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Introduction

» Flows that involve significant changes in density are called
compressible flows.

e Therefore, p(X, y, z) must now be treated as a field variable
rather than simply a constant.

» Typically, significant density variations start to appear when the
flow Mach number exceeds 0.3 or so. The effects become
especially large when the Mach number approaches and
exceeds unity.

* In this chapter we will consider flows that involve significant
changes in density. Such flows are called compressible flows,
and they are frequently encountered in devices that involve the
flow of gases at very high speeds such as flows in gas turbine
engine components . Many aircraft fly fast enough to involve
compressible flow.
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Introduction

e Gas has large compressibility but when its velocity is low
compared with the sonic velocity the change in density is
small and it Is then treated as an incompressible fluid.

* When a fluid moves at speeds comparable to its speed of
sound, density changes become significant and the flow is
termed compressible.

» Such flows are difficult to obtain in liquids, since high
pressures of order 1000 atm are needed to generate sonic
velocities. In gases, however, a pressure ratio of only 2:1
will likely cause sonic flow. Thus compressible gas flow is
quite common, and this subject is often called gas
dynamics.
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Thermodynamic Relations

Perfect gas

» A perfect gas iIs one whose individual molecules interact
only via direct collisions, with no other intermolecular
forces present.

» For such a perfect gas, p, p, and the temperature T are
related by the following equation of state

p=pRT
» where R Is the specific gas constant. For air, R =287J/kg-K" .

e It Is convenient at this point to define the specific volume as
the limiting volume per unit mass,

, AV 1
v = lim — = —
AV—0 Am p

e which is merely the reciprocal of the density.




Thermodynamic Relations

» The equation of state can now be written as
pv=RT
* which is the more familiar thermodynamic form.

» Here R is the gas constant, and

R,
R=—
M
e where R, is the universal gas constant (R, = 8314J/(kg K))
and JL is the molecular weight. For example, for air

assuming JU = 28.96, the gas constant is

_ 8314 B 5,2
R = 7396 = 287J/(kg K) = 287 m“/(s* K)




Thermodynamic Relations

» Then, assuming internal energy and enthalpy per unit mass
e and h respectively,

. de
specific heat at constant volume: ¢, = (B—T) de =c¢,dT

oh

Specific heat at constant pressure: ¢, = (—)

»=(37) dh=c,dT
p

* the specific enthalpy, denoted by h, and related to the other
variables by

h=e+ pv
» For a calorically perfect gas, which is an excellent model

for air at moderate temperatures both e and h are directly
proportional to the temperature.




Thermodynamic Relations

» Therefore we have
e = Ccy 1
h = ¢, T
* where ¢, and ¢, are specific heats at constant volume and
constant pressure, respectively.

h—e =pv = (cp—c)T
» and comparing to the equation of state, we see that
E-p - C'U — R

* Defining the ratio of specific heats, y = ¢ /c,, we can with a
bit of algebra write

cw = ——R

¢ = ——R
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Thermodynamic Relations

» so that ¢, and c,, can be replaced with the equivalent
variables y and R. For air, it 1s handy to remember that

v = 14 b 2.5 T _ 35 (air)
7—1 v—1

First Law of Thermodynamics

e Consider a thermodynamic system consisting of a small
Lagrangian control volume (CV) moving with the flow.

» Over the short time interval dt, the CV undergoes a process
where It receives work ow and heat 6g from its
surroundings, both per unit mass. This process results in
changes in the state of the CV, described by the increments
de, dh,dp...
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\
Thermodynamic Relations time I + dt
* The first law of thermodynamics i iﬁi
for the process is :

0qg + dw = de

» This states that whatever energy
IS added to the system, whether
by heat or by work, it must
appear as an increase in the S
Internal energy of the system.

. Adiabatic process, where no heat is transferred, or g = 0. This rules out heating of
the CV via conduction though its boundary, or by combustion inside the CV.

Reversible process, no dissipation occurs, implying that work must be only via volu-
metric compression, or dw — —pdv. This rules out work done by friction forces.

Isentropic process, which is both adiabatic and reversible, implying —pdv = de.




Thermodynamic Relations

Isentropic relations

» Aerodynamic flows are effectively inviscid outside of
boundary layers. This implies they have negligible heat
conduction and friction forces, and hence are isentropic.

» Therefore, along the pathline followed by the CV in the
figure above, the isentropic version of the first law applies

e + de

Isentropic flow proch

from state 1 to state 2

/
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Thermodynamic Relations

—pdv = de

» This relation can be integrated after a few substitutions.
First we note that

1 d
dv = d(—) — ——E
P P

 and with the perfect gas relation

1
de = ¢, dl’" = —— RdT
v—1
e the isentropic first law becomes
dp 1 L PRy
pﬁ_’}*—l - P y—1p
dp 1 dT

@ p y—-1T
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Thermodynamic Relations

e The final form can now be integrated from any state 1 to

any state 2 along the pathline.

Inp =

p:
P2
P1

e From the equation of state we also have

v—1

const. x TY/0—1

T, ) 1/(v—-1)

(

T,

InT" + const.

P2 p2 11

P1 p1 Ts

» Which gives the alternative isentropic relation

)

P1
(-

(

15
13

)w’ (v—1)
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Stagnation Properties

e Consider a fluid flowing into a diffuser at a velocity v,
temperature T, pressure P, and enthalpy h, etc. Here the
ordinary properties T, P, h, etc. are called the static
properties; that is, they are measured relative to the flow at
the flow velocity:.

o |If the diffuser is sufficiently long and the exit area is
sufficiently large that the fluid is brought to rest (zero
velocity) at the diffuser exit while no work or heat transfer
Is done. The resulting state is called the stagnation state.

h

— / hﬂ
174 I
T »  Diffuser v,
P \ Tn
Ftc. Py




Stagnation Properties

» We apply the first law per unit mass for one entrance, one
exit, and neglect the potential energies. Let the inlet state
be unsubscripted and the exit or stagnation state have the
subscript o.

V? V?
et +h+7 = Whet +ho +70
 Since the exit velocity, work, and heat transfer are zero,
\7’2
h,=h+—
2
» The term h, is called the stagnation enthalpy (some

authors call this the total enthalpy).

e It is the enthalpy the fluid attains when brought to rest
adiabatically while no work is done.
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Stagnation Properties

« If, in addition, the process is "t | R .
also reversible, the process is staqnation Q%
isentropic, and the inlet and state
exit entropies are equal. hgb——5-———AC—A———————-

SO =3 ! Actual

e The stagnation enthalpy and V2 ;S agnation
entropy define the stagnation 2 ,"
state and the isentropic ! 0
stagnation pressure, P,,. /

* The actual stagnation pressure " ________/_J/\_\____ ——————
for irreversible flows will be Actual state
somewhat less than the

Isentropic stagnation pressure
as shown in the fig.
(-

vy




Example 1

 Steam at 400°C, 1.0 MPa, and 300 m/s flows through a
pipe. Find the properties of the steam at the stagnation
state.

Solution
o At T =400°C and P = 1.0 MPa,
h =3264.5 kJ/kg s =7.4670 kJ/kg-K

Then =
h0=h+v—
2
m)  kJ
. (300—) -
=3264.5——+ 23 J
) 1000 -
S
~ 33095
kg




Example 1.... solution

and
S =S = 7.467Ok—J
kg-K

0]

h, =h(F,.s,)

e We can find P, by trial and error. The resulting stagnation
properties are

P =1.16 MPa
T, =422.2°C

=t = 3.640k—%
Vv m

0]




Ideal Gas Result
Rewrite the equation defining the stagnation enthalpy as

\72
2

For ideal gases with constant specific heats, the enthalpy
difference becomes

h —h=

\72

Co(T,-T)=—
P(o ) 2

where T, Is defined as the stagnation temperature.

