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Introduction

 Flows that involve significant changes in density are called 

compressible flows.

 Therefore, ρ(x, y, z) must now be treated as a field variable 

rather than simply a constant. 

 Typically, significant density variations start to appear when the 

flow Mach number exceeds 0.3 or so. The effects become 

especially large when the Mach number  approaches and 

exceeds unity. 

 In this chapter we will consider flows that involve significant 

changes in density. Such flows are called compressible flows, 

and they are frequently encountered in devices that involve the 

flow of gases at very high speeds such as flows in gas turbine 

engine components . Many aircraft fly fast enough to involve 

compressible flow.
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 Gas has large compressibility but when its velocity is low 

compared with the sonic velocity the change in density is 

small and it is then treated as an incompressible fluid.

 When a fluid moves at speeds comparable to its speed of 

sound, density changes become significant and the flow is 

termed compressible.

 Such flows are difficult to obtain in liquids, since high 

pressures of order 1000 atm are needed to generate sonic 

velocities.  In gases, however, a pressure ratio of only 2:1 

will likely cause sonic flow. Thus compressible gas flow is 

quite common, and this subject is often called gas 

dynamics.

4

Introduction



Thermodynamic Relations

Perfect gas 

 A perfect gas is one whose individual molecules interact 

only via direct collisions, with no other intermolecular 

forces present. 

 For such a perfect gas, p, ρ, and the temperature T are 

related by the following equation of state 

p = ρRT

 where R is the specific gas constant. For air, R =287J/kg-K◦ .

 It is convenient at this point to define the specific volume as 

the limiting volume per unit mass,

 which is merely the reciprocal of the density. 5



 The equation of state can now be written as 

pυ = RT 

 which is the more familiar thermodynamic form.

 Here R is the gas constant, and

 where Ro is the universal gas constant (Ro = 8314J/(kg K)) 

and M is the molecular weight. For example, for air 

assuming M = 28.96, the gas constant is
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 Then, assuming internal energy and enthalpy per unit mass 

e and h respectively,

 the specific enthalpy, denoted by h, and related to the other 

variables by

 For a calorically perfect gas, which is an excellent model 

for air at moderate temperatures both e and h are directly 

proportional to the temperature. 
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 Therefore we have

 where cv and cp are specific heats at constant volume and 

constant pressure, respectively.

 and comparing to the equation of state, we see that

 Defining the ratio of specific heats, γ ≡ cp/cv, we can with a 

bit of algebra write
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 so that cv and cp can be replaced with the equivalent 

variables γ and R. For air, it is handy to remember that 

First Law of Thermodynamics 

 Consider a thermodynamic system consisting of a small 

Lagrangian control volume (CV) moving with the flow.

 Over the short time interval dt, the CV undergoes a process 

where it receives work δw and heat δq from its 

surroundings, both per unit mass. This process results in 

changes in the state of the CV, described by the increments 

de, dh, dp . . . 
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Thermodynamic Relations

 The first law of thermodynamics 

for the process is

 This states that whatever energy 

is added to the system, whether 

by heat or by work, it must 

appear as an increase in the 

internal energy of the system.
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Isentropic relations

 Aerodynamic flows are effectively inviscid outside of 

boundary layers. This implies they have negligible heat 

conduction and friction forces, and hence are isentropic. 

 Therefore, along the pathline followed by the CV in the 

figure above, the isentropic version of the first law applies
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 This relation can be integrated after a few substitutions. 

First we note that

 and with the perfect gas relation

 the isentropic first law becomes
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 The final form can now be integrated from any state 1 to 

any state 2 along the pathline.

 From the equation of state we also have 

 Which gives the alternative isentropic relation 
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Stagnation Properties

 Consider a fluid flowing into a diffuser at a velocity    , 

temperature T, pressure P, and enthalpy h, etc. Here the 

ordinary properties T, P, h, etc. are called the static 

properties; that is, they are measured relative to the flow at 

the flow velocity.   

 If the diffuser is sufficiently long and the exit area is 

sufficiently large that the fluid is brought to rest (zero 

velocity) at the diffuser exit while no work or heat transfer 

is done.  The resulting state is called the stagnation state. 
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 We apply the first law per unit mass for one entrance, one 

exit, and neglect the potential energies.  Let the inlet state 

be unsubscripted and the exit or stagnation state have the 

subscript o.

 Since the exit velocity, work, and heat transfer are zero,

 The term ho is called the stagnation enthalpy (some 

authors call this the total enthalpy).  

