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Introduction. DIMENSIONS AND UNITS

 A dimension is a measure of a physical quantity (without 

numerical values), while a unit is a way to assign a number to 

that dimension. For example, length is a dimension that is 

measured in units such as microns (μm), feet (ft), centimeters 

(cm), meters (m), kilometers (km), etc. 

 There are seven primary dimensions (also called fundamental or 

basic  dimensions)—mass, length, time, temperature, electric 

current, amount of light, and amount of matter.

 All nonprimary dimensions can be formed by some combination 

of the seven primary dimensions.

 For example, force has the same dimensions as mass times 

acceleration (by Newton’s second law). Thus, in terms of primary 

dimensions,
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 Surface tension (σs), has dimensions of force per unit length. 

The dimensions of surface tension in terms of primary 

dimensions is
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DIMENSIONAL HOMOGENEITY

 Law of dimensional homogeneity: Every additive term in an 

equation must have the same dimensions.

 Consider, for example, the change in total energy of a simple 

compressible closed system from one state and/or time (1) to 

another (2), as shown in the figure
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 The change in total energy of the 

system (∆E) is given by

 where E has three components: 

internal energy (U), kinetic energy 

(KE), and potential energy (PE). 



 These components can be written in terms of the system mass (m); 

measurable quantities and thermodynamic properties at each of the 

two states, such as speed (V), elevation (z), and specific internal 

energy (u); and the known gravitational acceleration constant (g),

 It is straightforward to verify that the left side of the change in 

Energy equation and all three additive terms on the right side have 

the same dimensions—energy.
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 In addition to dimensional homogeneity, calculations are valid 

only when the units are also homogeneous in each additive term.

 For example, units of energy in the above terms may be J, N·m , 

or kg·m2/s2, all of which are equivalent. 

 Suppose, however, that kJ were used in place of J for one of the 

terms. This term would be off by a factor of 1000 compared to 

the other terms. 

 It is wise to write out all units when performing mathematical 

calculations in order to avoid such errors.
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Example 1. Dimensional Homogeneity of the Bernoulli 

Equation

 Probably the most well-known equation in fluid mechanics is 

the Bernoulli equation . One standard form of the Bernoulli 

equation for incompressible irrotational fluid flow is

 (a) Verify that each additive term in the Bernoulli equation 

has the same dimensions. (b) What are the dimensions of the 

constant C?
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Example 2 . Dimensional Homogeneity

 In Chap. 4 we discussed the differential equation for conservation 

of mass, the continuity equation. In cylindrical coordinates, and for 

steady flow,

 Write the primary dimensions of each additive term in the equation, 

and verify that the equation is dimensionally homogeneous.
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 Solution. We are to determine the primary dimensions of each 

additive term, and we are to verify that the equation is dimensionally 

homogeneous.

 Analysis .The primary dimensions of the velocity components are 

length/time. The primary dimensions of coordinates r and z are 

length, and the primary dimensions of coordinate θ are unity (it is a 

dimensionless angle). Thus each term in the equation can be written 

in terms of primary dimensions,
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 Indeed, all three additive terms have the same dimensions, 

namely {t-1}.



Nondimensionalization of Equations

 The law of dimensional 

homogeneity guarantees that 

every additive term in an 

equation has the same 

dimensions. 

 It follows that if we divide 

each term in the equation by a 

collection of variables and 

constants whose product has 

those same dimensions, the 

equation is rendered 

nondimensional. 
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 If, in addition, the nondimensional terms in the equation are of 

order unity, the equation is called normalized.

 Each term in a nondimensional equation is dimensionless.

A nondimensionalized form of the

Bernoulli equation is formed by

dividing each additive term by a

pressure (here we use       ). Each

resulting term is dimensionless

(dimensions of {1}).



 In the process of nondimensionalizing an equation of motion, 

nondimensional parameters often appear—most of which are 

named after a notable scientist or engineer (e.g., the Reynolds 

number and the Froude number).