(-




For the isentropic process, the stagnation pressure can be

determined from
E ) ( R; J(k—l}ﬁ:
T P

i ) (Y;)H{k—l}
P T

The ratio of the stagnation density to static density can be
expressed as

or




Example 2

e An aircraft is flying at a cruising speed of 250 m/s at an altitude
of 5000 m where the atmospheric pressure is 54.05 kPa and the
ambient air temperature is 255.7 K. The ambient air is first
decelerated In a diffuser before it enters the compressor.
Assuming both the diffuser and the compressor to be isentropic,
determine (a) the stagnation pressure at the compressor inlet and
(b) the required compressor work per unit mass if the stagnation
pressure ratio of the compressor is 8.

Diffuser \ / Compressor
T, =255TK
P, = 54.05 kPa ’
V, =250 m/s




Solution

» High-speed air enters the diffuser and the compressor of an
alrcraft. The stagnation pressure of the air and the compressor
work input are to be determined.

» Assumptions 1 Both the diffuser and the compressor are
Isentropic. 2 Air is an ideal gas with constant specific heats
at room temperature.

* Properties The constant-pressure specific heat ¢, and the
specific heat ratio k of air at room temperature are

¢, =1.005kJkg.K and k=14
* Analysis

(a) the stagnation temperature T, at the compressor inlet can
be determined from

(-




Solution

Vi (250 m/s)* ( 1 kJ/kg )
T =T, + — =2557K +
n 2, 257K (2)(1.005 kJ/kg - K) \1000 m?/s?
— 286.8K
e Then
Tm)lu'[k—‘l} (2358 K)1.4f{1.4—1}
P,, = P,| — — (54.05 kP
o1 ‘(L ( ) 255.7 K
= 80.77 kPa

e That is, the temperature of air would increase by 31.1-C

and the pressure by 26.72 kPa as air Is decelerated from
250 m/s to zero velocity. These increases in the temperature
and pressure of air are due to the conversion of the Kinetic
energy into enthalpy.




Solution

e To determine the compressor work, we need to know the
stagnation temperature of air at the compressor exit T,.

P\ (k—1)k
To = Tm(P—:) — (286.8 K)(8)14-"4 — 5195 K

 Disregarding potential energy changes and heat transfer, the
compressor work per unit mass of air is determined from

Wip = Cp(Toz — Ton)
= (1.005 kJ/kg - K)(519.5 K — 286.8 K)

= 233.9 kJ/kg
Thus the work supplied to the compressor I1s 233.9 kJ/kg.
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Conservation of Energy for Control Volumes Using
Stagnation Properties

h

;;7; Work

I;

P h

Etc. —» 2
v,

Heat T,

Py

The steady-flow conservation of energy for the above figure is
I}z

: & _
Qm.—kzmj h+—+gz | =W _ + Zﬁi?ﬂ h+—+gz

inlets 2 i outlets 2 a
Since \/ 2

h,=h+—
2

Ope + > 11 (b, +g2z) =W, + > 1 (h,+gz)

inlets outlets
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For no heat transfer, one entrance, one exit, this reduces to
W;et — m((hol R haZ) + g(zl - ZZ))
If we neglect the change in potential energy, this becomes

W, =m(h, —h,,)

net

For ideal gases with constant specific heats we write this as

W, = mcp(j;l — ];2)

net

Conservation of Energy for a Nozzle

We assume steady-flow, no heat transfer, no work, one entrance,
and one exit and neglect elevation changes; then the conservation
of energy becomes

=E

in out

mlhol — mz h02

(-




/
But ml — m2 thus hol = h02

Thus the stagnation enthalpy remains constant throughout the
nozzle. At any cross section in the nozzle, the stagnation
enthalpy is the same as that at the entrance. For ideal gases this
last result becomes

Tor = Toy

Thus the stagnation temperature remains constant through out
the nozzle. At any cross section in the nozzle, the stagnation
temperature is the same as that at the entrance.

Assuming an isentropic process for flow through the nozzle,
we can write for the entrance and exit states

k/(k-1)
P, (1,
r, \z,

So we see that the stagnation pressure is also constant through
@ out the nozzle for isentropic flow.
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Speed of Sound and Mach number

e An important parameter in the study of compressible flow
IS the speed of sound (or the sonic speed), which Is the
speed at which an infinitesimally small pressure wave

travels through a medium.

» The pressure wave may be caused by a small disturbance,
which creates a slight rise in local pressure.

» To obtain a relation for the speed of sound in a medium,
consider a duct that is filled with a fluid at rest,

Moving

: Piston wave front
h + dh

dv c Stationa
P+dP Y
=] ™ g | TT P fluid

(- T ——

U =T
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Speed of Sound and Mach number

» A piston fitted in the duct is now moved to the right with a constant
Incremental velocity dV, creating a sonic wave.

» The wave front moves to the right through the fluid at the speed of
sound c and separates the moving fluid adjacent to the piston from
the fluid still at rest.

e The fluid to the left of the wave front experiences an incremental
change in its thermodynamic properties, while the fluid on the right
of the wave front maintains its original thermodynamic properties,
as shown in Fig.

o To simplify the analysis, consider a control volume that encloses the
wave front and moves with it, as shown in the fig. below.

» To an observer traveling with the wave front, the fluid to the right
will appear to be moving toward the wave front with a speed of ¢
and the fluid to the left to be moving away from the wave front with
a speed of ¢ - dV.




Speed of Sound and Mach number

Control volume
traveling with
the wave front

1*:-:
T U=

1

The mass balance for this single-stream, steady-flow process can be
expressed as

Mright = Mgt
or
pAc = (p + dp)A(c — dV)




Speed of Sound and Mach number

By canceling the cross-sectional (or flow) area A and neglecting the higher-
order terms, this equation reduces to

cdp—pdV=0 (a)

No heat or work crosses the boundaries of the control volume during this
steady-flow process, and the potential energy change can be neglected. Then
the steady-flow energy balance e;, = e, becomes

c? c — dV)?
h+?=h+dh—|—( }

h+%=(h+dh}+(c 'zcjrm‘ﬂr)

Cancel terms and neglect dv? ; we have

dh—CdV =0

(-
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Now, apply the conservation of mass or continuity equation
M= pAV
to the control volume.
PAC = (p+dp) A(C—dV)
PAC = A(oC — pdV +Cdp—dpdV)

Cancel terms and neglect the higher-order terms like dpdV .

We have B
Cdp—pdV =0

Also, we consider the property relation dh=Tds+vdP

dh=Tds+2dp

@ P
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Let's assume the process to be isentropic; then ds = 0 and

dh = Ldp
o,

Using the results of the first law

dhzidP:CdV
yo,

From the continuity equation

Now we have

- Cdp

b




Thus d_P _ 2
do
Since the process is assumed to be isentropic, the above becomes
5)-<
op ).

By using thermodynamic property relations this can be written

dS
oP
CE ) k(_)
op ),

where K is the ratio of specific heats, k = C,/C,,.
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Ideal Gas Result P— oRT

op
C* = kRT

C=~kRT

For ideal gases — [apj _RT
T

Example -3

Find the speed of sound in air at an altitude of 5000 m.

