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2.1 Introduction to Linear Programming 

A linear form is meant a mathematical expression of the type a1x1 + a2x2 + …. + anxn, 

where a1, a2, …, an are constants and x1, x2 … xn are variables. The term Programming 

refers to the process of determining a particular program or plan of action. So Linear 

Programming (LP) is one of the most important optimization (maximization / 

minimization) techniques developed in the field of Operations Research (OR). 

 

The methods applied for solving a linear programming problem are basically simple 

problems; a solution can be obtained by a set of simultaneous equations. However a 

unique solution for a set of simultaneous equations in n-variables (x1, x2 … xn), at least 

one of them is non-zero, can be obtained if there are exactly n relations. When the 

number of relations is greater than or less than n, a unique solution does not exist but a 

number of trial solutions can be found. 

 

In various practical situations, the problems are seen in which the number of relations is 

not equal to the number of the number of variables and many of the relations are in the 

form of inequalities (≤ or ≥) to maximize or minimize a linear function of the variables 

subject to such conditions. Such problems are known as Linear Programming Problem 

(LPP). 

 

Definition – The general LPP calls for optimizing (maximizing / minimizing) a linear 

function of variables called the ‘Objective function’ subject to a set of linear equations 

and / or inequalities called the ‘Constraints’ or ‘Restrictions’.  

 

2.2 General form of LPP 

We formulate a mathematical model for general problem of allocating resources to 

activities. In particular, this model is to select the values for x1, x2 … xn so as to maximize 

or minimize  

Z = c1x1 + c2x2 +………….+cnxn   
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subject to restrictions 

a11x1 + a12x2 + …..........+a1nxn (≤ or ≥) b1 

a21x1 + a22x2 + ………..+a2nxn (≤ or ≥) b2 

. 

. 

. 

am1x1 + am2x2 + ……….+amnxn (≤ or ≥) bm 

and 

x1 ≥ 0, x2 ≥ 0,…, xn ≥ 0 

 

Where  

Z = value of overall measure of performance 

xj = level of activity (for j = 1, 2, ..., n) 

cj = increase in Z that would result from each unit increase in level of activity j 

bi = amount of resource i that is available for allocation to activities (for i = 1,2, 

…, m) 

aij = amount of resource i consumed by each unit of activity j 

Resource 

 

Resource usage per unit of activity 
Amount of resource 

available 
Activity       

1     2 ……………………..  n 

1 

2 

. 

. 

. 

m 

a11 a12 …………………….a1n 

a21 a22 …………………….a2n 

. 

. 

. 

am1 am2 …………………….amn 

b1 

b2 

. 

. 

. 

bm 

Contribution to 

Z per unit of 

activity 

c1  c2 ………………………..cn  

              Data needed for LP model 

 The level of activities x1, x2………xn are called decision variables. 
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 The values of the cj, bi, aij (for i=1, 2 … m and j=1, 2 … n) are the input 

constants for the model. They are called as parameters of the model. 

 The function being maximized or minimized Z = c1x1 + c2x2 +…. +cnxn is called 

objective function. 

 The restrictions are normally called as constraints. The constraint ai1x1 + ai2x2 … 

ainxn are sometimes called as functional constraint (L.H.S constraint). xj ≥ 0 

restrictions are called non-negativity constraint. 

 

2.3 Assumptions in LPP 

1. Proportionality 

The contribution of each variable in the objective function or its usage of the 

resources is directly proportional to the value of the variable i.e. if resource 

availability increases by some percentage, then the output shall also increase by 

same percentage. 

 

2. Additivity 

Sum of the resources used by different activities must be equal to the total 

quantity of resources used by each activity for all resources individually or 

collectively. 

 

3. Divisibility  

The variables are not restricted to integer values 

 

4. Deterministic 

Coefficients in the objective function and constraints are completely known and 

do not change during the period under study in all the problems considered. 

 

5. Finiteness 

Variables and constraints are finite in number. 
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6. Optimality 

In LPP, we determine the decision variables so as to optimize the objective 

function of the LPP. 

 

7. The problem involves only one objective, profit maximization or cost 

minimization. 

 

2.4 Applications of Linear Programming 

Personnel Assignment Problem 

Suppose we are given ‘m’ persons, ‘n’ jobs and the expected productivity cij of ith person 

on the jth job. We want to find an assignment of person’s xij ≥ 0 for all i and j, to ‘n’ jobs 

so that the average productivity of person assigned is maximum, subject to the conditions 

 

Where ai is the number of persons in personnel category i 

 bj is the number of jobs in personnel category j 

 

Transportation Problem 

Suppose that ‘m’ factories (sources) supply ‘n’ warehouses (destinations) with certain 

product. Factory Fi (i=1, 2 … m) produces ai units and warehouse Wj (j=1, 2, 3 … n) 

requires bj units. Suppose that the cost of shipping from factory Fi to warehouse Wj is 

directly proportional to the amount shipped and that the unit cost is cij. Let the decision 

variables xij be the amount shipped from factory Fi to warehouse Wj. The objective is to 

determine the number of units transported from factory Fi to warehouse Wj so that the 

total transportation cost 

 

The supply and demand must be satisfied exactly. 
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Mathematically, this problem is to find xij (i=1, 2 … m; j=1, 2 … n) in order to minimize 

the total transportation cost 

 

 

Subject to constraints 

 

 

 

 

Efficiency on Operation of system of Dams 

In this problem, we determine variations in water storage of dams which generate power 

so as to maximize the energy obtained from the entire system. The physical limitations of 

storage appear as inequalities. 

 

Optimum Estimation of Executive Compensation 

The objective here is to determine a consistent plan of executive compensation in an 

industrial concern. Salary, job ranking and the amounts of each factor required on the 

ranked job level are taken into consideration by the constraints of linear programming. 

 

Agriculture Applications 

Linear programming can be applied in agricultural planning for allocating the limited 

resources such as labour, water supply and working capital etc, so as to maximize the net 

revenue. 

 

Military Applications 
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These applications involve the problem of selecting an air weapon system against gurillas 

so as to keep them pinned down and simultaneously minimize the amount of aviation 

gasoline used, a variation of transportation problem that maximizes the total tonnage of 

bomb dropped on a set of targets and the problem of community defense against disaster 

to find the number of defense units that should be used in the attack in order to provide 

the required level of protection at the lowest possible cost. 

 

 

Production Management  

Linear programming can be applied in production management for determining product 

mix, product smoothing and assembly time-balancing. 

 

Marketing Management  

Linear programming helps in analyzing the effectiveness of advertising campaign and 

time based on the available advertising media. It also helps in travelling salesman in 

finding the shortest route for his tour. 

 

Manpower Management 

Linear programming allows the personnel manager to analyze personnel policy 

combinations in terms of their appropriateness for maintaining a steady-state flow of 

people into through and out of the firm. 

 

Physical distribution 

Linear programming determines the most economic and efficient manner of locating 

manufacturing plants and distribution centers for physical distribution. 

 

2.5 Advantages of Linear Programming Techniques 

1. It helps us in making the optimum utilization of productive resources. 

2. The quality of decisions may also be improved by linear programming techniques. 

3. Provides practically solutions. 
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4. In production processes, high lighting of bottlenecks is the most significant 

advantage of this technique. 

 

2.6 Limitations of Linear Programming 

Some limitations are associated with linear programming techniques 

1. In some problems, objective functions and constraints are not linear. Generally, in 

real life situations concerning business and industrial problems constraints are not 

linearly treated to variables. 

2. There is no guarantee of getting integer valued solutions. For example, in finding 

out how many men and machines would be required to perform a particular job, 

rounding off the solution to the nearest integer will not give an optimal solution. 

Integer programming deals with such problems. 

3. Linear programming model does not take into consideration the effect of time and 

uncertainty. Thus the model should be defined in such a way that any change due 

to internal as well as external factors can be incorporated. 

4. Sometimes large scale problems cannot be solved with linear programming 

techniques even when the computer facility is available. Such difficulty may be 

removed by decomposing the main problem into several small problems and then 

solving them separately. 

5. Parameters appearing in the model are assumed to be constant. But, in real life 

situations they are neither constant nor deterministic. 

6. Linear programming deals with only single objective, whereas in real life 

situation problems come across with multi objectives. Goal programming and 

multi-objective programming deals with such problems. 

 

2.7 Formulation of LP Problems 

Example 1 

A firm manufactures two types of products A and B and sells them at a profit of Rs. 2 on 

type A and Rs. 3 on type B. Each product is processed on two machines G and H. Type A 

requires 1 minute of processing time on G and 2 minutes on H; type B requires 1 minute 
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on G and 1 minute on H. The machine G is available for not more than 6 hours 40 

minutes while machine H is available for 10 hours during any working day. Formulate 

the problem as a linear programming problem. 

 

Solution 

Let  

x1 be the number of products of type A 

  x2 be the number of products of type B 

 

After understanding the problem, the given information can be systematically arranged in 

the form of the following table. 

 

 Type of products (minutes)  

Machine Type A (x1 units) Type B (x2 units) 
Available 

time (mins) 

G 1 1 400 

H 2 1 600 

Profit per unit Rs. 2 Rs. 3  

 

Since the profit on type A is Rs. 2 per product, 2 x1 will be the profit on selling x1 units of 

type A. similarly, 3x2 will be the profit on selling x2 units of type B. Therefore, total 

profit on selling x1 units of A and x2 units of type B is given by  

    Maximize Z = 2 x1+3 x2   (objective function) 

 

Since machine G takes 1 minute time on type A and 1 minute time on type B, the total 

number of minutes required on machine G is given by   x1+ x2. 

 

Similarly, the total number of minutes required on machine H is given by 2x1 + 3x2. 
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But, machine G is not available for more than 6 hours 40 minutes (400 minutes). 

Therefore,  

    x1+ x2 ≤ 400 (first constraint)   

 

Also, the machine H is available for 10 hours (600 minutes) only, therefore, 

    2 x1 + 3x2 ≤ 600 (second constraint) 

 

Since it is not possible to produce negative quantities 

    x1 ≥ 0 and x2 ≥ 0 (non-negative restrictions) 

 

 

 

Hence  

Maximize Z = 2 x1 + 3 x2 

Subject to restrictions 

   x1 + x2  ≤ 400 

   2x1 + 3x2 ≤ 600 

and non-negativity constraints    

x1 ≥ 0 , x2 ≥ 0 

 

Example 2 

A company produces two products A and B which possess raw materials 400 quintals and 

450 labour hours. It is known that 1 unit of product A requires 5 quintals of raw materials 

and 10 man hours and yields a profit of Rs 45. Product B requires 20 quintals of raw 

materials, 15 man hours and yields a profit of Rs 80. Formulate the LPP. 

 

Solution  

Let 

 x1 be the number of units of product A 

  x2 be the number of units of product B 
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 Product A Product B Availability 

Raw materials 5 20 400 

Man hours 10 15 450 

Profit Rs 45 Rs 80  

       

Hence 

Maximize Z = 45x1 + 80x2 

Subject to 

5x1+ 20 x2 ≤ 400 

  10x1 + 15x2 ≤ 450 

 x1 ≥ 0 , x2 ≥ 0 

 

Example 3 

A firm manufactures 3 products A, B and C. The profits are Rs. 3, Rs. 2 and Rs. 4 

respectively. The firm has 2 machines and below is given the required processing time in 

minutes for each machine on each product.  

 

 Products 

Machine A B C 

X 4 3 5 

Y 2 2 4 

Machine X and Y have 2000 and 2500 machine minutes. The firm must manufacture 100 

A’s, 200 B’s and 50 C’s type, but not more than 150 A’s. 

 

Solution 

Let 

 x1 be the number of units of product A 

  x2 be the number of units of product B 

  x3 be the number of units of product C 
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 Products  

Machine A B C Availability 

X 4 3 5 2000 

Y 2 2 4 2500 

Profit 3 2 4  

 

Max Z = 3x1 + 2x2 + 4x3 

Subject to  

4x1 + 3x2 + 5x3 ≤ 2000 

        2x1 + 2x2 + 4x3 ≤ 2500 

                    100 ≤ x1 ≤ 150     

         x2 ≥ 200 

         x3 ≥ 50  

Example 4 

A company owns 2 oil mills A and B which have different production capacities for low, 

high and medium grade oil. The company enters into a contract to supply oil to a firm 

every week with 12, 8, 24 barrels of each grade respectively. It costs the company Rs 

1000 and Rs 800 per day to run the mills A and B. On a day A produces 6, 2, 4 barrels of 

each grade and B produces 2, 2, 12 barrels of each grade. Formulate an LPP to determine 

number of days per week each mill will be operated in order to meet the contract 

economically. 

 

Solution  

Let  

x1 be the no. of days a week the mill A has to work  

x2 be the no. of  days per week the mill B has to work 

 

Grade A B Minimum requirement 

Low 6 2 12 
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High 2 2 8 

Medium 4 12 24 

Cost per day Rs 1000 Rs 800  

 

Minimize Z = 1000x1 + 800 x2  

Subject to 

 6x1 + 2x2 ≥ 12 

                   2x1 + 2x2 ≥ 8 

                   4x1 +12x2 ≥ 24 

x1 ≥ 0 , x2 ≥ 0 

 

Example 5 

A company has 3 operational departments weaving, processing and packing with the 

capacity to produce 3 different types of clothes that are suiting, shirting and woolen 

yielding with the profit of Rs. 2, Rs. 4 and Rs. 3 per meters respectively. 1m suiting 

requires 3mins in weaving 2 mins in processing and 1 min in packing. Similarly 1m of 

shirting requires 4 mins in weaving 1 min in processing and 3 mins in packing while 1m 

of woolen requires 3 mins in each department. In a week total run time of each 

department is 60, 40 and 80 hours for weaving, processing and packing department 

respectively. Formulate a LPP to find the product to maximize the profit. 

 

Solution 

Let 

 x1 be the number of units of suiting  

 x2 be the number of units of shirting 

 x3 be the number of units of woolen  

 

 Suiting Shirting Woolen Available time 

Weaving 3 4 3 60 

Processing 2 1 3 40 
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Packing 1 3 3 80 

Profit 2 4 3  

 

Maximize Z = 2x1 + 4x2 + 3x3 

Subject to  

3x1 + 4x2 + 3x3 ≤ 60 

       2x1 + 1x2 + 3x3 ≤ 40 

       x1 + 3x2 + 3x3 ≤ 80 

       x1≥0, x2 ≥0, x3≥0 

 

Example 6  

ABC Company produces both interior and exterior paints from 2 raw materials m1 and 

m2. The following table produces basic data of problem. 

 

 Exterior paint Interior paint Availability 

M1 6 4 24 

M2 1 2 6 

Profit per ton 5 4  

A market survey indicates that daily demand for interior paint cannot exceed that for 

exterior paint by more than 1 ton. Also maximum daily demand for interior paint is 2 

tons. Formulate LPP to determine the best product mix of interior and exterior paints that 

maximizes the daily total profit. 

 

Solution 

Let 

 x1 be the number of units of exterior paint  

  x2 be the number of units of interior paint 

 

Maximize Z = 5x1 + 4x2  

Subject to  
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6x1 + 4x2 ≤ 24 

x1 + 2x2 ≤ 6 

x2 – x1≤ 1 

x2≤ 2 

      x1≥0, x2 ≥0 

 

b) The maximum daily demand for exterior paint is atmost 2.5 tons 

  x1≤ 2.5 

c) Daily demand for interior paint is atleast 2 tons 

  x2 ≥ 2 

d) Daily demand for interior paint is exactly 1 ton higher than that for exterior paint. 

  x2 > x1 + 1 

 

Example 7 

A company produces 2 types of hats. Each hat of the I type requires twice as much as 

labour time as the II type. The company can produce a total of 500 hats a day. The market 

limits daily sales of I and II types to 150 and 250 hats. Assuming that the profit per hat 

are Rs.8 for type A and Rs. 5 for type B. Formulate a LPP models in order to determine 

the number of hats to be produced of each type so as to maximize the profit. 

Solution 

Let x1 be the number of hats produced by type A 

Let x2 be the number of hats produced by type B 

 

Maximize Z = 8x1 + 5x2 

Subject to  

2x1 + x2 ≤ 500 (labour time) 

       x1 ≤ 150 

       x2 ≤ 250 

      x1≥0, x2 ≥0 
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Example 8 

A manufacturer produces 3 models (I, II and III) of a certain product. He uses 2 raw 

materials A and B of which 4000 and 6000 units respectively are available. The raw 

materials per unit of 3 models are given below. 

Raw materials I II III 

A 2 3 5 

B 4 2 7 

The labour time for each unit of model I is twice that of model II and thrice that of model 

III. The entire labour force of factory can produce an equivalent of 2500 units of model I. 

A model survey indicates that the minimum demand of 3 models is 500, 500 and 375 

units respectively. However the ratio of number of units produced must be equal to 3:2:5. 

Assume that profits per unit of model are 60, 40 and 100 respectively. Formulate a LPP. 

 

Solution  

Let  

x1 be the number of units of model I  

 x2 be the number of units of model II 

 x3 be the number of units of model III 

 

 

 Raw materials I II III Availability 

A 2 3 5 4000 

B 4 2 7 6000 

Profit 60 40 100  

  

x1 + 1/2x2 + 1/3x3 ≤ 2500 [ Labour time ] 

  

x1 ≥ 500, x2 ≥ 500, x3 ≥ 375 [ Minimum demand ] 

 

The given ratio is x1: x2: x3 = 3: 2: 5 
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x1 / 3 = x2 / 2 = x3 / 5 = k 

x1 = 3k; x2 = 2k; x3 = 5k 

x2 = 2k → k = x2 / 2 

Therefore x1 = 3 x2 / 2 → 2x1 = 3x2 

Similarly 2x3 = 5x2 

 

Maximize Z= 60x1 + 40x2 + 100x3 

Subject to 2x1 + 3x2 + 5x3 ≤ 4000 

                  4x1 + 2x2 + 7x3 ≤ 6000 

x1 + 1/2x2 + 1/3x3 ≤ 2500 

2 x1 = 3x2 

2 x3 = 5x2 

and x1 ≥ 500, x2 ≥ 500, x3 ≥ 375 

 

Example 9 

A person wants to decide the constituents of a diet which will fulfill his daily 

requirements of proteins, fats and carbohydrates at the minimum cost. The choice is to be 

made from four different types of foods. The yields per unit of these foods are given in 

the table. 

 

 

 

Food Type 
Yield/unit Cost/Unit 

Rs Proteins Fats Carbohydrates 

1 3 2 6 45 

2 4 2 4 40 

3 8 7 7 85 

4 6 5 4 65 

Minimum 

Requirement 
800 200 700  
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Formulate the LP for the problem. 

 

Solution  

Let  

x1 be the number of units of food type l  

 x2 be the number of units of food type 2 

 x3 be the number of units of food type 3 

 x4 be the number of units of food type 4 

 

Minimize Z = 45x1 + 40x2 + 85x3 + 65x4 

Subject to  

3x1 + 4x2 + 8x3 + 6x4 ≥ 800 

2x1 + 2x2 + 7x3 + 5x4 ≥ 200 

6x1 + 4x2 + 7x3 + 4x4 ≥ 700 

       x1≥0, x2 ≥0, x3≥0, x4≥0 

 

Exercise 

1. Define the terms used in LPP. 

2. Mention the advantages of LPP. 

3. What are the assumptions and limitations of LPP? 

4. A firm produces three products. These products are processed on three different 

machines. The time required manufacturing one unit of each of the three products 

and the daily capacity of the three machines are given in the table. 

Machine 

Time per unit (mins) Machine 

capacity 

Min /day 
Product 1 Product 2 Product 3 

M1 2 3 2 440 

M2 4 - 3 470 

M3 2 5 - 430 
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It is required to determine the daily number of units to be manufactured for each 

product. The profit per unit for product 1, 2 and 3 is Rs. 4, Rs. 3 and Rs. 6 

respectively. It is assumed that all the amounts produced are consumed in the 

market. Formulate the mathematical model for the model. 

 

5. A chemical firm produces automobiles cleaner X and polisher Y and realizes Rs. 

10 profit on each batch of X and Rs. 30 on Y. Both products require processing 

through the same machines, A and B but X requires 4 hours in A and 8 hours in 

B, whereas Y requires 6 hours in A and 4 hours in B. during the fourth coming 

week machines A and B have 12 and 16 hours of available capacity, respectively. 

Assuming that demand exists for both products, how many batches of each should 

be produce to realize the optimal profit Z? 

 

6. A firm manufactures headache pills in two sizes A and B. Size A contains 2 

grains of aspirin, 5 grains of bicarbonate and 1 grain of codeine. Size B contains 1 

grain of aspirin, 8 grains of bicarbonate and 6 grains of codeine. It is formed by 

users that it requires at least 12 grains of aspirin, 74 grains of bicarbonate and 24 

grains of codeine fro providing immediate effect. It is required to determine the 

least number of pills a patient should take to get immediate relief. Formulate the 

problem as a standard LPP. 

 

 

 

Unit 3 

3.1 Graphical solution Procedure 

3.2 Definitions 

3.3 Example Problems 

3.4 Special cases of Graphical method 

3.4.1 Multiple optimal solutions 
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3.4.2 No optimal solution  

3.4.3 Unbounded solution 

  

3.1 Graphical Solution Procedure 

 

The graphical solution procedure   

1. Consider each inequality constraint as equation. 

2. Plot each equation on the graph as each one will geometrically represent a straight 

line. 

3. Shade the feasible region. Every point on the line will satisfy the equation of the 

line. If the inequality constraint corresponding to that line is ‘≤’ then the region 

below the line lying in the first quadrant is shaded. Similarly for ‘≥’ the region 

above the line is shaded. The points lying in the common region will satisfy the 

constraints. This common region is called feasible region. 

4. Choose the convenient value of Z and plot the objective function line. 

5. Pull the objective function line until the extreme points of feasible region.  

a. In the maximization case this line will stop far from the origin and passing 

through at least one corner of the feasible region. 

b. In the minimization case, this line will stop near to the origin and passing 

through at least one corner of the feasible region. 

6. Read the co-ordinates of the extreme points selected in step 5 and find the 

maximum or minimum value of Z. 

 

 

 

 

3.2 Definitions 

 

1. Solution – Any specification of the values for decision variable among (x1, x2… 

xn) is called a solution. 



20 

 

2. Feasible solution is a solution for which all constraints are satisfied. 

3. Infeasible solution is a solution for which at least one constraint is not satisfied. 

4. Feasible region is a collection of all feasible solutions. 

5. Optimal solution is a feasible solution that has the most favorable value of the 

objective function. 

6. Most favorable value is the largest value if the objective function is to be 

maximized, whereas it is the smallest value if the objective function is to be 

minimized. 

7. Multiple optimal solution – More than one solution with the same optimal value 

of the objective function. 

8. Unbounded solution – If the value of the objective function can be increased or 

decreased indefinitely such solutions are called unbounded solution. 

9. Feasible region – The region containing all the solutions of an inequality  

10. Corner point feasible solution is a solution that lies at the corner of the feasible 

region. 

 

3.3 Example problems 

 

Example 1 

Solve 3x + 5y < 15 graphically 

 

Solution 

Write the given constraint in the form of equation i.e. 3x + 5y = 15 

Put x=0 then the value y=3 

Put y=0 then the value x=5 

Therefore the coordinates are (0, 3) and (5, 0). Thus these points are joined to form a 

straight line as shown in the graph. 

Put x=0, y=0 in the given constraint then 

0<15, the condition is true. (0, 0) is solution nearer to origin. So shade the region below 

the line, which is the feasible region. 
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Example 2 

Solve 3x + 5y >15 

 

Solution 

Write the given constraint in the form of equation i.e. 3x + 5y = 15 

Put x=0, then y=3  

Put y=0, then x=5  

So the coordinates are (0, 3) and (5, 0) 

Put x =0, y =0 in the given constraint, the condition turns out to be false i.e. 0 > 15 is 

false. 

So the region does not contain (0, 0) as solution. The feasible region lies on the outer part 

of the line as shown in the graph. 
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Example 3 

Max Z = 80x1 + 55x2 

Subject to 

4x1+ 2x2 ≤ 40 

 2x1 + 4x2 ≤ 32 

 x1 ≥ 0 , x2 ≥ 0 

 

Solution 

The first constraint 4x1+ 2 x2 ≤ 40, written in a form of equation 

4x1+ 2 x2 = 40 

Put x1 =0, then x2 = 20 

Put x2 =0, then x1 = 10 

The coordinates are (0, 20) and (10, 0) 

 

The second constraint 2x1 + 4x2 ≤ 32, written in a form of equation 

2x1 + 4x2 =32 

Put x1 =0, then x2 = 8 

Put x2 =0, then x1 = 16 

The coordinates are (0, 8) and (16, 0) 
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The graphical representation is  

 

 

The corner points of feasible region are A, B and C. So the coordinates for the corner 

points are 

A (0, 8) 

B (8, 4) (Solve the two equations 4x1+ 2 x2 = 40 and 2x1 + 4x2 =32 to get the coordinates) 

C (10, 0) 

 

We know that Max Z = 80x1 + 55x2 

At A (0, 8) 

Z = 80(0) + 55(8) = 440 

 

At B (8, 4) 

Z = 80(8) + 55(4) = 860 

 

At C (10, 0) 

Z = 80(10) + 55(0) = 800 

 

The maximum value is obtained at the point B. Therefore Max Z = 860 and x1 = 8, x2 = 4 
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Example 4 

Minimize Z = 10x1 + 4x2  

Subject to 

3x1 + 2x2 ≥ 60 

            7x1 + 2x2 ≥ 84 

            3x1 +6x2 ≥ 72 

x1 ≥ 0 , x2 ≥ 0 

 

Solution 

The first constraint 3x1 + 2x2 ≥ 60, written in a form of equation 

3x1 + 2x2 = 60 

Put x1 =0, then x2 = 30 

Put x2 =0, then x1 = 20 

The coordinates are (0, 30) and (20, 0) 

 

The second constraint 7x1 + 2x2 ≥ 84, written in a form of equation 

7x1 + 2x2 = 84 

Put x1 =0, then x2 = 42 

Put x2 =0, then x1 = 12 

The coordinates are (0, 42) and (12, 0) 

 

The third constraint 3x1 +6x2 ≥ 72, written in a form of equation 

3x1 +6x2 = 72 

Put x1 =0, then x2 = 12 

Put x2 =0, then x1 = 24 

The coordinates are (0, 12) and (24, 0) 

 

The graphical representation is 
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The corner points of feasible region are A, B, C and D. So the coordinates for the corner 

points are 

A (0, 42) 

B (6, 21) (Solve the two equations 7x1 + 2x2 = 84 and 3x1 + 2x2 = 60 to get the 

coordinates) 

C (18, 3) Solve the two equations 3x1 +6x2 = 72 and 3x1 + 2x2 = 60 to get the 

coordinates) 

D (24, 0) 

 

We know that Min Z = 10x1 + 4x2 

At A (0, 42) 

Z = 10(0) + 4(42) = 168 

 

At B (6, 21) 

Z = 10(6) + 4(21) = 144 
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At C (18, 3) 

Z = 10(18) + 4(3) = 192 

 

At D (24, 0) 

Z = 10(24) + 4(0) = 240 

 

The minimum value is obtained at the point B. Therefore Min Z = 144 and x1 = 6, x2 = 21 

 

Example 5 

A manufacturer of furniture makes two products – chairs and tables. Processing of this 

product is done on two machines A and B. A chair requires 2 hours on machine A and 6 

hours on machine B. A table requires 5 hours on machine A and no time on machine B. 

There are 16 hours of time per day available on machine A and 30 hours on machine B. 

Profit gained by the manufacturer from a chair and a table is Rs 2 and Rs 10 respectively. 

What should be the daily production of each of two products? 

 

Solution 

Let x1 denotes the number of chairs 

Let x2 denotes the number of tables 

 

 Chairs Tables Availability 

Machine A 

Machine B 

2 

6 

5 

0 

16 

30 

Profit Rs 2 Rs 10  

 

LPP 

Max Z = 2x1 + 10x2 

Subject to 

2x1+ 5x2 ≤ 16 
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 6x1 + 0x2 ≤ 30 

 x1 ≥ 0 , x2 ≥ 0 

 

 

Solving graphically 

The first constraint 2x1+ 5x2 ≤ 16, written in a form of equation 

2x1+ 5x2 = 16 

Put x1 = 0, then x2 = 16/5 = 3.2 

Put x2 = 0, then x1 = 8 

The coordinates are (0, 3.2) and (8, 0) 

The second constraint 6x1 + 0x2 ≤ 30, written in a form of equation 

6x1 = 30 → x1 =5 

 

The corner points of feasible region are A, B and C. So the coordinates for the corner 

points are 

A (0, 3.2) 

B (5, 1.2) (Solve the two equations 2x1+ 5x2 = 16 and x1 =5 to get the coordinates) 

C (5, 0) 

 

We know that Max Z = 2x1 + 10x2 

At A (0, 3.2) 

Z = 2(0) + 10(3.2) = 32 
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At B (5, 1.2) 

Z = 2(5) + 10(1.2) = 22 

 

At C (5, 0) 

Z = 2(5) + 10(0) = 10 

 

Max Z = 32 and x1 = 0, x2 = 3.2 

The manufacturer should produce approximately 3 tables and no chairs to get the max 

profit. 

 

3.4 Special Cases in Graphical Method 

 

3.4.1 Multiple Optimal Solution 

 

Example 1 

Solve by using graphical method 

Max Z = 4x1 + 3x2 

Subject to 

4x1+ 3x2 ≤ 24 

 x1 ≤ 4.5 

x2 ≤  6 

 x1 ≥ 0 , x2 ≥ 0 

 

Solution 

The first constraint 4x1+ 3x2 ≤ 24, written in a form of equation 

4x1+ 3x2 = 24 

Put x1 =0, then x2 = 8 

Put x2 =0, then x1 = 6 

The coordinates are (0, 8) and (6, 0) 
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The second constraint x1 ≤ 4.5, written in a form of equation 

x1 = 4.5  

 

The third constraint x2 ≤ 6, written in a form of equation 

x2 = 6  

 

The corner points of feasible region are A, B, C and D. So the coordinates for the corner 

points are 

A (0, 6) 

B (1.5, 6) (Solve the two equations 4x1+ 3x2 = 24 and x2 = 6 to get the coordinates) 

C (4.5, 2) (Solve the two equations 4x1+ 3x2 = 24 and x1 = 4.5 to get the coordinates) 

D (4.5, 0) 

 

We know that Max Z = 4x1 + 3x2 

At A (0, 6) 

Z = 4(0) + 3(6) = 18 

 

At B (1.5, 6)  

Z = 4(1.5) + 3(6) = 24 
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At C (4.5, 2)  

Z = 4(4.5) + 3(2) = 24 

 

At D (4.5, 0)  

Z = 4(4.5) + 3(0) = 18 

Max Z = 24, which is achieved at both B and C corner points. It can be achieved not only 

at B and C but every point between B and C. Hence the given problem has multiple 

optimal solutions. 

 

3.4.2 No Optimal Solution 

 

Example 1 

Solve graphically 

Max Z = 3x1 + 2x2 

Subject to 

x1+ x2 ≤ 1 

x1+ x2 ≥ 3 

x1 ≥ 0 , x2 ≥ 0 

 

Solution 

The first constraint x1+ x2 ≤ 1, written in a form of equation 

x1+ x2 = 1 

Put x1 =0, then x2 = 1 

Put x2 =0, then x1 = 1 

The coordinates are (0, 1) and (1, 0) 

 

The first constraint x1+ x2 ≥ 3, written in a form of equation 

x1+ x2 = 3 

Put x1 =0, then x2 = 3 
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Put x2 =0, then x1 = 3 

The coordinates are (0, 3) and (3, 0) 

 

 

There is no common feasible region generated by two constraints together i.e. we cannot 

identify even a single point satisfying the constraints. Hence there is no optimal solution.    

     

 3.4.3 Unbounded Solution 

 

Example  

Solve by graphical method  

Max Z = 3x1 + 5x2 

Subject to 

2x1+ x2 ≥ 7 

x1+ x2 ≥ 6 

x1+ 3x2 ≥ 9 

x1 ≥ 0 , x2 ≥ 0 

 

Solution 

The first constraint 2x1+ x2 ≥ 7, written in a form of equation 

2x1+ x2 = 7 

Put x1 =0, then x2 = 7 
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Put x2 =0, then x1 = 3.5 

The coordinates are (0, 7) and (3.5, 0) 

 

The second constraint x1+ x2 ≥ 6, written in a form of equation 

x1+ x2 = 6 

Put x1 =0, then x2 = 6 

Put x2 =0, then x1 = 6 

The coordinates are (0, 6) and (6, 0) 

 

The third constraint x1+ 3x2 ≥ 9, written in a form of equation 

x1+ 3x2 = 9 

Put x1 =0, then x2 = 3 

Put x2 =0, then x1 = 9 

The coordinates are (0, 3) and (9, 0) 

 

The corner points of feasible region are A, B, C and D. So the coordinates for the corner 

points are 
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A (0, 7) 

B (1, 5) (Solve the two equations 2x1+ x2 = 7 and x1+ x2 = 6 to get the coordinates) 

C (4.5, 1.5) (Solve the two equations x1+ x2 = 6 and x1+ 3x2 = 9 to get the coordinates) 

D (9, 0) 

We know that Max Z = 3x1 + 5x2 

At A (0, 7) 

Z = 3(0) + 5(7) = 35 

 

At B (1, 5)  

Z = 3(1) + 5(5) = 28 

 

At C (4.5, 1.5)  

Z = 3(4.5) + 5(1.5) = 21 

 

At D (9, 0) 

Z = 3(9) + 5(0) = 27 

The values of objective function at corner points are 35, 28, 21 and 27. But there exists 

infinite number of points in the feasible region which is unbounded. The value of 

objective function will be more than the value of these four corner points i.e. the 

maximum value of the objective function occurs at a point at ∞. Hence the given problem 

has unbounded solution. 
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Exercise 

1. A company manufactures two types of printed circuits. The requirements of transistors, 

resistors and capacitor for each type of printed circuits along with other data are given in 

table. 

 

 
Circuit 

Stock available (units) 
A B 

Transistor 15 10 180 

Resistor 10 20 200 

Capacitor 15 20 210 

Profit Rs.5 Rs.8  

 

How many circuits of each type should the company produce from the stock to earn 

maximum profit. 

[Ans. Max Z = 82, 2 units of type A circuit and 9 units of type B circuit] 

 

2. A company making cool drinks has 2 bottling plants located at towns T1 and T2. Each 

plant produces 3 drinks A, B and C and their production capacity per day is given in the 

table. 

Cool drinks 
Plant at 

T1 T2 

A 6000 2000 
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B 1000 2500 

C 3000 3000 

The marketing department of the company forecasts a demand of 80000 bottles of A, 

22000 bottles of B and 40000 bottles of C during the month of June. The operating cost 

per day of plants at T1 and T2 are Rs. 6000 and Rs. 4000 respectively. Find graphically 

the number of days for which each plants must be run in June so as to minimize the 

operating cost while meeting the market demand. 

[Ans. Min Z = Rs. 88000, 12 days for the plant T1 and 4 days for plant T2] 

 

Solve the following LPP by graphical method 

1. Max Z = 3x1 + 4x2 

Subject to 

x1 - x2 ≤ -1 

-x1+ x2 ≤ 0 

x1 ≥ 0 , x2 ≥ 0 

[Ans. The problem has no solution] 

 

2. Max Z = 3x1 + 2x2 

Subject to 

-2x1 + 3x2 ≤ 9 

x1- 5x2 ≥ -20 

x1 ≥ 0 , x2 ≥ 0 

[Ans. The problem has unbounded solution] 

 

3. Max Z = 45x1 + 80x2 

Subject to 

5x1 + 20x2 ≤ 400 

10x1+ 15x2 ≤ 450 

x1 ≥ 0 , x2 ≥ 0 

[Ans. Max Z = 2200, x1 = 24, x2 = 14] 
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Module 2 

 

Unit 1 

1.1 Introduction 

1.2 Steps to convert GLPP to SLPP 

1.3 Some Basic Definitions 

1.4 Introduction to Simplex Method 

1.5 Computational procedure of Simplex Method  

1.6 Worked Examples 

 

1.1 Introduction 

 

General Linear Programming Problem (GLPP) 

Maximize / Minimize Z = c1x1 + c2x2 + c3x3 +……………..+ cnxn 

 

Subject to constraints 

a11x1 + a12x2 + …..........+a1nxn (≤ or ≥) b1 

a21x1 + a22x2 + ………..+a2nxn (≤ or ≥) b2 

. 

