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Introduction. DIMENSIONS AND UNITS

e Adimension Is a measure of a physical quantity (without

numerical values), while a unit is a way to assign a number to
that dimension. For example, length Is a dimension that Is
measured In units such as microns (um), feet (ft), centimeters
(cm), meters (m), kilometers (km), etc.

There are seven primary dimensions (also called fundamental or
basic dimensions)—mass, length, time, temperature, electric
current, amount of light, and amount of matter.

e All nonprimary dimensions can be formed by some combination

of the seven primary dimensions.

For example, force has the same dimensions as mass times
acceleration (by Newton’s second law). Thus, in terms of primary
dimensions,

. . Length
Dimensions of force: {Force} = {Mass — = {mL/t*}

Time?
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Introduction. DIMENSIONS AND UNITS

Primary dimensions and their associated primary Sl and English units

Dimension Symbol* S| Unit English Unit
Mass m kg (kilogram) Ibm (pound-mass)
Length L m (meter) ft (foot)

Time' t s (second) s (second)
Temperature T K (kelvin) R (rankine)
Electric current | A (ampere) A (ampere)
Amount of light C cd (candela) cd (candela)
Amount of matter N mol (mole) mol (mole)

» Surface tension (o), has dimensions of force per unit length.
The dimensions of surface tension in terms of primary
dimensions Is

: : . _JForce |  Jm-LA"| ,
Dimensions of surface tension: {o} = {Len gth} = { 3 Z} = {m/t}
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DIMENSIONAL HOMOGENEITY

o Law of dimensional homogeneity: Every additive term in an

equation must have the same dimensions.

Consider, for example, the change in total energy of a simple

compressible closed system from one state and/or time (1) to

another (2), as shown in the figure

» The change in total energy of the
system (AE) Is given by
AE = AU + AKE + APE

» where E has three components:
Internal energy (U), Kinetic energy
(KE), and potential energy (PE).
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System at state 2

L E,-U,+KE, +PE,
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System at state 1

E1 = U1 + KE-l + PE-|
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DIMENSIONAL HOMOGENEITY

» These components can be written in terms of the system mass (m);
measurable quantities and thermodynamic properties at each of the
two states, such as speed (V), elevation (z), and specific internal
energy (u); and the known gravitational acceleration constant (g),

1
AU=m(u, —u,) AKE = 5 m(V3—V3)  APE =mg(z, — z,)

e |t is straightforward to verify that the left side of the change in
Energy equation and all three additive terms on the right side have
the same dimensions—energy.

{AE} = {Energy} = {Force - Length} — {AE} = {mLt*}

nergy} = {Energy} — {AU} = {mL*t*}

E
{AU} = {Mass Mass

(-,
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DIMENSIONAL HOMOGENEITY

Length? }
Time?

{AKE} = {Mass — {AKE} = {mL*t*}

{APE} = {Mass Length
B Time?

Length} —  {APE} = {mL¥®}

 In addition to dimensional homogeneity, calculations are valid
only when the units are also homogeneous in each additive term.

» For example, units of energy in the above terms may be J, N-m,
or kg-m?/s?, all of which are equivalent.

e Suppose, however, that kJ were used in place of J for one of the
terms. This term would be off by a factor of 1000 compared to
the other terms.

e Itis wise to write out all units when performing mathematical
° calculations in order to avoid such errors.
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Example 1. Dimensional Homogeneity of the Bernoulli
Equation

» Probably the most well-known equation in fluid mechanics is
the Bernoulli equation . One standard form of the Bernoulli
equation for incompressible irrotational fluid flow is

1
P-I-Esz-l-ng:C

(@) Verify that each additive term in the Bernoulli equation
has the same dimensions. (b) What are the dimensions of the
constant C?
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SOLUTION We are to verify that the primary dimensions of each additive
term in Eq. 1 are the same, and we are to determine the dimensions of

constant C.
Analysis (a) Each term is written in terms of primary dimensions,

(P} = (P - {Force} 3 {M Length 1 } 3 {2}
TESSHTE Area % Time? Length? 2L
{1 Vz} B { Mass (Length)z} 3 {Mass X Lengthz} 3 { }
o | Volume \ Time | Length® X Time?) | ¢

Mass Length } {Mass X Lengthz} { }
ength ¢ = - =
2 Length? X Time?

=

-

I

-

Volume Time t2

{pgz} = {

Indeed, all three additive terms have the same dimensions.

same dimensions as the other additive terms in the equation. Thus,

Primary dimensions of the Bernoulli constant: {C} = {;;J}

(b) From the law of dimensional homogeneity, the constant must have the

™
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Example 2 . Dimensional Homogeneity

» In Chap. 4 we discussed the differential equation for conservation

of mass, the continuity equation. In cylindrical coordinates, and for
steady flow,

+—=0

14(ruy) N 1du, U,
ror rof oz

» Write the primary dimensions of each additive term in the equation,
and verify that the equation is dimensionally homogeneous.

» Solution. We are to determine the primary dimensions of each

additive term, and we are to verify that the equation is dimensionally
homogeneous.

» Analysis . The primary dimensions of the velocity components are
length/time. The primary dimensions of coordinates r and z are
length, and the primary dimensions of coordinate 0 are unity (it is a
dimensionless angle). Thus each term in the equation can be written
In terms of primary dimensions,




Example 2 . Dimensional Homogeneity
length |

10(ru)| | 1 emehmo ,={ ! }
r & | |lngth length time

(o) o | L) Gat

e Indeed, all three additive terms have the same dimensions,
namely {t1}.