—_ 2
At 5000 m, T = 255.7 K. g 1000rr12

C= |14(0.287 —-)(255.7K S

( . K)( ) <
V kg
_ 32051

@ S




Notice that the temperature used for the speed of sound is the
static (normal) temperature.

Example -4

Find the speed of sound in steam where the pressure is 1 MPa
and the temperature is 350°C.

AtP =1 MPa, T =350°C,




Here, we approximate the partial derivative by perturbating
the pressure about 1 MPa. Consider using P+0.025 MPa at the

entropy value s = 7.3011 kJ/kg- K, to find the corresponding
specific volumes.

2

iy
| (1025-975)kPa 1000-5 1y
_( 11 )kg & m’kPa
\ 102773 102882 )m® kg

— 60552

5




What is the speed of sound for steam at 350°C assuming
Ideal-gas behavior?

2

m
Assume k = 1.3, then k] 1000

C = [13(0.4615———)(350+273)K S
( kg.K)( ) <
\ kg

_ 114"
S

Mach Number

The Mach number M iIs definedas M :%
M <1 flow Is subsonic

M =1 flow Is sonic

M >1 flow Is supersonic
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Example -5

In the air and steam examples above, find the Mach number if the
air velocity 1s 250 m/s and the steam velocity is 300 m/s.

2501
M, = S_—0.780
3205
S
300
Mo = ————=0495
6055

S
The flow parameters T /T, P /P, p./p, etc. are related to the flow Mach

number. Let's consider ideal gases, then 2
T,=T+

@ T 2C.T y




(-,

but CP:LR T
k-1 C. kR
2
L:HV (k —1)
T 2T kR
and
C? =kRT
SO 1\ \72
T _q, k=DV*
T 2 C
1 (k-1 M2
2
The pressure ratio Is given by
p (T ki(k-1)
P:kT]
p B ki(k-1)
1+ %D sz
L 2
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We can show the density ratio to be

pa e I; }L‘r(kl]
p \T

; B 1/(k-1)
(144D MEJ
\ 2

For the Mach number equal to 1, the sonic location, the static
properties are denoted with a superscript “*”. This condition,
when M = 1, is called the sonic condition. When M =1 and k =
1.4, the static-to-stagnation ratios are

Tt: 2 =0.83333

k+1

2 E/f(k-1)
-+

5 1/ (k—-1)
= — =0.63394
k+1

1,
Ll
L,
3
P,




Example. Mach Number of Air Entering a Diffuser

» AIr enters a diffuser shown in Fig. with a velocity of 200
m/s. Determine (a) the speed of sound and (b) the Mach

number at the diffuser inlet when the air temperature Is
30-C.

\
_ -\

AIR |
=" Diffuser
V =200m/s |_

e

T =30°C e T

e o — — — ——




SOLUTION Air enters a diffuser with a high velocity. The speed of sound
and the Mach number are to be determined at the diffuser inlet.

Assumption Air at specified conditions behaves as an ideal gas.

Properties The gas constant of air is R = 0.287 kJ/kg - K, and its specific
heat ratio at 30°C 1s 1.4.

Analysis We note that the speed of sound in a gas varies with temperature,
which Is given to be 30°C.

(a) The speed of sound in air at 30°C 1s determined from Eq. 12-11 to be

1000 m?/s?
c = VKRT = \X(1.4)(D.28? kJ/kg - K)(303 K}( 1K/ ) = 349 m/s
(b) Then the Mach number becomes
_ E _ 200 m/s _ 0573
C 349m/s

Discussion The flow at the diffuser inlet is subsonic since Ma < 1.

(-
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One-Dimensional Isentropic Flow

e During fluid flow through many devices such as nozzles,
diffusers, and turbine blade passages, flow quantities vary
primarily in the flow direction only, and the flow can be
approximated as one-dimensional isentropic flow with good
accuracy.

Effect of Area Changes on Flow Parameters

» Consider the isentropic steady flow of an ideal gas through
the nozzle shown below.

Air » | 200kPa
m=3keg/s -

P =1500 kPa |
T=1200K

I—_’tmﬂ

L

p— e —— S ——— ————

()

il

- B
N




Air flows steadily through a varying-cross-sectional-area duct
such as a nozzle at a flow rate of 3 kg/s. The air enters the
duct at a low velocity at a pressure of 1500 kPa and a
temperature of 1200 K and it expands in the duct to a pressure
of 100 kPa. The duct is designed so that the flow process is
Isentropic. Determine the pressure, temperature, velocity,
flow area, speed of sound, and Mach number at each point
along the duct axis that corresponds to a pressure drop of 200
kPa.

Since the Inlet velocity is low, the stagnation properties equal
the static properties.

T =T,=1200K, P, =P =1500kPa




After the first 200 kPa pressure drop, we have

P (k-1)/k 1300 &P (14-1)/1.4
T= T[] = 12001{( ”J

P 1500 kPa
=11519K
ﬁ:JZCP(TE_T)
2
L 1000
— 12(1005—"2(1200—-11519)K s
(1005 X K
kg
~310772
5
P (1300kPa) kJ
P=RT ™ kJ m*kPa

0287 —)(11519K
(0287, = JA1519K)

o) = 3.932%
A,




3K
m 5 10%cm?
2

A: — =
PV (3.9322:;%)(310.77?) m

= 2455cm?

C =+kRT = [14(0.287 kk—‘]K)(1151.9 K) S
g .

Now we tabulate the results for the other 200 kPa increments
In the pressure until we reach 100 kPa.

@
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Summary of Results for Nozzle Problem

Step P T Vi p C A M
kPa K m/s kg/m3 m/s cm?
0 1500 1200 0 4.3554 694.38 o0 0
1 1300 1151.9 310.77 3.9322 680.33 24.55 0.457
2 1100 1098.2 452.15 3.4899 664.28 19.01 0.681
3 900 1037.0 572.18 3.0239 64551 | 17.34 | 0.886
4 792.4 1000.0 633.88 2.7611 633.88 17.14 1.000
700 965.2 786.83 2.5270 622.75 17.28 1.103
6 500 876.7 805.90 1.9871 593.52 | 18.73 | 1.358
7 300 757.7 942.69 1.3796 951.75 23.07 1.709
8 100 553.6 1139.62 0.6294 471.61 41.82 2.416

Note that at P = 797.42 kPa, M = 1.000, and this state 1s the
critical state.

/
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» \We note from the Nozzle Example
that the flow area decreases with
decreasing pressure down to a
critical-pressure value where the Throat
Mach number is unity, and then it
begins to increase with further Fluid -
reductions in pressure.

e The Mach number is unity at the \Come,gi,,g -

location of smallest flow area, -
-n L

called the throat .
» Note that the velocity of the fluid Fluid
k Converging-diverging nozzle

keeps increasing after passing the
throat although the flow area
Increases rapidly in that region.
This increase in velocity past the
throat is due to the rapid decrease

In the fluid density:.
(- y
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» The flow area of the duct considered in this example first
decreases and then increases. Such ducts are called
converging—diverging nozzles. These nozzles are used to
accelerate gases to supersonic speeds and should not be
confused with Venturi nozzles, which are used strictly for
Incompressible flow.




Now let's see why these relations work this way. Consider the
nozzle and control volume shown below. Nozzle

h N
P L
T o
g o —»
p )(
h+dh
- : P+dP
The first law for the control volume is T+ T
dh+VdV =0 il
p+dp
The continuity equation for the control volume = 4V vyields
do | dA . dy 0
o AV
Also, we consider the property relation for an isentropic process
Tds=dh _aP =0

yo,

™~
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: P, V?
and the Mach Number relation = _c2_"Y
dp M?