. 

. 

am1x1 + am2x2 + ……….+amnxn (≤ or ≥) bm 



37 

 

and 

x1 ≥ 0, x2 ≥ 0,…, xn ≥ 0 

 

Where constraints may be in the form of any inequality (≤ or ≥) or even in the form of an 

equation (=) and finally satisfy the non-negativity restrictions. 

   

1.2 Steps to convert GLPP to SLPP (Standard LPP) 

 

Step 1 – Write the objective function in the maximization form. If the given objective 

function is of minimization form then multiply throughout by -1 and write Max 

z׳ = Min (-z) 

 

Step 2 – Convert all inequalities as equations.  

o If an equality of ‘≤’ appears then by adding a variable called Slack 

variable. We can convert it to an equation. For example x1 +2x2 ≤ 12, we 

can write as  

x1 +2x2 + s1 = 12. 

o If the constraint is of ‘≥’ type, we subtract a variable called Surplus 

variable and   convert it to an equation. For example  

2x1 +x2 ≥ 15 

2x1 +x2 – s2 = 15 

 

Step 3 – The right side element of each constraint should be made non-negative 

2x1 +x2 – s2 = -15 

-2x1 - x2 + s2 = 15 (That is multiplying throughout by -1) 

Step 4 – All variables must have non-negative values. 

  For example: x1 +x2 ≤ 3 

          x1  > 0, x2 is unrestricted in sign  

  Then x2 is written as x2 = x2׳ – x2׳׳ where x2׳, x2׳׳
   ≥ 0 

  Therefore the inequality takes the form of equation as x1 + (x2׳ – x2׳׳) + s1 = 3 
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Using the above steps, we can write the GLPP in the form of SLPP.  

 

Write the Standard LPP (SLPP) of the following 

 

Example 1 

Maximize Z = 3x1 + x2 

    Subject to  

 2 x1 + x2 ≤ 2 

 3 x1 + 4 x2 ≥ 12 

    and x1 ≥ 0, x2  ≥ 0 

 

SLPP 

    Maximize Z = 3x1 + x2 

    Subject to  

 2 x1 + x2 + s1 = 2 

 3 x1 + 4 x2 – s2 = 12 

 x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2  ≥ 0 

 

Example 2 

Minimize Z = 4x1 + 2 x2 

    Subject to  

 3x1 + x2 ≥ 2 

 x1 + x2 ≥ 21 

x1 + 2x2 ≥ 30 

    and x1 ≥ 0, x2  ≥ 0 

 

SLPP 

Maximize Z4 – = ׳x1 – 2 x2   

Subject to  
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 3x1 + x2 – s1 = 2 

 x1 + x2 – s2 = 21 

x1 + 2x2 – s3 = 30 

     x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2  ≥ 0, s3  ≥ 0 

 

Example 3 

Minimize Z = x1 + 2 x2 + 3x3 

     Subject to  

 2x1 + 3x2 + 3x3 ≥ – 4   

 3x1 + 5x2 + 2x3 ≤ 7 

     and x1 ≥ 0, x2  ≥ 0, x3 is unrestricted in sign 

 

 

 

SLPP 

Maximize Z׳ = – x1 – 2 x2 – 3(x3
x3 – ׳

 (׳׳

Subject to  

 –2x1 – 3x2 – 3(x3
x3 – ׳

   s1= 4 + (׳׳

 3x1 + 5x2 + 2(x3
x3 – ׳

 s2 = 7 + (׳׳

     x1 ≥ 0, x2  ≥ 0, x3
x3  ,0 ≤ ׳

 s1 ≥ 0, s2  ≥ 0 ,0 ≤ ׳׳

 

1.3 Some Basic Definitions 

 

Solution of LPP 

Any set of variable (x1, x2… xn) which satisfies the given constraint is called solution of 

LPP. 

 

Basic solution 
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It is a solution obtained by setting any ‘n’ variable equal to zero and solving remaining 

‘m’ variables. Such ‘m’ variables are called Basic variables and ‘n’ variables are called 

Non-basic variables. 

 

Basic feasible solution 

A basic solution that is feasible (all basic variables are non negative) is called basic 

feasible solution. There are two types of basic feasible solution. 

1. Degenerate basic feasible solution 

If any of the basic variable of a basic feasible solution is zero than it is said to be 

degenerate basic feasible solution. 

2. Non-degenerate basic feasible solution 

It is a basic feasible solution which has exactly ‘m’ positive xi, where i=1, 2, … 

m. In other words all ‘m’ basic variables are positive and remaining ‘n’ variables 

are zero.  

 

Optimum basic feasible solution 

A basic feasible solution is said to be optimum if it optimizes (max / min) the objective 

function. 

 

 

 

1.4 Introduction to Simplex Method 

 

It was developed by G. Danztig in 1947. The simplex method provides an algorithm (a 

rule of procedure usually involving repetitive application of a prescribed operation) 

which is based on the fundamental theorem of linear programming. 

 

The Simplex algorithm is an iterative procedure for solving LP problems in a finite 

number of steps. It consists of 

 Having a trial basic feasible solution to constraint-equations 
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 Testing whether it is an optimal solution 

 Improving the first trial solution by a set of rules and repeating the process till an 

optimal solution is obtained 

 

Advantages 

 Simple to solve the problems 

 The solution of LPP of more than two variables can be obtained. 

 

1.5 Computational Procedure of Simplex Method  

 

Consider an example  

Maximize Z = 3x1 + 2x2 

    Subject to  

 x1 + x2 ≤ 4 

 x1 – x2 ≤ 2 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

 

Step 1 – Write the given GLPP in the form of SLPP 

 

 

Maximize Z = 3x1 + 2x2 + 0s1 + 0s2 

     Subject to  

  x1 + x2+ s1= 4 

  x1 – x2 + s2= 2 

      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0 

 

Step 2 – Present the constraints in the matrix form 

x1 + x2+ s1= 4 
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  x1 – x2 + s2= 2 

 

    

Step 3 – Construct the starting simplex table using the notations 

 

        Cj →     3                2              0               0 

Basic 

Variables 

CB       XB  X1              X2                S1                   S2 Min ratio 

 XB /Xk 

  s1 

 

 s2 

 0         4 

 

 0         2 

  1                1              1                0 

 

  1               -1              0               1 

 

 Z= CB XB    Δj  

 

Step 4 – Calculation of Z and Δj and test the basic feasible solution for optimality by the 

rules given. 

Z= CB XB  

     = 0 *4 + 0 * 2 = 0 

 

Δj = Zj – Cj 

       = CB Xj – Cj 

Δ1 = CB X1 – Cj = 0 * 1 + 0 * 1 – 3 = -3 

Δ2 = CB X2 – Cj = 0 * 1 + 0 * -1 – 2 = -2 

Δ3 = CB X3 – Cj = 0 * 1 + 0 * 0 – 0 = 0 

Δ4 = CB X4 – Cj = 0 * 0 + 0 * 1 – 0 = 0 

Procedure to test the basic feasible solution for optimality by the rules given 

 

Rule 1 – If all Δj  ≥ 0, the solution under the test will be optimal. Alternate optimal 

solution will exist if any non-basic Δj is also zero. 
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Rule 2 – If atleast one Δj is negative, the solution is not optimal and then proceeds to 

improve the solution in the next step. 

 

Rule 3 – If corresponding to any negative Δj, all elements of the column Xj are negative 

or zero, then the solution under test will be unbounded.   

 

In this problem it is observed that Δ1 and Δ2 are negative. Hence proceed to improve this 

solution 

 

Step 5 – To improve the basic feasible solution, the vector entering the basis matrix and 

the vector to be removed from the basis matrix are determined. 

 

 Incoming vector 

The incoming vector Xk is always selected corresponding to the most negative 

value of Δj. It is indicated by (↑). 

 

 Outgoing vector 

The outgoing vector is selected corresponding to the least positive value of 

minimum ratio. It is indicated by (→). 

 

Step 6 – Mark the key element or pivot element by ‘1’‘.The element at the intersection of 

outgoing vector and incoming vector is the pivot element. 

 

 

 

    Cj →     3                2               0               0 

Basic 

Variables 

CB       XB  X1              X2                S1                   S2 

(Xk) 

Min ratio 

 XB /Xk 

  s1  0         4   1                1              1                0 4 / 1 = 4 
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 s2 

 

 0         2 

 

  1               -1              0               1 

 

2 / 1 = 2 → outgoing 

  

Z= CB XB = 0 

  ↑incoming 

Δ1= -3      Δ2= -2        Δ3=0        

Δ4=0 

 

 

 If the number in the marked position is other than unity, divide all the elements of 

that row by the key element.  

 Then subtract appropriate multiples of this new row from the remaining rows, so 

as to obtain zeroes in the remaining position of the column Xk. 

 

Basic 

Variables 

CB       XB  X1            X2                S1                   S2 

                    (Xk) 

Min ratio 

 XB /Xk 

   

 s1 

 

 x1 

 

 0         2 

 

 3         2 

(R1=R1 – R2)   

0                2              1                -

1 

 

1               -1              0                 

1 

2 / 2 = 1 → outgoing 

 

2 / -1 = -2 (neglect in 

case of negative) 

  

Z=0*2+3*2= 6 

                  ↑incoming 

Δ1=0        Δ2= -5       Δ3=0        

Δ4=3 

 

 

Step 7 – Now repeat step 4 through step 6 until an optimal solution is obtained.  
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Basic 

Variables 

CB       XB  X1          X2                S1                       S2 

 

Min ratio 

 XB /Xk 

  

 x2 

 

 x1 

 

 2         1 

 

 3         3 

(R1=R1 / 2)    

 0             1            1/2                -1/2 

(R2=R2 + R1)   

 1             0            1/2                 1/2 

 

 Z = 11 Δ1=0      Δ2=0      Δ3=5/2        Δ4=1/2  

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

 

Therefore the solution is Max Z = 11, x1 = 3 and x2 = 1 

 

1.6 Worked Examples 

 

Solve by simplex method 

 

Example 1 

Maximize Z = 80x1 + 55x2 

    Subject to  

 4x1 + 2x2 ≤ 40 

 2x1 + 4x2 ≤ 32 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

SLPP 

Maximize Z = 80x1 + 55x2 + 0s1 + 0s2 

     Subject to  

  4x1 + 2x2+ s1= 40 

  2x1 + 4x2 + s2= 32 
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      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0 

 

 

   Cj →    80               55            0                0 

Basic 

Variables 

CB       XB  X1              X2                S1                   S2 

 

Min ratio 

 XB /Xk 

  s1 

 

 s2 

 0         40 

 

 0         32 

  4                2              1                0 

 

  2                4              0                1 

40 / 4 = 10→ 

outgoing 

 

32 / 2 = 16  

  

Z= CB XB = 0 

  ↑incoming 

Δ1= -80      Δ2= -55      Δ3=0        

Δ4=0 

 

 

  x1                   

 

 

  s2      

 

 

 80       10                

 

 

 0         12   

 

 (R1=R1 / 4)   

  1                1/2          1/4              0 

 

(R2=R2– 2R1)  

  0                 3           -1/2             1 

 

 10/1/2 = 20              

 

 

 12/3 = 4→ outgoing 

 

  

Z = 800 

                    ↑incoming 

Δ1=0       Δ2= -15      Δ3=40        

Δ4=0 

 

 

  x1                   

 

 

  x2      

 

 

 80         8                

 

 

 55         4   

 

(R1=R1– 1/2R2)   

1                0             1/3              -1/6 

 

(R2=R2 / 3) 

 0                1            -1/6              1/3 

 

 Z = 860 Δ1=0      Δ2=0       Δ3=35/2       Δ4=5  
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Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 860, x1 = 8 and x2 = 4 

 

Example 2 

Maximize Z = 5x1 + 3x2 

    Subject to  

 3x1 + 5x2 ≤ 15 

 5x1 + 2x2 ≤ 10 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

SLPP 

Maximize Z = 5x1 + 3x2 + 0s1 + 0s2 

     Subject to  

  3x1 + 5x2+ s1= 15 

  5x1 + 2x2 + s2= 10 

      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0 

 

  Cj →     5                3               0                0 

Basic 

Variables 

CB       XB  X1               X2                 S1                 S2 

 

Min ratio 

 XB /Xk 

  s1 

 

 s2 

 0         15 

 

 0         10 

  3                5              1                0 

 

  5                2              0                1 

15 / 3 = 5 

 

10 / 5 = 2 → 

outgoing 

  

Z= CB XB = 0 

  ↑incoming 

Δ1= -5       Δ2= -3       Δ3=0        Δ4=0 
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  s1                   

 

 

  x1      

 

 

 0          9                

 

 

 5          2   

 

(R1=R1– 3R2)    

 0               19/5           1             -3/5 

 

(R2=R2 /5) 

 1               2/5             0                1/5 

 

 9/19/5 = 45/19 →             

 

 

 2/2/5 = 5 

 

  

Z = 10 

                    ↑ 

Δ1=0         Δ2= -1        Δ3=0        Δ4=1 

 

 

  x2                   

 

 

  x1      

 

 

 3         45/19                

 

 

 5         20/19   

 

(R1=R1 / 19/5)   

0                1              5/19         -3/19 

 

(R2=R2 –2/5 R1) 

 1               0             -2/19          5/19 

 

 Z = 235/19 Δ1=0      Δ2=0      Δ3=5/19     

Δ4=16/19 

 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 235/19, x1 = 20/19 and x2 = 45/19 

 

 

Example 3 

Maximize Z = 5x1 + 7x2 

    Subject to  

 x1 + x2 ≤ 4 

 3x1 – 8x2 ≤ 24 

 10x1 + 7x2 ≤ 35 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

SLPP 
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Maximize Z = 5x1 + 7x2 + 0s1 + 0s2 + 0s3 

     Subject to  

  x1 + x2 + s1= 4 

  3x1 – 8x2 + s2= 24 

  10x1 + 7x2 + s3= 35 

      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 

 

   Cj →   5      7        0         0          0 

Basic 

Variables 

CB       XB  X1          X2             S1             S2           S3 

 

Min ratio 

 XB /Xk 

  s1 

 

 s2 

 

 s3 

 0         4 

 

0 24 

 

 0         35 

  1             1           1            0          0 

 

  3            -8           0            1          0 

 

 10            7           0            0          1 

4 /1 = 4→outgoing 

 

– 

 

 35 / 7 = 5 

  

Z= CB XB = 0 

                 ↑incoming 

 -5            -7           0            0          0 

 

←Δj 

  x2 

 

  

 s2 

 

  

 s3 

7       4 

 

 

0         56 

  

  

 0          7 

  1             1           1            0          0 

 

  (R2 = R2 + 8R1) 

  11           0           8            1          0 

 

  (R3 = R3 – 7R1) 

  3             0          -7            0          1 

 

  

Z = 28 

 

  2             0           7            0          0 

 

←Δj 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

 

Therefore the solution is Max Z = 28, x1 = 0 and x2 = 4 
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Example 4 

Maximize Z = 2x – 3y + z 

    Subject to  

 3x + 6y + z ≤ 6 

 4x + 2y + z ≤ 4 

 x – y + z ≤ 3 

    and x  ≥ 0, y  ≥ 0, z ≥ 0 

 

Solution 

SLPP 

Maximize Z = 2x – 3y + z + 0s1 + 0s2 + 0s3 

     Subject to  

  3x + 6y + z + s1= 6 

  4x + 2y + z + s2= 4 

  x – y + z + s3= 3 

      x ≥ 0, y  ≥ 0, z ≥ 0 s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 

 

 

                           Cj →     2             -3              1           0            0           0  

Basic 

Variables 

CB       XB  X             Y                 Z              S1              S2             S3 

 

Min ratio 

 XB /Xk 

  s1 

 

 s2 

 

 s3 

 0         6 

 

0 4 

 

0         3 

 

  3              6             1             1            0          0    

 

  4              2            1             0             1          0 

 

  1              -1            1             0             0         1 

6 / 3 = 2 

 

4 / 4 =1→ outgoing 

 

3 / 1 = 3 

    ↑incoming  
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Z = 0 -2               3             -1             0             0         0 ←Δj 

 

 s1                   

 

 x 

 

 s3      

 

 

 0          3          

 

 2          1   

 

 0          2 

   

 0             9/2            1/4            1         -3/4        0 

 

1              1/2            1/4            0         1/4          0 

 

0             -3/2            3/4           0         -1/4         1 

 

 3/1/4=12  

 

1/1/4=4            

 

 8/3 = 2.6→ 

 

  

Z = 2 

                                  ↑incoming  

0                4               1/2          0           1/2        0     

 

←Δj 

 

  s1            

 

  x   

 

  z 

 

0 7/3     

                                    

 2         1/3   

           

 1         8/3  

 

0                5                0            1         -2/3      -1/3 

 

1                1                0            0          1/3       -1/3 

 

0              -2                 1            0         -1/3        4/3 

 

  

Z = 10/3 

 

0                3                 0            0         1/3        2/3 

 

←Δj 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 10/3, x = 1/3, y = 0 and z = 8/3 

 

Example 5 

Maximize Z = 3x1 + 5x2 

    Subject to  

 3x1 + 2x2 ≤ 18 

 x1 ≤ 4 

            x2 ≤ 6 

    and x1 ≥ 0, x2  ≥ 0 
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Solution 

 

SLPP 

Maximize Z = 3x1 + 5x2 + 0s1 + 0s2 + 0s3 

     Subject to  

  3x1 + 2x2 + s1= 18 

  x1 + s2= 4 

  x2 + s3= 6 

      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 

 

 

 

 

 

 

 

 

 

 

 

 

Cj →   3    5       0         0            0 

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 

Min ratio 

 XB /Xk 

s1 0 18 3 2 1 0 0 18 / 2 = 9  

s2 0 4 1 0 0 1 0 4 / 0 = ∞ (neglect) 

s3 0 6 0 1 0 0 1 6 / 1 = 6→  

 
 

Z = 0 

 

-3 

↑ 

-5 

 

0 

 

0 

 

0 

 

←Δj 

                   (R1=R1-2R3)  



53 

 

s1 0 6 3 0 1 0 -2 6 / 3 = 2 → 

s2 0 4 1 0 0 1 0 4 / 1 = 4 

x2 5 6 0 1 0 0 1   -- 

 
 

Z = 30 

↑ 

-3 

 

0 

 

0 

 

0 

 

5 

 

←Δj 

  (R1=R1 / 3)  

x1 3 2 1 0 1/3 0 -2/3  

   (R2=R2 - R1)  

s2 0 2 0 0 -1/3 1 2/3  

x2 5 6 0 1 0 0 1  

 
 

Z = 36 

 

0 

 

0 

 

1 

 

0 

 

3 

 

←Δj 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 36, x1 = 2, x2 = 6 

 

Example 6 

Minimize Z = x1 – 3x2 + 2x3 

    Subject to  

 3x1 – x2 + 3x3 ≤ 7 

-2x1 + 4x2 ≤ 12 

 -4x1 + 3x2 + 8x3 ≤ 10 

    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 

Solution 

SLPP 

Min (-Z) = Max Z׳ = -x1 + 3x2 - 2x3 + 0s1 + 0s2 + 0s3 

     Subject to  

  3x1 – x2 + 3x3 + s1 = 7 

-2x1 + 4x2 + s2 = 12 

  -4x1 + 3x2 + 8x3 + s3 = 10 

      x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 
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                   Cj →      -1 3 -2   0     0       0  

Basic 

Variables 
CB XB X1 X2 X3 S1 S2 S3 

Min ratio 

XB /Xk 

s1 0 7 3 -1 3 1 0 0 - 

s2 0 12 -2 4 0 0 1 0 3→ 

s3 0 10 -4 3 8 0 0 1 10/3 

 
 

Z' = 0 

 

1 

↑ 

-3 

 

2 

 

0 

 

0 

 

0 

 

←Δj 

   (R1 = R1 + R2)  

s1 0 10 5/2 0 3 1 1/4 0 4→ 

   (R2 = R2 / 4)  

x2 3 3 -1/2 1 0 0 1/4 0 - 

   (R3 = R3 – 3R2)  

s3 0 1 -5/2 0 8 0 -3/4 1 - 

 
 

Z' = 9 

↑ 

-5/2 

 

0 

 

0 

 

0 

 

3/4 

 

0 

 

←Δj 

   (R1 = R1 / 5/2)  

x1 -1 4 1 0 6/5 2/5 1/10 0  

   (R2 = R2 + 1/2 R1)  

x2 3 5 0 1 3/5 1/5 3/10 0  

   (R3 = R3 + 5/2R1)  

s3 0 11 0 1 11 1 -1/2 1  

 Z' = 11 0 0 3/5 1/5 1/5 0 ←Δj 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

Therefore the solution is Z' =11 which implies Z = -11, x1 = 4, x2 = 5, x3 = 0 

 

Example 7 

Max Z = 2x + 5y 

x + y ≤ 600 

0 ≤ x ≤ 400 
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0 ≤ y ≤ 300 

 

Solution 

SLPP 

Max Z = 2x + 5y + 0s1 + 0s2 + 0s3 

x + y + s1 = 600 

x + s2 = 400 

y + s3 = 300 

x1 ≥ 0, y  ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 

 

Cj →    2       5              0    0          0  

Basic 

Variables 
CB XB X Y S1 S2 S3 

Min ratio 

XB /Xk 

s1 0 600 1 1 1 0 0 600 / 1 = 600 

s2 0 400 1 0 0 1 0 - 

s3 0 300 0 1 0 0 1 300 /1 = 300→ 

 
 

Z = 0 

 

-2 

↑ 

-5 

 

0 

 

0 

 

0 

 

←Δj 

                 (R1 = R1 – R3)  

s1 0 300 1 0 1 0 -1 300 /1 = 300→ 

s2 0 400 1 0 0 1 0 400 / 1 = 400 

y 5 300 0 1 0 0 1 - 

 
 

Z = 1500 

↑ 

-2 

 

0 

 

0 

 

0 

 

5 

 

←Δj 

x 2 300 1 0 1 0 -1  

    (R2 = R2 – R1)  

s2 0 100 0 0 -1 1 1  

y 5 300 0 1 0 0 1  
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Z = 2100 0 0 2 0 3 ←Δj 

 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Z = 

2100,   x = 300, y = 300 

  

Exercise 

Solve by simplex method 

1. Maximize Z = 5x1 + 3x2 

Subject to  

3x1 + 5x2 ≤ 15 

5x1 + 2x2 ≤ 10 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Max Z = 235/19, x1= 20/19, x2= 45/19]  

 

2. Maximize Z = 5x1 + 7x2 

Subject to  

x1 + x2 ≤ 4 

3x1 - 8x2 ≤ 24 

10x1 + 7x2 ≤ 35 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Max Z = 28, x1= 0, x2= 4]  

 

 

 

 

3. Maximize Z = 2x1 + 4x2 + x3+ x4 

Subject to  

x1 + 3x2 + x4 ≤ 4 

2x1 + x2 ≤ 3 
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x2 + 4x3 + x4 ≤ 3 

and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0, x4  ≥ 0  

[Ans. Max Z = 13/2, x1= 1, x2= 1, x3= 1/2, x4= 0]  

 

4. Maximize Z = 7x1 + 5x2 

Subject to  

-x1 - 2x2 ≥ -6 

4x1 + 3x2 ≤ 12 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Max Z = 21, x1= 3, x2= 0]  

 

5. Maximize Z = 3x1 + 2x2 

Subject to  

2x1 + x2 ≤ 10 

x1 + 3x2 ≤ 6 

x1 + x2 ≤ 21 

and x1 ≥ 0, x2  ≥ 0 

 

 

 

 

 

 

 

 

 

 

 

Unit 2 

2.1 Computational Procedure of Big – M Method (Charne’s Penalty Method) 
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2.2 Worked Examples 

2.3 Steps for Two-Phase Method 

2.4 Worked Examples 

 

2.1 Computational Procedure of Big – M Method (Charne’s Penalty 

Method) 

Step 1 – Express the problem in the standard form. 

 

Step 2 – Add non-negative artificial variable to the left side of each of the equations 

corresponding to the constraints of the type ‘≥’ or ‘=’.  

 

When artificial variables are added, it causes violation of the corresponding constraints. 

This difficulty is removed by introducing a condition which ensures that artificial 

variables will be zero in the final solution (provided the solution of the problem exists).  

 

On the other hand, if the problem does not have a solution, at least one of the artificial 

variables will appear in the final solution with positive value. This is achieved by 

assigning a very large price (per unit penalty) to these variables in the objective 

function. Such large price will be designated by –M for maximization problems (+M for 

minimizing problem), where M > 0. 

 

Step 3 – In the last, use the artificial variables for the starting solution and proceed with 

the usual simplex routine until the optimal solution is obtained. 

     

 2.2 Worked Examples 

Example 1 

Max Z = -2x1 - x2 

Subject to  

 3x1 + x2 = 3 

 4x1 + 3x2 ≥ 6 

            x1 + 2x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 
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Solution 

SLPP 

Max Z = -2x1 - x2 + 0s1 + 0s2 - M a1 - M a2 

    Subject to  

  3x1 + x2 + a1= 3 

  4x1 + 3x2 – s1 + a2 = 6 

  x1 + 2x2  + s2 = 4 

    x1 , x2 , s1, s2, a1, a2  ≥ 0 

       

          Cj → -2 -1 0 0 -M -M  

Basic 

Variables 
CB XB X1 X2 S1 S2 A1 A2 

Min ratio 

XB /Xk 

a1 -M 3 3 1 0 0 1 0 3 /3 = 1→ 

a2 -M 6 4 3 -1 0 0 1 6 / 4 =1.5 

s2 0 4 1 2 0 1 0 0  4 / 1 = 4 

 
 

Z = -9M 

↑ 

2 – 7M 

 

1 – 4M 

 

M  

 

0 

 

0 

 

0 

 

←Δj 

x1 -2 1 1 1/3 0 0 X 0 1/1/3 =3 

a2 -M 2 0 5/3 -1 0 X 1 6/5/3 =1.2→ 

s2 0 3 0 5/3 0 1 X 0 4/5/3=1.8 

 
 

Z = -2 – 2M  

 

0 
 

0 0 X 0 

 

←Δj 

x1 -2 3/5 1 0 1/5 0 X X  

x2 -1 6/5 0 1 -3/5 0 X X  

s2 0 1 0 0 1 1 X X  

 
 

Z = -12/5 

 

0 

 

0 

 

1/5 

 

0 

 

X 

 

X 
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Since all Δj ≥ 0, optimal basic feasible solution is obtained 

Therefore the solution is Max Z = -12/5, x1 = 3/5, x2 = 6/5 

 

Example 2 

Max Z = 3x1 - x2 

Subject to  

 2x1 + x2 ≥ 2 

 x1 + 3x2 ≤ 3 

            x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

SLPP 

Max Z = 3x1 - x2 + 0s1 + 0s2 + 0s3 - M a1  

    Subject to  

  2x1 + x2 – s1+ a1= 2 

  x1 + 3x2 + s2  = 3 

  x2 + s3 = 4 

    x1 , x2 , s1, s2, s3, a1  ≥ 0     

 
           Cj 

→ 
3 -1 0 0 0 -M  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 A1 

Min ratio 

XB /Xk 

a1 -M 2 2 1 -1 0 0 1 2 / 2 = 1→ 

s2 0 3 1 3 0 1 0 0      3 / 1 = 3 

s3 0 4 0 1 0 0 1 0 - 

 
 

Z = -2M 

↑ 

-2M-3 

 

-M+1 

 

M 

 

0 

 

0 

 

0 

 

←Δj 

x1 3 1 1 1/2 -1/2 0 0 X - 

s2 0 2 0 5/2 1/2 1 0 X 2/1/2 = 4→ 

s3 0 4 0 1 0 0 1 X - 
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Z = 3 

 

0 

 

5/2 

↑ 

-3/2 

 

0 

 

0 

 

X 

 

←Δj 

x1 3 3 1 3 0 1/2 0 X  

s1 0 4 0 5 1 2 0 X  

s3 0 4 0 1 0 0 1 X  

 Z = 9 0 10 0 3/2 0 X  

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 9, x1 = 3, x2 = 0 

 

Example 3 

Min Z = 2x1 + 3x2 

Subject to  

 x1 + x2 ≥ 5 

 x1 + 2x2 ≥ 6 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

 

SLPP 

Min Z = Max Z2- = ׳x1 - 3x2 + 0s1 + 0s2 - M a1 - M a2  

    Subject to  

  x1 + x2 – s1+ a1= 5 

  x1 + 2x2 – s2+ a2= 6 

  x1 , x2 , s1, s2, a1, a2  ≥ 0 

       

         Cj → -2 -3 0 0 -M -M  

Basic 

Variables 
CB XB X1 X2 S1 S2 A1 A2 

Min ratio 

XB /Xk 

a1 -M 5 1 1 -1 0 1 0 5 /1 = 5 
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a2 -M 6 1 2 0 -1 0 1 6 / 2 = 3→ 

 
 

Z11- = ׳M 

 

-2M + 2 

↑ 

-

3M+3 

 

M 

 

M 

 

0 

 

0 

 

←Δj 

a1 -M 2 1/2 0 -1 1/2 1 X 2/1/2 = 4→ 

x2 -3 3 1/2 1 0 -1/2 0 X 3/1/2 =6 

 

 

Z2- = ׳M-

9 

↑ 

(-M+1) / 

2 

 

0 

 

M 

 

(-M+3)/2 

 

0 

 

X 

 

←Δj 

x1 -2 4 1 0 -2 1 X X  

x2 -3 1 0 1 1 -1 X X  

 
 

Z11- = ׳ 

 

0 

 

0 

 

1 

 

1 

 

X 

 

X 

 

 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Z' = 

-11 which implies Max Z = 11, x1 = 4, x2 = 1 

 

Example 4 

Max Z =3x1 + 2x2 + x3 

    Subject to  

 2x1 + x2 + x3 = 12 

3x1 + 4x2 = 11 

     and x1 is unrestricted 

   x2  ≥ 0, x3 ≥ 0 

Solution 

 

SLPP 

Max Z = 3(x1
' - x1

'') + 2x2 + x3 - M a1 - M a2  

    Subject to  

  2(x1
' - x1

'') + x2 + x3 + a1= 12 
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 3(x1
' - x1

'') + 4x2 + a2 = 11 

  x1
', x1

'', x2 , x3, a1, a2  ≥ 0 

 

Max Z = 3x1
' - 3x1

'' + 2x2 + x3 - M a1 - M a2  

    Subject to  

  2x1
' - 2x1

'' + x2 + x3 + a1= 12 

 3x1
' - 3x1

'' + 4x2 + a2 = 11 

  x1
', x1

'', x2 , x3, a1, a2  ≥ 0 

 

 

  

              Cj → 3 -3 2 1 -M -M  

Basic 

Variables 
CB XB X1

' X1
'' X2 X3 A1 A2 

Min ratio 

XB /Xk 

a1 -M 12 2 -2 1 1 1 0 12 /2 = 6 

a2 -M 11 3 -3 4 0 0 1 11/3 =3.6→ 

 
 

Z = -23M 

↑ 

-5M-3 

 

5M+3 

 

-5M-2 

 

-M-1 

 

0 

 

0 

 

←Δj 

a1 -M 14/3 0 0 -5/3 1 1 X 14/3/1 = 14/3→ 

x1
' 3 11/3 1 -1 4/3 0 0 X - 

 
 

 

0 

 

-6 

 

5/3M+1 

↑ 

-M-1 

 

0 

 

X 

 

←Δj 

x3 1 14/3 0 0 -5/3 1 X X  

x1
' 3 11/3 1 -1 4/3 0 X X  

 
 

Z = 47/3 

 

0 

 

0 

 

1/3 

 

0 

 

X 

 

X 

 

 

 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 
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x1
' = 11/3,  x1

'' = 0  

x1 = x1
' - x1

'' = 11/3 – 0 = 11/3 

 

Therefore the solution is Max Z = 47/3, x1 = 11/3, x2 = 0, x3 = 14/3 

 

Example 5 

Max Z = 8x2 

Subject to  

 x1 - x2 ≥ 0 

 2x1 + 3x2 ≤ -6 

     and x1 , x2  unrestricted 

Solution 

SLPP 

Max Z = 8 (x2
' – x2

'') + 0s1 + 0s2 - M a1 - M a2 

    Subject to  

  (x1
' - x1

'') - (x2
' – x2

'') – s1+ a1= 0 

  -2(x1
' - x1

'') - 3(x2
' – x2

'') - s2 + a2 = 6 

  x1
', x1

'', x2
', x2

'', s1, a1, a2  ≥ 0 

 

Max Z = 8x2
' – 8x2

'' + 0s1 + 0s2 - M a1 - M a2 

    Subject to  

  x1
' - x1

'' - x2
' + x2

''– s1+ a1= 0 

  -2x1
' + 2x1

''
 - 3x2

' + 3x2
'' - s2 + a2 = 6 

  x1
', x1

'', x2
', x2

'', s1, a1, a2  ≥ 0 

  

       

 Cj → 0 0 8 -8 0 0 -M -M  

Basic 

Variables 
CB XB X1

' X1
'' X2

' X2
'' S1 S2 A1 A2 

Min ratio 

XB /Xk 

a1 -M 0 1 -1 -1 1 -1 0 1 0 0→ 
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a2 -M 6 -2 2 -3 3 0 -1 0 1 2 

 
 

Z = -6M 

 

M 

 

-M 

 

4M-8 

↑ 

-4M+8 

 

M 

 

M 

 

0 

 

0 

 

←Δj 

x2
'' -8 0 1 -1 -1 1 -1 0 X 0 - 

a2 -M 6 -5 5 0 0 3 -1 X 1 6/5→ 

 
 

Z  = -6M 

 

5M-8 

↑ 

-5M+8 

 

0 

 

0 

 

-3M+8 

 

M 

 

X 

 

0 

 

←Δj 

x2
'' -8 6/5 0 0 -1 1 -2/5 -1/5 X X  

x1
'' 0 6/5 -1 1 0 0 3/5 -1/5 X X  

 
 

Z = -48/5 

 

0 

 

0 

 

0 

 

0 

 

16/5 

 

8/5 

 

X 

 

X 
 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

 

x1
' = 0,  x1

'' = 6/5  

x1 = x1
' - x1

'' = 0 – 6/5 = -6/5 

 

x2
' = 0,  x2

'' = 6/5  

x2 = x2
' – x2

'' = 0 – 6/5 = -6/5 

 

Therefore the solution is Max Z = -48/5, x1 = -6/5, x2 = -6/5 

 

2.3 Steps for Two-Phase Method 

 

The process of eliminating artificial variables is performed in phase-I of the solution and 

phase-II is used to get an optimal solution. Since the solution of LPP is computed in two 

phases, it is called as Two-Phase Simplex Method. 
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Phase I – In this phase, the simplex method is applied to a specially constructed 

auxiliary linear programming problem leading to a final simplex table containing a 

basic feasible solution to the original problem. 

Step 1 – Assign a cost -1 to each artificial variable and a cost 0 to all other 

variables in the objective function. 

Step 2 – Construct the Auxiliary LPP in which the new objective function Z* is to 

be maximized subject to the given set of constraints. 

Step 3 – Solve the auxiliary problem by simplex method until either of the 

following three possibilities do arise 

i. Max Z* < 0 and atleast one artificial vector appear in the optimum 

basis at a positive level (Δj ≥ 0). In this case, given problem does 

not possess any feasible solution. 

ii. Max Z* = 0 and at least one artificial vector appears in the 

optimum basis at a zero level. In this case proceed to phase-II. 

iii. Max Z* = 0 and no one artificial vector appears in the optimum 

basis. In this case also proceed to phase-II. 

 

Phase II – Now assign the actual cost to the variables in the objective function and a zero 

cost to every artificial variable that appears in the basis at the zero level. This new 

objective function is now maximized by simplex method subject to the given constraints.  

