3n? —20*)B =0,
have a non-trivial solution for the amplitudes A, B. The condition for this is
q 2n? — 202 —n? 0 (5.39)
et =0. .
—n?  3n? —20?
On simplification, this gives
20* — 5n%w? +2n* = 0, (5.40)
a quadratic equation in the variable w?. This equation factorises and the roots are
found to be
ol = %nz, w5 =2n’. (5.41)

Hence there are two normal modes with normal frequencies 1/~/2 and ~/2n respec-
tively.

* These assumptions are consistent with the more complete treatment given in Chapter 15.
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Slow mode: In the slow mode we have w? = n?/2 so that the linear equations (5.38)

become
nA —n’B = 0,
—2n?A +2n’B = 0.

These two equations are each equivalent to the single equation A = B so that we have
the family of non-trivial solutions A = §, B = §, where § can take any (non-zero)
value. The slow normal mode therefore has the form

X = 8cos(nt/\/_ -¥),

y = 8cos(nt /N2 —y), (5.42)

where the amplitude factor § and phase factor y can take any values. We see that, in
the slow mode, the two particles always have the same displacement.

Fast mode: In the fast mode we have w”> = 2n? and, by following the same proce-
dure, we find that the form of the fast normal mode is

X = SCos(ﬁnt —¥),

y = =28 cos(v/2nt — ), (5.43)

where the amplitude factor § and phase factor y can take any values. We see that,
in the fast mode, the two particles always move in opposite directions with Q having
twice the amplitude of P.

The general motion is now the sum of the first normal mode (with amplitude
factor §; and phase factor y1) and the second normal mode (with amplitude factor §>
and phase factor y»). This gives

x =81 cos(nt/v/2 —y1) + Sxcos(v2nt — ),

(5.44)
y = 81 cos(nt/+/2 — y1) — 28, cos(v/2nt — ).

For this system t;/70 = w2/w; = 2 so that the general motion is periodic with
period 1y = 2+/27/n. M

Problems on Chapter 5

Answers and comments are at the end of the book.

Harder problems carry a star ().

Free linear oscillations

5.1 A certain oscillator satisfies the equation

X +4x =0.

Initially the particle is at the point x = +/3 when it is projected towards the origin with speed
2. Show that, in the subsequent motion,

x = ~/3cos 2t — sin 2¢.



5.6 Problems 127

Deduce the amplitude of the oscillations. How long does it take for the particle to first reach
the origin?

5.2 When a body is suspended from a fixed point by a certain linear spring, the angular
frequency of its vertical oscillations is found to be €2;. When a different linear spring is used,
the oscillations have angular frequency €2;. Find the angular frequency of vertical oscillations
when the two springs are used together (i) in parallel, and (ii) in series. Show that the first of
these frequencies is at least twice the second.

5.3 A particle of mass m moves along the x-axis and is acted upon by the restoring force
—m(n® + k?)x and the resistance force —2mkx, where n, k are positive constants. If the
particle is released from rest at x = a, show that, in the subsequent motion,

a .
x = —e ¥ (ncosnt + ksinnt).
n
Find how far the particle travels before it next comes to rest.

5.4 An overdamped harmonic oscillator satisfies the equation
X4+ 10x + 16x = 0.

At time ¢+ = 0 the particle is projected from the point x = 1 towards the origin with speed u.
Find x in the subsequent motion.
Show that the particle will reach the origin at some later time ¢ if

u—2
o

u—8:

How large must u be so that the particle will pass through the origin?

5.5 A damped oscillator satisfies the equation
X42Ki+ Q% =0

where K and Q2 are positive constants with K < € (under-damping). At time t = O the
particle is released from rest at the point x = @. Show that the subsequent motion is given by

—Kt K .
X =ae cosQpt + —sinQpt |,
Qp

where Qp = (Q%2 — K2)1/2,

Find all the turning points of the function x (#) and show that the ratio of successive max-
imum values of x is e =27 K/<0,

A certain damped oscillator has mass 10 kg, period 5 s and successive maximum values
of its displacement are in the ratio 3 : 1. Find the values of the spring and damping constants

o and 8.

5.6 Critical damping Find the general solution of the damped SHM equation (5.9) for the
special case of critical damping, that is, when K = €. Show that, if the particle is initially
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released from rest at x = a, then the subsequent motion is given by
x =ae ¥ (1+ Q).

Sketch the graph of x against 7.

5.7% Fastest decay The oscillations of a galvanometer satisfy the equation
X +2KF + Q% =0.

The galvanometer is released from rest with x = a and we wish to bring the reading perma-
nently within the interval —ea < x < ea as quickly as possible, where € is a small positive
constant. What value of K should be chosen? One possibility is to choose a sub-critical value
of K such that the first minimum point of x(¢) occurs when x = —ea. [Sketch the graph of
x(¢) in this case.] Show that this can be acheived by setting the value of K to be

,-1/2
K=g 1+< z )
In(1/¢€) '

If K has this value, show that the time taken for x to reach its first minimum is approximately
Q~!1In(1/€) when € is small.

5.8 A block of mass M is connected to a second block of mass m by a linear spring of natural
length 8a. When the system is in equilibrium with the first block on the floor, and with the
spring and second block vertically above it, the length of the spring is 7a. The upper block is
then pressed down until the spring has half its natural length and is then resleased from rest.
Show that the lower block will leave the floor if M < 2m. For the case in which M = 3m /2,
find when the lower block leaves the floor.

Driven linear oscillations

5.9 A block of mass 2 kg is suspended from a fixed support by a spring of strength
2000 Nm~!. The block is subject to the vertical driving force 36 cos pr N. Given that the
spring will yield if its extension exceeds 4 cm, find the range of frequencies that can safely be
applied.

5.10 A driven oscillator satisfies the equation
¥4 Q%x = Fycos[Q(1 + €)1,

where € is a positive constant. Show that the solution that satisfies the initial conditions x = 0
and x =0 whent =0 is
Fo

1 . 1
X = ————sin 5eQrsin Q2 (1 + 5€)t.
e(l+1leoQ2 72 2

Sketch the graph of this solution for the case in which € is small.

5.11 Figure 5.12 shows a simple model of a car moving with constant speed ¢ along a gently
undulating road with profile 4 (x), where 4’(x) is small. The car is represented by a chassis



5.6 Problems 129

m

Y
8

FIGURE 5.12 The car moves along a gently undulating road.

which keeps contact with the road, connected to an upper mass m by a spring and a damper.
At time ¢ the upper mass has displacement y(¢) above its equilibrium level. Show that, under
suitable assumptions, y satisfies a differential equation of the form

¥4+ 2Ky + Q*y =2Kch'(ct) + Q2h(ct)

where K and 2 are positive constants.
Suppose that the profile of the road surface is given by h(x) = hgcos(px/c), where hg
and p are positive constants. Find the amplitude @ of the driven oscillations of the upper mass.
The vehicle designer adjusts the damper so that K = 2. Show that

a =

ho,

5

whatever the values of the consants 2 and p.

5.12 Solution by Fourier series A driven oscillator satisfies the equation
¥4+2K3+ Q% = F(0),

where K and 2 are positive constants. Find the driven response of the oscillator to the saw
tooth’ input, that is, when F (¢) is given by

F(t) = Fot (—m <t <m)

and F (t) is periodic with period 27. [It is a good idea to sketch the graph of the function
F(t).]

Non-linear oscillations that are piecewise linear

5.13 A particle of mass m is connected to a fixed point O on a smooth horizontal table by
a linear elastic string of natural length 2a and strength m Q2. Initially the particle is released
from rest at a point on the table whose distance from O is 3a. Find the period of the resulting
oscillations.

5.14 Coulomb friction The displacement x of a spring mounted mass under the action of
Coulomb friction satisfies the equation

—F() x>0

. 2.
X+Qx_{ F() )'C<0
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where 2 and Fy are positive constants. If |x| > Fp/ Q2 when % = 0, then the motion con-
tinues; if |x| < Fp/Q? when % = 0, then the motion ceases. Initially the body is released
from rest with x = 9F,/2?2. Find where it finally comes to rest. How long was the body in
motion?

5.15 A partially damped oscillator satisfies the equation
X426+ Q% =0,
where €2 is a positive constant and « is given by

‘= 0 x <0
1K x>0

where K is a positive constant such that K < 2. Find the period of the oscillator and the ratio
of successive maximum values of x.

Normal modes

5.16 A particle P of mass 3m is suspended fron a fixed point O by a light linear spring with
strength . A second particle Q of mass 2m is in turn suspended from P by a second spring of
the same strength. The system moves in the vertical straight line through O. Find the normal
frequencies and the form of the normal modes for this system. Write down the form of the
general motion.

5.17 Two particles P and Q, each of mass m, are secured at the points of trisection of a
light string that is stretched to tension Tj between two fixed supports a distance 3a apart. The
particles undergo small transverse oscillations perpendicular to the equlilibrium line of the
string. Find the normal frequencies, the forms of the normal modes, and the general motion of
this system. [Note that the forms of the modes could have been deduced from the symmetry
of the system.] Is the general motion periodic?

5.18 A particle P of mass 3m is suspended from a fixed point O by a light inextensible string
of length a. A second particle Q of mass m is in turn suspended from P by a second string of
length a. The system moves in a vertical plane through O. Show that the linearised equations
of motion for small oscillations near the downward vertical are

46 + ¢ + 4n’6 = 0,

6+ +n*p=0,

where 6 and ¢ are the angles that the two strings make with the downward vertical, and n*> =
g/a. Find the normal frequencies and the forms of the normal modes for this system.



Chapter Six

Energy conservation

KEY FEATURES
The key features of this chapter are the energy principle for a particle, conservative fields of
force, potential energies and energy conservation.

In this Chapter, we introduce the notion of mechanical energy and its conservation.
Although energy methods are never indispensible* for the solution of problems, they do give
a greater insight and allow many problems to be solved in a quick and elegant manner. Energy
has a fundamental role in the Lagrangian and Hamiltonian formulations of mechanics. More
generally, the notion of energy has been so widely extended that energy conservation has
become the most pervasive and important principle in the whole of physics.

6.1 THE ENERGY PRINCIPLE

Suppose a particle P of mass m moves under the influence of a force F. Then its
equation of motion is

dv

—=F, 6.1
m— 6.1)

where v is the velocity of P at time 7. At this stage we place no restrictions on the force F.
It may depend on the position of P, the velocity of P, the time, or anything else; if more than
one force is acting on P, then F means the vector resultant of these forces. On taking the
scalar product of both sides of equation (6.1) with v, we obtain the scalar equation

dv
mv. —=F-.v
dt

and, since

* Energy is never mentioned in the work of Newton!
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this can be written in the form
— =F v, (6.2)

where T = %mv ..

Definition 6.1 Kinetic energy The scalar quantity T = %mv v = %m|v|2 is called the
kinetic energy of the particle P.

If we now integrate equation (6.2) over the time interval [#{, f], we obtain

1)
T2—T1:/ F -vdt (6.3)
1

where T and T, are the kinetic energies of P at times #; and 1, respectively. This is the energy
principle for a particle moving under a force F.

Definition 6.2 71-D work done The scalar quantity
5}
W:/ Fvdi (6.4)
1

is called the work done by the force F during the time interval [ty, t2]. The rate of working of
F attime t is thus F - v.
[The SI unit of work is the joule (J) and one joule per second is one watt (W).]

Our result can now be stated as follows:

Energy principle for a particle

In any motion of a particle, the increase in the kinetic energy of the particle in a given
time interval is equal to the total work done by the applied forces during this time inter-
val.

The energy principle is a scalar equality which is derived by integrating the vector equa-
tion of motion (6.1). Thus the energy principle will generally contain less information than
the equation of motion, so that we have no right to expect the motion of P to be determined
from the energy principle alone. The situation is simpler when P has one degree of freedom,
which means that the position of P can be specified by a single scalar variable. In this case
the equation of motion and the energy principle are equivalent and the energy principle alone
is sufficient to determine the motion.

Example 6.1 Verify the energy principle

A man of mass 100 kg can pull on a rope with a maximum force equal to two fifths
of his own weight. [ Take g = 10 ms~2. ] In a competition, he must pull a block of
mass 1600 kg across a smooth horizontal floor, the block being initially at rest. He is
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able to apply his maximum force horizontally for 12 seconds before falling exhausted.
Find the total work done by the man and confirm that the energy principle is true in
this case.

Solution

In this problem, the block is subjected to three forces: the force exerted by the man,
uniform gravity, and the vertical reaction of the smooth floor. However, since the last
two of these are equal and opposite, they can be ignored.

The man has weight 1000 N so that the force he applies to the block is a constant
200 N. The Second Law then implies that, while the man is pulling on the rope, the
block must have constant rectilinear acceleration 200/1600 = 1/8 ms~2. Since the
block is initially at rest, its velocity v at time 7 is therefore v = r/8 ms~!. The total
work W done by the man is then given by the formula (6.4) to be

12 12 ;
WZ/ F-vdt=/ 200(—)d[=1800].
0 0 8

When ¢ = 12 s, the block has velocity v = 12/8 = 3/2 ms™!, so that the final kinetic
energy of the block is %(1600)(3 /2)? = 1800 J. Since the initial kinetic energy of the
block is zero, the kinetic energy of the block increases by 1800 J, the same as the
work done by the man. This confirms the truth of the energy principle. B

6.2 ENERGY CONSERVATION IN RECTILINEAR MOTION

The energy principle is not normally used in the general form (6.3). When possible, it
is transformed into a conservation principle. This is most easily illustrated by the special case
of rectilinear motion.

Suppose that the particle P moves along the x-axis under the force F acting in the positive
x-direction. In this case, the ‘work done’ integral (6.4) reduces to

15}
w =/ Fudt,
n

where v = X is the velocity of P in the positive x-direction. For the case in which F is a force
field (so that F = F'(x)), the formula for W becomes

%) 1% dx X2
W:/ det:/ F(x)—dt:/ F(x)dx,
151 131 dt X1

where x| = x(¢;) and xo = x(#,). Thus, when P moves over the interval [x{, x] of the x-axis,
the work done by the field F is given by

W = /xz F(x)dx (6.5)
x|
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(This is a common definition of the work done by a force F. It can be used when F = F (x),
but not in general.) It follows that the energy principle for a particle moving in a rectilinear
force field can be written

X2
Tz—lef F(x)dx.
X

X1

Now let V (x) be the indefinite integral of —F (x), so that

dv *2
F = 0 and / F(x)dx =V (x1) — V(xp). (6.6)

Such a V is called the potential energy™ function of the force field F. In terms of V, the
energy principle in rectilinear motion can be written

o +Vxp) =T + V(xy),

which is equivalent to the energy conservation formula

T+V=E (6.7)

where E is a constant called the total energy of the particle. This result can be stated as
follows:

Energy conservation in rectilinear motion

When a particle undergoes rectilinear motion in a force field, the sum of its kinetic and
potential energies remains constant in the motion.

Example 6.2 Finding potential energies

Find the potential energies of (i) the (one-dimensional) SHM force field, (ii) the (one-
dimensional) attractive inverse square force field.

Solution

(i) The one-dimensional SHM force field is ' = —ax, where « is a positive constant.
The corresponding V' is given by

V:—/' F(x)dx:oc/ xdx,
a a

where a, the lower limit of integration, can be arbitrarily chosen. (This corresponds
to the arbitrary choice of the constant of integration.) Note that, by beginning the

* The potential energy corresponding to a given F is uniquely determined apart from a constant of integra-
tion; this constant has no physical significance.
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integration at x = a, we make V (a) = 0. In the present case it is conventional to take

a = 0sothat V = 0 at x = 0. With this choice, the potential energy is V = %axz.

(ii) The one-dimensional attractive inverse square force field is F = —K /x2, where
x > 0 and K is a positive constant. The corresponding V is given by

X X 1
V:—/ F(x)dx:K/ —de.
a a X

This time it is not possible to take ¢ = 0 (the integral would then be meaningless)
and it is conventional to take ¢ = +o00; this makes V = 0 when x = +o00. With this
choice, the potential energy is V = —K /x (x > 0). &

Example 6.3 Rectilinear motion under uniform gravity

A particle P is projected vertically upwards with speed u and moves under uniform
gravity. Find the maximum height achieved and the speed of P when it returns to its
starting point.

Solution
Suppose that P is projected from the origin and moves along the z-axis, where Oz
points vertically upwards. The force F' exerted by uniform gravity is F = —mg and

the corresponding potential energy V is given by

z
V= —/ (—mg)dz = mgz.
0

Energy conservation then implies that

1,2

smv° +mgz = E,

where v = z, and the constant £ is determined from the initial condition v = u when
z = 0. This gives E = %mu2 so that the energy conservation equation for the motion
is

1.2 _ 1.2
MV +mgz = smu”.

Since v = 0 when z = zpy,, it follows that zyx = u? /(2g). This result was obtained
from the Second Law in Chapter 4. When P returns to O, z = 0 and so |v| = u. Thus

P returns to O with speed u, the projection speed. B

Example 6.4 Simple harmonic motion

A particle of mass m is projected from the point x = a with speed u and moves along
the x-axis under the SHM force field F = —maw?x. Find the maximum distance from
O and the maximum speed achieved by the particle in the subsequent motion.

Solution

The potential energy correspondingto the force field F = —mw?x is V = %wzxz.
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Energy conservation then implies that

%mv2 + %mw2x2 =F,

where v = x, and the constant E is determined from the initial condition |v| = u
when x = a. This gives £ = %m(uz—i—a)zaz) so that the energy conservation equation
for the motion becomes

v2 + a)2x2 = uz + a)zaz.

Since v = 0 when |x| takes its maximum value, it follows that

) 12
u 2

|x|maxz<_2+a> .
w

Also, since the left side of the energy conservation equation is the sum of two positive
terms, it follows that |v| takes its maximum value when x = 0. Hence

1/2
|V max = (u2 + w2a2) .

These results could also be obtained (less quickly) by using the methods described in
Chapter 5. B

6.3 GENERAL FEATURES OF RECTILINEAR MOTION

The energy conservation equation
Imv? + V() =E (6.8)

enables us to deduce the general features of rectilinear motion in a force field. Since T > 0
(and is equal to zero only when v = 0) it follows that the position of the particle is restricted
to those values of x that satisfy

Vix) < E,

and that equality will occur only when v = 0. Suppose that V (x) has the form shown in Figure
6.1 and that E has the value shown. Then the motion of P must take place either (i) in the
bounded interval @ < x < b, or (ii) in the unbounded interval ¢ < x < oco. Thus, if the particle
was situated in the interval [a, b] initially, this is the interval in which the motion will take
place.

Bounded motions

Suppose that the motion is started with P in the interval [a, b] and with v positive, so that P is
moving to the right. Then, since v can only be zero at x = g and x = b, v will remain positive
until P reaches the point x = b, where it comes to rest*. From equation (6.8), it follows that

* Strictly speaking, we should exclude the possibility that P might approach the point x = b asymptotically
as t — oo, and never actually get there. This can happen, but only in the case in which the line V = E
is a tangent to the graph of V (x) at x = b. In the general case depicted in Figure 6.1, P does arrive at
X = b in a finite time.
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bounded unbounded

\

FIGURE 6.1 Bounded and unbounded motions in a rectilinear force
field.
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the ODE that governs this ‘right’ part of the motion is

dx
— =+ [2(E - V@)l

dt
At the point x = b, V' > 0 which implies that F < 0. P therefore moves to the left and does

not stop until it reaches the point x = a. The ODE that governs this ‘left’ part of the motion is

ax _ o - 12

77 = RE=V)T.
At the point x = a, V' < 0, which implies that F > 0 and that P moves to the right once
again. The result is that P performs periodic oscillations between the extreme points x = a
and x = b. Since the ‘left’ and ‘right’ parts of the motion take equal times, the period 7 of
these oscillations can be found by integrating either equation over the interval a < x < b.
Each equation is a separable ODE and integration gives

I—Zfb dx
e 2(E =V

It should be noted that these oscillations are generally not simple harmonic. In particular, their
period is amplitude dependent.

Example 6.5 Periodic oscillations

A particle P of mass 2 moves on the positive x-axis under the force field F =
(4/x%) — 1. Initially P is released from rest at the point x = 4. Find the extreme
points and the period of the motion.

Solution

The force field F' has potential energy V = (4/x)+x, so that the energy conservation
equation for P is

1@+ @/x) +x = E,
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FIGURE 6.2 Positions of stable and unstable equilibrium.

where v = x and E is the total energy. The initial condition v = 0 when x = 4 gives
E =5 so that

V> =5—(4/x) — x.

The extreme points of the motion occur when v = 0, that is, when x = 1 and x = 4.
To find the period t of the oscillations, write v = dx /dt in the last equation and take
square roots. This gives the separable ODEs

dx |:(x— 1)(4—x)i|1/2
i I ,
dt X

where the plus and minus signs refer to the motion of P in the positive and negative
x-directions respectively. Integration of either equation gives

4 . 12

Unbounded motions

Suppose now that the motion is started with P in the interval [c, co) and with v negative, so
that P is moving to the left. Then, since v can only be zero at x = ¢, v will remain negative
until P reaches the point x = ¢, where it comes to rest. At the point x = ¢, V' < 0 which
implies that ' > 0. P therefore moves to the right and continues to do so indefinitely.

Stable equilibrium and small oscillations
First, we define what we mean by an equilibrium position.

Definition 6.3 Equilibrium The point A is said to be an equilibrium position of P if,
when P is released from rest at A, P remains at A.

In the case of rectilinear motion under a force field F(x), the point x = a will be an
equilibrium position of P if (and only if) F(a) = 0, that is, if V'(a) = 0. It follows that
the equilibrium positions of P are the stationary points of the potential energy function V (x).
Consider the equilibrium positions shown in Figure 6.2. These occur at stationary points of V
that are a minimum and a maximum respectively. Suppose that P is at rest at the minimum
point x = a when it receives an impulse of magnitude J which gives it kinetic energy AE
(= J?/2m). The total energy of P is now E + AE, and so P will oscillate in the interval
[a — 81, a + 62] shown. It is clear from Figure 6.2 that, as the magnitude of J (and therefore



6.3 General features of rectilinear motion 139

AE) tends to zero, the ‘amplitude’ § of the resulting motion (the larger of §; and §;) also tends
to zero. This is the definition of stable equilibrium.

Definition 6.4 Stable equilibrium Suppose that a particle P is in equilibrium at the point
A when it receives an impulse of magnitude J ; let § be the amplitude of the subsequent motion.
If6 — O0as J — O, then the point A is said to be a position of stable equilibrium of P .

On the other hand, if P is at rest at the maximum point x = b when it receives an impulse
of magnitude J, it is clear that the amplitude of the resulting motion does not tend to zero as
J tends to zero, so that a maximum point of V (x) is not a position of stable equilibrium of P.
The same applies to stationary inflection points.

Equilibrium positions of a particle

The stationary points of the potential energy V (x) are the equilibrium points of P and
the minimum points of V (x) are the positions of stable equilibrium. If A is a position of
stable equilibrium, then P can execute small-amplitude oscillations about A.

Approximate equation of motion for small oscillations
Suppose that the point x = ¢ is a minimum point of the potential energy V (x). Then, when x
is sufficiently close to a, we may approximate V (x) by the first three terms of its Taylor series
in powers of the variable (x — a), as follows:
V@) =V(@) + & —a)V'(@ + 3 =)’V (@)
=V(a) + i —a)*V'(a), (6.9)

since V’(a) = 0. Thus, for small amplitude oscillations about x = a, the energy conservation
equation is approximately

%mv2 +Via) + %(x —a)*V"(a) = E.
If we now differentiate this equation with respect to ¢ (and divide by v), we obtain the approx-
imate (linearised) equation of motion
d*x
m— +V"(a) (x —a) =0.
V@ —a)

Provided that V" (a) > 0, this is the equation for simple harmonic oscillations with angular
frequency (V" (a)/m)'/? about the point x = a. The small oscillations of P about x = a are
therefore approximately simple harmonic with approximate period © = 27 (m/ V" (a))'/?.

Example 6.6 Finding the period of small oscillations

A particle P of mass 8 moves on the x-axis under the force field whose potential
energy is

_x(x—3)?
==

1%
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FIGURE 6.3 Particle P is in general motion
under the force F. The arc C is the path taken t=1, A
by P between the points A and B.

Show that there is a single position of stable equilibrium and find the approximate
period of small oscillations about this point.

Solution

For this V, V' = x> —4x+3 and V" = 2x —4. The equilibrium positions occur when
V’/ =0, thatis when x = 1 and x = 3. Since V" (1) = —2 and V" (3) = 2, we deduce
that the only position of stable equilibrium is at x = 3. The approximate period t of
small oscillations about this point is therefore given by 7 = 27(8/V"(3)/? = 4n.m

6.4 ENERGY CONSERVATION IN A CONSERVATIVE FIELD

Suppose now that the particle P is in general three-dimensional motion under the
force F and that, in the time interval [t4, fp], P moves from the point A to the point B along
the path C, as shown in Figure 6.3. Then, by the energy principle (6.3),

B
TB_TA=f F -vdt, (6.10)
A

where T4 and Tp are the kinetic energies of P when t = f4 and t = tp respectively. When
F is a force field F (r), the ‘work done’ integral on the right side of equation (6.10) can be

written in the form
‘A ‘s dr
/ F-vdt:f F(r)-—dt:/F(r)-dr,
A A dt C

where C is the path taken by P in the time interval [z4, g ]. It follows that the energy principle
for a particle moving in a 3D force field can be written

Tp — Ty = / F(r)-dr. 6.11)
C

Integrals like that on the right side of equation (6.11) are called line integrals. They differ
from ordinary integrals in that the range of integration is not an interval of the x-axis, but a
path in three-dimensional space. Line integrals are treated in detail in texts on vector field
theory (see for example Schey [11]), but their physical meaning in the present context is clear
enough. The quantity F -dr is the infinitesimal work done by F when P traverses the element
d r of the path C. The line integral sums these contributions to give the fotal work done by F.
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The line intgral of F along C is taken to be the definition of the work done by the force
field F (r) when its point of application moves along any path C that connects A and B.

Definition 6.5 3-D work done The expression
W[A—)B;C]:/F(r)-dr (6.12)
C

is called the work done by the force field F (r) when its point of application moves from A to
B along any path C.

The above definition is more than just an alternative definition of the work done by a force field acting
on a particle. It defines the quantity W[ A — B; C] whether or not C is an actual path traversed by the
particle P. In this wider sense, the concept of ‘work done’ is purely notional, as is the concept of the ‘point
of application of the force’. In this sense, W exists for all paths joining the points A and B, but W should
be regarded as the real work done by F only when C is an actual path of a particle moving under the field
F(r).

Energy conservation

In order to develop an energy conservation principle for the general three-dimensional
case, we need the right side of equation (6.11) to be expressible in the form

fF(r)-dr:VA—VB, (6.13)
C

for some scalar function of position V (r), where V4 and Vp are the values of V at the
points A and B. In the rectilinear case, there was no difficulty in finding such a V' (it was
the indefinite integral of —F (x)). In the general case however, it is far from clear that any
such V' should exist. For, if there does exist a function V (r) satisfying equation (6.13),
this must mean that the line integral W[ A — B ; C] has the same value for all paths
C that connect the points A and B. There is no reason why this should be true and, in
general, it is not true. There is however an important class of fields F (r) for which V (r)
does exist, and it is these fields that we shall consider from now on.

Definition 6.6 Conservative field If the field F (r) can be expressed in the form*
F = —gradV, (6.14)

where V (r) is a scalar function of position, then F is said to be a conservative field and
the function V is said to be the potential energy function’ for F.

* If ¢ (r) is a scalar field then grad ¢ is the vector field defined by

oy . Yy . Y
radyy = — i+ — — k.
grady ax + ay It 0z
Thus if = xy325, then grad ¢ = y325i + 3xy225j + 5xy3z4k. We could omit the minus sign in the
definition (6.14), but the potential energy of F would then be —V instead of V.
T If V exists, then it is unique apart from a constant of integration. As in the rectilinear case, this constant
has no physical significance.
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Example 6.7 Conservative or not conservative?

Show that the field F| = —2xi — 2y j — 2zk is conservative but that the field F, =
yi — x j is not.

Solution
(1) If F'; is conservative, then its potential energy V must satisfy
A% v aV

P — _Zx, - —2_)}, _—— = —22,
ox ay

and these equations integrate to give
V=xl+p2, V=3 4q0e, V=24000),

where p, g and r are ‘constants’ of integration, which, in this case, are functions of the
other variables. If V really exists, then these three representations of V' can be made
identical by making special choices of the functions p, g and r. In this example it is
clear that this can be achieved by taking p = y> +z%,¢ = x>+ 22, and r = x> + y2.
Hence F| = — grad(x? 4+ y? 4 z2) and so F is conservative.

(1) If F» is conservative, then its potential energy V must satisfy

aVv aV Vv
—— =y, —— = —x, ——=0.
ox ay 0z

There is no V that satisfies these equations simultaneously. The easiest way to show
this is to observe that, from the first equation, 82V/ dydx = —1 while, from the
second equation, 32V /dxdy = +1. Since these mixed partial derivatives of V should
be equal, we have a contradiction. The conclusion is that no such V' exists and that
F» is not conservative. l

Suppose now that the field F(r) is conservative with potential energy V (r) and let C
be any path connecting the points A and B. Then

W[A—>B;C]=/F(r)-dr=/(—gradV)-dr
C C

aVv aV A%
:_/ i S+ k) (@xi+dyjtdzk)
8x 8y az

:—/dV:VA—VB. (6.15)
c

Thus, when F is conservative with potential energy V,

fF(r)-dr:VA—VB,
C
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for any path C connecting the points A and B. The energy principle (6.11) can therefore
be written

Tg+Vp=Ta+ Vs

which is equivalent to the energy conservation formula

T+V=E (6.16)

Our result can be summarised as follows:

Energy conservation in 3-D motion

When a particle moves in a conservative force field, the sum of its kinetic and
potential energies remains constant in the motion.

The condition that F be conservative seems restrictive, but most force fields encoun-
tered in mechanics actually are conservative!

Example 6.8 Finding 3-D potential energies

(a) Show that the uniform gravity field F = —mgk is conservative with potential
energy V = mgz.

(b) Show that any force field of the form
F=nrr

(a central field) is conservative with potential energy V = —H (), where H (r) is the
indefinite integral of 4 (r). Use this result to find the potential energies of (i) the 3-D
SHM field F = —ar 7, and (ii) the attractive inverse square field F = —(K /)7,
where o and K are positive constants.

Solution

Since the potential energies are given, it is sufficient to evaluate — grad V in each case
and show that this gives the appropriate F. Case (a) is immediate. In case (b),

H(r) dH or

= = H'()> = h()~
ax  dr ox r r’

since r = (x> + y2 +22)* and H'(r) = h(r). Thus
X . y . 4 r —~
—erad [~ H ()] = h(r) (- ivlj4l k) — L = hn T,
r r r r

as required.
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In particular then, the potential energy of the SHM field F = —ar7is V =
%ozrz, and the potential energy of the attractive inverse square field F = —(K /r>) 7
isV=-K/r.m

Example 6.9 Projectile motion

A body is projected from the ground with speed u# and lands on the flat roof of a build-
ing of height 4. Find the speed with which the projectile lands. [Assume uniform
gravity and no air resistance.]

Solution

Since uniform gravity is a conservative field with potential energy mgz, energy con-
servation applies in the form

%mlvlz—}—mgz:E,

where O is the initial position of the projectile and Oz points vertically upwards.
From the initial conditions, £ = %muz. Hence, when the body lands,
%m| vE 2+ mgh = %muz,

where v’ is the landing velocity. The landing speed is therefore

12
|vL| = (u2—2gh> .

Thus, energy conservation determines the speed of the body on landing, but not its
velocity. B

Example 6.10 Escape from the Moon

A body is projected from the surface of the Moon with speed u in any direction. Show
that the body cannot escape from the Moon if u> < 2MG /R, where M and R are the
mass and radius of the Moon. [Assume that the Moon is spherically symmetric.]

Solution

If the Moon is spherically symmetric, then the force F that it exerts on the body is
given by F = —(mMG /r?)7, where m is the mass of the body, and r is the position
vector of the body relative to an origin at the centre of the Moon. This force is a
conservative field with potential energy V = —mM G /r. Hence energy conservation
applies in the form

mMG
Zmlvl —’— =F,

and, from the initial conditions, E = %mu2 — (mMG)/R. Thus the energy conserva-
tion equation is

1 1
2
= 2MG | -——=.
|v] =u? + ( R)
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6.5

Since the left side of the above equation is positive, the values of r that occur in the
motion must satisfy the inequality

2 I 1
u+2MG|-—-—=|=>0.

r R
If the body is to escape, this inequality must hold for arbitrarily large r. This means
that the condition

2MG
u>—=—=>0

R
is necessary for escape. Hence if u> < 2M G /R, the body cannot escape. The inter-
esting feature here is that the ‘escape speed’ is the same for all directions of projection
from the surface of the Moon. (The special case in which the body is projected verti-
cally upwards was solved in Chapter 4.) B

Example 6.11 Stability of equilibrium in a 3-D conservative field

A particle P of mass m can move under the gravitational attraction of two particles,
of equal mass M, fixed at the points (0, 0, ££a). Show that the origin O is a position
of equilibrium, but that it is not stable. [This illustrates the general result that no
free-space static gravitational field can provide a position of stable equilibrium.]

Solution

When P is at O, the fixed particles exert equal and opposite forces so that the total
force on P is zero. The origin is therefore an equilibrium position for P.

Just as in rectilinear motion, O will be a position of stable equilibrium if the
potential energy function V (x, y, z) has a minimum at O. This means that the value
of V at O must be less than its values at a/l nearby points. But at points on the z-axis
betweenz = —gandz = a

V0.0, 7) = _mMG B mMG _ _2a2me’
a—z a—+z ac —z

which has a maximum at z = 0. Hence the equilibrium at O is unstable to disturbances
in the z-direction. W

ENERGY CONSERVATION IN CONSTRAINED MOTION

Some of the most useful applications of energy conservation occur when the mov-

ing particle is subject to geometrical constraints, such as being connected to a fixed point

by a light inextensible string, or being required to remain in contact with a fixed rigid

surface (see section 4.2). Since constraint forces are not known beforehand one may won-

der how to find the work that they do. The answer is that, in the idealised problems that

we study, the work done by the constraint forces is often zero. In these cases the con-
straint forces make no contribution to the energy principle and they can be disregarded.
Situations in which constraint forces do no work include:
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R

FIGURE 6.4 The particle P slides over the
fixed smooth surface S. The reaction R is
normal to S and hence perpendicular to v, the
velocity of P.

Some constraint forces that do no work

e A particle connected to a fixed point by a light inextensible string; here the string
tension does no work.

e A particle sliding along a smooth fixed wire; here the reaction of the wire does
no work.

e A particle sliding over a smooth fixed surface; here the reaction of the surface
does no work.

Consider for example the case of a particle P sliding over a smooth fixed surface S as
shown in Figure 6.4. Because S is smooth, any reaction force R that it exerts must always
be normal to S. But, since P remains on S, its velocity v must always be tangential to S.
Hence R is always perpendicular to v so that R - v = 0. Thus the rate of working of R
is zero and so R makes no contribution to the energy principle. Very similar arguments
apply to the other two cases.

We may now extend the use of conservation of energy as follows:

Energy conservation in constrained motion

When a particle moves in a conservative force field and is subject to constraint
forces that do no work, the sum of its kinetic and potential energies remains con-
stant in the motion.

Example 6.12 The snowboarder

A snowboarder starts from rest and descends a slope, losing 320 m of altitude in the
process. What is her speed at the bottom? [Neglect all forms of resistance and take
g=10ms2]
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Solution

The snowboarder moves under uniform gravity and the reaction force of the smooth
hillside. Since this reaction force does no work, energy conservation applies in the
form

Imlv|® +mgz =E,

where m and v are the mass and velocity of the snowboarder, and z is the altitude of
the snowboarder relative to the bottom of the hill. If the snowboarder starts from rest
at altitude %, then E = 0 + mgh. Hence, at the bottom of the hill where z = 0, her
speed is

lv] = (2gh)'/?,

just as if she had fallen down a vertical hole! This speed evaluates to 80 ms~ ', about
180 mph. [At such speeds, air resistance would have an important influence.] B

Our next example concerns a particle constrained to move on a vertical circle. This is
one of the classical applications of the energy conservation method. There are two distinct
cases: (i) where the particle is constrained always to remain on the circle, or (ii) where
the particle is constrained to remain on the circle only while the constraint force has a
particular sign.

Example 6.13 Motion in a vertical circle

A fixed hollow sphere has centre O and a smooth inner surface of radius b. A particle
P, which is inside the sphere, is projected horizontally with speed u from the lowest
interior point (see Figure 6.5). Show that, in the subsequent motion,

v2 = u? —2gb(1 — cosh),
provided that P remains in contact with the sphere.

