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Computational Complexity of Simplex Algorithm

Example1

min −2n−1x1 − 2n−2x2 − . . .− 2xn−1 − xn

s.t. x1 ≤ 5
4x1 + x2 ≤ 25

8x1 + 4x2 + x3 ≤ 125
...

2nx1 + 2n−1x2 + . . . + 4xn−1 + xn ≤ 5n

xj ≥ 0 ∀ j = 1, . . . , n

Simplex method, starting at x = 0, would visit all 2n extreme
points before reaching the optimal solution.

1V. Klee and G.J. Minty, How good is the simplex algorithm?. In O.
Shisha, editor, Inequalities, II, pp. 159-175, Academic Press, 1971
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min −4x1 − 2x2 − x3

s.t. x1 ≤ 5
4x1 + x2 ≤ 25

8x1 + 4x2 + x3 ≤ 125
x1, x2, x3 ≥ 0

Iteration Basic Vectors Objective function
1 x4, x5, x6 0
2 x1, x5, x6 -20
3 x1, x2, x6 -30
4 x4, x2, x6 -50
5 x4, x2, x3 -75
6 x1, x2, x3 -95
7 x1, x5, x3 -105
8 x4, x5, x3 -125

Simplex Algorithm is not a polynomial time algorithm (number of
computational steps grows as an exponential function of the number

of variables, rather than as a polynomial function)
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Interior Point Methods for Linear Programming

Points generated are in the “interior" of the feasible region
Based on nonlinear programming techniques
Some interior points methods:

Affine Scaling
Karmarkar’s Method

We consider the linear program,

min cTx
s.t. Ax = b

x ≥ 0

where A ∈ Rm×n and rank(A) = m.

Shirish Shevade Numerical Optimization



Affine Scaling

Idea:

(1) Use projected steepest descent direction at every iteration

Given a feasible interior point xk at current iteration k.

Axk = b, xk ≥ 0

Let d denote a direction such that xk+1 = xk + αkd, αk > 0.
Therefore,

Axk+1 = b ⇒ Ad = 0

Projected Steepest Descent Direction
Project the steepest descent direction, −c, on the null space of A
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Let ĉ = −c = pc + q where
pc ∈ Null Space(A). ∴ Apc = 0.
q ∈ Row Space(A). ∴ q = ATλ.

Aĉ = AATλ ⇒ λ = (AAT)
−1Aĉ

pc = ĉ− q
= ĉ− AT(AAT)

−1Aĉ

= (I − AT(AAT)
−1A)ĉ

= −(I − AT(AAT)
−1A)c

= −Pc

where P denotes the projection matrix.
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Idea:
(2) Position the current point close to the centre of the feasible

region
For example, one possible choice is the point:
1 = (1, 1, . . . , 1)T

Given a point xk in the interior of the feasible region, define
Xk = diag(xk).
Define the transformation, y = T(x) = Xk−1x.

∴ yk = Xk−1xk = 1 or Xkyk = xk
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Affine Scaling Algorithm:
Start with any interior point x0

while (stopping condition is not satisfied at the current
point)

Transform the current problem into an equivalent problem
in y−space so that the current point is close to the centre
of the feasible region
Use projected steepest descent direction to take a step in
the y−space without crossing the feasible set boundary
Map the new point back to the corresponding point in the
x−space

endwhile
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Stopping Condition for an Affine Scaling Algorithm

Consider the following primal and dual problems:

Primal Problem (P)

min cTx
s.t. Ax = b

x ≥ 0

Dual Problem (D)

max bTµ

s.t. ATµ ≤ c

For any primal and dual feasible x and µ,

cTx ≥ bTµ (Weak Duality)

At optimality,

cTx− bTµ = 0 (Strong Duality)

Idea: Use the duality gap, cTx− bTµ, to check optimality
Q. How to get µ?
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Consider the primal problem:

min cTx
s.t. Ax = b

x ≥ 0

Define the Lagrangian function,

L(x, λ, µ) = cTx + µT(b− Ax)− λTx

Assumption: x is primal feasible and λ ≥ 0
KKT conditions at optimality:

∇x L(x, λ, µ) = 0 ⇒ ATµ + λ = c
λixi = 0 ∀ i = 1, . . . , n

Defining X = diag(x), the KKT conditions are

X(c− ATµ) = 0.
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Solve the following problem to get µ:

min
µ

‖Xc− XATµ‖2

∴ µ = (AX2AT)−1AX2c

Thus, at a given point xk,

Duality Gap = cTxk − bTµk

where µk = (AXk2AT)−1AXk2c and Xk = diag(xk).
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Step 1: Equivalent problem formulation to get considerable
improvement in the objective function
Given xk, define Xk = diag(xk).
Define a transformation T as,

y = T(x) = Xk−1x

Therefore,
Xkyk = xk and yk = 1.