 It is the enthalpy the fluid attains when brought to rest 

adiabatically while no work is done.
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Stagnation Properties

 If, in addition, the process is 

also reversible, the process is 

isentropic, and the inlet and 

exit entropies are equal.

 The stagnation enthalpy and 

entropy define the stagnation 

state and the isentropic 

stagnation pressure, Po.  

 The actual stagnation pressure 

for irreversible flows will be 

somewhat less than the 

isentropic stagnation pressure 

as shown in the fig.
16

s so 



Example 1

 Steam at 400oC, 1.0 MPa, and 300 m/s flows through a 

pipe.  Find the properties of the steam at the stagnation 

state.

Solution

 At T = 400oC and P = 1.0 MPa,

h = 3264.5 kJ/kg    s = 7.4670 kJ/kgK 

Then 
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and 

 We can find Po by trial and error. The resulting stagnation 

properties are
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Ideal Gas Result

Rewrite the equation defining the stagnation enthalpy as

h h
V

o  


2

2

For ideal gases with constant specific heats, the enthalpy 

difference becomes
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where To is defined as the stagnation temperature. 

T T
V

C
o

P

 


2

2



20

For the isentropic process, the stagnation pressure can be 

determined from

or

The ratio of the stagnation density to static density can be 

expressed as



Example 2

 An aircraft is flying at a cruising speed of 250 m/s at an altitude

of 5000 m where the atmospheric pressure is 54.05 kPa and the

ambient air temperature is 255.7 K. The ambient air is first

decelerated in a diffuser before it enters the compressor.

Assuming both the diffuser and the compressor to be isentropic,

determine (a) the stagnation pressure at the compressor inlet and

(b) the required compressor work per unit mass if the stagnation

pressure ratio of the compressor is 8.
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Solution

 High-speed air enters the diffuser and the compressor of an 

aircraft. The stagnation pressure of the air and the compressor 

work input are to be determined.

 Assumptions  1 Both the diffuser and the compressor are 

isentropic. 2  Air is an ideal gas with constant specific heats 

at room temperature.

 Properties  The constant-pressure specific heat cp and the 

specific heat ratio k of air at room temperature are

cp = 1.005 kJ/kg . K    and  k = 1.4

 Analysis 

(a) the stagnation temperature T01 at the compressor inlet can 

be determined from
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 Then

 That is, the temperature of air would increase by 31.1°C 

and the pressure by 26.72 kPa as air is decelerated from 

250 m/s to zero velocity. These increases in the temperature 

and pressure of air are due to the conversion of the kinetic 

energy into enthalpy.
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 To determine the compressor work, we need to know the 

stagnation temperature of air at the compressor exit T02.

 Disregarding potential energy changes and heat transfer, the 

compressor work per unit mass of air is determined from
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Conservation of Energy for Control Volumes Using 

Stagnation Properties

The steady-flow conservation of energy for the above figure is

Since
h h

V
o  


2
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For no heat transfer, one entrance, one exit, this reduces to

If we neglect the change in potential energy, this becomes 

For ideal gases with constant specific heats we write this as

Conservation of Energy for a Nozzle

We assume steady-flow, no heat transfer, no work, one entrance, 

and one exit and neglect elevation changes; then the conservation 

of energy becomes

1 1 2 2

in out

o o

E E

m h m h




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But  m m1 2 thus h ho o1 2

Thus the stagnation enthalpy remains constant throughout the 

nozzle.  At any cross section in the nozzle, the stagnation 

enthalpy is the same as that at the entrance. For ideal gases this 

last result becomes

T To o1 2

Thus the stagnation temperature remains constant through out 

the nozzle.  At any cross section in the nozzle, the stagnation 

temperature is the same as that at the entrance.   

Assuming an isentropic process for flow through the nozzle, 

we can write for the entrance and exit states

So we see that the stagnation pressure is also constant through 

out the nozzle for isentropic flow.



Speed of Sound and Mach number

 An important parameter in the study of compressible flow 

is the speed of sound (or the sonic speed), which is the 

speed at which an infinitesimally small pressure wave 

travels through a medium. 

 The pressure wave may be caused by a small disturbance, 

which creates a slight rise in local pressure.

 To obtain a relation for the speed of sound in a medium, 

consider a duct that is filled with a fluid at rest,
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 A piston fitted in the duct is now moved to the right with a constant 

incremental velocity dV, creating a sonic wave. 