 

Simplex method is applied to the modified simplex table obtained at the end of phase-I, 

until an optimum basic feasible solution has been attained. The artificial variables which 

are non-basic at the end of phase-I are removed. 

 

2.4 Worked Examples 

 

Example 1 

Max Z = 3x1 - x2 

Subject to  
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 2x1 + x2 ≥ 2 

 x1 + 3x2 ≤ 2 

            x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

Max Z = 3x1 - x2   

    Subject to  

  2x1 + x2 – s1+ a1= 2 

  x1 + 3x2 + s2  = 2 

  x2 + s3 = 4 

    x1 , x2 , s1, s2, s3,a1  ≥ 0 

 

 

 

Auxiliary LPP 

Max Z* = 0x1 - 0x2 + 0s1 + 0s2 + 0s3 -1a1 

    Subject to  

  2x1 + x2 – s1+ a1= 2 

  x1 + 3x2 + s2  = 2 

  x2 + s3 = 4 

    x1 , x2 , s1, s2, s3,a1  ≥ 0 

 

Phase I 

 

 
           Cj 

→ 
0 0 0 0 0 -1  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 A1 

Min ratio 

XB /Xk 
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a1 -1 2 2 1 -1 0 0 1  1→ 

s2 0 2 1 3 0 1 0 0            2 

s3 0 4 0 1 0 0 1 0 - 

 
 

Z* = -2 

↑ 

-2 

 

-1 

 

1 

 

0 

 

0 

 

0 

 

←Δj 

x1 0 1 1 1/2 -1/2 0 0 X  

s2 0 1 0 5/2 1/2 1 0 X  

s3 0 4 0 1 0 0 1 X  

 
 

Z* = 0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

X 

 

←Δj 

 

Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to 

phase II. 

 

 

 

 

 

 

Phase II 

 

            Cj → 3 -1 0 0 0  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 

Min ratio 

XB /Xk 

x1 3 1 1 1/2 -1/2 0 0 - 

s2 0 1 0 5/2 1/2 1 0 2→ 

s3 0 4 0 1 0 0 1 - 

 
 

Z = 3 

 

0 

 

5/2 

↑ 

-3/2 

 

0 

 

0 

 

←Δj 
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x1 3 2 1 3 0 1 0  

s1 0 2 0 5 1 2 0  

s3 0 4 0 1 0 0 1  

 
 

Z = 6 

 

0 

 

10 

 

0 

 

3 

 

0 

 

←Δj 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

 

Therefore the solution is Max Z = 6, x1 = 2, x2 = 0 

 

Example 2 

Max Z = 5x1 + 8x2 

Subject to  

3x1 + 2x2 ≥ 3 

x1 + 4x2 ≥ 4 

x1 + x2 ≤ 5 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

 

Max Z = 5x1 + 8x2   

    Subject to  

  3x1 + 2x2 – s1+ a1 = 3 

  x1 + 4x2 – s2+ a2  = 4 

  x1 + x2 + s3 = 5 

    x1 , x2 , s1, s2, s3, a1, a2  ≥ 0 

 

Auxiliary LPP 

Max Z* = 0x1 + 0x2 + 0s1 + 0s2 + 0s3 -1a1 -1a2 

    Subject to  

  3x1 + 2x2 – s1+ a1 = 3 

  x1 + 4x2 – s2+ a2  = 4 
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  x1 + x2 + s3 = 5 

    x1 , x2 , s1, s2, s3, a1, a2  ≥ 0 

 

Phase I 

 Cj → 0 0 0 0 0 -1 -1  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 A1 A2 

Min ratio 

XB /Xk 

a1 -1 3 3 2 -1 0 0 1 0 3/2 

a2 -1 4 1 4 0 -1 0 0 1 1→ 

s3 0 5 1 1 0 0 1 0 0         5 

 
 

Z* = -7 

 

-4 

↑ 

-6 

 

1 

 

1 

 

0 

 

0 

 

0 

 

←Δj 

a1 -1 1 5/2 0 -1 1/2 0 1 X 2/5→ 

x2 0 1 1/4 1 0 -1/4 0 0 X 4 

s3 0 4 3/4 0 0 1/4 1 0 X 16/3 

 
 

Z* = -1 

↑ 

-5/2 

 

0 

 

1 

 

-1/2 

 

0 

 

0 

 

X 

 

←Δj 

x1 0 2/5 1 0 -2/5 1/5 0 X X  

x2 0 9/10 0 1 1/10 -3/10 0 X X  

s3 0 37/10 0 0 3/10 1/10 1 X X  

 
 

Z* = 0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

X 

 

X 

 

←Δj 

 

Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to 

phase II. 

 

Phase II 

 Cj → 5 8 0 0 0  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 

Min ratio 

XB /Xk 
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x1 5 2/5 1 0 -2/5 1/5 0 2→ 

x2 8 9/10 0 1 1/10 -3/10 0 - 

s3 0 37/10 0 0 3/10 1/10 1 37 

 
 

Z = 46/5 

 

0 

 

0 

 

-6/5 

↑ 

-7/5 

 

0 

 

←Δj 

s2 0 2 5 0 -2 1 0 - 

x2 8 3/2 3/2 1 -1/2 0 0 - 

s3 0 7/2 -1/2 0 1/2 0 1 7→ 

 
 

Z = 12 

 

7 

 

0 

↑ 

-4 

 

0 

 

0 

 

←Δj 

s2 0 16 3 0 0 1 2  

x2 8 5 1 1 0 0 1/2  

s1 0 7 -1 0 1 0 2  

 
 

Z = 40 

 

3 

 

0 

 

0 

 

0 

 

4 

 

 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 40, x1 = 0, x2 = 5 

 

Example 3 

Max Z = -4x1 - 3x2 - 9x3 

Subject to  

 2x1 + 4x2 + 6x3 ≥ 15 

 6x1 + x2 + 6x3 ≥ 12 

     and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0  

Solution 

 

Standard LPP 

Max Z = -4x1 - 3x2 - 9x3 

    Subject to  
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  2x1 + 4x2 + 6x3 - s1+ a1= 15 

  6x1 + x2 + 6x3 - s2 + a2 = 12 

  x1 , x2 , s1, s2, a1, a2  ≥ 0 

 

Auxiliary LPP 

Max Z* = 0x1 - 0x2 - 0x3 + 0s1 + 0s2 -1a1 -1a2 

    Subject to  

  2x1 + 4x2 + 6x3 - s1+ a1= 15 

  6x1 + x2 + 6x3 - s2 + a2 = 12 

  x1 , x2 , s1, s2, a1, a2  ≥ 0 

Phase I 

 Cj → 0 0 0 0 0 -1 -1  

Basic 

Variables 
CB XB X1 X2 X3 S1 S2 A1 A2 

Min ratio 

XB /Xk 

a1 -1 15 2 4 6 -1 0 1 0 15/6 

a2 -1 12 6 1 6 0 -1 0 1 2→ 

 
 

Z* = -27 

 

-8 

 

-5 

↑ 

-12 

 

1 

 

1 

 

0 

 

0 

 

←Δj 

a1 -1 3 -4 3 0 -1 1 1 X 1→ 

x3 0 2      1 1/6 1 0 -1/6 0 X 12 

 
 

Z* = -3 

 

4 

↑ 

-3 

 

0 

 

1 

 

-1 

 

0 

 

X 

 

←Δj 

x2 0 1 -4/3 1 0 -1/3 1/3 X X  

x3 0 11/6 22/18 0 1 1/18 -4/18 X X  

 
 

Z* = 0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

X 

 

X 

 

 

 

Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to 

phase II. 
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Phase II 

 

 Cj → -4 -3 -9 0 0  

Basic 

Variables 
CB XB X1 X2 X3 S1 S2 

Min ratio 

XB /Xk 

x2 -3 1 -4/3 1 0 -1/3 1/3 - 

x3 -9 11/6 22/18 0 1 1/18 -4/18 3/2→ 

 
 

Z = -39/2 

↑ 

-3 

 

0 

 

0 

 

1/2 

 

1 

 

←Δj 

x2 -3 3 0 1 12/11 -3/11 1/11  

x1 -4 3/2 1 0 18/22 1/22 -4/22  

 
 

Z = -15 

 

0 

 

0 

 

27/11 

 

7/11 

 

5/11 

 

←Δj 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

 

Therefore the solution is Max Z = -15, x1 = 3/2, x2 = 3, x3 = 0 

 

Example 4 

Min Z = 4x1 + x2 

Subject to  

3x1 + x2 = 3 

4x1 + 3x2 ≥ 6 

x1 + 2x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

 

Standard LPP 

Min Z = Max Z' = – 4x1 – x2 
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    Subject to  

  3x1 + x2 + a1 = 3 

  4x1 + 3x2 – s1+ a2 = 6 

  x1 + 2x2 + s2 = 4 

    x1 , x2 , s1, s2, a1, a2  ≥ 0 

 

Auxiliary LPP 

Max Z* = 0x1 – 0x2 + 0s1 + 0s2   –1a1 –1a2 

    Subject to  

  3x1 + x2 + a1 = 3 

  4x1 + 3x2 – s1+ a2 = 6 

  x1 + 2x2 + s2 = 4 

    x1 , x2 , s1, s2, a1, a2  ≥ 0 

 

 

Phase I 

 Cj → 0 0 0 0 -1 -1  

Basic 

Variables 
CB XB X1 X2 S1 S2 A1 A2 

Min ratio 

XB /Xk 

a1 -1 3 3 1 0 0 1 0 1→ 

a2 -1 6 4 3 -1 0 0 1 6/4 

s2 0 4 1 2 0 1 0 0 4 

 
 

Z* = -9 

↑ 

-7 

 

-4 

 

1 

 

0 

 

0 

 

0 
 

x1 0 1 1 1/3 0 0 X 0 3 

a2 -1 2 0 5/3 -1 0 X 1 6/5→ 

s2 0 3 0 5/3 0 1 X 0 9/5 

 
 

Z* = -2 

 

0 

↑ 

-5/3 

 

1 

 

0 

 

X 

 

0 
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x1 0 3/5 1 0 1/5 0 X X  

x2 0 6/5 0 1 -3/5 0 X X  

s2 0 1 0 0 1 1 X X  

 
 

Z* = 0 

 

0 

 

0 

 

0 

 

0 

 

X 

 

X 
 

 

Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to 

phase II. 

 

Phase II 

 

 Cj → -4 -1 0 0  

Basic 

Variables 
CB XB X1 X2 S1 S2 

Min ratio 

XB /Xk 

x1 -4 3/5 1 0 1/5 0 3 

x2 -1 6/5 0 1 -3/5 0 - 

s2 0 1 0 0 1 1 1→ 

 
 

Z' = -18/5 

 

0 

 

0 

↑ 

-1/5 

 

0 

 

←Δj 

x1 -4 2/5 1 0 0 -1/5  

x2 -1 9/5 0 1 0 3/5  

s1 0 1 0 0 1 1  

 
 

Z' = -17/5 

 

0 

 

0 

 

0 

 

1/5 

 

←Δj 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained 

 

Therefore the solution is Max Z' = -17/5 

Min Z = 17/5, x1 = 2/5, x2 = 9/5 
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Exercise 

Solve by Big-M method 

1. Min Z = 4x1 + 2x2 

Subject to  

3x1 + x2 ≥ 27 

x1 + x2 ≥ 21 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Min Z = 48, x1 = 3, x2 =18]  

 

2. Min Z = x1 + x2 + 3x3  

Subject to  

3x1 + 2x2 + x3 ≤ 3 

2x1 + x2+ 2x3 ≥ 3 

and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0 

[Ans. Min Z = 3, x1 = 3/4, x2 =0, x3 = 3/4]  

 

Solve by Two-phase method 

1. Max Z = 3x1 - x2 

Subject to  

2x1 + x2 ≥ 2 

x1 + 3x2 ≤ 2 

x2 ≤ 4 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Max Z = 6, x1 = 2, x2 =0]  

 

2. Max Z = 5x1 - 2x2 +3x3  

Subject to  

2x1 + 2x2 - x3 ≥ 2 
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3x1 - 4x2 ≤ 3 

x2 + 3x3 ≤ 5 

and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0 

[Ans. Max Z = 85/3, x1 = 23/3, x2 =5, x3 =0]  

Unit 3 

3.1 Special cases in Simplex Method 

3.1.1 Degenaracy 

3.1.2 Non-existing Feasible Solution 

3.1.3 Unbounded Solution 

3.1.4 Multiple Optimal Solutions 

 

3.1.1 Degeneracy 

The concept of obtaining a degenerate basic feasible solution in a LPP is known as 

degeneracy. The degeneracy in a LPP may arise  

 At the initial stage when at least one basic variable is zero in the initial basic 

feasible solution. 

 At any subsequent iteration when more than one basic variable is eligible to leave 

the basic and hence one or more variables becoming zero in the next iteration and 

the problem is said to degenerate. There is no assurance that the value of the 

objective function will improve, since the new solutions may remain degenerate. 

As a result, it is possible to repeat the same sequence of simplex iterations 

endlessly without improving the solutions. This concept is known as cycling or 

circling. 

 

Rules to avoid cycling 

 Divide each element in the tied rows by the positive coefficients of the key 

column in that row. 

 Compare the resulting ratios, column by column, first in the identity and then in 

the body, from left to right. 
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 The row which first contains the smallest algebraic ratio contains the leaving 

variable. 

 

 

 

 

 

 

Example 1 

Max Z = 3x1 + 9x2 

Subject to  

x1 + 4x2 ≤ 8 

x1 + 2x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

Max Z = 3x1 + 9x2 + 0s1 + 0s2 

    Subject to  

  x1 + 4x2 + s1 = 8 

  x1 + 2x2 + s2 = 4 

  x1 , x2 , s1, s2  ≥ 0 

 

  Cj→ 3 9 0 0   

Basic 

Variables 
CB XB X1 X2 S1 S2 XB / XK S1 / X2 

s1 0 8 1 4 1 0 

 

1/4 

s2 0 4 1 2 0 1 0/2→ 

 
 

Z = 0 

 

-3 

↑ 

-9 

 

0 

 

0 
 

 

←Δj 
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s1 0 0 -1 0 1 -1   

x2 9 2 1/2 1 0 1/2   

 
 

Z =18 

 

3/2 

 

0 

 

0 

 

9/2 
  

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 18, x1 = 0, x2 = 2 

 

Note – Since a tie in minimum ratio (degeneracy), we find minimum of s1 /xk for these 

rows for which the tie exists. 

 

Example 2 

Max Z = 2x1 + x2 

Subject to  

4x1 + 3x2 ≤ 12 

4x1 + x2 ≤ 8 

4x1 - x2 ≤ 8 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

Max Z = 2x1 + x2 + 0s1 + 0s2 + 0s3 

    Subject to  

  4x1 + 3x2 + s1 = 12 

  4x1 + x2 + s2 = 8 

4x1 - x2 + s3 = 8 

  x1 , x2 , s1, s2, s3  ≥ 0 

 

  Cj→ 2 1 0 0 0    

Basic 

Varibles 
CB XB X1 X2 S1 S2 S3 

XB / 

XK 
S1 / X1 S2 / X1 

s1 0 12 4 3 1 0 0 12/4=3   
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s2 0 8 4 1 0 1 0 8/4=2 4/0=0 1/4 

s3 0 8 4 -1 0 0 1 8/4=2 4/0=0 0/4=0→ 

 
 

Z = 0 

↑ 

-2 

 

-1 

 

0 

 

0 

 

0 

 

←Δj 
  

s1 0 4 0 4 1 0 -1 4/4=1   

s2 0 0 0 2 0 1 -1 0→   

x1 2 2 1 -1/4 0 0 1/4 -   

 
 

Z = 4 

 

0 

↑ 

-3/2 

 

0 

 

0 

 

1/2 

 

←Δj 
  

s1 0 4 0 0 1 -2 1 0→   

x2 1 0 0 1 0 1/2 -1/2 -   

x1 2 2 1 0 0 1/8 1/8 16   

 
 

Z = 4 

 

0 

 

0 

 

0 

 

3/4 

↑ 

-1/4 

 

←Δj 
  

s3    0         4 0 0 1 -2 1    

x2    1         2 0 1 1/2 -1/2 0    

x1 
   2        

3/2 
1 0 -1/8 3/8 0    

 
 

Z = 5 

 

0 

 

0 

 

1/4 

 

1/4 

 

0 

 

←Δj 
  

 

 

Since all Δj ≥ 0, optimal basic feasible solution is obtained. Therefore the solution is Max 

Z = 5, x1 = 3/2, x2 = 2 

 

3.1.2 Non-existing Feasible Solution 

The feasible region is found to be empty which indicates that the problem has no feasible 

solution. 

 



81 

 

Example 1 

Max Z = 3x1 +2x2 

Subject to  

2x1 + x2 ≤ 2 

3x1 + 4x2 ≥ 12 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

 

 

 

Max Z = 3x1 +2 x2 + 0s1 + 0s2 – Ma1 

    Subject to  

  2x1 + x2 + s1 = 2 

  3x1 + 4x2 - s2 + a1 = 12 

  x1 , x2 , s1, s2, s3  ≥ 0 

 

  Cj→ 3 2 0 0 -M  

Basic 

Variables 
CB XB X1 X2 S1 S2 A1 

Min Ratio 

XB / XK 

s1 0 2 2 1 1 0 0 2/1=2→ 

a1 -M 12 3 4 0 -1 1 12/4=3 

 
 

Z= -12M 

 

-3M-3 

↑ 

-4M-2 

 

0 

 

M 

 

0 

 

←Δj 

x2 2 2 2 1 1 0 0  

a1 -M 4 -5 0 -4 -1 1  

 
 

Z= 4-4M 

 

1+5M 

 

0 

 

2+4M 

 

M 

 

0 
 

 



82 

 

Δj ≥ 0 so according to optimality condition the solution is optimal but the solution is 

called pseudo optimal solution since it does not satisfy all the constraints but satisfies 

the optimality condition. The artificial variable has a positive value which indicates there 

is no feasible solution. 

 

Example 2 

Min Z = x1 –2x2– 3x3 

Subject to  

–2x1 + x2 + 3x3= 2 

2x1 + 3x2 + 4x3= 1 

    and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0 

 

 

 

Solution 

Standard LPP 

Min Z = Max Z' = –x1 +2x2+ 3x3 

    Subject to  

  –2x1 + x2 + 3x3 + a1 = 2 

  2x1 + 3x2 + 4x3+ a2 = 1 

  x1 , x2 , a1, a2  ≥ 0 

 

Auxiliary LPP 

Max Z* = 0x1 + 0x2 + 0x3 –1a1 –1a2 

Subject to  

  –2x1 + x2 + 3x3 + a1 = 2 

  2x1 + 3x2 + 4x3+ a2 = 1 

  x1 , x2 , a1, a2  ≥ 0 

 

Phase I 
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  Cj→ 0 0 0 -1 -1  

Basic 

Variables 
CB XB X1 X2 X3 A1 A2 

Min Ratio 

XB / XK 

a1 -1 2 -2 1 3 1 0 2/3 

a2 -1 1 2 3 4 0 1 1/4→ 

 
 

Z* = -3 

 

0 

 

-4 

↑ 

-7 

 

0 

 

0 

 

←Δj 

a1 -1 5/4 -7/4 -5/4 0 1 X  

x3 0 1/4 1/2 3/4 1 0 X  

 
 

Z* = -5/4 

 

7/4 

 

5/4 

 

0 

 

1 

 

X 

 

←Δj 

 

Since for all Δj ≥ 0, optimum level is achieved. At the end of phase-I Max Z* < 0 and one 

of the artificial variable a1 appears at the positive optimum level. Hence the given 

problem does not posses any feasible solution.  

 

3.1.3 Unbounded Solution 

In some cases if the value of a variable is increased indefinitely, the constraints are not 

violated. This indicates that the feasible region is unbounded at least in one direction. 

Therefore, the objective function value can be increased indefinitely. This means that the 

problem has been poorly formulated or conceived. 

 

In simplex method, this can be noticed if Δj value is negative to a variable (entering) 

which is notified as key column and the ratio of solution value to key column value is 

either negative or infinity (both are to be ignored) to all the variables. This indicates that 

no variable is ready to leave the basis, though a variable is ready to enter. We cannot 

proceed further and the solution is unbounded or not finite. 

  

Example 1 

Max Z = 6x1 - 2x2 
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Subject to  

2x1 - x2 ≤ 2 

x1  ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

Max Z = 6x1 - 2x2 + 0s1 + 0s2 

    Subject to  

  2x1 - x2 + s1 = 2 

  x1 + s2 = 4 

  x1 , x2 , s1, s2  ≥ 0 

 

 

  Cj→ 6 -2 0 0  

Basic 

Variables 
CB XB X1 X2 S1 S2 

Min Ratio 

XB / XK 

s1 0 2 2 -1 1 0 1→ 

s2 0 4 1 0 0 1 4 

 
 

Z = 0 

↑ 

-6 

 

2 

 

0 

 

0 

 

←Δj 

x1 6 1 1 -1/2 1/2 0 - 

s2 0 3 0 1/2 -1/2 1 6→ 

 
 

Z = 6 

 

0 

↑ 

-1 

 

3 

 

0 

 

←Δj 

x1 6 4 1 0 0 1  

x2 -2 6 0 1 -1 2  

 
 

Z = 12 

 

0 

 

0 

 

2 

 

2 

 

←Δj 
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The optimal solution is x1 = 4, x2 = 6 and Z =12 

 

In the starting table, the elements of x2 are negative and zero. This is an indication that 

the feasible region is not bounded. From this we conclude the problem has unbounded 

feasible region but still the optimal solution is bounded. 

 

Example 2 

Max Z = -3x1 + 2x2 

Subject to  

x1  ≤ 3 

x1 - x2 ≤ 0 

    and x1 ≥ 0, x2  ≥ 0 

 

 

 

Solution 

Standard LPP 

Max Z = -3x1 + 2 x2 + 0s1 + 0s2 

    Subject to  

  x1  + s1 = 3 

  x1 - x2 + s2 = 0 

  x1 , x2 , s1, s2  ≥ 0 

 

  Cj→ -3 2 0 0  

Basic 

Variables 
CB XB X1 X2 S1 S2 

Min Ratio 

XB / XK 

s1 0 3 1 0 1 0  

s2 0 0 1 -1 0 1  

 
 

Z = 0 

 

3 

↑ 

-2 

 

0 

 

0 

 

←Δj 
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Corresponding to the incoming vector (column x2), all elements are negative or zero. So 

x2 cannot enter the basis and the outgoing vector cannot be found. This is an indication 

that there exists unbounded solution for the given problem. 

 

Example 3 

Max Z = 107x1 + x2 +2x3 

Subject to  

14/3x1 + 1/3x2 - 2x3 ≤ 7/3 

16x1 + 1/2x2 - 6x3 ≤ 5 

3x1 - x2 - x3 ≤ 0 

and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0 

 

 

 

 

Solution 

Standard LPP 

Max Z = 107x1 + x2 +2x3 

    Subject to  

  14/3x1 + 1/3x2 - 2x3 + s1 = 7/3 

  16x1 + 1/2x2 - 6x3 + s2 = 5 

  3x1 - x2 - x3 + s3 = 0 

  x1 , x2 , s1, s2, s3   ≥ 0 

 

  Cj→ 107 1 2 0 0 0  

Basic 

Variables 
CB XB X1 X2 X3 S1 S2 S3 

Min Ratio 

XB / XK 

s1 0 7/3 14/3 1/3 -2 1 0 0 0.5 

s2 0 5 16 1/2 -6 0 1 0 0.8 
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s3 0 0 3 -1 -1 0 0 1 0→ 

 
 

Z = 0 

↑ 

-107 

 

-1 

 

-2 

 

0 

 

0 

 

0 

 

←Δj 

s1 0 7/3 0 17/9 -4/9 1 0 -14/9 - 

s2 0 5 0 35/6 -2/3 0 1 -16/3 - 

x1 107 0 1 -1/3 -1/3 0 0 1/3 - 

 
 

Z = 0 

 

0 

 

-110/3 

 

-113/3 

 

0 

 

0 

 

107/3 

 

←Δj 

 

Corresponding to negative Δ3, all the elements of x3 column are negative. So x3 cannot 

enter into the basis matrix. This is an indication that there exists an unbounded solution to 

the given problem. 

 

3.1.4 Multiple Optimal Solution 

When the objective function is parallel to one of the constraints, the multiple optimal 

solutions may exist. After reaching optimality, if at least one of the non-basic variables 

possess a zero value in Δj, the multiple optimal solution exist. 

 

Example  

Max Z = 6x1 + 4x2 

Subject to  

2x1 + 3x2 ≤ 30 

3x1 + 2x2 ≤ 24 

x1 + x2 ≥ 3 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

Standard LPP 

Max Z = 6x1 + 4x2 + 0s1 + 0s2 + 0s3 - Ma1 

    Subject to  
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  2x1 + 3x2 + s1 = 30 

  3x1 + 2x2 + s2 = 24 

  x1 + x2 – s3 + a1= 3 

    x1 , x2 , s1, s2, s3, a1  ≥ 0 

 

  Cj→ 6 4 0 0 0 -M  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 A1 

Min Ratio 

XB / XK 

s1 0 30 2 3 1 0 0 0 15 

s2 0 24 3 2 0 1 0 0 8 

a1 -M 3 1 1 0 0 -1 1 3→ 

 
 

Z = -3M 

↑ 

-M-6 

 

-M-4 

 

0 

 

0 

 

M 

 

0 

 

←Δj 

s1 0 24 0 1 1 0 2 X 12 

s2 0 15 0 -1 0 1 3 X 5→ 

x1 6 3 1 1 0 0 -1 X - 

 
 

Z = 18 

 

0 

 

2 

 

0 

 

0 

↑ 

-6 

 

X 

 

←Δj 

s1 0 14 0 5/3 1 -2/3 0 X 42/5→ 

s3 0 5 0 -1/3 0 1/3 1 X - 

x1 6 8 1 2/3 0 1/3 0 X 12 

 
 

Z = 48 

 

0 

↑ 

0 

 

0 

 

2 

 

0 

 

X 

 

←Δj 

 

Since all Δj ≥ 0, optimum solution is obtained as x1 = 8, x2 = 0, Max Z = 48 

 

Since Δ2 corresponding to non-basic variable x2 is obtained zero, this indicates that 

alternate solution or multiple optimal solution also exist. Therefore the solution as 



89 

 

obtained above is not unique. Thus we can bring x2 into the basis in place of s1. The new 

optimum simplex table is obtained as follows 

 

  Cj→ 6 4 0 0 0 -M  

Basic 

Variables 
CB XB X1 X2 S1 S2 S3 A1 

Min Ratio 

XB / XK 

x2 4 42/5 0 1 3/5 -2/5 0 X  

s3 0 39/5 0 0 1/5 1/5 1 X  

x1 6 12/5 1 0 -2/5 3/5 0 X  

 
 

Z = 48 

 

0 

 

0 

 

0 

 

2 

 

0 

 

X 

 

←Δj 

 

 

 

 

 

 

 

 

 

 

Exercise 

Solve  

1. Max Z = 3x1 + 2.5x2 

Subject to  

2x1 + 4x2 ≥ 40 

3x1 + 2x2 ≥ 50 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Unbounded solution] 
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2. Max Z = 3x1 + 2x2 

Subject to  

2x1 + x2 ≤ 2 

3x1 + 4x2 ≥ 12 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Pseudo-optimum solution] 

 

3. Min Z = x1 - 2x2 - 3x3  

Subject to  

-2x1 + x2 + 3x3 = 2 

2x1 + 3x2+ 4x3 = 1 

and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0 

[Ans. No feasible solution]  

 

4. Max Z = 3x1 + 2x2 + x3 + 4x4  

Subject to  

4x1 + 5x2 + x3 - 3x4 = 5 

2x1- 3x2 - 4x3 + 5x4 = 7 

x1 + 4x2 + 2.5x3 - 4x4 = 6 

and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0, x4  ≥ 0 

[Ans. No solution]  

 

 

5. Max Z = 3x1 + 9x2 

Subject to  

4x1 + 4x2 ≥ 8 

x1 + 2x2 ≥ 4 

and x1 ≥ 0, x2  ≥ 0 

[Degeneracy exists] 
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6. In the course of simplex table calculations, describe how u will detect a  

a. Degenerate 

b. An unbounded 

c. Non-existing feasible solution 

 

7. What is degeneracy? 

 

8. Write the role of pivot element in a simplex table. 

 

 

Module 3 

 

Unit 1 

1.1 The Revised Simplex Method 

1.2 Steps for solving Revised Simplex Method in Standard Form-I 

1.3 Worked Examples 

 

1.1 The Revised Simplex Method 

While solving linear programming problem on a digital computer by regular simplex 

method, it requires storing the entire simplex table in the memory of the computer table, 

which may not be feasible for very large problem. But it is necessary to calculate each 

table during each iteration. The revised simplex method which is a modification of the 

original method is more economical on the computer, as it computes and stores only the 

relevant information needed currently for testing and / or improving the current solution. 

i.e. it needs only 

 

 The net evaluation row Δj to determine the non-basic variable that enters the 

basis. 

 The pivot column 
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 The current basis variables and their values (XB column) to determine the 

minimum positive ratio and then identify the basis variable to leave the basis. 

 

The above information is directly obtained from the original equations by making use of 

the inverse of the current basis matrix at any iteration. 

 

There are two standard forms for revised simplex method 

 Standard form-I – In this form, it is assumed that an identity matrix is obtained 

after introducing slack variables only. 

 Standard form-II – If artificial variables are needed for an identity matrix, then 

two-phase method of ordinary simplex method is used in a slightly different way 

to handle artificial variables. 

 

1.2 Steps for solving Revised Simplex Method in Standard Form-I 

 

Solve by Revised simplex method 

Max Z = 2x1 + x2 

Subject to 

 3 x1 + 4 x2 ≤ 6 

 6 x1 + x2 ≤ 3 

and  x1, x2 ≥ 0 

 

SLPP 

Max Z = 2x1 + x2+ 0s1+ 0s2 

Subject to 

 3 x1 + 4 x2 + s1 = 6 

 6 x1 + x2 + s2 = 3 

and  x1, x2, s1, s2 ≥ 0 

 

Step 1 – Express the given problem in standard form – I 
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 Ensure all bi ≥ 0 

 The objective function should be of maximization 

 Use of non-negative slack variables to convert inequalities to equations 

 The objective function is also treated as first constraint equation  

 

Z - 2x1 - x2 + 0s1 + 0s2 = 0 

 3 x1 + 4 x2 + s1 + 0s2= 6                                            -- (1) 

 6 x1 + x2 + 0s1 + s2= 3 

and  x1, x2, s1, s2 ≥ 0 

 

Step 2 – Construct the starting table in the revised simplex form 

Express (1) in the matrix form with suitable notation 

 

 

 

Column vector corresponding to Z is usually denoted by e1. It is the first column of the 

basis matrix B1, which is usually denoted as B1 = [β0
(1), β1

(1), β2
(1) … βn

(1)] 

 

Hence the column β0
(1), β1

(1), β2
(1) constitutes the basis matrix B1 (whose inverse B1

-1 is 

also B1) 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a2 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 0 0 0    -2 -1 



94 

 

s1 0 1 0 6    3 4 

s2 0 0 1 3    6 1 

 

Step 3 – Computation of Δj for a1 
(1) and a2 

(1) 

 Δ1 = first row of B1
-1 * a1 

(1) = 1 * -2 + 0 * 3 + 0 *6 = -2 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -1 + 0 * 4 + 0 *1 = -1 

 

Step 4 – Apply the test of optimality 

 

Both Δ1 and Δ2 are negative. So find the most negative value and determine the 

incoming vector. 

Therefore most negative value is Δ1 = -2. This indicates a1 
(1) (x1) is incoming 

vector. 

 

Step 5 – Compute the column vector Xk 

  

 Xk = B1
-1 * a1 

(1) 

 

 

Stp 6 – Determine the outgoing vector. We are not supposed to calculate for Z row. 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 0 0 -2 - 

s1 0 1 0 6 3 2 
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s2 

 

 

0 

 

 

0 

 

 

1 

 

 

3 

 

 

6 

↑ 

incoming 

1/2→outgoing 

 

 

 

Step 7 – Determination of improved solution 

 

 Column e1 will never change, x1 is incoming so place it outside the rectangular 

boundary 

 

 β1
(1) β2

(1) XB   X1 

R1 0 0 0   -2 

R2 1 0 6    3 

R3 0 1 3    6 

 

Make the pivot element as 1 and the respective column elements to zero. 

 

 β1
(1) β2

(1) XB   X1 

R1 0 1/3 1    0 

R2 1 -1/2 9/2    0 

R3 0 1/6 1/2    1 

 

 Construct the table to start with second iteration 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a4 
(1) 

 

 

a2 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 0 1/3 1    0 -1 

s1 0 1 -1/2 9/2    0 4 

x1 0 0 1/6 1/2    1 1 

 

Δ4 = 1 * 0 + 0 * 0 + 1/3 *1 = 1/3 
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 Δ2 = 1 * -1 + 0 * 4 + 1/3 *1 = -2/3 

 

Δ2 is most negative. Therefore a2 
(1) is incoming vector. 

 

Compute the column vector 

 

 

 

Determine the outgoing vector 

  

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 1/3 1 -2/3 - 

s1 0 1 -1/2 9/2 7/2 9/7→outgoing 

x1 

 

 

0 

 

 

0 

 

 

1/6 

 

 

1/2 

 

 

1/6 

↑ 

incoming 

3 

 

 

 

Determination of improved solution 

 

 β1
(1) β2

(1) XB X2 

R1 0 1/3 1 -2/3 

R2 1 -1/2 9/2 7/2 

R3 0 1/6 1/2 1/6 

 

 

 β1
(1) β2

(1) XB X2 
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R1 4/21 5/21 13/7 0 

R2 2/7 -1/7 9/7 1 

R3 -1/21 8/42 2/7 0 

 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a4 
(1) 

 

 

a3 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 4/21 5/21 13/7    0 0 

x2 0 2/7 -1/7 9/7    0 1 

x1 0 -1/21 8/42 2/7    1 0 

 

Δ4 = 1 * 0 + 4/21 * 0 + 5/21 *1 = 5/21 

 Δ3 = 1 * 0 + 4/21 * 1 + 5/21 *0 = 4/21 

 

Δ4 and Δ3 are positive. Therefore optimal solution is Max Z = 13/7, x1= 2/7, x2 = 9/7 

 

1.3 Worked Examples 

 

 

Example 1 

Max Z = x1 + 2x2 

Subject to 

 x1 + x2 ≤ 3 

 x1 + 2x2 ≤ 5 

3x1 + x2 ≤ 6 

and  x1, x2 ≥ 0 

 

Solution 

SLPP 
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Max Z = x1 + 2x2+ 0s1+ 0s2+ 0s3 

Subject to 

 x1 + x2 + s1 = 3 

 x1 + 2x2 + s2 = 5 

 3x1 + x2 + s3 = 6 

and  x1, x2, s1, s2, s3  ≥ 0 

 

Standard Form-I 

Z - x1 - 2x2 - 0s1 - 0s2 - 0s3= 0 

 x1 + x2 + s1 + 0s2 + 0s3= 3 

 x1 + 2x2 + 0s1 + s2 + 0s3 = 5 

 3x1 + x2 + 0s1 + 0s2 + s3 = 6 

and  x1, x2, s1, s2 , s3 ≥ 0 

 

Matrix form 

 

 

 

Revised simplex table       Additional 

table 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a2 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1) β3

(1)  

Z 1 0 0 0 0    -1 -2 
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s1 0 1 0 0 3    1 1 

s2 0 0 1 0 5    1 2 

s3 0 0 0 1 6    3 1 

 

Computation of Δj for a1 
(1) and a2 

(1) 

  

 Δ1 = first row of B1
-1 * a1 

(1) = 1 * -1 + 0 * 1 + 0 *1 + 0 *3= -1 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -2 + 0 * 1 + 0 *2+ 0 *1 = -2 

 

Δ2 = -2 is most negative. So a2 
(1) (x2) is incoming vector. 