Putting these four relations together yields
dA dP
A pV?
Let’s consider the implications of this equation for both nozzles

and diffusers. A nozzle is a device that increases fluid velocity
while causing its pressure to drop; thus, dv >0, dP < 0.

Nozzle Results dA _ dP
A ,0\72

Subsonic: M <1 dP(1- M?)<0 dA<0O

Sonic: M =1 dP(1-M?*)=0 dA=0

Supersonic: M >1 dP(1- M?)>0 dA>0

(1- M%)

(1- M%)




To accelerate subsonic flow, the nozzle flow area must first
decrease In the flow direction. The flow area reaches a
minimum at the point where the Mach number is unity. To
continue to accelerate the flow to supersonic conditions, the
flow area must increase.

The minimum flow area is called the throat of the nozzle.
We are most familiar with the shape of a subsonic nozzle.

That is, the flow area in a subsonic nozzle decreases in the
flow direction.




A diffuser is a device that decreases fluid velocity while
causing its pressure to rise; thus, dv <0, dP > 0.

Diffuser Results dA  dP
A pV?

Subsonic: M <1 dP(1-M?)>0 dA>0

Sonic: M =1 dP(1-M?*)=0 dA=0

Supersonic: M >1 dP(1-M?)<0 dA<0O

(1- M%)

To diffuse supersonic flow, the diffuser flow area must first
decrease In the flow direction. The flow area reaches a minimum
at the point where the Mach number is unity. To continue to
diffuse the flow to subsonic conditions, the flow area must
Increase. We are most familiar with the shape of a subsonic
diffuser. That is the flow area in a subsonic diffuser increases in

the flow direction.
(-




" P increases

Ma < 1 \/ decreases

p increases

Subsonic nozzle Subsonic diffuser

(a) Subsonic flow

" P decreases

Supersonic nozzle Supersonic diffuser

@ (b) Supersonic flow




Equation of Mass Flow Rate through a Nozzle

Let's obtain an expression for the flow rate through a converging
nozzle at any location as a function of the pressure at that
location. The mass flow rate is given by

m= pAV

The velocity of the flow is related to the static and stagnation
enthalpies.

V= \/Z(ho —h) = \/2CP (To ~-T) = \/ZCPTO(]'_TL)

0
(k-1)/k
and r _(pP
1 P

(k-1)/k
P
F,
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Write the mass flow rate as

m= AVp, £
Po

1/k
P _| L
p, \ L,

We note from the ideal-gas relations that

0

RT

0

Po =

Zk P 21k P (k+1)/k
= AP, S .
\](k—l)R?; \/(P;] (ﬂ]

@
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What pressure ratios make the mass flow rate zero?

Do these values make sense?

Now let's make a plot of mass flow rate versus the static-to-
stagnation pressure ratio.

0.16 —
0.14 | .
0.12 | ‘\\
g 0.10 | | AN
=, : . Dia.=1 cm \
g 08p T,=1200 K
0.06 & P,=1500 kPa
004 |
002 |/
ooo b v 0y
0.00 0.20 0.40 0.60 0.80 1.00
PP, PIP,
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This plot shows there is a value of P/P, that makes the mass flow rate
a maximum. To find that mass flow rate, we note

dm

P
F,
P_ 0 Icf(k—l)_Pa
P \k+1 P

o

=0

The result is d[_

So the pressure ratio that makes the mass flow rate a maximum is the
same pressure ratio at which the Mach number is unity at the flow cross-
sectional area. This value of the pressure ratio is called the critical
pressure ratio for nozzle flow. For pressure ratios less than the critical
value, the nozzle is said to be choked. When the nozzle is choked, the
mass flow rate is the maximum possible for the flow area, stagnation
pressure, and stagnation temperature. Reducing the pressure ratio below
the critical value will not increase the mass flow rate.

/
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What is the expression for mass flow rate when the nozzle is choked?

o —1+—— M~
2

Using P [ E—1 ]kftklj
P

The mass flow rate becomes

k M

RT, 1 (k+1)/[2(k-1)]
[1 = ME)

m= AP

When the Mach number is unity, M =1, A = A*

(e+1)/[2(k-1)]
g P k 2
RT \ k+1

Taking the ratio of the last two results gives the ratio of the area
of the flow A at a given Mach number to the area where the

@ Mach number is unity, A*.




(k+D/[2(k-1)]
Then 4 _ 1 [ 2 ][HEMEJ
A MI\k+1 2
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From the above plot we note that for each A/A* there are two

values of M: one for subsonic flow at that area ratio and one for

supersonic flow at that area ratio. The area ratio is unity when
@ the Mach number is equal to one.

.




Effect of Back Pressure on Flow through a Converging Nozzle

Consider the converging nozzle
shown below. The flow is supplied ...
by a reservoir at pressure P, and
temperature T,. The reservoir Is
large enough that the velocity in the
reservoir Is zero.

Let's plot the ratio P/P, along the

length of the nozzle, the mass flow R

rate through the nozzle, and the exit P, > P*

plane pressure P, as the back p* N b _ pr
0 Lowest exit S P, < P*

pressure P, Is varied. Let's consider
isentropic flow so that P, is constant P 5 Py=0
throughout the nozzle.
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Effect of Back Pressure on Flow through a Converging Nozzle

* Now we begin to reduce the back pressure and observe the
resulting effects on the pressure distribution along the length of
the nozzle, as shown in the Fig. above.

o If the back pressure P, is equal to P,, which is equal to P,, there
IS no flow and the pressure distribution is uniform along the
nozzle.

» When the back pressure is reduced to P, the exit plane pressure
P, also drops to P,. This causes the pressure along the nozzle to
decrease in the flow direction.

* When the back pressure is reduced to P3 (= P*, which is the
pressure required to increase the fluid velocity to the speed of
sound at the exit plane or throat), the mass flow reaches a
maximum value and the flow is said to be choked.

™~




4 N

Effect of Back Pressure on Flow through a Converging Nozzle

 Further reduction of the back pressure to level P, or below does
not result in additional changes in the pressure distribution, or
anything else along the nozzle length.

» Under steady-flow conditions, the mass flow rate through the
nozzle is constant and can be expressed as

_ p K
M = pAV — (E)A(Ma\/km} — PAMa, fﬁ

e Solving for T from %= 1+ (?)Maﬂ and for P from

pﬂ k — 1 ; Kik—1) - -
5= |1+ | )M and substituting

N AMaP, \Vk/(RT,)
"+ (k= 1)MaZ2) & VR
(-
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Effect of Back Pressure on Flow through a Converging Nozzle

» Thus the mass flow rate of a particular fluid through a nozzle is a
function of the stagnation properties of the fluid, the flow area,
and the Mach number.

e The maximum mass flow rate can be determined by
differentiating the above equation with respect to Ma and
setting the result equal to zero. It yields Ma = 1.