Solution

While P remains in contact with the sphere, the motion is as shown in Figure 6.5.
The forces acting on P are uniform gravity mg and the constraint force N, which
is the normal reaction of the smooth sphere. Since N is always perpendicular to v
(the circumferential velocity of P), it follows that N does no work. Hence energy
conservation applies in the form

2

%mv —mgbcos6 = E,

where m is the mass of P, and the zero level of the potential energy is the horizontal
plane through O. Since v = u when 6 = 0, it follows that £ = %mu2 — mgb and the
energy conservation equation becomes

v2 = u® —2gb(1 — cosh), (6.17)



148 Chapter 6 Energy conservation

U:bé

FIGURE 6.5 Particle P slides on the smooth
inner surface of a fixed sphere. The motion
takes place in a vertical plane through the
centre O.

as required. This gives the value of v as a function of # while P remains in contact
with the sphere. B

Question The reaction force
Find the reaction force N as a function of 9.

Answer

Once the motion is determined (for example by equation (6.17)), the unknown con-
straint forces may be found by using the Second Law in reverse. In the present case,

N
consider the component of the Second Law F = ma in the direction P O. This gives
N —mgcost = mv?/b,

where we have made use of the formula (2.17) for the acceleration of a particle in
general circular motion. On using the formula for v? from equation (6.17), we obtain

2
N = % + mg(3cosf —2). (6.18)

This gives the value of N as a function of & while P remains in contact with the
sphere. B

Question Does P leave the surface of the sphere?

For the particular case in which u = (3gh)!/2, show that P will leave the surface of
the sphere, and find the value of 6 at which it does so.

Answer
When u = (3gb)'/?, the formulae (6.17), (6.18) for v> and N become

v? = gh(1 4 2cosb), N = mg(l +3cosh).

If P remains in contact with the sphere, then it comes to rest when v = 0, that is,
when cos & = —1/2. This first happens when 6 = 120° (a point on the upper half of
the sphere, higher than O). If P were threaded on a circular wire (from which it could
not fall off) this is exactly what would happen; P would perform periodic oscillations
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in the range —120° < 6 < 120°. However, in the present case, the reaction N is
restricted to be positive and this condition will be violated when 6 > cos™!(—1/3) ~
109°. Since this angle is less than 120°, the conclusion is that P loses contact with
the sphere when # = cos™!(—1/3); at this instant, the speed of P is (gh/3)'/%. P
then moves as a free projectile until it strikes the sphere. B

Question Complete circles

How large must the initial speed be for P to perform complete circles?

Answer

For complete circles to be executed, it is necessary (and sufficient) that v > 0 and
N > 0 at all times, that is,

u?> >2gb(1 —cos6) and  u® > gh(2 —3cosh)

for all values of 6. For these inequalities to hold for all 6, the speed u must satisfy
u?> > 4gb and u?> > 5gb respectively. Since the second of these conditions implies
the first, it follows that P will execute complete circles if u> > 5gh. B

Example 6.14 Small oscillations in constrained motion

A particle P of mass m can slide freely along a long straight wire. P is connected
to a fixed point A, which is at a distance 4a from the wire, by a light elastic cord of
natural length 3¢ and strength «. Find the approximate period of small oscillations of
P about its equilibrium position.

Solution

Suppose P has displacement x from its equilibrium position. In this position, the
length of the cord is (16a” 4 x%)!/2 and its potential energy V is

172 2
V= %oz [(16a2 +x2> — 3ai|
1/2
= %a [25a2 +x2 —6a <l6a2 + xz) ] .
The energy conservation equation for P is therefore
1,22 1 2 2 2 2\/2
smx” + sa|25a” + x —6a(16a —|—x) =F,
which, on neglecting powers of x higher than the second, becomes
2
1, :2 1 2, X
> > — | =E.
FMX" + 50 [a + 1 i|

On differentiating this equation with respect to ¢, we obtain the approximate lin-
earised equation of motion

o
¥+ —x=0.
mx+4x
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This is the SHM equation with w?> = a/4m. It follows that the approximate period
of small oscillations about x = 0 is 47 (m/a)'/?. W

Energy conservation from a physical viewpoint

Suppose that a particle P of mass m can move on the x-axis and is connected to a fixed
post at x = —a by a light elastic spring of natural length @ and strength «. Then the force
F (x) exerted on P by the spring is given by F = —ax, where x is the displacement of P
in the positive x-direction. This force field has potential energy V = %ozx2 and the energy
conservation equation for P takes the form

%mv2 + %oex2 =F, (6.19)

where v = x. Here, the spring is regarded merely as an agency that supplies a force field with
potential energy V = %ozx2. However, there is a much more satisfying interpretation of the
energy conservation principle (6.19) that can be made.

To see this we consider the spring as described above, but now with no particle attached
to its free end. Suppose that the spring is in equilibrium (with its free end at x = 0) when an
external force G (¢) is applied there. This force is initially zero and increases so that, at any
time ¢, the spring has extension X = G(¢)/«. Suppose that this process continues until the
spring has extension A. Then the total work done by the force G (¢) in producing this extension

is given by

T . T dx A : )
/ G(t)th:/ aX —dt =/ aXdX = saA”.
0 0 dt 0
Since the force exerted by the fixed post does no work, the fotal work done by the external
forces in producing the extension A is %oz A?. Suppose now that the spring is ‘frozen’ in its
extended state (by being propped open, for example) while the particle P is connected to the
free end. The system is then released from rest. The energy conservation equation for P is
given by equation (6.19), where, from the initial condition v = 0 when x = A, the total energy
E = %aAZ. This gives

%mv2 + %ozx2 = %ozAz. (6.20)
Thus, the total energy in the subsequent motion is equal to the original work done in stretching
the spring. The natural physical interpretation of this is that the spring is able to store the work
that is done upon it as internal energy. Then, when the particle is connected and the system
released, this stored energy is available to be transferred to the particle in the form of kinetic
energy. Equation (6.20) can thus be interpreted as an energy conservation principle for the
particle and spring together, as follows: In any motion of the particle and spring, the sum
of the kinetic energy of the particle and the internal energy of the spring remains constant. In
this interpretation, the particle has no potential energy; instead, the spring has internal energy.

In the above example, the particle and the spring can pass energy to each other, but the
total of the two energies is conserved. This is the essential nature of energy. It is an entity that
can appear in different forms but whose total is always conserved. Energy is probably the
most important notion in the whole of physics. However, it should be remembered that, in the
context of mechanics, it is not usual to take account of forms of energy such as heat or light.
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As aresult, we will find situations (inelastic collisions, for example) in which energy seems to

disappear. There is no contradiction in this; the energy has simply been transferred into forms
that we choose not to recognise.

Problems on Chapter 6

Answers and comments are at the end of the book.

Harder problems carry a star ().

Unconstrained motion

6.1 A particle P of mass 4 kg moves under the action of the force F = 4i 4 12¢> j N, where
t is the time in seconds. The initial velocity of the particle is 2i 4+ j + 2k ms~!. Find the
work done by F, and the increase in kinetic energy of P, during the time interval 0 < ¢ < 1.
What principle does this illustrate?

6.2 In a competition, a man pushes a block of mass 50 kg with constant speed 2 ms~! up a
smooth plane inclined at 30° to the horizontal. Find the rate of working of the man. [Take
g=10ms2]

6.3 An athlete putts a shot of mass 7 kg a distance of 20 m. Show that the athlete must do to
at least 700 J of work to achieve this. [ Ignore the height of the athlete and take g = 10 ms™2.]

6.4 Find the work needed to lift a satellite of mass 200 kg to a height of 2000 km above the
Earth’s surface. [Take the Earth to be spherically symmetric and of radius 6400 km. Take the
surface value of g to be 9.8 ms™2.]

6.5 A particle P of unit mass moves on the positive x-axis under the force field

36 9
F=X—3—; (X>0).

Show that each motion of P consists of either (i) a periodic oscillation between two extreme
points, or (ii) an unbounded motion with one extreme point, depending upon the value of the
total energy. Initially P is projected from the point x = 4 with speed 0.5. Show that P
oscillates between two extreme points and find the period of the motion. [You may make use
of the formula

x—a)yb-x1/2 2

b xdx w(a + b)
f [ &

Show that there is a single equilibrium position for P and that it is stable. Find the period
of small oscillations about this point.

6.6 A particle P of mass m moves on the x-axis under the force field with potential energy
V = Volx /b)4, where V) and b are positive constants. Show that any motion of P consists
of a periodic oscillation with centre at the origin. Show further that, when the oscillation has
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amplitude a, the period 7 is given by

m\'"? 0?2 [ dg
=22 (5) T e

[Thus, the larger the amplitude, the shorter the period!]

6.7 A particle P of mass m, which is on the negative x-axis, is moving towards the origin
with constant speed #. When P reaches the origin, it experiences the force F = —K xz, where
K is a positive constant. How far does P get along the positive x-axis?

6.8 A particle P of mass m moves on the x-axis under the combined gravitational attraction
of two particles, each of mass M, fixed at the points (0, +a, 0) respectively (see Figure 3.3).
Example 3.4 shows that the force field F (x) acting on P is given by

_ 2mMGx
T (@ 23
Find the corresponding potential energy V (x).

Initially P is released from rest at the point x = 3a/4. Find the maximum speed achieved
by P in the subsequent motion.

6.9 A particle P of mass m moves on the axis Oz under the gravitational attraction of a
uniform circular disk of mass M and radius a as shown in Figure 3.6. Example 3.6 shows that
the force field F (z) acting on P is given by

_ 2mMG 1 z
) (@2 + )12
Find the corresponding potential energy V (z) for z > 0.

Initially P is released from rest at the point z = 4a/3. Find the speed of P when it hits
the disk.

(z > 0).

6.10 A catapult is made by connecting a light elastic cord of natural length 2a and strength o
between two fixed supports, which are distance 2a apart. A stone of mass m is placed at the
center of the cord, which is pulled back a distance 3a/4 and then released from rest. Find the
speed with which the stone is projected by the catapult.

6.11 A light spring of natural length a is placed on a horizontal floor in the upright position.
When a block of mass M is resting in equilibrium on top of the spring, the compression of the
spring is a/15. The block is now lifted to a height 3a/2 above the floor and released from rest.
Find the compression of the spring when the block first comes to rest.

6.12 A particle P carries a charge e and moves under the influence of the static magnetic field
B (r) which exerts the force F = ev x B on P, where v is the velocity of P. Show that P
travels with constant speed.

6.13% A mortar shell is to be fired from level ground so as to clear a flat topped building of
height 4 and width a. The mortar gun can be placed anywhere on the ground and can have
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any angle of elevation. What is the least projection speed that will allow the shell to clear the
building? [Hint How is the reqired minimum projection speed changed if the mortar is raised
to rooftop level?]

For the special case in which & = %a, find the optimum position for the mortar and the
optimum elevation angle to clear the building.

If you are a star at electrostatics, try the following two problems:

6.14% An earthed conducting sphere of radius a is fixed in space, and a particle P, of mass
m and charge ¢, can move freely outside the sphere. Initially P is a distance b ( > a) from the
centre O of the sphere when it is projected directly away from O. What must the projection
speed be for P to escape to infinity? [Ignore electrodynamic effects. Use the method of images
to solve the electrostatic problem.]

6.15% An uncharged conducting sphere of radius a is fixed in space and a particle P, of mass
m and charge g, can move freely outside the sphere. Initially P is a distance b ( > a) from the
centre O of the sphere when it is projected directly away from O. What must the projection
speed be for P to escape to infinity? [Ignore electrodynamic effects. Use the method of images
to solve the electrostatic problem.]

Constrained motion

6.16 A bead of mass m can slide on a smooth circular wire of radius a, which is fixed in
a vertical plane. The bead is connected to the highest point of the wire by a light spring of
natural length 3a/2 and strength A. Determine the stability of the equilibrium position at the
lowest point of the wire in the cases (i) « = 2mg/a, and (ii) A = Smga.

6.17 A smooth wire has the form of the helix x = acosf, y = asinf, z = b6, where 6 is
a real parameter, and a, b are positive constants. The wire is fixed with the axis Oz pointing
vertically upwards. A particle P, which can slide freely on the wire, is released from rest at the
point (a, 0, 2 b). Find the speed of P when it reaches the point (a, 0, 0) and the time taken
for it to do so.

6.18 A smooth wire has the form of the parabola z = x2/2b, y = 0, where b is a positive
constant. The wire is fixed with the axis Oz pointing vertically upwards. A particle P, which
can slide freely on the wire, is performing oscillations with x in the range —a < x < a. Show
that the period t of these oscillations is given by

1/2

4 ¢ b+ x? d
Ty =)

By making the substitution x = a sin ¢ in the above integral, obtain a new formula for 7. Use
this formula to find a two-term approximation to 7, valid when the ratio a/b is small.

6.19% A smooth wire has the form of the cycloid x = ¢(0 4+ sinf), y =0,z = ¢(1 — cos6),
where c is a positive constant and the parameter 6 lies in the range —m < 6 < m. The wire
is fixed with the axis Oz pointing vertically upwards. [Make a sketch of the wire.] A particle
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initial position @ "~

FIGURE 6.6 The swing of the pendulum is obstructed by a fixed peg.

can slide freely on the wire. Show that the energy conservation equation is

(1 + cosf) 6% + E(1 — cos 0) = constant.
c

A new parameter u is defined by u = sin %9. Show that, in terms of u, the equation of motion
for the particle is
.. 8 )
i — ) u.
+ <4c

Deduce that the particle performs oscillations with period 4w (c/g)
amplitude!

1/2independent of the

6.20 A smooth horizontal table has a vertical post fixed to it which has the form of a circular
cylinder of radius a. A light inextensible string is wound around the base of the post (so that
it does not slip) and its free end of the string is attached to a particle that can slide on the
table. Initially the unwound part of the string is taut and of length 4a/3. The particle is then
projected horizontally at right angles to the string so that the string winds itself on to the post.
How long does it take for the particle to hit the post? [ You may make use of the formula

/(1 +¢9)!'2dg = 3¢(1+¢H"? + Jsinh~" ¢ ]

6.21 A heavy ball is suspended from a fixed point by a light inextensible string of length
b. The ball is at rest in the equilibrium position when it is projected horizontally with speed
(7gb/2)'/2. Find the angle that the string makes with the upward vertical when the ball begins
to leave its circular path. Show that, in the subsequent projectile motion, the ball returns to its
starting point.

6.22% A new avant garde mathematics building has a highly polished outer surface in the
shape of a huge hemisphere of radius 40 m. The Head of Department, Prof. Oldfart, has his
student, Vita Youngblood, hauled to the summit (to be photographed for publicity purposes)
but a small gust of wind causes Vita to begin to slide down. Oldfart’s displeasure is increased
when Vita lands on (and severely damages) his car which is parked nearby. How far from the
outer edge of the building did Oldfart park his car? Did he get what he deserved? (Happily,
Vita escaped injury and found a new supervisor.)

6.23#% % A heavy ball is attached to a fixed point O by a light inextensible string of length 2a.
The ball is drawn back until the string makes an acute angle « with the downward vertical and
is then released from rest. A thin peg is fixed a distance a vertically below O in the path of
the string, as shown in Figure 6.6. In a game of skill, the contestant chooses the value of « and
wins a prize if the ball strikes the peg. Show that the winning value of « is approximately 86°.



Chapter Seven

Orbits in a central field

including Rutherford scattering

KEY FEATURES

For motion in general central force fields, the key results are the radial motion equation and
the path equation. For motion in the inverse square force field, the key formulae are the
E-formula, the L-formula and the period formula.

The theory of orbits has a special place in classical mechanics for it was the desire
to understand why the planets move as they do which provided the major stimulus in
the development of mechanics as a scientific discipline. Early in the seventeenth cen-
tury, Johannes Kepler * published his ‘laws of planetary motion’, which he deduced by
analysing the accurate experimental observations made by the astronomer Tycho Brahe."

* The German mathematician and astronomer Johannes Kepler (1571-1630) was a firm believer in the
Copernican (heliocentric) model of the solar system. In 1596 he became mathematical assistant to Tycho
Brahe, the foremost observational astronomer of the day, and began working on the intractable problem
of the orbit of Mars. This work continued after Tycho’s death in 1601 and, after much labour, Kepler
showed that Tycho’s observations of Mars corresponded very precisely to an elliptic orbit with the Sun at
a focus. This result, together with the ‘law of areas’ (the second law) was published in 1609. Kepler then
found similar orbits for other planets and his third law was published in 1619.

Tycho Brahe (1546-1601) was a Danish nobleman. He had a lifelong interest in observational astronomy
and developed a succession of new and more accurate instruments. The King of Denmark gave him
money to create an observatory and also the island of Hven on which to build it. It was here that Tycho
made his accurate observations of the planets from which Kepler was able to deduce his laws of planetary
motion. Tycho’s other claim to fame is that he had a metal nose. When the original was cut off in a duel,
he had an artificial nose made from an alloy of silver and gold. Tycho is perhaps better remembered for
his nose job than he is for a lifetime of observations.

—
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P

N4

FIGURE 7.1 Each planet P moves on an
elliptical path with the Sun S at one focus.
The area A is that referred to in Kepler’s
second law.

Kepler’s laws of planetary motion

First law Each of the planets moves on an elliptical path with the Sun at one focus
of the ellipse.

Second law For each of the planets, the straight line connecting the planet to the
Sun sweeps out equal areas in equal times.

Third law The squares of the periods of the planets are proportional to the cubes of
the major axes of their orbits.

The problem of determining the law of force that causes the motions described by
Kepler (and proving that it does so) was the most important scientific problem of the sev-
enteenth century. In what must be the finest achievement in the whole history of science,
Newton’s publication of Principia in 1687 not only proved that the inverse square law of
gravitation implies Kepler’s laws, but also laid down the entire framework of the science
of mechanics. Orbit theory is just as important today, the principal fields of application
being astronomy, particle scattering and space travel.

In this chapter, we treat the problem of a particle moving in a central force field with a
fixed centre; this is called the one-body problem. The assumption that the centre of force
is fixed is an accurate approximation in the context of planetary orbits. The combined
mass of all the planets, moons and asteroids is less than 0.2% of the mass of the Sun. We
therefore expect the motion of the Sun to be comparatively small, as are inter-planetary
influences.* However, we do not confine our interest to motion under the attractive inverse
square field. At first, we consider motion in any central force field with a fixed centre. This
part of the theory will then apply not only to gravitating bodies, but also (for example) to
the scattering of neutrons. The important cases of inverse square attraction and repulsion
are then examined in greater detail.

* The more general two-body problem is treated in Chapter 10. The two-body theory must be used to
analyse problems in which the masses of the two interacting bodies are comparable, as they are in binary
stars.
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y

FIGURE 7.2 Each orbit of a particle P in a central force field with centre O
takes place in a plane through O. The position of P in the plane of motion is
specified by polar coordinates r, 6 with centre at O.

7.1 THE ONE-BODY PROBLEM - NEWTON’S EQUATIONS

First we define what we mean by a central force field.

Definition 7.1 Central field A force field F (r) is said to be a central field with centre
O if it has the form

F(r)=F()7,

wherer = |r| and¥ = r/r. A central field is thus spherically symmetric about its centre.

A good example of a central force is the gravitational force exerted by a fixed point
mass. Suppose P has mass m and moves under the gravitational attraction of a point mass
M fixed at the origin. In this case, the force acting on P is given by the law of gravitation
to be

mMG __
2z 0

F(r)=—

where G is the constant of gravitation. This is a central field with

mMG

F(r)y=— PR

Each orbit lies in a plane through the centre of force

The first thing to observe is that, when a particle P moves in a central field with centre
O, each orbit of P takes place in a plane through O, as shown in Figure 7.2. This is the
plane that contains O and the initial position and velocity of P. One may give a vectorial
proof of this, but it is quite clear on symmetry grounds that P will never leave this plane.
Each motion is therefore two-dimensional and we take polar coordinates r, 6 (centred on
0) to specify the position of P in the plane of motion. On using the formulae (2.14) for
the components of acceleration in polar coordinates, the Newton equations of motion for
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FIGURE 7.3 The angular momentum mr26 = mp v, where
v=|v|

P become

m (i’ _ réz) — F(r). 7.1
m (rf + 2/0) = 0. (7.2)

Angular momentum conservation

Equation (7.2) can be written in the form

which can be integrated with respect to ¢ to give
mr?6 = constant.

The quantity mr26, which is a constant of the motion, is called the angular momentum*
of P. The general theory of angular momentum (and its conservation) is described in
Chapter 11, but for now it is sufficient to regard ‘angular momentum’ simply as a name that
we give to the conserved quantity mr26. This angular momentum has a simple kinematical
interpretation. From Figure 7.3 it follows that

. . v
mr26 = mr(ré) = mrvg = m(r cosa) ( 0 )
cosa
=mpv,

where p is the perpendicular distance of O from the tangent to the path of P, and v =
|v|. This formula provides the usual way of calculating the constant value the angular
momentum from the initial conditions.

* More precisely, it is the angular momentum of the particle about the axis {O, k}, where the unit vector k
is perpendicular to the plane of motion (see Figure 7.2). The angular momentum of P about the point O
is the vector quantity mrxv, but the axial angular momentum used in the present chapter is the component
of this vector in the k-direction.
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Newton equations in specific form

It is usual and convenient to eliminate the mass m from the theory. If we write

E(r) =mf(r),

where f(r) is the outward force per unit mass, and let L (= rzé) be the angular momen-
tum per unit mass then the Newton equations (7.1), (7.2) reduce to the specific form

P —ro*= @), (7.3)
r*6 =1L, (7.4)
where L is a constant.™ Note that these equations apply to orbits in any central field. The

second of these equations appears throughout this chapter and we will call it the angular
momentum equation.

Angular momentum equation
) (7.5)
r20 =L

Kepler’s second law

Angular momentum conservation is equivalent to Kepler’s second law. The area A shown
in Figure 7.1 can be expressed (with an obvious choice of initial line) as

0
A:%f r2de.
0

Then, by the chain rule,

d d do .
jzjx—z%rzé‘:%L,
dt do dt

where L is the constant value of the angular momentum. Thus A increases at a constant
rate, which is what Kepler’s second law says. Thus Kepler’s second law holds for al/l
central force fields, not just the inverse square law.

7.2 GENERAL NATURE OF ORBITAL MOTION

In our first method of solution, we take as our starting point the principles of
conservation of angular momentum and energy.

* Without losing generality, we will take L to be positive, that is, we suppose 6 is increasing with time.
(The special case in which L = 0 corresponds to rectilinear motion through O.)
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Energy conservation
Every central field F = mf (r)7 is conservative with potential energy mV (), where

dv

ﬂm=—E; (7.6)

Energy conservation then implies that
T+V=E,

where T is the specific kinetic energy, V is the specific potential energy, and the constant
E is the specific total energy. On replacing T by its expression in polar coordinates, we
obtain

Energy equation
Ui - (7.7)
3PP+ @0+ V() =E

as the energy conservation equation. The conservation equations (7.5), (7.7) are equiva-
lent to the Newton equations (7.1), (7.2) and are a convenient starting point for investigat-
ing the general nature of orbital motion.

The radial motion equation

From the angular momentum conservation equation (7.5), we have
=1L/ r?

and, on eliminating 6 from the energy conservation equation (7.7), we obtain

1.2 L2
5T +V(r)+2r—2:E, (7.8)

an ODE for the radial distance r (). We call this the radial motion equation for the
particle P. Equation (7.8) (together with the initial conditions) is sufficient to determine
the variation of » with ¢, and the angular momentum equation (7.5) then determines the
variation of & with ¢. Unfortunately, for most laws of force, this procedure cannot be
carried through analytically. However, it is still possible to make important deductions
about the general nature of the motion.

Equation (7.8) can be written in the form

%1;2 +V*(r)=E, (7.9)

where

V) =V + o (7.10)
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bounded unbounded
E ¢- .

FIGURE 7.4 The effective potential V* shown admits bounded and
unbounded orbits, depending on the initial conditions.

The function V*(r) is called the effective potential of the radial motion and its use
reduces the radial motion of P to a rectilinear problem. It must be emphasised
though that the whole motion is two-dimensional since 6 is increasing in accordance
with (7.5).

Because r satisfies the radial motion equation (7.9), the variation of r with ¢ can be
analysed by using the same methods as were used in Chapter 6 for rectilinear particle
motion. In particular, the general nature of the motion depends on the shape of the graph
of V* (which depends on L) and the value of E. The values of the constants L and E
depend on the initial conditions.

Suppose for example that the law of force and the initial conditions are such that V*
has the form shown in Figure 7.4 and that £ has the value shown. Then, since T > 0, it
follows that the motion is restricted to those values r that satisfy the inequality

V*(r) < E,

with equality holding when 7 = 0. There are two possible motions, in each of which the
variation of r with ¢ is governed by the radial motion equation (7.8).

(i) a bounded motion in which r oscillates in the range [a, b]. In this motion, r(¢) is
a periodic function.*

(i1) an unbounded motion in which r lies in the interval [c¢, 00). In this motion r is
not periodic but decreases until the minimum value r = c¢ is achieved and then
increases without limit.

The bounded orbit. A typical bounded orbit is shown in Figure 7.5 (left). The orbit
alternately touches the inner and outer circles r = a and r = b, which corresponds to
the radial coordinate r oscillating in the interval [a, b]. Without losing generality, suppose
that P is at the point By when ¢t = 0 and that O B is the line & = (0. Consider the part of

* The fact that r(¢) is periodic does not mean that the whole motion must be periodic.
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C

bounded orbit unbounded orbit

FIGURE 7.5 Typical bounded and unbounded orbits.

the orbit between A and Aj. It follows from the governing equations (7.8), (7.5) that r is
an even function of ¢ while 6 is an odd function of ¢. This means that the segment B A; of
the orbit is just the reflection of the segment A B in the line O B;. This argument can be
repeated to show that the segment A, B> is the reflection of the segment B A3 in the line
O A3, and so on. Thus the whole orbit can be constructed from a knowledge of a single
segment such as A1 B;.

It follows from what has been said that the angles Ala Bi, 316 Aj, A2582 (and
so on) are all equal. Let o be the common value of these angles. Then the orbit will
eventually close itself if some integer multiple of « is equal to some whole number of
complete revolutions, that is, if «/m is a rational number. There is no reason to expect
this condition to hold and, in general, it does not. It follows that these bounded orbits are
not generally closed. The closed orbits associated with the attractive inverse square field
are therefore exceptional, rather than typical!

The unbounded orbit. In the unbounded case there are just two segments both of which
are semi-infinite (see Figure 7.5 (right)). The segment in which P recedes from O is the
reflection of the segment in which P approaches O in the line OC.

Apses and apsidal distances

The points at which an orbit touches its bounding circles are important and are given a
special name:

Definition 7.2 Apse, apsidal distance, apsidal angle A point of an orbit at which
the distance O P achieves its maximum or minimum value is called an apse of the orbit.
These maximum and minimum distances are called the apsidal distances and the angu-
lar displacement between successive apses (the angle o in Figure 7.5 (left)) is called the
apsidal angle.
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FIGURE 7.6 Left: The effective potential V* for the attractive inverse square force. Right: The
path of the asteroid around the Sun. C is the point of closest approach.

In the special case of orbits around the Sun, the point of closest approach is called the

perihelion and the point of maximum distance the aphelion. The corresponding terms for

orbits around the Earth are perigee and apogee.

The apsidal distances, the maximum and minimum distances of P from O, are easily

found from the radial motion equation (7.8). At an apse, 7/ = 0 and so r must satisty

L2
Vv — =FE. 7.11
")+ 5 (7.11)

The positive roots of this equation are the apsidal distances.

Example 7.1 Asteroid deflected by the Sun

A particle P of mass m moves in the central force field —(my/ r2)F, where y is a
positive constant. Show that bounded and unbounded orbits are possible depending
on the value of E.

An asteroid is approaching the Sun from a great distance. At this time it has
constant speed # and is moving in a straight line whose perpendicular distance from
the Sun is p. Find the equation satisfied by the apsidal distances of the subsequent
orbit. For the special case in which u> = 4MoG/3p (where Mg, is the mass of the
Sun), find (i) the distance of closest approach of the asteroid to the Sun, and (ii) the
speed of the asteroid at the time of closest approach.

Solution
For this law of force, V = —y /r and the effective potential V* is
V* = _Z L_2
roo2r?

This V* has the form shown in Figure 7.6 (left), from which it is clear that the orbit
will be

(i) bounded if £ < 0,
(i) unbounded if £ > 0,

whatever the value of L.
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In the asteroid example, the constant y = MG, where Mg is the mass of the
Sun and G is the constant of gravitation. With the given initial conditions, L = pu
and E = u?/2, so that E > 0 and the orbit is unbounded.

The equation (7.11) for the apsidal distances becomes

that is,
ur? + 2yr — p2u2 =0,

where y = MpG.
For the special case in which u?> = 4MyG /3 p, this equation simplifies to

2r2 +3pr —2p* = 0.

The distance of closest approach of the asteroid is the positive root of this quadratic
equation, namely r = p/2.

The speed V of the asteroid at closest approach is easily deduced from angular
momentum conservation. Initially, L = pu and, at closest approach, L = (p/2)V. It
follows that V = 2u.

7.3 THE PATH EQUATION

In principle, the method of the last section allows us to determine the complete
motion of the orbiting body as a function of the time. However, the procedure is usually
too difficult to be carried through analytically. We can make the problem easier (and
make more progress) by seeking just the equation of the path taken by the body, and not
enquiring where the body is on this path at any particular time.

We start from the Newton equation (7.3) and try to eliminate the time by using the
angular momentum equation (7.5). In doing this it is helpful to introduce the new depen-
dent variable u, given by

w=1/r. (7.12)

This transformation has a magically simplifying effect. We begin by transforming 7/ and
7. By the chain rule,

. d (1 1 du do ( 26) du
r=—\- = ———= X — X — = —|\r JR—
dt \u u2 = de = dt deo

which, on using the angular momentum equation (7.5), gives

Lo (7.13)
F=—-L—. .
40
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A second differentiation with respect to ¢ then gives

d (d d? do d?
Y L (i I PV sy W el (7.14)
dr \ do de? = di do?

on using the angular momentum equation again.
The term 6% = L?u3 so that the Newton equation (7.3) is transformed into

d*u
—Lzuzﬁ —L%® = f(1/u),

that is,

The path equation
d’u f(1/u)

ag? Tt T T

(7.15)

This is the path equation. Its solutions are the polar equations of the paths that the body
can take when it moves under the force field F = mf (r)7.

Despite the appearance of the left side of equation (7.15), the path equation is not
linear in general. This is because the right side is a function of u, the dependent variable.
Only for the inverse square and inverse cube laws does the path equation become linear.
It is a remarkable piece of good luck that the inverse square law (the most important case
by far) is one of only two cases that can be solved easily.

Initial conditions for the path equation

Suitable initial conditions for the path equation are provided by specifying the values of u
and du/d6 when 6 = «, say. Since u = 1/r, the initial value of u is given directly by the
initial data. The value of du/d6 is not given directly but can be deduced from equation
(7.13) in the form

du_ P (7.16)
de L’ ’

where 7 and L are obtained from the initial data.

Example 7.2 Path equation for the inverse cube law

The engines of the starship Enterprise have failed and the ship is moving in a straight
line with speed V. The crew calculate that their present course will miss the planet
B —Zar by a distance p. However, B —Zar is known to exert the force
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G.

FIGURE 7.7 The path of the Enterprise around the planet B—Zar (B).

on any mass m in its vicinity. A measurement of the constant y reveals that

B SPZVZ

Show that the crew of the Enterprise will get a free tour around B —Zar before contin-
uing along their original path. What is the distance of closest approach and what is
the speed of the Enterprise at that instant?

Solution

For the given law of force, f(r) = —y/r> so that f(1/u) = —yu>. Also, from the
initial conditions, L = pV. The path equation is therefore

d’u yu
vy + u = BTG E
de? p2V2u2
which simplifies to
d’u u
-+ - =0,
do? + 9

on using the stated value of y. The general solution of this equation is
u = Acos(0/3) + Bsin(6/3).

The constants A and B can now be determined from the initial conditions. Take the
initial line & = 0 as shown in Figure 7.7. Then:

(i) The initial condition 7 = oo when 6 = 0 implies that u = 0 when 6 = 0. It
follows that A = 0.

(i1) The initial condition on du /d6 is given by (7.16) to be

du 7 -Vy 1

de L pV) p
when 6 = 0. It follows that B = 3/p.
The required solution is therefore

3
u="sin(0/3),
p
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that is

r=—>t __
3sin(0/3)
This is the polar equation of the path of the Enterprise, as shown in Figure 7.7. The
Enterprise recedes to infinity when sin(6/3) = 0 again, that is when 6§ = 3m. Thus
the Enterprise makes one circuit of B—Zar before continuing on as before.
The distance of closest approach is p/3 and is achieved when 6 = 37w /2. By
angular momentum conservation, the speed of the Enterprise at that instant is 3V. H

7.4 NEARLY CIRCULAR ORBITS

Although the path equation cannot be solved exactly for most laws of force, it is
possible to obtain approximate solutions when the body is slightly perturbed from a known
orbit. In particular, this can always be done when the unperturbed orbit is a circle with
centre O.

Suppose that a particle P moves in a circular orbit of radius a under the attractive
force f(r) per unit mass. This is only possible if its speed v satisfies v2/a = f(a), in
which case its angular momentum L is given by L? = @3 f(a). Suppose that P is now
slightly disturbed by a small radial impulse. The angular momentum is unchanged but P
now moves along some new path

1
u=—(1+§00)),
a

where & is a small perturbation. In terms of &, the path equation becomes

d*¢ L, a+9? a
a2 T f<1+s>'

This exact equation for £ is non-linear, but we will now approximate it by expanding the
right side in powers of £. On expanding the function f(r) in a Taylor series about r = a

we obtain
a B _ aé
f(1+é)_f(a 1+s>

_ at \ o £\
-1~ (755 ro+o ()
= f@—af @&+0(£).

and a simple binomial expansion gives

(1+s)—2:1—2s+0(52).

On combining these results together, the constant terms cancel and we obtain

d*& af' @y,
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on neglecting terms of order O (£2). This is the approximate linearised equation satisfied
by the perturbation & (0).

The general behaviour of the solutions of equation (7.17) depends on the sign of the
coefficient of £.

(i If
af'(a)

3
@

<0, (7.18)

then the solutions are linear combinations of real exponentials, one of which has
a positive exponent. In this case, the solution for & will not remain small, contrary
to assumption. The conclusion is that the original circular orbit is unstable.

(i) Alternatively, if

af’(a)
f(a)

Q=3+ > 0, (7.19)

then the solutions are linear combinations of real cosines and sines, which remain
bounded. The conclusion is that the original circular orbit is stable (at least to
small radial impulses).

Closure of the perturbed orbits

From now on we will assume that the stability condition (7.19) is satisfied. The general
solution of equation (7.17) then has the form

& = Acos Q20 + B sin Q6.

We see that the perturbed orbit will close itself after one revolution if €2 is a positive
integer. When the law of force is the power law

f@)=kr",
the perturbed orbit is stable for v > —3 and will close itself after one revolution if
v =m?— 3,

where m is a positive integer. The case m = 1 corresponds to inverse square attraction
and m = 2 corresponds to simple harmonic attraction. The exponents v = 6, 13, ...
are also predicted to give closed orbits. It should be remembered though that these are
only the predictions of the approximate linearised theory.™ It is possible (but not pretty)
to improve on the linear approximation by including quadratic terms in & as well as linear
ones. The result of this refined theory is that the powers v = —2 and v = 1 still give

* Tt makes no sense to say that an orbit approximately closes itself!
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closed orbits, but the powers v = 6, 13, ... do not. This shows that the power laws with
v = 6, 13, ... do not give perturbed orbits that close after one revolution, but the cases
v = —2and v = 1 are still not finally decided. Mercifully, there is no need to carry the

approximation procedure any further because all the paths corresponding to both inverse
square and simple harmonic attraction can be calculated exactly. It is found that, for
these two laws of force, all bounded orbits close after one revolution.* There remains the
possibility that the perturbed orbits might close themselves after more than one revolution,
but a similar analysis shows that this does not happen. We have therefore shown that the
only power laws for which all bounded orbits are closed are the simple harmonic and
inverse square laws. This result is actually true for all central fields (not just power laws)
and is known as Bertrand’s theorem.

Precession of the perihelion of Mercury

The fact that the inverse square law leads to closed orbits, whilst very similar laws do not,
provides an extremely sensitive test of the law of gravitation. Suppose for instance that
the attractive force experienced by a planet were

|4
fr) = 72te

(per unit mass), where y > 0 and |¢| is small. Then the value of €2 for a nearly circular
orbit is

Q=010-"?=1-1e+0(.

This perturbed orbit does not close but has apsidal angle «, where

v

b4
e T Y
QR 1-3e+0(?)

=n(l+ $e) + 0(e?).

Hence successive perihelions of the planet will not occur at the same point, but the per-
ihelion will advance ‘annually’ by the small angle we. The position of the perihelion
of a planet can be measured with great accuracy. For the planet Mercury it is found
(after all known perturbations have been subtracted out) that the perihelion advances by
43 (£0.5) seconds of arc per century, or 5 x 1077 radians per revolution. This correponds
toe = 1.6 x 1077 and a power of —2.00000016 instead of —2. Miniscule though this
discrepancy from the inverse square law seems, it is considerably greater than the error in
the observations and for a considerable time was something of a puzzle.

This puzzle was resolved in a striking fashion by the theory of general relativity,
published by Einstein in 1915. Einstein showed that one consequence of his theory was
that planetary orbits should precess slightly and that, in the case of Mercury, the rate of
precession should be 43 seconds of arc per century!