 This process is sometimes called inspectional analysis.

 As a simple example, consider the equation of motion 

describing the elevation z of an object falling by gravity 

through a vacuum (no air drag).

 The initial location of the object is z0 and its initial velocity is 

w0 in the z-direction. From high school physics,

……………… (1)

 Dimensional variables are defined as dimensional quantities 

that change or vary in the problem.
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 For the simple differential equation given in Eq. 1, there are 

two dimensional variables: z (dimension of length) and t 

(dimension of time). 

 Nondimensional (or dimensionless) variables are defined as 

quantities that change or vary in the problem, but have no 

dimensions; an example is angle of rotation, measured in 

degrees or radians which are dimensionless units. Gravitational 

constant g, while dimensional, remains constant and is called a 

dimensional constant.

 Other dimensional constants are relevant to this particular 

problem are initial location z0 and initial vertical speed w0.

 While dimensional constants may change from problem to 

problem, they are fixed for a particular problem and are thus 

distinguished from dimensional variables.
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 We use the term parameters for the combined set of 

dimensional variables, nondimensional variables, and 

dimensional constants in the problem.

 Equation 1 is easily solved by integrating twice and 

applying the initial conditions. The result is an expression 

for elevation z at any time t:

……………(2)

 The constant ½ and the exponent 2 in Eq. 2 are 

dimensionless results of the integration. Such constants are 

called pure constants. Other common examples of pure 

constants are Π and e.
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 To nondimensionalize Eq. 

1, we need to select 

scaling parameters, 

based on the primary 

dimensions contained in 

the original equation. 

 In fluid flow problems 

there are typically at least 

three scaling parameters, 

e.g., L, V, and , 

since there are at least 

three primary dimensions 

in the general problem 

(e.g., mass, length, and 

time). 
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In a typical fluid flow problem, the

scaling parameters usually include a

characteristic length L, a characteristic

velocity V, and a reference pressure

difference  . Other parameters

and fluid properties such as density,

viscosity, and gravitational acceleration

enter the problem as well.



 In the case of the falling object being discussed here, there are 

only two primary dimensions, length and time, and thus we are 

limited to selecting only two scaling parameters.

 We have some options in the selection of the scaling parameters 

since we have three available dimensional constants g, z0, and 

w0. We choose z0 and w0. we can also do the analysis using g and 

z0 and/or with g and w0 

 With these two chosen scaling parameters we nondimensionalize 

the dimensional variables z and t. 

 The first step is to list the primary dimensions of all dimensional 

variables and dimensional constants in the problem,

Primary dimensions of all parameters:
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 The second step is to use our two scaling parameters to 

nondimensionalize z and t (by inspection) into nondimensional 

variables z* and t*,

Nondimensionalized variables:

………………(3)

 Substitution of Eq. 3 into Eq. 1 gives

 …...(4)

 which is the desired nondimensional equation. The grouping of 

dimensional constants in Eq. 4 is the square of a well-known 

nondimensional parameter or dimensionless group called the 

Froude number,17
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 Froude number:                               ………... (5)

 Substitution of Eq. 5 into Eq. 4 yields

 Nondimensionalized equation of motion:                           …..(6)

 In dimensionless form, only one parameter remains, namely the 

Froude number. 

 Equation 6 is easily solved by integrating twice and applying the 

initial conditions. The result is an expression for dimensionless 

elevation z* as a function of dimensionless time t*:

 Nondimensional result:

 …………(7)
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 There are two key advantages of nondimensionalization 

 First, it increases our insight about the relationships between 

key parameters. Equation 5 reveals, for example, that doubling 

w0 has the same effect as decreasing z0 by a factor of 4. 

 Second, it reduces the number of parameters in the problem. 