Nondimensionalization of Equations

e The law of dimensional The nondimensionalized Bernoulli
] t1
homogeneity guarantees that |- " :
every additive term in an P oV pgz_ C
_ P, 2P, P, P,
equation has the same
dimensions. l l l l
. .- . 1 1 1
e |t follows that if we divide I e

each te_rm n the_equatlon by a A nondimensionalized form of the
collection of variables and Bernoulli equation is formed by

constants whose product has | dividing each additive term by a
those same dimensions, the pressure (here we use P, ). Each
equation is rendered resulting term is dimensionless
nondimensional. (dimensions of {1}).

e If, in addition, the nondimensional terms in the equation are of
order unity, the equation is called normalized.

Each term in a nondimensional equation is dimensionless.

@
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Nondimensionalization of Equations

* In the process of nondimensionalizing an equation of motion,
nondimensional parameters often appear—most of which are
named after a notable scientist or engineer (e.g., the Reynolds
number and the Froude number).

» This process is sometimes called inspectional analysis.
» As a simple example, consider the equation of motion

describing the elevation z of an object falling by gravity
through a vacuum (no air drag).

e The initial location of the object Is z, and its initial velocity Is
W, In the z-direction. From high school physics,

dz _
a5 (1)

» Dimensional variables are defined as dimensional quantities
that change or vary in the problem.

@




: Nondimensionalization of Equations

 For the simple differential equation given in Eq. 1, there are
two dimensional variables: z (dimension of length) and t
(dimension of time).

* Nondimensional (or dimensionless) variables are defined as
quantities that change or vary in the problem, but have no
dimensions; an example is angle of rotation, measured in
degrees or radians which are dimensionless units. Gravitational
constant g, while dimensional, remains constant and is called a
dimensional constant.

e Other dimensional constants are relevant to this particular
problem are initial location z, and initial vertical speed w,.

» While dimensional constants may change from problem to
problem, they are fixed for a particular problem and are thus
distinguished from dimensional variables.

(-
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Nondimensionalization of Equations

* \We use the term parameters for the combined set of
dimensional variables, nondimensional variables, and
dimensional constants in the problem.

» Equation 1 is easily solved by integrating twice and
applying the initial conditions. The result is an expression
for elevation z at any time t:

1
=gt wt =gt )

» The constant %2 and the exponent 2 in Eqg. 2 are
dimensionless results of the integration. Such constants are
called pure constants. Other common examples of pure
constants are IT and e.

(-




1, we need to select
scaling parameters,
based on the primary
dimensions contained in
the original equation.

e In fluid flow problems
there are typically at least
three scaling parameters,
ed,L Viand P, — P, ,
since there are at least
three primary dimensions
In the general problem
(e.g., mass, length, and

@ time).

Nondimensionalization of Equations

» To nondimensionalize Eq.

3=

V, P

o

- L

In a typical fluid flow problem, the
scaling parameters usually include a
characteristic length L, a characteristic
velocity V, and a reference pressure
difference Py, — P.. . Other parameters
and fluid properties such as density,
viscosity, and gravitational acceleration
enter the problem as well.




Nondimensionalization of Equations

* In the case of the falling object being discussed here, there are
only two primary dimensions, length and time, and thus we are
limited to selecting only two scaling parameters.

» \WWe have some options In the selection of the scaling parameters
since we have three available dimensional constants g, z,, and
w,. We choose z, and w,. we can also do the analysis using g and

Z, and/or with g and w,,

» With these two chosen scaling parameters we nondimensionalize
the dimensional variables z and t.

o The first step Is to list the primary dimensions of all dimensional
variables and dimensional constants in the problem,

Primary dimensions of all parameters:
={L} {t} ={t} A{z} = (L} {w} = {Ln} (g} = (L/*}

/




Nondimensionalization of Equations

» The second step Is to use our two scaling parameters to

nondimensionalize z and t (by inspection) into nondimensional
variables z* and t*,

Nondimensionalized variables:

Zo Zo ceeiieenneaa(3)
 Substitution of Eqg. 3 into Eqg. 1 gives
d%  d¥zZ*) wp d%* wo d’z* |
_— = = e % —_ —
dt> d(Z[}f* /WD)Z Zo dr¥? g 8%, dr¥? (4)

» which is the desired nondimensional equation. The grouping of
dimensional constants in Eq. 4 is the square of a well-known

nondimensional parameter or dimensionless group called the
@ Froude number,




Nondimensionalization of Equations

Froude number: Fr =———+— ............ (5)

Substitution of Eq. 5 into Eq. 4 yields

. o . - diF 1
Nondimensionalized equation of motion:

s, = TE2 (6)

In dimensionless form, only one parameter remains, namely the
Froude number.

Equation 6 is easily solved by integrating twice and applying the
Initial conditions. The result is an expression for dimensionless
elevation z* as a function of dimensionless time t*:

Nondimensional result:

¢ =1+ % —




Nondimensionalization of Equations

» There are two key advantages of nondimensionalization

 First, it increases our insight about the relationships between
key parameters. Equation 5 reveals, for example, that doubling
W, has the same effect as decreasing z, by a factor of 4.

e Second, it reduces the number of parameters in the problem.
For example, the original problem contains one dependent
variable, z; one independent variable, t; and three additional
dimensional constants, g, w,, and z,. The nondimensionalized
problem contains one dependent parameter, z*; one
Independent parameter, t*; and only one additional parameter,
namely the dimensionless Froude number, Fr. The number of
additional parameters has been reduced from three to one!

@
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Dimensional Analysis and Similarity

* Nondimensionalization of an equation by inspection is useful
only when we know the equation to begin with.

* However, in many cases in real-life engineering, the equations
are either not known or too difficult to solve; often times
experimentation is the only method of obtaining reliable
Information.