* In the inverse square case, the bounded orbits are ellipses with a focus at O, and, in the simple harmonic
case, they are ellipses with the centre at O.
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7.5 THE ATTRACTIVE INVERSE SQUARE FIELD

Because of its many applications to astronomy, the attractive inverse square field
is the most important force field in the theory of orbits. The same field occurs in particle
scattering when the two particles carry unlike electric charges. Because of these important
applications, we will treat the inverse square field in more detail than other fields. In par-
ticular, we will obtain formulae that enable inverse square problems to be solved quickly
and easily without referring to the equations of motion at all.

The paths

Suppose that f(r) = —y/r? where y > 0. Then f(1/u) = —yu? and the path equation
becomes

d*u y
ar T

where L is the angular momentum of the orbit. This has the form of the SHM equation
with a constant on the right. The general solution is

u=Acos<9+Bsin9+§,

which can be written in the form

;: %(1 +ecos(0 —a)), (7.20)
where e, o are constants with e > 0. This is the polar equation of a conic of eccentricity
e and with one focus at O; « is the angle between the major axis of the conic and the initial
line & = 0. If e < 1, then the conic is an ellipse; if ¢ = 1 then the conic is a parabola;
and when e > 1 the conic is the near branch of a hyperbola. The neccessary geometry
of the ellipse and hyperbola is summarised in Appendix A at the end of the chapter; the
special case of the parabolic orbit is of marginal interest and we will make little mention
of it.

Kepler’s first law

It follows from the above that the only bounded orbits in the attractive inverse square field
are ellipses with one focus at the centre of force. This is Kepler’s first law, which is
therefore a consequence of inverse square law attraction by the Sun. It would not be true
for other laws of force.

The L-formula and the E-formula

By comparing the path formula (7.20) with the standard polar forms given in Appendix
A, we see that the angular momentum L of the orbit is related to the conic parameters «,
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b by the formula

that is,

The L-formula
(7.21)
L*=yb%/a

We will call this result the L-formula. It applies to both elliptic and hyperbolic orbits.
It is the first of two important formulae that relate L, E, the dynamical constants of the
motion, to the conic parameters of the resulting orbit.

The second such formula involves the energy E. At the point of closest approach
r=c,

where V' is the speed of P when r = ¢. Since P is moving transversely at the point of
closest approach, it follows that cV = L, so that E may be written

on using the L-formula.

From this point on, the different types of conic must be treated separately. When the
orbit is an ellipse, ¢ = a(l — e), where e is the eccentricity, and @, b and e are related by
the formula

b2
62 =1—-—=
a2
Then E can be written
_ya*(l1—¢e?) y
C243(1—e)?  a(l —e)
__Y
2a°

Thus the total energy E in the orbit is directly connected to @, the semi-major axis of the
elliptical orbit. The parabolic and hyperbolic orbits are treated similarly and the full result,
which we will call the E-formula, is
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FIGURE 7.8 The asteroid A moves on a hyperbolic orbit
around the Sun § as a focus and is deflected through the

angle B.
The E-formula
Ellipse: E <0 E= —21
a
(7.22)
Parabola: E=0
Y
Hyperbola: E>0 E = +2—
a

Note that the type of orbit is determined solely by the sign of the total energy E. It
follows that that the escape condition (the condition that the body should eventually go
off to infinity) is simply that £ > 0. This useful result is true only for the inverse square
law.

Example 7.3 Asteroid deflected by the Sun

An asteroid approaches the Sun with speed V' along a line whose perpendicular dis-
tance from the Sun is p. Find the angle through which the asteroid is deflected by the
Sun.

Solution

In this case we have the attractive inverse square field with y = MG, where Mg

is the mass of the Sun. This problem can be solved from first principles by using the

path equation, but here we make short work of it by using the L- and E-formulae.
From the initial conditions, L = pV and E = %Vz. Since E > 0, the orbit is the

near branch of a hyperbola and the L- and E-formulae give

= MoGb® and %Vz = —l—MOG.

2v/2
%4
p a 2a
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It follows that

MoG
a = v, b= p-
The semi-angle o between the asymptotes of the hyperbola is then given (see
Appendix A) by
pV?
tanoy = — = .
a M@G

Let S8 be the angle through which the asteroid is deflected. Then (see Figure 7.8)
B =m — 2« and

MoG
Ve

tan(B/2) = tan(;r/2 — @) = cota =

Period of the elliptic orbit

Whatever the law of force, once the path of P has been found, the progress of P along
that path can be deduced from the angular momentum equation

20 =1L.

If we take & = 0 when ¢ = 0, then the time ¢ taken for P to progress to the point of the
orbit with polar coordintes r, 6 is given by

1%,
t=— r<do, (7.23)
L Joy

where r = r(0) is the equation of the path. In particular then, the period 7 of the elliptic
orbit is given by

Fortunately there is no need to evaluate the above integral since, for any path that closes

itself after one circuit,
2
3 / r?do = A,
0

where A is the area enclosed by the path. For the elliptical path, A = wab so that

2mwab
T = ,
L
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and on using the L-formula, the period of the elliptic orbit is given by:

The period formula

A\ (7.25)
T=2n|—
14

Kepler’s third law

In the case of the planetary orbits, y = MG, where M, is the mass of the Sun. Equation
(7.25) can then be written

2 472 3
Tt = a’. (7.26)
MoG

This is Kepler’s third law, which is therefore a consequence of inverse square law attrac-
tion by the Sun and would not be true for other laws of force.

Masses of celestial bodies

Once the constant of gravitation G is known, the formula (7.26) provides an accurate
way to find the mass of the Sun. The same method applies to any celestial body that has
a satellite. All that is needed is to measure the major axis 2a and the period t of the
satellite’s orbit.*

Question Finding the mass of Jupiter

The Moon moves in a nearly circular orbit of radius 384,000 km and period 27.32
days. Callisto, the fourth moon of the planet Jupiter, moves in a nearly circular orbit
of radius 1,883,000 km and period 16.69 days. Estimate the mass of Jupiter as a
multiple of the mass of the Earth.

Answer
Mj; =316Mg.

Astronomical units

For astronomical problems, it is useful to write the period equation (7.26) in astronomical
units. In these units, the unit of mass is the mass of the Sun (M), the unit of length (the
AU) is the semi-major axis of the Earth’s orbit, and the unit of time is the (Earth) year. On

* Tt should be noted that here we are neglecting the motion of the centre of force. We will see later that,
when this is taken into account, formula (7.26) actually gives the sum of the masses of the body and
its satellite. Usually, the satellite has a much smaller mass than the body and its contribution can be
disregarded.
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FIGURE 7.9 The eccentric angle i corresponding to the polar
angle 6.

substituting the data for the Earth and Sun into equation (7.26), we find that G = 472 in
astronomical units. Hence, in astronomical units the period formula becomes

Question The major axis of the orbit of Pluto
The period of Pluto is 248 years. What is the semi-major axis of its orbit?

Answer
3905AU. 1

Time dependence of the motion — Kepler’s equation

The formula (7.23) can be used to find how long it takes for P to progress to a general point
of the orbit. However, although the integration with respect to 6 can be done in closed
form, it is a very complicated expression. In order to obtain a manageable formula, we
make a cunning change of variable, replacing the polar angle 6 by the eccentric angle 1.
The relationship between these two angles is shown in Figure 7.9. Since CN = CF+F N,
it follows that

acosyr =ae+rcosb,
and, on using the polar equation for the ellipse (7.24) together with the formula b*> =
a(1 — €2), the relation between Y and O can be written in the symmetrical form
b2

(I —ecosy)(1 +ecosb) = ok (7.27)

Implicit differentiation of equation (7.27) with respect to i then gives

do b

_— (7.28)
dy  a(l —ecosy)
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after more manipulation.
We can now make the change of variable from 6 to ¥r. From (7.23) and (7.24)

p* [? do
[ =
a’L Jo (14 ecosf)?
bt (v 1 do
= — dlﬂ
a’L Jy (14 ecos8)? \dy

ab (Vv
:—/ (1 —ecosy)dy,
L Jo

_ab .
= f(lﬂ—esmllf),

on using (7.27), (7.28). Finally, on making use of the L-formula L2 = yb?/a, we obtain

Kepler’s equation

T . (7.29)

t=— (Y —esiny)
2w

where t (given by (7.25)) is the period of the orbit. This is Kepler’s equation which gives
the time as a function of position on the elliptical orbit.

If one needs to calculate the position of the orbiting body after a given time, then
equation (7.29) must be solved numerically for the eccentric angle . The corresponding
value of 6 is then given by equation (7.27) and the r value by equation (7.24) which, in
view of (7.27), can be written in the form

r=a(l—ecosy). (7.30)

The need to solve Kepler’s equation for the unknown ¥ was a major stimulus in the
development of approximate numerical methods for finding roots of equations.

Example 7.4 Kepler’s equation

A body moving in an inverse square attractive field traverses an elliptical orbit with
eccentricity e and period t. Find the time taken for the body to traverse the half of
the orbit that is nearer the centre of force.

Solution

The half of the orbit nearer the centre of force corresponds to the range —7 /2 < ¢ <
/2. The time taken is therefore

T (n ) 1 e
—z—e)=1z——].
T \2 2 7w
For example, Halley’s comet moves on an elliptic orbit whose eccentricity is almost

unity. It therefore spends only about 18% of its time on the half of its orbit that is
nearer the Sun.
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FIGURE 7.10 Two planets move on the circular
orbits A and B. A spacecraft is required to
depart from one planet and rendezvous with the
other planet at some point of its orbit. The
Hohmann orbit H achieves this with the least
expenditure of fuel.

7.6 SPACE TRAVEL — HOHMANN TRANSFER ORBITS

An important problem in space travel, and one that nicely illustrates the preceding
theory, is that of transferring a spacecraft from one planet to another (from Earth to Jupiter
say). In order to simplify the analysis, we will assume that both of the planetary orbits are
circular. We will also suppose that the spacecraft has already effectively been removed
from Earth’s gravity, but is still in the vicinity of the Earth and is orbiting the Sun on the
same orbit as the Earth. The object is to use the rocket motors to transfer the spacecraft
to the vicinity of Jupiter, orbiting the Sun on the same orbit as Jupiter. Like everything
else on board a spacecraft, fuel has to be transported from Earth at huge cost, so the
transfer from Earth to Jupiter must be achieved using the least mass of fuel. In our analysis
we will neglect the time during which the rocket engines are firing so that the engines
are regarded as delivering an impulse to the spacecraft, resulting in a sudden change of
velocity. After the initial firing impulse, the spacecraft is assumed to move freely under
the Sun’s gravitation until it reaches the orbit of Jupiter, when a second firing impulse is
required to circularise the orbit. This is called a two-impulse transfer.

If the two firings produce velocity changes of Av# and Av® respectively, then the
quantity Q that must be minimised if the least fuel is to be used is

0 = |Av| + |AvE).

The orbit that connects the two planetary orbits and minimises Q is called the Hohmann
transfer orbit™ and is shown in Figure 7.10. It has its perihelion at the lift-off point L and
its aphelion at the rendezvous point R. It is not at all obvious that this is the optimal orbit;
a proof is given in Appendix B at the end of the chapter. However, it is quite easy to find
its properties.

Since the perihelial and aphelial distances in the Hohmann orbit are A and B (the radii
of the orbits of Earth and Jupiter), it follows that

A=a(l —e), B =a(l+e),

* After Walter Hohmann, the German space research pioneer.
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so that the geometrical parameters of the orbit are given by

a=3imB+4 =24
T2 ’ B+ A’

The angular momentum L of the orbit is then given by the L-formula to be

’

b? BA
Lzzy—zy(l—ez)a:y
a B+ A

where y = MoG.
From L we can find the speed V' of the spacecraft just after the lift-off firing, and
the speed V X at the rendezvous point just before the second firing. These are

VL: 2]/3 1/2 VR= 2VA 1/2
AB+A)) BB+A))

The travel time 7', which is half the period of the Hohmann orbit, is given by

a3 _ 2 (B + A)3
1% 8y

T? =

Finally, in order to rendezvous with Jupiter, the lift-off must take place when Earth
and Jupiter have the correct relative positions, so that Jupiter arrives at the meeting point
at the right time. Since the speed of Jupiter is (y /B)'/? and the travel time is now known,
the angle ¥ in Figure 7.10 must be

B+ A\?
w‘”( 2B ) '

Numerical results for the Earth—Jupiter transfer

In astronomical units, G = 472, A = 1 AU and, for Jupiter, B = 5.2 AU. A speed of 1 AU
per year is 4.74 km per second. Simple calculations then give:

(1) The travel time is 2.73 years, or 997 days.
(i) VI is 8.14 AU per year, which is 38.6 km per second. This is the speed the spacecraft
must have after the lift-off firing.
(iii) V*® is 1.56 AU per year, which is 7.4 km per second. This is the speed with which the
spacecraft arrives at Jupiter before the second firing.
(iv) The angle v at lift-off must be 83°.

The speeds VX and V® should be compared with the speeds of Earth and Jupiter in their
orbits. These are 29.8 km/sec and 13.1 km/sec respectively. Thus the first firing must boost the
speed of the spacecraft from 29.8 to 38.6 km/sec, and the second firing must boost the speed
from 7.4 to 13.1 km/sec. The sum of these speed increments, 14.5 km/sec, is greater than
the speed increment needed (12.4 km/sec) to escape from the Earth’s orbit to infinity. Thus
it takes more fuel to transfer a spacecraft from Earth’s orbit to Jupiter’s orbit than it does to
escape from the solar system altogether!
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7.7 THE REPULSIVE INVERSE SQUARE FIELD

The force field with f(r) = +y/r%, (y > 0), is the repulsive inverse square
field. It occurs in the interaction of charged particles carrying /ike charges and is required
for the analysis of Rutherford scattering. Below we summarise the important properties
of orbits in a repulsive inverse square field. These results are obtained in exactly the same
way as for the attractive case.

The paths

The path equation is
d*u y
R + u=-——7:,
do? L?

where L is the angular momentum of the orbit. Its general solution can be written in the
form

1
- = %[—1 +ecos(d —a)],

where e, o are constants with e > 0. By comparing this path with the standard polar
forms of conics given in Appendix A, we see that the path can only be the far branch of a
hyperbola with focus at the centre O.

The L- and E-formulae

The formulae relating L, E, the dynamical constants of the orbit, to the hyperbola param-

eters are

L% = yb*/a, (7.31)

E =+y/2a. (7.32)

7.8 RUTHERFORD SCATTERING

The most celebrated application of orbits in a repulsive inverse square field is
Rutherford’s* famous experiment in which a beam of alpha particles was scattered by
gold nuclei in a sheet of gold leaf. We will analyse Rutherford’s experiment in detail,
beginning with the basic problem of a single alpha particle being deflected by a single
fixed gold nucleus.

Alpha particle deflected by a heavy nucleus

An alpha particle A of mass m and charge ¢ approaches a gold nucleus B of charge QO
(see Figure 7.11). B is initially at rest and A is moving with speed V along a line whose

* Ernest Rutherford (1871-1937), a New Zealander, was one of the greatest physicists of the twentieth
century. His landmark work on the structure of the nucleus in 1911 (and with Geiger and Marsden in
1913) was conducted at the University of Manchester, England.
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FIGURE 7.11 The alpha particle A of mass m and charge
q is repelled by the fixed nucleus B of charge Q and
moves on a hyperbolic orbit with the nucleus at the far
focus. The alpha particle is deflected through the angle 6.

perpendicular distance from B is p. In the present treatment, we neglect the motion of the
gold nucleus. This is justified since the mass of the gold nucleus is about fifty times larger
than that of the alpha particle. A then moves in the electrostatic field due to B, which we
now suppose to be fixed at the origin O. The force exerted on A is then

F=+£?
r

in cgs units. This is the repulsive inverse square field with y = gQ/m.

We wish to find 6, the angle through which the alpha particle is deflected. This is
obtained in exactly the same way as that of the asteroid in Example 7.1. From the initial
conditions, L = pV and £ = %Vz. The L-formula (7.31) and the E-formula (7.32) then
give

2
20,2 Vb 11,2 14
V= —o| sVe=+—.
p a 2 2a
It follows that
14
GZW, b:p

The semi-angle o between the asymptotes of the hyperbola is then given (see Appendix
A) by
b pv?
tane = — = —.
a 14

Hence, 6, the angle through which the asteroid is deflected, is given by

tan(6/2) = tan(/2 — &) = cota = ——.
pv?
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FIGURE 7.12 General scattering. A typical particle crosses the reference plane at the point p and
finally emerges in the direction of the unit vector n. Particles that cross the reference plane within the
region A emerge within the (generalised) cone shown.

On writing y = ¢ Q/m, we obtain

q0
mpV?2

tan(0/2) = (7.33)
as the formula for the deflection angle of the alpha particle. The quantity p, the distance
by which the incident particle would miss the scatterer if there were no interaction, is
called the impact parameter of the particle.

The deflection formula (7.33) cannot be confirmed directly by experiment since this
would require the observation of a single alpha particle, a single nucleus, and a knowledge
of the impact parameter p. What is actually done is to irradiate a gold target by a uniform
beam of alpha particles of the same energy. Thus the target consists of many gold nuclei
together with their associated electrons. However, the electrons have masses that are very
small compared to that of an alpha particle and so their influence can be disregarded.
Also, the gold target is taken in the form of thin foil to minimise the chance of multiple
collisions. If multiple collisions are eliminated, then the gold nuclei act as independent
scatterers and the problem reduces to that of a single fixed gold nucleus irradiated by a
uniform beam of alpha particles. In this problem the alpha particles come in with different
values of the impact parameter p and are scattered through different angles in accordance
with formula (7.33). What can be measured is the angular distribution of the scattered
alpha particles.

Differential scattering cross-section

The angular distribution of scattered particles is expressed by a function o (n), called the
differential scattering cross section, where the unit vector n specifies the final direction
of emergence of a particle from the scatterer O. One may imagine the values of n corre-
sponding to points on the surface of a sphere with centre O and unit radius, as shown in
Figure 7.12. Then values of n that lie in the shaded patch S correspond to particles whose
final direction of emergence lies inside the (generalised) cone shown.
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angle 6,

radius p,

FIGURE 7.13 Axisymmetric scattering. Particles crossing the reference plane
within the shaded circular disk are scattered and emerge in directions within the
circular cone.

Take a reference plane far to the left of the scatterer and perpendicular to the incident
beam, as shown in Figure 7.12. Suppose that there is a uniform flux of incomimg parti-
cles crossing the reference plane such that N particles cross any unit area of the reference
plane in unit time. When these particles have been scattered, they will emerge in different
directions and some of the particles will emerge with directions lying within the (gener-
alised) cone shown in Figure 7.12. The differential scattering cross section is defined
to be that function o (n) such that the flux of particles that emerge with directions lying
within the cone is given by the surface integral

N / & (n)dS. (7.34)
S

It is helpful to regard o (n) as a scattering density, analogous to a probability density, that
must be integrated to give the flux of particles scattered within any given solid angle.

The particles that finally emerge within the cone must have crossed the reference plane
within some region A as shown in Figure 7.12. A typical particle crosses the reference
plane at the point p (relative to O’) and eventually emerges in the direction r lying within
the cone. However because the incoming beam is uniform, the flux of these particles
across A is just N|.A|, where |A| is the area of the region .A. On equating the incoming
and outgoing fluxes, we obtain the relation

/ o(n)ds = | Al (7.35)
S

This is the general relation that any differential scattering cross section must satisfy; it
simply expresses the equality of incoming and outgoing fluxes of particles. However,
Rutherford scattering is axisymmetric and this provides a major simplification.

Axisymmetric scattering and Rutherford’s formula

Rutherford scattering is simpler than the general case outlined above in that the problem
is axisymmetric about the axis O’O. Thus o depends on 6 (the angle between n and the
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axis O’0), but is independent of ¢ (the azimuthal angle measured around the axis). In
this case o (0) can be determined by using the axisymmetric regions shown in Figure 7.13.
Particles that cross the reference plane within the circle centre O’ and radius p; emerge
within the circular cone ) < 0 < m, where p| and 0 are related by the deflection formula
for a single particle, in our case formula (7.33). On applying equation (7.35) to the present
case, we obtain

/ o(0)dS = npi.
S

We evaluate the surface integral using 8, ¢ coordinates. The element of surface area on
the unit sphere is given by dS = sinf dfd¢ so that

b4 2w
/G(Q)dS =/ {/ o(@)sin@dqb} do
S 01 0

b
=2 / o(0)sinf db.
6

1

Hence

4
271/ o (0)sind do = np?
%

1
pi
:271/ pdp
0

b s
d
=—2n/ » 2L ae,
o, [ do

on changing the integration variable from p to 6. Here the impact parameter p is regarded
as a function of the scattering angle 6. Now the above equality holds for all choices of the
integration limit 67 and this can only be true if the two integrands are equal. Hence:

Axisymmetric scattering cross section
(7.36)

p)d_p

o) =- <sin0 do

This is the formula for the differential scattering cross section ¢ in any problem of axisym-
metric scattering. All that is needed to evaluate it in any particular case is the expression
for the impact parameter p in terms of the scattering angle 6.

In the case of Rutherford scattering, the expression for p in terms of 6 is provided
by solving equation (7.33) for p, which gives

q0
2 tan(6/2).

p:
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On substituting this function into the formula (7.36), we obtain

Rutherford’s scattering cross-section

16E2 \sin*(6/2)

o(@) =

where E(= %m V?) is the energy of the incident alpha particles. This is Rutherford’s
formula for the angular distribution of the scattered alpha particles.

Significance of Rutherford’s experiment

In the above description we have used the term ‘nucleus’ for convenience. What we
really mean is ‘the positively charged part of the atom that carries most of the mass’.
If this positive charge is distributed in a spherically symmetric manner, then the above
results still hold, irrespective of the radius of the charge, provided that the alpha particles
do not penetrate into the charge itself. What Rutherford found was that, when using
alpha particles from a radium source, the formula (7.37) held even for particles that were
scattered through angles close to r. These are the particles that get closest to the nucleus,
the distance of closest approach being ¢ Q/E. This meant that the nuclear radius of gold
must be smaller than this distance, which was about 10~!2 cm in Rutherford’s experiment.
The radius of an atom of gold is about 10~® cm. This result completely contradicted the
Thompson model, in which the positive charge was distributed over the whole volume of
the atom, by showing that the nucleus (as it became known) must be a very small and very
dense core at the centre of the atom.

Note on two-body scattering problems

Throughout this section we have neglected the motion of the target nucleus. This will introduce
only small errors when the target nucleus is much heavier than the incident particles, as it was
in Rutherford’s experiment. However, if lighter nuclei are used as the target, then the motion of
the nucleus cannot be neglected and we have a two-body scattering problem. Such problems
are treated in Chapter 10.

Appendix A The geometry of conics

Ellipse

(i) In Cartesian coordinates, the standard ellipse with semi-major axis ¢ and semi-minor axis b (b < a)
has the equation

(38
)

QN‘ =
%
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(0,b)

F'! F(ae,0) (a,0)

FIGURE 7.14 The standard ellipse x%/a” + y?/b*> = 1.

near branch far branch

FIGURE 7.15 The standard hyperbola x?/a*> — y?/b*> = 1. The
near and far branches are relative to the focus F’, which is the
origin of polar coordinates.

(i1) The eccentricity e of the ellipse is defined by

and lies in the range 0 < e < 1. When e = 0, b = g and the ellipse is a circle.
(iii) The focal points F, F’ of the ellipse lie on the major axis at (£ae, 0).

(iv) In polar coordinates with origin at the focus F and with initial line in the positive x-direction, the
equation of the ellipse is

1 a

- = b—z(l + ecosf).
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FIGURE 7.16 The circular orbits A and B are the orbits of the two planets. The
elliptical orbit shown is a possible path for the spacecraft, which travels along
the arc LR. The velocities shown are those after the first firing at L and before
the second firing at R.

Hyperbola

(1) In Cartesian coordinates, the standard hyperbola has the equation
x2 y2 . )
i i (a,b > 0)

so that the angle 2o between the asymptotes is given by
b
tano = —.
a

(ii) The eccentricity e of the hyperbola is defined by

and lies in the range e > 1.
(iii) The focal points ', F’ of the hyperbola lie on the x-axis at (£ae, 0).

(iv) In polar coordinates with origin at the focus F’ and with initial line in the positive x-direction, the
equations of the near and far branches of the hyperbola are

1 a 1 1 a |
;=b7( + ecosf), ;=b—2(— + ecos ),

respectively.

Appendix B The Hohmann orbit is optimal

The result that the Hohmann orbit is the connecting orbit that minimises Q is not at all
obvious and correct proofs are rare.* Hopefully, the proof given below is correct!

* It is sometimes stated that the optimality requirement is to minimise the energy of the connecting orbit,
which is not true. In any case, the Hohmann orbit is not the connecting orbit of minimum energy!
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Proof of optimality Consider the general two-impulse transfer orbit LR shown in Figure 7.16, where

the orbit is regarded as being generated by the velocity components vé‘, v,A of the spacecraft after the first

impulse. Then, by angular momentum and energy conservation,

A _ B
Ave _ng,

(o) + () =2 = (o8) + (o) - 2.

where A, B are the radii of the circular orbits of Earth and Jupiter and y = MG. Thus

B_ A 4
vg—ng,

(4 = (1= 32) )+ (=2 (- 3)

Since the orbital speeds of Earth and Jupiter are (y/A) 1/2 and (y/B) 1/2 it follows that the velocity changes
AvA, AvB required at L and R have magnitudes given by

|AvA|2 _ (Ué‘ _ (1);)1/2>2+ (U’{4>2’

st = (2t )
(G5t (-3 ()2 (5 5)

=(v __>.

It is evident that, with vé“ fixed, both |AvA| and |AvB| are increasing functions of v,‘.“. Thus Q may be
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reduced by reducing v,’f‘ provided that the resulting orbit still meets the circle 7 = B. Q can be thus reduced
until either

(1) v,‘f‘ is reduced to zero, or
(ii) the orbit shrinks until it touches the circle 7 = B and any further reduction in vrA would mean that
the orbit would not meet r = B.

In the first case, L becomes the perihelion of the orbit and, in the second case, R becomes the aphelion of
the orbit. We will proceed assuming the first case, the second case being treated in a similar manner and
with the same result.

Suppose then that L is the perihelion of the connecting orbit. Then v,{“ = 0 and, from now on, we
will simply write v instead of vé‘. The velocity v must be such that the orbit reaches the circle r = B,
which now means that the major axis of the orbit must not be less than A + B. On using the E-formula, this
implies that v must satisfy

~ A(A+B)

The formulae for |AvA| and |AvB | now simplify to

|AvA|2 _ (v— <Z>1/2>2,

2
1/2 4 3 2 A2
B2 _ i 2 s
lMl_(v BS/2>+V<B A B3
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from which it is evident that, for v in the permitted range, both of |AvA | and |AvB | are increasing functions
v. Hence the minimum value of Q is achieved when v takes its smallest permitted value, namely

2B 172
T (A(A T B>> '

With this value of v, the orbit touches the circle » = B and so has its aphelion at R. Hence the optimum

orbit has its perihelion at L and its aphelion at R. This is precisely the Hohmann orbit. B

Problems on Chapter 7

Answers and comments are at the end of the book.

Harder problems carry a star (x).

Radial motion equation, apses

7.1 A particle P of mass m moves under the repulsive inverse cube field F = (my/r)7.
Initially P is at a great distance from O and is moving with speed V towards O along a
straight line whose perpendicular distance from O is p. Find the equation satisfied by the
apsidal distances. What is the distance of closest approach of P to O?

7.2 A particle P of mass m moves under the attractive inverse square field F = —(my /r?) 7.
Initially P is at a point C, a distance ¢ from O, when it is projected with speed (y/c)'/? in a
direction making an acute angle « with the line OC. Find the apsidal distances in the resulting
orbit.

Given that the orbit is an ellipse with O at a focus, find the semi-major and semi-minor
axes of this ellipse.

7.3 A particle of mass m moves under the attractive inverse square field F = —(my /r?)7.
Show that the equation satisfied by the apsidal distances is

2Er? + 2yr — L? = 0,

where £ and L are the specific total energy and angular momentum of the particle. When
E < 0, the orbit is known to be an ellipse with O as a focus. By considering the sum and
product of the roots of the above equation, establish the elliptic orbit formulae

L= ybz/a, E=—-y/2a.

7.4 A particle P of mass m moves under the simple harmonic field F = —(mQ%r) 7, where
2 is a positive constant. Obtain the radial motion equation and show that all orbits of P are
bounded.

Initially P is at a point C, a distance ¢ from O, when it is projected with speed Q2c in
a direction making an acute angle o with OC. Find the equation satisfied by the apsidal
distances. Given that the orbit of P is an ellipse with centre O, find the semi-major and semi-
minor axes of this ellipse.
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Path equation

7.5 A particle P moves under the attractive inverse square field F = —(my /r?)7. Initially
P is at the point C, a distance ¢ from O, and is projected with speed (3y /¢)!/? perpendicular
to OC. Find the polar equation of the path make a sketch of it. Deduce the angle between OC
and the final direction of departure of P.

7.6 A comet moves under the gravitational attraction of the Sun. Initially the comet is at a
great distance from the Sun and is moving towards it with speed V along a straight line whose
perpendicular distance from the Sun is p. By using the path equation, find the angle through
which the comet is deflected and the distance of closest approach.

7.7 A particle P of mass m moves under the attractive inverse cube field F = —(my?2/r3) 7,
where y is a positive constant. Initially P is at a great distance from O and is projected
towards O with speed V along a line whose perpendicular distance from O is p. Obtain the
path equation for P.

For the case in which

V= 15y
V209 p’

find the polar equation of the path of P and make a sketch of it. Deduce the distance of closest
approach to O, and the final direction of departure.

7.8% A particle P of mass m moves under the central field F = —(my?/r>) 7, where y is
a positive constant. Initially P is at a great distance from O and is projected towards O with
speed /2y / p? along a line whose perpendicular distance from O is p. Show that the polar
equation of the path of P is given by

o)
r=—coth| —|.
V2 V2
Make a sketch of the path.

7.9% A particle of mass m moves under the central field
, (4 a’\
F = —my r—3 + r_5 r,

where y and a are positive constants. Initially the particle is at a distance a from the centre of
force and is projected at right angles to the radius vector with speed 3y /+/2a. Find the polar
equation of the resulting path and make a sketch of it.

Find the time taken for the particle to reach the centre of force.

Nearly circular orbits

7.10 A particle of mass m moves under the central field

—er/a
F =-m (ye 3 )?,
r
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where y, a and € are positive constants. Find the apsidal angle for a nearly circular orbit of
radius a. When € is small, show that the perihelion of the orbit advances by approximately e
on each revolution.

7.11 Solar oblateness A planet of mass m moves in the equatorial plane of a star that is a
uniform oblate spheroid. The planet experiences a force field of the form

2
my €a —~
F=—r—2<1+r—2>r,

approximately, where y, a and € are positive constants and € is small. If the planet moves
in a nearly circular orbit of radius «, find an approximation to the ‘annual’ advance of the
perihelion. [It has been suggested that oblateness of the Sun might contribute significantly to
the precession of the planets, thus undermining the success of general relativity. This point has
yet to be resolved conclusively.]

7.12 Suppose the solar system is embedded in a dust cloud of uniform density p. Find an
approximation to the ‘annual’ advance of the perihelion of a planet moving in a nearly circular
orbit of radius a. (For convenience, let p = eM /a3, where M is the solar mass and € is
small.)

7.13 Orbits in general relativity In the theory of general relativity, the path equation for a
planet moving in the gravitational field of the Sun is, in the standard notation,

d*u MG  (3MG\ ,
_M1e W2,

e T 2

where c is the speed of light. Find an approximation to the ‘annual’ advance of the perihelion
of a planet moving in a nearly circular orbit of radius a.

Scattering

7.14 A uniform flux of particles is incident upon a fixed hard sphere of radius a. The particles
that strike the sphere are reflected elastically. Find the differential scattering cross section.

7.15 A uniform flux of particles, each of mass m and speed V, is incident upon a fixed scat-
terer that exerts the repulsive radial force F = (my?/r>)7. Find the impact parameter p as
a function of the scattering angle 6, and deduce the differential scattering cross section. Find
the total back-scattering cross-section.

Assorted inverse square problems

Some useful data:

The radius R of the Earth is 6380 km. To obtain the value of M G, where M is the mass of the
Earth, use the formula MG = R?g, where g = 9.80 ms~2.

1 AU per year is 4.74 km per second. In astronomical units, G = 472,
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7.16 In Yuri Gagarin’s first manned space flight in 1961, the perigee and apogee were 181
km and 327 km above the Earth. Find the period of his orbit and his maximum speed in the
orbit.

7.17 An Earth satellite has a speed of 8.60 km per second at its perigee 200 km above the
Earth’s surface. Find the apogee distance above the Earth, its speed at the apogee, and the
period of its orbit.

7.18 A spacecraft is orbiting the Earth in a circular orbit of radius ¢ when the motors are
fired so as to multiply the speed of the spacecraft by a factor k (k > 1), its direction of
motion being unaffected. [You may neglect the time taken for this operation.] Find the range
of k for which the spacecraft will escape from the Earth, and the eccentricity of the escape
orbit.

7.19 A spacecraft travelling with speed V approaches a planet of mass M along a straight
line whose perpendicular distance from the centre of the planet is p. When the spacecraft
is at a distance ¢ from the planet, it fires its engines so as to multiply its current speed by a
factor £ (0 < k < 1), its direction of motion being unaffected. [You may neglect the time
taken for this operation.] Find the condition that the spacecraft should go into orbit around the
planet.

7.20 A body moving in an inverse square attractive field traverses an elliptical orbit with major
axis 2a. Show that the time average of the potential energy V = —y /r is —y /a. [Transform
the time integral to an integral with repect to the eccentric angle .]

Deduce the time average of the kinetic energy in the same orbit.

7.21 A body moving in an inverse square attractive field traverses an elliptical orbit with
eccentricity e and major axis 2a. Show that the time average of the distance r of the body
from the centre of force is a(1 + %62). [Transform the time integral to an integral with respect
to the eccentric angle ]

7.22 A spacecraftis ‘parked’ in a circular orbit 200 km above the Earth’s surface. The space-
craft is to be sent to the Moon’s orbit by Hohmann transfer. Find the velocity changes Av®
and AvM that are required at the Earth and Moon respectively. How long does the jour-
ney take? [The radius of the Moon’s orbit is 384,000 km. Neglect the gravitation of the
Moon.]

7.23#% A spacecraft is ‘parked’ in an elliptic orbit around the Earth. What is the most fuel
efficient method of escaping from the Earth by using a single impulse?

7.24 A satellite already in the Earth’s heliocentric orbit can fire its engines only once. What
is the most fuel efficient method of sending the satellite on a ‘flyby’ visit to another planet?
The satellite can visit either Mars or Venus. Which trip would use less fuel? Which trip
would take the shorter time? [The orbits of Mars and Venus have radii 1.524 AU and 0.723
AU respectively.]
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7.25 A satellite is ‘parked’ in a circular orbit 250 km above the Earth’s surface. What is the
most fuel efficient method of transferring the satellite to an (elliptical) synchronous orbit by
using a single impulse? [A synchronous orbit has a period of 23 hr 56 m.] Find the value of
Av and apogee distance.

Effect of resistance

7.26 A satellite of mass m moves under the attractive inverse square field —(my /r?) 7 and is
also subject to the linear resistance force —m K v, where K is a positive constant. Show that
the governing equations of motion can be reduced to the form

i:-i-Ki"-i-Lz——O =0, 120 = Loe K7,
;

where L is a constant which will be assumed to be positive.

Suppose now that the effect of resistance is slight and that the satellite is executing a ‘cir-
cular’ orbit of slowly changing radius. By neglecting the terms in 7* and 7, find an approximate
solution for the time variation of 7 and 6 in such an orbit. Deduce that small resistance causes
the circular orbit to contract slowly, but that the satellite speeds up!

7.27 Repeat the last problem for the case in which the particle moves under the simple har-
monic attractive field —(mQ%r) 7 with the same law of resistance. Show that, in this case,
the body slows down as the orbit contracts. [This problem can be solved exactly in Cartesian
coordinates, but do not do it this way.]

Computer assisted problems

7.28 See the advance of the perihelion of Mercury 1t is possible to ‘see’ the advance of
the perihelion of Mercury predicted by general relativity by direct numerical solution. Take
Einstein’s path equation (see Problem 7.13) in the dimensionless form

d2v+ L2
— 4t v=—- v,
02 1—e2

where v = au. Here a and e are the semi-major axis and eccentricity of the non-relativistic
elliptic orbit and n = 3M G /ac? is a small dimensionless parameter. For the orbit of Mercury,
n = 2.3 x 1077 approximately.

Solve this equation numerically with the initial conditions » = a(1 4 ¢) and 7* = 0 when
6 = 0; this makes 6 = 0 an aphelion of the orbit. To make the precession easy to see, use
a fairly eccentric ellipse and take n to be about 0.005, which speeds up the precession by a
factor of more than 10%!