 

Compute the column vector Xk 

  Xk = B1
-1 * a2 

(1) 

 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) β3

(1) 

Z 1 0 0 0 0 -2 - 

s1 0 1 0 0 3 1 3 

s2 0 0 1 0 5 2 5/2→ 

s3 

 

0 

 

0 

 

0 

 

1 

 

6 

 

1 

↑ 

6 

 

Improved Solution 

 

 β1
(1) β2

(1) β3
(1) XB Xk 
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R1 0 0 0 0 -2 

R2 1 0 0 3 1 

R3 0 1 0 5 2 

R4 0 0 1 6 1 

 

 

 β1
(1) β2

(1) β3
(1) XB Xk 

R1 0 1 0 5 0 

R2 1 -1/2 0 1/2 0 

R3 0 1/2 0 5/2 1 

R4 0 -1/2 1 7/2 0 

 

Revised simplex table for II iteration 

 

 

 

 

 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a4 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1) β3

(1)  

Z 1 0 1 0 5    -1 0 

s1 0 1 -1/2 0 1/2    1 0 

x2 0 0 1/2 0 5/2    1 1 

s3 0 0 -1/2 1 7/2    3 0 

 

Δ1 = 1 * -1 + 0 * 1 + 1 *1 + 0 *3= 0 

 Δ4 = 1 * 0 + 0 * 0 + 1 *1+ 0 *0 = 1 
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Δ1 and Δ4 are positive. Therefore optimal solution is Max Z = 5, x1= 0, x2 = 5/2 

 

Example 2 

Max Z = 80x1 + 55x2 

Subject to 

 4x1 +2x2 ≤ 40 

 2x1 + 4x2 ≤ 32 

and  x1, x2 ≥ 0 

 

Solution 

Max Z = 80x1 + 55x2 

Subject to 

 2x1 +x2 ≤ 20 (divide by 2) 

 x1 + 2x2 ≤ 16 (divide by 2) 

 and  x1, x2 ≥ 0 

 

 

 

 

 

SLPP 

Max Z = 80x1 + 55x2+ 0s1+ 0s2 

Subject to 

 2x1 +x2+ s1 = 20 

 x1 + 2x2 + s2 = 16 

and  x1, x2, s1, s2 ≥ 0 

 

Standard form-I 

Z - 80x1 - 55x2 - 0s1 - 0s2 = 0 

2x1 +x2+ s1 + 0s2= 20 
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x1 + 2x2 + 0s1 + s2 = 16 

and  x1, x2, s1, s2 ≥ 0 

 

Matrix form 

 

 

Revised simplex table       Additional 

table 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a2 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 0 0 0    -80 -55 

s1 0 1 0 20    2 1 

s2 0 0 1 16    1 2 

 

Computation of Δj for a1 
(1) and a2 

(1) 

  

 Δ1 = first row of B1
-1 * a1 

(1) = 1 * -80 + 0 * 2 + 0 *1 = -80 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -55 + 0 * 1 + 0 *2 = -55 

 

Δ1 = -80 is most negative. So a1 
(1), (x1) is incoming vector. 

 

Compute the column vector Xk 

 

Xk = B1
-1 * a1 

(1) 
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Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 0 0 -80 - 

s1 0 1 0 20 2 10→ 

s2 

 

0 

 

0 

 

1 

 

16 

 

1 

↑ 

   16 

 

 

Improved solution 

 

 β1
(1) β2

(1) XB Xk 

R1 0 0 0 -80 

R2 1 0 20 2 

R3 0 1 16 1 

 

 β1
(1) β2

(1) XB Xk 

R1 40 0 800 0 

R2 1/2 0 10 1 

R3 -1/2 1 6 0 

 

Revised simplex table for II iteration 

 

 

Basic 

B1
-1  

XB 

 

Xk 

 

XB / Xk 

  

a3 
(1) 

 

a2 
(1) e1 β1

(1) β2
(1)  
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variables (Z)   

Z 1 40 0 800    0 -55 

x1 0 1/2 0 10    1 1 

s2 0 -1/2 1 6    0 2 

 

Computation of Δj for a3 
(1) and a2 

(1) 

  

 Δ3 = first row of B1
-1 * a3 

(1) = 1 * 0 + 40 * 1 + 0 *0 = 40 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -55 + 40 * 1 + 0 *2 = -15 

 

Δ2 = -15 is most negative. So a2 
(1) (x2) is incoming vector. 

 

Compute the column vector Xk 

 

 

 

 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) 

Z 1 40 0 800 -15 - 

x1 0 1/2 0 10 1/2 20 

s2 

 

0 

 

-1/2 

 

1 

 

6 

 

3/2 

↑ 

4→ 

 

 

Improved solution 
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 β1
(1) β2

(1) XB Xk 

R1 40 0 800 -15 

R2 1/2 0 10 1/2 

R3 -1/2 1 6 3/2 

 

 β1
(1) β2

(1) XB Xk 

R1 35 10 860 0 

R2 2/3 -1/3 8 0 

R3 -1/3 2/3 4 1 

 

Revised simplex table for III iteration 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a3 
(1) 

 

 

a4 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 35 10 860    0 0 

x1 0 2/3 -1/3 8    1 0 

x2 0 -1/3 2/3 4    0 1 

 

Computation of Δ3
 and Δ4 

 Δ3 = 1 * 0 + 35 * 1 + 10 *0 = 35 

 Δ4 = 1 * 0 + 35 * 0 + 10 *1 = 10 

Δ3 and Δ4 are positive. Therefore optimal solution is Max Z = 860, x1= 8, x2 = 4 

 

Example 3 

Max Z = x1 + x2+ x3 

Subject to 

 4x1 + 5x2 + 3x3≤ 15 

 10x1 + 7x2+ x3 ≤ 12 

and  x1, x2, x3 ≥ 0 
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Solution 

 

SLPP 

Max Z = x1 + x2+ x3+ 0s1+ 0s2 

Subject to 

 4x1 + 5x2 + 3x3+ s1 = 15 

 10x1 + 7x2+ x3 + s2 = 12 

and  x1, x2, x3, s1, s2 ≥ 0 

 

Standard form-I 

Z - x1 - x2 - x3 - 0s1 - 0s2 = 0 

4x1 +5x2 + 3x3+ s1 + 0s2= 15 

10x1 + 7x2+ x3 + 0s1+ s2 = 12 

and  x1, x2, x3, s1, s2 ≥ 0 

 

Matrix form 

 

 

 

Revised simplex table       Additional 

table 

 

 

Basic 

B1
-1  

XB 

 

Xk 

 

XB / 

  

a1 
(1) 

 

a2 
(1) 

 

a3 
(1) e1 β1

(1) β2
(1)  
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variables (Z) Xk    

Z 1 0 0 0    -1 -1 -1 

s1 0 1 0 15    4 5 3 

s2 0 0 1 12    10 7 1 

 

Computation of Δj for a1 
(1), a2 

(1) and a3 
(1) 

  

 Δ1 = first row of B1
-1 * a1 

(1) = 1 * -1 + 0 * 4 + 0 *10 = -1 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -1 + 0 * 5 + 0 *7 = -1 

 Δ3 = first row of B1
-1 * a3 

(1) = 1 * -1 + 0 * 3 + 0 *1 = -1 

 

There is a tie, so perform the computation of Δj with second row 

 

Δ1 = second row of B1
-1 * a1 

(1) = 0 * -1 + 1 * 4 + 0 *10 = 4 

 Δ2 = second row of B1
-1 * a2 

(1) = 0 * -1 + 1 * 5 + 0 *7 = 5 

 Δ3 = second row of B1
-1 * a3 

(1) = 0 * -1 + 1 * 3 + 0 *1 = 3 

 

Since Δj ≥ 0, we obtain pure optimum solution where Max Z = 0, x1= 0, x2= 0 

 

Example 4 

Max Z = 5x1 + 8x2 + 7x3 + 4x4 + 6x5 

Subject to 

 2x1 + 3x2 + 3x3+ 2x4 + 2x5≤ 20 

 3x1 + 5x2+ 4x3 + 2x4 + 4x5≤ 30 

and  x1, x2, x3, x4, x5 ≥ 0 

 

Solution 

 

SLPP 

Max Z = 5x1 + 8x2 + 7x3 + 4x4 + 6x5+ 0s1+ 0s2 
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Subject to 

 2x1 + 3x2 + 3x3+ 2x4 + 2x5+ s1 = 20 

 3x1 + 5x2+ 4x3 + 2x4 + 4x5+ s2 = 30 

and  x1, x2, x3, x4, x5, s1, s2 ≥ 0 

 

Standard form-I 

Z - 5x1 - 8x2 - 7x3 - 4x4 - 6x5 - 0s1 - 0s2 = 0 

2x1 + 3x2 + 3x3+ 2x4 + 2x5+ s1 + 0s2= 20 

3x1 + 5x2+ 4x3 + 2x4 + 4x5+ 0s1+ s2 = 30 

and  x1, x2, x3, x4, x5, s1, s2 ≥ 0 

 

Matrix form 

 

Revised simplex table  
Additional table 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a2 
(1) 

 

 

a3 
(1) 

 

 

a4 
(1) 

 

 

a5 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 0 0 0    -5 -8 -7 -4 -6 

s1 0 1 0 20    2 3 3 2 2 

s2 0 0 1 30    3 5 4 2 4 

Computation of Δj for a1 
(1) , a2 

(1) , a3 
(1) , a4 

(1) , a5 
(1) 

  

 Δ1 = first row of B1
-1 * a1 

(1) = 1 * -5 + 0 * 2 + 0 *3 = -5 
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 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -8 + 0 * 3 + 0 *5 = -8 

 Δ3 = first row of B1
-1 * a3 

(1) = 1 * -7 + 0 * 3 + 0 *4 = -7 

 Δ4 = first row of B1
-1 * a4 

(1) = 1 * -4 + 0 * 2 + 0 *2 = -4 

 Δ5 = first row of B1
-1 * a5 

(1) = 1 * -6 + 0 * 2 + 0 *4 = -6 

 

Δ2 = -8 is most negative. So a2 
(1), (x2) is incoming vector. 

 

Compute the column vector Xk 

 

Xk = B1
-1 * a2 

(1) 

 

 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 0 0 -8 - 

s1 0 1 0 20 3 20/3 

s2 

 

0 

 

0 

 

1 

 

30 

 

5 

↑ 

6→ 

 

 

Improved solution 

 

 

 β1
(1) β2

(1) XB Xk 

R1 0 0 0 -8 
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R2 1 0 20 3 

R3 0 1 30 5 

 

 β1
(1) β2

(1) XB Xk 

R1 0 8/5 48 0 

R2 1 -3/5 2 0 

R3 0 1/5 6 1 

 

Revised simplex table for II iteration 

 

Revised simplex table  
Additional table 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a7 
(1) 

 

 

a3 
(1) 

 

 

a4 
(1) 

 

 

a5 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 0 8/5 48    -5 0 -7 -4 -6 

s1 0 1 -3/5 2    2 0 3 2 2 

x2 

 

0 

 

0 

 

1/5 

 

6 

 
   

3 

 

1 

 

4 

 

2 

 

4 

 

 

Computation of Δj for a1 
(1) , a2 

(1) , a3 
(1) , a4 

(1) , a5 
(1) 

  

 Δ1 = -1/5, Δ7 = 8/5, Δ3 = -3/5, Δ4 = -4/5, Δ5 = 2/5 

 

Δ4 = -4/5 is most negative. So a4
(1), (x4) is incoming vector. 

 

Compute the column vector Xk 

 

Xk = B1
-1 * a4 

(1) 
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Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 
e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 8/5 48 -4/5 - 

s1 0 1 -3/5 2 4/5 10/4→ 

x2 

 

0 

 

0 

 

1/5 

 

6 

 

2/5 

↑ 

15 

 

 

Improved solution 

 

 β1
(1) β2

(1) XB Xk 

R1 0 8/5 48 -4/5 

R2 1 -3/5 2 4/5 

R3 0 1/5 6 2/5 

 

 β1
(1) β2

(1) XB Xk 

R1 1 1 50 0 

R2 5/4 -3/4 5/2 1 

R3 -1/2 1/2 5 0 

 

Revised simplex table for III iteration 

 

 



112 

 

Revised simplex table  
Additional table 

 

 

Basic 

variables 

B1
-1 

 

XB 

 

Xk 

 

XB / Xk 

  

a1 
(1) 

 

 

a7 
(1) 

 

 

a3 
(1) 

 

 

a6 
(1) 

 

 

a5 
(1) 

 

e1 

(Z) 
β1

(1) β2
(1)  

Z 1 1 1 50    -5 0 -7 0 -6 

x4 0 5/4 -3/4 5/2    2 0 3 1 2 

x2 

 

0 

 

-1/2 

 

1/2 

 

5 

 
   

3 

 

1 

 

4 

 

0 

 

4 

 

 

Computation of Δj for a1 
(1) , a2 

(1) , a3 
(1) , a4 

(1) , a5 
(1) 

  

Δ1 = 0, Δ7 = 1, Δ3 = 0, Δ6 = 1, Δ5 = 0 

 

Δj  ≥ 0, Therefore optimal solution is Max Z = 50, x1= 0, x2 = 5, x3= 0, x4 = 5/2, x5= 0 
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Exercise 

Solve by Revised Simplex method 

 

1. Max Z = x1 + x2 

Subject to 

  3x1 + 3x2 ≤ 6 

  x1 + 4x2 ≤ 4 

  x1, x2 ≥ 0 

[Ans. Max Z = 11/5, x1 = 8/5, x2 = 3/5] 

 

2. Max Z = x1 + 2x2 

Subject to 

  x1 + 2x2 ≤ 3 

  x1 + 3x2 ≤ 1 

   x1, x2 ≥ 0 

[Ans. Max Z = 1, x1 = 1, x2 = 0] 

 

3. Max Z = 5x1 + 3x2 

Subject to 

  3x1 + 5x2 ≤ 15 

  3x1 + 2x2 ≤ 10 

  x1, x2 ≥ 0 

[Ans. Max Z = 285/19, x1 = 22/19, x2 = 45/19] 

 

4. Max Z = x1 + x2 

Subject to 

  x1 + 2x2 ≤ 2 

  4x1 + x2 ≤ 4 

  x1, x2 ≥ 0 

[Ans. Max Z = 10/7, x1 = 6/7, x2 = 4/7] 

 

5. Max Z = 3x1 + x2+ 2x3+ 7x4 

Subject to 

  2x1 + 3x2 - x3+ 4x4 ≤ 40 

  -2x1 + 2x2 + 5x3 - x4 ≤ 35 

  x1 + x2 - 2x3+ 3x4 ≤ 100 

  x1, x2, x3, x4 ≥ 0 

 

[Ans. Max Z = 445/4, x1 = 71/4, x2 = 1, x3 = 29/2, x4 = 4] 
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Unit 2 

 

2.1 Computational Procedure of Revised Simplex Table in Standard Form-II 

2.2 Worked Examples 

2.3 Advantages and Disadvantages 

 

2.1 Computational Procedure of Revised Simplex Table in Standard 

Form-II 

 

Phase I – When the artificial variables are present in the initial solution with positive 

values 

 

Step 1 – First construct the simplex table in the following form 

 

Variables in 

the basis 
e1 e2 β1

(2) β2
(2) … βm

(2) XB
(2) Xk

(2) 

x0 1 0 0 0 … 0   

x'n +1 0 1 0 0 … 0   

xn +1 0 0 1 0 … 0   

xn +2 0 0 0 1 … 0   

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

. 

. 
  

xn +m 0 0 0 0 … 1   

 

Step 2 – If x'n +1 < 0, compute Δj = second row of B2
-1 * aj

(2) and continue to step 3. If max 

x'n +1 = 0 then go to phase II. 

 

Step 3 – To find the vector to be introduced into the basis 
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 If Δj ≥ 0, x'n +1 is at its maximum and hence no feasible solution exists for the 

problem 

 If at least one Δj < 0, the vector to be introduced in the basis, Xk
(2), corresponds to 

such value of k which is obtained by Δk = min Δj 

 If more than one value of Δj are equal to the maximum, we select Δk such that k is 

the smallest index. 

 

Step 4 – To compute Xk
(2)  by using the formula Xk

(2) = B2
-1 ak

(2) 

 

Step 5 – To find the vector to be removed from the basis. 

 The vector to be removed from the basis is obtained by using the minimum ratio 

rule. 

 

Step 6 – After determining the incoming and outgoing vector, next revised simplex table 

can be easily obtained 

 Repeat the procedure of phase I to get max x'n +1 = 0 or all Δj for phase I are ≥ 0. 

If max x'n +1 comes out of zero in phase I, all artificial variables must have the 

value zero. It should be noted carefully that max x'n +1 will always come out to be 

zero at the end of phase I if the feasible solution to the problem exists. 

Proceed to phase II 

 

Phase II - x'n +1 is considered like any other artificial variable; it can be removed from the 

basic solution. Only x0 must always remain in the basic solution. However there will 

always be at least one artificial vector in B2, otherwise it is not possible to have an m+2 

dimensional bases. The procedure in phase II will be the same as described in standard 

form-I 

 

2.1 Worked Examples 

 

Solve by revised simplex method 
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Example 1 

Min Z = x1 + 2x2 

Subject to 

 2x1 + 5x2 ≥ 6 

 x1 + x2 ≥ 2 

and  x1, x2  ≥ 0 

 

Solution 

SLPP 

Min Z = Max Z' = -x1 - 2x2+ 0s1+ 0s2 

Subject to 

 2x1 + 5x2 - s1 + a1= 6 

 x1 + x2 - s2 + a2 = 2 

and  x1, x2, s1, s2 ≥ 0 

 

Standard form-II 

Z' + x1 + 2x2 = 0 

-3x1 - 6x2 + s1 + s2 + av = -8     where av = - (a1 + a2) 

2x1 + 5x2 - s1 + a1= 6 

x1 + x2 – s2 + a2 = 2 

and  x1, x2, s1, s2 ≥ 0 

 

The second constraint equation is formed by taking the negative sum of two constraints. 

 

Matrix form 
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Phase -I 

I Iteration 

 

 

Basic 

variables 

B2
-1     

a1
(2) a2

(2) a3
(2) a4

(2) 
e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

e1 1 0 0 0 0    1 2 0 0 

av 0 1 0 0 -8    -3 -6 1 1 

a1 0 0 1 0 6    2 5 -1 0 

a2 0 0 0 1 2    1 1 0 -1 

 

Calculation of Δj 

Δ1 = second row of B2
-1 * a1

(2) = -3 

Δ2 = second row of B2
-1 * a2

(2) = -6 

Δ3 = second row of B2
-1 * a3

(2) = 1 

Δ4 = second row of B2
-1 * a4

(2) = 1 

Δ2 is most negative. Therefore a2
(2) (x2) is incoming vector 

 

Compute the column vector Xk 

Xk = B2
-1 * a2 

(2) 
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Basic 

variables 

B2
-1    

e1 e2 β1
(2) β2

(2) XB Xk XB/Xk 

e1 1 0 0 0 0 2  

av 0 1 0 0 -8 -6  

a1 0 0 1 0 6 5 6/5→ 

a2 

 

0 

 

0 

 

0 

 

1 

 

2 

 

1 

↑ 

2 

 

 

Improved Solution 

 

 β1
(1) β2

(1) XB Xk 

R1 0 0 0 2 

R2 0 0 -8 -6 

R3 1 0 6 5 

R4 0 1 2 1 

 

 β1
(1) β2

(1) XB Xk 

R1 -2/5 0 -12/5 0 

R2 6/5 0 -4/5 0 

R3 1/5 0 6/5 1 

R4 -1/5 1 4/5 0 

 

II iteration 
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Basic 

variables 

B2
-1     

a1
(2) a5

(2) a3
(2) a4

(2) 
e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

z' 1 0 -2/5 0 -12/5    1 0 0 0 

av 0 1 6/5 0 -4/5    -3 0 1 1 

x2 0 0 1/5 0 6/5    2 1 -1 0 

a2 0 0 -1/5 1 4/5    1 0 0 -1 

 

Calculation of Δj 

Δ1 = -3/5, Δ5 = 6/5, Δ3 = -1/5, Δ4 = 1 

Δ1 is most negative. Therefore a1
(2) (x1) is incoming vector 

 

Compute the column vector Xk 

Xk = B2
-1 * a1 

(2) 

 

 

 

Basic 

variables 

B2
-1    

e1 e2 β1
(2) β2

(2) XB Xk XB/Xk 

z' 1 0 -2/5 0 -12/5 1/5  

av 0 1 6/5 0 -4/5 -3/5  

x2 0 0 1/5 0 6/5 2/5 3 

a2 

 

0 

 

0 

 

-1/5 

 

1 

 

4/5 

 

3/5 

↑ 

4/3→ 

 

 

Improved Solution 
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 β1
(1) β2

(1) XB Xk 

R1 -2/5 0 -12/5 1/5 

R2 6/5 0 -4/5 -3/5 

R3 1/5 0 6/5 2/5 

R4 -1/5 1 4/5 3/5 

 

 β1
(1) β2

(1) XB Xk 

R1 -1/3 -1/3 -8/3 0 

R2 1 1 0 0 

R3 1/3 -2/3 2/3 0 

R4 -1/3 5/3 4/3 1 

 

 

 

III iteration 

Basic 

variables 

B2
-1     

a6
(2) a5

(2) a3
(2) a4

(2) 
e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

z' 1 0 -1/3 -1/3 -8/3    0 0 0 0 

av 0 1 1 1 0    0 0 1 1 

x2 0 0 1/3 -2/3 2/3    0 1 -1 0 

x1 0 0 -1/3 5/3 4/3    1 0 0 -1 

 

Since av =0 in XB column. We proceed to phase II 

 

Phase II 

 

Basic 

variables 

B2
-1     

a3
(2) a4

(2) 
e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

z' 1 0 -1/3 -1/3 -8/3    0 0 
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av 0 1 1 1 0    1 1 

x2 0 0 1/3 -2/3 2/3    -1 0 

x1 0 0 -1/3 5/3 4/3    0 -1 

 

Δ3 = first row of B2
-1 * a3

(2) = 1/3 

Δ4 = first row of B2
-1 * a4

(2) = 1/3 

Δ3 and Δ4 are positive. Therefore optimal solution is Z' = -8/3→ Z =8/3, x1= 4/3, x2 = 2/3 

 

Example 2 

Max Z = x1 + 2x2 + 3x3 - x4 

Subject to 

 x1 + 2x2 + 3x3 = 15 

 2x1 + x2 + 5x3 = 20 

x1 + 2x2 + x3 + x4 = 10 

and  x1, x2, x3 ≥ 0 

 

Solution 

SLPP 

Max Z = x1 + 2x2 + 3x3 - x4 

Subject to 

 x1 + 2x2 + 3x3 + a1= 15 

 2x1 + x2 + 5x3 + a2 = 20 

x1 + 2x2 + x3 + x4 + a3 = 10 

and  x1, x2, a1, a2 ≥ 0 

 

Standard form-II 

Z - x1 - 2x2 - 3x3 + x4 = 0 

-4x1 - 5x2 - 9x3 - x4 + av = -45   where av = - (a1 + a2+ a3)    

x1 + 2x2 + 3x3 + a1= 15 

2x1 + x2 + 5x3 + a2 = 20 
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x1 + 2x2 + x3 + x4 + a3 = 10 

x1, x2, a1, a2, a3  ≥ 0 

 

Matrix form 

 

 

Phase I 

I Iteration 

 

Basic 

variables 

B2
-1     

a1
(2) a2

(2) a3
(2) a4

(2) 
e1 e2 β1

(2) β2
(2) β3

(2) XB Xk XB/Xk  

e1 1 0 0 0 0 0    -1 -2 -3 1 

av 0 1 0 0 0 -45    -4 -5 -9 -1 

a1 0 0 1 0 0 15    1 2 3 0 

a2 0 0 0 1 0 20    2 1 5 0 

a3 0 0 0 0 1 10    1 2 1 1 

 

Calculation of Δj 

Δ1 = second row of B2
-1 * a1

(2) = -4 

Δ2 = second row of B2
-1 * a2

(2) = -5 

Δ3 = second row of B2
-1 * a3

(2) = -9 

Δ4 = second row of B2
-1 * a4

(2) = -1 
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Δ3 is most negative. Therefore a3
(2) (x3) is incoming vector 

 

Compute the column vector Xk 

Xk = B2
-1 * a3 

(2) 

 

 

 

 

 

 

Basic 

variables 

B2
-1    

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk 

e1 1 0 0 0 0 0 -3  

av 0 1 0 0 0 -45 -9  

a1 0 0 1 0 0 15 3 5 

a2 0 0 0 1 0 20 5 4→ 

a3 

 

0 

 

0 

 

0 

 

0 

 

1 10 

 

1 

↑ 

10 

 

 

Improved Solution 

 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 0 0 0 -3 
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R2 0 0 0 -45 -9 

R3 1 0 0 15 3 

R4 0 1 0 20 5 

R5 0 0 1 10 1 

 

 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 3/5 0 12 0 

R2 0 9/5 0 -9 0 

R3 1 -3/5 0 3 0 

R4 0 1/5 0 4 1 

R5 0 -1/5 1 6 0 

 

II Iteration 

 

 

 

 

Basic 

variables 

B2
-1     

a1
(2) a2

(2) a6
(2) a4

(2) 
e1 e2 β1

(2) β2
(2) β3

(2) XB Xk XB/Xk  

z 1 0 0 3/5 0 12    -1 -2 0 1 

av 0 1 0 9/5 0 -9    -4 -5 0 -1 

a1 0 0 1 -3/5 0 3    1 2 0 0 

x3 0 0 0 1/5 0 4    2 1 1 0 

a3 0 0 0 -1/5 1 6    1 2 0 1 

 

Calculation of Δj 

Δ1 = -2/5, Δ2 = -16/5, Δ6 = 9/5, Δ4 = -1 

Δ4 is most negative. Therefore a4
(2) (x4) is incoming vector 
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Compute the column vector Xk 

 

 

Basic 

variables 

B2
-1    

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk 

Z 1 0 0 3/5 0 12 1  

av 0 1 0 9/5 0 -9 -1  

a1 0 0 1 -3/5 0 3 0  

x3 0 0 0 1/5 0 4 0  

a3 

 

0 

 

0 

 

0 

 

-1/5 

 

1 6 

 

1 

↑ 

6→ 

 

 

Improved Solution 

 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 3/5 0 12 1 

R2 0 9/5 0 -9 -1 

R3 1 -3/5 0 3 0 

R4 0 1/5 0 4 0 

R5 0 -1/5 1 6 1 

 

 

 β1
(2) β2

(2) β3
(2) XB Xk 
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R1 0 4/5 -1 6 0 

R2 0 8/5 1 -3 0 

R3 1 -3/5 0 3 0 

R4 0 1/5 0 4 0 

R5 0 -1/5 1 6 1 

 

III Iteration 

 

Basic 

variables 

B2
-1     

a1
(2) a2

(2) a6
(2) a7

(2) 
e1 e2 β1

(2) β2
(2) β3

(2) XB Xk XB/Xk  

Z 1 0 0 4/5 -1 6    -1 -2 0 0 

av 0 1 0 8/5 1 -3    -4 -5 0 0 

a1 0 0 1 -3/5 0 3    1 2 0 0 

x3 0 0 0 1/5 0 4    2 1 1 0 

x4 0 0 0 -1/5 1 6    1 2 0 1 

 

Calculation of Δj 

Δ1 = 1/5, Δ2 = -7/5, Δ6 = 8/5, Δ7 = 1 

Δ2 is most negative. Therefore a2
(2) (x2) is incoming vector 

Compute the column vector Xk 

 

 

Basic 

variables 

B2
-1    

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk 
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z 1 0 0 4/5 -1 6 -16/5  

av 0 1 0 8/5 1 -3 -7/5  

a1 0 0 1 -3/5 0 3 7/5 15/7→ 

x3 0 0 0 1/5 0 4 1/5 20 

x4 

 

0 

 

0 

 

0 

 

-1/5 

 

1 6 

 

9/5 

↑ 

30/9 

 

 

Improved Solution 

 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 4/5 -1 6 -16/5 

R2 0 8/5 1 -3 -7/5 

R3 1 -3/5 0 3 7/5 

R4 0 1/5 0 4 1/5 

R5 0 -1/5 1 6 9/5 

 

 

 

 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 16/7 4/7 -1 90/7 0 

R2 1 1 1 0 0 

R3 5/7 -3/7 0 15/7 1 

R4 -1/7 2/7 0 25/7 0 

R5 -9/7 4/7 1 15/7 0 

 

IV Iteration 

 

Basic B2
-1     a1

(2) a5
(2) a6

(2) a7
(2) 
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variables e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk  

z 1 0 16/7 4/7 -1 90/7    -1 0 0 0 

av 0 1 1 1 1 0    -4 0 0 0 

x2 0 0 5/7 -3/7 0 15/7    1 1 0 0 

x3 0 0 -1/7 2/7 0 25/7    2 0 1 0 

x4 0 0 -9/7 4/7 1 15/7    1 0 0 1 

 

Since av =0 in XB column. We proceed to phase II 

 

Phase II 

Basic 

variables 

B2
-1     

a1
(2) 

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk  

z 1 0 16/7 4/7 -1 90/7    -1 

av 0 1 1 1 1 0    -4 

x2 0 0 5/7 -3/7 0 15/7    1 

x3 0 0 -1/7 2/7 0 25/7    2 

x4 0 0 -9/7 4/7 1 15/7    1 

 

Δ1 = 0, Δ1 is positive. Therefore optimal solution is Z =90/7, x1= 0, x2 = 15/7, x3 = 25/7, 

x4 = 15/7 

2.3 Advantages and Disadvantages 

Advantages 

 The method automatically generates the inverse of the current basis matrix and 

the new basic feasible solution as well. 

 It provides more information at lesser computational effort 

 It requires lesser computations than the ordinary simplex method 

 A less number of entries are needed in each table of revised simplex table 

 The control of rounding-off-errors occurs when a digital computer is used 
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Disadvantages 

In solving the numerical problems side computations are also requires, therefore more 

computational mistakes may occur in comparison to original simplex method. 

 

Exercise 

Solve by revised simplex method 

1. Max Z = 3x1 + 5x2 

Subject to 

  x1 ≤  4 

  x2 ≤  6 

  3x1 + 2x2 ≤ 18 

  x1, x2  ≥ 0 

 

[Ans. Max Z = 36, x1 = 2, x2 = 6] 

 

2. Max Z = 5x1 + 3x2  

Subject to 

  4x1 + 5x2 ≥ 10 

  5x1 + 2x2 ≤ 10 

  3x1 + 8x2 ≤ 12 

  x1, x2  ≥ 0 

 

[Ans. Max Z = 185/17, x1 = 28/17, x2 = 15/17] 

 

3. Max Z = x1 + x2 + 3x3 

Subject to 

  3x1 + 2x2 + x3 ≤ 3 

  2x1 + x2 + 2x3 ≤ 2 

  x1, x2, x3  ≥ 0 
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[Ans. Max Z = 3, x1 = 0, x2 = 0, x3 = 1] 

 

4. Min Z = 3x1 + x2  

Subject to 

  x1 + x2 ≥ 1 

  2x1 + x2 ≥ 0 

  x1, x2  ≥ 0 

 

[Ans. Min Z = 1, x1 = 0, x2 = 1] 

 

5. Min Z = 4x1 + 2x2 + 3x3 

Subject to 

  2x1 + 4x3 ≥ 5 

  2x1 + 4x2 + x3 ≥ 4 

  x1, x2, x3  ≥ 0 

 

[Ans. Min Z = 67/12, x1 = 0, x2 = 11/12, x3 = 5/4] 

 

 

 

 

 

 Unit 3 
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3.8 Duality and Simplex Method 

 

3.1 Duality in LPP 

Every LPP called the primal is associated with another LPP called dual. Either of the 

problems is primal with the other one as dual. The optimal solution of either problem 

reveals the information about the optimal solution of the other. 

 

Let the primal problem be  

 

Max Zx = c1x1 + c2x2 + … +cnxn    

Subject to restrictions 

a11x1 + a12x2 + … + a1nxn ≤ b1 

a21x1 + a22x2 + … + a2nxn ≤ b2 

. 

. 

. 

am1x1 + am2x2 + … + amnxn ≤  bn 

and 

x1 ≥ 0, x2 ≥ 0,…, xn ≥ 0 

 

The corresponding dual is defined as 

 

 

Min Zw = b1w1 + b2w2 + … + bmwm   

Subject to restrictions 

a11w1 + a21w2 + … + am1wm ≥ c1 

a12w1 + a22w2 + … + am2wm ≥ c2 

. 

. 

. 
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a1nw1 + a2nw2 + ……….+amnwm  ≥ cn 

and 

w1, w2, …, wm ≥ 0 

 

Matrix Notation 

Primal 

Max Zx = CX 

Subject to 

AX ≤ b and X ≥ 0 

 

Dual 

Min Zw = bT W 

Subject to 

AT W ≥ CT and W ≥ 0 

 

3.2 Important characteristics of Duality 

 

1. Dual of dual is primal 

2. If either the primal or dual problem has a solution then the other also has a 

solution and their optimum values are equal. 

3. If any of the two problems has an infeasible solution, then the value of the 

objective function of the other is unbounded. 

4. The value of the objective function for any feasible solution of the primal is less 

than the value of the objective function for any feasible solution of the dual. 

5. If either the primal or dual has an unbounded solution, then the solution to the 

other problem is infeasible. 

6. If the primal has a feasible solution, but the dual does not have then the primal 

will not have a finite optimum solution and vice versa. 

 

3.3 Advantages and Applications of Duality 
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1. Sometimes dual problem solution may be easier than primal solution, particularly 

when the number of decision variables is considerably less than slack / surplus 

variables. 

2. In the areas like economics, it is highly helpful in obtaining future decision in the 

activities being programmed. 

3. In physics, it is used in parallel circuit and series circuit theory. 

4. In game theory, dual is employed by column player who wishes to minimize his 

maximum loss while his opponent i.e. Row player applies primal to maximize his 

minimum gains. However, if one problem is solved, the solution for other also can 

be obtained from the simplex tableau. 

5. When a problem does not yield any solution in primal, it can be verified with 

dual. 

6. Economic interpretations can be made and shadow prices can be determined 

enabling the managers to take further decisions. 

 

3.4 Steps for a Standard Primal Form 

 

Step 1 – Change the objective function to Maximization form 

 

Step 2 – If the constraints have an inequality sign ‘≥’ then multiply both sides by -1 and 

convert the inequality sign to ‘≤’. 

 

Step 3 – If the constraint has an ‘=’ sign then replace it by two constraints involving the 

inequalities going in opposite directions. For example x1+ 2x2 = 4 is written as 

x1+2x2 ≤ 4 

x1+2x2 ≥ 4 (using step2) →  - x1-2x2 ≤ - 4  

 

Step 4 – Every unrestricted variable is replaced by the difference of two non-negative 

variables. 
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Step5 – We get the standard primal form of the given LPP in which. 

o All constraints have ‘≤’ sign, where the objective function is of 

maximization form. 

o All constraints have ‘≥’ sign, where the objective function is of 

minimization from. 