* |In most experiments, to save time and money, tests are
performed on a geometrically scaled model, rather than on the
full-scale prototype. In such cases, care must be taken to
properly scale the results. We introduce here a powerful
technique called dimensional analysis.
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Dimensional Analysis and Similarity

* The three primary purposes of dimensional analysis are

v'To generate nondimensional parameters that help in the

design of experiments (physical and/or numerical) and in
the reporting of experimental results

v"To obtain scaling laws so that prototype performance can
be predicted from model performance

v'To (sometimes) predict trends in the relationship between
parameters

» There are three necessary conditions for complete similarity
between a model and a prototype.

» The first condition is geometric similarity—the model must

be the same shape as the prototype, but may be scaled by
some constant scale factor.

(-




Dimensional Analysis and Similarity

e The second condition is

; . .. . . Protot :
kinematic similarity, which = °YP° 0

[]
means that the velocity at Sg
any point in the model flow ==l
must be proportional (by a L B Ef
constant scale factor) to the === m|ag
velocity at the | [& UES o0
corresponding point in the =t=di [o[opq for
prototype flow. 5 E A

o Specifically, for kinematic s 4e1.

similarity the velocity at Vin
corresponding points must -
scale in magnitude and must Fp m

point in the same relative
e direction. Fig. Kinematic similarity
8
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Dimensional Analysis and Similarity

Kinematic similarity is achieved when, at all locations, the speed In
the model flow Is proportional to that at corresponding locations in
the prototype flow, and points in the same direction.

Geometric similarity iIs a prerequisite for kinematic similarity

Just as the geometric scale factor can be less than, equal to, or
greater than one, so can the velocity scale factor.

In Fig. above, for example, the geometric scale factor is less than
one (model smaller than prototype), but the velocity scale is greater
than one (velocities around the model are greater than those around
the prototype).

The third and most restrictive similarity condition is that of
dynamic similarity. Dynamic similarity is achieved when all
forces in the model flow scale by a constant factor to corresponding
forces in the prototype flow (force-scale equivalence).
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Dimensional Analysis and Similarity

* As with geometric and kinematic similarity, the scale factor for
forces can be less than, equal to, or greater than one.

 In Fig. shown in slide 20 above for example, the force-scale
factor is less than one since the force on the model building is
less than that on the prototype.

o Kinematic similarity is a necessary but insufficient condition
for dynamic similarity.

e |t is thus possible for a model flow and a prototype flow to
achieve both geometric and kinematic similarity, yet not
dynamic similarity. All three similarity conditions must exist for
complete similarity to be ensured.

e In a general flow field, complete similarity between a model
and prototype is achieved only when there Is geometric,
Kinematic, and dynamic similarity.

(-




Dimensional Analysis and Similarity

* We let uppercase Greek letter Pi (IT) denote a nondimensional
parameter. We have already discussed one I1, namely the
Froude number, Fr.

* In a general dimensional analysis problem, there is one II that
we call the dependent I, giving it the notation II,. The
parameter II, Is in general a function of several other II’s,
which we call independent IT’s. The functional relationship is

e Functional relationship between I15:
[1, = f(IL,, IL,,..., II,)
e where K Is the total number of IT’s.

o Consider an experiment in which a scale model is tested to
simulate a prototype flow.

(-
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Dimensional Analysis and Similarity

» To ensure complete similarity between the model and the
prototype, each independent P of the model (subscript m) must
be identical to the corresponding independent IT of the prototype
(subscript p),

e, I, =10, o, Il =10 oo, IL = 10

» To ensure complete similarity, the model and prototype must be
geometrically similar, and all independent IT groups must match
between model and prototype.

 Under these conditions the dependent II of the model (I1, ;) Is
guaranteed to also equal the dependent IT of the prototype (I1; ).

o Mathematically, we write a conditional statement for achieving
similarity,

If TM,,=T,, and I, =1L,... and II, =II,

@ then Hl,m: = Hl,p
N




Dimensional Analysis and Similarity

e Consider, for example, the
design of a new sports car, the p
aerodynamics of which is to
be tested in a wind tunnel. To
save money, it is desirable to
test a small, geometrically
scaled model of the car rather

Prototype car

than a full-scale prototype of
the car.

* In the case of aerodynamic v

m

Model car

drag on an automobile, it —_—

turns out that if the flow is Hims Pim
approximated as —t

Incompressible, there are only
two IT’s in the problem,
@

/
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Dimensional Analysis and Similarity

I, = f(IL,)
* Where
F VL
M,=—> and II,= b
pV-L v

» The procedure used to generate these I1’s will be discussed
later in this chapter.

* In the above equation Fy is the magnitude of the aerodynamic
drag on the car, p Is the air density, V is the car’s speed (or the
speed of the air in the wind tunnel), L is the length of the car,
and p Is the viscosity of the air. I1, Is a nonstandard form of the
drag coefficient, and IT, Is the Reynolds number, Re.

e The Reynolds number is the most well known and useful
dimensionless parameter in all of fluid mechanics




Dimensional Analysis and Similarity

* In the problem at hand there is only one independent I1, and
the above Eqg. ensures that if the independent IT°’s match (the
Reynolds numbers match: I1, , =II, ), then the dependent
IT’s also match (IT; ,,=IT; ).

» This enables engineers to measure the aerodynamic drag on
the model car and then use this value to predict the
aerodynamic drag on the prototype car.
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Example 3: Similarity between Model and Prototype Cars

» The aerodynamic drag of a new sports car Is to be predicted at a
speed of 50.0 mi/h at an air temperature of 25-C. Automotive

engineers build a one fifth scale model of the car to test in a wind
tunnel. It is winter and the wind tunnel is located in an unheated

building; the temperature of the wind tunnel air is only about
5-C. Determine how fast the engineers should run the wind

tunnel in order to achieve similarity between the model and the
prototype.