 Since the only location in a nozzle where the Mach number can
be unity is the location of minimum flow area (the throat), the
mass flow rate through a nozzle is a maximum when Ma =1 at
the throat. Denoting this area by A*, we obtain an expression for
the maximum mass flow rate by substituting Ma =1

, [k 7/ 2 \&rnk-1)
Tmax = A™Fo\ [ oy (k + 1>
0

(-

™~
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Effect of Back Pressure on Flow through a Converging Nozzle

» Arelation for the variation of flow area A through the nozzle
relative to throat area A* can be obtained by combining
equations f or m and Mmac for the same mass flow rate and
stagnation properties of a particular fluid. This yields

AT 2 k — 1 (k+1)/[2(k—1)]
A* MaKk 1 1)(1 5, Ma ﬂ

» Another parameter sometimes used in the analysis of one-
dimensional isentropic flow of ideal gases is Ma*, which is
the ratio of the local velocity to the speed of sound at the

throat: V

* __
Ma =

It can also be expressed as

Ve _Mac_MaVkRT_Ma T

Ma* =
@ cc* c* A/ * T*
\ kRT /
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Effect of Back Pressure on Flow through a Converging Nozzle

» where Ma is the local Mach number, T is the local
temperature, and T* Is the critical temperature.

e Solving for T and for T* and substituting, we get

[ K+
Ma. | 5
N2+ (k- 1)Ma

Ma* =

* Note that the parameter Ma* differs from the Mach number
Ma in that Ma* is the local velocity nondimensionalized with
respect to the sonic velocity at the throat, whereas Ma Is the
local velocity nondimensionalized with respect to the local
sonic velocity.

@
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Table 1 One-dimensional isentropic compressible flow functions for an ideal
gaswith k=1.4

Ma Ma* AIA* PIPR, olpg TiT,
0 0 o 1.0000  1.0000 1.0000
r 0.1 0.1094 5.8218  0.9930 0.9950  0.9980
Ma* — Ma. | K+ 0.2  0.2182 29635 0.9725 0.9803  0.9921
N2+ (k—1)Ma’ 0.3  0.3257 20351 09395 0.9564  0.9823
A_ L[(L) (1 Lk Maz)r““"*“’*"‘” 04  0.4313 1.5901 0.8956  0.9243  0.9690
AT Ma[\k+1 2 0.5 05345 1.3398  0.8430  0.8852 0.9524
P_ (1 +EM32)‘”“‘” 0.6  0.6348 1.1882  0.7840  0.8405  0.9328
Po 2 0.7 0.7318 1.0944  0.7209 0.7916  0.9107
L (1 +EMHZ)“‘“““ 0.8  0.8251 1.0382  0.6560 0.7400  0.8865
Po 2 0.9 0.9146 1.0089 05913 0.6870  0.8606
T_ (1 +uMHz)“ 1.0 10000 10000 0.5283  0.6339  0.8333
To 2 1.2 1.1583 1.0304 0.4124  0.5311 0.7764
14 1.2999 1.1149  0.3142 04374  0.7184
1.6  1.4254 1.2502 0.2353 0.3557 0.6614
1.8  1.5360 1.4390 0.1740 0.2868  0.6068
20  1.6330 1.6875 0.1278  0.2300  0.5556
22  1.7179 2.0050 0.0935  0.1841 0.5081
24  1.7922 24031 0.0684  0.1472  0.4647
26  1.8571 28960 0.0501 0.1179  0.4252
28  1.9140 3.5001 0.0368 0.0946  0.3894
3.0 1.9640 49346  0.0272 0.0760  0.3571
5.0 2.2361  25.000 0.0019  0.0113  0.1667

o 0.2495 o 0 0 0
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Effect of Back Pressure on Flow through a Converging Nozzle

e Aplot of m versus P, /P, for a

converging nozzle is shown In
Fig. below.

Notice that the mass flow rate
Increases with decreasing P, /P,,
reaches a maximum at P, = P*,
and remains constant for P, /P,
values less than this critical
ratio. Also illustrated on this
figure i1s the effect of back
pressure on the nozzle exit
pressure P.. We observe that

o _ {Ph for P, = P*
* P*  forP,<P*
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Effect of Back Pressure on Flow through a Converging Nozzle

e To summarize, for all back pressures lower than the critical
pressure P*, the pressure at the exit plane of the converging
nozzle P, is equal to P*, the Mach number at the exit plane is

unity, and the mass flow rate is the maximum (or choked) flow
rate.

» Because the velocity of the flow is sonic at the throat for the
maximum flow rate, a back pressure lower than the critical

pressure cannot be sensed in the nozzle upstream flow and
does not affect the flow rate.
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Effect of Back Pressure on Flow through a Converging Nozzle

1. P,=P, P,/P,=1.No flowoccurs. P,=P,, M_=0.

2. P,>P*or P*/P,<P,/P,<1. Flow begins to increase as
the back pressure is lowered. P, = P,, M_ < 1.

3. P,=P*or P*/P,=P,/P,<1. Flow increases to the choked
flow limit as the back pressure is lowered to the critical
pressure. P, =P,, M=1.

4. P, <P*or P, /P, <P*/P,<1. Flow is still choked and does
not increase as the back pressure is lowered below the
critical pressure, pressure drop from P, to P, occurs outside
the nozzle. P, =P*, M =1.

5. P, = 0. Results are the same as for item 4.

Consider the converging-diverging nozzle shown below.




Example. Effect of Back Pressure on Mass Flow Rate

» Air at 1 MPa and 600-C enters a converging nozzle, shown

In Fig., with a velocity of 150 m/s. Determine the mass
flow rate through the nozzle for a nozzle throat area of 50
cm2 when the back pressure is (a) 0.7 MPa and (b) 0.4
MPa.

T, = 600°C
V, =150 m/s




SOLUTION Air enters a converging nozzle. The mass flow rate of air through
the nozzle i1s to be determined for different back pressures.

Assumptions 1 Air is an ideal gas with constant specific heats at room tem-
perature. 2 Flow through the nozzle i1s steady, one-dimensional, and isen-
tropic.

Properties The constant pressure specific heat and the specific heat ratio of
air are ¢, = 1.005 kl/kg - K and k = 1.4.

Analysis We use the subscripts / and t to represent the properties at the
nozzle inlet and the throat, respectively. The stagnation temperature and
pressure at the nozzle inlet are determined from Eqgs. 12-4 and 12-5:

V? (150 m/s?)? ( 1 kJ/kg )
=Ti+—= + =
Toi =1, 2¢, 813 K 2(1.005 kJ/kg - K) \ 1000 m?/s? 884 K
A Kk—1) 1.4/{(1.4-1)
Py = Pi@) = (1 MPa) (%) — 1.045 MPa

These stagnation temperature and pressure values remain constant through-
out the nozzle since the flow Is assumed to be isentropic. That is,

Tﬂ - Tl]i - 884 K ﬂl'ld Pﬂ - Pui - 1{}45 MPH
@




/
The critical-pressure ratio is determined from Table 1 (or Eq.
below) p* ( 2 )Hik—ﬂ

Po \k+1

to be P*/P, = 0.5283.

(a) The back pressure ratio for this case is

Py 0.7 MPa
P, 1.045Mpa _ 2670

which is greater than the critical-pressure ratio, 0.5283. Thus the exit plane
pressure (or throat pressure FP,) is equal to the back pressure in this case.

Thatis, P, =P, =0.7 MPa, and P, /P, = 0.670. Therefore, the
flow 1s not choked. From Table 1 at P, /P, = 0.670, we read Ma, =
0.778 and T, /T, = 0.892.