For example, the original problem contains one dependent 

variable, z; one independent variable, t; and three additional 

dimensional constants, g, w0, and z0. The nondimensionalized 

problem contains one dependent parameter, z*; one 

independent parameter, t*; and only one additional parameter, 

namely the dimensionless Froude number, Fr. The number of 

additional parameters has been reduced from three to one!
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Dimensional Analysis and Similarity

 Nondimensionalization of an equation by inspection is useful 

only when we know the equation to begin with. 

 However, in many cases in real-life engineering, the equations 

are either not known or too difficult to solve; often times 

experimentation is the only method of obtaining reliable 

information.

 In most experiments, to save time and money, tests are 

performed on a geometrically scaled model, rather than on the 

full-scale prototype. In such cases, care must be taken to 

properly scale the results. We introduce here a powerful 

technique called dimensional analysis.
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 The three primary purposes of dimensional analysis are

✓To generate nondimensional parameters that help in the 

design of experiments (physical and/or numerical) and in 

the reporting of experimental results

✓To obtain scaling laws so that prototype performance can 

be predicted from model performance

✓To (sometimes) predict trends in the relationship between 

parameters

 There are three necessary conditions for complete similarity 

between a model and a prototype. 

 The first condition is geometric similarity—the model must 

be the same shape as the prototype, but may be scaled by 

some constant scale factor. 
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 The second condition is 

kinematic similarity, which 

means that the velocity at 

any point in the model flow 

must be proportional (by a 

constant scale factor) to the 

velocity at the 

corresponding point in the 

prototype flow.

 Specifically, for kinematic 

similarity the velocity at 

corresponding points must 

scale in magnitude and must 

point in the same relative 

direction.
22
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Fig. Kinematic similarity
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 Kinematic similarity is achieved when, at all locations, the speed in 

the model flow is proportional to that at corresponding locations in 

the prototype flow, and points in the same direction.

 Geometric similarity is a prerequisite for kinematic similarity

 Just as the geometric scale factor can be less than, equal to, or 

greater than one, so can the velocity scale factor. 

 In Fig. above, for example, the geometric scale factor is less than 

one (model smaller than prototype), but the velocity scale is greater 

than one (velocities around the model are greater than those around 

the prototype).

 The third and most restrictive similarity condition is that of 

dynamic similarity. Dynamic similarity is achieved when all 

forces in the model flow scale by a constant factor to corresponding 

forces in the prototype flow (force-scale equivalence).
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 As with geometric and kinematic similarity, the scale factor for 

forces can be less than, equal to, or greater than one.

 In Fig. shown in slide 20 above for example, the force-scale 

factor is less than one since the force on the model building is 

less than that on the prototype. 

 Kinematic similarity is a necessary but insufficient condition 

for dynamic similarity. 

 It is thus possible for a model flow and a prototype flow to 

achieve both geometric and kinematic similarity, yet not 

dynamic similarity. All three similarity conditions must exist for 

complete similarity to be ensured.

 In a general flow field, complete similarity between a model 

and prototype is achieved only when there is geometric, 

kinematic, and dynamic similarity.
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 We let uppercase Greek letter Pi (Π) denote a nondimensional 

parameter. We have already discussed one Π, namely the 

Froude number, Fr. 

 In a general dimensional analysis problem, there is one Π that 

we call the dependent Π, giving it the notation Π1. The 

parameter Π1 is in general a function of several other Π’s, 

which we call independent Π’s. The functional relationship is

 Functional relationship between Π’s:

 where k is the total number of Π’s.

 Consider an experiment in which a scale model is tested to 

simulate a prototype flow. 
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 To ensure complete similarity between the model and the 

prototype, each independent P of the model (subscript m) must 

be identical to the corresponding independent Π of the prototype 

(subscript p), 

i.e., Π2, m = Π2, p , Π3, m = Π3, p, . . . .., Πk, m = Πk, p.

 To ensure complete similarity, the model and prototype must be 

geometrically similar, and all independent Π groups must match 

between model and prototype.

 Under these conditions the dependent Π of the model (Π1, m) is 

guaranteed to also equal the dependent Π of the prototype (Π1, p). 