 The wave front moves to the right through the fluid at the speed of 

sound c and separates the moving fluid adjacent to the piston from 

the fluid still at rest. 

 The fluid to the left of the wave front experiences an incremental 

change in its thermodynamic properties, while the fluid on the right 

of the wave front maintains its original thermodynamic properties, 

as shown in Fig.

 To simplify the analysis, consider a control volume that encloses the 

wave front and moves with it, as shown in the fig. below. 

 To an observer traveling with the wave front, the fluid to the right 

will appear to be moving toward the wave front with a speed of c 

and the fluid to the left to be moving away from the wave front with 

a speed of c - dV.
29
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Speed of Sound and Mach number
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Speed of Sound and Mach number

Cancel terms and neglect         ; we havedV


2

dh CdV 


0
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Now, apply the conservation of mass or continuity equation 

to the control volume.

m AV 


  

    

AC d A C dV

AC A C dV Cd d dV

  

   

( ) ( )

( )



 

Cancel terms and neglect the higher-order terms like            .

We have 

d dV


C d dV  


0

Also, we consider the property relation dh T ds v dP

dh T ds dP

 

 
1


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Let's assume the process to be isentropic; then ds = 0 and 

dh dP
1



Using the results of the first law

dh dP C dV 
1





From the continuity equation 

dV
Cd





Now we have



34

Thus dP

d
C


 2

Since the process is assumed to be isentropic, the above becomes

By using thermodynamic property relations this can be written 

as

where k is the ratio of specific heats, k = CP/CV.
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Example -3

Find the speed of sound in air at an altitude of 5000 m.

At 5000 m, T = 255.7 K.

C
kJ

kg K
K

m

s
kJ

kg

m

s






14 0 287 2557

1000

3205

2

2

. ( . )( . )

.

Ideal Gas Result

For ideal gases  →



36

Notice that the temperature used for the speed of sound is the 

static (normal) temperature.

Example -4

Find the speed of sound in steam where the pressure is 1 MPa 

and the temperature is 350oC.

At P = 1 MPa, T = 350oC,

1
s

s

P P
C

v



 
   
   

        
  
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Here, we approximate the partial derivative by perturbating 
the pressure about 1 MPa.  Consider using P±0.025 MPa at the 

entropy value s = 7.3011 kJ/kg K, to find the corresponding 

specific volumes.
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What is the speed of sound for steam at 350oC assuming 

ideal-gas behavior?

Assume k = 1.3, then
C

kJ

kg K
K

m

s
kJ

kg

m

s








13 0 4615 350 273

1000

6114

2

2

. ( . )( )

.

Mach Number

The Mach number M is defined as M
V

C




M <1 flow is subsonic 

M =1 flow is sonic 

M >1 flow is supersonic 
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Example -5

In the air and steam examples above, find the Mach number if the 

air velocity is 250 m/s and the steam velocity is 300 m/s.

M

m

s
m

s

M

m

s
m

s

air

steam

 

 

250

3205

0 780

300

6055

0 495

.

.

.

.

The flow parameters To/T, Po/P, o/, etc. are related to the flow Mach 

number. Let's consider ideal gases, then 

T T
V
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T

T
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C T
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but C
k

k
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C

k
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
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o  
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so T

T
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

The pressure ratio is given by
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We can show the density ratio to be

For the Mach number equal to 1, the sonic location, the static 

properties are denoted with a superscript “*”.  This condition, 

when M = 1, is called the sonic condition.  When M = 1 and k = 

1.4, the static-to-stagnation ratios are



Example. Mach Number of Air Entering a Diffuser

 Air enters a diffuser shown in Fig. with a velocity of 200 

m/s. Determine (a) the speed of sound and (b) the Mach 

number at the diffuser inlet when the air temperature is 
30°C.
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One-Dimensional Isentropic Flow

 During fluid flow through many devices such as nozzles, 

diffusers, and turbine blade passages, flow quantities vary 

primarily in the flow direction only, and the flow can be 

approximated as one-dimensional isentropic flow with good 

accuracy.

Effect of Area Changes on Flow Parameters

 Consider the isentropic steady flow of an ideal gas through 

the nozzle shown below. 
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Air flows steadily through a varying-cross-sectional-area duct 

such as a nozzle at a flow rate of 3 kg/s.  The air enters the 

duct at a low velocity at a pressure of 1500 kPa and a 

temperature of 1200 K and it expands in the duct to a pressure 

of 100 kPa.  The duct is designed so that the flow process is 

isentropic.  Determine the pressure, temperature, velocity, 

flow area, speed of sound, and Mach number at each point 

along the duct axis that corresponds to a pressure drop of 200 

kPa.