Solution:

» We are to utilize the concept of similarity to determine the speed
of the wind tunnel.

Assumptions:
* The model is geometrically similar to the prototype

* The wind tunnel walls are far enough away so as to not interfere
with the aerodynamic drag on the model car.
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Example 3: Similarity between Model and Prototype Cars

e The wind tunnel has a moving belt to simulate the ground under
the car. (The moving belt Is necessary in order to achieve
Kinematic similarity everywhere in the flow, in particular
underneath the car.)

Wind tunnel test section

A drag balance is a device
used in a wind tunnel to
measure the aerodynamic
drag of a body. When
testing automobile models,
a moving belt is often
added to the floor of the
wind tunnel to simulate the
moving ground
(from the car’s frame of
Moving belt Drag balance reference).
(-
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Example 3: Similarity between Model and Prototype Cars

* Properties: For air at atmospheric pressure and at T = 25°C, p =
1.184 kg/m?3 and p = 1.849 x 10-° kg/m-s. Similarly, at T = 5-C,
p =1.269 kg/m3 and p = 1.754 x 10> kg/m-s.

» Analysis: Since there is only one independent II in this problem,
the similarity equation holds If IT, ,, = IT, ,, where IT, Is the
Reynolds number. Thus, we write

meLm p V
Hlm=Rem=p =H25p=Rep=ppr
. I,

e Thus

m\( Pr\( L
=) G)E)

K, ) \Pm/\L,,
1.754 X 10_5kg/m's)(1.184 kg/m?
1.849 X 10 °kg/m-s/\1.269 kg/m’

= (50.0 mjfh)( )(5) = 221 mi/h

(-
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Example 3: Similarity between Model and Prototype Cars

» The power of using dimensional analysis and similarity to
supplement experimental analysis is further illustrated by the fact
that the actual values of the dimensional parameters (density,
velocity, etc.) are irrelevant. As long as the corresponding
Independent IT’s are set equal to each other, similarity is achieved
even If different fluids are used.

 This explains why automobile or aircraft performance can be
simulated in a water tunnel, and the performance of a submarine can
be simulated in a wind tunnel.

e Suppose, for example, that the engineers in Example above use a
water tunnel instead of a wind tunnel to test their one-fifth scale
model. Using the properties of water at room temperature (20-C is
assumed), the water tunnel speed required to achieve similarity is
easily calculated as
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Example 3: Similarity between Model and Prototype Cars

n\( Pr\( L
=)o)

!"Lp pm Lm
1.002 X 10_3kg/m-s))(1.184 kg/m’
1.849 X 10 5kg/m-s /\ 998.0 ke/m’

= (50.0 mj/h)( )(5) = 16.1 mi/h

» As can be seen, one advantage of a water tunnel is that the

required water tunnel speed is much lower than that required
for a wind tunnel using the same size model




The Method of Repeating Variables and the
Buckingham Pi Theorem

e In this section we will learn how to generate the nondimensional
parameters, I.e., the IT’s.

» There are several methods that have been developed for this
purpose, but the most popular (and simplest) method is the method
of repeating variables, popularized by Edgar Buckingham (1867-
1940).

» We can think of this method as a step-by-step procedure or
“recipe” for obtaining nondimensional parameters. There are Six
steps In this method as described below in detail

o




Step 1

Step 2
Step 3

The Method of Repeating Variables and the
Buckingham Pi Theorem

List the parameters (dimensional variables, nondimensional variables
and dimensional constants) and count them. Let n be the total
number of parameters in the problem, including the dependent
variable. Make sure that any listed independent parameter is indeed
independent of the others, i.e., it cannot be expressed in terms of
them. (E.g., don’t include radius rand area A = #r?, since rand A
are not independent.)

List the primary dimensions for each of the n parameters.
Guess the reduction . As a first guess, set j equal to the number of

primary dimensions represented in the problem. The expected num-
ber of II's (k) is equal to n minus j, according to the Buckingham Pi

theorem,

The Buckingham Pi theorem: k=n-—j

If at this step or during any subsequent step, the analysis does not
work out, verify that you have included enough parameters in step 1.
Otherwise, go back and reduce j by one and try again.

™~
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Step 4

Step 5

Step 6

The Method of Repeating Variables and the h

Buckingham Pi Theorem

Choose j repeating parameters that will be used to construct each I1.
Since the repeating parameters have the potential to appear in each
I1, be sure to choose them wisely

Generate the II's one at a time by grouping the jrepeating parameters
with one of the remaining parameters, forcing the product to be
dimensionless. In this way, construct all k II's. By convention the

first 11, designated as 11;, is the dependent 11 (the one on the left
side of the list). Manipulate the II's as necessary to achieve estab-
lished dimensionless groups

Check that all the Il's are indeed dimensionless.




The Method of Repeating Variables and the

Buckingham Pi Theorem

Step 1: List the parameters in the problem
and count their total number n.

| Step 2: List the primary dimensions of each
of the n parameters.

Step 3: Set the reduction j as the number
of primary dimensions. Calculate k,
the expected number of II's,

k=n—j

* Fig. Aconcise
summary of the six
steps that comprise
the method of
repeating variables




The Method of Repeating Variables and the
Buckingham Pi Theorem

As a simple first example, consider a ball falling in a vacuum. Let
us pretend that we do not know that Eq. 1 is appropriate for this
problem, nor do we know much physics concerning falling objects.