 Mathematically, we write a conditional statement for achieving 

similarity,
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 Consider, for example, the 

design of a new sports car, the 

aerodynamics of which is to 

be tested in a wind tunnel. To 

save money, it is desirable to 

test a small, geometrically 

scaled model of the car rather 

than a full-scale prototype of 

the car. 

 In the case of aerodynamic 

drag on an automobile, it 

turns out that if the flow is 

approximated as 

incompressible, there are only 

two Π’s in the problem,
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 Where

 The procedure used to generate these Π’s will be discussed 

later in this chapter.

 In the above equation FD is the magnitude of the aerodynamic 

drag on the car, ρ is the air density, V is the car’s speed (or the 

speed of the air in the wind tunnel), L is the length of the car, 

and μ is the viscosity of the air. Π1 is a nonstandard form of the 

drag coefficient, and Π2 is the Reynolds number, Re. 

 The Reynolds number is the most well known and useful 

dimensionless parameter in all of fluid mechanics
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 In the problem at hand there is only one independent Π, and 

the above Eq.  ensures that if the independent Π’s match (the 

Reynolds numbers match: Π2, m = Π2, p ), then the dependent 

Π’s also match (Π1, m = Π1, p).

 This enables engineers to measure the aerodynamic drag on 

the model car and then use this value to predict the 

aerodynamic drag on the prototype car.
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Example 3: Similarity between Model and Prototype Cars

 The aerodynamic drag of a new sports car is to be predicted at a 
speed of 50.0 mi/h at an air temperature of 25°C. Automotive 

engineers build a one fifth scale model of the car to test in a wind 

tunnel. It is winter and the wind tunnel is located in an unheated 

building; the temperature of the wind tunnel air is only about 
5°C. Determine how fast the engineers should run the wind 

tunnel in order to achieve similarity between the model and the 

prototype.

Solution:

 We are to utilize the concept of similarity to determine the speed 

of the wind tunnel. 

Assumptions:

 The model is geometrically similar to the prototype

 The wind tunnel walls are far enough away so as to not interfere 

with the aerodynamic drag on the model car.30



 The wind tunnel has a moving belt to simulate the ground under 

the car. (The moving belt is necessary in order to achieve 

kinematic similarity everywhere in the flow, in particular 

underneath the car.)
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A drag balance is a device 

used in a wind tunnel to 

measure the aerodynamic

drag of a body. When 

testing automobile models, 

a moving belt is often 

added to the floor of the 

wind tunnel to simulate the 

moving ground

(from the car’s frame of 

reference).



 Properties: For air at atmospheric pressure and at T = 25°C, ρ = 

1.184 kg/m3 and μ = 1.849 x 10-5 kg/m·s. Similarly, at T = 5°C,   

ρ = 1.269 kg/m3 and μ = 1.754 x 10-5 kg/m·s.

 Analysis:  Since there is only one independent Π in this problem, 

the similarity equation holds if Π2, m = Π2, p, where Π2 is the 

Reynolds number. Thus, we write

 Thus
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 The power of using dimensional analysis and similarity to 

supplement experimental analysis is further illustrated by the fact 

that the actual values of the dimensional parameters (density, 

velocity, etc.) are irrelevant. As long as the corresponding 

independent Π’s are set equal to each other, similarity is achieved 

even if different fluids are used. 

 This explains why automobile or aircraft performance can be 

simulated in a water tunnel, and the performance of a submarine can 

be simulated in a wind tunnel.

 Suppose, for example, that the engineers in Example above use a 

water tunnel instead of a wind tunnel to test their one-fifth scale 
model. Using the properties of water at room temperature (20°C is 

assumed), the water tunnel speed required to achieve similarity is 

easily calculated as
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 As can be seen, one advantage of a water tunnel is that the 

required water tunnel speed is much lower than that required 

for a wind tunnel using the same size model
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The Method of Repeating Variables and the 

Buckingham Pi Theorem

 In this section we will learn how to generate the nondimensional 

parameters, i.e., the Π’s.