7.29 Orbit with linear resistance Confirm the approximate solution for small resistance
obtained in Problem 7.26 by numerical solution of the governing simultaneous ODEs. First
write the governing equations in dimensionless form. Suppose that, in the absence of
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resistance, a circular orbit with r = a and 6 = Qis possible; then y = a3 and Lo = a’Q.
On taking dimensionless variables p, T defined by p = r/a and T = Qt, and taking Lo = aQ,
the governing equations become

d*p  dp 1 e ,do

_ € — —_— =0, =e 9
dt? + dt _‘_,o2 o3 e

where € = K/ is the dimensionless resistance parameter. Solve these equations with the
initial conditions p = 1, dp/dt = 0 and 8 = 0 when T = 0. Choose some small value for €
and plot a polar graph of the path.



Chapter Eight
. _________________________________________________________________________________________________|

Non-linear oscillations
and phase space

KEY FEATURES
The key features of this chapter are the use of perturbation theory to solve weakly non-linear
problems, the notion of phase space, the Poincaré-Bendixson theorem, and limit cycles.

In reality, most oscillating mechanical systems are governed by non-linear equations.
The linear oscillation theory developed in Chapter 5 is generally an approximation which
is accurate only when the amplitude of the oscillations is small. Unfortunately, non-linear
oscillation equations do not have nice exact solutions as their linear counterparts do, and
this makes the non-linear theory difficult to investigate analytically.

In this chapter we describe two different analytical approaches, each of which is suc-
cessful in its own way. The first is to use perturbation theory to find successive cor-
rections to the linear theory. This gives a more accurate solution than the linear theory
when the non-linear terms in the equation are small. However, because the solution is
close to that predicted by the linear theory, new phenomena associated with non-linearity
are unlikely to be discovered by perturbation theory! The second approach involves the
use of geometrical arguments in phase space. This has the advantage that the non-linear
effects can be large, but the conclusions are likely to be qualitative rather than quantita-
tive. A particular triumph of this approach is the Poincaré-Bendixson theorem, which
can be used to prove the existence of limit cycles, a new phenomenon that exists only in
the non-linear theory.

8.1 PERIODIC NON-LINEAR OSCILLATIONS

Most oscillating mechanical systems are not exactly linear but are approximately
linear when the oscillation amplitude is small. In the case of a body on a spring, the
restoring force might actually have the form

S = mQ%x + mAx>, (8.1)

which is approximated by the linear formula § = mQ?x when the displacement x is small.
The new constant A is a measure of the strength of the non-linear effect. If A < 0, then
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FIGURE 8.1 Existence of periodic oscillations for the quartic
potential energy V = %mﬂzxz + éleAx4 with A < 0.

S is less than its linear approximation and the spring is said to be softening as x increases.
Conversely, if A > 0, then the spring is hardening as x increases. The formula (8.1) is
typical of non-linear restoring forces that are symmetrical about x = 0. If the restoring
force is unsymmetrical about x = 0, the leading correction to the linear case will be a

term in x2.

Existence of non-linear periodic oscillations

Consider the free undamped oscillations of a body sliding on a smooth horizontal table*
and connected to a fixed point of the table by a spring whose restoring force is given by
the cubic formula (8.1). In rectilinear motion, the governing equation is then

d’x | 3

which is Duffing’s equation with no forcing term (see section 8.5). The existence of
periodic oscillations can be proved by the energy method described in Chapter 6. The
restoring force has potential energy
V = %szxz + %mAxA',
so that the energy conservation equation is
%mv2 + %szxz + ‘l—thx4 =F,
where v = x. The motion is therefore restricted to those values of x that satisfy

%szxz + %mAx4 <E,

* Would the motion be the same (relative to the equilibrium position) if the body were suspended vertically
by the same spring?
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with equality when v = 0. Figure 8.1 shows a sketch of V' for a softening spring (A < 0).
For each value of E in the range 0 < E < Vpax, the particle oscillates in a symmetrical
range —a < x < a as shown. Thus oscillations of any amplitude less than amax (=
Q/|A|"/?) are possible. For a hardening spring, oscillations of any amplitude whatsoever
are possible.

Solution by perturbation theory

Suppose then that the body is performing periodic oscillations with amplitude a. In order
to reduce the number of parameters, we non-dimensionalise equation (8.2). Let the dimen-
sionless displacement X be defined by x = aX. Then X satisfies the equation

1—dZX+X+ X'=0 (8.3)
P—— € = s .
Q2 dr?
with the initial conditions X = 1 and dX/dt = 0 when t = 0. The dimensionless

parameter €, defined by

a’A

€= "0

(8.4)
is a measure of the strength of the non-linearity. Equation (8.3) contains € as a parameter
and hence so does the solution. A major feature of interest is how the period 7 of the
motion varies with €.

The non-linear equation of motion (8.3) cannot be solved explicitly but it reduces
to a simple linear equation when the parameter € is zero. In these circumstances, one
can often find an approximate solution to the non-linear equation valid when € is small.
Equations in which the non-linear terms are small are said to be weakly non-linear and
the solution technique is called perturbation theory. There is a well established theory
of such perturbations. The simplest case is as follows:

Regular perturbation expansion

If the parameter € appears as the coefficient of any term of an ODE that is not the
highest derivative in that equation, then, when € is small, the solution corresponding
to fixed initial conditions can be expanded as a power series in €.

This is called a regular perturbation expansion™ and it applies to the equation (8.3).
It follows that the solution X (¢, €) can be expanded in the regular perturbation series

X(1,€) = Xo(t) +€X1(t) + € Xo(t) + - - . (8.5)

* The case in which the small parameter multiplies the highest derivative in the equation is called a singular
perturbation. For experts only!
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The standard method is to substitute this series into the equation (8.3) and then to try to
determine the functions X¢(t), X1(¢), X2(¢), ... . In the present case however, this leads
to an unsatisfactory result because the functions X(¢), X2(¢), ... , turn out to be non-
periodic (and unbounded) even though the exact solution X (¢, €) is periodic!™ Also, it is
not clear how to find approximations to t from such a series.

This difficulty can be overcome by replacing ¢ by a new variable s so that the solution
X (s, €) has period 2 in s whatever the value of €. Every term of the perturbation series
will then also be periodic with period 2. This trick is known as Lindstedt’s method.

Lindstedt’s method

Let w(e) (= 27/t (€)) be the angular frequency of the required solution of equation (8.3).
Now introduce a new independent variable s (the dimensionless time) by the equation
s = w(e)t. Then X (s, €) satisfies the equation

2
(“’g(:)) X"+ X +exX3=0 (8.6)

with the initial conditions X = 1 and X’ = 0 when s = 0. (Here ' means d/ds.) We now
seek a solution of this equation in the form of the perturbation series

X(s,€) = Xo(s) + €X1(s) + €2 Xa(s) + -+ . (8.7)

which is possible when € is small. By construction, this solution must have period 27 for
all € from which it follows that each of the functions Xo(s), X(s), X2(s), ... must also
have period 2. However we have paid a price for this simplification since the unknown
angular frequency w(e) now appears in the equation (8.6); indeed, the function w(¢) is
part of the answer to this problem! We must therefore also expand w(€) as a perturbation
series in €. From equation (8.3), it follows that w (0) = €2 so we may write

w(€)

R =1+oe+tme+--, (8.8)

where w1, wy, ... are unknown constants that must be determined along with the functions
Xo(s), X1(s), X2(s), ... .

On substituting the expansions (8.7) and (8.8) into the governing equation (8.6) and
its initial conditions, we obtain:

(14 o€ + e +-- ) (X[ +eX] + XXy +--) +

(Xo+eX1 +2Xo+ - )+ e(Xo+eX1 +€2Xa4---)3 =0,

* This ‘paradox’ causes great bafflement when first encountered, but it is inevitable when the period t of
the motion depends on €, as it does in this case. To have a series of non-periodic terms is not wrong,
as is sometimes stated. However, it is certainly unsatisfactory to have a non-periodic approximation to a
periodic function.
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with

Xo+eX| +e2Xa+--- =1,
X)+eX| +eXXy4--- =0,

when s = 0. If we now equate coefficients of powers of € in these equalities, we obtain a
succession of ODEs and initial conditions, the first two of which are as follows:

From coefficients of €°, we obtain the zero order equation
X{)’ + X9 =0, (8.9)

with Xg = 1 and X, = 0 when s = 0.
From coefficients of €!, we obtain the first order equation

X!+ X1 = 2w1X§ — X}, (8.10)

with X1 = 0 and X| = 0 when s = 0.

This procedure can be extended to any number of terms but the equations rapidly become
very complicated. The method now is to solve these equations in order; the only sticking
point is how to determine the unknown constants wp, @z, ... that appear on the right sides
of the equations. The solution of the zero order equation and initial conditions is

Xo =coss (8.11)

and this can now be substituted into the first order equation (8.10) to give

X{+ X1 =2wcoss —cos>s

= }1 (8wi —3)coss + }Lcos 3s, (8.12)

on using the trigonometric identity cos3s = 4cos>s — 3 coss. This equation can now
be solved by standard methods. The particular integral corresponding to the cos 3s on the
right is —(1/8) cos 3s, but the particular integral corrsponding to the coss on the right is
(1/2)s sin s, since cos s is a solution of the equation X” 4+ X = 0. The general solution of
the first order equation is therefore

X = (a)l — %)ssins— %cos&v—l—Acoss—i—Bsins,

where A and B are arbitrary constants. Observe that the functions cos s, sins and cos 3s
are all periodic with period 27, but the term s sin s is not periodic. Thus, the coefficient
of s sins must be zero, for otherwise X 1(s) would not be periodic, which we know it must
be. Hence

0| W

o) , (8.13)
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which determines the first unknown coefficient in the expansion (8.8) of w(€). The solu-
tion of the first order equation and initial conditions is then

1
X1 = v (coss — cos3s) . (8.14)

‘We have thus shown that, when € is small,
© 143 +0(ﬁ
— = —€ €,
Q 8

and

X =coss + ;—2 (coss — cos3s) + O (62),

where s = (1 + %e + 0 (62)) Qt.

Results

When € (= a?A / Q2?) is small, the period 7 of the oscillation of equation (8.2) with
amplitude a is given by

r:%:%(H%eJro(ez))_l=2§”(1—§e+0(62>) (8.15)

and the corresponding displacement x (¢) is given by

_ < _ 2
X=a [coss + D (coss —cos3s) + O <€ )] , (8.16)

where s = (1 + %e + 0 (62)> Q.

This is the approximate solution correct to the first order in the small parameter €.
More terms can be obtained in a similar way but the effort needed increases exponentially
and this is best done with computer assistance (see Problem 8.15).

These formulae apply only when € is small, that is, when the non- linearity in the
equation has a small effect. Thus we have laboured through a sizeable chunk of mathe-
matics to produce an answer that is only slightly different from the linear case. This sad
fact is true of all regular perturbation problems. However, in non-linear mechanics, one
must be thankful for even modest successes.

8.2 THE PHASE PLANE ((x1, x2)—plane)

The second approach that we will describe could not be more different from per-
turbation theory. It makes use of qualitative geometrical arguments in the phase space of
the system.
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Systems of first order ODEs

The notion of phase space springs from the theory of systems of first order ODEs.
Such systems are very common and need have no connection with classical mechanics. A
standard example is the predator-prey system of equations

X1 = ax; — bxyxp,

X2 = bxixy — cxz,

which govern the population density x1(¢) of a prey and the population density x> (¢) of its
predator. In the general case there are n unknown functions satisfying n first order ODEs,
but here we will only make use of two unknown functions x1(¢), x»(¢) that satisfy a pair
of first order ODEs of the form

X1 = Fi(x1,x2,1),

. 8.17
X2 = Fa(xy, x2,1). 17

Just to confuse matters, a system of ODEs like (8.17) is called a dynamical system,
whether it has any connection with classical mechanics or not! In the predator-prey
dynamical system, the function F; = ax; — bx1x; and the function F, = bx1xy — cxa.
In this case F; and F» have no explicit time dependence. Such systems are said to be
autonomous; as we shall see, more can be said about the behaviour of autonomous sys-
tems.

Definition 8.1 Autonomous system A system of equations of the form

X1 = F1(x1, x2),

. 8.18
X2 = Fa(x1, x2), (8.18)

is said to be autonomous.

The phase plane

The values of the variables x1, x2 at any instant can be represented by a point in the
(x1, x2)-plane. This plane is called the phase plane*® of the system. A solution of the
system of equations (8.17) is then represented by a point moving in the phase plane. The
path traced out by such a point is called a phase path’ of the system and the set of all
phase paths is called the phase diagram. In the predator—prey problem, the variables x,
X7 are positive quantities and so the physically relevant phase paths lie in the first quadrant
of the phase plane. It can be shown that they are all closed curves! (See Problem 8.10).

Phase paths of autonomous systems

The problem of finding the phase paths is much easier when the system is autonomous.
The method is as follows:

* In the general case with n unknowns, the phase space is n-dimensional.
T Also called an orbir of the system.
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FIGURE 8.2 Phase diagram for the system
dx1/dt = x3 — 1, dxp/dt = —x1 + 2. The
point E(2, 1) is an equilibrium point of the
system.

\
8

Example 8.1 Finding phase paths for an autonomous system

Sketch the phase diagram for the autonomous system of equations

dx; I
— =x7 — 1,
T

dxo

—_— = 2.
R X1+

Solution

The phase paths of an autonomous system can be found by eliminating the time
derivatives. The path gradient is given by

dxy . dxz/dt
dxi  dxi/dt
X1 -2

o _x2 —1

and this is a first order separable ODE satisfied by the phase paths. The general
solution of this equation is

(x1 =22+ m—-1)2=C

and each (positive) choice for the constant of integration C corresponds to a phase
path. The phase paths are therefore circles with centre (2, 1); the phase diagram is
shown in Figure 8.2.

The direction in which the phase point progresses along a path can be deduced
by examining the signs of the right sides in equations (8.18). This gives the signs of
X1 and x, and hence the direction of motion of the phase point. ®

When the system is autonomous, one can say quite a lot about the general nature of
the phase paths without finding them. The basic result is as follows:

Theorem 8.1 Autonomous systems: a basic result Each point of the phase space
of an autonomous system has exactly one phase path passing through it.

Proof.  Let (a, b) be any point of the phase space. Suppose that the motion of the phase point (xy, xp)
satisfies the equations (8.18) and that the phase point is at (@, b) when ¢t = 0. The general theory of ODEs
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then tells us that a solution of the equations (8.18), that satisfies the initial conditions x| = a, xp = b
when ¢t = 0, exists and is unique. Let this solution be {X(7), X»(¢)}, which we will suppose is defined
for all ¢, both positive and negative. This phase path certainly passes through the point (a, b) and we must
now show that there is no other. Suppose then that there is another solution of the equations in which the
phase point is at (a, b) when t = 7, say. This motion also exists and is uniquely determined and, in the
general case, would not be related to {X | (#), X,(¢)}. However, for autonomous systems, the right sides of
equations (8.18) are independent of ¢ so that the two motions differ only by a shift in the origin of time. To
be precise, the new motion is simply {X (+ — 7), Xo(t — 7)}. Thus, although the two motions are distinct,
the two phase points travel along the same path with the second point delayed relative to the first by the
constant time t. Hence, although there are infinitely many motions of the phase point that pass through the
point (a, b), they all follow the same path. This proves the theorem.

Some important deductions follow from this basic result.

Phase paths of autonomous systems

e Distinct phase paths of an autonomous system do not cross or touch each other.

e Periodic motions of an autonomous system correspond to phase paths that are
simple* closed loops.

Figure 8.2 showsthe phase paths of an autonomous system. For this system, a// of the
phase paths are simple closed loops and so every motion is periodic. An exception occurs
if the phase point is started from the point (2, 1). In this case the system has the constant
solution x; = 2, x = 1 so that the phase point never moves; for this reason, the point
(2, 1) is called an equilibrium point of the system. In this case, the ‘path’ of the phase
point consists of the single point (2, 1). However, this still qualifies as a path and the
above theory still applies. Consequently no ‘real’ path may pass through an equilibrium
point of an autonomous system. "

8.3 THE PHASE PLANE IN DYNAMICS ( (x, v)—plane)

The above theory seems unconnected to classical mechanics since dynamical
equations of motion are second order ODEs. However, any second order ODE can be
expressed as a pair of first order ODEs. For example, consider the general linear oscilla-
tor equation

d’x dx

W+2KE+QZx:F(t). (8.19)

If we introduce the new variable v = dx/dt, then

d
d—’; 4 2kv + Q2 = F (1),

* A simple curve is one that does not cross (or touch) itself (except possibly to close).
It may appear from diagrams that phase paths can pass through equilibrium points. This is not so. Such
a path approaches arbitrarily close to the equilibrium point in question, but never reaches it!
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FIGURE 8.3 Typical phase paths for the simple harmonic oscillator equation. Left: No damping.
Centre: Sub-critical damping. Right: Super-critical damping.

It follows that the second order equation (8.19) is equivalent to the pair of first order
equations

dx

— =,

dt

d

2V F() — 2kv — Q2x.
dr

We may now apply the theory we have developed to this system of first order ODEs,
where the phase plane is now the (x, v)-plane. It is clear that driven motion leads to
a non-autonomous system because of the presence of the explicit time dependence of
F (t); undriven motion (in which F (t) = 0) leads to an autonomous system. It is also
clear that equilibrium points in the (x, v)-plane lie on the x-axis and correspond to the
ordinary equilibrium positions of the particle.

The form of the phase paths for the undriven SHO equation

d’x LK dx L Q2 0

- I X =

dr? dt
depends on the parameters K and €2. We could find these paths by the method used in
Example 8.1, but there is no point in doing so since we have already solved the equation
explicitly in Chapter 5. For instance, when K = 0, the general solution is given by

x = C cos(2t — y),

from which it follows that

dx .
V= T —CQsin(Q2t — y).
The phase paths in the (x, v)-plane are therefore similar ellipses centred on the origin,
which is an equilibrium point. This, and two typical cases of damped motion, are shown
in Figure 8.3. In the presence of damping, the phase point tends to the equilibrium point
at the origin as ¢t — oo. Although the equilibrium point is never actually reached, it is
convenient to say that these paths ‘terminate’ at the origin.
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FIGURE 8.4 The phase diagram for the undamped Duffing equation with a
softening spring.

Example 8.2 Phase diagram for equation d’x /dt> + Q%*x + Ax> =0

Sketch the phase diagram for the non-linear oscillation equation
dzx/dt2 + Q% + AXS = 0,
when A < 0 (the softening spring).

Solution

This equation is equivalent to the pair of first order equations

dx
dt
dv
dt

= U’
= —Q%x — AX°,
which is an autonomous system. The phase paths satisfy the equation

dv . Q2x + Ax3

dx v '
which is a first order separable ODE whose general solution is
V2 =C — Q%2 — %Axd',

where C is a constant of integration. Each positive value of C corresponds to a phase
path. The phase diagram for the case A < 0 is shown in Figure 8.4. There are three
equilibrium points at (0, 0), (£Q/|A| 1/2 0). The closed loops around the origin
correspond to periodic oscillations of the particle about x = 0. Such oscillations can
therefore exist for any amplitude less than €2/|A|'/?; this confirms the prediction of
the energy argument used earlier. Outside this region of closed loops, the paths are
unbounded and correspond to unbounded motions of the particle. These two regions
of differing behaviour are separated by the dashed paths (known as separatrices) that

‘terminate’ at the equilibrium points (£€2/ [A]'/2,0).m
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FIGURE 8.5 The Poincaré-Bendixson theorem. Any bounded phase path of a plane
autonomous system must either close itself (top left), terminate at an equilibrium
point (top right), or tend to a limit cycle (normal case bottom left, degenerate case
bottom right).

8.4 POINCARE-BENDIXSON THEOREM: LIMIT CYCLES

In the autonomous systems we have studied so far, those phase paths that are
bounded either (i) form a closed loop (corresponding to periodic motion), or (ii) ‘termi-
nate’ at an equilibrium point (so that the motion dies away). Figure 8.3 shows examples
of this. The famous Poincaré—Bendixson theorem™ which is stated below, says that there
is just one further possibility.

Poincaré—Bendixson theorem
Suppose that a phase path of a plane autonomous system lies in a bounded
domain of the phase plane for # > 0. Then the path must either
o close itself, or
e terminate at an equilibrium point as # — oo, or

e tend to a limit cycle (or a degenerate limit cycle) as ¢ — oo.

A proper proof of the theorem is long and difficult (see Coddington & Levinson [9]).

* After Jules Henri Poincaré (1854—1912) and Ivar Otto Bendixson (1861-1935). The theorem was first
proved by Poincaré but a more rigorous proof was given later by Bendixson.
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The third possibility is new and needs explanation. A limit cycle is a periodic motion
of a special kind. It is isolated in the sense that nearby phase paths are not closed but are
attracted towards the limit cycle™ ; they spiral around it (or inside it) getting ever closer, as
shown in Figure 8.5 (bottom left). The degenerate limit cycle shown in Figure 8.5 (bottom
right) is an obscure case in which the limiting curve is not a periodic motion but has one
or more equilibrium points actually on it. This case is often omitted in the literature, but
it definitely exists!

Proving the existence of periodic solutions

The Poincaré—Bendixson theorem provides a way of proving that a plane autonomous
system has a periodic solution even when that solution cannot be found explicitly. If a
phase path can be found that cannot escape from some bounded domain D of the phase
plane, and if D contains no equilibrium points, then Poincaré—Bendixson implies that the
phase path must either be a closed loop or tend to a limit cycle. In either case, the system
must have a periodic solution lying in D. The method is illustrated by the following
examples.

Example 8.3 Proving existence of a limit cycle

Prove that the autonomous system of ODEs

=x—y— @+ ydx,
y=x+y— > +yHy,

has a limit cycle.

Solution

This system clearly has an equilibrium point at the origin x = y = 0, and a little
algebra shows that there are no others. Although we have not proved this result, it
is true that any periodic solution (simple closed loop) in the phase plane must have
an equilibrium point lying inside it. In the present case, it follows that, if a periodic
solution exists, then it must enclose the origin. This suggests taking the domain D to
be the annular region between two circles centred on the origin.

It is convenient to express the system of equations in polar coordinates r, 6. The
transformed equations are (see Problem 8.5)

i X1X] +X25€2’ G- x1X%2 —2X2561’
r r

where x; = r cosf and x» = r sin 6. In the present case, the polar equations take the
simple form

r=r(l —rz), 0=1.

* This actually describes a stable limit cycle, which is the only kind likely to be observed.
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These equations can actually be solved explicitly, but, in order to illustrate the method,
we will make no use of this fact. Let D be the annular domain ¢ < r < b, where
0 <a<1landb > 1. Onthecircle r = b, 7 = b(1 — b?) < 0. Thus a phase point
that starts anywhere on the outer boundary r = b enters the domain D. Similarly, on
the circle 7 = a, 7 = a(l — a®) > 0 and so a phase point that starts anywhere on the
inner boundary r = a also enters the domain D. It follows that any phase path that
starts in the annular domain D can never leave. Since D is a bounded domain with no
equilibrium points within it or on its boundaries, it follows from Poincaré—Bendixson
that any such path must either be a simple closed loop or tend to a limit cycle. In
either case, the system must have a periodic solution lying in the annulus a < r < b.

We can say more. Phase paths that begin on either boundary of D enter D and
can never leave. These phase paths cannot close themselves (that would mean leaving
D) and so can only tend to a limit cycle. It follows that the system must have (at least
one) limit cycle lying in the domain D. [The explicit solution shows that the circle
r = 11is a limit cycle and that there are no other periodic solutions.] ®

Not all examples are as straightforward as the last one. Often, considerable ingenuity
has to be used to find a suitable domain D. In particular, the boundary of D cannot always
be composed of circles. Most readers will find our second example rather difficult!

Example 8.4 Rayleigh’s equation has a limit cycle

Show that Rayleigh’s equation
ftek (1) +x =0,

has a limit cycle for any positive value of the parameter €.

Solution

Rayleigh’s equation arose in his theory of the bowing of a violin string. In the context
of particle oscillations however, it corresponds to a simple harmonic oscillator with a
strange damping term. When |x| > 1, we have ordinary (positive) damping and the
motion decays. However, when |x| < 1, we have negative damping and the motion
grows. The possibility arises then of a periodic motion which is positively damped on
some parts of its cycle and negatively damped on others. Somewhat surprisingly, this
actually exists.
Rayleigh’s equation is equivalent to the autonomous system of ODEs

X=v

. ' 8.20
v:—x—ev(v2—1), (8.20)

for which the only equilibrium position is at x = v = 0. It follows that, if there is a

periodic solution, then it must enclose the origin. At first, we proceed as in the first

example. In polar form, the equations (8.20) become

;= —ersin’f (r2 sin?6 — 1) ,
j 0

6 =—1—esin?0 (r2sin?6 — 1). 8.21)
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FIGURE 8.6 A suitable domain D to show that Rayleigh’s
equation has a limit cycle.

Let r = ¢ be a circle with centre at the origin and radius less than unity. Then 7 > 0
everywhere on r = ¢ except at the two points x = =c, v = 0, where it is zero.
Hence, except for these two points, we can deduce that a phase point that starts on the
circle r = c enters the domain r > c¢. Fortunately, these exceptional points can be
disregarded. It does not matter if there are a finite number of points on r = ¢ where
the phase paths go the ‘wrong’ way, since this provides only a finite number of escape
routes! The circle r = ¢ thus provides a suitable inner boundary C; of the domain D.

Sadly, one cannot simply take a large circle to be the outer boundary of D since
7 has the wrong sign on those segments of the circle that lie in the strip —1 < v < 1.
This allows any number of phase paths to escape and so invalidates our argument.
However, this does not prevent us from choosing a boundary of a different shape. A
suitable outer boundary for D is the contour C; shown in Figure 8.6. This contour is
made up from four segments. The first segment AB is part of an actual phase path
of the system which starts at A(—a, 1) and continues as far as B(b, 1). The form
of this phase path can be deduced from equations (8.21). When v(= rsinf) > 1,
i < 0and 6 < —1, so that the phase point moves clockwise around the origin with
r decreasing. In particular, B must be closer to the origin than A so that b < a, as
shown. Similarly, the segment A’ B’ is part of a second actual phase path that begins at
A’(a, —1). Because of the symmetry of the equations (8.20) under the transformation
X — —x,v — —v, this segment is just the reflection of the segment AB in the origin;
the point B is therefore (—b, —1). The contour is closed by inserting the straight line
segments BA" and B’A.

We will now show that, when C, is made sufficiently large, it is a suitable outer
boundary for our domain D. Consider first the segment AB. Since this is a phase
path, no other phase path may cross it (in either direction); the same applies to the
segment A’B’. Now consider the straight segment BA’. Because a > b, the outward
unit normal 7 shown in Figure 8.6 makes a positive acute angle o with the axis Ox.
Now the ‘phase plane velocity’ of a phase point is

)'ci—i-t')j:vi—(ev(vz—l)—{—x)j
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FIGURE 8.7 The body is supported by a °
rough moving belt and is attached to a fixed

post by a light spring. —

and the component of this ‘velocity’ in the n-direction is therefore
(vi — (osv(v2 —1) +x> j) < (coswi + sinw j)

= vcosa — sina (ev(v2 -1 —|—x>

= —xsina +v (cosa +esina(l — vz))

< —bsina + (1 +¢€),

for (x, v) on BA’. We wish to say that this expression is negative so that phase points
that begin on BA’ enter the domain D. This is true if the contour C; is made large
enough. If we let a tend to infinity, then b also tends to infinity and « tends to /2.
It follows that, whatever the value of the parameter €, we can make bsina > (1 + ¢€)
by taking a large enough. A similar argument applies to the segment B’A. Thus
the contour C; is a suitable outer boundary for the domain D. It follows that any
phase path that starts in the domain D enclosed by Cy and Cy can never leave. Since
D is a bounded domain with no equilibrium points within it or on its boundaries, it
follows from Poincaré—Bendixson that any such path must either be a simple closed
loop or tend to a limit cycle. In either case, Rayleigh’s equation must have a periodic
solution lying in D.

We can say more. Phase paths that begin on either of the straight segments of
the outer boundary C, enter D and can never leave. These phase paths cannot close
themselves (that would mean leaving D) and so can only tend to a limit cycle. It
follows that Rayleigh’s equation must have (at least one) limit cycle lying in the
domain D. [There is in fact only one.] B

A realistic mechanical system with a limit cycle

Finding realistic mechanical systems that exhibit limit cycles is not easy. Driven oscilla-
tions are eliminated by the requirement that the system be autonomous. Undamped oscil-
lators have bounded periodic motions, and the introduction of damping causes the motions
to die away to zero, not to a limit cycle. In order to keep the motion going, the system
needs to be negatively damped for part of the time. This is an unphysical requirement, but
it can be simulated in a physically realistic system as follows.

Consider the system shown in Figure 8.7. A block of mass M is supported by a rough
horizontal belt and is attached to a fixed post by a light linear spring. The belt is made
to move with constant speed V. Suppose that the motion takes place in a straight line
and that x(¢) is the extension of the spring beyond its natural length at time ¢. Then the
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FIGURE 8.8 Left: The form of the frictional resistance function G (v). Right: The limit cycle
in the phase plane; E is the unstable equilibrium point.

equation of motion of the block is

dv 2
M— =-MQx—Fw-V),

dt
where v = dx/dt, MQ? is the spring constant, and F (v) is the frictional force that the
belt would exert on the block if the block had velocity v and the belt were at rest; in the
actual situation, the argument v is replaced by the relative velocity v — V. The function
F (v) is supposed to have the form shown in Figure 8.8 (left). Although this choice is
unusual (F (v) is not an increasing function of v for all v), it is not unphysical!

Under the above conditions, the block has an equilibrium position at x =

FWV)/ (M Q?). The linearised equation for small motions near this equlibrium position
is given by

M—— = —MQ*' — F'(V)—,
dr? x V)7

d>x’ dx’'
t
where x’ is the displacement of the block from the equilibrium position. If we select the
belt velocity V so that F'(V) is negative (as shown in Figure 8.8 (left)), then the effective
damping is negative and small motions will grow. The equilibrium position is therefore
unstable; oscillations of the block about the equlibrium position then do not die out, but
instead tend to a limit cycle. This limit cycle is shown in Figure 8.8 (right). The formal
proof that such a limit cycle exists is similar to that for Rayleigh’s equation. Indeed, this
system is essentially Rayleigh’s model for the bowing of a violin string, where the belt is
the bow, and the block is the string.

Chaotic motions

Another important conclusion from Poincaré—Bendixson is that no bounded motion of a
plane autonomous system can exhibit chaos. The phase point cannot just wander about
in a bounded region of the phase plane for ever. It must either close itself, terminate at
an equilibrium point, or tend to a limit cycle and none of these motions is chaotic. In
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particular, no bounded motion of an undriven non-linear oscillator can be chaotic. As we
will see in the next section however, the driven non-linear oscillator (a non-autonomous
system) can exhibit bounded chaotic motions.

It should be remembered that Poincaré—Bendixson applies only to the bounded motion
of plane autonomous systems. If the phase space has dimension three or more, then other
motions, including chaos, are possible.

8.5 DRIVEN NON-LINEAR OSCILLATIONS

Suppose that we now introduce damping and a harmonic driving force into equa-
tion (8.2). This gives
d’x dx ) 3
Pl —i—kE + Q°x + Ax” = Fycos pt, (8.22)
which is known as Duffing’s equation.

The presence of the driving force Fycos pt makes this system non-autonomous.
The behaviour of non-autonomous systems is considerably more complex than that of
autonomous systems. Phase space is still a useful aid in depicting the motion of the sys-
tem, but little can be said about the general behaviour of the phase paths. In particular,
phase paths can cross each other any number of times, and Poincaré-Bendixson does not
apply. Our treatment of driven non-linear oscillations is therefore restricted to perturbation
theory.

In view of the large number of parameters, it is sensible to non-dimensionalise equa-
tion (8.22). The dimensionless displacement X is defined by x = (Fp/ pz)X and the
dimensionless time s by s = pt. The function X (s) then satisfies the dimensionless equa-
tion

2
X"+ (E) X' + (9) X +eX? =coss (8.23)
p p

where the dimensionless parameter ¢ is defined by
2
¢ = foh
Qo -
When € = 0, equation (8.23) reduces to the linear problem. This suggests that, when

€ is small, we may be able to find approximate solutions by perturbation theory. The
linear problem always has a periodic solution for X (the driven motion) that is harmonic

(8.24)

with period 2. Proving the existence of periodic solutions of Duffing’s equation is an
interesting and difficult problem. Here we address this problem for the case in which €
is small, a regular perturbation on the linear problem. To simplify the working we will
suppose that damping is absent; the general features of the solution remain the same. The
governing equation (8.23) then simplifies to

2

X// Q 3 _

+—) X +e€X’ =coss. (8.25)
p
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Initial conditions do not come into this problem. We are simply seeking a family of
solutions X (s, €), parametrised by €, that are (i) periodic, and (ii) reduce to the linear
solution when € = 0. We need to consider first the periodicity of this family of solutions.
In the non-linear problem, we have no right to suppose that the angular frequency of the
driven motion is equal to that of the driving force, as it is in the linear problem; it could
depend on €. However, suppose that the driving force has minimum period 7y and that a
family of solutions X (s, €)) of equation (8.25) exists with minimum period 7 (= 7(€)).
Then, since the derivatives and powers of X also have period 7, it follows that the left
side of equation (8.25) must have period 7. The right side however has period 7( and this
is known to be the minimum period. It follows that T must be an integer multiple of to;
note that t is not compelled to be equal to tp.* However, in the present case, the period
7(€) is supposed to be a continuous function of € with T = 79 when € = 0. It follows
that the only possibility is that t = tg for all €. Thus the period of the driven motion
is independent of € and is equal to the period of the driving force. This argument leaves
open the possibility that other driven motions may exist that have periods that are integer
multiples of 7p. However, even if they exist, they cannot occur in our perturbation scheme.

We therefore expand X (s, €) in the perturbation series

X(t,€) = Xot) + €X1(t) + €2 Xa(t) + -+ -, (8.26)

and seek a solution of equation (8.25) that has period 2. It follows that the expansion
functions Xo(s), X1(s), X2(s), ... must also have period 2. If we now substitute this
series into the equation (8.25) and equate coefficients of powers of €, we obtain a succes-
sion of ODEs the first two of which are as follows:

From coefficients of €°:

2
X!+ g Xo = 8.27
0 p 0 = COSS. (8.27)
From coefficients of €!:
2
X!+ 2) x, = —x3 8.28
1 ; 1= —4p- ( )

For p # Q, the general solution of the zero order equation (8.27) is

2
Xo = (%) coss + Acos(2s/p) + B sin(S2s/p),
Q- —p

where A and B are arbitrary constants. Since X¢ is known to have period 27, it follows
that A and B must be zero unless €2 is an integer multiple of p; we will assume this is not

* The fact that t is the minimum period of X does not neccessarily make it the minimum period of the left
side of equation (8.25).
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the case. Then the required solution of the zero order equation is

p2
X() = 522——]92 COS s. (829)

The first order equation (8.28) can now be written

Q 2 p2 :
X’{+(—> X =- P cos’ s
p -D

p6
=—|—————= ] (Bcoss + cos3s), (8.30)

4(92 _ p2)3

on using the trigonometric identity cos 3s = 4 cos® s —3 cos s. Since §2/ p is not an integer,
the only solution of this equation that has period 27 is

8
p 3coss cos 3s
X;=— . 8.31

! Q2 — p2)’ (92 — 2t C 9p2) 831)

Results

When € (= F§ A/p®) is small, the driven response of the Duffing equation (8.22) (with
k = 0) is given by

Fo ; 3p®cos pt p®cos3pt e ( 2)
X = ——= | COS — € €
QZ _ p2 p (QZ _ p2)3 (QZ _ pZ)Z(QZ _ 9p2)
(8.32)

This is the approximate solution correct to the first order in the small parameter €.
More terms can be obtained in a similar way but this is best done with computer assistance.

The most interesting feature of this formula is the behaviour of the first order cor-
rection term when 2 is close to 3p, which suggests the existence of a super-harmonic
resonance with frequency 3p. Similar ‘resonances’ occur in the higher terms at the fre-
quencies 5p, 7p, ..., and are caused by the presence of the non-linear term Ax>. It should
not however be concluded that large amplitude responses occur at these frequencies.™ The
critical case in which 2 = 3p is solved in Problem 8.14 and reveals no infinities in the
response.

Sub-harmonic responses and chaos

We have so far left open the interesting question of whether a driving force with minimum
period t can excite a subharmonic response, that is, a response whose minimum period is

* This is a subtle point. Like all power series, perturbation series have a certain ‘radius of convergence’.
When all the terms of the perturbation series are included, € is resticted to some range of values —eg <
€ < €p. What seems to happen when €2 approaches 3 p is that € approaches zero so that the first order
correction term never actually gets large.
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FIGURE 8.9 Two different periodic responses to the same driving force. Left: A
response of period 277, Right: A sub-harmonic response of period 4.

an integer multiple of t. This is certainly not possible in the linear case, where the driving
force and the induced response always have the same period. One way of investigating
this problem would be to expand the (unknown) response x(¢) as a Fourier series and
to substitute this into the left side of Duffing’s equation. One would then require all the
odd numbered terms to magically cancel out leaving a function with period 27. Unlikely
though this may seem, it can happen! There are ranges of the parameters in Duffing’s
equation that permit a sub-harmonic response. Indeed, it is possible for the same set
of parameters to allow more than one periodic response. Figure 8.9 shows two different
periodic responses of the equation dx /dt> 4 kdx /dt +x3 = A cost, each corresponding
to k = 0.04, A = 0.9. One response has period 27 while the other is a subharmonic
response with period 47. Which of these is the steady state response depends on the
initial conditions. It is also possible for the motion to be chaotic with no steady state ever
being reached, even though damping is present.