In fact, suppose that all we know is that the instantaneous
elevation z of the ball must be a function of time t, initial vertical
speed w,, Initial elevation z,, and gravitational constant g.

The beauty of dimensional analysis is that the only other thing we
need to know Is the primary dimensions of each of these
quantities.

As we go through each step of the method of repeating variables,
we explain some of the subtleties of the technique in more detail
using the falling ball as an example.
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Step 1

» There are five parameters
(dimensional variables,
nondimensional
variables, and
dimensional constants) in
this problem; n = 5. They
are listed in functional
form, with the dependent
variable listed as a
function of the
Independent variables
and constants:

e List of relevant
parameters:

@ z = ft, wy, 29, &)

The Method of Repeating Variables

A

wp = initial vertical speed

g = gravitational
acceleration in the
negative z-direction

Zo = Initial

elevation o
A

\j

z = elevation of ball
=f(f, w{]a Z[]a 3)

7z =0 (datum plane)

Fig. Setup for dimensional analysis of a ball falling
In a vacuum. Elevation z is a function of time t,
initial vertical speed w,, initial elevation z,, and
gravitational constant g.

n=35
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The Method of Repeating Variables

Step 2
The primary dimensions of each parameter are listed here. We recommend
writing each dimension with exponents since this helps with later algebra.

Z t Wy 2 8
{L'} {t'} {L't™'} {L'} {L't™?}
Step 3

As a first guess, j 1s set equal to 2, the number of primary dimensions repre-
sented in the problem (L and t).

Reduction: j=2

If this value of j is correct, the number of II’s predicted by the Buckingham
Pi1 theorem 1s

Number of expected 11’ s: k=n—-—j=5-2=3




The Method of Repeating Variables

Step 4

* We need to choose two repeating parameters since | = 2. Since
this is often the hardest (or at least the most mysterious) part of
the method of repeating variables, several guidelines about
choosing repeating parameters are listed in Table 1.

» Following the guidelines of Table 1 on the next page, the wisest
choice of two repeating parameters is w, and z,.

Repeating parameters: W, and z,
Step 5

* Now we combine these repeating parameters into products with
each of the remaining parameters, one at a time, to create the I1’s.
The first IT is always the dependent IT and is formed with the
dependent variable z.

DependentIT: TII, = zwdzh ... (1)
@- where a, and b, are constant exponents that need to be determined.




. The Method of Repeating Variables

* We apply the primary dimensions of step 2 into Eg. 1 and force
the 77 to be dimensionless by setting the exponent of each
primary dimension to zero:

e Dimensions of /1;:
(I} = {L°} = {zwfzg} = {LY(L'tHaL™}
 Since primary dimensions are by definition independent of each

other, we equate the exponents of each primary dimension
iIndependently to solve for exponents a, and b,

Time: (%) = [t~ %) 0=-a, a=>0

e Thus

(-




The Method of Repeating Variables

 In similar fashion we create the first independent II (IL,) by

combining the repeating parameters with independent variable t.

First independent 11 I1, = mézh

Dimensions of IL,: {IL,} = {L%} = {m&zl} = {t(Lt 1)2Lb}
Equating exponents,

Time: () = {tt7™ 2} 0=1—-a, a=1
Length: {L°} = {L=L»} O0=a,+b, by,=—a, b,=

I1, is thus
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The Method of Repeating Variables

 Finally we create the second independent IT (I1;) by combining
the repeating parameters with g and forcing the P to be
dimensionless

Second independent 11: Il; = gwizg

Dimensions of Il;: {IT,} = {L%°} = {gwz8} = {L't 3 (L' HsL>}

Equating exponents,
Time: (P} ={t72t™®} 0=-2—-a; a3= -2

Length: {L°} = {LL“L»} O=1+4+a;+b; by=—-1—a; by=1

I1; is thus

I; = 5
@ "o Y,




The Method of Repeating Variables

» \We can see that I, and I1, are the same as the nondimensionalized
variables z* and t* defined by Eq. 3 (See slide number 15)—no
manipulation is necessary for these.

* However, we recognize that the third P must be raised to the power
of -1/2 to be of the same form as an established dimensionless
parameter, namely the Froude number of

- (8% —112_ W .
3, modified = — I'T

w3 Vez,

e Such manipulation is often necessary to put the IT’s into proper
established form (“socially acceptable form™ since it is a named,
established nondimensional parameter that is commonly used Iin
the literature.

(-
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The Method of Repeating Variables
Step 6
o We should double-check that the IT’s are indeed dimensionless

* We are finally ready to write the functional relationship between
the nondimensional parameters

Relationship between I15:

i £, T1) Z (Wﬂf Wy )
1= 2> 113 — = ,
‘0 Vgz,
» The method of repeating variables properly predicts the functional
relationship between dimensionless groups.

e However, the method of repeating variables cannot predict the
exact mathematical form of the equation. This Is a fundamental

limitation of dimensional analysis and the method of repeating
variables.

(-




4 The Method of Repeating Variables
Table 1

Guidelines for choosing repeating parameters in step 4 of the method of repeating variables’

Guideline

Comments and Application to Present Problem

1.

@

Never pick the dependent variable.

Otherwise, it may appear in all the
IT's, which is undesirable.

. The chosen repeating parameters

must not by themselves be able
to form a dimensionless group.
Otherwise, it would be impossible
to generate the rest of the IT's.

. The chosen repeating parameters

must represent all the primary
dimensions in the problem.

MNever pick parameters that are
already dimensionless. These are
IT's already, all by themselves.

. Never pick two parameters with

the same dimensions or with
dimensions that differ by only
an exponent.

