Debre Markos University

College of Natural and Computational Science

Department of Mathematics

Linear algebra II Worksheet II

- 1. Determine whether the mapping \langle , \rangle is an inner product or not on the indicated vector space V.
 - a) $V = \mathbb{R}^2$, $\langle X, Y \rangle = ax_1y_1 + bx_2y_2$, where $X = (x_1, x_2)$, $Y = (y_1, y_2)$, a > 0 and b > 0.
 - b) $V = \mathbb{R}^2$, $\langle X, Y \rangle = x_1y_2 + x_2y_1$, where $X = (x_1, x_2)$, $Y = (y_1, y_2)$.
 - c) $V = P_2(\mathbb{R}) =$ vector space of polynomials with dgree ≤ 2 over the field \mathbb{R} , $\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2)$
 - d) $V = M_2(\mathbb{R})$, for $A, B \in M_2(\mathbb{R})$, define $\langle A, B \rangle = a_{11}b_{11} + 2a_{12}b_{21} + 3a_{21}b_{12} + a_{22}b_{22}$.
- 2. Find the inner product of u and v in the indicated space V if :
 - a) $V = \mathbb{C}^3$, u = (1 + i, -3, 4 3i) and v = (2 i, -i, 2 + i) with standard inner product in \mathbb{C}^3 .
 - b) $V = C[0,1] = The vector space continuous functions on [0,1], <math>u(t) = t^2 + t + 1$ and $v(t) = t^3 + 2t^2 + 3t 1$ with an inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.
- 3. Let $V = \mathbb{C}^3$ with the standard inner product. Let x = (2, 1 + i, i) and y = (2 i, 2, l + 2i). Compute $\langle x, y \rangle$, ||x||, ||y|| and $||x + y||^2$. Then verify both Cauchy's inequality and the triangle inequality.
- Suppose that ⟨,⟩₁ and ⟨,⟩₂ are two inner products on a vector space V. Prove that ⟨,⟩ = ⟨,⟩₁ + ⟨,⟩₂ is another inner product on V.
- 5. Determine whether the following set of vectors is orthonormal or not.
 - a) $V = \mathbb{C}^3$ with standard inner product, $S = \{(i, 1, 0), (0, i, 1), (0, 0, i)\}$
 - b) $V = M_2$ with inner product $\langle A, B \rangle = trace(B^t A) S = \left\{ \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \right\}$
- 6. Let $V = R^2$.Let u = (1, 1, -2) and v = (a, -1, 2) for what values of a re u and v orthogonal?
- 7. Let V be an inner product space, and suppose that $T: V \to V$ is linear and that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.
- 8. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.
- 9. Define an inner product on P₃ by ⟨f,g⟩ = ∫₀¹ f(x)g(x)dx. Let f(x) = x and g(x) = x². Find
 a) Proj_{gf}
 b) Proj_{f^g}

10. Define an inner product on P_3 by $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$.

- a) Use the standard basis $B = \{1, x, x^2, x^3\}$ to construct orthonormal basis for P_3 .
- b) Find $\langle x, 1 \rangle$, $\langle x^2, x \rangle$ and $\langle x^2, 1 \rangle$

11. Consider $S = \{(1, 1, -1), (-1, 2, 4)\}$ which is a subspace of \mathbb{R}^3 .

- a) Find the orthogonal complement of S
- b) Find the dimension of the orthogonal complement of S

12. Let β be a basis for a finite-dimensional inner product space. Prove that if $\langle x, y \rangle = 0$ for all $x \in \beta$, then y = 0.

13. For each of the following linear operators below, determine whether it is self-adjoint, isometry, normal or not

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T(x, y) = (y, -x)$

- b) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(z_1, z_2) = (iz_1 + z_2, z_1 + z_2)$
- c) $T: M_{2x2}(R) \to M_{2x2}(R)$ defined by $T(A) = (A + A^t)$ with $\langle A, B \rangle = trace(AB^t)$
- d) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (3x y, -x + 4y)
- e) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(z_1, z_2) = (2z_1 + iz_2, z_1 + 2z_2)$
- 14. For each of the following inner product spaces V and linear operators T on V, evaluate T* at the given element of V.

a)
$$V = \mathbb{R}^2$$
, $T(a, b) = (2a + b, a - 3b)$, $x = (3,5)$.

b) $V = \mathbb{C}^2$, $T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1)$, x = (3 - i, 1 + 2i).

c)
$$V = P_2(\mathbb{R})$$
, with $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, $T(f) = f' + 3f$, $f(x) = 4 - x + 3x^2$

- 15. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all x in V $||T(x) \pm ix||^2 = ||T(x)||^2$.
- 16. For each of the linear operators below, determine whether it is normal, self- adjoint, or neither.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(a, b) = (2a 2b, -2a + 5b).
 - b) $(T: \mathbb{C}^2 \to \mathbb{C}^2 \text{ defined by } T(a, b) = \{2a + ib, a + 2b\}.$
 - c) T: $P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(f) = f' where $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$
- 17. Let T and U be self-adjoint operators on an inner product space. Prove that TU is self-adjoint \Leftrightarrow TU = UT.
- Assume that T is a linear operator on a complex (not necessarily finite dimensional) inner product space V with an adjoint T*. Prove
 - a) If T is self-adjoint, then $\langle T(x), x \rangle$ is real for all $x \in V$.
 - b) If T satisfies $\langle T(x), x \rangle = 0$ for all $x \in V$, then T = I = identity operator. Hint: Replace x by x + y and then by x + iy and expand the resulting inner products.
 - c) (c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then T = T *.