Problems on Chapter 8

Answers and comments are at the end of the book.

Harder problems carry a star ().

Periodic oscillations: Lindstedt’s method
8.1 A non-linear oscillator satisfies the equation

<1+ex2>)'c'+x =0,
where € is a small parameter. Use Linstedt’s method to obtain a two-term approximation to
the oscillation frequency when the oscillation has unit amplitude. Find also the corresponding
two-term approximation to x (). [ You will need the identity 4 cos® s = 3 cos s + cos 3s.]

8.2 A non-linear oscillator satisfies the equation

5é—|—x+ex5=0,
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where € is a small parameter. Use Linstedt’s method to obtain a two-term approximation to
the oscillation frequency when the oscillation has unit amplitude. [You will need the identity
16cos’ s = 10cos s + 5 cos 3s + cos 3s.]

8.3 Unsymmetrical oscillations A non-linear oscillator satisfies the equation
. 2
X+x+ex =0,

where € is a small parameter. Explain why the oscillations are unsymmetrical about x = 0 in
this problem.

Use Linstedt’s method to obtain a two-term approximation to x(¢) for the oscillation in
which the maximum value of x is unity. Deduce a two-term approximation to the minimum
value achieved by x(¢) in this oscillation.

8.4% A limit cycle by perturbation theory Use perturbation theory to investigate the limit
cycle of Rayleigh’s equation, taken here in the form

ite (32 —1)i+x=0,

where € is a small positive parameter. Show that the zero order approximation to the limit
cycle is a circle and determine its centre and radius. Find the frequency of the limit cycle
correct to order €2, and find the function x(¢) correct to order €.

Phase paths

8.5 Phase paths in polar form Show that the system of equations
X1 = Fi(x1, x2, 1), Xp = Fa(xy, x2, 1)

can be written in polar coordinates in the form

X1F1 4+ x2F> é_xlFZ—szl

r 72 ’

where x; = r cos 6 and x, = r sin 6.
A dynamical system satisfies the equations

X

_x+y1
y=-x—y.

Convert this system into polar form and find the polar equations of the phase paths. Show that
every phase path encircles the origin infinitely many times in the clockwise direction. Show
further that every phase path terminates at the origin. Sketch the phase diagram.

8.6 A dynamical system satisfies the equations

X:x—y—(xz—i—yz)x,
jy=x+y—@r+y)y.
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Convert this system into polar form and find the polar equations of the phase paths that begin
in the domain 0 < r < 1. Show that all these phase paths spiral anti-clockwise and tend to
the limit cycle » = 1. Show also that the same is true for phase paths that begin in the domain
r > 1. Sketch the phase diagram.

8.7 A damped linear oscillator satisfies the equation
X+x+x=0.
Show that the polar equations for the motion of the phase points are
j=—rsin?0, 0= (1+}sin20).

Show that every phase path encircles the origin infinitely many times in the clockwise direc-
tion. Show further that these phase paths terminate at the origin.

8.8 A non-linear oscillator satisfies the equation
. .3 _
X+x74+x=0.

Find the polar equations for the motion of the phase points. Show that phase paths that begin
within the circle r < 1 encircle the origin infinitely many times in the clockwise direction.
Show further that these phase paths terminate at the origin.

8.9 A non-linear oscillator satisfies the equation
5c'+(x2+5c2— 1)5c+x = 0.

Find the polar equations for the motion of the phase points. Show that any phase path that
starts in the domain 1 < r < +/3 spirals clockwise and tends to the limit cycle » = 1. [The
same is true of phase paths that start in the domain O < r < 1.] What is the period of the limit
cycle?

8.10 Predator-prey Consider the symmetrical predator—prey equations
X=x—xy, y=xy—y,
where x(¢) and y(¢) are positive functions. Show that the phase paths satisfy the equation
(ve™) (ye™) = 4.

where A is a constant whose value determines the particular phase path. By considering the
shape of the surface

= (xe™) (ve™).

deduce that each phase path is a simple closed curve that encircles the equilibrium point at
(1, 1). Hence every solution of the equations is periodic! [This prediction can be confirmed
by solving the original equations numerically.]
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Poincaré—Bendixson
8.11 Use Poincaré—Bendixson to show that the system

X =x—y—(x? 44y,
J=x+y— (F+4yHy,

has a limit cycle lying in the annulus % <r <l
8.12 Van der Pol’s equation Use Poincaré—Bendixson to show that Van der Pol’s equation™
X +ex <x2—1)+x=0,

has a limit cycle for any positive value of the constant €. [The method is similar to that used
for Rayleigh’s equation in Example 8.4.]

Driven oscillations

8.13 A driven non-linear oscillator satisfies the equation
idterd+x= cos pt,

where €, p are positive constants. Use perturbation theory to find a two-term approximation
to the driven response when € is small. Are there any restrictions on the value of p?

8.14 Super-harmonic resonance A driven non-linear oscillator satisfies the equation
F4+9x +exd= cost,

where € is a small parameter. Use perturbation theory to investigate the possible existence of
a superharmonic resonance. Show that the zero order solution is

1
Xp = 3 (cost + agcos3t),

where the constant ay is a constant that is not known at the zero order stage.
By proceeding to the first order stage, show that aq is the unique real root of the cubic
equation

3a8+6a0+1=0,

which is about —0.164. Thus, when driving the oscillator at this sub-harmonic frequency, the
non-linear correction appears in the zero order solution. However, there are no infinities to be
found in the perturbation scheme at this (or any other) stage.

Plot the graph of xo(¢) and the path of the phase point (xo(?), x(t)).

* After the extravagantly named Dutch physicist Balthasar Van der Pol (1889-1959). The equation arose
in connection with the current in an electronic circuit. In 1927 Van der Pol observed what is now called
deterministic chaos, but did not investigate it further.
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Computer assisted problems
8.15 Linstedt’s method Use computer assistance to implement Lindstedt’s method for the
equation

i+x+ex’=0.

Obtain a three-term approximation to the oscillation frequency when the oscillation has unit
amplitude. Find also the corresponding three-term approximation to x (¢).

8.16 Van der Pol’s equation A classic non-linear oscillation equation that has a limit cycle
is Van der Pol’s equation

)'é+e(x2—1))'c+x:0,

where € is a positive parameter. Solve the equation numerically with € = 2 (say) and plot the
motion of a few of the phase points in the (x, v)-plane. All the phase paths tend to the limit
cycle. One can see the same effect in a different way by plotting the solution function x (¢)
against f.

8.17 Sub-harmonic and chaotic responses Investigate the steady state responses of the
equation

X+ ki 4 x3 = Acost
for various choices of the parameters k and A and various initial conditions. First obtain the

responses shown in Figure 8.9 and then go on to try other choices of the parameters. Some
very exotic results can be obtained! For various chaotic responses try K = 0.1 and A = 7.
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Chapter Nine

The energy principle

and energy conservation

KEY FEATURES
The key features of this chapter are the energy principle for a multi-particle system, the poten-
tial energies arising from external and internal forces, and energy conservation.

This is the first of three chapters in which we study the mechanics of multi-particle
systems. This is an important development which greatly increases the range of problems
that we can solve. In particular, multi-particle mechanics is needed to solve problems
involving the rotation of rigid bodies.

The chapter begins by obtaining the energy principle for a multi-particle system. This
is the first of the three great principles of multi-particle mechanics* that apply to every
mechanical system without restriction. We then show that, under appropriate conditions,
the total energy of the system is conserved. We apply this energy conservation principle
to a wide variety of systems. When the system has just one degree of freedom, the energy
conservation equation is sufficient to determine the whole motion.

9.1 CONFIGURATIONS AND DEGREES OF FREEDOM

A multi-particle system S may consist of any number of particles Py, Ps, ...,
Py, with masses my, my ..., my respectively.T A possible ‘position’ of the system is
called a configuration. More precisely, if the particles P, P2, ..., Py of a system have
position vectors r1, ra, ..., ry, then any geometrically possible set of values for the posi-
tion vectors {r;} is a configuration of the system.

If the system is unconstrained, then each particle can take up any position in space
(independently of the others) and all choices of the {r;} are possible. This would be the
case, for instance, if the particles of S were moving freely under their mutual gravita-
tion. On the other hand, when constraints are present, the {r;} are restricted. Suppose
for instance that the particles P; and P, are connected by a light rigid rod of length a.

* The other two are the linear momentum and angular momentum principles.
T To save space, we will usually express this by saying that S is the system of particles {P;} with masses
{m;}, the range of the index number i being understoodtobe 1 <i < N.



222 Chapter 9 The energy principle
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FIGURE 9.1 The multi-particle system S P P
consists of N particles Py, Ps, ..., Py, of ® ¢
which the typical particle P; is labelled. The \.A
particle P{ has mass m;, position vector r;, O r o o Y v
and velocity v;. v i

FIGURE 9.2 The generalised coordinates x O | 9 a

and 0 are sufficient to specify the

configuration of this two-particle system in I P
planar motion. I 2

This imposes the geometrical restriction |r; — r2| = a so that not all choices of the {r;}
are then possible. This difference is reflected in the number of scalar variables needed
to specify the configuration of S. In the unconstrained case, all of the position vectors
{r;} must be specified separately. Since each of these vectors may be specified by three
Cartesian coordinates, it follows that a total of 3N scalar variables are needed to specify
the configuration of an unconstrained N -particle system. When constraints are present,
this number is reduced, often dramatically so.

For example, consider the system shown in Figure 9.2, which consists of two particles
P1 and P, connected by a light rigid rod of length a. The particle P; is also constrained
to move along a fixed horizontal rail and the whole system moves in the vertical plane
through the rail. The fwo scalar variables x and 6 shown are sufficient to specify the
configuration of this system. This contrasts with the six scalar variables that would be
needed if the two particles were in unconstrained motion. The variables x and 6 are said
to be a set of generalised coordinates for this system.* Other choices for the generalised
coordinates could be made, but the number of generalised coordinates needed is always
the same.

Definition 9.1 Degrees of freedom The number of generalised coordinates needed to
specify the configuration of a system S is called the number of degrees of freedom of S.

Importance of degrees of freedom

The number of degrees of freedom of a system is important because it is equal to the
number of equations that are needed to determine the motion of the system. For example,

* Besides being sufficient to specify the configuration of the system, the generalised coordinates are also
required to be independent, that is, there must be no functional relation between them. The coordinates
X, 0 in Figure 9.2 are certainly independent variables. If the coordinates were connected by a functional
relation, they would not all be needed and one of them could be discarded.
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FIGURE 9.3 The multi-particle S consists of
N particles Py, P, ..., Py, of which the
typical particles P; and P; are shown
explicitly. The force F; is the external force
acting on P; and the force G;; is the internal
force exerted on P; by the particle P;.

the system shown in Figure 9.2 has rwo degrees of freedom and so needs two equations to
determine the motion completely.

Example 9.1 Degrees of freedom

Find the number of degrees of freedom of the following mechanical systems: (i) the
simple pendulum (moving in a vertical plane), (ii) a door swinging on its hinges, (iii)
a bar of soap (a particle) sliding on the inside of a hemispherical basin, (iv) a rigid
rod sliding on a flat table, (v) four rigid rods flexibly jointed to form a quadrilateral
which can slide on a flat table.

Solution
@1 Gyl G2 @(Gv)3 (v)4.m

9.2 THE ENERGY PRINCIPLE FOR A SYSTEM

Let S be a system of N particles {P;}, as shown in Figure 9.3. We classify the
forces acting on the particles of S as being external or internal. External forces are those
originating from outside S. (In the case of a single particle, these are the only forces
that act.) Uniform gravity is an example of an external force. However, in multi-particle
systems, the particles are also subject to their own mutual interactions, that is, the forces
that they exert upon each other. These mutual interactions are called the internal forces
acting on S. The situation is shown in Figure 9.3. F; is the external force acting on the
particle P;, while G;; is the internal force exerted on P; by the particle P;. By the Third
Law, the force G j; that P; exerts on P; must be equal and opposite to the force G;;, and
both forces must be parallel to the straight line joining P; and P;. In short, the {G;;} must
satisfy

Gj,' = —Gij, and G,‘j || (r,- — rj). (91)
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To obtain the energy principle for the system S, we proceed in the same way as we did for
a single particle in section 6.1. The equation of motion for the particle P; is*

dvi N
mi— - =Fi + ; Gij. 92)

where v; is the velocity of P; at time ¢. On taking the scalar product of both sides of
equation (9.2) with v; and then summing the result over all the particles (1 <i < N), we
obtain

N

__Z F+ZG,, -, 9.3)

i=1

where

N

1 2
T =Y jmilvl,

i=1

the total Kinetic energy of the whole system S. Suppose that, in the time interval [z 4, 3],
the system S moves from configuration A to configuration 5. On integrating equation
(9.3) with respect to ¢ over the time interval [7 4, 3] we obtain

T — T = Z/ --vldt—i—ZZ/ Gij-v;dt (9.4)

i=1 i=1 j=1

where T 4 and Tg are the kinetic energies of the system S at times ¢ 4 and 75 respectively.
This is the energy principle for a multi-particle system moving under the external forces
{F;} and internal forces {G;;}. This impressive looking result can be stated quite simply
as follows:

Energy principle for a multi-particle system

In any motion of a system, the increase in the total kinetic energy of the system in
a given time interval is equal to the total work done by all the external and internal
forces during this time interval.

* The summation over j in equation (9.2) contains the term G;; which corresponds to the force that the
particle P; exerts upon itself. Since such a force is not actually present, we should really say that the
summation is over the range 1 < j < N with j # i. Since this would make the formulae look messy, we
adopt the device of regarding the terms G 1, G237, ..., Gy (Which do not actually exist) as being zero.
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9.3 ENERGY CONSERVATION FOR A SYSTEM

In order to develop an energy conservation principle, we need to write the right
side of the energy principle (9.4) in the form V (A) — V (B), where V is the potential
energy function for the whole system. We first consider unconstrained systems.

Unconstrained systems

When the system is unconstrained, all the forces that act on the system are specified
directly. We will assume that the external forces F; are conservative fields. In this case
F; = — grad ¢;, where ¢; is the potential energy function of the field F;. Then the total
work done by the external forces can be written

N g N
Z/ Fi-vidt =) (¢i(ra) — ¢i(rp)) = ®(A) — o(B),

i=171A i=1
where
Q(ri,ra, ..., rN) =¢1(r1)) + ¢2(r2) +-- -+ dn(rn)
is the potential energy of S arising from the external forces.

Example 9.2 Potential energy under uniform gravity

Find the potential energy ® when the external forces on S arise from uniform gravity.

Solution

Under uniform gravity, the force F; exerted on particle P; is F; = —m; gk, where the
unit vector k points vertically upwards. This conservative field has potential energy
¢; = m;gz;, where z; is the z-coordinate of P;. The total potential energy of S due to
uniform gravity is therefore

O =migzy +mogzy+---+mygzn.

On using the definition of centre of mass given in section 3.5, this can be written in
the alternative form

d=MgZ,

where M is the total mass of S, and Z is the z-cordinate of the centre of mass of S.
Thus the potential energy of any system due to uniform gravity is the same as if all its
mass were concentrated at its centre of mass. &

We now need to make a similar transformation to show that the work done by the
internal forces can be written in the form W (A) — W (B), where W is the internal potential
energy. The argument is as follows:

We know from the Third Law that the {G;;} satisfy the conditions (9.1), but a little more must be
assumed. We further assume that the magnitude of G;; depends only on r;;, the distance between P; and
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P j.* Internal forces that satisfy this conditions will be called conservative; mutual gravitation forces are a
typical example. Hence, when the internal forces are conservative, G;; must have the form
Gij = hij(rij)Tij 9.5)
where (see Figure 9.3)
rij=ri—rj rijg=Irigl o T =rij/rij. 9.6)

Note that /;; is the repulsive force that the particles P; and P exert upon each other.
Consider now the rate of working of the pair of forces G;; and G j;. This is

drij hij(rij) drij
=|\—)r; it

Gij-v,-+Gj,--vj :Gij‘( - )—h,j(r,j)r,j

dt Tij dt

dr;
—hz](’z]) I]

on using equations (9.1), (9.6) and the 1dent1ty rij - Fij = rijrij. The total work done by the forces G;;
and Gj,- during the time interval [ 4, 3] is therefore

13 rij(B)
/ hij(r u) i dt / hij(rij)dri; = Hij(rij(A) — H;j(r;j(B)),
A rij(A)

where Hj; is the indefinite integral of —/;;. The function H;;(r;;) is called the mutual potential energy
of the particles P; and P;.

It follows that the total work done by all the internal forces in the time interval [ 4, f3] can be written
in the form

ZZ/ ij +vidt = W(A) — W(B),

i=1j=1
where
N i—1

V(ry,rp,...,ry) = ZZHij(rij)

i=1j=1
is the potential energy of S arising from the internal forces. This potential energy is just the sum of the

mutual potential energies of all pairs of particles.

Example 9.3 Internal energy of three charged particles

Three particles Py, P>, P3 carry electric charges eq, en, e3 respectively. Find the
internal potential energy W.

Solution

In cgs/electrostatic units, the particles P; and P repel each other with the force
hi2(rip) = erea/ (r12)%, where r}5 is the distance between P; and P,. Their mutual
potential energy is therefore

e1er e1es
Hpp = — / hip(ri)driz=— | —5dria=——-.
(r12) 12

* This is equivalent to the very reasonable assumptions that the magnitude of G;; is invariant under spatial
translations and rotations of each pair of particles P; and P}, and is independent of the time.
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The internal potential energy of the whole system is therefore

eje2 e1es €3
v = + + .m
r12 13 23

On combining the above results, the energy principle (9.4) can be written
Tg—Ta=V(A —-V(DB),

where V' = @ + U is the total potential energy of the system S. This is equivalent to the
energy conservation formula

T+V=E 9.7

where FE is the total energy of the system.This result can be summarised as follows:

Energy conservation for an unconstrained system

When both the external and internal forces acting on a system are conservative, the
sum of its kinetic and potential energies* remains constant in the motion.

Example 9.4 A star with two planets

A star of very large mass M is orbited by two planets P; and P, of masses m| and
my. Find the energy conservation equation for this system.

Solution

Since the mass of the star is supposed to be very much larger than the planetary
masses, we will neglect its motion and suppose that it is fixed at the origin O. We
then have a two-particle problem in which the planets move under the (external) grav-
itational attraction of the star and their (internal) mutual gravitational interaction. This
is an unconstrained system.

The total potential energy arising from external forces is then
MmG MmyG

b = ,
r )

where 1, are the distances O Py, O P;.

The particles P; and P> repel each other with the force hi2(rjp) =
—mimaG/ (r12)2, where | is the distance between P; and P,. Their mutual poten-
tial energy is therefore

Hypy = —/hlz(rlz)drlz = / Mﬂ'rlz = —w,
(r12) T2

and this is the only contribution to the internal potential energy W.

* The potential energy is the total of the potential energies arising from both the external and internal forces.
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Since the system is unconstrained and the external and internal forces are con-
servative, energy conservation applies. The energy conservation equation for the
system is

1 2,1 2 ny
smi|vi|” + sma va|” — MG (—+

my mimyG
1 )

=FE,
2

where v, v are the velocities of the planets Py, P>, and E is the constant total energy.
The value of E is determined from the initial conditions.

Since this system has six degrees of freedom (four if the motions are confined
to a plane through O), the energy conservation equation is by no means sufficient to
determine the motion! W

Question Can a planet escape?

If the initial conditions are such that £ < 0, is it possible for a planet to escape to
infinity?

Answer

If E < 0, then it is certainly not possible for both planets to escape to infinity, since
the total energy would then be positive. However, the escape of one planet is not
prohibited by energy conservation. This does not mean however that such an escape
will actually happen.

Constrained systems

When a system is subject to constraints, not all the forces that act on the system are speci-
fied. This is because constraints are enforced by constraint forces that are not part of the
specification of the problem; all we know is that their effect is to enforce the given con-
straints. The work done by constraint forces cannot generally be calculated (or expressed
in terms of a potential energy) and we are restricted to those systems for which the total
work done by the constraint forces happens to be zero.*

The constraint forces acting on the system may be external (for example, when a

particle of the system is constrained to remain at rest), or internal (for example, when two

particles of the system are constrained to remain the same distance apart).

A

B

The list of external constraint forces that do no work is the same as that given in
Section 6.5 for single particle motion.

The most important result regarding internal constraint forces that do no work is
this: The total work done by any pair of mutual interaction forces is zero when
the particles on which they act are constrained to remain a fixed distance apart.
The proof is as follows:

Suppose two particles P; and P; are constrained to remain a fixed distance apart and that their

mutual interaction forces are G;j and G j; (see Figure 9.3). Since the distance between P; and P;
is constant, it follows that (r; —r j) - (r; — r ;) is constant, which, on differentiating with respect

* Individual constraint forces may do work.
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FIGURE 9.4 The particles O and R slide along a smooth horizontal rail
while the particle P moves vertically.

to ¢, gives
(ri—rj)-@ —v;)=0.

Thus the vector (v; — v;) must be perpendicular to the straight line joining P; and P;. Hence,
the rate of working of the rwo forces G;; and G j; is

G,’j-vl'—FGj,' ‘v =G,'j -(v,- —-vj) =0,
since G;; is known to be parallel to the straight line joining P; and P;. Thus the internal con-

straint forces G;; and G j; do no work in fotal.

It follows, for example, that the two tension forces exerted by a light inextensible
string do no work in total. It further follows that the internal forces that enforce
rigidity in a rigid body do no work in total. This important result allows us to
solve rigid body problems by energy methods.

Our result for constrained systems can be summarised as follows:

Energy conservation for a constrained system

When the specified external and internal forces acting on a system are conservative,
and the constraint forces do no work in total, the sum of the kinetic and potential
energies of the system remains constant in the motion.

Example 9.5 A constrained three-particle system

Figure 9.4 shows a ball P of mass 2m suspended by light inextensible strings of
length a from two sliders Q and R, each of mass m, which can move on a smooth
horizontal rail. The system moves symmetrically so that O, the mid-point of Q and
R, remains fixed and P moves on the downward vertical through O. Initially the
system is released from rest with the three particles in a straight line and with the
strings taut. Find the energy conservation equation for the system.

Solution

This is a system with one degree of freedom and we take the angle 6 as the generalised
coordinate. Let z and x be the displacements of the particles P and Q from the fixed
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point O. Then, in terms of the generalised coordinate 6, x = a cosf and z = a sin6.
Differentiating these formulae with respect to ¢ then gives

X =—(asing)d, = (acosh)f.
Hence the total Kinetic energy of the system is given by
T = 1@m)2 + tmi? + tmi? = ma®6?.

The only contribution to the potential energy comes from uniform gravity, so
that

V=—-02m)gz+0+0=—-2mgasinb,

where we have taken the zero level of potential energy to be at the rail.

We must now show that the constraint forces do no work. The reactions exerted
by the smooth rail on the particles Q and R are perpendicular to the rail and therefore
perpendicular to the velocities of O and R; these reactions therefore do no work. Also,
the tension forces exerted by the inextensible strings do no work in total. Hence, the
constraint forces do no work in total.

Energy conservation therefore applies in the form

ma*6* — 2mgasinf = E.

From the initial conditions & = § = 0 when ¢ = 0, it follows that E = 0. The energy
conservation equation for the system is therefore

. 2
62— 5 Gino =0.m
a
Question When do the sliders collide?

Find the time that elapses before the sliders collide.

Answer

Since this system has only one degree of freedom, the motion can be found from
energy conservation alone. From the energy conservation equation, it follows that

do 20\ /2
Y4 <—g> (sin§)!/2,
dt a

and, since 6 is an increasing function of ¢, we take the positive sign. This equation is
a first order separable ODE.
Since the sliders collide when 6 = /2, the time 7 that elapses is given by

a\'"? (72 4o a\'?
= — —— X~ 1.85( — .n
’ <2g) /0 (sing)!/2 (g)
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Initially

FIGURE 9.5 A uniform rope is released from rest hanging over the edge of a smooth table (left).
After time ¢ it has displacement x (right).

Example 9.6 Rope sliding off a table

A uniform inextensible rope of mass M and length a is released from rest hanging
over the edge of a smooth horizontal table, as shown in Figure 9.5. Find the speed of
the rope when it has the displacement x shown.

Solution
A rope is a continuous distribution of mass, unlike the discrete masses that appear in
our theory. We regard the rope as being represented by a light inextensible string of
length @ with N particles, each of mass M /N, attached to the string at equally spaced
intervals along its length. When N is very large, we expect this discrete set of masses
to approximate the behaviour of the rope.

Since each particle of the rope has the same speed v (= x), the total kinetic
energy of the rope is simply

T = %M 2.

The only contribution to the potential energy comes from uniform gravity. If we
take the reference state for V' to be the initial configuration (Figure 9.5 (left)), then
the potential energy in the displaced configuration (right) is the same as if a length x
of the rope lying on the table were cut off and this piece were then suspended from
the hanging end. In the continuous limit (that is, as N — 00), this piece of rope has
mass M x /a and its centre of mass is lowered a distance b + (x/2) by this operation.
The potential energy of the rope in the displaced configuration is therefore

V:—(%)g(b+%x>.

We must now show that the constraint forces do no work. The reactions exerted
by the smooth table on the particles of the rope are always perpendicular to the veloc-
ities of these particles; these reactions therefore do no work. Also, the tension forces
exerted by each segment of the inextensible string (connecting adjacent particles of
the rope) do no work in total. Hence, the constraint forces do no work in total.

Energy conservation therefore applies in the form

Lo — (MEN o (pa 1) = B
§v—7g +§X—
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The initial condition v = 0 when x = 0 implies that £ = 0. The energy equation for
the rope is therefore

w2 =& x(x +20).
a

This gives the speed of the rope when it has displacement x. This formula holds while
there is still some rope left on the the table fop. B

Note. In the above solution we have assumed that the rope follows the contour of the
table edge and then falls vertically. However, it can be shown that this cannot be true
when the rope is close to leaving the table. What actually happens is that the end of
the rope overshoots the table edge. This is a tricky point which we will not investigate
further.

Question Displacement at time t

Find the displacement of the rope at time ¢.

Answer

Since this system has only one degree of freedom, the motion can be found from
energy conservation alone. From the energy conservation equation, it follows that

d
= dnx 242,

where n?> = g/a. Since x is an increasing function of ¢, we take the positive sign.

This equation is a first order separable ODE.
It follows that

_ dx
nt = X2(x 1 2b)12
X a1/2
— 2sinh~! (—) c,
sin b +

on using the substitution x = 2b sinh? w. The initial condition x = 0 when t = 0
implies that C = 0 and, after some simplification, we obtain

x = b(coshnt — 1)

as the displacement of the rope after time 7. As before, this formula holds while there
is still some rope left on the the table top. B

Example 9.7 Stability of a plank on a log

A uniform thin rigid plank is placed on top of a rough circular log and can roll without
slipping. Show that the equilibrium position, in which the plank rests symmetrically
on top of the log, is stable.
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FIGURE 9.6 A thin uniform plank is placed
symmetrically on top of a fixed rough
circular log. Is the equilibrium position of the
plank stable?

9.4

Solution

Suppose that the plank is disturbed from its equilibrium position and is tilted by an
angle 6 as shown in Figure 9.6. The plank is known to roll on the log, which means
that the distance GC from the centre G of the plank to the contact point C must
always be equal to the arc length of the log that has been traversed. If the radius of
the log is a, then this arc length is af.

We are not yet able to calculate the kinetic energy of the plank in terms of the
coordinate 0. This is done in the next section. However, we do not need it to investi-
gate stability.

The only contribution to the potential energy of the plank comes from uniform
gravity. This is given by V. = MgZ, where Z is the vertical displacement of the
centre of mass G of the plank. Elementary trigonometry (see Figure 9.6) shows that
Z =acosf + ab sinf — a, so that

V = Mga(cos6 + 6sinf — 1).

We must now show that the constraint forces do no work. The rate of working
of the constraint force R that the log exerts on the plank is R - v, where vC is the
velocity of the particle C of the plank that is instantaneously in contact with the log.
But, since the plank rolls on the log, v€ = 0 so that the rate of working of R is zero.
Also, the internal constraint forces that enforce the rigidity of the plank do no work
in total. Hence, the constraint forces do no work in total.

Energy conservation therefore applies in the form

T+ Mga(cosO +0sinf — 1) =E.

It follows that the equilibrium position (with the plank on top of the log) will be stable
if V has a minimum at 0 = 0. Now V' = Mga6 cos6 and V" = Mga(cos 6 —6 sin6)
so that, when & = 0, V' = 0and V" = 1. Hence V has a minimum at & = 0 and so
the equilibrium position is stable. B

KINETIC ENERGY OF A RIGID BODY

The general theory we have presented applies to any multi-particle system; in

particular, it applies to the rigid array of particles that we call a rigid body. However, in
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FIGURE 9.7 The rigid body B rotates about
the fixed axis C D with angular velocity w. A
typical particle P; moves on the circular path
shown.

order to make use of energy conservation in rigid body dynamics, we need to be able to
express the kinetic energy 7' of the body in terms of the generalised coordinates.

Rigid body with a fixed axis

Figure 9.7 shows a rigid body B which is rotating about the fixed axis C D. (Imagine that
the body is penetrated by a thin light spindle, which is smoothly pivoted in a fixed posi-
tion.) A typical particle P; of the body can move on the circular path shown. This circle
has radius p;, where p; is the perpendicular distance of P; from the axis C D. Suppose
that, at some instant, the angular velocity of 13 about the axis C D is w. Then the speed of
particle P; at this instant is |w|p;, and its Kinetic energy is %m,- (wpi)?. The total kinetic
energy of I3 is therefore

T

N
S () = 4 (z " p) o
j i=1

i=1

Definition 9.2 Moment of inertia The quantity

N
Iep =Y _mipi® 9.8)

i=1

where p; is the perpendicular distance of the mass m; from the axis C D, is called the
moment of inertia of the body B about the axis CD.

The moment of inertia, as defined above, does not depend on the motion of the body
B. It is a purely geometrical quantity (like centre of mass), which describes how the mass
in B is distributed relative to the axis C D. The further the mass in B3 lies from the axis, the
larger is the moment of inertia of 13 about that axis. In the theory of rotating rigid bodies,
the moment of inertia plays a similar role to that played by mass in the translational motion
of a particle.

Our result may be summarised as follows:
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Kinetic energy of a rigid body with a fixed axis

Suppose the rigid body B is rotating about the fixed axis C D with angular velocity
w. Then the kinetic energy of 5 is given by

T = %ICD o’ 9.9)

where I¢p is the moment of inertia of 13 about the axis C D.

Example 9.8 Moment of inertia of a hoop

Find the moment of inertia of a uniform hoop of mass M and radius a about its axis
of rotational symmetry.

Solution

This is the easiest case to treat since each particle of the hoop has perpendicular
distance a from the specified axis. The required moment of inertia is therefore

N N
1 = Zmi a? = <Zm,) a’ = Maz,
i=1 i=1

where M is the mass of the whole hoop. B

It is evident that, in order to solve problems that include rotating rigid bodies, we need
to know their moments of inertia. These can be worked out from the definition (9.8), or
its counterpart for continuous mass distributions. The Appendix at the end of the book
contains examples of how to do this and also contains a table of common moments of
inertia, including those for the uniform rod, hoop, disk and sphere. Most readers will
find it convenient to remember the moments of inertia in these four cases.

Example 9.9 Rotational kinetic energy of the Earth

Estimate the rotational kinetic energy of the Earth, regarded as a rigid uniform sphere
rotating about a fixed axis through its centre.

Solution

From the Appendix, we find that /, the moment of inertia of a uniform sphere about
an axis through its centre is given by / = 2M R?/5, where M is the mass of the sphere
and R its radius. The kinetic energy of the Earth is therefore given by

T =1lo* = IMR*?,
where M is the mass the Earth, R is its radius, and o is its angular velocity.

On inserting the values M = 6.0 x 10% kg, R = 6400 km and v = 7.3 x 103
radians per second, T = 2.6 x 10?° J approximately. ®
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4dm
v
FIGURE 9.8 Two blocks of masses m and 2m
are connected by a light inextensible string T l
which passes over a circular pulley of mass i 2m
4m and radius a. v

Example 9.10 Atiwood’s machine

Two blocks of masses m and 2m are connected by a light inextensible string which
passes over a uniform circular pulley of radius ¢ and mass 4m. Find the upward
acceleration of the mass m.

Solution
The system is shown in Figure 9.8. We suppose that the string does not slip on the
pulley and that the pulley is smoothly pivoted about its axis of symmetry.

Let z be the upward displacement of the mass m (from some reference configura-
tion) and v (= z) its upward velocity at time ¢. Then, since the string is inextensible,
the mass 2m must have the same displacement and velocity, but measured downwards.
The angular velocity w of the pulley is determined from the condition that the string
does not slip. In this case, the velocity of the rim of the pulley and the velocity of
the string must be the same at each point where they are in contact, that is, aw = v.
Hence w = v/a. Also, from the table in the Appendix, the moment of inertia of a
uniform circular disk of mass M and radius a about its axis of symmetry is %M a’.
Hence, the total kinetic energy of the system is

mvz.

NS1Lo))

v\ 2
T = %mv2 + %(Zm)v2 + % (%(4m)a2> (;) =

The gravitational potential energy of the system (relative to the reference con-
figuration) is

V =mgz — 2m)gz = —mgz.

We must now dispose of the constraint forces. (i) At the smooth pivot that
supports the pulley, the reactions are perpendicular to the velocities of the particles
on which they act. Hence these reactions do no work. (ii) Since there is no slippage
between the string and the three material bodies of the system, the total work done
by the string on the bodies must be equal and opposite to the total work done by the
bodies on the string.™ (iii) The internal forces that keep the pulley rigid do no work in
total. Hence the constraint forces do no work in total.

* Since this string is massless and inextensible, it can have neither kinetic nor potential energy so that the
total work done on the string must actually be zero.
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Energy conservation therefore applies in the form
5.2
5mv- —mgz = E,

where E is the total energy. If we now differentiate this equation with respect to ¢
(and cancel by mv), we obtain

dv
= F

which is the equation of motion of the system. Thus the upward acceleration of the
mass m is g/5. (If the pulley were massless, the result would be g/3.) B

Rigid body in general motion

We now go on to find the kinetic energy of a rigid body that has translational as well as
rotational motion. The method depends on the following theorem.

Theorem 9.1 Suppose a general system of particles S has total mass M and that its
centre of mass G has velocity V. Then the total kinetic energy of S can be written in the
form

T=iMV>*+TC, (9.10)

where V.= |V | and TC is the kinetic energy of S in its motion relative to G .

Proof. By definition,

mi (v —=V)-(v; = V)

1 (& 1 N Al
miv;i - v; — o (Zmivi> V- EV . (Zm,‘vi) + 3 (Zm,) V.V
—-(MV) V-3V (MV)+iMV-V)
— MV,

NI>—‘

i

I
’\]ﬂ NI

as required. W

The term %M V2 can be regarded as the translational contribution to 7. When the
system S is a rigid body, TC also has a nice physical interpretation. In this case, the
motion of S relative to G is an angular velocity w about an axis C D passing through G,
as shown in Figure 9.9. It then follows from equation (9.9) that 76 =1 slcp w?. This can
be regarded as the rotational contribution to 7. We therefore have the result.
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N

FIGURE 9.9 A rigid body B in general

motion. The centre of mass G has velocity V

and B is also rotating with angular velocity ;
about an axis through G. . C

Kinetic energy of a rigid body in general motion

Let 3 be a rigid body of mass M and and let G be its centre of mass. Suppose that
G has velocity V and that the body is also rotating with angular velocity @ about an
axis C D passing through G. Then the kinetic energy of B is given by

T =iMV?+Lticpo?, 9.11)
where V' = |V| and Icp is the moment of inertia of 3 about the axis CD. The

term %M V2 is called the translational kinetic energy and the term %Ic p w? the
rotational kinetic energy of 5.

Example 9.11 Kinetic energy of a rolling wheel

Find the kinetic energy of the rolling wheel shown in Figure 2.8.

Solution

Assume the wheel to be uniform with mass M and radius b. Then its centre of mass C
has speed u so that the translational kinetic energy is %M u’. Because of the rolling
condition, the angular velocity of the wheel is given by w = u/b so that the rotational
kinetic energy is %I (u/b)?, where I = %M b?. The total kinetic energy of the wheel
is therefore given by

u\2  3Mu?
—) - .

1 2 1 (1 2
T = 1Mu +§<§Mb)<b :

Example 9.12 Cylinder rolling down a plane

A uniform hollow circular cylinder is rolling down a rough plane inclined at an angle
« to the horizontal. Find the acceleration of the cylinder.