In the present problem we cannot choose z, but we must choose from among

the remaining four parameters. Therefore, we must choose two of the following

parameters: I, w,, Z;, and g.

In the present problem, any two of the independent parameters would be valid
according to this guideline. For illustrative purposes, however, suppose we have

to pick three instead of two repeating parameters. We could not, for example,
choose i, wy, and z,, because these can form a II all by themselves (iwy/z;,).

Suppose for example that there were three primary dimensions (m, L, and t) and
Iwo repeating parameters were o be chosen. You could not choose, say, a length

and a time, since primary dimension mass would not be represented in the

dimensions of the repeating parameters. An appropriate choice would be a density
and a time, which together represent all three primary dimensions in the problem.

Suppose an angle 8 were one of the independent parameters. We could not choose
# as a repeating parameter since angles have no dimensions (radian and degree
are dimensionless units). In such a case, one of the IT's is already known, namely 8.

In the present problem, two of the parameters, z and z;, have the same
dimensions (length). We cannot choose both of these parameters.

(Note that dependent variable 7z has already been eliminated by guideline 1.)
Suppose one parameter has dimensions of length and another parameter has

dimensions of volume. In dimensional analysis, volume contains only one primary

dimension (length) and is not dimensionally distinct from length—we cannot
choose both of these parameters.
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The Method of Repeating Variables

6. Whenever possible, choose If we choose time f as a repeating parameter in the present problem, it would
dimensional constants over appear in all three IT's. While this would not be wrong, it would not be wise
dimensional variables so that since we know that ultimately we want some nondimensional height as a
only one II contains the function of some nondimensional time and other nondimensional parameter(s).
dimensional variable. From the original four independent parameters, this restricts us to wg, 7, and g.

/. Pick common parameters since In fluid flow problems we generally pick a length, a velocity, and a mass or

they may appear in each of the IT's.  density (Fig. 7-25). It is unwise to pick less common parameters like viscosity
p or surface tension o, since we would in general not want & or o, to appear in
each of the IT's. In the present problem, w, and z, are wiser choices than g.

8. Pick simple parameters over It is better to pick parameters with only one or two basic dimensions (e.g.,
complex parameters whenever a length, a time, a mass, or a velocity) instead of parameters that are composed
possible. of several basic dimensions (e.g., an energy or a pressure).
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The Method of Repeating Variables

Table 2

Guidelines for manipulation of the IT's resulting from the methed of repeating variables’

Guideline

Comments and Application to Present Problem

1

. We may impose a constant

(dimensionless) exponent on
a Il or perform a functional
operation on a Il.

. We may multiply a Il by a

pure (dimensionless) constant.

. We may form a product (or quotient)

of any II with any other IT in the
problem to replace one of the IT's.

. We may use any of guidelines

1 to 3 in combination.

. We may substitute a dimensional

parameter in the IT with other

parameter(s) of the same dimensions.

We can raise a Il to any exponent n (changing it to IT") without changing the
dimensionless stature of the II. For example, in the present problem, we
imposed an exponent of —1/2 on I15. Similarly we can perform the functional
operation sin(II), exp(II), etc., without influencing the dimensions of the II.

Sometimes dimensionless factors of 7, 1/2, 2, 4, etc., are included in a I for
convenience. This is perfectly okay since such factors do not influence the
dimensions of the II.

We could replace II, by IL,I1,, II/IL,, etc. Sometimes such manipulation
Is necessary to convert our Il into an established II. In many cases, the
established IT would have been produced if we would have chosen different
repeating parameters.

In general, we can replace any IT with some new IT such as AIl;? sin(IT,©),
where A, B, and C are pure constants.

For example, the IT may contain the square of a length or the cube of a
length, for which we may substitute a known area or volume, respectively,
in order to make the II agree with established conventions.
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Table 3. Some common established nondimensional parameters

Some common established nondimensional parameters or IT's encountered
in fluid mechanics and heat transfer

Name Definition Ratio of Significance
- 5 Gravitational
Archimedes number Ar = pﬁgg (p, — p) "'f' onal 1orce
M Viscous force
L L Length Length
Aspect rati AR = — o
PRE T w D Width *  Diameter
Biot number Bi = hL Surface thermal resistance
1 k Internal thermal resistance
8oy — pIL Gravitational force
Bond number Bo = .
L Surface tension force
P—F Pre -V
Cavitation number Ca (sometimes 0°,) = ——— ssure — Vapor pressure
pv Inertial pressure
( . AP - P,.))
sometmes ————
pV?
87, Wall friction force
Darcy friction factor =
@ ! pV? Inertial force
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Drag coefficient

Eckert number

Euler number
Fanning friction factor

Fourier number
Froude number
Grashof number

Jakob number

@ Knudsen number

P Fy Drag force
P lpv24 Dynamic force
= V2 Kinetic energy
T Enthalpy
E AP ( Gme AP Pressure difference
u = — | sometimes
pV? 1pV?/ Dynamic pressure
2T, Wall friction force
C;=—5 ,
pV? Inertial force
Fo ( G - ot Physical time
PROTEIE T T 2 Thermal diffusion time
. V ( : V2 Inertial force
r = sometimes —
VgL gL Gravitational force
G gB| A |TL3p? Buoyancy force
T p? Viscous force
Ja — eI — Iy Sensible energy
: by, Latent energy
— A Mean free path length
L Characteristic length
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Lewis number

Lift coefficient

Mach number

Nusselt number

Peclet number

Power number

Prandtl number

Pressure coefficient

Rayleigh number

Le — kA«
pepDsg  Dag
F
G =1 Lz
3pV°A
4
Ma (sometimes M) = —
c
Lh
Nu = —
YTk
pe — pLVe, Lv
k o
W
Ne = pDPw?
| o .‘wp
I’r = —_ = —
o k
_P-P,
T e
Ra — gBIAT\L’pc,