Using this transformation,

min
s.t.

cTx
Ax = b, x ≥ 0

}
≡ min

s.t.
cTXky

AXky = b, y ≥ 0

which can written in standard form as

min
s.t.

c̄Ty
Āy = b, y ≥ 0

where c̄ = Xkc and Ā = AXk.
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Step 2: Find the projected steepest direction and step length at
yk for the problem,

min
s.t.

c̄Ty
Āy = b, y ≥ 0

Given xk, yk = Xk−1xk = 1.
The projected direction of −c̄ on the null space of Ā is,

∴ dk = −(I − XkAT(AXk2AT)
−1

AXk)Xkc.

Let αk(> 0) denotes the step length.

yk+1 = yk + αkdk

= 1 + αkdk ≥ 0

Let αmax = min
j:dk

j <0
− 1

dk
j

and set αk = .9 ∗ αmax.

Step 3: xk+1 = Xkyk+1
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Affine Scaling Algorithm (to solve an LP in Standard Form)

(1) Input: A, b, c, x0, ε

(2) Set k := 0.

(3) Xk = diag(xk)

(4) µk = (AXk2AT)−1AXk2c
(5) while (cTxk − bTµk) > ε

(a) dk = −(I − XkAT(AXk2AT)
−1

AXk)Xkc

(b) αk = .9 ∗min
j:dk

j <0
− 1

dk
j

(c) xk+1 = Xk(1 + αkdk)
(d) Xk+1 = diag(xk+1)

(e) µk+1 = (AXk+12AT)−1AXk+12c
(f) k := k + 1

endwhile
Output : x∗ = xk
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Application of Affine Scaling Algorithm to the problem,
min −3x1 − x2

s.t. x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

x∗ = (1, 1)T

Iteration xkT ‖xk − x∗‖
0 (.6, .6) .57
1 (.87, .81) .23
2 (.88, 1.00) .12
3 (.90, .99) .1026
4 (.90, 1.00) .1001
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Karmarkar’s Method

Assumptions:
The problem is in homogeneous form:

min cTx
s.t. Ax = 0

1Tx = 1
x ≥ 0

Optimum objective function value is 0
Idea:
(1) Use projective transformation to move an interior point to

the centre of the feasible region
(2) Move along projected steepest descent direction
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Projective Transformation:
Consider the transformation, T , defined by,

y = T(x) =
Xk−1x

1TXk−1x
, x 6= 0

Remarks:
x 7→ y (y = ( 1

n , . . . ,
1
n)

T , 1Ty = 1)

Inverse transformation:
x = (1TXk−1x)(Xky) ⇒ 1Tx = (1TXk−1x)1T(Xky).

For every feasible x, 1Tx = 1 ⇒ 1TXk−1x =
1

1TXky

∴ T−1(y) = x =
Xky

1TXky
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Using the transformation,

x =
Xky

1TXky

min cTx
s.t. Ax = 0

1Tx = 1
x ≥ 0

≡

min
cTXky
1TXky

s.t. AXky = 0
1Ty = 1
y ≥ 0

≡

min cTXky
s.t. AXky = 0

1Ty = 1
y ≥ 0

Equivalence based on the assumption: Optimal objective
function value is 0 and 1TXky > 0
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Consider the problem,

min cTXky
s.t. AXky = 0

1Ty = 1
y ≥ 0

Step 1: Find a projected steepest descent direction in the
y− space ( Projection of −Xkc onto the subspace of
{d : AXkd = 0, 1Td = 0, d ≥ 0})
Find d by solving

min 1
2‖Xkc− d‖2

s.t. AXkd = 0,

projecting it onto the null space of 1T and ensure d ≥ 0.
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Consider the problem,

min 1
2‖Xkc− d‖2

s.t. AXkd = 0

L(d, µ) =
1
2
‖Xkc− d‖2 + µTAxkd

∇d L(d, µ) = 0 ⇒ −(Xkc− d) + XkATµ = 0
⇒ d = Xkc− XkATµ

0 = AXkd = AXk2c− AXk2
ATµ ⇒ AXk2c = AXk2

ATµ

Projection of −d on the null space of 1T :

dk = −(I − 1
n

11T)(Xkc− XkATµ)
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Karmarkar’s Projective Scaling Algorithm (for
homogeneous Linear Program)

(1) Input: Homogeneous LP, A, c, ε
(2) Set k := 0, xk = 1

n1
(3) Xk = diag(xk)

(4) while cTxk > ε

(a) Find the projected steepest descent direction dk

(b) yk+1 = 1
n 1 + δ√

n(n−1)
dk

‖dk‖
(δ = 1

3)

(c) xk+1 = T−1(yk+1)
(d) Xk+1 = diag(xk+1)
(e) k := k + 1

endwhile
Output : x∗ = xk
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