Solution

Suppose that, at time ¢, the cylinder has displacement x down the plane (from some
reference configuration) and that the centre of mass G of the cylinder has velocity
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FIGURE 9.10 A hollow circular cylinder rolls
down a plane inclined at angle « to the
horizontal.

(0%

v (= X) down the plane. The angular velocity w of the cylinder is then determined by
the rolling condition to be w = v/b. The kinetic energy of the cylinder is therefore

I10® = IMv* 4+ 11 (%)2
where M is the mass of the cylinder, and / is its moment of inertia about its axis of
symmetry. From the Appendix, we find that I = Mb? so that the kinetic energy of
the cylinder is given by T = Mv?.

The gravitational potential energy of the cylinder is given by V = —M gx sin«.

We must now dispose of the constraint forces. The reaction forces that the
inclined plane exerts on the cylinder act on particles of the cylinder which, because of
the rolling condition, have zero velocity. These reaction forces therefore do no work.
Also the internal forces that keep the cylinder rigid do no work in total. Hence the
constraint forces do no work in total.

Conservation of energy therefore applies in the form

Mv? — Mgxsina = E,

where E is the total energy. If we now differentiate this equation with respect to ¢
(and cancel by Mv), we obtain

dv .
E = EgSIIlC(,

which is the equation of motion of the cylinder. Thus the acceleration of the cylin-
der down the plane is % gsina. (A block sliding down a smooth plane would have
acceleration g sinc.) B

Example 9.13 The sliding ladder

A uniform ladder of length 2a is supported by a smooth horizontal floor and leans
against a smooth vertical wall.* The ladder is released from rest in a position making
an angle of 60° with the downward vertical. Find the energy conservation equation
for the ladder.

* Don’t try this at home!
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X

FIGURE 9.11 A uniform ladder of mass M and length 2a is supported by a smooth
horizontal floor and leans against a smooth vertical wall. At time ¢, its centre of mass G
has (x, z)-coordinates (X, Z) and the ladder makes an angle 6 with the downward

vertical.

Solution

Let 0 be the angle that the ladder makes with the downward vertical after time 7. The
(x, z)-coordinates of the centre of mass G are then given by

X =asinb, Z =acost,
and the corresponding velocity components by
X = (acos6)b, 7 = —(asin0)f.

The angular velocity of the ladder at time  is simply 6 (see Figure 9.11). The kinetic
energy of the ladder is therefore given by

T=1m (;'(2 + YZ) + 1162 = 1Ma?6? + 1162,

where M is the mass of the ladder and / is its moment of inertia about the horizontal
axis through G. From the Appendix, we find that I = Ma?/3 so that the kinetic
energy of the ladder is given by T = (2Ma?/3)62.

The gravitational potential energy of the ladder is given by V. = MgZ =
Mgacosf.

‘We must now dispose of the constraint forces. The reaction forces that the smooth
floor and wall exert on the ladder are both perpendicular to the particles of the ladder
on which they act. These reaction forces therefore do no work. Also, the internal
forces that keep the ladder rigid do no work in total. Hence the constraint forces do
no work in total.

Conservation of energy therefore applies in the form

%Ma292+Mgac059 =F,

where E is the total energy. From the initial conditions & = 0 and # = /3 when
t =0, it follows that E = 1M ga. The energy conservation equation for the ladder
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FIGURE 9.12 Two particles P and Q are
connected by a light inextensible string and
can move, with the string taut, on the surface
of a smooth horizontal cylinder.

is therefore
. 3
62 = 25(1 — 2cos6).
da

Since the system has only one degree of freedom, this equation is sufficient to deter-
mine the motion.

A curious feature of this problem (not proved here) is that the ladder does not
maintain contact with the wall all the way down, but leaves the wall when 6 becomes
equal to cos~!(1/3) ~ 71°. m

Problems on Chapter 9

Answers and comments are at the end of the book.

Harder problems carry a star ().

Potential energy and stability

9.1 Figure 9.12 shows two particles P and Q, of masses M and m, that can move on the
smooth outer surface of a fixed horizontal cylinder. The particles are connected by a light
inextensible string of length wa/2. Find the equilibrium configuration and show that it is
unstable.

9.2 A uniform rod of length 2a has one end smoothly pivoted at a fixed point O. The other
end is connected to a fixed point A, which is a distance 2a vertically above O, by a light
elastic spring of natural length @ and modulus %m g. The rod moves in a vertical plane through
O. Show that there are two equilibrium positions for the rod, and determine their stability.
[The vertically upwards position for the rod would compress the spring to zero length and is
excluded.]

9.3 The internal potential energy function for a diatomic molecule is approximated by the
Morse potential

2
V) = Vo (1 - e*<”*a>/b) — V.

where r is the distance of separation of the two atoms, and Vj, a, b are positive constants.
Make a sketch of the Morse potential.
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FIGURE 9.13 Two blocks of masses M and m
slide on smooth planes inclined at angles «
and B to the horizontal. The blocks are
connected by a light inextensible string that
passes over a light frictionless pulley.

Suppose the molecule is restricted to vibrational motion in which the centre of mass G of
the molecule is fixed, and the atoms move on a fixed straight line through G. Show that there
is a single equilibrium configuration for the molecule and that it is stable. If the atoms each
have mass m, find the angular frequency of small vibrational oscillations of the molecule.

9.4% The internal gravitational potential energy of a system of masses is sometimes called
the self energy of the system. (The reference configuration is taken to be one in which the
particles are all a great distance from each other.) Show that the self energy of a uniform
sphere of mass M and radius R is —3M>G/5R. [Imagine that the sphere is built up by the
addition of successive thin layers of matter brought in from infinity.]

Particles only

9.5 Figure 9.13 shows two blocks of masses M and m that slide on smooth planes inclined
at angles o and B to the horizontal. The blocks are connected by a light inextensible string
that passes over a light frictionless pulley. Find the acceleration of the block of mass m up the
plane, and deduce the tension in the string.

9.6 Consider the system shown in Figure 9.12 for the special case in which the particles
P, Q have masses 2m, m respectively. The system is released from rest in a symmetrical
position with 6, the angle between O P and the upward vertical, equal to 7 /4. Find the energy
conservation equation for the subsequent motion in terms of the coordinate 6.

# Find the normal reactions of the cylinder on each of the particles. Show that P is first to
leave the cylinder and that this happens when 6 = 70° approximately.

Ropes

9.7 A heavy uniform rope of length 2a is draped symmetrically over a thin smooth horizontal
peg. The rope is then disturbed slightly and begins to slide off the peg. Find the speed of the
rope when it finally leaves the peg.

9.8 A uniform heavy rope of length a is held at rest with its two ends close together and the
rope hanging symmetrically below. (In this position, the rope has two long vertical segments
connected by a small curved segment at the bottom.) One of the ends is then released. Find
the velocity of the free end when it has descended by a distance x.

Deduce a similar formula for the acceleration of the free end and show that it always
exceeds g. Find how far the free end has fallen when its acceleration has risen to 5g.
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Before
@ > U After
A
h —>V

FIGURE 9.14 The circular hoop rolls down the slope
from one level to another.

FIGURE 9.15 The roll of paper moves to the right and
the free paper is gathered on to the roll.

9.9 A heavy uniform rope of mass M and length 4a has one end connected to a fixed point
on a smooth horizontal table by light elastic spring of natural length ¢ and modulus %M g,
while the other end hangs down over the edge of the table. When the spring has its natural
length, the free end of the rope hangs a distance a vertically below the level of the table top.
The system is released from rest in this position. Show that the free end of the rope executes
simple harmonic motion, and find its period and amplitude.

Rigid bodies

9.10 A circular hoop is rolling with speed v along level ground when it encounters a slope
leading to more level ground, as shown in Figure 9.14. If the hoop loses altitude % in the
process, find its final speed.

9.11 A uniform ball is rolling in a straight line down a rough plane inclined at an angle « to
the horizontal. Assuming the ball to be in planar motion, find the energy conservation equation
for the ball. Deduce the acceleration of the ball.

9.12 A uniform circular cylinder (a yo-yo) has a light inextensible string wrapped around
it so that it does not slip. The free end of the string is secured to a fixed point and the yo-yo
descends in a vertical straight line with the straight part of the string also vertical. Explain why
the string does no work on the yo-yo. Find the energy conservation equation for the yo-yo and
deduce its acceleration.
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9.13 Figure 9.15 shows a partially unrolled roll of paper on a horizontal floor. Initially the
paper on the roll has radius a and the free paper is laid out in a straight line on the floor. The
roll is then projected horizontally with speed V' in such a way that the free paper is gathered
up on to the roll. Find the speed of the roll when its radius has increased to b. [Neglect the
bending stiffness of the paper.] Deduce that the radius of the roll when it comes to rest is

3y2 o 13
al-— .
4ga
9.14 A rigid body of general shape has mass M and can rotate freely about a fixed horizontal
axis. The centre of mass of the body is distance / from the rotation axis, and the moment of

inertia of the body about the rotation axis is /. Show that the period of small oscillations of
the body about the downward equilibrium position is

;o\ 2
2 | —— .
Mgh
Deduce the period of small oscillations of a uniform rod of length 2a, pivoted about a horizon-
tal axis perpendicular to the rod and distance b from its centre.

9.15 A uniform ball of radius @ can roll without slipping on the outside surface of a fixed
sphere of (outer) radius b and centre O. Initially the ball is at rest at the highest point of the
sphere when it is slightly disturbed. Find the speed of the centre G of the ball in terms of the
variable 6, the angle between the line O G and the upward vertical. [Assume planar motion.]

9.16 A uniform ball of radius @ and centre G can roll without slipping on the inside surface
of a fixed hollow sphere of (inner) radius b and centre O. The ball undergoes planar motion in
a vertical plane through O. Find the energy conservation equation for the ball in terms of the
variable 6, the angle between the line OG and the downward vertical. Deduce the period of
small oscillations of the ball about the equilibrium position.

9.17% Figure 9.6 shows a uniform thin rigid plank of length 2b which can roll without slip-
ping on top of a rough circular log of radius a. The plank is initially in equilibrium, resting
symmetrically on top of the log, when it is slightly disturbed. Find the period of small oscilla-
tions of the plank.



Chapter Ten
. _________________________________________________________________________________________|

The linear momentum principle

and linear momentum conservation

KEY FEATURES

The key features of this chapter are the linear momentum principle; its equivalent form,
the centre of mass equation; and conservation of linear momentum. These principles are
applied to rocket propulsion, collision theory, the two-body problem and two-body scat-
tering.

This chapter is essentially based on the linear momentum principle and its con-
sequences. The linear momentum principle is the second of the three great principles
of multi-particle mechanics™ that apply to every mechanical system without restriction.
Under appropriate conditions, the linear momentum of a system (or one of its compo-
nents) is conserved. Important applications include rocket propulsion, collision theory,
the two-body problem and two-body scattering.

10.1 LINEAR MOMENTUM

We begin with the definition of linear momentum for a single particle and for a
system of particles.

Definition 10.1 Linear momentum If a particle has mass m and velocity v, then p, its
linear momentum, is defined to be

p = mv. (10.1)
For a multi-particle system S consisting of particles Py, Py, ..., Py, with masses m1, mo,
., my and velocities vy, vy, ..., vy (see Figure 9.1), P, the linear momentum of S, is

defined to be the vector sum of the linear momenta of the individual particles, that is,

N N
Z Z v;. (10.2)

* The other two are the energy and angular momentum principles.
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Newton’s Second Law can be written in terms of linear momentum in the form

d

@ _p

dt
Although this offers no advantage in the mechanics of a single particle, we will find that
this type of formulation is very useful in multi-particle mechanics. The expression (10.2)

can be written simply in terms of the motion of G, the centre of mass of S. Since the
position vector R of G is given by

ZlNzl m;r;
9
va:lmi

where r; is the position vector of the particle P;, it follows that V, the velocity of G is
given by

R =

V YL mivi r

Zfil i M
where M (= )_ m;) is the total mass of the system S. Hence
P=MV. (10.3)

Thus the linear momentum of any system is the same as if all its mass were concentrated
at its centre of mass.

Although true for all systems, this result is most useful when finding the linear
momentum of a moving rigid body. Note that the rotational motion of the rigid body
does not contribute to its linear momentum; this contrasts with the corresponding calcula-
tion of the kinetic energy of a rigid body (see Chapter 9).

10.2 THE LINEAR MOMENTUM PRINCIPLE

We now derive the fundamental result which relates the linear momentum of any
system to the external forces that act upon it: the linear momentum principle.
Suppose that the system S is acted upon by the external forces {F;} and internal
forces {Gj}, as shown in Figure 9.3. Then the equation of motion for the particle P; is

N
dvi
mi—-=Fi+ ; Gij, (10.4)

where, as in Chapter 9, we take G;; = 0 when i = j. Then the rate of increase of the
linear momentum of the system S can be written

N N
dP d(z ) dv,
ar_ 4 mivi | = mi—, (10.5)
dt dt P — dt
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which, on using the equation of motion (10.4), gives

QU

N N
—1;:2 Fi+) Gijt =Y Fi + Y > G

where the terms of the double sum have been grouped in pairs and those terms known
to be zero have been omitted. Now the internal forces {G;;} satisfy the Third Law, so
that G ;; = —G,;. Hence, each term of the double sum in equation (10.5) is zero and we
obtain

Linear momentum principle

dP (10.6)
—__ —F
dt

where F is the total external force acting on S. This is the linear momentum principle.
This fundamental principle can be expressed as follows:

Linear momentum principle

In any motion of a system, the rate of increase of its linear momentum is equal to
the total external force acting upon it.

It should be noted that only the external forces appear in the linear momentum prin-
ciple so that the internal forces need not be known. 1t is this fact which gives the linear
momentum principle its power.

10.3 MOTION OF THE CENTRE OF MASS

The linear momentum principle can be written in an alternative form called the
centre of mass equation, which is more useful for some purposes. If we substitute the
expession (10.3) for P into the linear momentum principle (10.6) we obtain

Centre of mass equation

av (10.7)
M~ =F
dr
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which is called the centre of mass equation. It has the form of an equation of motion
for a fictitious particle of mass M situated at the centre of mass, which moves under the
total of the external forces acting on the system S. This important result can be simply
expressed as follows:

Motion of the centre of mass

The centre of mass of any system moves as if it were a particle of mass the total
mass, and all the external forces acted upon it.

Example 10.1 Jumping cat

A cat leaps off a table and lands on the floor. Show that, while the cat is in the air, its
centre of mass moves on a parabolic path.

Solution
While the cat is in the air, the total external force on its body is due to uniform gravity,
that is, F = —M gk. The centre of mass equation for the cat is therefore
dv
M— = —-Mgk,
dt

which is precisely the equation of projectile motion for a single particle. The path
of the centre of mass of the cat is therefore the same as if it were a particle of mass
M moving freely under uniform gravity. This path is known (see Chapter 4) to be a
parabola. B

In previous examples, we have often used the Second Law to find an unknown con-
straint force acting on a particle, once the motion of a system has been found by other
means (see, for instance, Example 6.13). The centre of mass equation allows us to do
the same thing when the unknown constraint force acts on a rigid body. The following
examples illustrate the method.

Example 10.2 Cylinder rolling down an inclined plane

Consider again a hollow cylinder of mass M rolling down a rough inclined plane as
shown in Figure 9.10. In Example 9.12, energy conservation was used to show that
the acceleration of the cylinder down the plane is % g sin . Deduce the reaction force
exerted by the plane on the cylinder.

Solution

Suppose that the component of the reaction force normal to the plane is N, while
the component of the reaction force up the plane is F. (The plane is rough so both
components are present.) The cylinder is therefore subject to these ‘two’ external
forces together with uniform gravity. The centre of mass equation for the cylinder
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(when resolved into components tangential and normal to the plane) is given by

dv
ME:Mgsina—F, 0=N—-Mgcosa,

where dv/dt = % g sina. It follows that the required reactions are given by

F=1Mgsino¢, N = Mgcosa.

Thus, if F and N are restricted by the ‘law of friction” F/N < p, then the supposed
rolling motion of the cylinder cannot take place if tano > 2. B

Example 10.3 Sliding ladder

Consider again the uniform ladder of length 2a supported by a smooth horizontal
floor and leaning against a smooth vertical wall, as shown in Figure 9.11. The ladder
is released from rest with 6, the angle between the ladder and the downward vertical,
equal to 60°. In Example 9.13, we used energy conservation to show that, in the
subsequent motion, 6 satisfies the differential equation

L3
62 = 4—g(1 —2cos6).
a

provided that the ladder maintains contact with the wall. Deduce that the ladder loses
contact with the wall when 6 = cos™!(1/3).

Solution

Let the normal reactions exerted on the ladder by the smooth floor and wall be N
and NV respectively. Then the centre of mass equation for the ladder, resolved into
horizontal and vertical components, is given by

MX =N, MZ=N"—- Mg,

where (X, Z) are the coordinates of the centre of mass of the ladder (see Figure 9.11).
Hence

NF =MZ7Z + Mmyg, NY =MmX.

Now, in terms of the angle 6, X = asinf and Z = a cos 6. On differentiating twice
with respect to ¢, we obtain the corresponding acceleration components

X = —a(sin0) 6% + a(cos6) 4,

7= —a(cos@)é2 — a(sinf) 6.
Hence
NF = —Ma ((cos 6)6% — (sin6) é‘) + Mg,

NY = Ma (—(sine)é2 n (cos@)é') .
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In order to express these reactions in terms of 6 alone, we need to know 62 and 6 as
functions of . From the previously derived equation of motion, we already have

L3
62 = 4—g(1 —2cos6)
A

and, if we differentiate this equation with respect to ¢ (and cancel by 6), we obtain

. 3
0 = o8 sin 6.
4a

On making use of the above expressions for #2 and 6, the required reactions are
found to be

Mg

M 3
NF = Tga —3cosf +9cos’0), NV = sinf(3cosf — 1).

We observe that the predicted value of N" becomes zero when 6 = cos™!(1/3)
and is negative thereafter. Since negative values of N" cannot occur (the wall can
only push), we conclude that the condition that the ladder maintains contact with the
wall is violated when 6 > cos™! (1/3). Therefore, the ladder leaves the wall when
0 =cos1(1/3). m

10.4 CONSERVATION OF LINEAR MOMENTUM

Suppose that S is an isolated system, meaning that no external force acts on any
of its particles. Then F, the total external force acting on S, is obviously zero. The linear
momentum principle (10.6) for S then takes the form d P /dt = 0, which implies that P
must remain constant. This simple but important result can be stated as follows:

Conservation of linear momentum

In any motion of an isolated system, the total linear momentum is conserved.

It follows from equation (10.3) that the above result can also be stated in the alter-
native form ‘In any motion of an isolated system, the centre of mass of the system moves
with constant velocity’. Clearly the same result applies to any system for which the total
external force is zero, whether isolated or not.

It is also possible for a particular component of P to be conserved while other com-
ponents are not. Let n be a constant unit vector and suppose that F - n = 0 at all times.
Then

d P ) dP P dn dP P 0
—_ *NR) = — N - — = —— e N = N = .
dt dt dt dt

Hence the component P - n is conserved. This result can be stated as follows:



10.5 Rocket motion 251

Before ejection

— UV —U —> U

M M

After ejection

FIGURE 10.1 A rigid body of mass M (the rocket) contains a removable rigid block
of mass m (the fuel). An internal source of energy causes the fuel block to be ejected
backwards with speed u relative to the rocket and the rocket is projected forwards.

If the total force acting on a system has zero component in a fixed direction, then,
in any motion of the system, the component of the total linear momentum in that
direction is conserved.

Conservation of a component of linear momentum

Conservation of linear momentum is an important property of a system and the sec-

tions that follow rely heavily upon it. Two examples of momentum conservation are as

follows:

10.5

e The solar system is an example of an isolated system, being extremely remote

from any other masses. It follows that the total linear momentum of the solar
system is conserved. Thus the centre of mass of the solar system moves with
constant velocity.

On the other hand, a grasshopper trying to move on a perfectly smooth horizontal
table is not isolated, being subject to gravity and the vertical reaction of the table.
However, since the grasshopper is not subject to any external horizontal force, it
follows that, whatever the grasshopper tries to do, his component of total linear
momentum in any horizontal direction is conserved. His vertical component of
linear momentum is not conserved; he can leap into the air if he wishes.

ROCKET MOTION

An important application of linear momentum conservation is rocket propulsion.

Figure 10.1 shows a rigid body of mass M (the rocket) which contains a removable rigid
block of mass m (the fuel). The system is at rest when an internal source of energy causes
the fuel block to be ejected backwards with speed u relative to the rocket. If the system is
isolated, then its total linear momentum is conserved, which implies that

Mv+m@w—u)=0
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Initially m

After time T m(T)

mass (—m)dt

FIGURE 10.2 The rocket and its fuel at times # = 0 and t = 7. The element of fuel
ejected in the time interval [¢, t + dt] has mass (—n1)dt and (forward) velocity
v(t) —u.

where v is the forward velocity of the rocket after the ejection of the fuel. As a result of
this process the rocket acquires the forward velocity

(357)
v=|——)u
M+ m

This is the basic principle of rocket propulsion. The only mechanically significant dif-
ference between the simple example above and real rocket propulsion is that, in the case
of the real rocket, the fuel mass is ejected continuously over a period of time and not in
a single lump. In practice, the fuel is burned continuously and the combustion products
eject themselves due to their rapid expansion.

Rocket motion in free space

Figure 10.2 shows a more realistic situation. Initially the rocket and its fuel have combined
mass mq and are moving with constant velocity vg. At time ¢ = 0 the motors are started
and fuel products are ejected backwards with speed u relative to the rocket. The fuel
‘burn’ continues for a time T, at the end of which the rocket and unburned fuel have mass
m1. Let m = m(t) be the mass of the rocket and its unburned fuel after time . Then m is a
decreasing function of ¢ and the rate of ejection of mass at time ¢ is —. Let the system S
consist of the rocket together with its fuel at time ¢ = 0. After some time t into the burn,
the mass of S is distributed as shown in Figure 10.2. The rocket and unburned fuel have
mass m(7) and the remaining mass has been ejected as expended fuel. We will suppose
that, once an element of fuel is ejected, it continues to move with the velocity it had at
the instant of ejection.* Since we are assuming S to be an isolated system, its total linear
momentum is conserved. The initial linear momentum in this one-dimensional problem
is movg and the final linear momentum of the rocket and unburned fuel is m(t)v(1),

* This assumption simplifies our derivation but, as we will see, it is not essential.
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where v (= v(t)) is the velocity of the rocket at time ¢. It remains to take account of
the linear momentum of the ejected fuel. Consider the element of fuel that was ejected
in the time interval [, ¢ + dt]. This has mass (—mi(t)) dt and its forward velocity at the
instant of ejection was v(t) — u. The linear momentum of this fuel element is therefore
(—m)(v — u) dt and the total linear momentum of the fuel expended in the time interval

[0, T]1s
—/Tnh(v —u)dt.
0

Linear momentum conservation for the system S therefore requires that

movg = m(t)v(t) — /T m( — u)dt,
0

which can be written in the form

/OT [%(mv) —m(v — u)i| dt = 0.

Since this equality must hold for any choice of t during the burn, it follows that the
integrand must be zero, that is

%(mv) —m@—u)=0

for 0 <t < T. This simplifies to give

Rocket equation in free space
dv (10.8)

m— = (—m)u

dt

the rocket equation, which holds for 0 < ¢ < T. The rocket equation can be interpreted
physically as the Second Law applied to a system of variable mass* m(t), namely the
rocket and its unburned fuel. In this interpretation, the term on the right, —nu, plays the
role of force and is called the thrust supplied by the motors.

Note. In our derivation, we assumed that, once an element fuel is ejected, it continues to move with

the velocity it had at the instant of ejection. This is equivalent to assuming that each element of ejected

* This terminology is undesirable since, in classical mechanics, a ‘system’ means a fixed set of masses (or,
at the very least, fixed total mass). No standard mechanical principle applies to a ‘system’ whose total
mass is changing with time.
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fuel is isolated from other fuel and from the rocket. It clearly makes no difference to the momentum of
the ejected fuel if momentum is exchanged between elements of itself so that this assumption is actually
unnecessary. However we must retain the assumption that ejected fuel has no further interaction with the
rocket. This seems likely to be true in free space, but whether it is true just after take off from solid ground

is questionable.

Providing that the ejection speed u is constant, the rocket equation (10.8) can easily be
solved for any mass ejection rate. On dividing through by m and integrating with respect
to ¢, we obtain

—y d
/dv:/( m)udtz—u/—m:—ulnm+constant
m

m

and, on applying the initial condition v = vg when ¢t = 0, we obtain

v(t) =vg+uln (%) .

This gives the rocket velocity at time 7. In particular, at the end of the fuel burn, the rocket
velocity has increased by

mo
Av=vi—v9g=uln (—) , (10.9)

mi

where m and v; are the final mass and velocity of the rocket. One can make some
interesting deductions from this solution.

(i) Awv, the increase in the rocket velocity, is directly proportional to u, the fuel ejection
speed. Thus it pays to make u as large as possible. Chemical processes can produce
values of u as high as 5000 ms~!.

(i1) If the fuel were all ejected in a single lump, Av would never exceed the ejection
speed u. But when the fuel is ejected over a period of time, it is possible for
the rocket to attain any velocity by making the mass ratio mo/m large enough.
For example, if we wish to make Av = 3u, then we need mg/m; = e ~ 20.
This means that 19 kg of fuel would be required for every kilogram of payload.
The amount of fuel needed to achieve higher velocities quickly makes the process
impractical. To achieve Av = 10u takes 22 metric tons of fuel for every kilogram

of payload!

Rocket motion under gravity

Suppose now that the rocket is moving vertically under gravity. If we regard the govern-
ing equation as the equation of motion for the variable mass m(#), then, when gravity is
introduced, the equation of motion becomes

Rocket equation including gravity

dv (10.10)

mE = (—nm)u —mg
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where v is measured vertically upwards, and the weight force mg means m(¢)g. In this
case, the effective force on the right is the sum of the thrust (—#2)u acting upwards and
the weight force mg acting downwards.

When the gravity is uniform and the ejection speed u is constant, the new rocket
equation (10.10) can also be solved easily for any mass ejection rate. On dividing through
by m and integrating with respect to ¢, we obtain

/dv = / |:(—m)u - g] dt = —ulnm + gt 4 constant

m

and, on applying the initial condition v = vg when ¢t = 0, we obtain

v(t) =vg+uln (ﬂ) — gt.
m(t)

This gives the rocket velocity at time 7. In particular, at the end of the fuel burn, the rocket
velocity has increased by

mo
Av=v—v9g=uln (—) —gT, (10.11)
nj

where m and v; are the final mass and velocity of the rocket and T is the time taken to
burn all the fuel.

It will be noticed that, if T is too large, then Av will be negative, which is hardly
possible for a rocket standing on the ground. The reason for this paradox is that, if the fuel
is burned too slowly then the thrust will be less than the initial weight of the rocket, which
will not take off until its weight has become less than the thrust. We will therefore assume
that (—m)u > mg at all times during the burn so that the rocket has positive upward
acceleration and achieves its maximum speed when ¢t = T'. If the rocket starts from rest,
it then follows that the maximum speed achieved is

m
Umax = U In (—0) —gT.
mp

In this and the zero gravity case, the distance travelled during the burn depends on the
functional form of m(¢).

10.6 COLLISION THEORY

Another important application of linear momentum conservation occurs when we
have an isolated system of two particles, and one particle is in collision with the other.

Collision processes

It is important to understand the meaning of the term ‘collision’. Suppose that the mutual
interaction between the two particles tends to zero as the distance between them tends to
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FIGURE 10.3 A collision between two particles viewed from the laboratory frame.
A particle of mass m and initial velocity u collides with a ‘target’ particle of mass

my, which is initially at rest. After the collision, the particles have velocities u; and
u; respectively. 0 is the scattering angle of the mass m 1, 65 is the recoil angle of

the mass m, and 6 (= 0; + 6,) is the opening angle between the emerging paths.

infinity, so that, if the particles are initially a great distance apart, each must be moving
with constant velocity. If the particles approach each other, then there follows a period
during which their mutual interaction causes their straight line motions to be disturbed. If
the particles finally retreat to a great distance from each other, then they will move with
constant velocities again, and these final velocities will generally be different to the initial
velocities. This is what we mean by a collision process. Note that a collision process
is not restricted to those cases in which the particles make physical contact with each
other. This can of course happen, as in the ‘real’ collision of two pool balls. However, the
deflection suffered by an alpha particle in passing close to a nucleus is also a ‘collision’,
even though the alpha particle and the nucleus never made contact. Collision processes are
particularly important in nuclear and particle physics, where they are the major source
of experimental information.

General collisions

Consider the collision shown in Figure 10.3. A particle of mass m and initial velocity u
is incident upon a ‘target’ particle of mass m; which is initially at rest.* This is typical
of the collisions observed in nuclear physics. After the collision we will suppose the
particles retain their identities (and therefore their masses) and emerge with velocities u
and u; respectively. How are the final and initial motions of the particles related? Clearly
we cannot ‘solve the problem’ since we have not even said what the mutual interaction
between the particles is. However, it is surprising how much can be deduced simply from
conservation laws without any detailed knowledge of the interaction.

Since the two particles form an isolated system, their total linear momentum is con-
served, that is,

* This means ‘at rest in the laboratory reference frame’.
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miu =miuy +mouy (10.12)

This linear relation between the vectors u, u; and u> implies that these three velocities
must lie in the same plane so that scattering processes are two-dimensional.

Generally, collisions are not energy preserving. The energy principle for the colli-
sion has the form

1 2 _ 1 2,1 2
smiu” + Q = smuy + ymaus,
where u = |u|, u;y = |uyl, uo = |uz|, and Q is the energy gained in the collision. In

‘real’ collisions between large bodies, energy is usually lost in the form of heat, so that Q
is negative. However, in nuclear collisions in which the particles change their identities, it
is perfectly possible for energy to be gained.

Example 10.4 Making Kraptons

A little known particle physicist has proposed the existence of a new particle, with
charge 42 and mass 2, which he has named the Krapton. He has calculated that this
can be produced by the collision of two protons in the reaction®

pT+pt+10MeV - KT

Having failed to obtain funding to verify his theory, he has built his own equipment
with which he accelerates protons to an energy of 16 MeV and uses them to bombard
a stationary target of hydrogen. Could he succeed in making a Krapton?

Solution

Suppose a proton with kinetic energy E collides with proton at rest. Then this sys-
tem has initial linear momentum (2mE)/2, where m is the mass of a proton. This
linear momentum is preserved by the collision so that, if a Krapton of mass 2m were
produced, it would have linear momentum (2mE)'/? and therefore kinetic energy
E /2. Hence, only 8 MeV of the initial energy is available for Krapton building and,
according to the physicist’s own calculation, this is not enough. (On the other hand, a
head-on collision between two 5 MeV protons would be enough. Why?) B

Elastic collisions

The linear momentum equation (10.12) holds whether the collision is between pool balls,
protons or peaches. Much more can be said if the collision is also energy preserving.

Definition 10.2 Elastic collision A collision between particles is said to be elastic if
the total kinetic energy of the particles is conserved in the collision.

* The electron volt (eV) is a unit of energy equal to 1.6 x 107197 approximately.
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Frame invariance In order that the above definition be physically meaningful, it is necessary that a colli-
sion observed to be elastic in one inertial frame should also be elastic when observed from any other. This
is not obviously true, since kinetic energy is not a linear quantity. However, since the total kinetic energy
of the system can be written in the form 7' = TEM 4 TG (see Theorem 9.10), where TEM s preserved in
the collision and TC is frame independent, it follows that any gain or loss of kinetic energy in the collision

is independent of the inertial reference frame used to observe the event.

Elastic collisions are very common and extremely important. For example, any col-
lision in which the mutual interaction force is conservative is elastic. In particular, the
collisions that occur in Rutherford scattering are elastic. In elastic collisions, we have
energy conservation in the form

miu® = tmyut + Imou3 (10.13)

| —

and, together with linear momentum conservation (10.12), we can make some interesting
deductions. If we take the scalar product of each side of the linear momentum equation
(10.12) with itself, we obtain

miu’ = m%u% 4+ 2mimouy - ur + m%u%,

and, if we now eliminate the term in 1> between this equation and the energy conservation
equation (10.13), we obtain, after simplification,

2myuy - uy = (my —my) u. (10.14)

Since u - u» = uuy cos 6, where 9 is the opening angle between the paths of the emerg-
ing particles, the formula (10.14) can also be written

cosg = ML= m2ur (10.15)
2miuy

provided that u; # 0, that is, provided that the incident particle is not brought to rest by
the collision.* This formula holds for all elastic collisions, whatever the nature of the
particles and the interaction. It therefore applies equally well to pool balls™ and protons,
but not peaches. Given the mass ratio of the two particles, formula (10.15) relates the
speeds of the particles and the opening angle between their paths after the collision.

* The incident particle can be brought to rest in a head-on collision with a particle of equal mass.
T Collisions between pool balls are very nearly elastic. However, in the present treatment, we are disre-
garding the rotation of the balls.
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Example 10.5 Finding the final energies

A ball of mass m and (kinetic) energy E is in an elastic collision with a second ball
of mass 4m that is initially at rest. The two balls depart in directions making an angle
of 120° with each other. What are the final energies of the two balls?

Solution
On substituting the given data into the formula (10.15), we find that u;/uy = 3. It

follows that
E1 _ %mu% _ 1 <u1>2_ 9
Ey  l@mud  4\u) 4

Hence E| = 19—3E and £, = %E. [ |

An important special case occurs when the two particles have equal masses. In this
case, formula (10.15) shows that the opening angle must always be a right angle. Thus, in
an elastic collision between particles of equal mass, the particles depart in directions at
right angles. Note that this result applies only when the target particle is initially at rest.

Example 10.6 Elastic collision between two electrons

In an elastic collision between an electron with kinetic energy £ and an electron at
rest, the incoming electron is observed to be deflected through an angle of 30°. What
are the energies of the two electrons after the collision?

Solution

Since the collision is elastic and the electrons have equal mass, the opening angle
between the emerging paths must be 90°. The target electron must therefore recoil at
an angle of 60° to the initial direction of the incoming electron. Let the speed of the
incoming electron be u and speeds of the electrons after the collision be u1 and uj
respectively. Then conservation of linear momentum implies that

mu = muy cos 30° + muy cos 60°,

0 = mu; sin 30° — mu, sin 60°,

which gives u; = %ﬁ uand up = %u. Hence, after the collision, the electrons have
energies %E and }tE respectively. B

10.7 COLLISION PROCESSES IN THE ZERO-MOMENTUM
FRAME

We have so far supposed that the inertial reference frame from which the scatter-
ing process is observed is the one occupied by the experimental observer. This is called the
laboratory frame (or lab frame) since it is the frame in which measurements (of scatter-
ing angles, for instance) are actually taken. In the lab frame, the target particle is initially
at rest.
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particle paths and
initial and final velocities initial and final momenta

FIGURE 10.4 A collision between two particles viewed from the zero-momentum frame.
The initial momenta p,, p, are equal and opposite, as are the final momenta p/, p,. The
angle ¥ is the angle through which each of the masses is scattered.

However, it is very convenient to ‘view’ the scattering process from a different inertial
frame. Since the two particles form an isolated system, their centre of mass G moves with
constant velocity and so the frame™ in which G is at rest is inertial. In this frame, the
total linear momentum of the two particles is zero and, for this reason, we call it the
zero-momentum frame' or ZM frame.

Consider, for example, the scattering problem which, in the lab frame, is shown in
Figure 10.3. Then the total linear momentum P = mu and the velocity V of the centre
of mass of the two particles is

miu
V j—

= 10.16
mi + my ( )

This therefore is the velocity of the ZM frame relative to the lab frame for this collision
process.

Collisions viewed from the ZM frame

Two-particle collisions look simple when viewed from the ZM frame. This is because,
since the total linear momentum is now zero, the initial linear momenta p;, p, of the two
particles and the final momenta p, p/, of the two particles must satisfy

p1+p,=0, pi+p5=0. (10.17)

Thus, when a two-particle collision is viewed from the ZM frame, the initial momenta
are equal and opposite and so are the final momenta. Figure 10.4 shows what a two-
particle collision looks like when viewed from the ZM frame. Because of the relations

* This frame has the same velocity as G, and no rotation, relative to the lab frame.
T The term ‘centre of mass frame’ is also used. However, ‘zero-momentum frame’ is preferable since this
notion holds good in relativistic mechanics.
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(10.17), the particles both arrive and depart in opposite directions, so that each particle is
deflected through that same angle . All this follows solely from conservation of linear
momentum. We can say more if we also have an energy principle of the form

1 2,1 2 1 2,1 2

smi|vil= 4 3malval” 4+ Q = smi|vy |~ 4 3ma|v)]7,
where vy, v, v}, v} are the initial and final velocities of the particles (as shown in Figure
10.4), and Q is the kinetic energy gained as a result of the collision.” Let p be the common
magnitude of the initial momenta p;, p,, and p’ be the common magnitude of the final
momenta p, p5. Then the energy balance equation can be re-written in the form

S SN S
2mi  2mo 2my  2my’
that is,
2
pr=p2+ (m) : (10.18)
my + myp

Thus the magnitudes of the initial and final momenta are related through Q, the energy
gained in the collision. This is depicted in the momentum diagram in Figure 10.4. The
magnitudes of the initial and final momenta (p and p’) are represented by the radii of the
two dashed circles. The diagram shows the case in which p’ > p, which corresponds to
O > 0. For an elastic collision, the circles are coincident and all four momenta have
equal magnitudes.