T, = 0.8921, = 0.892(884 K) = 788.5 K

P, 700 kPa
RT, (0.287 kPa - m3/kg - K)(788.5 K)

Py = = 3.093 kg/m?*

@




/ V, = Mac, = Ma, VKRT, IR

1000 mzfsz)
1 kJ/kg

— {0.778)\f (1.4)(0.287 kJ/Kkg - K)(788.5 K) (

= 437.9 m/s
Thus,
m = p,A\V, = (3.093 kg/m*)(50 X 10~* m?)(437.9 m/s) = 6.77 kg/s
(b) The back pressure ratio for this case Is

P _ 0.4 MPa
P, 1.045MPa

which is less than the critical-pressure ratio, 0.5283. Therefore, sonic condi-
tions exist at the exit plane (throat) of the nozzle, and Ma = 1. The flow Is

choked in this case, and the mass flow rate through the nozzle can be calcu-
lated from Eq. 12-25:

- k 2 (k+1)/[2(k—1)]
M= AP RTU(I( n 1)

— (50 X 10~* m?)(1045 kPa)\X 14 ( 2 )z'm
(0.287 kJ/kg - K)(884 K) \1.4 + 1

@ = 7.10 kg/s -

= 0.383
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Converging-Diverging Nozzles

* When we think of nozzles, we ordinarily think of flow
passages whose cross-sectional area decreases in the flow
direction. However, the highest velocity to which a fluid
can be accelerated in a converging nozzle is limited to the
sonic velocity (Ma = 1), which occurs at the exit plane
(throat) of the nozzle.

» Accelerating a fluid to supersonic velocities (Ma > 1) can
be accomplished only by attaching a diverging flow section
to the subsonic nozzle at the throat. The resulting
combined flow section is a converging— diverging nozzle,
which is standard equipment in supersonic aircraft and
rocket propulsion.
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Converging-Diverging Nozzles

» Forcing a fluid through a converging—diverging nozzle is no
guarantee that the fluid will be accelerated to a supersonic velocity.

* In fact, the fluid may find itself decelerating in the diverging
section instead of accelerating if the back pressure is not in the
right range.

» The state of the nozzle flow is determined by the overall pressure
ratio P,/P,. Therefore, for given inlet conditions, the flow through a
converging—diverging nozzle is governed by the back pressure P,.




4 Converging-Diverging Mﬁt_/
Nozzles Py | : K
» Consider the converging— /\
diverging nozzle shown in Fig. =
A fluid enters the nozzle witha i |
low velocity at stagnation “ o
pressure PO. When P, =P, (case ™ ;| o | Subsonic flow
A), there is no flow through the | 2 ° A
nozzle. e | [
» This is expected since the flow P NP -l
in a nozzle is driven by the e e
pressure difference between the s | ook Eﬁ,ai
nozzle inlet and the exit. oot | pafaend™
» Now let us examine what Y <L ' subsonic flow
happens as the back pressure is Subsonic fon
at nozzle exit
(no shock)

@ lowered. .
\ Inlet

X

/
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Converging-Diverging Nozzles

1. When P, = P, > P, the flow remains subsonic throughout the nozzle,

and the mass flow is less than that for choked flow. The fluid velocity
Increases in the first (converging) section and reaches a maximum at the
throat (but Ma << 1). However, most of the gain in velocity is lost in the
second (diverging) section of the nozzle, which acts as a diffuser. The
pressure decreases in the converging section, reaches a minimum at the
throat, and increases at the expense of velocity in the diverging section.

. When P, = P, the throat pressure becomes P* and the fluid achieves

sonic velocity at the throat. But the diverging section of the nozzle still
acts as a diffuser, slowing the fluid to subsonic velocities. The mass
flow rate that was increasing with decreasing P, also reaches its
maximum value.

Recall that P* is the lowest pressure that can be obtained at the throat,
and the sonic velocity is the highest velocity that can be achieved with a
converging nozzle. Thus, lowering P, further has no influence on the
fluid flow in the converging part of the nozzle or the mass flow rate
through the nozzle. However, it does influence the character of the flow

@ in the diverging section.
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Converging-Diverging Nozzles

3. When P > P, > P, the fluid that achieved a sonic velocity at
the throat continues accelerating to supersonic velocities in the
diverging section as the pressure decreases. This acceleration
comes to a sudden stop, however, as a normal shock develops
at a section between the throat and the exit plane, which causes a
sudden drop in velocity to subsonic levels and a sudden increase
In pressure.

e The fluid then continues to decelerate further in the remaining
part of the converging—diverging nozzle. Flow through the shock
IS highly irreversible, and thus it cannot be approximated as
Isentropic. The normal shock moves downstream away from the
throat as P, Is decreased, and it approaches the nozzle exit plane
as P, approaches P¢.




Converging-Diverging Nozzles

e When P, = Pg, the normal shock forms at the exit plane of the
nozzle. The flow Is supersonic through the entire diverging
section In this case, and it can be approximated as isentropic.
However, the fluid velocity drops to subsonic levels just
before leaving the nozzle as it crosses the normal shock.

4. When P > P, > 0, the flow In the diverging section is
supersonic, and the fluid expands to P at the nozzle exit with
no normal shock forming within the nozzle. Thus, the flow
through the nozzle can be approximated as isentropic.

* When P, = P, no shocks occur within or outside the nozzle.
When P, < P, Irreversible mixing and expansion waves occur
downstream of the exit plane of the nozzle. When P, > P,
however, the pressure of the fluid increases from P to P,
irreversibly in the wake of the nozzle exit, creating what are
called oblique shocks.




Example -7

Alr leaves the turbine of a turbojet engine and enters a
convergent nozzle at 400 K, 871 kPa, with a velocity of 180 m/s.
The nozzle has an exit area of 730 cm?. Determine the mass
flow rate through the nozzle for back pressures of 700 kPa, 528
kPa, and 100 kPa, assuming isentropic flow.

flow > Pg="T00 kPa
P=2871kPa =528 kPa
V =180 m/s

The stagnation temperature and stagnation pressure are

72
T,=T+ v

@ 2C,,




kJ

, bl
T = 400K+ (180m/ s) kg

ke-K s
=(400+161)K =4161K

kJ m’
2[1.005 —] 1000 —

14

k "

k__ 1.4-1
P = P[E) ' §71kpg| HOLE
T 400K

=1000kPa

For air k = 1.4 and from Table or using the equation below the critical
pressure ratio is P*/P, = 0.528. The critical pressure for this nozzle is
( 2 ]’“’“-“ P P"=0528P,

k+1 P = 0528(1000kPa) = 528 kPa
Therefore, for a back pressure of 528 kPa, M = 1 at the nozzle exit and

the flow is choked. For a back pressure of 700 kPa, the nozzle is not
choked. The flow rate will not increase for back pressures below 528

@ kPa. y




/For the back pressure of 700 kPa,

*

P, _ 700kPa _ .o P
P~ 1000kPa ]

Thus, Pz = Pg = 700 kPa. For this pressure ratio Table 1 gives

M. = 0.7324
% =0.9031
T. =09031T, =0.9031(4161K) =3758K
C. = /kRT,
K 1ooor“22
= 1.4(0.287W)(375.8K) ] S
kg
3886

S

V. = M.C, = (0.7324)(388.6%)

_ 28460
S




=P (700kPa) kJ
_ =
RT: (0287 kg:d )(3758K) M kPa
= 6.4902k—g3
Then m
M= p AV;
m2
= 64902 (7300m )(284.6 )
s’ (100cm)?
~13489 kg
S
For the back pressure of 528 kPa,
P. 528kPa —O528=i

P 1000kPa P

0]
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This is the critical pressure ratio and Mg = 1 and P = Pg = P* = 528 kPa.