 

3.5 Rules for Converting any Primal into its Dual 

 

1. Transpose the rows and columns of the constraint co-efficient. 

2. Transpose the co-efficient (c1,c2,…cn) of the objective function and the right side 

constants (b1,b2,…bn)  

3. Change the inequalities from ‘≤’ to ‘≥’ sign. 

4. Minimize the objective function instead of maximizing it. 

 

3.6 Example Problems 

 

Write the dual of the given problems 

 

Example 1 

Min Zx = 2x2 + 5x3  

Subject to  

x1+x2 ≥ 2 

2x1+x2+6x3 ≤ 6 

x1 - x2 +3x3 = 4 

x1, x2 , x3 ≥ 0 

 

 

 

Solution  
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 Primal  

 Max Zx' = -2x2 – 5x3  

 Subject to  

-x1-x2 ≤ -2 

2x1+x2+6x3 ≤ 6 

x1 - x2 +3x3 ≤ 4 

-x1 + x2 -3x3 ≤ -4 

x1, x2 , x3 ≥ 0 

 

Dual  

Min Zw = -2w1 + 6w2 + 4w3 – 4w4 

Subject to  

-w1 + 2w2 +w3 –w4 ≥ 0 

  -w1 + w2 - w3 +w4 ≥ -2 

  6w2 + 3w3 –3w4 ≥ -5 

  w1, w2, w3, w4 ≥ 0 

 

Example 2 

Min Zx = 3x1 - 2x2 + 4x3  

Subject to  

3x1+5x2 + 4x3 ≥ 7 

6x1+x2+3x3 ≥ 4 

7x1 - 2x2 -x3 ≥ 10 

x1 - 2x2 + 5x3 ≥ 3  

4x1 + 7x2 - 2x3 ≥ 2  

x1, x2 , x3 ≥ 0 
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Solution 

Primal  

 Max Zx' = -3x1 + 2x2 - 4x3  

  Subject to  

-3x1 - 5x2 - 4x3 ≤ -7 

-6x1 - x2 - 3x3 ≤ -4 

-7x1 + 2x2 + x3 ≤ - 10 

-x1 + 2x2 - 5x3  ≤ - 3  

-4x1 - 7x2 + 2x3 ≤ - 2  

x1, x2 , x3 ≥ 0 

  

Dual 

Min Zw = -7w1 - 4w2 - 10w3 – 3w4 -2w5 

Subject to  

-3w1 - 6w2 - 7w3 –w4 – 4w5 ≥ -3 

  -5w1 - w2 + 2w3 + 2w4 – 7w5 ≥ 2 

  -4w1 - 3w2 + w3 - 5w4 + 2w5 ≥ -4 

  w1, w2, w3, w4, w5 ≥ 0 

 

Example 3 

Max Z = 2x1+ 3x2 + x3  

Subject to  

4x1+ 3x2 + x3 = 6 

x1+ 2x2 + 5x3 = 4  

x1, x2  ≥ 0 

 

Solution 

Primal  
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Max Zx = 2x1+ 3x2 + x3  

Subject to  

4x1+ 3x2 + x3 ≤ 6 

-4x1 - 3x2 - x3 ≤ -6 

x1 + 2x2 + 5x3 ≤ 4  

-x1 - 2x2 - 5x3 ≤ -4  

x1, x2  ≥ 0 

 

Dual  

Min Zw = 6w1 - 6w2 + 4w3 –4w4  

Subject to  

  4w1 - 4w2 + w3 –w4 ≥ 2 

  3w1 - 3w2 + 2w3 - 2w4 ≥ 3 

  w1 - w2 + 5w3 - 5w4 ≥ 1 

  w1, w2, w3, w4≥ 0 

 

Example 4 

Min Zx = x1+ x2 + x3  

Subject to  

x1 - 3x2 + 4x3 = 5 

x1 - 2x2 ≤ 3 

2x2 - x3 ≥ 4  

x1, x2  ≥ 0 ,x3 is unrestricted in sign 

 

Solution  

Primal  

 Max Z' = - x1- x2 – x3' + x3''  

 Subject to  
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x1 - 3x2 + 4(x3' - x3'') ≤ 5 

-x1+ 3x2 - 4(x3' - x3'') ≤ -5 

x1 - 2x2 ≤ 3 

             -2x2 + x3' - x3'' ≤ -4  

x1, x2 , x3', x3'' ≥ 0 

  

Dual 

  Min Zw = 5w1 - 5w2 + 3w3 – 4w4  

Subject to  

w1 - w2 + w3 ≥ -1 

  -3w1 + 3w2 - 2w3 - 2w4 ≥ -1 

  4w1 - 4w2 + w4 ≥ -1 

             -4w1 + 4w2 - w4 ≥ 1 

  w1, w2, w3, w4, ≥ 0 

 

Example 5 

Max Z = x1 - x2 + 3x3  

Subject to  

x1 + x2 + x3 ≤ 10 

2x1 – x3 ≤ 2 

2x1 - 2x2 + 3x3 ≤ 6  

x1, x2, x3  ≥ 0  

 

Solution  

Primal  

Max Zx = x1 - x2 + 3x3  

Subject to  

x1 + x2 + x3 ≤ 10 

2x1 - x3 ≤ 2 

2x1 - 2x2 + 3x3 ≤ 6  
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x1, x2, x3  ≥ 0  

 

Dual  

Min Zw = 10w1 + 2w2 + 6w3 

Subject to  

w1 + 2w2 +2w3 ≥ 1 

  w1 - 2w3 ≥ -1 

  w1 - w2 + 3w3 ≥ 3 

  w1, w2, w3 ≥ 0 

 

3.7 Primal –Dual Relationship 

 

Weak duality property 

If x is any feasible solution to the primal problem and w is any feasible solution to the 

dual problem then CX ≤ bT W. i.e. ZX ≤ ZW 

 

Strong duality property 

If x* is an optimal solution for the primal problem and w* is the optimal solution for the 

dual problem then CX* = bT W* i.e. ZX = ZW 

 

Complementary optimal solutions property 

At the final iteration, the simplex method simultaneously identifies an optimal solution 

x* for primal problem and a complementary optimal solution w* for the dual problem 

where ZX = ZW. 

 

Symmetry property 

For any primal problem and its dual problem, all relationships between them must be 

symmetric because dual of dual is primal. 

 

Fundamental duality theorem 
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 If one problem has feasible solution and a bounded objective function (optimal 

solution) then the other problem has a finite optimal solution. 

 If one problem has feasible solution and an unbounded optimal solution then the 

other problem has no feasible solution 

 If one problem has no feasible solution then the other problem has either no 

feasible solution or an unbounded solution. 

 

If kth constraint of primal is equality then the dual variable wk is unrestricted in sign 

 

If pth variable of primal is unrestricted in sign then pth constraint of dual is an equality. 

 

Complementary basic solutions property 

Each basic solution in the primal problem has a complementary basic solution in the dual 

problem where ZX = ZW. 

 

Complementary slackness property 

The variables in the primal basic solution and the complementary dual basic solution 

satisfy the complementary slackness relationship as shown in the table. 

 

Primal variable Associated dual variable 

Decision variable (xj) Zj –Cj (surplus variable) j = 1, 2, ..n 

Slack variable (Si) Wi (decision variable) i = 1, 2, .. n 

 

  

3.8 Duality and Simplex Method 

 

1. Solve the given primal problem using simplex method. Hence write the solution of 

its dual  

Max Z = 30x1 + 23x2 + 29x3 

Subject to  
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6x1 + 5x2 + 3x3 ≤ 26 

        4x1 + 2x2 + 6x3 ≤ 7 

                    x1 ≥ 0, x2 ≥ 0  

Solution 

Primal form 

Max Z = 30x1 + 23x2 + 29x3 

Subject to  

6x1 + 5x2 + 3x3 ≤ 26 

        4x1 + 2x2 + 6x3 ≤ 7 

                    x1 ≥ 0, x2 ≥ 0  

 

SLPP 

Max Z = 30x1 + 23x2 + 29x3+ 0s1+ 0s2 

Subject to  

6x1 + 5x2 + 3x3 + s1 = 26 

        4x1 + 2x2 + 6x3 + s2 = 7 

                    x1, x2, s1, s2 ≥ 0  

 

  Cj→ 30 23 29 0 0  

Basic 

Variables 
CB XB X1 X2 X3 S1 S2 

Min Ratio 

XB / XK 

s1 0 26 6 5 3 1 0 26/6 

s2 0 7 4 2 6 0 1 7/4→ 

 
 

Z = 0 

↑ 

-30 

 

-23 

 

-29 

 

0 

 

0 

 

←Δj 

s1 0 31/2 0 2 -6 1 -3/2 31/4 

x1 30 7/4 1 1/2 3/2 0 1/4 7/2→ 

 
 

Z = 105/2 

 

0 

↑ 

-8 

 

16 

 

0 

 

15/2 

 

←Δj 
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s1 0 17/2 -4 0 -12 1 -5/2  

x2 23 7/2 2 1 3 0 1/2  

 
 

Z =161/2 

 

16 

 

0 

 

40 

 

0 

 

23/2 

 

←Δj 

 

Δj ≥ 0 so the optimal solution is Z = 161/2, x1 = 0, x2 = 7/2, x3 = 0.  

The optimal solution to the dual of the above problem will be 

Zw* = 161/2, w1 = Δ4 = 0, w2 = Δ5 = 23/2 

In this way we can find the solution to the dual without actually solving it.  

 

2. Use duality to solve the given problem. Also read the solution of its primal. 

Min Z = 3x1 + x2  

Subject to 

 x1 + x2 ≥ 1 

                   2x1 + 3x2 ≥ 2 

                   x1 ≥ 0 , x2 ≥ 0 

 

Solution 

Primal 

Min Z =Max Z' = -3x1 - x2  

Subject to 

- x1 - x2 ≤ -1 

                   -2x1 - 3x2 ≤ - 2 

                   x1 ≥ 0 , x2 ≥ 0 

Dual 

    Min Zw = -w1 - 2w2  

Subject to  

-w1 - 2w2 ≥ -3 

  -w1 - 3w2 ≥ -1 

  w1, w2 ≥ 0 

 

Changing the dual form to SLPP 
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Max Zw
' = w1 + 2w2 + 0s1+ 0s2 

Subject to  

w1 + 2w2 + s1= 3 

  w1 + 3w2 + s2 = 1 

  w1, w2, s1, s2 ≥ 0 

 

  Cj→ 1 2 0 0  

Basic 

Variables 
CB WB W1 W2 S1 S2 

Min Ratio 

WB / WK 

s1 0 3 1 2 1 0 3/2 

s2 0 1 1 3 0 1 1/3← 

 
 

Zw
' = 0 

 

-1 

↑ 

-2 

 

0 

 

0 

 

←Δj 

s1 0 7/3 1/3 0 1 -2/3 7 

w2 2 1/3 1/3 1 0 1/3 1→ 

 
 

Zw
' = 2/3 

↑ 

-1/3 

 

0 

 

0 

 

2/3 

 

←Δj 

s1 0 2 0 -1 1 -1  

w1 1 1 1 3 0 1  

 
 

Zw
' = 1 

 

0 

 

1 

 

0 

 

1 

 

←Δj 

 

Δj ≥ 0 so the optimal solution is Zw
' = 1, w1 = 1, w2 = 0  

  

The optimal solution to the primal of the above problem will be 

Zx* = 1, x1 = Δ3 = 0, x2 = Δ4 = 1 

 

3. Write down the dual of the problem and solve it. 

Max Z = 4x1 + 2x2  

Subject to  
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- x1 - x2  ≤ -3 

        -x1 + x2  ≤ -2 

                    x1 ≥ 0, x2 ≥ 0  

 

 

 

 

Solution 

Primal 

Max Z = 4x1 + 2x2  

Subject to  

- x1 - x2  ≤ -3 

        -x1 + x2  ≤ -2 

                    x1 ≥ 0, x2 ≥ 0  

Dual 

    Min Zw = -3w1 - 2w2  

Subject to  

-w1 - w2 ≥ 4 

  -w1 + w2 ≥ 2 

  w1, w2 ≥ 0 

 

Changing the dual form to SLPP 

Max Zw
' = 3w1 + 2w2 + 0s1+ 0s2 - Ma1- Ma2 

Subject to  

-w1 - w2 - s1 + a1= 4 

  -w1 + w2 - s2 + a2= 2 

  w1, w2, s1, s2, a1, a2 ≥ 0 

 

 

  Cj→ 3 2 0 0 -M -M  



145 

 

Basic 

Variables 
CB WB W1 W2 S1 S2 A1 A2 

Min Ratio 

WB / WK 

a1 -M 4 -1 -1 -1 0 1 0 - 

a2 -M 2 -1 1 0 -1 0 1 2→ 

 
 

Zw
' = -6M 

 

2M - 

3 

↑ 

-2 

 

M 

 

M 

 

0 

 

0 
 

←Δj 

a1 -M 6 -2 0 -1 -1 1 X  

w2 2 2 -1 1 0 -1 0 X  

 
 

Zw
' = -6M+4 

 

2M-5 

 

0 

 

M 

 

M-2 

 

0 

 

X 

 

←Δj 

 

Δj ≥ 0 and at the positive level an artificial vector (a1) appears in the basis. Therefore the 

dual problem does not posses any optimal solution. Consequently there exists no finite 

optimum solution to the given problem. 

  

4. Use duality to solve the given problem. 

Min Z = x1 - x2  

Subject to 

 2x1 + x2 ≥ 2 

                   -x1 - x2 ≥ 1 

                   x1 ≥ 0 , x2 ≥ 0 

 

Solution 

Primal 

Min Z =Max Z' = -x1 + x2  

Subject to 

- 2x1 - x2 ≤ -2 

                   x1 + x2 ≤ -1 

                   x1 ≥ 0 , x2 ≥ 0 
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Dual 

    Min Zw = -2w1 - w2  

Subject to  

-2w1 + w2 ≥ -1 

  -w1 + w2 ≥ 1 

  w1, w2 ≥ 0 

 

Changing the dual form to SLPP 

Max Zw
' = 2w1 + w2 + 0s1+ 0s2 - Ma1 

Subject to  

2w1 - w2 + s1= 1 

  -w1 + w2 - s2 + a1 = 1 

  w1, w2, s1, s2 ≥ 0 

 

Auxiliary LPP 

Max Zw
' = 0w1 + 0w2 + 0s1+ 0s2 - 1a1 

Subject to  

2w1 - w2 + s1= 1 

  -w1 + w2 - s2 + a1 = 1 

  w1, w2, s1, s2, a1 ≥ 0 

 

Phase I 

 

  Cj→ 0 0 0 0 -1  

Basic 

Variables 
CB WB W1 W2 S1 S2 A1 

Min Ratio 

XB / XK 

s1 0 1 2 -1 1 0 0 - 

a1 -1 1 -1 1 0 -1 1 1→ 

 
 

Zw
' = -1 

 

1 

↑ 

-1 

 

0 

 

1 

 

0 

 

←Δj 
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s1 0 2 1 0 1 -1 X  

w2 0 1 -1 1 0 -1 X  

 
 

Zw
' = 0 

 

0 

 

0 

 

0 

 

0 

 

X 

 

←Δj 

 

Δj ≥ 0 and no artificial vector appear at the positive level of the basis. Hence proceed to 

phase II  

  

 

 

Phase II 

 

  Cj→ 2 1 0 0  

Basic 

Variables 
CB WB W1 W2 S1 S2 

Min Ratio 

XB / XK 

s1 0 2 1 0 1 -1 2→ 

w2 1 1 -1 1 0 -1 - 

 
 

Zw
' = 1 

↑ 

-3 

 

0 

 

0 

 

-1 

 

←Δj 

w1 2 2 1 0 1 -1 - 

w2 1 3 0 1 1 -2 - 

 
 

Zw
' = 7 

 

0 

 

0 

 

3 

↑ 

-4 

 

←Δj 

 

 

Δj = -4 and all the elements of s2 are negative; hence we cannot find the outgoing vector. 

This indicates there is an unbounded solution. Consequently by duality theorem the 

original primal problem will have no feasible solution.  
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5. Solve the given primal problem using simplex method. Hence write the solution of 

its dual  

Max Z = 40x1 + 50x2  
Subject to  

2x1 + 3x2 ≤ 3 

        8x1 + 4x2 ≤ 5 

                    x1 ≥ 0, x2 ≥ 0  

Solution 

Primal form  

Max Z = 40x1 + 50x2  
Subject to  

2x1 + 3x2 ≤ 3 

        8x1 + 4x2 ≤ 5 

                    x1 ≥ 0, x2 ≥ 0  

 

SLPP 

Max Zx = 40x1 + 50x2 + 0s1+ 0s2 

Subject to  

2x1 + 3x2 + s1 = 3 

        8x1 + 4x2 + s2 = 5 

                    x1, x2, s1, s2 ≥ 0  

 

 Cj → 40 50 0 0  

Basic 

Variables 
CB XB X1 X2 S1 S2 

Min Ratio 

XB / XK 

s1 0 3 2 3 1 0 1→ 

s2 0 5 8 4 0 1 5/4 

 
 

Zx = 0 

 

-40 

↑ 

-50 

 

0 

 

0 

 

←Δj 

x2 50 1 2/3 1 1/3 0 3/2 

s2 0 1 16/3 0 -4/3 1 3/16→ 

 
 

Zx = 50 

↑ 

-20/3 

 

0 

 

50/3 

 

0 

 

←Δj 
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x2 50 7/8 0 1 1/2 -1/8  

x1 40 3/16 1 0 -1/4 3/16  

 
 

Zx = 205/4 

 

0 

 

0 

 

15 

 

5/4 

 

←Δj 

  

 

Δj ≥ 0 so the optimal solution is Z = 205/4, x1 = 3/16, x2 = 7/8  

  

The optimal solution to the dual of the above problem will be 

Zw* = 205/4, w1 = Δ4 = 15, w2 = Δ5 = 5/4 

  

 

Exercise 

 

1. Explain the concept of duality in LPP. 

2. Explain the characteristics of duality. 

3. Mention the advantages and application of duality 

4. Write the steps for converting LPP into its dual. 

5. Explain the concept of primal- dual relationship 

 

Obtain the dual of the following linear programming problems 

 

1. Max Z = 3x1 + 4x2  

Subject to  

2x1 + 6x2 ≤ 16 

        5x1 + 2x2 ≥ 20 

            x1 ≥ 0, x2 ≥ 0 

 

2. Min Z = 7x1 + 3x2 + 8x3 

Subject to  
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8x1 + 2x2 + x3 ≥ 3 

  3x1 + 6x2 + 4x3 ≥ 4 

4x1 + x2 + 5x3 ≥ 1 

             x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 

 

3. Max Z = 6x1 + 4x2 + 6x3 + x4 

Subject to  

4x1 + 4x2 + 4x3 + 8x4 = 21 

  3x1 + 17x2 + 80x3 + 2x4 ≤ 48 

             x1 ≥ 0, x2 ≥ 0, x3, x4 are unrestricted 

 

 

 

Use duality to solve the following LPP 

 

1. Max Z = 3x1 + 2x2  

Subject to  

2x1 + x2 ≤ 5 

        x1 + x2 ≤ 3 

            x1 ≥ 0, x2 ≥ 0 

[Ans. Max Z = 8, x1 =2, x2 = 1, w1 = 1, w2 =2, Min Zw =8] 

 

2. Min Z = 2x1 + 2x2  

Subject to  

2x1 + 4x2 ≥ 1 

        x1 + 2x2 ≥ 1 

2x1 + x2 ≥ 1 

            x1 ≥ 0, x2 ≥ 0 

[Ans. Max Z = 4/3, x1 = 1/3, x2 = 1/3] 
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3. Max Z = 8x1 + 6x2  

Subject to  

x1 - x2 ≤ 3/5 

        x1 - x2 ≥ 2 

            x1 ≥ 0, x2 ≥ 0 

[Ans. Dual problem does not possess feasible solution] 

  

Module 4 

 

Unit 1 

1.1 Introduction 

1.2 Computational Procedure of Dual Simplex Method 

1.3 Worked Examples 

1.4 Advantage of Dual Simplex over Simplex Method 

1.5 Introduction to Transportation Problem 

1.6 Mathematical Formulation 

1.7 Tabular Representation 

1.8 Some Basic Definitions 

 

1.1 Introduction 

 

Any LPP for which it is possible to find infeasible but better than optimal initial basic 

solution can be solved by using dual simplex method. Such a situation can be recognized 

by first expressing the constraints in ‘≤’ form and the objective function in the 

maximization form. After adding slack variables, if any right hand side element is 

negative and the optimality condition is satisfied then the problem can be solved by dual 

simplex method. 
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Negative element on the right hand side suggests that the corresponding slack variable is 

negative. This means that the problem starts with optimal but infeasible basic solution 

and we proceed towards its feasibility. 

 

The dual simplex method is similar to the standard simplex method except that in the 

latter the starting initial basic solution is feasible but not optimum while in the former it is 

infeasible but optimum or better than optimum. The dual simplex method works towards 

feasibility while simplex method works towards optimality. 

 

 

1.2  Computational Procedure of Dual Simplex Method 

The iterative procedure is as follows 

 

Step 1 - First convert the minimization LPP into maximization form, if it is given in the 

minimization form. 

 

Step 2 - Convert the ‘≥’ type inequalities of given LPP, if any, into those of ‘≤’ type by 

multiplying the corresponding constraints by -1. 

 

Step 3 – Introduce slack variables in the constraints of the given problem and obtain an 

initial basic solution. 

 

Step 4 – Test the nature of Δj in the starting table 

 If all Δj and XB are non-negative, then an optimum basic feasible solution has 

been attained. 

 If all Δj are non-negative and at least one basic variable XB is negative, then go to 

step 5. 

 If at least Δj one is negative, the method is not appropriate. 
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Step 5 – Select the most negative XB. The corresponding basis vector then leaves the 

basis set B. Let Xr be the most negative basic variable. 

 

Step 6 – Test the nature of Xr 

 If all Xr are non-negative, then there does not exist any feasible solution to the 

given problem. 

 If at least one Xr is negative, then compute Max (Δj / Xr ) and determine the least 

negative for incoming vector. 

 

Step 7 – Test the new iterated dual simplex table for optimality. 

Repeat the entire procedure until either an optimum feasible solution has been attained in 

a finite number of steps. 

 

1.3  Worked Examples 

 

Example 1 

Minimize Z = 2x1 + x2 

    Subject to  

 3x1 + x2 ≥ 3 

 4x1 + 3x2 ≥ 6 

x1 + 2x2 ≥ 3 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

 

Step 1 – Rewrite the given problem in the form 

 

Maximize Z2 – = ׳x1 – x2   

Subject to  

 –3x1 – x2 ≤ –3 
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 –4x1 – 3x2 ≤ –6 

–x1   – 2x2 ≤ –3 

x1, x2  ≥ 0 

 

Step 2 – Adding slack variables to each constraint 

 

Maximize Z2 – = ׳x1 – x2   

Subject to  

 –3x1 – x2 + s1 = –3 

 –4x1 – 3x2 + s2 = –6 

–x1 – 2x2 + s3 = –3 

x1, x2, s1,s2, s3  ≥ 0 

 

Step 3 – Construct the simplex table 

 

 Cj → -2 -1 0 0 0  

Basic 

variables 
CB XB X1 X2 S1 S2 S3 

 

s1 0 -3 -3 -1 1 0 0  

s2 0 -6 -4 -3 0 1 0 → outgoing 

s3 0 -3 -1 -2 0 0 1  

 
 

Z0 = ׳ 

 

2 

↑ 

1 

 

0 

 

0 

 

0 

 

←Δj 

 

Step 4 – To find the leaving vector 

Min (-3, -6, -3) = -6. Hence s2 is outgoing vector 

 

Step 5 – To find the incoming vector 

Max (Δ1 / x21, Δ2 / x22) = (2/-4, 1/-3) = -1/3. So x2 is incoming vector 
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Step 6 –The key element is -3. Proceed to next iteration  

 

 Cj → -2 -1 0 0 0  

Basic 

variables 
CB XB X1 X2 S1 S2 S3  

s1 0 -1 -5/3 0 1 -1/3 0 → outgoing 

x2 -1 2 4/3 1 0 -1/3 0  

s3 0 1 5/3 0 0 -2/3 1  

 
 

Z2- = ׳ 

↑ 

2/3 

 

0 

 

0 

 

1/3 

 

0 

 

←Δj 

 

Step 7 – To find the leaving vector 

Min (-1, 2, 1) = -1. Hence s1 is outgoing vector 

 

Step 8 – To find the incoming vector 

Max (Δ1 / x11, Δ4 / x14) = (-2/5, -1) = -2/5. So x1 is incoming vector 

 

Step 9 –The key element is -5/3. Proceed to next iteration  

 

 Cj → -2 -1 0 0 0  

Basic 

variables 
CB XB X1 X2 S1 S2 S3  

x1 -2 3/5 1 0 -3/5 1/5 0  

x2 -1 6/5 0 1 4/5 -3/5 0  

s3 0 0 0 0 1 -1 1  

 
 

Z12/5- = ׳ 

 

0 

 

0 

 

2/5 

 

1/5 

 

0 

 

←Δj 

 

Step 10 – Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Max Z12/5- = ׳, Z = 12/5, 

and x1=3/5, x2 = 6/5 
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Example 2 

 

Minimize Z = 3x1 + x2 

    Subject to  

 x1 + x2 ≥ 1 

 2x1 + 3x2 ≥ 2 

    and x1 ≥ 0, x2  ≥ 0 

 

Solution 

 

Maximize Z3 – = ׳x1 – x2   

Subject to  

 –x1 – x2 ≤ –1 

 –2x1 – 3x2 ≤ –2 

x1, x2  ≥ 0 

SLPP 

Maximize Z3 – = ׳x1 – x2   

Subject to  

 –x1 – x2 + s1 = –1 

 –2x1 – 3x2 + s2 = –2 

x1, x2, s1,s2  ≥ 0 

 

 Cj → -3 -1 0 0  

Basic 

variables 
CB XB X1 X2 S1 S2  

s1 0 -1 -1 -1 1 0  

s2 0 -2 -2 -3 0 1 →  

 

 

 

Z0 = ׳ 

 

3 

↑ 

1 

 

0 

 

0 

 

←Δj 
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s1 0 -1/3 -1/3 0 1 -1/3 →  

x2 -1 2/3 2/3 1 0 -1/3  

 

 

 

Z2/3- = ׳ 

 

7/3 

 

0 

 

0 

↑ 

1/3 

 

←Δj 

s2 0 1 1 0 -3 1  

x2 -1 1 1 1 -1 0  

 

 

 

Z1- = ׳ 

 

2 

 

0 

 

1 

 

0 

 

←Δj 

Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Max Z1- = ׳, Z = 1, and x1= 0, x2 = 1 

 

Example 3 

Max Z = –2x1 – x3 

    Subject to  

 x1 + x2 – x3 ≥ 5 

x1 – 2x2 + 4x3 ≥ 8 

    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 

Solution 

Max Z = –2x1 – x3 

Subject to 

 –x1 – x2 + x3 ≤ –5  

 –x1 + 2x2 – 4x3 ≤ –8 

 x1, x2, x3 ≥ 0 

 

SLPP 

Max Z = –2x1 – x3 

Subject to 

 –x1 – x2 + x3 + s1 = –5  

 –x1 + 2x2 – 4x3 + s2 = –8 

 x1, x2, x3, s1, s2 ≥ 0 
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 Cj → -2 0 -1 0 0  

Basic 

variables 
CB XB X1 X2 X3 S1 S2  

s1 0 -5 -1 -1 1 1 0  

s2 0 -8 -1 2 -4 0 1 → 

 
 

Z = 0 

 

2 

 

0 

↑ 

1 

 

0 

 

0 

 

←Δj 

s1 0 -7 -5/4 -1/2 0 1 1/4 → 

x3 -1 2 1/4 -1/2 1 0 -1/4  

 
 

Z = -2 

 

7/4 

↑ 

1/2 

 

0 

 

0 

 

1/4 

 

←Δj 

x2 0 14 5/2 1 0 -2 -1/2  

x3 -1 9 3/2 0 1 -1 -1/2  

 
 

Z = -9 

 

1/2 

 

0 

 

0  

 

1 

 

1/2 

 

←Δj 

 

Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Z = -9, and x1= 0, x2 = 14, x3 = 9 

 

Example 4 

Find the optimum solution of the given problem without using artificial variable. 

Max Z = –4x1 –6x2 – 18x3 

    Subject to  

 x1 + 3x3 ≥ 3 

x2 + 2x3 ≥ 5 

    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 

 

Solution 

 

Max Z = –4x1 –6x2 – 18x3 

Subject to 
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 –x1 – 3x3 ≤ –3  

 –x2 – 2x3 ≤ –5 

 x1, x2, x3 ≥ 0 

 

SLPP 

Max Z = –4x1 –6x2 – 18x3 

Subject to 

 –x1 – 3x3 + s1 = –3  

 –x2 – 2x3 + s2 = –5 

 x1, x2, x3, s1, s2 ≥ 0 

 Cj → -4 -6 -18 0 0  

Basic 

variables 
CB XB X1 X2 X3 S1 S2  

s1 0 -3 -1 0 -3 1 0  

s2 0 -5 0 -1 -2 0 1 → 

 

 

 

Z = 0 

 

4 

↑ 

6 

 

18 

 

0 

 

0 

 

←Δj 

s1 0 -3 -1 0 -3 1 0 → 

x2 -6 5 0 1 2 0 -1  

 

 

 

Z = -30 

 

4 

 

0 

↑ 

6 

 

0 

 

6 

 

←Δj 

x3 -18 1 1/3 0 1 -1/3 0  

x2 -6 3 -2/3 1 0 2/3 -1  

 

 

 

Z = -36 

 

2 

 

0 

 

0 

 

2 

 

6 

 

←Δj 

 

Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Z = -36, and x1= 0, x2 = 3, x3 = 1 

 

Example 5 

Min Z = 6x1 + 7x2 + 3x3 + 5x4 
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    Subject to  

 5x1 + 6x2 - 3x3 + 4x4 ≥ 12 

x2 + 5x3 - 6x4 ≥ 10 

2x1 + 5x2 + x3 + x4 ≥ 8 

    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0, x4 ≥ 0 

 

Solution 

 

Max Z' = - 6x1 - 7x2 - 3x3 - 5x4 

Subject to 

 -5x1 - 6x2 + 3x3 - 4x4 ≤ -12 

-x2 - 5x3 + 6x4 ≤ -10 

-2x1 - 5x2 - x3 - x4 ≤ -8 

 x1, x2, x3, x4 ≥ 0 

 

 

 

 

SLPP 

Max Z' = - 6x1 - 7x2 - 3x3 - 5x4 

Subject to 

 -5x1 - 6x2 + 3x3 - 4x4 + s1 = -12 

-x2 - 5x3 + 6x4 + s2 = -10 

-2x1 - 5x2 - x3 - x4 + s3 = -8 

 x1, x2, x3, x4, s1, s2, s3 ≥ 0 

 Cj → -6 -7 -3 -5 0 0 0  

Basic 

variables 
CB XB X1 X2 X3 X4 S1 S2 S3  

s1 0 -12 -5 -6 3 -4 1 0 0 → 

s2 0 -10 0 -1 -5 6 0 1 0  
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s3 0 -8 -2 -5 -1 1 0 0 1  

 
 

Z'= 0 

 

6 

↑ 

7 

 

3 

 

5 

 

0 

 

0 

 

0 
 

x2 -7 2 5/6 1 -1/2 2/3 -1/6 0 0  

s2 0 -8 5/6 0 -11/2 20/3 -1/6 1 0 → 

s3 0 2 13/6 0 -7/2 7/3 -5/6 0 1  

 
 

Z'= -14 

 

1/6 

 

0 

↑ 

13/2 

 

1/3 

 

7/6 

 

0 

 

0 
 

x2 -7 30/11 25/33 1 0 2/33 -5/33 -1/11 0  

x3 -3 16/11 -5/33 0 1 -40/33 1/33 -2/11 0  

s3 0 78/11 18/11 0 0 -21/11 -8/11 -7/11 1  

 Z'= -258/11 38/33 0 0 271/33 32/33 13/11 0  

 

Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Z= 258/11 and x1= 0, x2 = 30/11, x3 = 

16/11, x4= 0 

 

 

 

1.4  Advantage of Dual Simplex over Simplex Method 

 

The main advantage of dual simplex over the usual simplex method is that we do not 

require any artificial variables in the dual simplex method. Hence a lot of labor is saved 

whenever this method is applicable. 

 

1.5 Introduction to Transportation Problem 

 

The Transportation problem is to transport various amounts of a single homogeneous 

commodity that are initially stored at various origins, to different destinations in such a 

way that the total transportation cost is a minimum. 



162 

 

 

It can also be defined as to ship goods from various origins to various destinations in such 

a manner that the transportation cost is a minimum. 

 

The availability as well as the requirements is finite. It is assumed that the cost of 

shipping is linear. 

 

1.6 Mathematical Formulation 

 

Let there be m origins, ith origin possessing ai units of a certain product 

 

Let there be n destinations, with destination j requiring bj units of a certain product 

 

Let cij be the cost of shipping one unit from ith source to jth destination 

 

Let xij be the amount to be shipped from ith source to jth destination 

  

It is assumed that the total availabilities Σai satisfy the total requirements Σbj i.e. 

 

Σai = Σbj (i = 1, 2, 3 … m and j = 1, 2, 3 …n) 

 

The problem now, is to determine non-negative of xij satisfying both the availability 

constraints 

 

 

as well as requirement constraints 
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and the minimizing cost of transportation (shipping) 

 

 

This special type of LPP is called as Transportation Problem. 

 

1.7 Tabular Representation 

 

Let ‘m’ denote number of factories (F1, F2 … Fm) 

Let ‘n’ denote number of warehouse (W1, W2 … Wn) 

 

 

    W→ 

F 

↓ 

 

W1 

 

W2 

 

… 

 

Wn 

 

Capacities 

(Availability) 

F1 c11 c12 … c1n a1 

F2 c21 c22 … c2n a2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Fm cm1 cm2 … cmn am 

Required b1 b2 … bn Σai = Σbj 

    W→ 

F 

↓ 

 

W1 

 

W2 

 

… 

 

Wn 

 

Capacities 

(Availability) 

F1 x11 x12 … x1n a1 

F2 x21 x22 … x2n a2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Fm xm1 xm2 … xmn am 

Required b1 b2 … bn Σai = Σbj 
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In general these two tables are combined by inserting each unit cost cij with the 

corresponding amount xij in the cell (i, j). The product cij xij gives the net cost of shipping 

units from the factory Fi to warehouse Wj. 

 

1.8 Some Basic Definitions 

 

 Feasible Solution 

A set of non-negative individual allocations (xij ≥ 0) which simultaneously 

removes deficiencies is called as feasible solution. 

 

 Basic Feasible Solution 

A feasible solution to ‘m’ origin, ‘n’ destination problem is said to be basic if the 

number of positive allocations are m+n-1. If the number of allocations is less than 

m+n-1 then it is called as Degenerate Basic Feasible Solution. Otherwise it is 

called as Non- Degenerate Basic Feasible Solution. 

 

 Optimum Solution 

A feasible solution is said to be optimal if it minimizes the total transportation 

cost. 

 

 

 

Exercise 

Solve by dual simplex method 

 

1. Max Z = -3x1 - 2x2 

Subject to  

x1 + x2 ≥ 1 

x1 + x2 ≤ 7 
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x1 + 2x2 ≤ 10 

x2 ≤ 3 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Max Z = -2, x1 = 0, x2 = 1] 

 

2. Max Z = –2x1 –2x2 – 4x3 

Subject to  

2x1 + 3x2 + 5x3 ≥ 2 

3x1 + x2 + 7x3 ≤ 3 

and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 

[Ans. Max Z = 4/3, x1 = 0, x2 = 2/3, x3 = 0] 

 

3. Min Z = x1 + 2x2 + 3x3 

Subject to  

2x1 - x2 + x3 ≥ 4 

x1 + x2 + 2x3 ≥ 8 

x2 - x3 ≥ 2 

and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 

[Ans. Min Z = 10, x1 = 6, x2 = 2, x3 = 0] 

 

 

 

 

 

 

 

4. Min Z = 3x1 + 2x2 + x3 + 4x4 

Subject to  

2x1 + 4x2 + 5x3 + x4 ≥ 10 

3x1 - x2 + 7x3 - 2x4 ≥ 2 
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5x1 + 2x2 + x3 + 6x4 ≥ 15 

and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0, x4 ≥ 0 

[Ans. Min Z = 215/23, x1 = 65/23, x2 = 0, x3 = 20, x4 = 0] 

 

5. Min Z = x1 + x2 

Subject to  

2x1 + x2 ≥ 2 

-x1 - x2 ≥ 1 

and x1 ≥ 0, x2  ≥ 0 

[Ans. Pseudo Optimum basic feasible solution] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit 2 

2.1 Methods for Initial Basic Feasible Solution 

2.1.1 North-West Corner Rule 

2.1.2 Row Minima Method 

2.1.3 Column Minima Method 
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2.1.4 Lowest Cost Entry Method (Matrix Minima Method) 

2.1.5 Vogel’s Approximation Method (Unit Cost Penalty Method) 

 

 

2.1 Methods for Initial Basic Feasible Solution 

 

Some simple methods to obtain the initial basic feasible solution are 

 

1. North-West Corner Rule 

2. Row Minima Method 

3. Column Minima Method 

4. Lowest Cost Entry Method (Matrix Minima Method) 

5. Vogel’s Approximation Method (Unit Cost Penalty Method) 

 

2.1.1 North-West Corner Rule 

 

Step 1 

 The first assignment is made in the cell occupying the upper left-hand (north-

west) corner of the table.  