Thermal diffusion

Species diffusion
Lift force
Dynamic force

Flow speed

Speed of sound

Convection heat transfer

Conduction heat transfer

Bulk heat transfer

Conduction heat transfer

Power

Rotational inertia

Viscous diffusion

Thermal diffusion

Static pressure difference

Dynamic pressure

Buoyancy force

Viscous force
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Reynolds number

Richardson number
Schmidt number
Sherwood number
Specific heat ratio

Stanton number

Stokes number

Strouhal number

@ Weber number

Inertial force

Viscous force

Buoyancy force

Inertial force

Viscous diffusion

Species diffusion
Owverall mass diffusion

Species diffusion
Enthalpy

Internal energy

Heat transfer

Thermal capacity

Particle relaxation time

VL
L v
L’gA
Ri = g. £
pV?
T v
Sc — —
pPDp Dy
VL
Sh = —
D,
p
k (sometimes y) = —
Cy
h
St =
pe,V
2
p 5V
Stk (sometimes St) = l‘f ;L
St (sometimes S or 5r) = '%
pVL
We =
o

I

Characteristic flow time
Characteristic flow time

Period of oscillation
Inertial force

Surface tension force




EXAMPLE 4. Pressure in a Soap Bubble

e Some children are playing with soap
bubbles, and you become curious as to the
relationship between soap bubble radius and
the pressure inside the soap bubble. You
reason that the pressure inside the soap
bubble must be greater than atmospheric
pressure, and that the shell of the soap
bubble is under tension, much like the skin
of a balloon. You also know that the
property surface tension must be important
in this problem. Not knowing any other
physics, you decide to approach the

P outside

problem using dimensional analysis. The pressure inside a soap
Establish a relationship between pressure ~ bubble is greater than that
difference surrounding the soap

bubble due to surface tension

AP = F’inside - Puutside: ) )
In the soap film.

» soap bubble radius R, and the surface
tension g of the soap film.




EXAMPLE 4. Pressure in a Soap Bubble

e SOLUTION. The pressure difference between the inside of a soap
bubble and the outside air is to be analyzed by the method of
repeating variables.

» Assumptions 1. The soap bubble is neutrally buoyant in the air, and
gravity is not relevant. 2 No other variables or constants are
Important in this problem.

» Analysis The step-by-step method of repeating variables is
employed.

Step 1 There are three variables and constants in this problem; n = 3.
They are listed in functional form, with the dependent variable listed as a

function of the independent variables and constants:

List of relevant parameters: AP=f(R, o) n=3




EXAMPLE 4. Pressure in a Soap Bubble

o Step 2 The primary dimensions of each parameter are listed.

AP R o

¥

{mlL—lt—Z} {Ll} {mlt—z}

Step 3 As a first guess, J is set equal to 3, the number of primary
dimensions represented in the problem (m, L, and t).

Reduction (first guess): ]=3

If this value of j is correct, the expected number of 775 is
k=n-j=3-3=0.

But how can we have zero P’s? Something is obviously not right

At times like this, we need to first go back and make sure that we are
not neglecting some important variable or constant in the problem.

Since we are confident that the pressure difference should depend only
on soap bubble radius and surface tension, we reduce the value of j by
one,




EXAMPLE 4. Pressure in a Soap Bubble

Reduction (second guess): =2

 |f this value of jiIs correct, k =n - =3-2 = 1. Thus we expect one
I1, which is more physically realistic than zero IT’s.

e Step 4 We need to choose two repeating parameters since j = 2.
Following the guidelines of Table 1, our only choices are R and o,
since AP Is the dependent variable.

o Step 5 We combine these repeating parameters into a product with
the dependent variable AP to create the dependent I1,

Dependent IT: I1, = APR%o> .. ... (1)

* \We apply the primary dimensions of step 2 into Eqg. 1 and force the
I1 to be dimensionless.

Dimensions of 11;:
(I} = (m'L%®) = (APR%%) = {(m'L "'t )Lo%m't 2P}
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EXAMPLE 4. Pressure in a Soap Bubble

We equate the exponents of each primary dimension to solve for a; and b;:

Time: (O) = (22} 0=-2-2b b =—1
Mass: {m’} = {m'm") 0=1+ b, b, = —1
Length: {L°)} = {L~1La) 0=—-1+aq a, = 1

Fortunately, the first two results agree with each other, and Eq. 1 thus
becomes
_ APR

1

O-S

e From Table 3, the established nondimensional parameter most
similar to Eq. 2 is the Weber number, defined as a pressure
(pV?) times a length divided by surface tension. There is no need

to further manipulate this II.

(-
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EXAMPLE 4. Pressure in a Soap Bubble

o Step 6 We write the final functional relationship. In the case at
hand, there is only one II, which is a function of nothing. This is
possible only if the IT is constant.

» Relationship between /75:

APR O
= = f(nothing) = constant — AP = cnnstanti

11,

e This is an example of how we can sometimes predict trends with
dimensional analysis, even without knowing much of the physics
of the problem. For example, we know from our result that if the
radius of the soap bubble doubles, the pressure difference
decreases by a factor of 2. Similarly, if the value of surface
tension doubles, AP increases by a factor of 2.

» Dimensional analysis cannot predict the value of the constant in
Eq. 3; further analysis (or one experiment) reveals that the
constant is equal to 4 (Chap. 1).