*

Te T _ 08333
TO (0]
T. =0.8333T, = 08333(416.1K) =346.7K
And since Mg = 1
= C, =,/kRT,
2
1ooo;?f
= |14(0.287 —)(346 TK)— 7>
kg
_3732 M
S
b =p = P (528kPa) kJ
E - *
RT" (0287 kgk‘])(346 7K) MkPa
_ 530649




M= p: A \7
mz
= 53064 (7300m )(373.2 )
s’ (100cm)®
= 144.6k—g
S

For a back pressure less than the critical pressure, 528 kPa in this case,
the nozzle is choked and the mass flow rate will be the same as that for
the critical pressure. Therefore, at a back pressure of 100 kPa the mass
flow rate will be 144.6 kg/s.

Example -8

Air enters a converging—diverging nozzle, shown in Fig., at 1.0 MPa and
800 K with a negligible velocity. The flow is steady, one-dimensional,
and isentropic with k = 1.4. For an exit Mach number of Ma =2 and a
throat area of 20 cm?, determine (a) the throat conditions, (b) the exit
plane conditions, including the exit area, and (c) the mass flow rate
through the nozzle.

@




T,=800K
P,=1.0 MPa Ma, = 2

A, = 20 cm?

SOLUTION Air flows through a converging—diverging nozzle. The throat and
the exit conditions and the mass flow rate are to be determined.
Assumpftions 1 Air is an ideal gas with constant specific heats at room tem-
perature. 2 Flow through the nozzle is steady, one-dimensional, and isen-
tropic.

Properties The specific heat ratio of air is given to be k= 1.4. The gas con-
stant of air 1s 0.287 kl/kg - K.

Analysis The exit Mach number is given to be 2. Therefore, the flow must be
sonic at the throat and supersonic in the diverging section of the nozzle. Since
the inlet velocity 1s negligible, the stagnation pressure and stagnation tem-
perature are the same as the inlet temperature and pressure, P, = 1.0 MPa
and T, = 800 K. Assuming ideal-gas behavior, the stagnation density is

y
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Py 1000 kPa
o RT, ~ (0.287 kPa - m3kg - K)(800 K)

(a) At the throat of the nozzle Ma = 1, and from Table A-13 we read

— 4.355 kg/m?

P— = (0.5283 T— = (0.8333 P _ 0.6339
Pﬂ Tﬂ PU
Thus,
P* = 0.5283P, = (0.5283)(1.0 MPa) = 0.5283 MPa
T* = 0.8333T, = (0.8333)(800 K) = 666.6 K
p* = 0.6339p, = (0.6339)(4.355 kgr‘m3] = 2.761 I(g»'m3
Also,
1000 m?/s?
V* =¢* = VKRT* = J(l.ﬁt}(ﬂ.EB? kJ/kg - K)(666.6 K) ( 1klikg )

= 517.5 mls
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(b) Since the flow is isentropic, the properties at the exit plane can also be
calculated by using data from Table A-13. For Ma = 2 we read

P, T, Pe . A,
P~ 0.1278 T 0.5556 o 0.2300 Ma? = 1.6330 Xl 1.6875
Thus,
P, = 0.1278P, = (0.1278)(1.0 MPa) = 0.1278 MPa
T, = 0.5556T, = (0.5556)(800 K) = 444.5 K
p. = 0.2300p, = (0.2300)(4.355 kg/m?) = 1.002 kg/m?
A, = 1.6875A* = (1.6875)(20 cm?) = 33.75 cm?
and

V, = Maic* = (1.6330)(517.5 m/s) = 845.1 m/s

The nozzle exit velocity could also be determined from V, = Ma,c,, where c,
is the speed of sound at the exit conditions:

1000 mzfsz)
1 kJ/kg

= 845.2 m/s
Qe y

V, = Ma,c, = Ma, VKRT, = 2\X (1.4)(0.287 kJ/Kg - K)(444.5 K) (




(c) Since the flow iIs steady, the mass flow rate of the fluid is the same at all
sections of the nozzle. Thus it may be calculated by using properties at any

cross section of the nozzle. Using the properties at the throat, we find that
the mass flow rate is

m = p*A*V* = (2.761 kg/m?)(20 X 10~* m?)(517.5 m/s) = 2.86 kg/s

Discussion Note that this is the highest possible mass flow rate that can
flow through this nozzle for the specified inlet conditions.




Normal Shocks

In some range of back pressure, the fluid that achieved a sonic
velocity at the throat of a converging-diverging nozzle and is
accelerating to supersonic velocities in the diverging section
experiences a normal shock.

The normal shock causes a sudden rise in pressure and
temperature and a sudden drop in velocity to subsonic levels.
Flow through the shock is highly irreversible, and thus it cannot
be approximated as isentropic. The properties of an ideal gas
with constant specific heats before (subscript 1) and after
(subscript 2) a shock are related by




Control volume

Shock wave

We assume steady-flow with no heat and work interactions and no
potential energy changes. We have the following

Conservation of mass
PlA\71 = pzA\72

@ ,02\72 = ,02\72
N
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; 72 7 2
Conservation of energy h + Vi . v,
2 7 2
hol = h02

for ideal gases: T, =T,
Conservation of momentum

Rearranging % +Vvdv=0 and integrating yield
AR —R,) =m(V, -V,
Increase of entropy
s,—$, =0

Thus, we see that from the conservation of energy, the stagnation
temperature is constant across the shock. However, the stagnation
pressure decreases across the shock because of irreversibilities. The
ordinary (static) temperature rises drastically because of the conversion
of Kinetic energy into enthalpy due to a large drop in fluid velocity.

(-
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We can show that the following relations apply across the shock.
T, 1+M2(k-1)/2
T, 1+M (k-1)/2
P, M1+ MZ(k-1)/2
R M1+ M2(k-1)/2
M2 = M?+2/(k-1)
*o2MAK (k-1 -1

The entropy change across the shock is obtained by applying the
entropy-change equation for an ideal gas, constant properties, across
the shock:

s,—$,=C, InL—RIn&
) R

o




We can combine the conservation of
mass and energy relations into a
single equation and plot it on an h-s
diagram, using property relations.
The resultant curve is called the

Fanno line, and it is the locus of =«

states that have the same value of
stagnation enthalpy and mass flux
(mass flow per unit flow area).

Likewise, combining the
conservation of mass and
momentum equations into a single
equation and plotting it on the h-s
diagram yield a curve called the
Rayleigh line.

m

hﬂE

hy
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The points of maximum entropy on these lines (points a and b)
correspond to Ma = 1. The state on the upper part of each curve is
subsonic and on the lower part supersonic.

The Fanno and Rayleigh lines intersect at two points (points 1 and
2), which represent the two states at which all three conservation
equations are satisfied. One of these (state 1) corresponds to the state
before the shock, and the other (state 2) corresponds to the state after
the shock.