 The maximum possible amount is allocated here i.e. x11 = min (a1, b1). This value 

of x11 is then entered in the cell (1,1) of the transportation table. 

 

Step 2  

i. If b1 > a1, move vertically downwards to the second row and make the second 

allocation of amount x21 = min (a2, b1 - x11) in the cell (2, 1). 

ii. If b1 < a1, move horizontally right side to the second column and make the second 

allocation of amount x12 = min (a1 - x11, b2) in the cell (1, 2). 

iii. If b1 = a1, there is tie for the second allocation. One can make a second allocation 

of magnitude x12 = min (a1 - a1, b2) in the cell (1, 2) or x21 = min (a2, b1 - b1) in the 

cell (2, 1) 



168 

 

 

Step 3 

Start from the new north-west corner of the transportation table and repeat steps 1 and 2 

until all the requirements are satisfied. 

 

Find the initial basic feasible solution by using North-West Corner Rule 

 

1. 

 

 

 

 

 

 

 

 

Solution 

 
W1 W2 W3 W5 Availability 

F1 
5 2   

7    2    0 
(19) (30)   

F2 
 6 3  

9     3    0 
 (30) (40)  

F3 
  4 14 

18   14  0 
  (70) (20) 

 

Requirement 

 

5 

0 

 

 

8 

6 

0 

 

7 

4 

0 

 

14 

0 

 

 

Initial Basic Feasible Solution 

x11 = 5, x12 = 2, x22 = 6, x23 = 3, x33 = 4, x34 = 14 

The transportation cost is 5 (19) + 2 (30) + 6 (30) + 3 (40) + 4 (70) + 14 (20) = Rs. 1015 

 

    W→ 

F 

↓ 

 

W1 

 

W2 

 

W3 

 

W4 

 

Factory 

Capacity 

F1 19 30 50 10 7 

F2 70 30 40 60 9 

F3 40 8 70 20 18 

Warehouse 

Requirement 
5 8 7 14 34 
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2.   

  

 D1 D2 D3 D4 Supply 

O1 1 5 3 3 34 

O2 3 3 1 2 15 

O3 0 2 2 3 12 

O4 2 7 2 4 19 

Demand 21 25 17 17 80 

 

 

Solution 

 

 D1 D2 D3 D4 Supply 

 21 13    

O1 (1) (5)   34   13   0 

  12 3   

O2  (3) (1)  15    3    0 

   12   

O3   (2)  12     0       

   2 17  

O4   (2) (4) 19      17 

Demand 

 

 

 

21 

0 

 

 

25 

12 

0 

 

17 

14 

2 

0 

17 

0 

 

 

 

Initial Basic Feasible Solution 

x11 = 21, x12 = 13, x22 = 12, x23 = 3, x33 = 12, x43 = 2, x44 = 17 

The transportation cost is 21 (1) + 13 (5) + 12 (3) + 3 (1) + 12 (2) + 2 (2) + 17 (4) = Rs. 

221 

3.      

From To Supply 
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Solution 

 

From To Supply 

 3 1     

 

(2) (11)    4  1  0    

 2 4 2   

 (4) (7) (2)  8  6  2  0 

   3 6  

   (8) (12) 9  6  0 

Demand 

3 

0 

 

3 

2 

0 

4 

0 

 

5 

3 

0 

6 

0 

 

 

 

Initial Basic Feasible Solution 

x11 = 3, x12 = 1, x22 = 2, x23 = 4, x24 = 2, x34 = 3, x35 = 6 

The transportation cost is 3 (2) + 1 (11) + 2 (4) + 4 (7) + 2 (2) + 3 (8) + 6 (12) = Rs. 153 

 

2.1.2 Row Minima Method 

 

Step 1 

 The smallest cost in the first row of the transportation table is determined. 

 Allocate as much as possible amount xij = min (a1, bj) in the cell (1, j) so that the 

capacity of the origin or the destination is satisfied. 

 

Step 2 

 

2 11 10 3 7 4 

1 4 7 2 1 8 

3 1 4 8 12 9 

Demand 3 3 4 5 6  
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 If x1j = a1, so that the availability at origin O1 is completely exhausted, cross out 

the first row of the table and move to second row. 

 If x1j = bj, so that the requirement at destination Dj is satisfied, cross out the jth 

column and reconsider the first row with the remaining availability of origin O1. 

 If x1j = a1 = bj, the origin capacity a1 is completely exhausted as well as the 

requirement at destination Dj is satisfied. An arbitrary tie-breaking choice is 

made. Cross out the jth column and make the second allocation x1k = 0 in the cell 

(1, k) with c1k being the new minimum cost in the first row. Cross out the first 

row and move to second row. 

 

Step 3 

Repeat steps 1 and 2 for the reduced transportation table until all the requirements are 

satisfied 

 

Determine the initial basic feasible solution using Row Minima Method 

 

1.  

 W1 W2 W3 W4 Availability 

F1 19 30 50 10 7 

F2 70 30 40 60 9 

F3 40 80 70 20 18 

Requirement 5 8 7 14  

      

Solution 

 W1 W2 W3 W4  

    7 
X 

F1 (19) (30) (50) (10) 

F2 
 

(70) (30) (40) (60) 
9 

F3  (80) (70) (20) 18 
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(40) 

 5 8 7 7  

 

 

 

 

 

 

 

 

 

 

 

 

 W1 W2 W3 W4  

    7 
X 

F1 (19) (30) (50) (10) 

  8 1  
X 

F2 (70) (30) (40) (60) 

 

F3 

 

(40) 

 

(80) 

 

(70) 

 

(20) 

 

18 

 5 X 6 7  

 

 W1 W2 W3 W4  

    7 
X 

F1 (19) (30) (50) (10) 

  8 1  
X 

F2 (70) (30) (40) (60) 

 5  6 7 
X 

F3 (40) (80) (70) (20) 

 W1 W2 W3 W4  

    7 
X 

F1 (19) (30) (50) (10) 

  8    

F2 (70) (30) (40) (60) 1 

F3 
 

(40) (80) (70) (20) 
18 

 5 X 7 7  
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 X X X X  

Initial Basic Feasible Solution 

x14 = 7, x22 = 8, x23 = 1, x31 = 5, x33 = 6, x34 = 7 

The transportation cost is 7 (10) + 8 (30) + 1 (40) + 5 (40) + 6 (70) + 7 (20) = Rs. 1110 

2. 

 A B C Availability 

I 50 30 220 1 

II 90 45 170 4 

III 250 200 50 4 

Requirement 4 2 3  

 

Solution 

 A B C Availability 

I 
 1  

    1  0           
 (30)  

II 
3 1  

4  3  0 
(90) (45)  

III 
1  3 

4  1  0 
(250)  (50) 

Requirement 4 

1 

0 

2 

1 

0 

3 

0 

 

 

Initial Basic Feasible Solution 

x12 = 1, x21 = 3, x22 = 1, x31 = 1, x33 = 3 

The transportation cost is 1 (30) + 3 (90) + 1 (45) + 1 (250) + 3 (50) = Rs. 745 

 

2.1.3 Column Minima Method 

 

Step 1 
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Determine the smallest cost in the first column of the transportation table. Allocate xi1 = 

min (ai, b1) in the cell (i, 1). 

 

Step 2 

 If xi1 = b1, cross out the first column of the table and move towards right to the 

second column 

 If xi1 = ai, cross out the ith row of the table and reconsider the first column with the 

remaining demand. 

 If xi1 = b1= ai, cross out the ith row and make the second allocation xk1 = 0 in the 

cell (k, 1) with ck1 being the new minimum cost in the first column, cross out the 

column and move towards right to the second column. 

 

Step 3 

Repeat steps 1 and 2 for the reduced transportation table until all the requirements are 

satisfied. 

 

Use Column Minima method to determine an initial basic feasible solution 

1. 

 

 W1 W2 W3 W4 Availability 

F1 19 30 50 10 7 

F2 70 30 40 60 9 

F3 40 80 70 20 18 

Requirement 5 8 7 14  

      

Solution 

 

 W1 W2 W3 W4  

F1 
5    

2 
(19) (30) (50) (10) 
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F2 (70) (30) (40) (60) 
9 

 

F3 (40) (80) (70) (20) 
18 

 X 8 7 14  

 

 

 W1 W2 W3 W4  

F1 
5 2   

X 
(19) (30) (50) (10) 

 

F2 (70) (30) (40) (60) 
9 

 

F3 (40) (80) (70) (20) 
18 

 X 6 7 14  

 

 

 

 

 

 

 W1 W2 W3 W4  

F1 
5 2   

X 
(19) (30) (50) (10) 

F2 
 6   

3 
(70) (30) (40) (60) 

 

F3 (40) (80) (70) (20) 
18 

 X X 7 14  

  

W1 

 

W2 

 

W3 

 

W4 

 

F1 
5 2   

X 
(19) (30) (50) (10) 

F2 
 6 3  

X 
(70) (30) (40) (60) 
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F3 (40) (80) (70) (20) 
18 

 X X 4 14  

 W1 W2 W3 W4  

F1 
5 2   

X 
(19) (30) (50) (10) 

F2 
 6 3  

X 
(70) (30) (40) (60) 

F3 
  4  

14 
(40) (80) (70) (20) 

 X X X 14  

 W1 W2 W3 W4  

F1 
5 2   

X 
(19) (30) (50) (10) 

F2 
 6 3  

X 
(70) (30) (40) (60) 
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Initial Basic Feasible Solution 

x11 = 5, x12 = 2, x22 = 6, x23 = 3, x33 = 4, x34 = 14 

The transportation cost is 5 (19) + 2 (30) + 6 (30) + 3 (40) + 4 (70) + 14 (20) = Rs. 1015 

 

2. 

 D1 D2 D3 D4 Availability 

S1 11 13 17 14 250 

S2 16 18 14 10 300 

S3 21 24 13 10 400 

Requirement 200 225 275 250  

      

Solution 

F3 
  4 14 

X 
(40) (80) (70) (20) 

 X X X X  

 D1 D2 D3 D4  

S1 
200 50     

250   50   0   
(11) (13)   

S2 
 175  125 

300   125  0 
 (18)  (10) 

S3 
  275 125 

400  125   0 
  (13) (10) 

 200 225 275 250  
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Initial Basic Feasible Solution 

x11 = 200, x12 = 50, x22 = 175, x24 = 125, x33 = 275, x34 = 125 

The transportation cost is 

200 (11) + 50 (13) + 175 (18) + 125 (10) + 275 (13) + 125 (10) = Rs. 12075 

 

2.1.4 Lowest Cost Entry Method (Matrix Minima Method) 

Step 1 

Determine the smallest cost in the cost matrix of the transportation table. Allocate xij = 

min (ai, bj) in the cell (i, j) 

 

Step 2 

 If xij = ai, cross out the ith row of the table and decrease bj by ai. Go to step 3. 

 If xij = bj, cross out the jth column of the table and decrease ai by bj. Go to step 3. 

 If xij = ai = bj, cross out the ith row or jth column but not both. 

 

Step 3 

Repeat steps 1 and 2 for the resulting reduced transportation table until all the 

requirements are satisfied. Whenever the minimum cost is not unique, make an arbitrary 

choice among the minima. 

Find the initial basic feasible solution using Matrix Minima method 

0 

 

175 

0 

0 

 

0 
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1. 

 W1 W2 W3 W4 Availability 

F1 19 30 50 10 7 

F2 70 30 40 60 9 

F3 40 8 70 20 18 

Requirement 5 8 7 14  

      

Solution 

 

 

 

 

 

 W1 W2 W3 W4  

F1 
 

(19) (30) (50) (10) 
7 

F2 
 

(70) (30) (40) (60) 
9 

F3 
 8   

10 

(40) (8) (70) (20) 

 5 X 7 14  

 W1 W2 W3 W4  

F1 
   7 

X 
(19) (30) (50) (10) 

F2 
 

(70) (30) (40) (60) 
9 

F3 
 8   

10 
(40) (8) (70) (20) 

 5 X 7 7  
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 W1 W2 W3 W4  

F1 
   7 

X 
(19) (30) (50) (10) 

F2 
 

(70) (30) (40) (60) 
9 

F3 
3 8  7 

X 
(40) (8) (70) (20) 

 2 X 7 X  

 

 

Initial Basic Feasible Solution 

x14 = 7, x21 = 2, x23 = 7, x31 = 3, x32 = 8, x34 = 7 

The transportation cost is 7 (10) + 2 (70) + 7 (40) + 3 (40) + 8 (8) + 7 (20) = Rs. 814 

 W1 W2 W3 W4  

F1 
   7 

X 
(19) (30) (50) (10) 

F2 
 

(70) (30) (40) (60) 
9 

F3 
 8  7 

3 
(40) (8) (70) (20) 

 5 X 7 X  

 W1 W2 W3 W4  

F1 
   7 

X 
(19) (30) (50) (10) 

F2 
2  7  

X 
(70) (30) (40) (60) 

F3 
3 8  7 

X 
(40) (8) (70) (20) 

 X X X X  
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2. 

   To Availability 

From 

2 11 10 3 7 4 

1 4 7 2 1 8 

3 9 4 8 12 9 

Requirement 3 3 4 5 6  

Solution 

To 

From 

   4  
4  0 

   (3)  

3    5 
8  5  0 

(1)    (1) 

 3 4 1 1 
9   5  4  1  0 

 (9) (4) (8) (12) 

3 

0 

 

3 

0 

 

4 

0 

 

5 

1 

0 

6 

1 

0 

 

Initial Basic Feasible Solution 

x14 = 4, x21 = 3, x25 = 5, x32 = 3, x33 = 4, x34 = 1, x35 = 1 

The transportation cost is 4 (3) + 3 (1) + 5(1) + 3 (9) + 4 (4) + 1 (8) + 1 (12) = Rs. 78 

 

2.1.5 Vogel’s Approximation Method (Unit Cost Penalty Method) 

Step1 

For each row of the table, identify the smallest and the next to smallest cost. Determine 

the difference between them for each row. These are called penalties. Put them aside by 

enclosing them in the parenthesis against the respective rows. Similarly compute 

penalties for each column. 
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Step 2 

Identify the row or column with the largest penalty. If a tie occurs then use an arbitrary 

choice. Let the largest penalty corresponding to the ith row have the cost cij. Allocate the 

largest possible amount xij = min (ai, bj) in the cell (i, j) and cross out either ith row or jth 

column in the usual manner. 

Step 3 

Again compute the row and column penalties for the reduced table and then go to step 2. 

Repeat the procedure until all the requirements are satisfied. 

Find the initial basic feasible solution using vogel’s approximation method 

1. 

 W1 W2 W3 W4 Availability 

F1 19 30 50 10 7 

F2 70 30 40 60 9 

F3 40 8 70 20 18 

Requirement 5 8 7 14  

      

Solution 

 W1 W2 W3 W4 Availability Penalty 

F1 19 30 50 10 7 19-10=9 

F2 70 30 40 60 9 40-30=10 

F3 40 8 70 20 18 20-8=12 

Requirement 5 8 7 14   

Penalty 40-19=21 30-8=22 50-40=10 20-10=10   
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 W1 W2 W3 W4 Availability Penalty 

F1 (19) (30) (50) (10) 7 9 

F2 (70) (30) (40) (60) 9 10 

F3 (40) 8(8) (70) (20) 18/10 12 

Requirement 5 8/0 7 14   

Penalty 21 22 10 10   

 

 W1 W2 W3 W4 Availability Penalty 

F1 5(19) (30) (50) (10) 7/2 9 

F2 (70) (30) (40) (60) 9 20 

F3 (40) 8(8) (70) (20) 18/10 20 

Requirement 5/0 X 7 14   

Penalty 21 X 10 10   

 

 W1 W2 W3 W4 Availability Penalty 

F1 5(19) (30) (50) (10) 7/2 40 

F2 (70) (30) (40) (60) 9 20 

F3 (40) 8(8) (70) 10(20) 18/10/0 50 

Requirement X X 7 14/4   

Penalty X X 10 10   

 

 

 W1 W2 W3 W4 Availability Penalty 

F1 5(19) (30) (50) 2(10) 7/2/0 40 

F2 (70) (30) (40) (60) 9 20 

F3 (40) 8(8) (70) 10(20) X X 

Requirement X X 7 14/4/2   

Penalty X X 10 50   
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 W1 W2 W3 W4 Availability Penalty 

F1 5(19) (30) (50) 2(10) X X 

F2 (70) (30) 7(40) 2(60) X X 

F3 (40) 8(8) (70) 10(20) X X 

Requirement X X X X   

Penalty X X X X   

 

Initial Basic Feasible Solution 

x11 = 5, x14 = 2, x23 = 7, x24 = 2, x32 = 8, x34 = 10 

The transportation cost is 5 (19) + 2 (10) + 7 (40) + 2 (60) + 8 (8) + 10 (20) = Rs. 779 

 

2. 

 

  Stores Availability 

  I II III IV  

Warehouse 

A 21 16 15 13 11 

B 17 18 14 23 13 

C 32 27 18 41 19 

Requirement  6 10 12 15  

       

 

Solution 

  Stores Availability Penalty 

  I II III IV   

Warehouse 

A (21) (16) (15) (13) 11 2 

B (17) (18) (14) (23) 13 3 

C (32) (27) (18) (41) 19 9 

Requirement  6 10 12 15   
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Penalty  4 2 1 10   

        

 

  Stores Availability Penalty 

  I II III IV   

Warehouse 

A (21) (16) (15) 11(13) 11/0 2 

B (17) (18) (14) (23) 13 3 

C (32) (27) (18) (41) 19 9 

Requirement  6 10 12 15/4   

Penalty  4 2 1 10   

        

 

  Stores Availability Penalty 

  I II III IV   

Warehouse 

A (21) (16) (15) 11(13) X X 

B (17) (18) (14) 4(23) 13/9 3 

C (32) (27) (18) (41) 19 9 

Requirement  6 10 12 15/4/0   

Penalty  15 9 4 18   

        

 

 

  Stores Availability Penalty 

  I II III IV   

Warehouse 

A (21) (16) (15) 11(13) X X 

B 6(17) (18) (14) 4(23) 13/9/3 3 

C (32) (27) (18) (41) 19 9 

Requirement  6/0 10 12 X   

Penalty  15 9 4 X   
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  Stores Availability Penalty 

  I II III IV   

Warehouse 

A (21) (16) (15) 11(13) X X 

B 6(17) 3(18) (14) 4(23) 13/9/3/0 4 

C (32) (27) (18) (41) 19 9 

Requirement  X 10/7 12 X   

Penalty  X 9 4 X   

        

 

  Stores Availability Penalty 

  I II III IV   

Warehouse 

A (21) (16) (15) 11(13) X X 

B 6(17) 3(18) (14) 4(23) X X 

C (32) 7(27) 12(18) (41) X X 

Requirement  X X X X   

Penalty  X X X X   

 

 
      

 

Initial Basic Feasible Solution 

x14 = 11, x21 = 6, x22 = 3, x24 = 4, x32 = 7, x33 = 12 

The transportation cost is 11 (13) + 6 (17) + 3 (18) + 4 (23) + 7 (27) + 12 (18) = Rs. 796 
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Exercise 

1. Determine an initial basic feasible solution to the following transportation 

problem using north-west corner rule. 

From 

 I II III IV Supply 

A 13 11 15 20 2000 

B 17 14 12 13 6000 

C 18 18 15 12 7000 

Demand 3000 3000 4000 5000  

 

[Ans. x11 = 2, x21 = 1, x22 = 3, x23 = 2, x34 = 5] 

 

2. Determine an initial basic feasible solution to the following transportation 

problem using row/column minima method. 

 To Supply 

From 

6 3 5 4 22 

5 9 2 7 15 

5 7 8 6 8 

Demand 7 12 17 9  

 

[Ans. x12 = 12, x13 = 1, x14 = 9, x23 = 15, x31 = 7, x33 = 1] 

 

3. Obtain an initial basic feasible solution to the following transportation problem 

using matrix minima method. 

From 

 D1 D2 D3 D4 Capacity 

O1 1 2 3 4 6 

O2 4 3 2 0 8 

O3 0 2 2 1 10 

Demand 4 6 8 6  
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[Ans. x12 = 6, x23 = 2, x24 = 6, x31 = 4, x32 = 0, x33 = 6] 

4. Determine the minimum cost to the following transportation problem using 

Vogel’s method. 

From 

 D1 D2 D3 D4 D5 Capacity 

O1 2 11 10 3 7 4 

O2 1 4 7 2 1 8 

O3 3 9 4 8 12 9 

Demand 3 3 4 5 6 21 

 

[Ans. Min cost = Rs 68] 

 

5. Determine the minimum cost to the following transportation problem using matrix 

minima method and vogel’s method 

From 

 D1 D2 D3 D4 Capacity 

O1 1 2 1 4 30 

O2 3 3 2 1 50 

O3 4 2 5 9 20 

Demand 20 40 30 10  

 

[Ans. Min cost = Rs 180] 
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Unit 3 

 

3.1 Examining the Initial Basic Feasible Solution for Non-Degeneracy 

3.2 Transportation Algorithm for Minimization Problem 

3.3 Worked Examples 

 

3.1 Examining the Initial Basic Feasible Solution for Non-Degeneracy 

 

Examine the initial basic feasible solution for non-degeneracy. If it is said to be non-

degenerate then it has the following two properties 

 Initial basic feasible solution must contain exactly m + n – 1 number of individual 

allocations. 

 These allocations must be in independent positions 

 

Independent Positions 
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Non-Independent Positions 

 

 

 

 

 

 

 

3.2 Transportation Algorithm for Minimization Problem (MODI 

Method) 

 

Step 1 

Construct the transportation table entering the origin capacities ai, the destination 

requirement bj and the cost cij 

 

Step 2 

Find an initial basic feasible solution by vogel’s method or by any of the given method. 

 

Step 3 



191 

 

For all the basic variables xij, solve the system of equations ui + vj = cij, for all i, j for 

which cell (i, j) is in the basis, starting initially with some ui = 0, calculate the values of ui 

and vj on the transportation table 

 

Step 4  

Compute the cost differences dij = cij – ( ui + vj ) for all the non-basic cells 

 

Step 5 

Apply optimality test by examining the sign of each dij 

 If all dij ≥ 0, the current basic feasible solution is optimal 

 If at least one dij < 0, select the variable xrs (most negative) to enter the basis. 

 Solution under test is not optimal if any dij is negative and further improvement is 

required by repeating the above process. 

 

Step 6 

Let the variable xrs enter the basis. Allocate an unknown quantity Ө to the cell (r, s). Then 

construct a loop that starts and ends at the cell (r, s) and connects some of the basic cells. 

The amount Ө is added to and subtracted from the transition cells of the loop in such a 

manner that the availabilities and requirements remain satisfied. 

 

Step 7 

Assign the largest possible value to the Ө in such a way that the value of at least one 

basic variable becomes zero and the other basic variables remain non-negative. The basic 

cell whose allocation has been made zero will leave the basis. 

 

Step 8 

Now, return to step 3 and repeat the process until an optimal solution is obtained. 

 

3.3 Worked Examples 
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Example 1 

Find an optimal solution 

 

 

 

 W1 W2 W3 W4 Availability 

F1 19 30 50 10 7 

F2 70 30 40 60 9 

F3 40 8 70 20 18 

Requirement 5 8 7 14  

      

Solution 

 

1. Applying vogel’s approximation method for finding the initial basic feasible 

solution 

 

 W1 W2 W3 W4 Availability Penalty 

F1 5(19) (30) (50) 2(10) X X 

F2 (70) (30) 7(40) 2(60) X X 

F3 (40) 8(8) (70) 10(20) X X 

Requirement X X X X   

Penalty X X X X   

 

 

Minimum transportation cost is 5 (19) + 2 (10) + 7 (40) + 2 (60) + 8 (8) + 10 (20) = Rs. 

779 

 

2. Check for Non-degeneracy 

The initial basic feasible solution has m + n – 1 i.e. 3 + 4 – 1 = 6 allocations in 

independent positions. Hence optimality test is satisfied. 
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3. Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

Assign a ‘u’ 

value to zero. (Convenient rule is to select the ui, which has the largest number of 

allocations in its row) 

Let u3 = 0, then 

u3 + v4= 20 which implies 0 + v4 = 20, so v4 = 20 

u2 + v4= 60 which implies u2 + 20 = 60, so u2 = 40 

u1 + v4= 10 which implies u1 + 20 = 10, so u1 = -10 

u2 + v3= 40 which implies 40 + v3 = 40, so v3 = 0 

u3 + v2= 8 which implies 0 + v2 = 8, so v2 = 8 

u1 + v1= 19 which implies -10 + v1= 19, so v1 = 29 

4. Calculation of cost differences for non basic cells dij = cij – ( ui + vj ) 

 

cij  ui + vj 

  (30) (50)      -2 -10   

(70) (30)      69 48     

(40)   (70)    29   0   

 

 

dij = cij – ( ui + vj ) 

  32 60   

1 -18     

11   70   

 

     ui 

  (19)    (10) u1= -10 

    (40)  (60) u2 = 40 

   (8)   (20)     u3 = 0 

vj v1 = 29 v2 = 8 v3 = 0 v4 = 20  
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5. Optimality test 

dij < 0 i.e. d22 = -18 

so x22 is entering the basis 

 

6. Construction of loop and allocation of unknown quantity Ө 

 

 

 

We allocate Ө to the cell (2, 2). Reallocation is done by transferring the maximum 

possible amount Ө in the marked cell. The value of Ө is obtained by equating to zero to 

the corners of the closed loop. i.e. min(8-Ө, 2-Ө) = 0 which gives Ө = 2. Therefore x24 is 

outgoing as it becomes zero. 

 

5 (19)   2 (10) 

 2 (30) 7 (40)  

 6 (8)  12 (20) 

 

Minimum transportation cost is 5 (19) + 2 (10) + 2 (30) + 7 (40) + 6 (8) + 12 (20) = Rs. 

743 

 

7. Improved Solution 

     ui 

  (19)    (10) u1= -10 

   (30)  (40)  u2 = 22 

   (8)   (20)   u3 = 0 
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cij  ui + vj 

  (30) (50)      -2 8   

(70)     (60)  51     42 

(40)   (70)    29   18   

 

 

dij = cij – ( ui + vj ) 

  32 42   

19     18 

11   52   

 

Since dij > 0, an optimal solution is obtained with minimal cost Rs.743 

 

Example 2 

Solve by lowest cost entry method and obtain an optimal solution for the following 

problem 

 

    Available 

From 

50 30 220 1 

90 45 170 3 

250 200 50 4 

Required 4 2 2  

 

vj v1 = 29 v2 = 8 v3 = 18 v4 = 20  
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Solution 

By lowest cost entry method 

 

    Available 

From 

 1(30)  1/0 

2(90) 1(45)  3/2/0 

2(250)  2(50) 4/2/0 

Required 4/2/2 2/1/0 2/0  

 

Minimum transportation cost is 1 (30) + 2 (90) + 1 (45) + 2 (250) + 2 (50) = Rs. 855 

  

Check for Non-degeneracy 

The initial basic feasible solution has m + n – 1 i.e. 3 + 3 – 1 = 5 allocations in 

independent positions. Hence optimality test is satisfied. 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

 

 

Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 

 

cij  ui + vj 

50   220  75   -125 

    170      -110 

  200      205   

 

    ui 

   (30)      u1= -15 

  (90)  (45)      u2 = 0 

  (250)   (50)     u3 = 160 

vj v1 = 90 v2 = 45 v3 = -110  
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dij = cij – ( ui + vj ) 

-25   345 

       280 

       -5   

 

Optimality test 

dij < 0 i.e. d11 = -25 is most negative 

So x11 is entering the basis 

 

Construction of loop and allocation of unknown quantity Ө 

 

 

 

min(2-Ө, 1-Ө) = 0 which gives Ө = 1. Therefore x12 is outgoing as it becomes zero. 

 

   

1(50) 

 
  

1(90) 2(45) 
 

 

2(250) 
 

 
2(50) 

 

Minimum transportation cost is 1 (50) + 1 (90) + 2 (45) + 2 (250) + 2 (50) = Rs. 830 
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II Iteration 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

 

 

Calculation of dij = cij – ( ui + vj ) 

 

cij  ui + vj 

       30 220    5 -150 

    170      -110 

  200      205   

 

dij = cij – ( ui + vj ) 

  25 370 

       280 

       -5   

 

Optimality test 

dij < 0 i.e. d32 = -5  

So x32 is entering the basis 

 

Construction of loop and allocation of unknown quantity Ө 

 

    ui 

  (50)       u1= -40 

  (90)  (45)      u2 = 0 

  (250)   (50)     u3 = 160 

vj v1 = 90 v2 = 45 v3 = -110  
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2 – Ө = 0 which gives Ө = 2. Therefore x22 and x31 is outgoing as it becomes zero. 

   

1(50) 

 
  

3(90) 0(45) 
 

 

 

 
2(200) 2(50) 

 

Minimum transportation cost is 1 (50) + 3 (90) + 2 (200) + 2 (50) = Rs. 820 

 

III Iteration 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

 

 

 

Calculation of dij = cij – ( ui + vj ) 

 

    ui 

  (50)       u1= -40 

  (90)  (45)      u2 = 0 

   (200)  (50)     u3 = 155 

vj v1 = 90 v2 = 45 v3 = -105  
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cij  ui + vj 

       30 220    5 -145 

    170      -105 

     250          245     

 

dij = cij – ( ui + vj ) 

  25 365 

       275 

         5     

 

Since dij > 0, an optimal solution is obtained with minimal cost Rs.820 

 

 

Example 3 

Is x13 = 50, x14 = 20, x21 = 55, x31 = 30, x32 = 35, x34 = 25 an optimal solution to the 

transportation problem. 

 

  

     Available 

From 

6 1 9 3 70 

11 5 2 8 55 

10 12 4 7 90 

Required 85 35 50 45  

 

 

Solution 

 

     Available 

From   50(9) 20(3) X 



201 

 

55(11)    X 

30(10) 35(12)  25(7) X 

Required X X X X  

 

Minimum transportation cost is 50 (9) + 20 (3) + 55 (11) + 30 (10) + 35 (12) + 25 (7) = 

Rs. 2010 

 

Check for Non-degeneracy 

The initial basic feasible solution has m + n – 1 i.e. 3 + 4 – 1 = 6 allocations in 

independent positions. Hence optimality test is satisfied. 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

 

 

Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 

 

cij  ui + vj 

      6 1            6 8     

        5       2       8          13       14       8 

    4        13   

 

 

           dij = cij – ( ui + vj ) 

      0 -7     

     ui 

    (9)  (3)  u1= -4 

  (11)     u2 = 1 

  (10)  (12)   (7)  u3 = 0 

vj v1 = 10 v2 = 12 v3 = 13 v4 = 7  
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        -8       -12       0 

    -9   

 

Optimality test 

dij < 0 i.e. d23 = -12 is most negative 

So x23 is entering the basis 

 

Construction of loop and allocation of unknown quantity Ө 

 

 

min(50-Ө, 55-Ө, 25-Ө) = 25 which gives Ө = 25. Therefore x34 is outgoing as it becomes 

zero. 

    

  25(9) 45(3) 

30(11)  25(2)  

55(10) 35(12)   

 

Minimum transportation cost is 25 (9) + 45 (3) + 30 (11) + 25 (2) + 55 (10) + 35 (12) = 

Rs. 1710 

II iteration 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

     ui 

    (9)  (3)  u1= 8 
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Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 

 

cij  ui + vj 

      6 1            18 20     

        5         8          13         -4 

    4       7      1       -5 

 

 

           dij = cij – ( ui + vj ) 

      -12 -19     

        -8         12 

    3       12 

 

Optimality test 

dij < 0 i.e. d12 = -19 is most negative 

So x12 is entering the basis 

 

Construction of loop and allocation of unknown quantity Ө 

 

  (11)   (2)   u2 = 1 

  (10)  (12)    u3 = 0 

vj v1 = 10 v2 = 12 v3 = 1 v4 = -5  
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min(25-Ө, 30-Ө, 35-Ө) = 25 which gives Ө = 25. Therefore x13 is outgoing as it becomes 

zero. 

 

    

 25(1)  45(3) 

5(11)  50(2)  

80(10) 10(12)   

 

Minimum transportation cost is 25 (1) + 45 (3) + 5 (11) + 50 (2) + 80 (10) + 10 (12) = 

Rs. 1235 

 

III Iteration 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

 

 

Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 

cij  ui + vj 

      6         9          -1   -10   

        5         8          13         15 

    4       7      1       14 

 

 

           dij = cij – ( ui + vj ) 

     ui 

   (1)   (3)  u1= -11 

  (11)   (2)   u2 = 1 

  (10)  (12)    u3 = 0 

vj v1 = 10 v2 = 12 v3 = 1 v4 = 14  
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      7        19   

        -8         -7 

    3       -7 

 

Optimality test 

dij < 0 i.e. d22 = -8 is most negative 

So x22 is entering the basis 

 

Construction of loop and allocation of unknown quantity Ө 

 

 

 

min(5-Ө, 10-Ө) = 5 which gives Ө = 5. Therefore x21 is outgoing as it becomes zero. 

 

    

 25(1)  45(3) 

 5(5) 50(2)  

85(10) 5(12)   

 

Minimum transportation cost is 25 (1) + 45 (3) + 5 (5) + 50 (2) + 85 (10) + 5 (12) = Rs. 

1195 

 

IV Iteration 

 

Calculation of ui and vj : -  ui + vj  = cij 
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Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 

 

cij  ui + vj 

      6         9          -1   -2   

      11           8        3           7 

    4       7      9       14 

 

           dij = cij – ( ui + vj ) 

      7        11   

      8           1 

    -5       -7 

 

Optimality test 

dij < 0 i.e. d34 = -7 is most negative 

So x34 is entering the basis 

 

Construction of loop and allocation of unknown quantity Ө 

 

     ui 

   (1)   (3)  u1= -11 

   (5)  (2)   u2 = -7 

  (10)  (12)    u3 = 0 

vj v1 = 10 v2 = 12 v3 = 9 v4 = 14  
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min(5-Ө, 45-Ө) = 5 which gives Ө = 5. Therefore x32 is outgoing as it becomes zero. 

    

 30(1)  40(3) 

 5(5) 50(2)  

85(10)   5(7) 

 

Minimum transportation cost is 30 (1) + 40 (3) + 5 (5) + 50 (2) + 85 (10) + 5 (7) = Rs. 

1160 

 

V Iteration 

 

Calculation of ui and vj : -  ui + vj  = cij 

 

 

 

 

 

Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 

 

cij  ui + vj 

      6         9          6   -2   

      11           8        10           7 

  12 4      5 2   

 

           dij = cij – ( ui + vj ) 

      0        11   

      1           1 

     ui 

   (1)   (3)  u1= -4 

   (5)  (2)   u2 = 0 

  (10)    (7)  u3 = 0 

vj v1 = 10 v2 = 5 v3 = 2 v4 = 7  
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  7 2   

Since dij > 0, an optimal solution is obtained with minimal cost Rs.1160. Further more d11 

= 0 which indicates that alternative optimal solution also exists. 