Since the inlet velocity is low, the stagnation properties equal 

the static properties.

T T K P P kPao o   1 11200 1500,
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After the first 200 kPa pressure drop, we have

  





P

RT

kPa

kJ

kg K
K

kJ

m kPa

kg

m

( )

( . )( . )

.

1300

0 287 11519

3932

3

3
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A
m

V
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s
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m

m

s
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m
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 





( . )( . )

.




3

39322 310 77

10

24 55

3

4 2

2

2

C kRT
kJ

kg K
K

m

s
kJ

kg

m

s

 




14 0 287 11519

1000

680 33

2

2

. ( . )( . )

.

M
V

C

m

s
m

s

  

 310 77

680 33

0 457

.

.

.

Now we tabulate the results for the other 200 kPa increments 

in the pressure until we reach 100 kPa.
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Summary of Results for Nozzle Problem


V



Step P

kPa

T

K m/s



kg/m3

C

m/s

A

cm2

M

0 1500 1200 0 4.3554 694.38 0

1 1300 1151.9 310.77 3.9322 680.33 24.55 0.457

2 1100 1098.2 452.15 3.4899 664.28 19.01 0.681

3 900 1037.0 572.18 3.0239 645.51 17.34 0.886

4 792.4 1000.0 633.88 2.7611 633.88 17.14 1.000

5 700 965.2 786.83 2.5270 622.75 17.28 1.103

6 500 876.7 805.90 1.9871 593.52 18.73 1.358

7 300 757.7 942.69 1.3796 551.75 23.07 1.709

8 100 553.6 1139.62 0.6294 471.61 41.82 2.416

Note that at P = 797.42 kPa, M = 1.000, and this state is the 

critical state.



 We note from the Nozzle Example  

that the flow area decreases with 

decreasing pressure down to a 

critical-pressure value where the 

Mach number is unity, and then it 

begins to increase with further 

reductions in pressure. 

 The Mach number is unity at the 

location of smallest flow area, 

called the throat . 

 Note that the velocity of the fluid 

keeps increasing after passing the 

throat although the flow area 

increases rapidly in that region. 

This increase in velocity past the 

throat is due to the rapid decrease 

in the fluid density. 
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 The flow area of the duct considered in this example first 

decreases and then increases. Such ducts are called 

converging–diverging nozzles. These nozzles are used to 

accelerate gases to supersonic speeds and should not be 

confused with Venturi nozzles, which are used strictly for 

incompressible flow.
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Now let's see why these relations work this way.  Consider the 

nozzle and control volume shown below. 

The first law for the control volume is

dh VdV 
 

0

The continuity equation for the control volume yields

d dA

A

dV

V




  



 0

Also, we consider the property relation for an isentropic process 

Tds dh
dP

  


0
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and the Mach Number relation dP

d
C

V

M
 2

2

2



Putting these four relations together yields

dA

A

dP

V
M 




2

21( )

Let’s consider the implications of this equation for both nozzles 

and diffusers. A nozzle is a device that increases fluid velocity 

while causing its pressure to drop; thus, d    > 0, dP < 0.


V

Nozzle Results dA

A

dP

V
M 




2

21( )

Subsonic

Sonic

Supersonic

: ( )

: ( )

: ( )

M dP M dA

M dP M dA

M dP M dA

   

   

   

1 1 0 0

1 1 0 0

1 1 0 0

2

2

2
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To accelerate subsonic flow, the nozzle flow area must first 

decrease in the flow direction.  The flow area reaches a 

minimum at the point where the Mach number is unity.  To 

continue to accelerate the flow to supersonic conditions, the 

flow area must increase.

The minimum flow area is called the throat of the nozzle.

We are most familiar with the shape of a subsonic nozzle.  

That is, the flow area in a subsonic nozzle decreases in the 

flow direction.
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A diffuser is a device that decreases fluid velocity while 

causing its pressure to rise; thus, d < 0, dP > 0. 