 There are several methods that have been developed for this 

purpose, but the most popular (and simplest) method is the method 

of repeating variables, popularized by Edgar Buckingham (1867–

1940).

 We can think of this method as a step-by-step procedure or 

“recipe” for obtaining nondimensional parameters. There are six 

steps in this method as described below in detail
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 Fig. A concise 

summary of the six 

steps that comprise 

the method of 

repeating variables
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 As a simple first example, consider a ball falling in a vacuum. Let 

us pretend that we do not know that Eq. 1 is appropriate for this 

problem, nor do we know much physics concerning falling objects.

 In fact, suppose that all we know is that the instantaneous 

elevation z of the ball must be a function of time t, initial vertical 

speed w0, initial elevation z0, and gravitational constant g. 

 The beauty of dimensional analysis is that the only other thing we 

need to know is the primary dimensions of each of these 

quantities. 

 As we go through each step of the method of repeating variables, 

we explain some of the subtleties of the technique in more detail 

using the falling ball as an example.
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The Method of Repeating Variables

Step 1

 There are five parameters 

(dimensional variables, 

nondimensional 

variables, and 

dimensional constants) in 

this problem; n = 5. They 

are listed in functional 

form, with the dependent 

variable listed as a 

function of the 

independent variables 

and constants:

 List of relevant 

parameters:

40

Fig. Setup for dimensional analysis of a ball falling 

in a vacuum. Elevation z is a function of time t, 

initial vertical speed w0, initial elevation z0, and

gravitational constant g.
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Step 4

 We need to choose two repeating parameters since j = 2. Since 

this is often the hardest (or at least the most mysterious) part of 

the method of repeating variables, several guidelines about 

choosing repeating parameters are listed in Table 1.

 Following the guidelines of Table 1 on the next page, the wisest 

choice of two repeating parameters is w0 and z0.

Repeating parameters:         w0 and z0

Step 5

 Now we combine these repeating parameters into products with 

each of the remaining parameters, one at a time, to create the Π’s. 

The first  Π is always the dependent Π and is formed with the 

dependent variable z.

Dependent Π :                                      ……………….(1)

 where a1 and b1 are constant exponents that need to be determined.42
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 We apply the primary dimensions of step 2 into Eq. 1 and force 

the Π to be dimensionless by setting the exponent of each 

primary dimension to zero:

 Dimensions of Π1:

 Since primary dimensions are by definition independent of each 

other, we equate the exponents of each primary dimension 

independently to solve for exponents a1 and b1

 Thus 
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 In similar fashion we create the first independent Π (Π2) by 

combining the repeating parameters with independent variable t.
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 Finally we create the second independent Π (Π3) by combining 

the repeating parameters with g and forcing the P to be 

dimensionless
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 We can see that Π1 and Π2 are the same as the nondimensionalized 

variables z* and t* defined by Eq. 3 (See slide number 15)—no 

manipulation is necessary for these. 

 However, we recognize that the third P must be raised to the power 

of -1/2 to be of the same form as an established dimensionless 

parameter, namely the Froude number of

 Such manipulation is often necessary to put the Π’s into proper 

established form (“socially acceptable form” since it is a named, 

established nondimensional parameter that is commonly used in 

the literature.
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Step 6

 We should double-check that the Π’s are indeed dimensionless

 We are finally ready to write the functional relationship between 

the nondimensional parameters

Relationship between Π’s:

 The method of repeating variables properly predicts the functional 

relationship between dimensionless groups.

 However, the method of repeating variables cannot predict the 

exact mathematical form of the equation. This is a fundamental 

limitation of dimensional analysis and the method of repeating 

variables.
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Table 1
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Table 2
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Table 3. Some common established nondimensional parameters 
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EXAMPLE 4. Pressure in a Soap Bubble

 Some children are playing with soap 

bubbles, and you become curious as to the 

relationship between soap bubble radius and 

the pressure inside the soap bubble. You 

reason that the pressure inside the soap 

bubble must be greater than atmospheric 

pressure, and that the shell of the soap 

bubble is under tension, much like the skin 

of a balloon. You also know that the 

property surface tension must be important 

in this problem. Not knowing any other 

physics, you decide to approach the 

problem using dimensional analysis. 