In a typical scattering problem, the masses m1, m2 and the initial momenta p;, p, are
known. For the scattering problem shown (in the lab frame) in Figure 10.3, vi = u -V
and vo = —V, where V is given by equation (10.16). It follows that the initial momentum
magnitude in the ZM frame are given by

mimou

= — 10.19
my + myp ( )

where u = |u|. The scattering process is now entirely determined by the parameters Q
(the energy gain) and ¥ (the ZM scattering angle). Given p and Q, p’ is determined
from equation (10.18). Together with v, this determines the final momenta p; and p,.
The parameters Q and ¥ depend on the physics of the actual collision. For instance, the
collision may be known to be elastic, in which case Q = 0. The question of how the
scattering angle v is related to the actual interaction and initial conditions is addressed in
section 10.9.

Returning to the lab frame (elastic collisions only)

Although the scattering process looks simpler in the ZM frame, we usually need to know
the details of the scattering actually observed by the experimenter in the lab frame. This

* As remarked earlier, Q is frame independent and so is the same as the energy gain measured in the lab
frame.
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FIGURE 10.5 The final particle velocities uy,
uy in the lab frame are obtained from the
final velocities v/, v} in the ZM frame by the
relations u; = v} + V,uy = v, + V. The
diagram shows the elastic case, in which the
velocity triangle for u; is isosceles.

entails transforming the properties of the final state (velocities, momenta and kinetic ener-
gies) from the ZM frame back to the lab frame. Since the ZM frame has velocity V (given
by (10.16)) relative to the lab frame, the final velocities u;, u; observed in the lab frame
are related to the final velocities v/, v}, in the ZM frame by

up=v;+V, u =v5+V. (10.20)

Any other properties can then be found from u;, uy. The transformations (10.20) are
depicted geometrically in Figure 10.5. The transformation formulae become rather com-
plicated in the general case, but simplify nicely when the collision is elastic. From now on
we will restrict ourselves to elastic collisions only. In this case, Q = 0 and the collisions
are parametrised by ¥ alone. The energy equation (10.18) then implies that p’ = p so
that the four momentum magnitudes are equal, and given by equation (10.19). The final
speeds of the particles in the ZM frame are therefore given by

mou

/ /

vy = —m—mm Vy =

1 ’ 2
my +my

_mi vy (10.21)
my + my

where V = |V|. We may now deduce the required information from Figure 10.5. The lab
scattering angle 0; can be expressed in terms of the parameter angle v by

v sinyr _ sin yr _ sin ¥
vicosy +V  cosy + (V/v))  cosy + (mi/m2)’

tan6; =

on using equations (10.21). The lab recoil angle 6, is easily found since, in an elastic
collision, the velocity triangle for u, is isosceles with angles v, 6> and 6>, as shown in
Figure 10.5. It follows that

0 = St — ).
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The expression for the lab opening angle 6 (= 6; + 6,) is therefore given by

tanf = tan(6; + 6) =

tan60) +tan6 <m1 + moy

1
= cot(5y),
1+ tan 6 tan 6, ) (zlﬁ)

myp —m3

after some simplification.
To find the final energies, we observe that

up =2V sin(3)

so that E», the final lab energy of the mass m is given by

2
1 : 1
g, bm (2V s1n(§1ﬁ))  dmm
Ey smyu? —(my +mo)?

sin®(39).

where Eq (= %mluz) is the lab energy of the incident mass m1. Since the collision is
elastic, the final lab energy of the mass m1 is simply deduced from the energy conservation
formula E1 4+ E» = Ej.

The above formulae give the properties of the final state following an elastic two-
particle collision in terms of the ZM scattering angle 1. We will call them the elastic
collision formulae and they are summarised below:

Elastic collision formulae

sin 1
A. tanf = ———— B. =Lz —
an 6, oSy 17 h =5 =)
y +1 1 E> 4y . 2.1
C. tanf = | —— ) cot(5 D -=—"— 5
an (y — 1>co (z¥) Fe - G112 sin“(3¢)

(10.22)

Y is the scattering angle in the ZM frame, and y = m/m,, the mass ratio of the
two particles.

Using the elastic collision formulae A word of advice about the use of these formulae may
be helpful. Most questions on this topic tell you some property of the scattering in the lab
frame and ask you to find another property of the scattering in the lab frame; the ZM frame is
never mentioned. It is inadvisable to start manipulating the elastic scattering formulae. This
is almost guaranteed to cause errors. The simplest method is as follows: (i) Use the given data
to find v by using the appropriate formula ‘backwards’, and then (ii) use this value of i to
find the required scattering property. In short, the advice is ‘go via .
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Example 10.7 Using the elastic scattering formulae

In an experiment, particles of mass m and energy E are used to bombard stationary
target particles of mass 2m.

Q. The experimenters wish to select particles that, after scattering, have energy E /3.
At what scattering angle will they find such particles?

A.If E{/Eo = 1/3, then by energy conservation E;/Ey = 2/3. First use formula D
to find . Since the mass ratio y = 1/2, this gives

2 8 .5

3 = 9 sin“(5%),
so that ¢ = 120°. Now use formula A to find the scattering angle 6;. This gives
tan6; = oo so that 8; = 90°. Particles scattered with energy £ /3 will therefore be
found emerging at right angles to the incident beam.

Q. In one collision, the opening angle was measured to be 45°. What were the indi-
vidual scattering and recoil angles?

A. First use formula C to find ¥ . This gives
cot(y) = +
2 - 3 ’

so that %w = 72°, to the nearest degree. Now use formula B to find the recoil angle
6. This gives 6, = 90° — 72° = 18°. The scattering angle #; must therefore be
0 =60 — 6, =45° — 18° = 27°.

Q. In another collision, the scattering angle was measured to be 45°. What was the
recoil angle?

A. First use formula A to find vr. This shows that i satisfies the equation
2cosy —2siny =1,

which can be written in the form™
V8cos (¥ +45°) = 1.

This gives ¢ = 24°, to the nearest degree. Formula B now gives the recoil angle 6,
to be 6, = 78°, to the nearest degree.

THE TWO-BODY PROBLEM

The problem of determining the motion of two particles, moving solely under

their mutual interaction, is called the two-body problem. Strictly speaking, all of the orbit

* Recall that equations of the form a cos iy + bsinyy = c are solved by writing the left side in the ‘polar
form’ R cos(yy — «), where R?=4% +b? and tane = b/a.
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FIGURE 10.6 The motion of P; and P, relative to their centre of mass (left), and the motion of P;
relative to P, (right).

problems considered in Chapter 7 should have been treated as two-body problems since
centres of force are never actually fixed. The one-body theory is a good approximation
when one particle is much more massive than the other. When the two particles have
similar masses, the problem must be treated by two-body theory, in which neither particle
is assumed to be fixed.

Let P; and P, be two particles moving under their mutual interaction. By the Third
Law, the forces that they exert on each other are equal in magnitude, opposite in direction,
and act along the line joining them. We will further suppose that the magnitude of these
interaction forces depends only on r, the distance separating P from P,. The forces Fq,
F >, acting on P, P>, then have the form

F\=F@)7, Fo=—F()T,

where r = r{ — rp,r = |r; — rpl and ¥ = r/r (see Figure 10.6). The equations of
motion for P;, P, are therefore

mify =F(@)T, mafy = —F(r)T. (10.23)

This is a generalisation of central force motion in which each particle moves under a force
centred upon the other particle. Although this problem appears to be complicated, it can
be quickly reduced to an equivalent one-body problem.

We first observe that the two particles form an isolated system so that their total lin-
ear momentum is conserved, or (equivalently) their centre of mass G moves with con-
stant velocity. The motion of G is therefore determined from the initial conditions and it
remains to find the motion of each particle relative to G, that is, their motions in the ZM
frame. It turns out however that it is easier to find the motion of one particle relative to
the other. The motion of each particle relative to G can then be easily deduced.

The equation of relative motion
It follows from the equations of motion (10.23) that

By = F(r)r+F(r)r _ <m1+m2)F(r)?’

ni ma mima
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so that r, the position vector of P relative to P,, satisfies the equation

Relative motion equation

mimy \ . R (10.24)
— | F=F@)T,
my + my
which we call the relative motion equation.
Definition 10.3 Reduced mass The quantity |, defined by
=i (10.25)
my +mp

is called the reduced mass.

Our result can be expressed as follows:

Two-body problem — the relative motion

In the two-body problem, the motion of P; relative to P is the same as if P, were
held fixed and P; had the reduced mass u instead of its actual mass m17.

This rule® allows us to replace the problem of the motion of P relative to P, by an
equivalent one-body problem in which P, is fixed. The solution of such problems is
fully described in Chapter 7.

Example 10.8 Escape from a free gravitating body

Two particles Py and P,, with masses m| and m3, can move freely under their mutual
gravitation. Initially both particles are at rest and separated by a distance c. With
what speed must Py be projected so as to escape from P»?

Solution

Since this is a mutual gravitation problem, we take our rule in the form: The motion
of Py relative to P, is the same as if Py were held fixed and the constant of gravitation

G replaced by G', where
G — (M) G.
my

The rule is ambiguous when the force F' also depends on m 1, as in mutual gravitation. Do you also
replace this m| by u? The answer is no, but the easiest way to avoid this glitch in the mutual gravitation
problem is to make the transformation G — (m| + m)G /m, instead. This has the correct effect and is
not ambiguous.
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C.C

FIGURE 10.7 Particles P; and P, move under their mutual gravitation. In the zero
momentum frame, the orbits are similar conics, each with a focus at G (left). The orbit of
P relative to P is a third similar conic with P, at a focus (right).

From the one-body theory in Chapter 7, we know that P; will escape from a fixed P>
if it has positive energy, that is if

mimyG
16

%mlvz — 0.

C

Hence, when P; is not fixed, Py will escape if

] 2 mimaG’

imlv >0,

c

that is, if

V2 . 2(m +m2)G.

c

This is the required escape condition. B

Once the relative motion of the particles has been found, one may easily deduce the
motion of each particle in the ZM frame since (see Figure 10.6)

’6 = (—’”2 ) ' = — <—’"1 )
mi + my mi + my
It follows that the orbits of Py, P> in the ZM frame are geometrically similar to the orbit
in the relative motion. For instance, suppose that the mutual interaction of Py and P; is
gravitational attraction, and that the orbit of P; relative to P> has been found to be an
ellipse. Then the orbits of Py and P; in the ZM frame are similar ellipses, as shown in
Figure 10.7. The ratio of the major axes of these orbits is m> : m1, and the sum of their

major axes is equal to the major axis of the orbit of P; relative to P». All three orbits have
the same period 7 given by

2.3
5 4dma

=~ (10.26)
G (my +my)
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where « is the semi-major axis of the relative orbit. This formula is simply obtained from
the one-body period formula (7.26) by replacing G by G'.

Formula (10.26) shows that, in the approximate treatment in which P is regarded
as fixed, the value of the period is overestimated by the factor

which is a small correction when m/m> is small. In the Solar system, the largest value
of m1/my for a planetary orbit is that for Jupiter, which is about 1/1000.

Binary stars

It is probable that over half of the ‘stars’ in our galaxy are not single stars, like the Sun,
but occur in pairs® that move under their mutual gravitation. Such a pair is called a binary
star.

Binary stars are important in astronomy and also provide a nice application of our
two-body theory. In particular, the two components of the binary must orbit their centre of
mass on similar ellipses, as shown in Figure 10.7; the orbit of either component relative to
the other is a third similar ellipse; and the period of all three motions is given by formula
(10.26), where a is the semi-major axis of the relative orbit.

One reason why binary stars are important in astronomy is that the masses of their
component stars can be found by direct measurement; indeed they are the only stars for
which this can be done. Suppose that the star is an optical binary, which means that both
components are visible through a suitably large telescope. Then the period of the binary
can be measured by direct observation. It is also possible to measure the major axis of the
relative orbit. Once t and a are known, formula (10.26) tells us the sum of the masses of
the two components of the binary.

Example 10.9 Sirius A and B

A typical example of a binary is Sirius in the constellation Canis Major, the brightest
star in the night sky. The large bright component is called Sirius A and its small dim
companion Sirius B. The period of their mutual orbital motion is 50 years and the
value of @ is 20 AU. (This is about the distance from the Sun to the planet Uranus.)
Find the sum of the masses of the two components of Sirius.

Solution
In terms of astronomical units, in which G = 472, formula (10.26) gives

3

20
Mp+Mp=_5=32M1
A+ Mp 502 o]

* Groups of three or more also occur.
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In order to determine the individual masses of the components by optical means, it is
necessary to find the a values for one of the individual components in its motion relative to
the centre of mass. The procedure is essentially the same as before, but much more difficult
observationally since the motion of the chosen component must be measured absolutely,
that is, relative to background stars. In the case of Sirius, it is found that M4 = 2.1 Mg
and Mp = 1.1 M.

10.9 TWO-BODY SCATTERING

An important application of two-body motion is the two-body scattering prob-
lem. In our treatment of collision theory, we considered the whole class of possible colli-
sions between two particles that were consistent with momentum and energy conservation.
These collisions were parametrised by the ZM scattering angle 1. We now consider the
problem in more detail. Given the interaction between the particles and the impact param-
eter p, what is the resulting ZM scattering angle? This question can be answered by using
two-body theory. We break up the process into a number of steps:

1. Find the {p, 6}-relation for the one-body problem

First consider the one-body problem in which the particle P; is held fixed, and work
out (or look up) the relation between the impact parameter p and the scattering angle 6.
For example, the {p, 6}-relation for Rutherford scattering was derived in Chapter 7 and
was found to be
q192
mipu?’
1pu

tan 36 = (10.27)

2. Find the {p, ¢}-relation for the relative motion problem

The next step is to find the relation between the impact parameter p and the scattering
angle ¢ observed in the relative motion problem. This is easily obtained from the one-
body formula (10.27) by replacing m1 by u (the reduced mass) and replacing 6 by ¢. This
gives

q1q2(1 +y)

3 (10.28)
mipu

1
tan z(ﬁ =

where y (= m1/my) is the ratio of the two masses.
3. Find the {p, ¥/ }-relation observed in the ZM frame

The angle ¢ that appears in the formula (10.28) is the scattering angle in the motion
of my relative to my. However, by an amazing stroke of good fortune, it is actually the
same angle as the ZM scattering angle v that we used in collision theory.* Hence, the

* The reason is as follows: The relative motion in the lab frame must be the same as the relative motion in
the ZM frame. In this frame, the initial relative velocity of Py is equal to (p{/m1) — (py/m3), which
has the same direction as p. Likewise, the final relative velocity of P is equal to (p’l/ml) - (p/z/mz),
which has the same direction as p/l. Hence the scattering angle in the relative motion is the same as that
in the ZM frame.
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{p, ¥}-relation when two-body scattering is observed from the ZM frame is obtained
by simply replacing ¢ in formula (10.28) by i, that s,

q1q2(1 +y)

tan%w = 5
mipu

(10.29)

As always, u means the speed of the incident particle observed in the lab frame.
4. Find 6, and 6, in terms of p from the elastic collision formulae

Since the {p, ¥ }-relation (10.29) gives the ZM scattering angle i in terms of p, this
expression for ¥ can now be substituted into the elastic scattering formulae (10.22A) and
(10.22B) to give expressions for the two-body scattering angle 61, and recoil angle 6, in
terms of p. For Rutherford scattering, this gives, after some simplification,

Two-body Rutherford scattering formulae

4q192pE 2pE (10.30)

tan0; = tand) = —
4p2E2 — (1 — yD)q?q? q192(1 +y)

where E (= %mluz) is the energy of the incident particle and y = m1/m,.
These formulae simplify further when the particles have equal masses. In this special
case, y = 1 and the scattering and recoil angles are given by

E
tang, = 1192 tanf, = L= (10.31)

pE 9192

(As expected, 01 + 6, = %n.) These formulae would apply, for example, to the scattering
of alpha particles by helium nucei.

Two-body scattering cross section
Having found the {p, 0;}-relation for the two-body scattering problem, the two-body

scattering cross section o7 2 is given, in principle, by the formula
p_dp
"B = —————.
sin 01 dOy

However, this requires that the {p, 61 }-relation be solved to give p as a function of 6 and
the resulting algebra is formidable.

The following method has the advantage that o7 2 is determined directly from the cor-
responding one-body scattering cross section. The trick is to introduce the ZM scattering
angle 1. By the chain rule,

dp _dp dy

= X ,
do; dyr  do
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TB can be written

T8 p_dp ___p (d_P d_w)

= — = — X
sin 91 d91 Sil‘l@l dlﬂ d91

_(siny dyr p dp
- (Gir) (@) (s
_(smy d_w M

a (Sifl@l) <d91)6 W

where oM is defined by

and so o

p_dp
sinyr dyr
Now 4™ () is easily obtained from the one-body cross-section o (6) by replacing n1
by n and 6 by ¥. The two-body cross section is then given by

oM () = -

(10.32)

Two-body scattering cross section

TBy_ (SV\ (dV\ zm (10.33)
o PO = (sin@l) (d@l)a ()

In this formula, we have yet to replace ¥ by its expression in terms of 8;. To do this, we
must invert the formula (10.22 A) to obtain i as a function of ;. Formula (10.22 A) can
be rearranged in the form

sin(yy — 1) = y sin6y,

from which we obtain

¥ =6 +sin”!(y sin6;) (10.34)
and, by differentiation,
d 9
@ _ e —— (10.35)
db (1 — yZsin=0;)1/2

These expressions for ¢ and dyr/d6; in terms of 1 must now be substituted into equation
(10.33) to obtain the final formula for the two-body scattering cross section oTBH)).
These operations can be done with computer assistance.

For example, in Rutherford scattering, we first obtain 0% (v) by replacing m; by
w (and 6 by ) in the one-body cross section formula (7.37) obtained in Chapter 7. This
gives

2.2 2
ZM qqu(l +7v) 1
o = . 10.36
W) dmiut sin* Ty ( )
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(a}a3 /16 E%) " o™

4 ~=0 (one-body theory)
/

FIGURE 10.8 The Rutherford two-body 2

scattering cross section o7 2 plotted against .
the scattering angle 6 (/2 < 0 < ) for _
. . |
various values of the mass ratio
0 |

y (= my/my). E is the kinetic energy of the
incident particles. w/2 m

The two-body Rutherford scattering cross section is now obtained by substituting the
expression (10.36) into the general formula (10.33) and then replacing ¥ and dvyr/d6; by
the expressions (10.34), (10.35). After much manipulation, the answer is found to be

(10.37)

15 _ 4195 ( 40 +y)’(ycos6) +5)°
16E2 \ S(1 + y sin®6; —cos6;5)2 )’

where
1/2
S = (1 — )/2 sin’ 91)

and E (= %mluz) is the energy of the incident particle.

Figure 10.8 shows graphs of o7 2 (6) in Rutherford scattering for various choices of
the mass ratio y. In Rutherford’s actual experiment with alpha particles and gold nucleii,
the value of y was about 0.02 and the error in the scattering cross section caused by using
the one-body theory was less than 0.1%. However, as the graphs show, larger values of y
can give rise to a substantial deviation from the one-body theory.

When the mass ratio y (= m1/m>) is small, the formula (10.37) is approximated by

e _ 9192 1 2 4 )
o'" = —2y°4+0 .
16E2 (sin4(91 /2) Y (y )

Thus, when y is small, the leading correction to the one-body approximation is a constant.

Equal masses

The whole process of finding o7 # simplifies wonderfully when the two particles have
equal masses. In this case, ¥ = 2601, dyr/df; = 2, and the general formula (10.33)
becomes

oTB(6)) = 4cosb o?M(26)) 0 <6 <n/2).
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For example, in Rutherford scattering where the particles have equal masses, o7 has the
simple form

2.2
01) = —= 0<6) <m/2).
o’ ") =" (sin491) 0<6 <m/2)

This formula would apply, for example, to the scattering of protons by protons.

10.10 INTEGRABLE MECHANICAL SYSTEMS

A mechanical system is said to be integrable if its equations of motion are sol-
uble in the sense that they can be reduced to integrations.” The most important class
of integrable systems are those that satisfy as many conservation principles as they have
degrees of freedom. Suppose that a mechanical system S has n degrees of freedom and
that it satisfies n conservation principles. Then it is certainly true that the »n conservation
equations are sufficient to determine the motion of the system, in the sense that no more
equations are needed. More importantly though, it can be shown' that these equations can
always be reduced to integrations. The system S is therefore integrable.

Before we can apply this method to particular systems, there is a kinematical prob-
lem to be overcome, namely: how does one find the velocities (and angular velocities)
of the elements* of S when there are two or more generalised coordinates which vary
simultaneously? The answer is by drawing a velocity diagram for S as described below:

Drawing a velocity diagram
e Draw the system in general position and select a set of generalised coordinates.

o [et the first generalised coordinate vary (with the other coordinates held constant)
and mark in the velocity of each element.

e Now let the second generalised coordinate vary (with the other coordinates held
constant) and, on the same diagram, mark in the velocity of each element. Con-
tinue in this way through all the generalised coordinates.

e Then, when all the generalised coordinates are varying simultaneously, the veloc-
ity of each element of § is the vector sum of the velocities given to that element
when the coordinates vary individually.

In the above, ‘velocity’ means ‘velocity and/or angular velocity’.

* The system is still said to be integrable even when the integrals cannot be evaluated in terms of standard
functions!

T This is Liouville’s theorem on integrable systems (see Problem 14.15)

¥ The elements of S are the particles and/or rigid bodies of which S is made up. One needs to find (i) the
velocity of each particle, (ii) the velocity of the centre of mass of each rigid body, and (iii) the angular
velocity of each rigid body, in each case in terms of the chosen coordinates and their time derivatives.
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(€) 10 ) >~

FIGURE 10.9 Constructing a velocity diagram. Figure (a) shows the system and the
coordinates x and 6. Figure (b) shows the velocities generated when x varies with 6 held
constant. Figure (c) shows the velocities generated when 6 varies with x held constant.
Figure (d) is the velocity diagram which is formed by superposing the velocities in
diagrams (b) and (c). Note that the velocity of P is the vector sum of the two contributions
shown.

Example 10.10 Drawing a velocity diagram 1

The system shown in Figure 10.9 consists of two particles P; and P, connected by
a light inextensible string of length a. The particle P; is also constrained to move
along a fixed horizontal rail and the whole system moves in the vertical plane through
the rail. Take the variables x and 6 shown as generalised coordinates and draw the
velocity diagram.

Solution

The construction of the velocity diagram is shown in Figure 10.9. B

Example 10.11 Drawing a velocity diagram 2

Two rigid rods CD and DE, of lengths 2a and 2b, are flexibly jointed at D and can
move freely on a horizontal table. Choose generalised coordinates and draw a velocity
diagram for this system.

Solution

Let Oxy be a system of Cartesian coordinates in the plane of the table. Let (X, Y) be
the Cartesian coordinates of the centre of the rod C D, and let 6 and ¢ be the angles
that the two rods make with positive x-axis. Then X, Y, 6, ¢ are a set of generalised
coordinates for this system. These coordinates, and the corresponding velocity dia-
gram are shown in Figure 10.10. There are four contributions to the velocity of the
centre of the rod D E. Also, each rod has an angular velocity. B

We will now solve the system shown in Figure 10.9 by using conservation principles.
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FIGURE 10.10 The velocity diagram for a system with four degrees of freedom. The figure on the
left shows the system and the generalised coordinates X, Y, 6, ¢. The figure on the right is the
completed velocity diagram.

Example 10.12 Solving an integrable system

Consider the system shown in Figure 10.9 for the case in which Py and P, have
masses 3m and m, the rail is smooth, and the system moves under uniform gravity.
Initially, the system is released from rest with the string making an angle of 7 /3 with
the downward vertical. Use conservation principles to obtain two equations for the
subsequent motion.

Solution

Let i be the unit vector parallel to the rail (in the direction of increasing x). Since
the rail is smooth, all the external forces on the system are vertical which means that
F - i = 0. This implies that P - i, the horizontal component of the total linear
momentum, is conserved. From the velocity diagram, the value of P . i at time ¢ is
given by

P.i= 3m5c+m(5c+(aé)cos@) = 4mx + mab cos 6.

Also, since the motion is started from rest, P - i = 0 initially. Hence, conservation
of P - i implies that

4% + ab cos 6 = 0, (10.38)

on cancelling by m. This is our first equation for the subsequent motion.
Since the rail is smooth, the constraint force exerted by the rail does no work and
the tensions in the inextensible string do no total work. Hence energy is conserved.
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From the velocity diagram, the kinetic energy of the system at time 7 is given by*
T =3G@m)i® + m (2 + (@6)? + 2i(ad) cos6)
= %m (4}%2 + a?6% + 2ax6 cos 9) .
The gravitational potential energy of the system at time ¢ is given by
V =0—mgacosb.

Since the system was released from rest with & = 60°, the initial value of T is zero,
while the initial value of V = —%m ga. Hence, conservation of energy implies that

%m (4)’(2 + a%6? 4 2ax6 cos 9) —mgacosf = —%mga,
which simplifies to give
45% + a’6% + 2ax6 cos O = ga(2cosf —1). (10.39)

This is our second equation for the subsequent motion.

Since this system has two degrees of freedom and satisfies f/wo conservation prin-
ciples, it must be integrable. Hence, the conservation equations (10.38), (10.39) must
be soluble in the sense described above. B

Question Equation for 0

Deduce an equation satisfied by 6 alone and find the speeds of P; and P, when the
string becomes vertical.

Answer

From the linear momentum equation (10.38),
X =- %aé cos 6

and, if we now eliminate X from the energy equation (10.39), we obtain, after simpli-
fication,

.y 4g (2cosf — 1
o ~a \4-cos20 ) (1040

which is an equation for 6 alone.

It follows from this equation that, when the string becomes vertical (that is, when
0 =0),602%= 4g/3a. Hence, at this instant, 6 = —(4g/3a)'/? and (from the momen-
tum conservation equation) ¥ = +(g/12a)'/?. Hence, the speed of Py is (ag/12)'/?
and the speed of P; is |x 4+ af| = (3ag/4)'/>. m

* Suppose a velocity V is the sum of two contributions, v; and v, so that V. = v; + v. Then
VP =V.V =@ +v2)- (0 +v2) =0 -0 + 0303+ 201 - 03 = [v7]> + [02]> + 201 - 0.

This formula was used to find the kinetic energy of particle P,.
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Question Period of oscillation

Find the period of oscillation of the system.

Answer

From the equation (10.40), it follows that the motion is restricted to those values
of @ that make the right side positive, and that § = 0 when the right side is zero.
Hence, 6 oscillates periodically in the range —7/3 < 6 < /3. Consider the first
half-oscilliation. In this part of the motion, 6 < 0 and so O satisfies the equation

. 4g 2 12cos6 — 1\ 1/
0=—|— i — ,
a 4 — cos? 6
a first order separable ODE. On separating, we find that 7, the period of a full oscil-
lation, is given by

a\'"* (73 (4 —cos?h 172 a\'"?
r=|[—- / _— ~ 623 - .
g —_z/3\2cos6 — 1 g
Thus the determination of 6(¢) has been reduced to an integration, and, with 6(¢)

‘known’, the equation(10.38) can be solved to give x(¢) as an integral. This confirms
that the system is integrable. B

Appendix A Modelling bodies by particles

When can a large body, such as a tennis ball, a spacecraft, or the Earth, be modelled by a
particle?

The answer commonly given is that ‘a body may be modelled by a particle if its size is
small compared with the extent of its motion’. For example, since the radius of the Earth is
small compared with the radius of its solar orbit, it is argued that the Earth may be modelled
by a particle, at least in respect of its translational motion. This argument sounds reasonable
enough, but it is derived only from intuition and, although it often gives the correct answer, it
is not the correct condition at all!

We can make some more definite statements on this quite tricky question by using the
centre of mass equation. This states that ‘the centre of mass of any system moves as if it were
a particle of mass the total mass, and all the external forces acted upon it’. It might appear
that this principle enables us to predict the motion of the centre of mass of any system, but
this is not so. The reason is that, in general, the fotal external force acting on a system does
not depend solely on the motion of its centre of mass; it may depend on the positions of the
individual particles and also other factors such as the particle velocities. Suppose, for example,
that the system is a rigid body of general shape moving under the gravitational attraction of a
fixed mass. Then the total gravitational force acting on the body is only approximately given
by supposing all the mass to be concentrated at the centre of mass G. The exact force depends
on the orientation of the body as well as the position of G. The centre of mass equation tells us
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nothing about this orientation and so the total force on the body is not known and the motion
of G cannot be determined.

There are however some important exceptions:

e Consider a rigid body moving without rotation. In this case the motion of G deter-
mines the motion of every particle of the body. Then the total external force on the
body is known and the motion of G can be determined. This, in turn, determines
the motion of the whole body. For example, the problem of a block sliding without
rotation on a table can be completely solved by particle mechanics.

e (Consider any system moving solely under uniform gravity. In this case, the total
external force on the system is a known constant and the motion of G can be deter-
mined. This does not however determine the motion of the individual particles. For
example, if the system were a brick thrown through the air, then particle mechanics
can calculate exactly where its centre of mass will go, but not which particle of the
brick will hit the ground first.

In the general case however, we must use approximations. For example, suppose that the
particles of the system move in the force fields F;(r) so that the total force on the system is

N
> Fi(r).
i=1

In general, this is notequal to ) ° F;(R). We can however approximate Y F;(r;) by >_ F;(R),
in which case we are assuming that the ratio
|Fi(ri) — Fi(R)|
|Fi(R)|

<1 (10.41)

for all i. In the following argument we investigate when this condition can be expected to be
hold.

Let §; be the position vector of the particle P; of the system relative to G. Then

G e ().

ds
where d F ; /ds means the directional derivative of F; in the direction of the displacement §;. The condition
(10.41) therefore requires that
dF;
ds

) 18; 1
r=R

|F;(R)|

Fi(R+36;) - Fi(R) = (

r=

<1

for all i and for all values of R that are attained in the motion of the system. This will hold if

|Fi(R)]

( aj‘ r= )
max
R

for all i and for all points on the path of the centre of mass. Here ‘max’ means the maximum over all
directions, and A is the ‘radius’ of the system (the maximum distance of any particle of the system from the
centre of mass). Thus the radius of the system is required to be small compared with the quantities above,
not the lateral extent of the motion.

A < (10.42)
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Although the condition (10.42) looks formidable, its physical meaning is quite simple: the
radius of the system is required to be small compared with a length scale over which any of
the force fields vary significantly.

Consider for example a body moving under the gravitational attraction of a mass My which
is fixed at the origin O. In this field, the particle P; of the system moves under the force field

m; MoG ~

> r;.
T

Fi(r)=—

For this field, the right side of the condition (10.42) evaluates to give R/2, where R (= | R]) is
the distance of the centre of mass of the body from O. Therefore the total gravitational force
on the body will be accurately approximated by the force

MMoG ~

A
(where M is the total mass of the body), if A <« R at each point on the path of the centre
of mass. This means that the radius of the body must be small compared with its distance of
closest approach to the centre O. This condition has no direct connection with the ‘extent of
the motion’. Indeed, on a hyperbolic orbit, the path is infinite, but the condition (10.42) will
not hold if the path passes too close to the centre of force. Similar remarks apply to motion of a
body in any central field governed by a power law. If however the field were that corresponding
to the Yukawa potential

F(R) = —

e—r/a
V=—k ,
r

where k, a are positive constants, then A is required to be small compared with the length
scale a as well as the distance of closest approach to O.

Problems on Chapter 10

Answers and comments are at the end of the book.

Harder problems carry a star ().

Linear momentum principle & centre of mass equation

10.1 Show that, if a system moves from one state of rest to another over a certain time interval,
then the average of the total external force over this time interval must be zero.

An hourglass of mass M stands on a fixed platform which also measures the apparent
weight of the hourglass. The sand is at rest in the upper chamber when, at time ¢+ = 0, a
tiny disturbance causes the sand to start running through. The sand comes to rest in the lower
chamber after a time + = t. Find the time average of the appararent weight of the hourglass
over the time interval [0, t]. [The apparent weight of the hourglass is however not constant
in time. One can advance an argument that, when the sand is steadily running through, the
apparent weight of the hourglass exceeds the real weight!]

10.2 Show that, if a system moves periodically, then the average of the total external force
over a period of the motion must be zero.
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A juggler juggles four balls of masses M, 2M,3M and 4M in a periodic manner. Find
the time average (over a period) of the total force he applies to the balls. The juggler wishes
to cross a shaky bridge that cannot support the combined weight of the juggler and his balls.
Would it help if he juggles his balls while he crosses?

10.3#% A boat of mass M is at rest in still water and a man of mass m is sitting at the bow. The
man stands up, walks to the stern of the boat and then sits down again. If the water offers a
resistance to the motion of the boat proportional to the velocity of the boat, show that the boat
will eventually come to rest at its orginal position. [This remarkable result is independent of
the resistance constant and the details of the man’s motion. ]

10.4 A uniform rope of mass M and length « is held at rest with its two ends close together
and the rope hanging symmetrically below. (In this position, the rope has two long vertical
segments connected by a small curved segment at the bottom.) One of the ends is then released.
It can be shown by energy conservation (see Problem 9.8) that the velocity of the free end when
it has descended by a distance x is given by

) (x(2a — x))
vV=—"])¢
a—x
Find the reaction R exerted by the support at the fixed end when the free end has descended a

distance x. The support will collapse if R exceeds %M g. Find how far the free end will fall
before this happens.

10.5 A fine uniform chain of mass M and length a is held at rest hanging vertically down-
wards with its lower end just touching a fixed horizontal table. The chain is then released.
Show that, while the chain is falling, the force that the chain exerts on the table is always three
times the weight of chain actually lying on the table. [Assume that, before hitting the table,
the chain falls freely under gravity.]

% When all the chain has landed on the table, the loose end is pulled upwards with the
constant force %M g. Find the height to which the chain will first rise. [This time, assume that
the force exerted on the chain by the table is equal to the weight of chain lying on the table.]

10.6 A uniform ball of mass M and radius a can roll without slipping on the rough outer

surface of a fixed sphere of radius b and centre O. Initially the ball is at rest at the highest

point of the sphere when it is slightly disturbed. Find the speed of the centre G of the ball

in terms of the variable 6, the angle between the line OG and the upward vertical. [Assume
10

planar motion.] Show that the ball will leave the sphere when cos6 = 7.

Rocket motion

10.7 A rocket of initial mass M, of which M — m is fuel, burns its fuel at a constant rate
in time t and ejects the exhaust gases with constant speed u. The rocket starts from rest and
moves vertically under uniform gravity. Show that the maximum speed acheived by the rocket
is # In y and that its height at burnout is
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where y = M /m. [Assume that the thrust is such that the rocket takes off immediately.]

10.8 Saturn V rocket In first stage of the Saturn V rocket, the initial mass was 2.8 x 100 kg, of
which 2.1 x 10% kg was fuel. The fuel was burned at a constant rate over 150 s and the exhaust
speed was 2, 600 ms~!. Use the results of the last problem to find the speed and height of the
Saturn V at first stage burnout. [Take g to be constant at 9.8 ms~2 and neglect air resistance. ]

10.9 Rocket in resisting medium A rocket of initial mass M, of which M — m is fuel, burns
its fuel at a constant rate k and ejects the exhaust gases with constant speed u. The rocket
starts from rest and moves through a medium that exerts the resistance force —ekv, where v is
the forward velocity of the rocket, and € is a small positive constant. Gravity is absent. Find
the maximum speed V achieved by the rocket. Deduce a two term approximation for V, valid
when € is small.

10.10 Two-stage rocket A two-stage rocket has a first stage of initial mass My, of which
(1 — n)M, is fuel, a second stage of initial mass M», of which (1 — 1) M5 is fuel, and an inert
payload of mass mq. In each stage, the exhaust gases are ejected with the same speed u. The
rocket is initially at rest in free space. The first stage is fired and, on completion, the first
stage carcass (of mass nM) is discarded. The second stage is then fired. Find an expression
for the final speed V of the rocket and deduce that V' will be maximised when the mass ratio
o = My /(M1 + M>) satisfies the equation

o’ +2Ba — B =0,

where 8 = my/(M| + M3). [Messy algebra.]
Show that, when 8 is small, the optimum value of « is approximatelely 8!/? and the
maximum velocity reached is approximately 2u In y, where y = 1/7.

10.11#% A raindrop falls vertically through stationary mist, collecting mass as it falls. The
raindrop remains spherical and the rate of mass accretion is proportional to its speed and the
square of its radius. Show that, if the drop starts from rest with a negligible radius, then it has
constant acceleration g/7. [Tricky ODE.]

Collisions

10.12 A body of mass 4m is at rest when it explodes into three fragments of masses 2m, m
and m. After the explosion the two fragments of mass m are observed to be moving with the
same speed in directions making 120° with each other. Find the proportion of the total kinetic
energy carried by each fragment.