V

Diffuser Results dA

A

dP

V
M 




2

21( )

Subsonic

Sonic

Supersonic

: ( )

: ( )

: ( )

M dP M dA

M dP M dA

M dP M dA

   

   

   

1 1 0 0

1 1 0 0

1 1 0 0

2

2

2

To diffuse supersonic flow, the diffuser flow area must first 

decrease in the flow direction.  The flow area reaches a minimum 

at the point where the Mach number is unity.  To continue to 

diffuse the flow to subsonic conditions, the flow area must 

increase. We are most familiar with the shape of a subsonic 

diffuser.  That is the flow area in a subsonic diffuser increases in 

the flow direction.
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Equation of Mass Flow Rate through a Nozzle

Let's obtain an expression for the flow rate through a converging 

nozzle at any location as a function of the pressure at that 

location.  The mass flow rate is given by 

m AV 


The velocity of the flow is related to the static and stagnation 

enthalpies.


V h h C T T C T
T

T
o P P

o

     2 2 2 10 0( ) ( ) ( )

and 
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Write the mass flow rate as 

m AV o

o









We note from the ideal-gas relations that

o
o

o

P

RT

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What pressure ratios make the mass flow rate zero?

Do these values make sense?

Now let's make a plot of mass flow rate versus the static-to-

stagnation pressure ratio. 

0.00 0.20 0.40 0.60 0.80 1.00

0.00
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g
/s
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This plot shows there is a value of P/Po that makes the mass flow rate 

a maximum.  To find that mass flow rate, we note

The result is

So the pressure ratio that makes the mass flow rate a maximum is the 

same pressure ratio at which the Mach number is unity at the flow cross-

sectional area.  This value of the pressure ratio is called the critical 

pressure ratio for nozzle flow.  For pressure ratios less than the critical 

value, the nozzle is said to be choked.  When the nozzle is choked, the 

mass flow rate is the maximum possible for the flow area, stagnation 

pressure, and stagnation temperature.  Reducing the pressure ratio below 

the critical value will not increase the mass flow rate.
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Using

The mass flow rate becomes

When the Mach number is unity, M = 1, A = A*

Taking the ratio of the last two results gives the ratio of the area 

of the flow A at a given Mach number to the area where the 

Mach number is unity, A*.  

What is the expression for mass flow rate when the nozzle is choked?
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Then 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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 From the above plot we note that for each A/A* there are two 

values of M: one for subsonic flow at that area ratio and one for 

supersonic flow at that area ratio.  The area ratio is unity when 

the Mach number is equal to one.
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Consider the converging nozzle 

shown below.  The flow is supplied 

by a reservoir at pressure Pr and 

temperature Tr.  The reservoir is 

large enough that the velocity in the 

reservoir is zero. 

Let's plot the ratio P/Po along the 

length of the nozzle, the mass flow 

rate through the nozzle, and the exit 

plane pressure Pe as the back 

pressure Pb is varied.  Let's consider 

isentropic flow so that Po is constant 

throughout the nozzle.

Effect of Back Pressure on Flow through a Converging Nozzle



 Now we begin to reduce the back pressure and observe the 

resulting effects on the pressure distribution along the length of 

the nozzle, as shown in the Fig. above. 

 If the back pressure Pb is equal to P1, which is equal to Pr, there 

is no flow and the pressure distribution is uniform along the 

nozzle. 

 When the back pressure is reduced to P2, the exit plane pressure 

Pe also drops to P2. This causes the pressure along the nozzle to 

decrease in the flow direction.

 When the back pressure is reduced to P3 (= P*, which is the 

pressure required to increase the fluid velocity to the speed of 

sound at the exit plane or throat), the mass flow reaches a 

maximum value and the flow is said to be choked.
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 Further reduction of the back pressure to level P4 or below does 

not result in additional changes in the pressure distribution, or 

anything else along the nozzle length.

 Under steady-flow conditions, the mass flow rate through the 

nozzle is constant and can be expressed as

 Solving for T from                                      and for P from                    

and substituting 
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 Thus the mass flow rate of a particular fluid through a nozzle is a 

function of the stagnation properties of the fluid, the flow area, 

and the Mach number.

 The maximum mass flow rate can be determined by 

differentiating  the above equation with respect to Ma and 

setting the result equal to zero. It yields Ma = 1. 

