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Introduction

 In analyzing fluid motion, 

we might take one of two 

paths:

1. Seeking an estimate of 

gross effects (mass flow, 

induced force, energy 

change) over a finite 

region or control volume 

or 

2. Seeking the point-by-

point details of a flow 

pattern by analyzing an 

infinitesimal region of 

the flow.
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 The control volume technique is useful when we are 

interested in the overall features of a flow, such as mass 

flow rate into and out of the control volume or net forces 

applied to bodies.

 Differential analysis, on the other hand, involves 

application of differential equations of fluid motion to any 

and every point in the flow field over a region called the 

flow domain.

 When solved, these differential equations yield details 

about the velocity, density, pressure, etc., at every point 

throughout the entire flow domain.
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The Acceleration Field of a Fluid

 Velocity is a vector function of position and time and thus 

has three components u, v, and w, each a scalar field in 

itself.

 This is the most important variable in fluid mechanics: 

Knowledge of the velocity vector field is nearly equivalent 

to solving a fluid flow problem.

 The acceleration vector field a of the flow is derived from 

Newton’s second law by computing the total time 

derivative of the velocity vector:
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 Since each scalar component (u, v , w) is a function of 

the four variables (x, y, z, t), we use the chain rule to 

obtain each scalar time derivative. For example,

 But, by definition, dx/dt is the local velocity 

component u, and dy/dt =v , and dz/dt = w. 

 The total time derivative of u may thus be written as 

follows, with exactly similar expressions for the time 

derivatives of v and w:
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The Acceleration Field of a Fluid



 Summing these into a vector, we obtain the total 

acceleration:
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The Acceleration Field of a Fluid



 The term δV/δt is called the local acceleration, which 

vanishes if the flow is steady-that is, independent of time. 

 The three terms in parentheses are called the convective 

acceleration, which arises when the particle moves through 

regions of spatially varying velocity, as in a nozzle or 

diffuser. 

 The gradient operator      is given by:
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The Acceleration Field of a Fluid



 The total time derivative—sometimes called the 

substantial or material derivative— concept may be 

applied to any variable, such as the pressure:

 Wherever convective effects occur in the basic laws 

involving mass, momentum, or energy, the basic 

differential equations become nonlinear and are 

usually more complicated than flows that do not 

involve convective changes.
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Example 1. Acceleration field

Given the eulerian velocity vector field 

find the total acceleration of a particle.
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Solution step 2: In a similar manner, the convective acceleration 

terms, are
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Solution step 2: In a similar manner, the convective acceleration 

terms, are



 An idealized velocity field is given by the formula

 Is this flow field steady or unsteady? Is it two- or three 

dimensional? At the point (x, y, z) =  (1, 1, 0), compute the 

acceleration vector.

Solution

 The flow is unsteady because time t appears explicitly in the 

components.

 The flow is three-dimensional because all three velocity 

components are nonzero.

 Evaluate, by differentiation, the acceleration vector at (x, y, z) 

= (−1, +1, 0).
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Example 2. Acceleration field
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Example 2. Acceleration field



Exercise 1

 The velocity in a certain two-dimensional flow field is given 

by the equation

where the velocity is in m/s when x, y, and t are in meter and 

seconds, respectively. 

1. Determine expressions for the local and convective 

components of acceleration in the x and y directions. 

2. What is the magnitude and direction of the velocity and the 

acceleration at the point x = y = 2 m at the time t = 0?
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The Differential Equation of Mass Conservation

 Conservation of mass, often called the continuity relation, 

states that the fluid mass cannot change. 

 We apply this concept to a very small region. All the basic 

differential equations can be derived by considering either 

an elemental control volume or an elemental system. 

 We choose an infinitesimal fixed control volume (dx, dy, 

dz), as in shown in fig below, and use basic control volume 

relations. 

 The flow through each side of the element is approximately 

one-dimensional, and so the appropriate mass conservation 

relation to use here is
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 The element is so small that the volume integral simply 

reduces to a differential term:

16

The Differential Equation of Mass Conservation



 The mass flow terms occur on all six faces, three inlets and 

three outlets.

 Using  the field or continuum concept where all fluid 

properties are considered to be uniformly varying functions 

of time and position, such as ρ= ρ (x, y, z, t).