10.13 Show that, in an elastic head-on collision between two spheres, the relative velocity of
the spheres after impact is the negative of the relative velocity before impact.

A tube is fixed in the vertical position with its lower end on a horizontal floor. A ball of
mass M is released from rest at the top of the tube followed closely by a second ball of mass
m. The first ball bounces off the floor and immediately collides with the second ball coming
down. Assuming that both collisions are elastic, show that, when m /M is small, the second
ball will be projected upwards to a height nearly nine times the length of the tube.
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10.14 Two particles with masses m 1, m, and velocities v, v, collide and stick together. Find
the velocity of this composite particle and show that the loss in kinetic energy due to the
collision is

myma3

2
—F— |V — V .
2(M1+m2)| 1 2]

10.15 In an elastic collision between a proton moving with speed u and a helium nucleus at
rest, the proton was scattered through an angle of 45°. What proportion of its initial energy
did it lose? What was the recoil angle of the helium nucleus?

10.16 In an elastic collision between an alpha particle and an unknown nucleus at rest, the
alpha particle was deflected through a right angle and lost 40% of its energy. Identify the
mystery nucleus.

10.17 Some inequalities in elastic collisions Use the elastic scattering formulae to show the
following inequalities:

(i) When m| > mpy, the scattering angle 0 is restricted to the range 0 < 0; < sin_l(mz/ml).
(1) If m| < mo, the opening angle is obtuse, while, if m| > m>, the opening angle is acute.
(iii)

Eq (m1 —m2>2 E; 4mimo
—>(— S
Eg my +my Eo = (m1 +my)?

10.18 Equal masses Show that, when the particles are of equal mass, the elastic scattering
formulae take the simple form

91:%1& 92:%71—%1# 9=%7T — =cos” 7Y —= =sin" 3¢

where v is the scattering angle in the ZM frame.

In the scattering of neutrons of energy £ by neutrons at rest, in what directions should the
experimenter look to find neutrons of energy %LE? What other energies would be observed in
these directions?

10.19 Use the elastic scattering formulae to express the energy of the scattered particle as a
function of the scattering angle, and the energy of the recoiling particle as a function of the
recoil angle, as follows:

E;  1+y%cos20; +2ycost; (1 —y? sinzel)l/2

Ey 4y 24
E = 12 s E__—12COS .
0 (y+1D o W+l

Make polar plots of E1/E( as a function of 0; for the case of neutrons scattered by the nuclei
of hydrogen, deuterium, helium and carbon.

Two-body problem and two-body scattering

10.20 Binary star The observed period of the binary star Cygnus X-1 (of which only one
component is visible) is 5.6 days, and the semi-major axis of the orbit of the visible component
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is about 0.09 AU. The mass of the visible component is believed to be about 20M,. Estimate
the mass of its dark companion. [Requires the numerical solution of a cubic equation.]

10.21 In two-body elastic scattering, show that the angular distribution of the recoiling parti-
cles is given by

dcostr oM — 20),

where ZM () is defined by equation (10.32).
In a Rutherford scattering experiment, alpha particles of energy E were scattered by a
target of ionised helium. Find the angular distribution of the emerging particles.

10.22% Consider two-body elastic scattering in which the incident particles have energy Ej.
Show that the energies of the recoiling particles lie in the interval 0 < E < FEpax, Where
Emax = 4y Eo/(14+y)?. Show further that the energies of the recoiling particles are distributed
over the interval 0 < E < En.x by the frequency distribution

f(E) = (;—”) oM (),

max

where 04 is defined by equation (10.32), and

E >1/2
Emax ’

In the elastic scattering of neutrons of energy E( by protons at rest, the energies of the recoiling
protons were found to be uniformly distributed over the interval 0 < E < E, the total cross
section being A. Find the angular distribution of the recoiling protons and the scattering cross
section of the incident neutrons.

v =2sin—1<

Integrable systems

10.23 A particle Q has mass 2m and two other particles P, R, each of mass m, are connected

to Q by light inextensible strings of length a. The system is free to move on a smooth hori-

zontal table. Initially P, Q R are at the points (0, a), (0, 0), (0, —a) respectively so that they

lie in a straight line with the strings taut. Q is then projected in the positive x-direction with

speed u. Express the conservation of linear momentum and energy for this system in terms of

the coordinates x (the displacement of Q) and 6 (the angle turned by each of the strings).
Show that 0 satisfies the equation

9-2_142 1
T a2 \2—cos20

and deduce that P and R will collide after a time

1

/2 1
3/ [2—00520]2 do.
uJo
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A (ma?) 'S (a2/4) " o (6)
4 \ - ‘,f/’/
ka =30
2 : ' — ka ¢ . > 0=0
10 20 30 1 O

FIGURE 10.11 The quantum mechanical solution of the problem in which a uniform beam of
particles, each with momentum £k, is scattered by an impenetrable sphere of radius a. Left: The
(dimensionless) total cross section (ra?) 'S against ka. Right: A polar graph of the (dimensionless)
scattering cross section @?*/4~'o8) against & when ka = 30.

10.24 A uniform rod of length 2a has its lower end in contact with a smooth horizontal table.
Initially the rod is released from rest in a position making an angle of 60° with the upward
vertical. Express the conservation of linear momentum and energy for this system in terms
of the coordinates x (the horizontal displacement of the centre of mass of the rod) and 6 (the
angle between the rod and the upward vertical). Deduce that the centre of mass of the rod
moves in a vertical straight line, and that 6 satisifies the equation

9.2_3g 1 —2cos6
a \4—3cos20 )’

Find how long it takes for the rod to hit the table.

Computer assisted problems

10.25 Two-body Rutherford scattering Calculate the two-body scattering cross section o'’ 8

for Rutherford scattering and obtain the graphs shown in Figure 10.8. Obtain also an approxi-
mate formula for o7 # valid for small y (= m /m»), and correct to order 0()/2).

10.26 Comparison with quantum scattering A uniform flux of particles is incident upon a
fixed hard sphere of radius a. The particles that strike the sphere are reflected elastically. Show
that the differential scattering cross section is o (/) = a?/4 and that the total cross section is
S = ma’.

The solution of the same problem given by quantum mechanics is

1) i (ka) |?
hy(ka)

a? i (21 + 1) ji(ka) P;(cos ) ?

0) =
T G | T ke

9

4ra®
’ (ka)z Z

where P;(z) is the Legendre polynomial of degree /, and j;(z), h;(z) are spherical Bessel
functions order /. (Stay cool: these special functions should be available on your computer
package.) The parameter £ is related to the particle momentum p by the formula p = hk,
where £ is the modified Planck constant. When ka is large, one would expect the quantum
mechanical values for o () and S to approach the classical values. Calculate the quantum
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mechanical values numerically for ka up to about 30 (the calculation becomes increasingly
difficult as ka increases), using about 100 terms of the series.

The author’s results are shown in Figure 10.11. The quantum mechanical value for o (6)
does approach the classical value for larger scattering angles, but behaves very erratically for
small scattering angles. Also, the value of S tends to twice the value expected! Your physics
lecturer will be pleased to explain these interesting anomalies.



Chapter Eleven
. _________________________________________________________________________________________________|

The angular momentum principle

and angular momentum conservation

KEY FEATURES

The key features of this chapter are the angular momentum principle and conservation
of angular momentum. Together, the linear and angular momentum principles provide the
governing equations of rigid body motion.

This chapter is essentially based on the angular momentum principle and its conse-
quences. The angular momentum principle is the last of the three great principles of multi-
particle mechanics® that apply to every mechanical system without restriction. Under
appropriate conditions, the angular momentum of a system (or one of its components) is
conserved, and we use this conservation principle to solve a variety of problems.

Together, the linear and angular momentum principles provide the governing equa-
tions of rigid body motion; the linear momentum principle determines the translational
motion of the centre of mass, while the angular momentum principle determines the rota-
tional motion of the body relative to the centre of mass. In this chapter, we restrict our
attention to the special case of planar rigid body motion. Three-dimensional motion of
rigid bodies is considered in Chapter 19.

11.1 THE MOMENT OF A FORCE

We begin with the definition of the moment of a force about a point, which is a
vector quantity. The moment of a force about an axis, a scalar quantity, is the component
along the axis of the corresponding vector moment.

Definition 11.1 Moment of a force about a point Suppose a force F acts on a parti-
cle P with position vector r relative to an origin O. Then ko, the moment' of the force
F about the point O is defined to be

ko =rxF, (11.1)

* The other two are the energy and linear momentum principles.
T Also called torque, especially in the engineering literature.
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n o~
A ]
T,/a[ L
r ¢ |
@) O O

right (+) left (—)

FIGURE 11.1 Left: Geometrical interpretation of the vector moment kp = r x F. Right: The
right- and left-handed senses around the ‘axis’ {O, n}.

a vector quantity. If the system of particles Pi, Pa, ..., Py, with position vectors ry, ra,
..., rn are acted upon by the system of forces Fi, F,, ..., Fy respectively, then K ¢,
the total moment of the system of forces about O is defined to be the vector sum of the
moments of the individual forces, that is,

N
Ko :ZrixFi. (11.2)
i=1

Since any fixed point can be taken to be the origin O, there is no loss of generality in the
above definitions. However, there are occasions on which it is convenient to take moments
about a general point A whose position vector is a. To find K 4, we simply replace r; in
the above definitions by the position vector of P; relative to A, namely, r; — a. This gives

N

Ky=) (ri—a)xF;. (11.3)

i=1

It follows that K 4 and K o are simply related by
Ko,=Kp—axF,

where F is the resultant force. Hence, if F is zero, the total moment of the forces { F; } is
the same about every point. Such a force system is said to be a couple with moment K.

Geometrical interpretation of vector moment

The formula (11.1) has a nice geometrical interpretation. Let P be the plane that contains
the origin and the force F, as shown in Figure 11.1. Let n be a unit vector normal to P,
and suppose that F acts in the right-handed (or positive) sense around the ‘axis’ {O, n}.
(This is the case shown in Figure 11.1.) Then, from the definition (1.4) of the vector
product,

Ko =rxF = (Ir||F|sin(7 + @) n=F(cosa)n = (F x p)n,

where F is the magnitude of F and p (= O M) is the perpendicular distance of O from
the ‘line of action’ of F. Thus, K ¢ has magnitude F x p and points in the n-direction. If
F has the left-handed (or negative) sense around {O, n}, then K9 = —(F X p) n.
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FIGURE 11.2 The moment of the ggrce F
about the axis {O, n}is p x (F - ¢). |

Motion in a plane

Suppose we have a system of particles that lie in a plane, and the forces acting on the
particles also lie in this plane. Such a system is said to be two-dimensional. Then the
total moment K o of these forces about a point O of the plane is given by

N N
Ko=) *Fpin= (Z iF,-pf)n,

i=1 i=1

where the plus (or minus) sign is taken when the sense of F; around the axis {O, n}
is right- (or left-) handed. This formula explains why, in two-dimensional mechanics,
the moment of a force can be represented by the scalar quantity &= F x p. In the two-
dimensional case, the directions of all the moments are parallel, so that they add like
scalars. However, in three dimensional mechanics, the moments have general directions
and must be summed as vectors.

Moments about an axis

Definition 11.2 Moment of a force about an axis The component of the moment K ¢
in the direction of a unit vector n is called the moment of F about the axis* {O, n}, it is
the scalar quantity K ¢ - n.

This axial moment can be written (see Figure 11.2)

Ko -n=(rxF)-n=nmxr)-F= ((rsincx)a) - F
=p(F-9).
where p is the distance of P from the axis {O, n} and ¢ is measured around the axis. The

direction of the unit vector $ is called the azimuthal direction around the axis {O, n}.
Thus F - ¢ is the azimuthal component of F.

* This ‘axis’ is merely a directed line in space. It does not neccessarily correspond to the rotation of any
rigid body.
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Example 11.1 Finding moments (numerical example)

A force F = 2i — j — 2k acts on a particle located at the point P (0, 3, —1). Find
the moment of F about the origin O and about the point A(—2, 4, —3). Find also the
moment of F about the axis through O in the direction of the vector 3i — 4k.

Solution
The moment K ¢ is given by

Ko=rxF=0@3j—-kxQRi—j—2ky=-T7i—2j—06k.
Similarly,
Ki=(r—a)xF=Q2i—j+2k)yxQ2i—j—2k)=4i+8].

The required axial moment is K ¢ - r, where n is the unit vector in the direction
of 3i — 4k, namely

3i—4k  3i-—4k
n= = .
|3i — 4k 5

Hence

. . 3i —4k 3
Kop-n=(-7i—-2j—6k)- 5 =§.l

Example 11.2 Total moment of gravity forces

A system S moves under uniform gravity. Show that the total moment of the gravity
forces about any point is the same as if all the mass of S were concentrated at its
centre of mass.

Solution

Without losing generality, let the point about which moments are taken be the origin
O. Under uniform gravity, F; = —m, gk, where the unit vector k points vertically
upwards, so that

N N
Ko=) rix(—migk) = (Z m,-r,-) x (—gk) = (MR) x (—gk)
i=1 i=1
= Rx(—Mgk),

where M is the total mass of S and R is the position vector of its centre of mass. This
is the required result. Note that it is only true for uniform gravity. m

11.2 ANGULAR MOMENTUM

We begin with the definition of the angular momentum of a particle about a fixed
point. The old name for angular momentum is ‘moment of momentum’ and that is exactly
what it is - the moment of the linear momentum of the particle about the chosen point.
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Definition 11.3 Angular momentum about a point Suppose a particle P of mass m
has position vector r and velocity v. Then lo, the angular momentum of P about O is
defined to be

lo = rx(mv), (11.4)
a vector quantity. If the system of particles Py, Py, ..., Py, with masses my, my, ..., my,
have position vectors ry, ra, ..., ry and velocities v, v, ..., vy respectively, then Lo,

the angular momentum of the system about O, is defined to be the vector sum of the
angular momenta of the individual particles, that is,

N
Lo =Zr,~x(m,~v,~). (11.5)
i=1
The corresponding formula for angular momentum about a general point A is therefore
N
La=) (ri—a)x(mv),
i=1
from which it follows that L 4 and L are simply related by

Lo=Lp—axP,

where P is the total /inear momentum of the system.

The geometrical interpretation of the angular momentum of a particle is similar to that
of moment of a force (see Figure 11.1). Let P be the plane that contains O, P and the
velocity v, and let n be a unit vector normal to P. Then

Lo = +(mv X p)n,
where v is the magnitude of v and p is the perpendicular distance of O from the line
through P parallel to v. The = sign is decided by the sense of v around the axis {O, n},

as shown in Figure 11.1.

Example 11.3 Calculating the angular momentum of a particle

The position of a particle P of mass m at time ¢ is given by x = a6?, y = 240,
z = 0, where & = 6(¢). Find the angular momentum of P about the point B(a, 0, 0)
at time ¢.

Solution
The position vector of the particle relative to B at time ¢ is

r—b:(a92i+2a9j)—ai=a[(92—1)i+29j]
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FIGURE 11.3 The particle P slides on the
inside surface of the axially symmetric bowl

z= f(p).

and the velocity of the particle at time ¢ is

dr dr do .
N T )
V=T ae S it D

The angular momentum of the particle about B at time ¢ is therefore

Ly = (r — b)x (mv) = 2ma20 [(92 — i+ 29,‘] x[0i + j]
= —2ma*6* + 1)ok.m

Angular momentum about an axis

Definition 11.4 Angular momentum about an axis The component of the angular
momentum Lo in the direction of a unit vector n is called the angular momentum of
P about the axis {O, n}, it is the scalar quantity Lo - n.

By that same argument as was used for moments about an axis, the angular momentum of
a particle of mass m and velocity v about the axis {O, n} can be written in the form

Lo-n=mp(v-9), (11.6)

where p is the perpendicular distance of the particle from the axis and v :ﬁ is the azimuthal
component of v around the axis.

Example 11.4 Particle sliding inside a bowl

A particle P of mass m slides on the inside surface of an axially symmetric bowl.
Find its angular momentum about its axis of symmetry in terms of the coordinates p,
¢ shown in Figure 11.3.

Solution

In order to express Lo - k in terms of coordinates, we draw a velocity diagram for
the system as explained in section 10.10. The velocities v, and vy, corresponding to
the coordinates p and ¢, have the directions shown in Figure 11.3. These two veloci-
ties are perpendicular, with the vy contribution in the azimuthal direction around the
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FIGURE 11.4 The rigid body B rotates about
the fixed axis {O, n} with angular velocity . \

vertical axis {O, k}. It follows that v - a = vy = p¢. The required axial angular
momentum is therefore

Lo -k=mp-$) =mp(p) = mp*¢.

Just for the record, the velocity v, is the (vector) sum of p radially outwards and
z vertically upwards. Note that z is not an independent quantity. If the equation of
the bowl is z = f(p), then Z = f'(p)p. In particular then, the kinetic energy of P is
given by

T =dm |+ (1'(0)5) + (09)].

and its potential energy by V. = mgf(p). &

11.3 ANGULAR MOMENTUM OF A RIGID BODY

The probem of finding the angular momentum of a moving rigid body in the
general three-dimensional case is tricky and is deferred until Chapter 19. In the present
chapter we essentially restrict ourselves to the case of planar rigid body motion, for which
it is sufficient to find the angular momentum of the body about its axis of rotation. This
axis may be fixed (as in the armature of a motor) or, more generally, may be the instan-
taneous rotation axis through the centre of mass of the body (as in the case of a rolling
penny). In this section we consider only the case of rotation about a fixed axis; the case of
planar motion is treated in section 11.6.

Consider a rigid body B rotating with angular velocity w about the fixed axis {O, n},
as shown in Figure 11.4. Then the angular momentum of the body about this axis is

N N N
Lo-n= (Z lg)> ‘n= Z(lg) ‘n) = Zmipi(vi - P),
i=1 i=1 i=1

where p; is the perpendicular distance of m; from the axis, and v; - ;ﬁ is the azimuthal
component of v; around the axis (see formula (11.6)). But, since the body is rigid, the
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velocity of m; is entirely azimuthal and is equal to wp;. Hence

N
Loon:<Zm,~pl-2)a):Iw, (11.7)

i=1

where 7 is the moment of inertia of B about the rotation axis { O, n}. We have thus proved
that:

Angular momentum of a rigid body about its rotation axis

If a rigid body is rotating with angular velocity w about the fixed axis {A, n}, then
the angular momentum of the body about this axis is given by

Li-n=1Io, (11.8)

where / is the moment of inertia of the body about the axis {O, n}.

It should be remembered that, if a rigid body of general shape is rotating about the
fixed axis {O, n}, then L, the angular momentum of the body about O, is not generally
parallel to the rotation axis. If the rotation axis happens to be an axis of rotational sym-
metry of the body, then Lo will be parallel to the rotation axis and Lo is simply given
by

Lo = ({w)n. (11.9)

Example 11.5 Axial angular momentum of a hollow sphere

A hollow sphere of inner radius a and outer radius b is made of material of uniform
density p. The sphere is spinning with angular velocity €2 about a fixed axis through
its centre. Find the angular momentum of the sphere about its rotation axis.

Solution

From equation (SysA:L=Iomega), the angular momentum of the sphere about its rota-
tion axis is given by L = I w, where [ is its moment of inertia and  is its angular
velocity about this axis. In the present case,

I = %sz — %maz,
where M = 4pb®/3 and m = 4pa> /3, giving

8
1="2 (6" -d%).
15
The angular momentum of the sphere about its rotation axis is therefore
_ 8

L_1—5<b5—a5>9.l
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11.4 THE ANGULAR MOMENTUM PRINCIPLE

We now derive the fundamental result which relates the angular momentum of
any system to the external forces that act upon it — the angular momentum principle.
Consider the general multi-particle system S which consists of particles Py, P, ...,
Py, with masses m1, my, ..., my and velocities vy, va, ..., vy, as shown in Figure 9.1.
Suppose that S is acted upon by external forces F; and internal forces G;;, as shown in
Figure 9.3. Then the equation of motion for the particle P; is

d
ﬂ_F +ZG,,, (11.10)

where, as in Chapter 9, we take G;; = 0 wheni = j. Then the rate of increase of the
angular momentum of the system & about the origin O can be written

N

dL d dv; .
d_tO = E (Zrix(mivi ) = Z {rix<m,~d—tl> +rix(mivi)}
=

i=1

since r; X (m;v;) = m;v; X v; = 0. On using the equation of motion (11.10), we obtain

dLO_Zrlx F—|—ZGU Zr,xF +ZZr,xGU

i=1 j=1
i—1

=Ko + Z Z (rixGij +1;xGji) |, (11.11)
i=2 \j=1

where K ¢ is the total moment about O of the external forces. We have also grouped
the terms of the double sum in pairs and omitted those terms known to be zero. Now
the internal forces {G,;} satisfy the Third Law, which means that G;; must be equal and
opposite to G j;, and that G;; must be parallel to the line P; P;. It follows that

r,-xGij+rijjl~ =rl~xGij —rij,'j = (r,- —rj)xGl-j =0,

since G;; is parallel to the vector r; — r ;. Thus each pair of terms of the double sum in
equation (11.11) is zero and we obtain

dLo

=Ko,
dt

which is the angular momentum principle. Since any fixed point can be taken to be the
origin, this proves that:
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Angular momentum principle about fixed points
dL (11.12)
a4

for any fixed point A. This fundamental principle can be stated as follows:

Angular momentum principle about a fixed point

In any motion of a system &, the rate of increase of the angular momentum of S
about any fixed point is equal to the total moment about that point of the external
forces acting on S.

It should be noted that only the external forces appear in the angular momentum prin-
ciple so that the internal forces need not be known. It is this fact which gives the princi-
ple its power.

Question Overusing the angular momentum principle

The angular momentum principle can be applied about any point. Are all the resulting
equations independent of each other?

Answer

The short answer is obviously no. The long answer is as follows: From the definitions
of K and L, we have already shown that

KA:KO—aXF,
and
LAZLo—aXP,

where F is the total force acting on the system S, and P is its linear momentum. It
follows that, for any fixed point A,

KA—LA:(Ko—Lo)—aX(F—P>.

Hence, if the linear momentum principle P = F and the angular momentum principle
Lo = Ko have already been used, then nothing new is obtained by applying the
angular momentum principle about another point A. B

Angular momentum principle about the centre of mass

The angular momentum principle in the form (11.12) does not generally apply if A is
a moving point. However, the standard form does apply when moments and angular
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momenta are taken about the centre of mass G, even though G may be accelerating. This
follows from the theorem below. The corresponding result for kinetic energy appeared in
Chapter 9.

Theorem 11.1 Suppose a general system of particles S has total mass M and that its
centre of mass G has position vector R and velocity V. Then the angular momentum of S
about O can be written in the form

Lo=Rx(MV)+ Lg, (11.13)

where L¢ is the angular momentum of S about G in its motion relative to G.

Proof. By definition,

Lo —Zml (ri = R)x (v; = V)

i=1

N N

Z riXv; — (Zm,r,)xv Rx(Zm v,)—i—(Zmi)RxV
=1 =1

Lo- |

Lo —

(MR)XV — Rx(MV) + M(RxV)
Rx(MV),

as required. W

The two terms on the right of equation (11.13) have a nice physical interpretation.
The term R x (MV) is the translational contribution to Lo while the term Lg is the
contribution from the motion of S relative to G. If S is a rigid body, then the motion of
S relative to G is an angular velocity about some axis through G, and the term L¢ then
represents the rotational contribution to L.

The angular momentum principle for S about O can therefore be written

Ko (MR vy 4 Lo
dt
dL G
=MRxV + —=
dt
Furthermore, since K9 = K + R x F, it follows that
dLg .
Ko =%+ Rx (MV—F)
_dLg
odr

on using the /inear momentum principle. We therefore obtain:

Angular momentum principle about G

dLo (11.14)

_=K
dt G
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Thus the standard form of the angular momentum principle applies to the motion of S
relative to the centre of mass G.

The rigid body equations

The linear and angular momentum principles provide sufficient equations to determine
the motion of a single rigid body moving under known forces. The standard form of the
rigid body equations is

Rigid body equations

av Lo (11.15)
dr dr

in which we have taken both the linear and angular momentum principles in their centre of
mass form. The linear momentum principle thus determines the translational motion of
G (as if it were a particle), and the angular momentum principle determines the rotational
motion of the body about G.

We will use a subset of these equations later in this chapter to solve problems of
planar rigid body motion. The delights of general three-dimensional rigid body motion*
are revealed in Chapter 19.

Example 11.6 Rigid body moving under uniform gravity

A rigid body is moving in any manner under uniform gravity. Show that its motion
relative to its centre of mass is the same as if gravity were absent.

Solution

Under uniform gravity, the total moment of the gravity forces about any point is the
same as if they all acted at G, the centre of mass of the body (see Example 11.2). It
follows that K = 0.

The rigid body equations (11.15) therefore take the form

dv dLg
M— = —Mgk, — =0
dt § dt
Hence, when a rigid body moves under uniform gravity, G undergoes projectile
motion (which we already knew), and the equation for the motion of the body rel-
ative to G is the same as if the body were moving in free space. B

* The difficulty in the three-dimensional case is the calulation of L.
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11.5 CONSERVATION OF ANGULAR MOMENTUM

Isolated systems

Suppose that S is an isolated system, and let A be any fixed point. Then L4, the
total moment about A of the external forces acting on S, is obviously zero. The angu-
lar momentum principle (11.12) then implies that dL 4/dt = 0, which implies that L 4
remains constant. The same argument holds for L. This simple but important result can
be stated as follows:

Conservation of angular momentum about a point

In any motion of an isolated system, the angular momentum of the system about any
fixed point is conserved. The angular momentum of the system about its centre of
mass is also conserved.

For example, the angular momentum of the solar system about any fixed point (or
about its centre of mass) is conserved. The same is true for an astronaut floating freely
in space (irrespective of how he moves his body). The angular momentum of a system
about its centre of mass may still be conserved even when external forces are present. For
any system moving under uniform gravity (a falling cat trying to land on its feet, say)
K ¢ = 0 which implies that L is conserved.

Angular momentum in central field orbits

In the case of a particle P moving in a central field with centre O,
Ko=rxF =0,

since r and F are parallel. This implies that L o is conserved. (Angular momentum about
other points is not conserved.) By symmetry, each possible motion of P must take place
in a plane through O and we may take polar coordinates r, 6 (centred on O) to specify the
position of P in the plane of motion. In terms of these coordinates,

Lo =rx(mv) =m@Tr)x (i'*?+ (ré)@) = mr?0n,
where the constant unit vector n (= ?x/ﬂ\) is perpendicular to the plane of motion. Hence,
in this case, conservation of Lo is equivalent to conservation of Lo + n, the angular
momentum of P about the axis {O, n}. The conclusion is then that the quantity

Lo n=mr’6 =1L,

where L is a constant. This important result was obtained in Chapter 7 by integrating
the azimuthal equation of motion for P. We now see that it is a consequence of angular
momentum conservation and that the constant L is the angular momentum™* of P about
the axis {O, n}.

* The constant L used in Chapter 7 was actually the angular momentum per unit mass.
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FIGURE 11.5 The particle slides on the table while the string is pulled
down through the hole.

Conservation of angular momentum about an axis

Even when K 4 # 0 it is still possible for angular momentum to be conserved about a
particular axis through A. Let n be a fixed unit vector and A a fixed point so that {A, n}
is a fixed axis through the point A. Then

d dL 4 dn dL4
E(LA'n): en+ Ly en=K4s-n

dr Ydr T di

Hence, if K 4 - n = 0 at all times, it follows that L 4 - n is conserved. This result can be
stated as follows:

Conservation of angular momentum about an axis

If the external forces acting on a system have no total moment about a fixed axis,
then the angular momentum of the system about that axis is conserved. The same
applies for a moving axis which passes through G and maintains a constant direc-
tion.

In our first example, angular momentum conservation is sufficient to determine the
entire motion.

Example 11.7 Pulling a particle through a hole

A particle P of mass m can slide on a smooth horizontal table. P is connected to a
light inextensible string which passes through a small smooth hole O in the table, so
that the lower end of the string hangs vertically below the table while P moves on top
with the string taut (see figure 11.5). Initially the lower end of the string is held fixed
with P moving with speed u on a circle of radius a. The string is now pulled down
from below in such a way that the string above the table has the length r (¢) at time ¢.
Find the velocity of P and the tension in the string at time ¢.

Solution

We must first establish that some component of angular momentum is conserved in
this motion. The forces acting on P are gravity, the normal reaction of the smooth
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table, and the tension in the string. Since the first two are equal and opposite and the
tension force points towards O, it follows that K 9o = 0. Thus, however the string is
pulled, Lo is conserved in the motion of P.

Now we must calculate L. As in the case of central field orbits, L is perpen-
dicular to the plane of motion and conservation of L is equivalent to conservation
of the axial angular momentum L - k. Hence, as in orbital motion,

Lo-k=mr’0 =1L,

where the constant L is given by the initial conditions to be L = mau. Hence, in the
motion of P, the conservation equation

mi‘zé = mau

is satisfied. Since r(¢) is given, this equation is sufficient to determine the motion of
P. In particular, the velocity of P at time ¢ is given by

.o~ L .~ au\ ~
V=rr+@00)0 =rr—+ (—)0,
r
from which we see that the transverse velocity of P tends to infinity as r tends to zero.

The string tension 7' can be found from the radial equation of motion for P,
namely,

m (i" — r92> =-T,

which gives

A S £
T =m(ro F)=m 3 .
r

For example, in order to pull the string down with constant speed, the applied tension
must be

ma2u2

T =

73

This tends rapidly to infinity as r tends to zero, making it impossible to pull the
particle through the hole! m

Our second example belongs to a class of problems that could be called ‘before and

after problems’. We have encountered the same notion before. In elastic collision prob-

lems, the linear momentum and energy of the system are conserved and these conservation
laws are used to relate the initial state of the system (before) to the final state (after). This
provides information about the final state that is independent of the nature of the parti-
cle interaction. Conservation of angular momentum can be exploited in the same way.
In the following example, angular momentum conservation is sufficient to determine the
final state uniquely.



11.5 Conservation of angular momentum 301

Final state

Initiallstate

FIGURE 11.6 The beetle and the ball: the ball is smoothly pivoted about a vertical diameter and the
beetle crawls on the surface of the ball.

Example 11.8 The beetle and the ball

A uniform ball of mass M and radius a is pivoted so that it can turn freely about one

of its diameters which is fixed in a vertical position. A beetle of mass m can crawl
on the surface of the ball. Initially the ball is rotating with angular speed 2 with
the beetle at the ‘North pole’ (see Figure 11.6 (left)). The beetle then walks (in any
manner) to the ‘equator’ of the ball and sits down. What is the angular speed of the
ball now?

Solution

We must first establish that some component of angular momentum is conserved.
The external forces acting on the system of ‘beetle and ball’ are shown in Figure 11.6
(centre). The forces X and Y are the constraint forces exerted by the pivots. The total
moment of the external forces about O is therefore

Ko =0x(—Mgk) + rx(—mgk) + (ak) x X + (—ak)xY.
It follows that
Ko -k=0,

since all the resulting triple scalar products contain two k’s. Hence Lo - k, the angu-
lar mometum of the system about the rotation axis, is conserved, irrespective of the
wanderings of the beetle. It follows that this axial angular momentum is the same
after as it was before.

In the initial state, the angular momentum of the ball about its rotation axis is
given by I ©, where I = 2Ma?/5. Initially the beetle has zero velocity so its angular
momentum is zero. Hence the initial value of the axial angular momentum is

Lo k= (%Ma2) Q.

In the final state the ball has an unknown angular velocity Q' and axial angular
momentum 2Ma*Q’ /5. The velocity of the beetle is entirely azimuthal and is equal
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to 'a. Hence, on using the formula (11.6), the axial angular momentum of the beetle
is given by mp (v - ¢) = ma(Qa). The final value of the axial angular momentum is
therefore

Lo-k=(IMa®) @ +ma@a) = LM +5ma*Q.
Since Lo - k is known to be conserved it follows that
LeM +5m)a*Q = iMa*Q,

and hence the final angular velocity of the ball is

Q' = M Q.m
S \2M+5m) 7

Question Change in kinetic energy

Find the change in kinetic energy of the system caused by the beetle’s journey.

Answer

The initial and final kinetic energies of the system are
}(3ma?) @ and §(IMa?) Q%+ m(e)?

respectively. On using the value of €' found above and simplifying, the Kinetic
energy of the system is found to decrease by

mMa*Q?

2M +5m’

Question Red hot beetle

Does this loss of energy mean that the beetle arrives in a red-hot condition?
Answer
Your mechanics lecturer will be pleased to answer this question. B

Our last example, the spherical pendulum, is a system with two degrees of freedom.
By using both angular momentum and energy conservation, a complete solution can be
found.

Example 11.9 The spherical pendulum: an integrable system

A particle P of mass m is suspended from a fixed point O by a light inextensi-
ble string of length @ and moves with the string taut in three-dimensional space (the
spherical pendulum). Show that angular momentum about the vertical axis through
O is conserved and express this conservation law in terms of the generalised coor-
dinates 6, ¢, as shown in Figure 11.7. Obtain also the corresponding equation for
conservation of energy.
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External forces Velocity diagram

FIGURE 11.7 The spherical pendulum with generalised coordinates 6 and ¢. Left: the external
forces. Right: the velocity diagram.

Initially the string makes an acute angle o with the downward vertical and the
particle is projected with speed u in a horizontal direction at right angles to the string.
Determine the constants of the motion, and deduce an equation satisfied by 0(¢) in
the subsequent motion.

Solution

The external forces on the particle are gravity and the tension in the string (see Figure
11.7 (left)). Hence,

Ko =rx(—mgk)+rxT = —mgrxk,
the second term being zero since r and T are parallel. It follows that
Ko -k=—-—mg(rxk)-k=0,

since the triple scalar product has two k’s. Hence Lo - k is conserved.

In order to express this conservation law in terms of coordinates, we draw a veloc-
ity diagram for the system as explained in section 10.10. The velocities corresponding
to the coordinates € and ¢ are ab and ,0([5 (= (asin 9)([)) respectively in the direc-
tions shown in Figure 11.7 (right). These two velocities are perpendicular, with the
(asinf)¢ contribution in the azimuthal direction around the vertical axis {O, k}. It
follows that v - $ = (asin®)¢. The required axial angular momentum is therefore

Lo-k=mp-¢)=m(asind)(asind ) = ma*sin20 ¢
and conservation of L - k is expressed by
ma’sin®6¢ =L,

where the axial angular momentum L is a constant of the motion.
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The diagram also shows that the kinetic energy of P is given by
%m ((aé)2 + (asinf d))z)

and the potential energy by V = —mg(a cos6). Conservation of energy therefore
requires that

%m ((aé)2 + (asin@ q'ﬁ)z) —mg(acosh) = E,

where the total energy E is a constant of the motion.
From the prescribed initial conditions,

L =m(asina)u, E = %mu2 — mgacosa,

so that the subsequent motion of P satisfies the conservation equations

mazsinzeq'ﬁzmasinau, (11.16)

%m <a292 + a®sin® 6 ¢>2> —mgacosf = %mu2 — mga cos o. (11.17)

Since the spherical pendulum has two degrees of freedom, these two conservation
equations are sufficient to determine the motion. Moreover, the system is inte-
grable (see section (10.10) so that it must be possible to reduce the solution of the
problem to integrations.

The equations (11.16), (11.17) are a pair of coupled first order ODEs for the
unknown functions 6(¢), ¢ (t). However, because the coordinate ¢ only appears as gb
in both equations, ¢ can be eliminated (6 can not!). From equation (11.16) we have

. u sin o
= (11.18)
¢ asin®6

and this can now be substituted into equation (11.17) to obtain an equation for 6 (¢)
alone. After some algebra we find that

u? (cosa—i—cos@ B 2ag)’ (11.19)

6% = —(cosa — cos ) —
a? sin® 0 u?

which is the required equation satisfied by 6(¢). On taking square roots, this equa-
tion becomes a first order separable ODE whose solution can be written as an inte-
gral. Now that 6(¢) is ‘known’, ¢ (¢) can be found (as another integral) from equation
(11.18). Thus, as predicted, the solution has thus been reduced to integrations. B

Question Form of the motion

This is all very well, but what does the motion actually look like?
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/

FIGURE 11.8 The calculated path of the spherical pendulum for the case & = 7/6 and u?/ag = 1.9.
Left: After four oscillations of 6. Right: After ten oscillations of 6. The surrounding boxes show the
perspective.

Answer

Despite the problem being called integrable, the integrals arising from the separation
procedure cannot be evaluated and no explicit solution is possible. However, equation
(11.19) has the form of an energy equation for a system with one degree of freedom.
We have met this situation before with the radial motion equation in orbit theory and
the deductions we can make are the same. Because the left side of (11.19) is positive,
it follows that the motion is restricted to those values of 6 that make the function

2

0 2
F — (cosar — cos6) (M _ ﬁ)

sin? 6 u
positive. Moreover, maximium and minimum values of 6 can only occur when
F@©)=0.

Since F(a) = 0, & = « is one extremum™® and any other extremum must be a
root of the equation G () = 0, where

G- cosa +cos6  2ag
~ sin®6 u?’

Whether « is a maximum or minimum point of 6 depends on the value of the initial
projection speed u. On differentiating equation (11.19) w