 Since the only location in a nozzle where the Mach number can 

be unity is the location of minimum flow area (the throat), the 

mass flow rate through a nozzle is a maximum when Ma = 1 at 

the throat. Denoting this area by A*, we obtain an expression for 

the maximum mass flow rate by substituting Ma = 1
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 A relation for the variation of flow area A through the nozzle 

relative to throat area A* can be obtained by combining  

equations f or      and         for the same mass flow rate and 

stagnation properties of a particular fluid. This yields

 Another parameter sometimes used in the analysis of one-

dimensional isentropic flow of ideal gases is Ma*, which is 

the ratio of the local velocity to the speed of sound at the 

throat:
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 where Ma is the local Mach number, T is the local 

temperature, and T* is the critical temperature.

 Solving for T and for T* and substituting, we get

 Note that the parameter Ma* differs from the Mach number 

Ma in that Ma* is the local velocity nondimensionalized with 

respect to the sonic velocity at the throat, whereas Ma is the 

local velocity nondimensionalized with respect to the local 

sonic velocity.
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Table 1



 A plot of versus Pb /P0 for a

converging nozzle is shown in

Fig. below.

 Notice that the mass flow rate

increases with decreasing Pb /P0,

reaches a maximum at Pb = P*,

and remains constant for Pb /P0

values less than this critical

ratio. Also illustrated on this

figure is the effect of back

pressure on the nozzle exit

pressure Pe. We observe that
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 To summarize, for all back pressures lower than the critical 

pressure P*, the pressure at the exit plane of the converging 

nozzle Pe is equal to P*, the Mach number at the exit plane is 

unity, and the mass flow rate is the maximum (or choked) flow 

rate. 

 Because the velocity of the flow is sonic at the throat for the 

maximum flow rate, a back pressure lower than the critical 

pressure cannot be sensed in the nozzle upstream flow and 

does not affect the flow rate.
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1. Pb = Po, Pb /Po = 1. No flow occurs.  Pe = Pb, Me=0. 

2. Pb > P* or  P*/Po < Pb /Po < 1.  Flow begins to increase as 

the back pressure is lowered. Pe = Pb, Me < 1. 

3. Pb = P* or P*/Po = Pb /Po < 1.  Flow increases to the choked 

flow limit as the back pressure is lowered to the critical 

pressure.  Pe = Pb, Me=1.  

4. Pb < P* or Pb /Po < P*/Po < 1. Flow is still choked and does 

not increase as the back pressure is lowered below the 

critical pressure, pressure drop from Pe to Pb occurs outside 

the nozzle.  Pe = P*, Me=1. 

5. Pb =  0.  Results are the same as for item 4.

Consider the converging-diverging nozzle shown below. 

Effect of Back Pressure on Flow through a Converging Nozzle



Example. Effect of Back Pressure on Mass Flow Rate

 Air at 1 MPa and 600°C enters a converging nozzle, shown 

in Fig., with a velocity of 150 m/s. Determine the mass 

flow rate through the nozzle for a nozzle throat area of 50 

cm2 when the back pressure is (a) 0.7 MPa and (b) 0.4 

MPa.
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The critical-pressure ratio is determined from Table 1  (or Eq. 

below) 

to be P*/P0 = 0.5283.

That is, Pt = Pb = 0.7 MPa, and Pt /P0 = 0.670. Therefore, the 

flow is not choked. From Table 1 at Pt /P0 = 0.670, we read Mat = 

0.778 and Tt /T0 = 0.892.
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Converging–Diverging Nozzles

 When we think of nozzles, we ordinarily think of flow 

passages whose cross-sectional area decreases in the flow 

direction. However, the highest velocity to which a fluid 

can be accelerated in a converging nozzle is limited to the 

sonic velocity (Ma = 1), which occurs at the exit plane 

(throat) of the nozzle. 

 Accelerating a fluid to supersonic velocities (Ma > 1) can 

be accomplished only by attaching a diverging flow section 

to the subsonic nozzle at the throat. The resulting 

combined flow section is a converging– diverging nozzle, 

which is standard equipment in supersonic aircraft and 

rocket propulsion.
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 Forcing a fluid through a converging–diverging nozzle is no 

guarantee that the fluid will be accelerated to a supersonic velocity. 

 In fact, the fluid may find itself decelerating in the diverging 

section instead of accelerating if the back pressure is not in the 

right range. 

 The state of the nozzle flow is determined by the overall pressure 

ratio Pb/P0. Therefore, for given inlet conditions, the flow through a 

converging–diverging nozzle is governed by the back pressure Pb.
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 Consider the converging–

diverging nozzle shown in Fig. 