(3)




4 Example 5

» When small aerosol particles or microorganisms move through
air or water, the Reynolds number is very small (Re << 1). Such
flows are called creeping flows. The aerodynamic drag on an
object in creeping flow is a function only of its speed V, some
characteristic length scale L of the object, and fluid viscosity p.
Use dimensional analysis to generate a relationship for F as a
function of the independent variables.
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/ Solution We are to use dimensional analysis to find a functional relationship between Fp and variables I, L, and

Assumpiions 1 We assume Re <=7 1 so that the creeping flow approximation applies. 2 Gravitational effects are urelevant.
3 No parameters other than those listed in the problem statement are relevant to the problem.

Analysis We follow the step-by-step method of repeating vanables.

Step 1 There are four vanables and constants in this problem; n = 4. They are listed in functional form, with the
dependent variable listed as a fonction of the independent vanables and constants:

List of relevant parameters: F, = _i"[F= I.,;J:] n=4

Step 2 The pnmary dimensions of each parameter are listed.
Fp ¥ L u
(i) ) ) ')
Step 3 As a first guess, we set j equal to 3, the number of primary dimensions represented in the problem (m, L, and ).
Reduction: j=3
If this value ofj is comrect, the mumber of [1s expected 1s
Number of expected 11s: k=n—j=4-3=1

Step 4 Now we need to choose three repeating parameters since j = 3. Since we cannot choose the dependent variable, our
only choices are I, L, and pu.

Step 5 Now we combine these repeating parameters info a product with the dependent vaniable Fp to create the
dependent IT,

Dependent IT: I, = F,i™ L' u* (1)

™~




We apply the pnimary dimensions of Step 2 into Eq. 1 and force the I1 to be dimensionless,

Dimensions of 11j:
(,} = {m' L} = {F, o 1 2 ) = [[mlfrﬂ )(e)* (1) (mite?) }

Now we equate the exponents of each primary dimension to solve for exponents a; through ).

Mass” {mﬂ}={m1m" } O0=1+¢ G = . |
time: {t'}={2=e) 0=—2—a —¢ a=-1
length: 1*}={r'1orhr) 0=1+a,+b—c, b =-1

Eqgupation 1 thus becomes

II;: II, = (2)

(- y




Step 6 We now write the functional relationship between the nondimensional parameters. In the case af hand, there 15
only one IT, which is a function of nething. This is possible only if the I1 is constant. Potting Eq. 2 into standard functional

form,

F
Relationship between I1s: II, = I-L":T. = f(nothing ) = constant (3)
7

or

F,, = constant - ul'L (4)

Result of dimensional analysis:
Thuos we have shown that for creeping flow around an object, the aerodynamic drag force 15 simply a constant mulitiplied by
pVL, regardless of the shape of the objeci.

Discussion This result 15 very significant becanse all that 15 left to do 1s find the constant, which will be a fonction of
the shape of the object (and 1ts onentation with respect to the flow).
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Example 6

» Consider fully developed Couette flow—flow between two infinite
parallel plates separated by distance h, with the top plate moving
and the bottom plate stationary as illustrated in the Fig. shown. The
flow is steady, incompressible, and two-dimensional in the xy-plane.
Use the method of repeating variables to generate a dimensionless
relationship for the x component of fluid velocity u as a function of
fluid viscosity p, top plate speed V, distance h, fluid density p, and
distance y.




Solution We are to use dimensional analysis to find the functional relationship between the given parameters.
Assumptions 1 The given parameters are the only relevant ones in the problem.

Analysis The step-by-step method of repeating variables 1s employed to obtain the nondimensional parameters (the
I1s).

Step 1 There are six parameters m this problem; n = 6,

List of relevant parameters: u=fuV.hpy) n=6 (1)
Step 2 The pnmary dimensions of each parameter are listed,
u i V h rd ¥

S SR s T e S ) B L B
Step 3  As a first guess, j 1s set equal to 3, the nomber of primary dimensions represented in the problem (m L, and t).
Reduction: j=3
If this valoe of j 1s correct, the expected number of I1s 1s
Number of expected I1s: k=n—j=6-3=3

Step4 We need to choose three repeating parameters since j = 3. Following the puidelines outlined in this chapter, we
elect not to pick the wiscosity. It is better to pick a fixed length (k) rather than a vanable length (y); otherwise y wounld
appear in each P1, which would not be deswrable. We choose

Respeating parameters: IV, p and h

(-
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Step 5 The dependent I1 15 generated:

I1, = ul® p* b L} ={(re) (L) (@) ()]
e o)) o het
fime: {} =t} 0=-1-g @ =-1
length: L} ={r'rarys) O=1+a—3b +q q=0
The dependent IT is thus
Iy II, = %

The second Pi (the first independent I1 in this problem) 15 generated:

M1, = = i (1) = (i) () (i) ()

PSS {mﬂ } _ {mlma., } 0=1+b, B, =-1

@




time: )=t} 0=-1-a, a, =-1

length: 0=-1+a,-3b + 6, =-1
{LU‘} ={L—1Ld.]L—ﬂ-]LE] } ﬂi h ﬂl ps
0=-1-1+3+0¢
which yields
Iy I, =
2Vh
We recognize this I1 as the mverse of the Reynolds nnmber. So, after inverting,
] i oVh
Modified 11;: II, = = Reynolds nnmber = Re
7
The third Pi (the second independent I1 in this problem) is generated:
~ 3™
11, - 7o g (= {(L)ee) (@) (1))

T T {mﬂ} _ {m*’} 0=h, b, =0




e )] 0-—

fength: {L"}={L'L“’L""“’L“} 014
=i+

which yields

I3

Step & We write the final functional relationship as

Relationship befween 11s:

(2)




End of Chapter 5

Next Lecture
Chapter 6: Boundary Layer Concept