Establish a relationship between pressure 

difference

 soap bubble radius R, and the surface 

tension σs of the soap film.55

The pressure inside a soap 

bubble is greater than that 

surrounding the soap

bubble due to surface tension 

in the soap film.



 SOLUTION. The pressure difference between the inside of a soap 

bubble and the outside air is to be analyzed by the method of 

repeating variables.

 Assumptions 1. The soap bubble is neutrally buoyant in the air, and 

gravity is not relevant. 2 No other variables or constants are 

important in this problem.

 Analysis The step-by-step method of repeating variables is 

employed.
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 Step 2 The primary dimensions of each parameter are listed.

 Step 3 As a first guess, j is set equal to 3, the number of primary 

dimensions represented in the problem (m, L, and t).

Reduction (first guess):                  j = 3

 If this value of j is correct, the expected number of Π’s is 

k = n - j = 3 - 3 = 0. 

But how can we have zero P’s? Something is obviously not right

 At times like this, we need to first go back and make sure that we are 

not neglecting some important variable or constant in the problem.

 Since we are confident that the pressure difference should depend only 

on soap bubble radius and surface tension, we reduce the value of j by 

one,
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Reduction (second guess):               j = 2

 If this value of j is correct, k = n - j = 3 - 2 = 1. Thus we expect one 

Π, which is more physically realistic than zero Π’s.

 Step 4 We need to choose two repeating parameters since j = 2. 

Following the guidelines of Table 1, our only choices are R and σs, 

since ∆P is the dependent variable.

 Step 5 We combine these repeating parameters into a product with 

the dependent variable ∆P to create the dependent Π,

Dependent Π:                                        ………(1)

 We apply the primary dimensions of step 2 into Eq. 1 and force the 

Π to be dimensionless.
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 From Table 3, the established nondimensional parameter most 

similar to Eq. 2 is the Weber number, defined as a pressure 

(ρV2) times a length divided by surface tension. There is no need 

to further manipulate this Π.
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 Step 6 We write the final functional relationship. In the case at 

hand, there is only one Π, which is a function of nothing. This is 

possible only if the Π is constant.

 Relationship between Π’s:

 This is an example of how we can sometimes predict trends with 

dimensional analysis, even without knowing much of the physics 

of the problem. For example, we know from our result that if the 

radius of the soap bubble doubles, the pressure difference 

decreases by a factor of 2. Similarly, if the value of surface 

tension doubles, ∆P increases by a factor of 2.

 Dimensional analysis cannot predict the value of the constant in 

Eq. 3; further analysis (or one experiment) reveals that the 

constant is equal to 4 (Chap. 1).
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Example 5

 When small aerosol particles or microorganisms move through 

air or water, the Reynolds number is very small (Re << 1). Such 

flows are called creeping flows. The aerodynamic drag on an 

object in creeping flow is a function only of its speed V, some 

characteristic length scale L of the object, and fluid viscosity μ. 

Use dimensional analysis to generate a relationship for FD as a 

function of the independent variables.
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Example 6

 Consider fully developed Couette flow—flow between two infinite 

parallel plates separated by distance h, with the top plate moving 

and the bottom plate stationary as illustrated in the Fig. shown. The 

flow is steady, incompressible, and two-dimensional in the xy-plane. 

Use the method of repeating variables to generate a dimensionless 

relationship for the x component of fluid velocity u as a function of 

fluid viscosity μ, top plate speed V, distance h, fluid density ρ, and 

distance y. 
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End of Chapter 5

Next Lecture

Chapter 6: Boundary Layer Concept 
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