A fluid enters the nozzle with a 

low velocity at stagnation 

pressure P0. When Pb =P0 (case 

A), there is no flow through the 

nozzle. 

 This is expected since the flow 

in a nozzle is driven by the 

pressure difference between the 

nozzle inlet and the exit. 

 Now let us examine what 

happens as the back pressure is 

lowered.78

Converging–Diverging 

Nozzles
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3. When PC > Pb > PE, the fluid that achieved a sonic velocity at 

the throat continues accelerating to supersonic velocities in the 

diverging section as the pressure decreases. This acceleration 

comes to a sudden stop, however, as a normal shock develops 

at a section between the throat and the exit plane, which causes a 

sudden drop in velocity to subsonic levels and a sudden increase 

in pressure. 

 The fluid then continues to decelerate further in the remaining 

part of the converging–diverging nozzle. Flow through the shock 

is highly irreversible, and thus it cannot be approximated as 

isentropic. The normal shock moves downstream away from the 

throat as Pb is decreased, and it approaches the nozzle exit plane 

as Pb approaches PE.
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 When Pb = PE, the normal shock forms at the exit plane of the 

nozzle. The flow is supersonic through the entire diverging 

section in this case, and it can be approximated as isentropic. 

However, the fluid velocity drops to subsonic levels just 

before leaving the nozzle as it crosses the normal shock.

4. When PE > Pb > 0, the flow in the diverging section is 

supersonic, and the fluid expands to PF at the nozzle exit with 

no normal shock forming within the nozzle. Thus, the flow 

through the nozzle can be approximated as isentropic. 

 When Pb = PF, no shocks occur within or outside the nozzle. 

When Pb < PF, irreversible mixing and expansion waves occur 

downstream of the exit plane of the nozzle. When Pb > PF, 

however, the pressure of the fluid increases from PF to Pb

irreversibly in the wake of the nozzle exit, creating what are 

called oblique shocks.81
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Example -7

Air leaves the turbine of a turbojet engine and enters a 

convergent nozzle at 400 K, 871 kPa, with a velocity of 180 m/s.  

The nozzle has an exit area of 730 cm2.  Determine the mass 

flow rate through the nozzle for back pressures of 700 kPa, 528 

kPa, and 100 kPa, assuming isentropic flow.

The stagnation temperature and stagnation pressure are 

T T
V

C
o

P

 


2

2
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For air k = 1.4 and from Table  or using the equation below the critical 

pressure ratio is P*/Po = 0.528.  The critical pressure for this nozzle is 

P P

kPa kPa

o

* .

. ( )



 

0528

0528 1000 528

Therefore, for a back pressure of 528 kPa, M = 1 at the nozzle exit and 

the flow is choked.  For a back pressure of 700 kPa, the nozzle is not 

choked.  The flow rate will not increase for back pressures below 528 

kPa.
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For the back pressure of 700 kPa,

P
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o o
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Thus, PE = PB = 700 kPa.  For this pressure ratio Table 1 gives 

M E  0 7324.
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E
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For the back pressure of 528 kPa,

P
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This is the critical pressure ratio and ME = 1 and PE = PB = P* = 528 kPa.
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

. ( )( . )
( )

.

m A V

kg

m
cm

m

s

m

cm

kg

s

E E E








53064 730 3732
100

144 6

3

2
2

2

For a back pressure less than the critical pressure, 528 kPa in this case, 

the nozzle is choked and the mass flow rate will be the same as that for 

the critical pressure.  Therefore, at a back pressure of 100 kPa the mass 

flow rate will be 144.6 kg/s.

Example -8

Air enters a converging–diverging nozzle, shown in Fig., at 1.0 MPa and 

800 K with a negligible velocity. The flow is steady, one-dimensional, 

and isentropic with k = 1.4. For an exit Mach number of Ma = 2 and a 

throat area of 20 cm2, determine (a) the throat conditions, (b) the exit 

plane conditions, including the exit area, and (c) the mass flow rate 

through the nozzle.
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Normal Shocks

In some range of back pressure, the fluid that achieved a sonic 

velocity at the throat of a converging-diverging nozzle and is 

accelerating to supersonic velocities in the diverging section 

experiences a normal shock.

The normal shock causes a sudden rise in pressure and 

temperature and a sudden drop in velocity to subsonic levels. 