Note that the flow is supersonic before the shock and subsonic
afterward. Therefore the flow must change from supersonic to
subsonic if a shock is to occur. The larger the Mach number before
the shock, the stronger the shock will be. In the limiting case of Ma =
1, the shock wave simply becomes a sound wave. Notice from Fig.
that entropy increases, s, >s,. This is expected since the flow through
the shock is adiabatic but irreversible.
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Tn =
Ma, =

P2

P_|=
Pz _
Pl_
T,
ﬁ_
Por
Poa _
P

TUE

[k — 1)Maj + 2

\ 2kMaZ — k + 1

1+ kMa3 2kMa? —k + 1
1+KkMa2  k+1

P,/P, (k + 1)Ma? V,
/T, 2+ (K—-1)Ma V,

2 + Mai(k — 1)

2 + Mai(k — 1)
MaJ1+—Maﬂk—1LQrHﬂMﬂ—m
Ma,|1 + Mai(k — 1)/2

(1+ kMa?)[1 + Mad(k — 1)/2]¥% 1

1+ kMaZ

™~

Table 2

One-dimensional normal shock functions for an ideal gas with k= 1.4

Ma, Ma, Pyl Py palpy T.IT, Po2/Por Poal Py
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.8929
1.1 0.9118 1.2450 1.1691 1.0649 (0.9989 2.1328
1.2 0.8422 1.56133 1.3416 1.1280 0.9928 2.4075
1.3 0.7860 1.8050 1.5157 1.1909 0.9794 2.7136
1.4 0.7397 2.1200 1.6897 1.2b47  0.95H82 3.0492
1.5 0.7011 24583 1.8621 1.3202 0.9298 3.4133
1.6 0.6684 2.8200 2.0317 1.3880 0.89bH2 3.8050
1.7 0.6405 3.2060 2.1977 1.4583 0.8557 42238
1.8 0.6165 3.6133 23592 1.5316 0.8127 4.6695
1.9 0.5956 40450 25157 1.6079 0.7674 H.1418
2.0 0.6774 45000 26667 1.6875 0.7209 5.6404

2.1 0.5613 49783 28119 1.7705 0.6742 6.1654
22 05471 54800 29512 1.8569 0.6281 6.7165
23 0.b344 6.00560 3.0845 1.9468 0.5833 7.2937
24 05231 6.5533 3.2119 2.0403 0.5401 7.8969
2.5 0.5130 7.1250 3.3333 2.1375 0.4990 8.5261
26 05039 7.7200 34490 2.2383 0.4601 9.1813
2.7 0.4956 8.3383 3.5590 2.3429 0.4236 9.8624
28 04882 8.9800 36636 24512 0.3895 10.5694
29 04814 9.6450 3.7629 2.5632 0.3577 11.3022
30 04752 103333 38571 26790 0.3283 12.0610
40 04350 185000 4.5714 40469 0.1388 21.0681
5.0 0.4152 29.000 5.0000 5.8000 0.0617 32.633b

o 0.3780 o0 6.0000 o 0 o




Mormal shock functions




Example -9

Air flowing with a velocity of 600 m/s, a pressure of 60 kPa, and a
temperature of 260 K undergoes a normal shock. Determine the
velocity and static and stagnation conditions after the shock and the
entropy change across the shock.

The Mach number before the shock is

— —

Y,
! T,
600"
_ S
2
. 1000—
1.4(0.287 kg—)(260K) =
V o

=1.856




For M, = 1.856, Table 1 gives

b 0.1597, !

1
I:)ol Tol

=0.5921

For M, = 1.856, Table 2 gives the following results.

M, = 0.6045, -2 = 3,852, P2 = 2 4473
R Pr
T Poz PoZ

=4.931

?2 =1.574, =0.7875,

1 I:)01 Pl




e

From the conservation of mass with A, = A,.

— —

VP =Vipy
.V 600°" m
V,=—t=—2--2452—
P, 24473 s

P

P, = F’l% = 60kPa(3.852) = 231.1kPa

1

T,=T, -_II-_—Z =260K(1.574) =409.2K

1

T, 260K

T, ) 05921
Tol

P 60kPa

p ) 0.1597
I:)01

T, = =439.1K =T,,

P, = = 375.6kPa




F)02 — I:)01 POZ
Pol

— 375.6kPa(0.7875) = 295.8kPa

The entropy change across the shock is

s,—S, =C, InE_TI_—Zj—RIn(%]
1 1

s, —s, =1.005 KJ In(1.574)-0.287 K In(3.852)
kg - K kg -K
:0.0688k—J
kg -K

You are encouraged to read about the following topics in the text:
*Oblique shocks

@
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Example 10. Shock Wave in a Converging-Diverging Nozzle

« If the air flowing through the converging—diverging nozzle of
Example 8 experiences a normal shock wave at the nozzle exit plane
(see fig below), determine the following after the shock: (a) the
stagnation pressure, static pressure, static temperature, and static

density; (b) the entropy change across the shock; (c) the exit
velocity; and (d) the mass flow rate through the nozzle. Assume
steady, one-dimensional, and isentropic flow with k = 1.4 from the

nozzle inlet to the shock location.

Shock wave

Ma'| = 2
Py, = 1.0 MPa
P, = 0.1278 MPa

T, =4445K
pq = 1.002 kg/m*

2
—» M = 2.858 kg/s




SOLUTION Air flowing through a converging-diverging nozzle experiences a
normal shock at the exit. The effect of the shock wave on various properties
Is to be determined.

Assumptions 1 Air is an ideal gas with constant specific heats at room tem-
perature. 2 Flow through the nozzle is steady, one-dimensional, and isen-
tropic before the shock occurs. 3 The shock wave occurs at the exit plane.
Properties The constant-pressure specific heat and the specific heat ratio of
air are ¢, = 1.005 kl/kg - K and k = 1.4. The gas constant of air is
0.287 kl/kg - K.

Analysis (a) The fluid properties at the exit of the nozzle just before the
shock (denoted by subscript 1) are those evaluated in Example 8 at the
nozzle exit to be

Py; = 1.0 MPa P, = 0.1278 MPa T, =4445K p; = 1.002 kg/m’

The fluid properties after the shock (denoted by subscript 2) are
related to those before the shock through the functions listed in Table
2. For Mal= 2.0, we read

P2

pﬂE PE TE
@ Ma, = 05774 ——=07209 —-=45000 —=1.6875 — = 2.6667

Por P T P
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Then the stagnation pressure P,,, static pressure P,, static temperature T,
and static density p, after the shock are

P,, = 0.7209P,, = (0.7209)(1.0 MPa) = 0.721 MPa
P, = 4.5000P, = (4.5000)(0.1278 MPa) = 0.575 MPa
T, = 1.6875T, = (1.6875)(444.5 K) = 750 K
p, = 2.6667p, = (2.6667)(1.002 kg/m?) = 2.67 kg/m®

(b) The entropy change across the shock Is

S5 —5=C |I'|_2_R||"|_2
2 1 p T P
1 1

— (1.005 kJ/kg - K) In (1.6875) — (0.287 kJ/kg - K) In (4.5000)
— 0.0942 kJ/kg - K

which is highly irreversible.

®

Thus, the entropy of the air increases as it experiences a normal shock,

™~

/
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(c) The air velocity after the shock can be determined from V, = Ma,c,,
where ¢, Is the speed of sound at the exit conditions after the shock:

V, = Ma,c, = Ma, VkRT,

_ {0.5??4)\X (1.4)(0.287 kJ/kg - K)(750.1 K)(1 000 mz’rﬁz)

1 kJ/kg
= 317 m/s

(d) The mass flow rate through a converging—diverging nozzle with sonic con-
ditions at the throat is not affected by the presence of shock waves in the
nozzle. Therefore, the mass flow rate in this case is the same as that deter-
mined in Example 12-7:

m = 2.86 kg/s

Discussion This result can easily be verified by using property values at the
nozzle exit after the shock at all Mach numbers significantly greater than
unity.

®




Obligue Shocks

* Not all shock waves are normal shocks (perpendicular to
the flow direction). For example, when the space shuttle
travels at supersonic speeds through the atmosphere, it
produces a complicated shock pattern consisting of inclined
shock waves called obligue shocks.

Reading Assignment

» Read about obligue shock waves: characteristic features,
governing equations, calculation o properties;

e Textbook to Read

[YUNUS A. CENGEL] Fluid Mechanics. Fundamentals
and Applications

@




End of Course