Exercise 

1. Determine the optimal solution of the given transportation problem 

 To Supply 

 

From 

2 3 11 7 6 

1 0 6 1 1 

5 8 15 10 10 

Demand 7 5 3 2 17 

 

[Ans. x12 = 5, x13 = 1, x24 = 1, x31 = 7, x33 = 2, x34 = 1 Min cost = Rs 102] 

 

2. Using North-West Corner rule for initial basic feasible solution, obtain an 

optimum basic feasible solution to the following problem 

 To Available 

From 

7 3 4 2 

2 1 3 3 

3 4 6 5 

Demand 4 1 5 10 

 

[Ans. x13 = 2, x22 = 1, x23 = 2, x31 = 4, x33 = 1 Min cost = Rs 33] 

 

3. Determine the optimal solution of the given transportation problem 

 To Supply 

 10 7 3 6 3 
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From 1 6 7 3 5 

7 4 5 3 7 

Demand 3 2 6 4  

[Ans. x13 = 3, x21 = 3, x24 = 2, x32 = 2, x33 = 3, x34 = 2, Min cost = Rs 47] 

Module 5 

Unit 1 

1.1 Introduction to Assignment Problem 

1.2 Algorithm for Assignment Problem 

1.3 Worked Examples 

1.4 Unbalanced Assignment Problem 

1.5 Maximal Assignment Problem 

 

1.1 Introduction to Assignment Problem 

 

In assignment problems, the objective is to assign a number of jobs to the equal number 

of persons at a minimum cost of maximum profit.  

 

Suppose there are ‘n’ jobs to be performed and ‘n’ persons are available for doing these 

jobs. Assume each person can do each job at a time with a varying degree of efficiency. 

Let cij be the cost of ith person assigned to jth job. Then the problem is to find an 

assignment so that the total cost for performing all jobs is minimum. Such problems are 

known as assignment problems. 

 

These problems may consist of assigning men to offices, classes to the rooms or 

problems to the research team etc. 

 

Mathematical formulation 

Cost matrix: cij=   c11    c12    c13   …   c1n 

        c21    c22     c23   …   c2n 

          . 
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          . 

                                       . 

                                      cn1     cn2    cn3  …   cnn 

 

 

Subject to restrictions of the form 

 

Where xij denotes that jth job is to be assigned to the ith person. 

 

This special structure of assignment problem allows a more convenient method of 

solution in comparison to simplex method. 

 

1.2 Algorithm for Assignment Problem (Hungarian Method) 

 

Step 1 

Subtract the minimum of each row of the effectiveness matrix, from all the elements of 

the respective rows (Row reduced matrix). 

 

Step 2 

Further modify the resulting matrix by subtracting the minimum element of each column 

from all the elements of the respective columns. Thus first modified matrix is obtained. 

 

Step 3 
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Draw the minimum number of horizontal and vertical lines to cover all the zeroes in the 

resulting matrix. Let the minimum number of lines be N. Now there may be two 

possibilities 

 If N = n, the number of rows (columns) of the given matrix then an optimal 

assignment can be made. So make the zero assignment to get the required 

solution. 

 If N < n then proceed to step 4 

Step 4 

Determine the smallest element in the matrix, not covered by N lines. Subtract this 

minimum element from all uncovered elements and add the same element at the 

intersection of horizontal and vertical lines. Thus the second modified matrix is obtained. 

 

Step 5 

Repeat step 3 and step 4 until minimum number of lines become equal to number of rows 

(columns) of the given matrix i.e. N = n. 

 

Step 6 

To make zero assignment - examine the rows successively until a row-wise exactly single 

zero is found; mark this zero by ‘1’‘to make the assignment. Then, mark a ‘X’ over all 

zeroes if lying in the column of the marked zero, showing that they cannot be considered 

for further assignment. Continue in this manner until all the rows have been examined. 

Repeat the same procedure for the columns also. 

 

Step 7 

Repeat the step 6 successively until one of the following situations arise 

 If no unmarked zero is left, then process ends 

 If there lies more than one of the unmarked zeroes in any column or row, then 

mark ‘1’‘one of the unmarked zeroes arbitrarily and mark a cross in the cells of 

remaining zeroes in its row and column. Repeat the process until no unmarked 

zero is left in the matrix. 
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Step 8 

Exactly one marked zero in each row and each column of the matrix is obtained. The 

assignment corresponding to these marked zeroes will give the optimal assignment. 

 

1.3 Worked Examples 

 

Example 1 

 

A department head has four subordinates and four tasks have to be performed. 

Subordinates differ in efficiency and tasks differ in their intrinsic difficulty. Time each 

man would take to perform each task is given in the effectiveness matrix. How the tasks 

should be allocated to each person so as to minimize the total man-hours? 

 

Tasks 

 Subordinates 

 I II III IV 

A 8 26 17 11 

B 13 28 4 26 

C 38 19 18 15 

 D 19 26 24 10 

 

Solution 

 

Row Reduced Matrix 

0 18 9 3 

9 24 0 22 

23 4 3 0 

9 16 14 0 

 

I Modified Matrix 
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N = 4, n = 4 

Since N = n, we move on to zero assignment 

 

Zero assignment 

 

 

 

 

Total man-hours = 8 + 4 + 19 + 10 = 41 hours 

 

Example 2 

A car hire company has one car at each of five depots a, b, c, d and e. a customer requires 

a car in each town namely A, B, C, D and E. Distance (kms) between depots (origins) and 

towns (destinations) are given in the following distance matrix 

 

 a b c d e 

A 160 130 175 190 200 

B 135 120 130 160 175 

C 140 110 155 170 185 

D 50 50 80 80 110 

E 55 35 70 80 105 
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Solution 

 

Row Reduced Matrix 

30 0 45 60 70 

15 0 10 40 55 

30 0 45 60 75 

0 0 30 30 60 

20 0 35 45 70 

 

I Modified Matrix 

 

 

N < n i.e. 3 < 5, so move to next modified matrix 

 

II Modified Matrix 

 

 

N = 5, n = 5 

Since N = n, we move on to zero assignment 

Zero assignment 
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Minimum distance travelled = 200 + 130 + 110 + 50 + 80 = 570 kms 

 

Example 3 

Solve the assignment problem whose effectiveness matrix is given in the table 

 

 

 1 2 3 4 

A 49 60 45 61 

B 55 63 45 69 

C 52 62 49 68 

D 55 64 48 66 

 

Solution 

 

Row-Reduced Matrix 

4 15 0 16 

10 18 0 24 

3 13 0 19 

7 16 0 18 

 

I Modified Matrix 
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N < n i.e 3 < 4, so II modified matrix 

 

II Modified Matrix 

 

 

N < n i.e 3 < 4 

 

III Modified matrix 

 

 

Since N = n, we move on to zero assignment 

 

Zero assignment 

 

Multiple optimal assignments exists 

 

Solution - I 
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Total cost = 49 + 45 + 62 + 66 = 222 units 

 

Solution – II 

 

 

 

Minimum cost = 61 + 45 + 52 + 64 = 222 units 

 

Example 4 

Certain equipment needs 5 repair jobs which have to be assigned to 5 machines. The 

estimated time (in hours) that a mechanic requires to complete the repair job is given in 

the table. Assuming that each mechanic can be assigned only one job, determine the 

minimum time assignment. 

 

 J1 J2 J3 J4 J5 

M1 7 5 9 8 11 

M2 9 12 7 11 10 

M3 8 5 4 6 9 

M4 7 3 6 9 5 

M5 4 6 7 5 11 

 

Solution 

 

Row Reduced Matrix 
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2 0 4 3 6 

2 5 0 4 3 

4 1 0 2 5 

4 0 3 6 2 

0 2 3 1 7 

 

I Modified Matrix 

 

N < n 

 

II Modified Matrix 

 

N = n 

 

Zero assignment 

 

 

 

 

Minimum time = 5 + 7 + 6 + 5 + 4 = 27 hours 
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1.4 Unbalanced Assignment Problems 

 

If the number of rows and columns are not equal then such type of problems are called as 

unbalanced assignment problems. 

 

Example 1 

A company has 4 machines on which to do 3 jobs. Each job can be assigned to one and 

only one machine. The cost of each job on each machine is given in the following table 

 

 

 

 

 

 

 Machines 

Jobs 

 W X Y Z 

A 18 24 28 32 

B 8 13 17 19 

C 10 15 19 22 

 

Solution 

 

18 24 28 32 

8 13 17 19 

10 15 19 22 

0 0 0 0 

 

Row Reduced matrix 
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0 6 10 14 

0 5 9 11 

0 5 9 12 

0 0 0 0 

 

I Modified Matrix 

 

 

N < n i.e. 2 < 4 

 

II Modified Matrix 

 

 

N < n i.e. 3 < 4 

 

III Modified Matrix 

 

 

N = n 

 

Zero assignment 
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Multiple assignments exists 

 

Solution -I 

 

 

 

 

Minimum cost = 18 + 13 + 19 = Rs 50 

 

Solution -II 

 

 

 

 

Minimum cost = 18 + 17 + 15 = Rs 50 

 

Example 2 

Solve the assignment problem whose effectiveness matrix is given in the table 

 

 R1 R2 R3 R4 

C1 9 14 19 15 

C2 7 17 20 19 

C3 9 18 21 18 

C4 10 12 18 19 
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C5 10 15 21 16 

Solution 

 

9 14 19 15 0 

7 17 20 19 0 

9 18 21 18 0 

10 12 18 19 0 

10 15 21 16 0 

 

Row Reduced Matrix 

 

 

 

 

 

9 14 19 15 0 

7 17 20 19 0 

9 18 21 18 0 

10 12 18 19 0 

10 15 21 16 0 

 

I Modified Matrix 

 

N < n i.e. 4 < 5 

 

II Modified Matrix 
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N < n i.e. 4 < 5 

 

III Modified Matrix 

 

 

N = n 

 

Zero assignment 

 

 

 

 

Minimum cost = 19 + 7 + 12 + 16 = 54 units 

 

1.5 Maximal Assignment Problem 

 

Example 1 
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A company has 5 jobs to be done. The following matrix shows the return in terms of 

rupees on assigning ith ( i = 1, 2, 3, 4, 5 ) machine to the jth job ( j = A, B, C, D, E ). 

Assign the five jobs to the five machines so as to maximize the total expected profit.  

 

 Jobs 

Machines 

 A B C D E 

1 5 11 10 12 4 

2 2 4 6 3 5 

3 3 12 5 14 6 

4 6 14 4 11 7 

5 7 9 8 12 5 

 

Solution 

 

Subtract all the elements from the highest element 

Highest element = 14 

 

 

 

9 3 4 2 10 

12 10 8 11 9 

11 2 9 0 8 

8 0 10 3 7 

7 5 6 2 9 

 

Row Reduced matrix 

 

7 1 2 0 8 

4 2 0 3 1 

11 2 9 0 8 
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8 0 10 3 7 

5 3 4 0 7 

 

I Modified Matrix 

 

N < n i.e. 3 < 5 

 

II Modified Matrix 

 

N < n i.e. 4 < 5 

 

III Modified Matrix 

 

N = n 

 

Zero assignment 

 



226 

 

 

Optimal assignment 1 – C   2 – E   3 – D   4 – B   5 – A  

Maximum profit = 10 + 5 + 14 + 14 + 7 = Rs. 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 

 

What is assignment problem? Give any two areas of its applications 

 

Find the optimal solution for the assignment problem with the following cost matrix 

 

 I II III IV 

A 5 3 1 8 

B 7 9 2 6 

C 6 4 5 7 
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D 5 7 7 6 

 

[Ans.  A - III, B - IV, C - II, D – I, Min cost = Rs.16] 

 

Solve the following assignment problem 

 1 2 3 4 

A 10 12 19 11 

B 5 10 7 8 

C 12 14 13 11 

D 8 15 11 9 

 

[Ans.  A - 2, B - 3, C - 4, D – 1, Min cost = Rs.38] 

 

The jobs A, B, C are to be assigned to three machines X, Y, Z. The processing costs (Rs.) 

are as given in the matrix below. Find the allocation which will minimize the overall 

processing cost. 

 X Y Z 

A 19 28 31 

B 11 17 16 

C 12 15 13 

 

[Ans.  A – X, B - Y, C – Z] 

A company is faced with the problem of assigning 4 machines to 6 different jobs (one 

machine to one job only).the profits are estimated as follows 

 

 A B C D 

1 3 6 2 6 

2 7 1 4 4 

3 3 8 5 8 

4 6 4 3 7 
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5 5 2 4 3 

6 5 7 6 4 

 

[Ans.  2 - A, 3 - B, 4 - D, 6 – C, Max profit = Rs.28] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit 2 

 

2.1 Introduction to Game Theory 

2.2 Properties of a Game 

2.3 Characteristics of Game Theory 

2.4 Classification of Games 

2.5 Limitations of Game Theory 
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2.5 Solving Two-Person and Zero-Sum Game 

 

2.1 Introduction to Game Theory 

Game theory is a distinct and interdisciplinary approach to the study of human behavior. 

The disciplines most involved in game theory are mathematics, economics and the other 

social and behavioral sciences. Game theory (like computational theory and so many 

other contributions) was founded by the great mathematician John von Neumann.  

Game theory is a type of decision theory in which one’s choice of action is determined 

after taking into account all possible alternatives available to an opponent playing the 

same game, rather than just by the possibilities of several outcome results. Game theory 

does not insist on how a game should be played but tells the procedure and principles by 

which action should be selected. Thus it is a decision theory useful in competitive 

situations. 

 

Game is defined as an activity between two or more persons according to a set of rules at 

the end of which each person receives some benefit or suffers loss. The set of rules 

defines the game. Going through the set of rules once by the participants defines a play. 

A Scientific Metaphor 

Since the work of John von Neumann, "games" have been a scientific metaphor for a 

much wider range of human interactions in which the outcomes depend on the interactive 

strategies of two or more persons, who have opposed or at best mixed motives. Among 

the issues discussed in game theory are 

1) What does it mean to choose strategies "rationally" when outcomes depend on the 

strategies chosen by others and when information is incomplete? 
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2) In "games" that allow mutual gain (or mutual loss) is it "rational" to cooperate to 

realize the mutual gain (or avoid the mutual loss) or is it "rational" to act aggressively in 

seeking individual gain regardless of mutual gain or loss? 

3) If the answers to 2) are "sometimes," in what circumstances is aggression rational and 

in what circumstances is cooperation rational? 

4) In particular, do ongoing relationships differ from one-off encounters in this 

connection? 

5) Can moral rules of cooperation emerge spontaneously from the interactions of rational 

egoists? 

6) How does real human behavior correspond to "rational" behavior in these cases? 

7) If it differs, in what direction? Are people more cooperative than would be "rational?" 

More aggressive? Both? 

Thus, among the "games" studied by game theory are 

 Bankruptcy  

 Barbarians at the Gate  

 Battle of the Networks  

 Caveat Emptor  

 Conscription  

 Coordination  

 Escape and Evasion  

 Frogs Call for Mates  

 Hawk versus Dove  

 Mutually Assured Destruction  

 Majority Rule  

 Market Niche  

 Mutual Defense  
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 Prisoner's Dilemma  

 Subsidized Small Business  

 Tragedy of the Commons  

 Ultimatum  

 Video System Coordination  

Why Do Economists Study Games? 

• Games are a convenient way in which to model the strategic interactions among 

economic agents. 

• Many economic issues involve strategic interaction. 

– Behavior in imperfectly competitive markets, e.g. Coca-Cola versus Pepsi. 

– Behavior in auctions, e.g. Investment banks bidding on U.S. Treasury 

bills. 

– Behavior in economic negotiations, e.g. trade. 

• Game theory is not limited to Economics 

 

2.2 Properties of a Game 

 

1. There are finite numbers of competitors called ‘players’ 

2. Each player has a finite number of possible courses of action called ‘strategies’ 

3. All the strategies and their effects are known to the players but player does not 

know which strategy is to be chosen. 

4. A game is played when each player chooses one of his strategies. The strategies 

are assumed to be made simultaneously with an outcome such that no player 

knows his opponents strategy until he decides his own strategy. 

5. The game is a combination of the strategies and in certain units which determines 

the gain or loss. 

6. The figures shown as the outcomes of strategies in a matrix form are called ‘pay-

off matrix’. 
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7. The player playing the game always tries to choose the best course of action 

which results in optimal pay off called ‘optimal strategy’. 

8. The expected pay off when all the players of the game follow their optimal 

strategies is known as ‘value of the game’. The main objective of a problem of a 

game is to find the value of the game. 

9. The game is said to be ‘fair’ game if the value of the game is zero otherwise it s 

known as ‘unfair’. 

 

2.3 Characteristics of Game Theory 

 

1. Competitive game 

A competitive situation is called a competitive game if it has the following four 

properties 

1. There are finite number of competitors such that n ≥ 2. In case n = 2, it is called a 

two-person game and in case n > 2, it is referred as n-person game. 

2. Each player has a list of finite number of possible activities. 

3. A play is said to occur when each player chooses one of his activities. The choices 

are assumed to be made simultaneously i.e. no player knows the choice of the 

other until he has decided on his own. 

4. Every combination of activities determines an outcome which results in a gain of 

payments to each player, provided each player is playing uncompromisingly to 

get as much as possible. Negative gain implies the loss of same amount. 

 

2. Strategy 

The strategy of a player is the predetermined rule by which player decides his course of 

action from his own list during the game. The two types of strategy are 

1. Pure strategy 

2. Mixed strategy 
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Pure Strategy 

If a player knows exactly what the other player is going to do, a deterministic 

situation is obtained and objective function is to maximize the gain. Therefore, the 

pure strategy is a decision rule always to select a particular course of action. 

 

Mixed Strategy 

If a player is guessing as to which activity is to be selected by the other on any 

particular occasion, a probabilistic situation is obtained and objective function is 

to maximize the expected gain. Thus the mixed strategy is a selection among pure 

strategies with fixed probabilities. 

 

Repeated Game Strategies 

• In repeated games, the sequential nature of the relationship allows for the 

adoption of strategies that are contingent on the actions chosen in previous plays 

of the game. 

• Most contingent strategies are of the type known as "trigger" strategies. 

• Example trigger strategies 

– In prisoners' dilemma: Initially play doesn’t confess. If your opponent 

plays Confess, then play Confess in the next round. If your opponent plays 

don’t confess, then play doesn’t confess in the next round. This is known 

as the "tit for tat" strategy. 

– In the investment game, if you are the sender: Initially play Send. Play 

Send as long as the receiver plays Return. If the receiver plays keep, never 

play Send again. This is known as the "grim trigger" strategy. 

 

3.  Number of persons 
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A game is called ‘n’ person game if the number of persons playing is ‘n’. The person 

means an individual or a group aiming at a particular objective. 

 

 

 

Two-person, zero-sum game 

A game with only two players (player A and player B) is called a ‘two-person, 

zero-sum game’, if the losses of one player are equivalent to the gains of the other 

so that the sum of their net gains is zero. 

Two-person, zero-sum games are also called rectangular games as these are 

usually represented by a payoff matrix in a rectangular form. 

 

4. Number of activities 

The activities may be finite or infinite. 

 

5. Payoff  

The quantitative measure of satisfaction a person gets at the end of each play is called a 

payoff 

 

6. Payoff matrix 

Suppose the player A has ‘m’ activities and the player B has ‘n’ activities. Then a payoff 

matrix can be formed by adopting the following rules 

 Row designations for each matrix are the activities available to player A 

 Column designations for each matrix are the activities available to player B 

 Cell entry Vij is the payment to player A in A’s payoff matrix when A chooses the 

activity i and B chooses the activity j. 

 With a zero-sum, two-person game, the cell entry in the player B’s payoff matrix 

will be negative of the corresponding cell entry Vij in the player A’s payoff matrix 

so that sum of payoff matrices for player A and player B is ultimately zero. 
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7. Value of the game 

Value of the game is the maximum guaranteed game to player A (maximizing player) if 

both the players uses their best strategies. It is generally denoted by ‘V’ and it is unique. 

 

2.4 Classification of Games 

Simultaneous v. Sequential Move Games 

• Games where players choose actions simultaneously are simultaneous move 

games. 

– Examples: Prisoners' Dilemma, Sealed-Bid Auctions. 

– Must anticipate what your opponent will do right now, recognizing that 

your opponent is doing the same. 

• Games where players choose actions in a particular sequence are sequential move 

games. 

– Examples: Chess, Bargaining/Negotiations. 

– Must look ahead in order to know what action to choose now. 

– Many sequential move games have deadlines/ time limits on moves. 

• Many strategic situations involve both sequential and simultaneous moves. 

 

One-Shot versus Repeated Games 

• One-shot: play of the game occurs once. 

– Players likely to not know much about one another. 

– Example - tipping on your vacation 

• Repeated: play of the game is repeated with the same players. 

– Indefinitely versus finitely repeated games 

– Reputational concerns matter; opportunities for cooperative behavior may 

arise. 

• Advise: If you plan to pursue an aggressive strategy, ask yourself whether you are 

in a one-shot or in a repeated game. If a repeated game, think again. 
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Generally games are classified into 

 Pure strategy games 

 Mixed strategy games 

 

The method for solving these two types varies. By solving a game, we need to find best 

strategies for both the players and also to find the value of the game. 

 

Pure strategy games can be solved by saddle point method. 

 

The different methods for solving a mixed strategy game are 

 Analytical method 

 Graphical method 

 Dominance rule 

 Simplex method 

 

2.5 Limitations of game theory 

The major limitations are 

 The assumption that the players have the knowledge about their own payoffs and 

others is rather unrealistic. 

 As the number of players increase in the game, the analysis of the gaming 

strategies become increasingly complex and difficult. 

 The assumptions of maximin and minimax show that the players are risk-averse 

and have complete knowledge of the strategies. It doesn’t seem practical. 

 Rather than each player in an oligopoly situation working under uncertain 

conditions, the players will allow each other to share the secrets of business in 

order to work out collusion. Then the mixed strategies are not very useful. 

 

2.6 Solving Two-Person and Zero-Sum Game 
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Two-person zero-sum games may be deterministic or probabilistic. The deterministic 

games will have saddle points and pure strategies exist in such games. In contrast, the 

probabilistic games will have no saddle points and mixed strategies are taken with the 

help of probabilities. 

 

Definition of saddle point 

A saddle point of a matrix is the position of such an element in the payoff matrix, which 

is minimum in its row and the maximum in its column. 

 

Procedure to find the saddle point 

 Select the minimum element of each row of the payoff matrix and mark them with 

circles. 

 Select the maximum element of each column of the payoff matrix and mark them 

with squares. 

 If their appears an element in the payoff matrix with a circle and a square together 

then that position is called saddle point and the element is the value of the game. 

 

Solution of games with saddle point 

To obtain a solution of a game with a saddle point, it is feasible to find out 

 Best strategy for player A 

 Best strategy for player B 

 The value of the game 

 

The best strategies for player A and B will be those which correspond to the row and 

column respectively through the saddle point. 

Examples 

Solve the payoff matrix 

1. 

Player A 
Player B 

 B1 B2 B3 
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A1 2 4 5 

A2 10 7 9 

A3 4 5 6 

 

Solution 

 

Strategy of player A – A2 

Strategy of player B – B2 

Value of the game = 7 

 

2. 

 

 Player B 

Player A 

 I II III IV V 

I -2 0 0 5 3 

II 3 2 1 2 2 

III -4 -3 0 -2 6 

IV 5 3 -4 2 -6 
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Solution 

 

Strategy of player A – II 

Strategy of player B - III 

Value of the game = 1 

 

 

3.. 

 

 B1 B2 B3 B4 

A1 1 7 3 4 

A2 5 6 4 5 

A3 7 2 0 3 

 

Solution 
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Strategy of player A – A2 

Strategy of player B – B3 

Value of the game = 4 

 

4. 

 

 B’s Strategy 

A’s 

Strategy 

 B1 B2 B3 B4 B5 

A1 8 10 -3 -8 -12 

A2 3 6 0 6 12 

A3 7 5 -2 -8 17 

A4 -11 12 -10 10 20 

A5 -7 0 0 6 2 

 

Solution 
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Strategy of player A – A2 

Strategy of player B – B3 

Value of the game = 0 

 

5. 

 

 

 

Solution 
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Value of the game = 4 
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Exercise 

1. Explain the concept of game theory. 

2. What is a rectangular game? 

3. What is a saddle point? 

4. Define pure and mixed strategy in a game. 

5. What are the characteristics of game theory? 

6. Explain two-person zero-sum game giving suitable examples. 

7. What are the limitations of game theory? 

8. Explain the following terms 

a. Competitive Game 

b. Strategy 

c. Value of the game 

d. Pay-off-matrix 

e. Optimal strategy 

9. Explain Maximin and Minimax used in game theory 

10. For the game with payoff matrix 

        

Determine the best strategies for player A and B and also the value of the game. 
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Unit 3  

3.1 Games with Mixed Strategies 

3.1.1 Analytical Method 

3.1.2 Graphical Method 

3.1.3 Simplex Method 

 

3.1 Games with Mixed Strategies 

 

In certain cases, no pure strategy solutions exist for the game. In other words, saddle 

point does not exist. In all such game, both players may adopt an optimal blend of the 

strategies called Mixed Strategy to find a saddle point. The optimal mix for each player 

may be determined by assigning each strategy a probability of it being chosen. Thus these 

mixed strategies are probabilistic combinations of available better strategies and these 

games hence called Probabilistic games. 

 

The probabilistic mixed strategy games without saddle points are commonly solved by 

any of the following methods 

 

Sl. 

No. 
Method Applicable to 

1 Analytical Method 2x2 games 

2 Graphical Method 2x2, mx2 and 2xn games 

3 Simplex Method 2x2, mx2, 2xn and mxn games 

 

3.1.1 Analytical Method 

 

A 2 x 2 payoff matrix where there is no saddle point can be solved by analytical method. 

Given the matrix  



245 

 

                             

Value of the game is 

                   

 

With the coordinates 

 

 

 

 

Alternative procedure to solve the strategy 

 

 Find the difference of two numbers in column 1 and enter the resultant under 

column 2. Neglect the negative sign if it occurs. 

 Find the difference of two numbers in column 2 and enter the resultant under 

column 1. Neglect the negative sign if it occurs. 

 Repeat the same procedure for the two rows. 

 

1. Solve  

 

 

Solution 

It is a 2 x 2 matrix and no saddle point exists. We can solve by analytical method 
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V = 17 / 5 

SA = (x1, x2) = (1/5, 4 /5) 

SB = (y1, y2) = (3/5, 2 /5) 

 

2.  Solve the given matrix 

 

Solution 

 

 

 

V = - 1 / 4 

SA = (x1, x2) = (1/4, 3 /4) 

SB = (y1, y2) = (1/4, 3 /4) 

 

3.1.2 Graphical method 

 

The graphical method is used to solve the games whose payoff matrix has 
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 Two rows and n columns (2 x n) 

 m rows and two columns (m x 2) 

 

Algorithm for solving 2 x n matrix games 

 

 Draw two vertical axes 1 unit apart. The two lines are x1 = 0, x1 = 1 

 Take the points of the first row in the payoff matrix on the vertical line x1 = 1 and 

the points of the second row in the payoff matrix on the vertical line x1 = 0. 

 The point a1j on axis x1 = 1 is then joined to the point a2j on the axis x1 = 0 to give 

a straight line. Draw ‘n’ straight lines for j=1, 2… n and determine the highest 

point of the lower envelope obtained. This will be the maximin point. 

 The two or more lines passing through the maximin point determines the required 

2 x 2 payoff matrix. This in turn gives the optimum solution by making use of 

analytical method. 

 

Example 1 

Solve by graphical method 

 

 

Solution 
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V = 66/13 

SA = (4/13, 9 /13) 

SB = (0, 10/13, 3 /13) 

 

Example 2 

 

Solve by graphical method 

 

 

Solution 
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V = 8/7 

SA = (3/7, 4 /7) 

SB = (2/7, 0, 5 /7) 

 

Algorithm for solving m x 2 matrix games 

 

 Draw two vertical axes 1 unit apart. The two lines are x1 =0, x1 = 1 

 Take the points of the first row in the payoff matrix on the vertical line x1 = 1 and 

the points of the second row in the payoff matrix on the vertical line x1 = 0. 

 The point a1j on axis x1 = 1 is then joined to the point a2j on the axis x1 = 0 to give 

a straight line. Draw ‘n’ straight lines for j=1, 2… n and determine the lowest 

point of the upper envelope obtained. This will be the minimax point. 
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 The two or more lines passing through the minimax point determines the required 

2 x 2 payoff matrix. This in turn gives the optimum solution by making use of 

analytical method. 

 

Example 1 

Solve by graphical method 

 

 

Solution 
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V = 3/9 = 1/3 

SA = (0, 5 /9, 4/9, 0) 

SB = (3/9, 6 /9) 

 

Example 2 

 

Solve by graphical method 

 

 

Solution 
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V = 73/17 

SA = (0, 16/17, 1/17, 0, 0) 

SB = (5/17, 12 /17) 
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3.1.3 Simplex Method 

 

Let us consider the 3 x 3 matrix 

 

 

 

As per the assumptions, A always attempts to choose the set of strategies with the non-

zero probabilities say p1, p2, p3 where p1 + p2 + p3 = 1 that maximizes his minimum 

expected gain. 

 

Similarly B would choose the set of strategies with the non-zero probabilities say q1, q2, 

q3 where q1 + q2 + q3 = 1 that minimizes his maximum expected loss. 

 

Step 1 

Find the minimax and maximin value from the given matrix 

 

Step 2 

The objective of A is to maximize the value, which is equivalent to minimizing the value 

1/V. The LPP is written as 

Min 1/V = p1/V + p2/V + p3/V  

and constraints ≥ 1 

It is written as 

Min 1/V = x1 + x2 + x3  

and constraints ≥ 1 

 

Similarly for B, we get the LPP as the dual of the above LPP 

Max 1/V = Y1 + Y2 + Y3  

and constraints ≤ 1 
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Where Y1 = q1/V, Y2 = q2/V, Y3 = q3/V 

 

Step 3 

Solve the LPP by using simplex table and obtain the best strategy for the players 

 

Example 1 

Solve by Simplex method 

 

 

 

Solution 

 

 

 

We can infer that 2 ≤ V ≤ 3. Hence it can be concluded that the value of the game lies 

between 2 and 3 and the V > 0. 

 

LPP 

Max 1/V = Y1 + Y2 + Y3  

Subject to  

 3Y1 – 2Y2 + 4Y3 ≤ 1 

 -1Y1 + 4Y2 + 2Y3 ≤ 1 

 2Y1 + 2Y2 + 6Y3 ≤ 1 

Y1, Y2, Y3 ≥ 0 



255 

 

 

SLPP 

Max 1/V = Y1 + Y2 + Y3 + 0s1 + 0s2 + 0s3 

Subject to  

 3Y1 – 2Y2 + 4Y3 + s1 = 1 

 -1Y1 + 4Y2 + 2Y3 + s2 =1 

 2Y1 + 2Y2 + 6Y3 + s3 = 1 

Y1, Y2, Y3, s1, s2, s3 ≥ 0 

 

  Cj→ 1 1 1 0 0 0  

Basic 

Variables 
CB YB Y1 Y2 Y3 S1 S2 S3 

Min Ratio 

YB / YK 

S1 0 1 3 -2 4 1 0 0 1/3→ 

S2 0 1 -1 4 2 0 1 0 - 

S3 0 1 2 2 6 0 0 1 1/2 

 
 

1/V = 0 

↑ 

-1 

 

-1 

 

-1 

 

0 

 

0 

 

0 
 

Y1 1 1/3 1 -2/3 4/3 1/3 0 0 - 

S2 0 4/3 0 10/3 10/3 1/3 1 0 2/5 

S3 0 1/3 0 10/3 10/3 -2/3 0 1 1/10→ 

 
 

1/V =1/3 

 

0 

↑ 

-5/3 

 

1/3 

 

1/3 

 

0 

 

0 
 

Y1 1 2/5 1 0 2 1/5 0 1/5  

S2 0 1 0 0 0 1 1 -1  

Y2 1 1/10 0 1 1 -1/5 0 3/10  

 
 

1/V = 1/2 

 

0 

 

0 

 

2 

 

0 

 

0 

 

1/2 
 

1/V =1/2 

V = 2 
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y1 = 2/5 * 2 = 4/5 

y2 = 1/10 * 2 = 1/5 

y3 = 0 * 2 = 0 

 

x1 = 0*2 = 0 

x2 = 0*2 = 0 

x3 = 1/2*2 = 1 

 

SA = (0, 0, 1) 

SB = (4/5, 1/5, 0) 

Value = 2 

 

Example 2 

 

 

Solution 

 

 

 

Maximin = -1 

Minimax = 1 

 

We can infer that -1 ≤ V ≤ 1 
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Since maximin value is -1, it is possible that value of the game may be negative or zero, 

thus the constant ‘C’ is added to all the elements of matrix which is at least equal to the 

negative of maximin.  

 

Let C = 1, add this value to all the elements of the matrix. The resultant matrix is 

 

 

LPP 

Max 1/V = Y1 + Y2 + Y3  

Subject to  

 2Y1 + 0Y2 + 0Y3 ≤ 1 

 0Y1 + 0Y2 + 4Y3 ≤ 1 

 0Y1 + 3Y2 + 0Y3 ≤ 1 

Y1, Y2, Y3 ≥ 0 

 

SLPP 

Max 1/V = Y1 + Y2 + Y3 + 0s1 + 0s2 + 0s3 

Subject to  

 2Y1 + 0Y2 + 0Y3 + s1 = 1 

 0Y1 + 0Y2 + 4Y3 + s2 = 1 

 0Y1 + 3Y2 + 0Y3 + s3 = 1 

Y1, Y2, Y3, s1, s2, s3 ≥ 0 
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  Cj→ 1 1 1 0 0 0  

Basic 

Variables 
CB YB Y1 Y2 Y3 S1 S2 S3 

Min Ratio 

YB / YK 

S1 0 1 2 0 0 1 0 0 1/2→ 

S2 0 1 0 0 4 0 1 0 - 

S3 0 1 0 3 0 0 0 1 - 

 
 

1/V =0 

↑ 

-1 

 

-1 

 

-1 

 

0 

 

0 

 

0 
 

Y1 1 1/2 1 0 0 1/2 0 0 - 

S2 0 1 0 0 4 0 1 0 - 

S3 0 1 0 3 0 0 0 1 1/3→ 

 
 

1/V =1/2 

 

0 

↑ 

-1 

 

-1 

 

1/2 

 

0 

 

0 
 

Y1 1 1/2 1 0 0 1/2 0 0 - 

S2 0 1 0 0 4 0 1 0 1/4→ 

Y2 1 1/3 0 1 0 0 0 1/3 - 

 
 

1/V = 5/6 

 

0 

 

0 

↑ 

-1 

 

1/2 

 

0 

 

1/3 
 

Y1   1         1/2 1 0 0 1/2 0 0  

Y3   1         1/4 0 0 1 0 1/4 0  

Y2   1         1/3 0 1 0 0 0 1/3  

 

 

 

1/V =13/12 

 

0 

 

0 

 

0 

 

1/2 

 

1/4 

 

1/3 
 

 

1/V =13/12 

V = 12/13 

 

y1 = 1/2 * 12/13 = 6/13 
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y2 = 1/3 * 12/13 = 4/13 

y3 = 1/4 * 12/13 = 3/13 

 

x1 = 1/2*12/13 = 6/13 

x2 = 1/4 * 12/13 = 3/13 

x3 = 1/3 * 12/13 = 4/13 

 

SA = (6/13, 3/13, 4/13) 

SB = (6/13, 4/13, 3/13) 

 

Value = 12/13 – C =12/13 -1 = -1/13 

 

Exercise 

 

1. Explain the method of solving a problem with mixed strategy using algebraic method. 

 

2. Solve the following game graphically 

1. 

 

 

2. 
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3. Use simplex to solve the following 

1. 

 

2. 

 

4. Two companies A and B are competing for the same product. Their different strategies 

are given in the following pay off matrix 

 

Module 6 

 

Unit 1 

1.1  Shortest Route Problem 

1.2  Minimal Spanning Tree Problem 



261 

 

1.3  Maximal Flow Problem 

 

1.1 Shortest Route Problem 

 

The criterion of this method is to find the shortest distance between two nodes with 

minimal cost. 