Flow through the shock is highly irreversible, and thus it cannot 

be approximated as isentropic. The properties of an ideal gas 

with constant specific heats before (subscript 1) and after 

(subscript 2) a shock are related by



93

We assume steady-flow with no heat and work interactions and no 

potential energy changes.  We have the following

Conservation of mass

1 1 2 2

2 2 2 2

AV AV

V V

 

 




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Conservation of energy
2 2

1 2
1 2

1 2

1 2

2 2

:

o o

o o

V V
h h

h h

for ideal gases T T

  





Conservation of momentum

Rearranging                           and integrating yield

1 2 2 1( ) ( )A P P m V V  

Increase of entropy

2 1 0s s 

Thus, we see that from the conservation of energy, the stagnation 

temperature is constant across the shock.  However, the stagnation 

pressure decreases across the shock because of irreversibilities.  The 

ordinary (static) temperature rises drastically because of the conversion 

of kinetic energy into enthalpy due to a large drop in fluid velocity.
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We can show that the following relations apply across the shock.
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The entropy change across the shock is obtained by applying the

entropy-change equation for an ideal gas, constant properties, across

the shock:

2 2
2 1

1 1

ln lnp

T P
s s C R

T P
  
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We can combine the conservation of 

mass and energy relations into a 

single equation and plot it on an h-s 

diagram, using property relations. 

The resultant curve is called the 

Fanno line, and it is the locus of 

states that have the same value of 

stagnation enthalpy and mass flux 

(mass flow per unit flow area). 

Likewise, combining the 

conservation of mass and 

momentum equations into a single 

equation and plotting it on the h-s 

diagram yield a curve called the 

Rayleigh line.
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The points of maximum entropy on these lines (points a and b) 

correspond to Ma = 1. The state on the upper part of each curve is 

subsonic and on the lower part supersonic.

The Fanno and Rayleigh lines intersect at two points (points 1 and 

2), which represent the two states at which all three conservation 

equations are satisfied. One of these (state 1) corresponds to the state 

before the shock, and the other (state 2) corresponds to the state after 

the shock.

Note that the flow is supersonic before the shock and subsonic 

afterward. Therefore the flow must change from supersonic to 

subsonic if a shock is to occur. The larger the Mach number before 

the shock, the stronger the shock will be. In the limiting case of Ma = 

1, the shock wave simply becomes a sound wave. Notice from Fig. 

that entropy increases, s2 >s1. This is expected since the flow through 

the shock is adiabatic but irreversible.
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Table 2
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Example -9

Air flowing with a velocity of 600 m/s, a pressure of 60 kPa, and a 

temperature of 260 K undergoes a normal shock.  Determine the 

velocity and static and stagnation conditions after the shock and the 

entropy change across the shock.

The Mach number before the shock is

1 1
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1 1

2

2
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For M1 = 1.856, Table 1 gives

1 1

1 1

0.1597, 0.5921
o o

P T

P T
 

For Mx = 1.856, Table 2 gives the following results.

2 2
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2 22

1 1 1
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From  the conservation of mass with A2 = A1.

2 2 1 1
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The entropy change across the shock is

2 2
2 1

1 1
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You are encouraged to read about the following topics in the text:  

•Oblique shocks
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Example 10. Shock Wave in a Converging–Diverging Nozzle

 If the air flowing through the converging–diverging nozzle of  

Example 8 experiences a normal shock wave at the nozzle exit plane  

(see fig below), determine the following after the shock: (a) the 

stagnation pressure, static pressure, static temperature, and static 

density; (b) the entropy change across the shock; (c) the exit 

velocity; and (d) the mass flow rate through the nozzle. Assume 

steady, one-dimensional, and isentropic flow with k = 1.4 from the 

nozzle inlet to the shock location.
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Analysis (a) The fluid properties at the exit of the nozzle just before the

shock (denoted by subscript 1) are those evaluated in Example 8 at the

nozzle exit to be

The fluid properties after the shock (denoted by subscript 2) are 

related to those before the shock through the functions listed in Table 

2. For Ma1= 2.0, we read



106



107



Oblique Shocks

 Not all shock waves are normal shocks (perpendicular to 

the flow direction). For example, when the space shuttle 

travels at supersonic speeds through the atmosphere, it 

produces a complicated shock pattern consisting of inclined 

shock waves called oblique shocks. 

Reading Assignment

 Read about oblique shock waves:  characteristic features, 

governing equations, calculation o properties; 

 Textbook to Read

 [YUNUS A. CENGEL] Fluid Mechanics. Fundamentals 

and Applications 
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End of Course
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