 Thus, if T is the temperature on the left face of the element, 

the right face will have a slightly different temperature

 For mass conservation, if ρu is known on the left face, the 

value of this product on the right face is
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The Differential Equation of Mass Conservation



 Introducing these terms into the main relation

 Simplifying gives
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The Differential Equation of Mass Conservation



 The vector gradient operator

 enables us to rewrite the equation of continuity in a 

compact form

 so that the compact form of the continuity relation is
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Continuity Equation in Cylindrical Coordinates

 Many problems in fluid mechanics are more conveniently 

solved in cylindrical coordinates (r, θ, z) (often called 

cylindrical polar coordinates), rather than in Cartesian 

coordinates.
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The Differential Equation of Mass Conservation



 Continuity equation in cylindrical coordinates is given 

by

Steady Compressible Flow

 If the flow is steady    ,            and all properties are 

functions of position only and the continuity equation 

reduces to
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Incompressible Flow

 A special case that affords great simplification is 

incompressible flow, where the density changes are 

negligible. Then                      regardless of whether the 

flow is steady or unsteady,

 The result

 is valid for steady or unsteady incompressible flow. The 

two coordinate forms are
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The Differential Equation of Mass Conservation



 The criterion for incompressible flow is

 where Ma = V/a is the dimensionless Mach number of 

the flow.

 For air at standard conditions, a flow can thus be 

considered incompressible if the velocity is less than 

about 100 m/s.
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Example 3

 Consider the steady, two-dimensional velocity field given by 

 Verify that this flow field is incompressible.

Solution 

 Analysis. The flow is two-dimensional, implying no z component of 

velocity and no variation of u or v with z.

 The components of velocity in the x and y directions respectively are

 To check if the flow is incompressible, we see if the 

incompressible continuity equation is satisfied:

 So we see that the incompressible continuity equation is indeed 

satisfied. Hence the flow field is incompressible.24



Example 4 

 Consider the following steady, three-dimensional velocity 

field in Cartesian coordinates: 

where a, b, c, and d are constants. Under what conditions is 

this flow field incompressible?

Solution

Condition for incompressibility:

 Thus to guarantee incompressibility, constants a and c must 

satisfy the following relationship:

a = −3c
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Example 5

 An idealized incompressible flow has the proposed three-

dimensional velocity distribution

 Find the appropriate form of the function f(y) which satisfies 

the continuity relation.

 Solution: Simply substitute the given velocity components 

into the incompressible continuity equation:

26



Example 6

 For a certain incompressible flow field it is suggested that the 

velocity components are given by the equations

Is this a physically possible flow field? Explain.
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Example 7

 For a certain incompressible, two-dimensional flow field 

the velocity component in the y direction is given by the 

equation

 Determine the velocity in the x direction so that the 

continuity equation is satisfied.
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Example 7 - solution



Example 8

 The radial velocity component in an incompressible, two 

dimensional flow field               is

 Determine the corresponding tangential velocity component,

required to satisfy conservation of mass.

Solution. 

 The continuity equation for incompressible steady flow in 

cylindrical coordinates is given by
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The Stream Function

 Consider the simple case of incompressible, two-dimensional 

flow in the xy-plane. 

 The continuity equation in Cartesian coordinates reduces to

(1)

 A clever variable transformation enables us to rewrite this 

equation (Eq. 1) in terms of one dependent variable (ψ) instead 

of two dependent variables (u and v). 

 We define the stream function ψ as

(2)
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 Substitution of Eq. 2 into Eq. 1 yields

 which is identically satisfied for any smooth function ψ(x, y).

What have we gained by this transformation? 

 First, as already mentioned, a single variable (ψ) replaces two 

variables (u and v)—once ψ is known, we can generate both u 

and v via Eq. 2 and we are guaranteed that the solution 

satisfies continuity, Eq. 1. 

 Second, it turns out that the stream function has useful 

physical significance . Namely, Curves of constant ψ are 

streamlines of the flow.
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The Stream Function



 This is easily proven by 

considering a streamline in 

the xy-plane
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The Stream Function

Curves of constant stream function

represent streamlines of the flow



 The change in the value of ψ as 

we move from one point (x, y) to 

a nearby point (x + dx, y + dy) is 

given by the relationship:

 Along a line of constant ψ we 

have  dψ = 0 so that

 and, therefore, along a line of 

constant ψ
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The Stream Function



 Along a streamline:

 where we have applied Eq. 2, the definition of ψ. Thus along a 

streamline:

 But for any smooth function ψ of two variables x and y, we 

know by the chain rule of mathematics that the total change of 

ψ from point (x, y) to another point (x + dx, y + dy) some 

infinitesimal distance away is
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The Stream Function



 Total change of ψ:

 By comparing the above two equations we see that dψ = 0 

along a streamline;
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The Stream Function



 In cylindrical coordinates the continuity equation for 

incompressible, plane, two dimensional flow reduces to

 and the velocity components,      and       can be related to 

the stream function,             through the equations
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The Differential Equation of Linear Momentum

 Using the same elemental control volume as in mass 

conservation, for which the appropriate form of the linear 

momentum relation is
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 Again the element is so small that the volume integral 

simply reduces to a derivative term:

 The momentum fluxes occur on all six faces, three inlets 

and three outlets.
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The Differential Equation of Linear Momentum



 Introducing these terms

 A simplification occurs if we split up the term in brackets 

as follows:

 The term in brackets on the right-hand side is seen to be the 

equation of continuity, which vanishes identically
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The Differential Equation of Linear Momentum



 The long term in parentheses on the right-hand side is the 

total acceleration of a particle that instantaneously occupies 

the control volume:

 Thus now we have

 This equation points out that the net force on the control 

volume must be of differential size and proportional to the 

element volume. 
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The Differential Equation of Linear Momentum



 These forces are of two types, body forces and surface 

forces. 