 

Example 1 

Find the shortest path 

 

Solution 

n 

Solved 

nodes 

directly 

connected to 

unsolved 

nodes 

Closest 

connected 

unsolved 

node 

Total distance 

involved 

nth 

nearest 

node 

Minimum 

distance 

Last 

connection 

1 a c 7 c 7 a-c 

2 
a 

c 

b 

e 

13 

7+6 =13 

b 

e 

13 

13 

a-b 

c-e 

3 

b 

c 

e 

d 

f 

h 

13+5 =18 

7+11 =18 

13+8 =21 

d 

f 

- 

18 

18 

- 

b-d 

c-f 

- 

4 e h 13+8 =21 h 21 e-h 
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d 

f 

g 

h 

18+9 =27 

18+5 =23 

- 

- 

- 

- 

- 

- 

5 

e 

h 

d 

g 

i 

g 

13+10 =23 

21+10 =31 

18+9 =27 

g 

- 

- 

23 

- 

- 

e-g 

- 

- 

6 
g 

h 

i 

i 

23+6 =29 

21+10 =31 

i 

- 

29 

- 

g-i 

- 

 

 

 

 

The shortest path from a to i is a → c →e →g → i  

Distance = 7 + 6 + 10 + 6 = 29 units 

 

Example 2 
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Solution 

 

n 

Solved nodes 

directly 

connected to 

unsolved 

nodes 

Closest 

connected 

unsolved 

node 

Total 

distance 

involved 

nth nearest 

node 

Minimum 

distance 

Last 

connection 

1 1 3 1 3 1 1-3 

2 
1 

3 

2 

2 

5 

1+2 =3 

- 

2 

- 

3 

- 

3-2 

3 
2 

3 

5 

4 

3+1 =4 

1+6 =7 

5 

- 

4 

- 

2-5 

- 

4 

2 

3 

5 

6 

4 

4 

3+6 =9 

1+6 =7 

4+3 =7 

- 

4 

4 

- 

7 

7 

- 

3-4 

5-4 

5 

2 

4 

5 

6 

6 

6 

3+6 =9 

7+4 =11 

4+5 =9 

6 

- 

6 

9 

- 

9 

2-6 

- 

5-6 

6 

4 

5 

6 

7 

7 

7 

7+6 =13 

4+9 =13 

9+2 =11 

- 

- 

7 

- 

- 

11 

- 

- 

6-7 

 

The shortest path from 1 to 7 can be  
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1 →3 → 2 → 6 →7  

Total distance is 11 units 

 

  

1 → 3 → 2 →5 → 6 →7  

Total distance = 11 units 

 

1.2 Minimal Spanning Tree Problem 

 

A tree is defined to be an undirected, acyclic and connected graph. A spanning tree is a 

subgraph of G (undirected, connected graph), is a tree and contains all the vertices of G. 

A minimum spanning tree is a spanning tree but has weights or lengths associated with 

edges and the total weight is at the minimum. 
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Prim’s Algorithm 

 It starts at any vertex (say A) in a graph and finds the least cost vertex (say B) 

connected to the start vertex. 

 Now either from A or B, it will find the next least costly vertex connection, 

without creating cycle (say C) 

 Now either from A, B or C find the next least costly vertex connection, without 

creating a cycle and so on. 

 Eventually all the vertices will be connected without any cycles and a minimum 

spanning tree will be the result. 

 

Example 1 

Suppose it is desired to establish a cable communication network that links major cities, 

which is shown in the figure. Determine how the cities are connected such that the total 

cable mileage is minimized. 

 

 

 

 

Solution 

 

C = {LA}     C' = {SE, DE, DA, EH, NY, DC} 

C = {LA, SE}     C' = {DE, DA, EH, NY, DC} 
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C = {LA, SE, DE}    C' = {DA, EH, NY, DC} 

C = {LA, SE, DE, DA}   C' = {EH, NY, DC} 

C = {LA, SE, DE, DA, EH}   C' = {NY, DC} 

C = {LA, SE, DE, DA, EH, NY}  C' = {DC} 

C = {LA, SE, DE, DA, EH, NY, DC} C' = { } 

 

The resultant network is 

 

Thus the total cable mileage is 1100 + 1300 + 780 + 900 + 800 + 200 = 5080  

 

Example 2 

For the following graph obtain the minimum spanning tree. The numbers on the branches 

represent the cost. 

 

Solution 
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C = {A}   C' = {B, C, D, E, F, G} 

C = {A, D}   C' = {B, C, E, F, G} 

C = {A, D, B}   C' = {C, E, F, G} 

C = {A, D, B, C}  C' = {E, F, G} 

C = {A, D, B, C, G}  C' = {E, F} 

C = {A, D, B, C, G, F} C' = {E} 

C = {A, D, B, C, G, F, E} C' = { } 

 

The resultant network is 

 

 

Cost = 2 + 1 + 4 + 3 + 3 + 5 = 18 units 

 

Example 3 

Solve the minimum spanning problem for the given network. The numbers on the 

branches represent in terms of miles. 
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Solution 

 

C = {1}   C' = {2, 3, 4, 5, 6} 

C = {1, 2}   C' = {3, 4, 5, 6} 

C = {1, 2, 5}   C' = {3, 4, 6} 

C = {1, 2, 5, 4}  C' = {3, 6} 

C = {1, 2, 5, 4, 6}  C' = {3} 

C = {1, 2, 5, 4, 6, 3}  C' = {} 

 

The resultant network is 

 

 

1 + 4 + 5+ 3 + 3 = 16 miles 

 

1.3 Maximal Flow Problem 

 

Algorithm 
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Step1 

Find a path from source to sink that can accommodate a positive flow of material. If no 

path exists go to step 5 

 

Step2 

Determine the maximum flow that can be shipped from this path and denote by ‘k’ units. 

 

Step3 

Decrease the direct capacity (the capacity in the direction of flow of k units) of each 

branch of this path ‘k’ and increase the reverse capacity k1. Add ‘k’ units to the amount 

delivered to sink. 

 

Step4 

Goto step1 

 

Step5 

The maximal flow is the amount of material delivered to the sink. The optimal shipping 

schedule is determined by comparing the original network with the final network. Any 

reduction in capacity signifies shipment. 

 

Example 1 

Consider the following network and determine the amount of flow between the networks. 
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Solution 

 

Iteration 1: 1 – 3 – 5  

 

 

Iteration 2: 1 – 2 – 3 – 4 – 5  
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Iteration 3: 1 – 4 – 5  

 

 

 

Iteration 4: 1 – 2 – 5  
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Iteration 5: 1 – 3 – 2 – 5  

 

 

Maximum flow is 60 units. Therefore the network can be written as 
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Example 2 

Solve the maximal flow problem 

 

 

Solution 

 

Iteration 1: O – A – D – T  

 

 

Iteration 2: O – B – E – T  
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Iteration 3: O – A – B – D – T  

 

 

 

Iteration 4: O – C – E – D – T  

 

 

Iteration 5: O – C – E – T  

 



275 

 

 

Iteration 6: O – B – D – T  

 

Therefore there are no more augmenting paths. So the current flow pattern is optimal. 

The maximum flow is 13 units. 
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Exercise 

1. Find the shortest path 

 

 

2. Solve the maximal flow problem 

 

3. Explain prim’s algorithm 

4. Solve the minimal spanning tree 
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Unit 2 

2.1 Introduction to CPM / PERT Techniques 

2.2 Applications of CPM / PERT 

2.3 Basic Steps in PERT / CPM 

2.4 Frame work of PERT/CPM 

2.5 Network Diagram Representation 

2.6 Rules for Drawing Network Diagrams 

2.7 Common Errors in Drawing Networks 

2.8 Advantages and Disadvantages 

2.9 Critical Path in Network Analysis 

 

2.1 Introduction to CPM / PERT Techniques 

CPM/PERT or Network Analysis as the technique is sometimes called, developed along 

two parallel streams, one industrial and the other military. 

CPM (Critical Path Method) was the discovery of M.R.Walker of E.I.Du Pont de 

Nemours & Co. and J.E.Kelly of Remington Rand, circa 1957. The computation was 

designed for the UNIVAC-I computer. The first test was made in 1958, when CPM was 

applied to the construction of a new chemical plant. In March 1959, the method was 

applied to maintenance shut-down at the Du Pont works in Louisville, Kentucky. 

Unproductive time was reduced from 125 to 93 hours. 
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PERT (Project Evaluation and Review Technique) was devised in 1958 for the 

POLARIS missile program by the Program Evaluation Branch of the Special Projects 

office of the U.S.Navy, helped by the Lockheed Missile Systems division and the 

Consultant firm of Booz-Allen & Hamilton. The calculations were so arranged so that 

they could be carried out on the IBM Naval Ordinance Research Computer (NORC) at 

Dahlgren, Virginia. 

The methods are essentially network-oriented techniques using the same principle. 

PERT and CPM are basically time-oriented methods in the sense that they both lead to 

determination of a time schedule for the project. The significant difference between two 

approaches is that the time estimates for the different activities in CPM were assumed to 

be deterministic while in PERT these are described probabilistically. These techniques 

are referred as project scheduling techniques. 

 

 In CPM activities are shown as a network of precedence relationships using activity-on-

node network construction 

– Single estimate of activity time 

– Deterministic activity times 

USED IN:  Production management - for the jobs of repetitive in nature where the 

activity time estimates can be predicted with considerable certainty due to the existence 

of past experience. 

In PERT activities are shown as a network of precedence relationships using activity-on-

arrow network construction 

– Multiple time estimates  

– Probabilistic activity times 
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USED IN: Project management - for non-repetitive jobs (research and development 

work), where the time and cost estimates tend to be quite uncertain. This technique uses 

probabilistic time estimates. 

Benefits of PERT/CPM 

 Useful at many stages of project management 

 Mathematically simple 

 Give critical path and slack time 

 Provide project documentation 

 Useful in monitoring costs 

Limitations of PERT/CPM 

 Clearly defined, independent and stable activities 

 Specified precedence relationships 

 Over emphasis on critical paths 

 

2.2 Applications of CPM / PERT 

 

These methods have been applied to a wide variety of problems in industries and have 

found acceptance even in government organizations. These include 

 Construction of a dam or a canal system in a region 

 Construction of a building or highway 

 Maintenance or overhaul of airplanes or oil refinery 

 Space flight 

 Cost control of a project using PERT / COST 

 Designing a prototype of a machine 

 Development of supersonic planes 
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2.3 Basic Steps in PERT / CPM 

 

Project scheduling by PERT / CPM consists of four main steps 

 

1. Planning 

 The planning phase is started by splitting the total project in to small projects. 

These smaller projects in turn are divided into activities and are analyzed by the 

department or section.  

 The relationship of each activity with respect to other activities are defined and 

established and the corresponding responsibilities and the authority are also 

stated.  

 Thus the possibility of overlooking any task necessary for the completion of the 

project is reduced substantially. 

 

2. Scheduling 

 The ultimate objective of the scheduling phase is to prepare a time chart showing 

the start and finish times for each activity as well as its relationship to other 

activities of the project.  

 Moreover the schedule must pinpoint the critical path activities which require 

special attention if the project is to be completed in time. 

 For non-critical activities, the schedule must show the amount of slack or float 

times which can be used advantageously when such activities are delayed or when 

limited resources are to be utilized effectively. 

 

3. Allocation of resources 

 Allocation of resources is performed to achieve the desired objective. A resource 

is a physical variable such as labour, finance, equipment and space which will 

impose a limitation on time for the project.  
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 When resources are limited and conflicting, demands are made for the same type 

of resources a systematic method for allocation of resources become essential.  

 Resource allocation usually incurs a compromise and the choice of this 

compromise depends on the judgment of managers. 

 

4. Controlling 

 The final phase in project management is controlling. Critical path methods 

facilitate the application of the principle of management by expectation to identify 

areas that are critical to the completion of the project. 

 By having progress reports from time to time and updating the network 

continuously, a better financial as well as technical control over the project is 

exercised. 

 Arrow diagrams and time charts are used for making periodic progress reports. If 

required, a new course of action is determined for the remaining portion of the 

project. 

 

2.4 The Framework for PERT and CPM 

Essentially, there are six steps which are common to both the techniques. The procedure 

is listed below: 

I. Define the Project and all of its significant activities or tasks. The Project (made 

up of several tasks) should have only a single start activity and a single finish 

activity. 

II. Develop the relationships among the activities. Decide which activities must 

precede and which must follow others. 
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III. Draw the "Network" connecting all the activities. Each Activity should have 

unique event numbers. Dummy arrows are used where required to avoid giving 

the same numbering to two activities. 

IV. Assign time and/or cost estimates to each activity 

V. Compute the longest time path through the network. This is called the critical 

path. 

VI. Use the Network to help plan, schedule, and monitor and control the project. 

The Key Concept used by CPM/PERT is that a small set of activities, which make up the 

longest path through the activity network control the entire project. If these "critical" 

activities could be identified and assigned to responsible persons, management resources 

could be optimally used by concentrating on the few activities which determine the fate 

of the entire project. 

Non-critical activities can be replanned, rescheduled and resources for them can be 

reallocated flexibly, without affecting the whole project. 

Five useful questions to ask when preparing an activity network are: 

 Is this a Start Activity?  

 Is this a Finish Activity?  

 What Activity Precedes this?  

 What Activity Follows this?  

 What Activity is Concurrent with this?  

2.5 Network Diagram Representation 

 

In a network representation of a project certain definitions are used 

 

1. Activity 
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Any individual operation which utilizes resources and has an end and a beginning is 

called activity. An arrow is commonly used to represent an activity with its head 

indicating the direction of progress in the project. These are classified into four categories 

1. Predecessor activity – Activities that must be completed immediately prior to the 

start of another activity are called predecessor activities. 

2. Successor activity – Activities that cannot be started until one or more of other 

activities are completed but immediately succeed them are called successor 

activities. 

3. Concurrent activity – Activities which can be accomplished concurrently are 

known as concurrent activities. It may be noted that an activity can be a 

predecessor or a successor to an event or it may be concurrent with one or more of 

other activities. 

4. Dummy activity – An activity which does not consume any kind of resource but 

merely depicts the technological dependence is called a dummy activity. 

 

The dummy activity is inserted in the network to clarify the activity pattern in the 

following two situations 

 To make activities with common starting and finishing points distinguishable 

 To identify and maintain the proper precedence relationship between activities 

that is not connected by events. 

For example, consider a situation where A and B are concurrent activities. C is dependent 

on A and D is dependent on A and B both. Such a situation can be handled by using a 

dummy activity as shown in the figure. 

 

2. Event 
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An event represents a point in time signifying the completion of some activities and the 

beginning of new ones. This is usually represented by a circle in a network which is also 

called a node or connector. 

The events are classified in to three categories 

1. Merge event – When more than one activity comes and joins an event such an 

event is known as merge event. 

2. Burst event – When more than one activity leaves an event such an event is 

known as burst event. 

3. Merge and Burst event – An activity may be merge and burst event at the same 

time as with respect to some activities it can be a merge event and with respect to 

some other activities it may be a burst event. 

 

 

3. Sequencing 

The first prerequisite in the development of network is to maintain the precedence 

relationships. In order to make a network, the following points should be taken into 

considerations 

 What job or jobs precede it? 

 What job or jobs could run concurrently? 

 What job or jobs follow it? 

 What controls the start and finish of a job? 

Since all further calculations are based on the network, it is necessary that a network be 

drawn with full care. 

2.6 Rules for Drawing Network Diagram 

 

Rule 1 
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Each activity is represented by one and only one arrow in the network 

 

Rule 2 

No two activities can be identified by the same end events 

 

 

Rule 3 

In order to ensure the correct precedence relationship in the arrow diagram, following 

questions must be checked whenever any activity is added to the network 

 What activity must be completed immediately before this activity can start? 

 What activities must follow this activity? 

 What activities must occur simultaneously with this activity? 

 

In case of large network, it is essential that certain good habits be practiced to draw an 

easy to follow network 

 Try to avoid arrows which cross each other 

 Use straight arrows 

 Do not attempt to represent duration of activity by its arrow length 

 Use arrows from left to right. Avoid mixing two directions, vertical and standing 

arrows may be used if necessary. 

 Use dummies freely in rough draft but final network should not have any 

redundant dummies. 



286 

 

 The network has only one entry point called start event and one point of 

emergence called the end event. 

 

2.7 Common Errors in Drawing Networks 

 

The three types of errors are most commonly observed in drawing network diagrams 

 

1. Dangling 

To disconnect an activity before the completion of all activities in a network diagram is 

known as dangling. As shown in the figure activities (5 – 10) and (6 – 7) are not the last 

activities in the network. So the diagram is wrong and indicates the error of dangling 

 

 

 

2. Looping or Cycling 

Looping error is also known as cycling error in a network diagram. Drawing an endless 

loop in a network is known as error of looping as shown in the following figure. 

 



287 

 

 

3. Redundancy 

Unnecessarily inserting the dummy activity in network logic is known as the error of 

redundancy as shown in the following diagram 

 

 

 

2.8 Advantages and Disadvantages 
 
PERT/CPM has the following advantages 

  

 A PERT/CPM chart explicitly defines and makes visible dependencies 

(precedence relationships) between the elements, 

 

 PERT/CPM facilitates identification of the critical path and makes this visible, 

 

 PERT/CPM facilitates identification of early start, late start, and slack for each 

activity, 

 

 PERT/CPM provides for potentially reduced project duration due to better 

understanding of dependencies leading to improved overlapping of activities and 

tasks where feasible. 

 

  

PERT/CPM has the following disadvantages: 

  

 There can be potentially hundreds or thousands of activities and individual 

dependency relationships, 

 

 The network charts tend to be large and unwieldy requiring several pages to print 

and requiring special size paper, 

 

 The lack of a timeframe on most PERT/CPM charts makes it harder to show 

status although colours can help (e.g., specific colour for completed nodes), 
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 When the PERT/CPM charts become unwieldy, they are no longer used to 

manage the project. 

 

2.9 Critical Path in Network Analysis 

 

Basic Scheduling Computations 

 

The notations used are 

(i, j) = Activity with tail event i and head event j 

Ei = Earliest occurrence time of event i 

Lj = Latest allowable occurrence time of event j 

Dij = Estimated completion time of activity (i, j) 

(Es)ij = Earliest starting time of activity (i, j) 

(Ef)ij = Earliest finishing time of activity (i, j) 

(Ls)ij = Latest starting time of activity (i, j) 

(Lf)ij = Latest finishing time of activity (i, j) 

 

The procedure is as follows 

 

1. Determination of Earliest time (Ej): Forward Pass computation 

 

 Step 1 

The computation begins from the start node and move towards the end node. For 

easiness, the forward pass computation starts by assuming the earliest occurrence 

time of zero for the initial project event. 

 

 Step 2 

i. Earliest starting time of activity (i, j) is the earliest event time of the tail 

end event i.e. (Es)ij = Ei 
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ii. Earliest finish time of activity (i, j) is the earliest starting time + the 

activity time i.e.    (Ef)ij = (Es)ij + Dij or (Ef)ij = Ei + Dij 

iii. Earliest event time for event j is the maximum of the earliest finish times 

of all activities ending in to that event i.e. Ej = max [(Ef)ij for all 

immediate predecessor of (i, j)] or Ej =max [Ei + Dij] 

 

2. Backward Pass computation (for latest allowable time) 

 

 Step 1 

For ending event assume E = L. Remember that all E’s have been computed by 

forward pass computations. 

 

 Step 2 

Latest finish time for activity (i, j) is equal to the latest event time of event j i.e. 

(Lf)ij = Lj  

 

 Step 3 

Latest starting time of activity (i, j) = the latest completion time of (i, j) – the 

activity time or (Ls)ij =(Lf)ij - Dij  or (Ls)ij = Lj - Dij   

 

 Step 4 

Latest event time for event ‘i’ is the minimum of the latest start time of all 

activities originating from that event i.e. Li = min [(Ls)ij for all immediate 

successor of (i, j)]  = min [(Lf)ij - Dij]  = min [Lj - Dij] 

 

3. Determination of floats and slack times 

 

There are three kinds of floats 
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 Total float – The amount of time by which the completion of an activity could be 

delayed beyond the earliest expected completion time without affecting the 

overall project duration time. 

Mathematically 

(Tf)ij = (Latest start – Earliest start) for activity ( i – j) 

(Tf)ij = (Ls)ij - (Es)ij  or (Tf)ij = (Lj - Dij) - Ei  

 

 Free float – The time by which the completion of an activity can be delayed 

beyond the earliest finish time without affecting the earliest start of a subsequent 

activity.  

Mathematically 

(Ff)ij = (Earliest time for event j – Earliest time for event i) – Activity time for ( i,  

j) 

(Ff)ij = (Ej - Ei) - Dij  

 

 Independent float – The amount of time by which the start of an activity can be 

delayed without effecting the earliest start time of any immediately following 

activities, assuming that the preceding activity has finished at its latest finish time. 

Mathematically 

(If)ij = (Ej - Li) - Dij   

The negative independent float is always taken as zero. 

 

 Event slack - It is defined as the difference between the latest event and earliest 

event times. 

Mathematically 

Head event slack = Lj – Ej, Tail event slack = Li - Ei  

 

4. Determination of critical path 
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 Critical event – The events with zero slack times are called critical events. In 

other words the event i is said to be critical if Ei = Li  

 

 Critical activity – The activities with zero total float are known as critical 

activities. In other words an activity is said to be critical if a delay in its start will 

cause a further delay in the completion date of the entire project. 

 

 Critical path – The sequence of critical activities in a network is called critical 

path. The critical path is the longest path in the network from the starting event to 

ending event and defines the minimum time required to complete the project. 
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Exercise 

1. What is PERT and CPM? 

2. What are the advantages of using PERT/CPM? 

3. Mention the applications of PERT/CPM 

4. Explain the following terms 

a. Earliest time 

b. Latest time 

c. Total activity slack 

d. Event slack 

e. Critical path 

5. Explain the CPM in network analysis. 

6. What are the rules for drawing network diagram? Also mention the common 

errors that occur in drawing networks. 

7. What is the difference between PERT and CPM/ 

8. What are the uses of PERT and CPM? 

9. Explain the basic steps in PERT/CPM techniques. 

10. Write the framework of PERT/CPM. 
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Unit 3 

3.1 Worked Examples on CPM 

3.2 PERT 

3.3 Worked Examples 

 

3.1 Worked Examples on CPM 

 

Example 1 

Determine the early start and late start in respect of all node points and identify critical 

path for the following network. 

 

 

 

Solution 

Calculation of E and L for each node is shown in the network 
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Activity(i, 

j) 

Normal 

Time 

(Dij) 

Earliest Time Latest Time 
Float Time 

(Li - Dij ) - Ei 
Start 

(Ei) 

Finish 

(Ei + Dij ) 

Start 

(Li - Dij ) 

Finish 

(Li) 

(1, 2) 

(1, 3) 

(1, 4) 

(2, 5) 

(4, 6) 

(3, 7) 

(5, 7) 

(6, 7) 

(5, 8) 

(6, 9) 

(7, 10) 

(8, 10) 

(9, 10) 

10 

8 

9 

8 

7 

16 

7 

7 

6 

5 

12 

13 

15 

0 

0 

0 

10 

9 

8 

18 

16 

18 

16 

25 

24 

21 

10 

8 

9 

18 

16 

24 

25 

23 

24 

21 

37 

37 

36 

0 

1 

1 

10 

10 

9 

18 

18 

18 

17 

25 

24 

22 

10 

9 

10 

18 

17 

25 

25 

25 

24 

22 

37 

37 

37 

0 

1 

1 

0 

1 

1 

0 

2 

0 

1 

0 

0 

1 

Network Analysis Table 

 

From the table, the critical nodes are (1, 2), (2, 5), (5, 7), (5, 8), (7, 10) and (8, 10) 

 

From the table, there are two possible critical paths 

i. 1 → 2 → 5 → 8 → 10  
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ii. 1 → 2 → 5 → 7 → 10  

 

Example 2 

Find the critical path and calculate the slack time for the following network 

 

 

 

Solution 

 

The earliest time and the latest time are obtained below 

 

Activity(i, j) 

Normal 

Time 

(Dij) 

Earliest Time Latest Time 
Float Time 

(Li - Dij ) - Ei 
Start 

(Ei) 

Finish 

(Ei + Dij ) 

Start 

(Li - Dij ) 

Finish 

(Li) 

(1, 2) 

(1, 3) 

(1, 4) 

(2, 6) 

(3, 7) 

(3, 5) 

(4, 5) 

(5, 9) 

(6, 8) 

(7, 8) 

2 

2 

1 

4 

5 

8 

3 

5 

1 

4 

0 

0 

0 

2 

2 

2 

1 

10 

6 

7 

2 

2 

1 

6 

7 

10 

4 

15 

7 

11 

5 

0 

6 

7 

3 

2 

7 

10 

11 

8 

7 

2 

7 

11 

8 

10 

10 

15 

12 

12 

5 

0 

6 

5 

1 

0 

6 

0 

5 

1 
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(8, 9) 3 11 14 12 15 1 

 

From the above table, the critical nodes are the activities (1, 3), (3, 5) and (5, 9) 

 

 

The critical path is 1 → 3 → 5 → 9  

 

Example 3 

A project has the following times schedule 

 

Activity Times in weeks Activity Times in weeks 

(1 – 2) 

(1 – 3) 

(2 – 4) 

(3 – 4) 

(3 – 5) 

(4 – 9) 

(5 – 6) 

4 

1 

1 

1 

6 

5 

4 

(5 – 7) 

(6 – 8) 

(7 – 8) 

(8 – 9) 

(8 – 10) 

(9 – 10) 

8 

1 

2 

1 

8 

7 

 

Construct the network and compute 

1. TE and TL for each event 
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2. Float for each activity 

3. Critical path and its duration 

 

Solution 

 

The network is  

 

 

Event No.: 1 2 3 4 5 6 7 8 9 10 

TE: 0 4 1 5 7 11 15 17 18 25 

TL: 0 12 1 13 7 16 15 17 18 25 

 

Float = TL (Head event) – TE (Tail event) – Duration 

 

Activity Duration TE (Tail event) TL (Head event) Float 

(1 – 2) 

(1 – 3) 

(2 – 4) 

(3 – 4) 

(3 – 5) 

(4 – 9) 

(5 – 6) 

(5 – 7) 

4 

1 

1 

1 

6 

5 

4 

8 

0 

0 

4 

1 

1 

5 

7 

7 

12 

1 

13 

13 

7 

18 

16 

15 

8 

0 

8 

11 

0 

8 

5 

0 
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(6 – 8) 

(7 – 8) 

(8 – 9) 

(8 – 10) 

(9 – 10) 

1 

2 

1 

8 

7 

11 

15 

17 

17 

18 

17 

17 

18 

25 

25 

5 

0 

0 

0 

0 

 

The resultant network shows the critical path 

 

The two critical paths are 

i. 1 → 3 → 5 →7 → 8 → 9 →10  

ii. 1 → 3 → 5 → 7 → 8 →10  

 

3.2 Project Evaluation and Review Technique (PERT) 

 

The main objective in the analysis through PERT is to find out the completion for a 

particular event within specified date. The PERT approach takes into account the 

uncertainties. The three time values are associated with each activity 

 

1. Optimistic time – It is the shortest possible time in which the activity can be 

finished. It assumes that every thing goes very well. This is denoted by t0. 
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2. Most likely time – It is the estimate of the normal time the activity would take. 

This assumes normal delays. If a graph is plotted in the time of completion and 

the frequency of completion in that time period, then most likely time will 

represent the highest frequency of occurrence. This is denoted by tm. 

3. Pessimistic time – It represents the longest time the activity could take if 

everything goes wrong. As in optimistic estimate, this value may be such that 

only one in hundred or one in twenty will take time longer than this value. This is 

denoted by tp. 

 

In PERT calculation, all values are used to obtain the percent expected value. 

 

1. Expected time – It is the average time an activity will take if it were to be 

repeated on large number of times and is based on the assumption that the activity 

time follows Beta distribution, this is given by 

te = ( t0 + 4 tm + tp ) / 6  

 

2. The variance for the activity is given by  

σ2 = [(tp – to) / 6] 2 

 

3.3 Worked Examples 

Example 1 

For the project 
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Task: A B C D E F G H I J K 

Least time: 4 5 8 2 4 6 8 5 3 5 6 

Greatest time: 8 10 12 7 10 15 16 9 7 11 13 

Most likely time: 5 7 11 3 7 9 12 6 5 8 9 

 

Find the earliest and latest expected time to each event and also critical path in the 

network. 

Solution 

Task Least time(t0) 
Greatest time 

(tp) 

Most likely 

time (tm) 

Expected time 

(to + tp + 4tm)/6 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

4 

5 

8 

2 

4 

6 

8 

5 

3 

5 

6 

8 

10 

12 

7 

10 

15 

16 

9 

7 

11 

13 

5 

7 

11 

3 

7 

9 

12 

6 

5 

8 

9 

5.33 

7.17 

10.67 

3.5 

7 

9.5 

12 

6.33 

5 

8 

9.17 

 

Task 
Expected 

time (te) 

Start Finish 
Total float 

Earliest Latest Earliest Latest 

A 

B 

5.33 

7.17 

0 

0 

0 

8.83 

5.33 

7.17 

5.33 

16 

0 

8.83 
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C 

D 

E 

F 

G 

H 

I 

J 

K 

10.67 

3.5 

7 

9.5 

12 

6.33 

5 

8 

9.17 

5.33 

0 

16 

3.5 

3.5 

23 

23 

28 

29.33 

5.33 

10 

16 

13.5 

18.5 

23 

25.5 

30.5 

29.33 

16 

3.5 

23 

13 

15.5 

29.33 

28 

36 

31.5 

16 

13.5 

23 

23 

30.5 

29.33 

30.5 

38.5 

38.5 

0 

10 

0 

10 

15 

0 

2.5 

2.5 

0 

 

The network is 

 

 

The critical path is A →C →E → H → K  

 

Example 2 

A project has the following characteristics 

Activity 
Most optimistic time 

(a) 

Most pessimistic time 

(b) 

Most likely time 

(m) 

(1 – 2) 1 5 1.5 
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(2 – 3) 

(2 – 4) 

(3 – 5) 

(4 – 5) 

(4 – 6) 

(5 – 7) 

(6 – 7) 

(7 – 8) 

(7 – 9) 

(8 – 10) 

(9 – 10) 

1 

1 

3 

2 

3 

4 

6 

2 

5 

1 

3 

3 

5 

5 

4 

7 

6 

8 

6 

8 

3 

7 

2 

3 

4 

3 

5 

5 

7 

4 

6 

2 

5 

Construct a PERT network. Find the critical path and variance for each event. 

Solution 

Activity (a) (b) (m) (4m) 
te 

(a + b + 4m)/6 

v 

[(b – a) / 6]2 

(1 – 2) 

(2 – 3) 

(2 – 4) 

(3 – 5) 

(4 – 5) 

(4 – 6) 

(5 – 7) 

(6 – 7) 

(7 – 8) 

(7 – 9) 

(8 – 10) 

(9 – 10) 

1 

1 

1 

3 

2 

3 

4 

6 

2 

5 

1 

3 

5 

3 

5 

5 

4 

7 

6 

8 

6 

8 

3 

7 

1.5 

2 

3 

4 

3 

5 

5 

7 

4 

6 

2 

5 

6 

8 

12 

16 

12 

20 

20 

28 

16 

24 

8 

20 

2 

2 

3 

4 

3 

5 

5 

7 

4 

6.17 

2 

5 

4/9 

1/9 

4/9 

1/9 

1/9 

4/9 

1/9 

1/9 

4/9 

1/4 

1/9 

4/9 

 

The network is constructed as shown below 
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The critical path = 1 → 2 → 4 → 6 → 7 →9 →10  

Example 3 

Calculate the variance and the expected time for each activity  

 

Solution 

Activity (to) (tm) (tp) 
te 

(to + tp + 4tm)/6 

v 

[(tp – to) / 6]2 

(1 – 2) 

(1 – 3) 

(1 – 4) 

(2 – 3) 

3 

6 

7 

0 

6 

7 

9 

0 

10 

12 

12 

0 

6.2 

7.7 

9.2 

0.0 

1.36 

1.00 

0.69 

0.00 
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(2 – 5) 

(3 – 6) 

(4 – 7) 

(5 – 8) 

(6 – 7) 

(6 – 9) 

(8 – 9) 

(7 – 10) 

(9 – 11) 

(10 – 11) 

8 

10 

8 

12 

8 

13 

4 

10 

6 

10 

12 

12 

13 

14 

9 

16 

7 

13 

8 

12 

17 

15 

19 

15 

10 

19 

10 

17 

12 

14 

12.2 

12.2 

13.2 

13.9 

9.0 

16.0 

7.0 

13.2 

8.4 

12.0 

2.25 

0.69 

3.36 

0.25 

0.11 

1.00 

1.00 

1.36 

1.00 

0.66 

 

Example 4 

A project is represented by the network as shown below and has the following data 

 

Task: A B C D E F G H I 

Least time: 5 18 26 16 15 6 7 7 3 

Greatest time: 10 22 40 20 25 12 12 9 5 



305 

 

Most likely time: 15 20 33 18 20 9 10 8 4 

Determine the following 

1. Expected task time and their variance 

2. Earliest and latest  time 

 

Solution 

 

 

 

 

1. 

Activity 
Least time 

(t0) 

Greatest time 

(tp) 

Most likely 

time (tm) 

Expected time 

(to + tp + 4tm)/6 

Variance 

(σ2) 

(1-2) 

(1-3) 

(1-4) 

(2-5) 

(2-6) 

(3-6) 

(4-7) 

(5-7) 

(6-7) 

5 

18 

26 

16 

15 

6 

7 

7 

3 

10 

22 

40 

20 

25 

12 

12 

9 

5 

8 

20 

33 

18 

20 

9 

10 

8 

4 

7.8 

20.0 

33.0 

18.0 

20.0 

9.0 

9.8 

8.0 

4.0 

0.69 

0.44 

5.43 

0.44 

2.78 

1.00 

0.69 

0.11 

0.11 

 

2. 
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Earliest time 

E1 = 0 

E2 = 0 +7.8 = 7.8 

E3 = 0 +20 = 20 

E4 = 0 +33 = 33 

E5 = 7.8 + 18 = 25.8 

E6 = max [7.8 + 20, 20 + 9] = 29 

E7 = max [33 + 9.8, 25.8 + 8, 29 + 4] = 42.8 

Latest time 

L7 = 42.8 

L6 = 42.8 – 4 = 38.8 

L5 = 42.8 – 8 = 34.3 

L4 = 42.8 – 9.8 = 33 

L3 = 38.8 – 9 = 29.8 

L2 = min [34.8 – 18, 38.8 – 20] = 16.8 

L1 = min [16.8 – 7.8, 29.8 – 20, 33 - 33] = 0 

 

Exercise 

1. What is PERT? 

2. For the following data, draw network. Find the critical path, slack time after 

calculating the earliest expected time and the latest allowable time 
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Activity Duration Activity Duration 

(1 – 2) 

(1 – 3) 

(2 – 4) 

(2 – 5) 

(2 – 6) 

(3– 7) 

(3 – 8) 

(4 – 9) 

5 

8 

6 

4 

4 

5 

3 

1 

(5 – 9) 

(6 – 10) 

(7 – 10) 

(8 – 11) 

(9 – 12) 

(10 – 12) 

(11 – 13) 

(12 – 13) 

3 

5 

4 

9 

2 

4 

1 

7 

 

[Ans. Critical path: 1 → 3 → 7 → 10 → 12 →13] 

3. A  project schedule has the following characteristics 

 

Activity Most optimistic time Most likely time Most pessimistic time 

(1 – 2) 

(2 – 3) 

(2 – 4) 

(3 – 5) 

(4 – 5) 

(4 – 6) 

(5 – 7) 

(6 – 7) 

(7 – 8) 

(7 – 9) 

(8 – 10) 

(9 – 10) 

1 

1 

1 

3 

2 

3 

4 

6 

2 

4 

1 

3 

2 

2 

3 

4 

5 

5 

5 

7 

4 

6 

2 

5 

3 

3 

5 

5 

4 

7 

6 

8 

6 

8 

3 

7 
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Construct a PERT network and find out  

a. The earliest possible time 

b. Latest allowable time 

c. Slack values 

d. Critical path 

4. Explain the following terms 

a. optimistic time 

b. Most likely time 

c. Pessimistic time 

d. Expected time 

e. Variance 

5. Calculate the variance and the expected time for each activity  

 

 

 