 Body forces are due to external fields (gravity, magnetism, 

electric potential) that act on the entire mass within the 

element. 

 The only body force we shall consider is gravity. 

 The gravity force on the differential mass ρ dx dy dz within 

the control volume is

 The surface forces are due to the stresses on the sides of the 

control surface. These stresses are the sum of hydrostatic 

pressure plus viscous stresses τij that arise from motion with 

velocity gradients
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The Differential Equation of Linear Momentum

Fig. Elemental Cartesian fixed

control volume showing the surface

forces in the x direction only.



 The net surface force in the x direction is given by

 Splitting  into pressure plus viscous stresses

 where dv  = dx dy dz.

 Similarly we can derive the y and z forces per unit volume 

on the control surface
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The Differential Equation of Linear Momentum



 The net vector surface force can be written as
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The Differential Equation of Linear Momentum



 In divergence form

 is the viscous stress tensor acting on the element

 The surface force is thus the sum of the pressure gradient 

vector and the divergence of the viscous stress tensor
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The Differential Equation of Linear Momentum



 The basic differential momentum equation for an 

infinitesimal element is thus

 In words
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The Differential Equation of Linear Momentum



 the component equations are

 This is the differential momentum equation in its full glory, 

and it is valid for any fluid in any general motion, particular 

fluids being characterized by particular viscous stress 

terms. 
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Inviscid Flow: Eulers’ Equation

 For Frictionless flow τij =0, for which

 This is Eulers’ equation for inviscid flow
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Newtonian Fluid: Navier-Stokes Equations

 For a newtonian fluid, the viscous stresses are proportional 

to the element strain rates and the coefficient of viscosity. 

 where μ is the viscosity coefficient

 Substitution gives the differential momentum equation for a 

newtonian fluid with constant density and viscosity:
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 These are the incompressible flow Navier-Stokes 
equations named after C. L. M. H. Navier (1785–1836) and 

Sir George G. Stokes (1819–1903), who are credited with 

their derivation.
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Newtonian Fluid: Navier-Stokes Equations



Inviscid Flow

 Shearing stresses develop in a moving fluid because of the 

viscosity of the fluid. 

 We know that for some common fluids, such as air and 

water, the viscosity is small, therefore it seems reasonable 

to assume that under some circumstances we may be able 

to simply neglect the effect of viscosity (and thus shearing 

stresses). 

 Flow fields in which the shearing stresses are assumed to 

be negligible are said to be inviscid, nonviscous, or 

frictionless.

 For fluids in which there are no shearing stresses the 

normal stress at a point is independent of direction—that is 

σxx = σyy = σzz.
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Euler’s Equations of Motion

 For an inviscid flow in which all the shearing stresses are 

zero and the Euler’s equation of motion is written as

 In vector notation Euler’s equations can be expressed as
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Inviscid Flow



Vorticity and Irrotationality

 The assumption of zero fluid angular velocity, or 

irrotationality, is a very useful simplification.

 Here we show that angular velocity is associated with the 

curl of the local velocity vector.

 The differential relations for deformation of a fluid element 

can be derived by examining the Fig. below. 

 Two fluid lines AB and BC, initially perpendicular at time t, 

move and deform so that at t + dt they have slightly different 

lengths A’B’ and B’C’ and are slightly off the perpendicular 

by angles dα and dβ. 
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Vorticity and Irrotationality



 We define the angular velocity ωz about the z axis as the 

average rate of counterclockwise turning of the two lines:

 But from the fig.  dα and dβ are each directly related to 

velocity derivatives in the limit of small dt:

 Substitution results
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Vorticity and Irrotationality



 The vector                                   is thus one-half the curl of 

the velocity vector

 A vector twice as large is called the vorticity
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Vorticity and Irrotationality



 Many flows have negligible or zero vorticity and are called 

irrotational.

 Example. For a certain two-dimensional flow field the 

velocity is given by the equation

 Is this flow irrotational?

Solution.

 For the prescribed velocity field
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Vorticity and Irrotationality
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Velocity Potential

 The velocity components of irrotational flow can be 

expressed in terms of a scalar function ϕ(x, y, z, t) as

 where ϕ is called the velocity potential.

 In vector form, it can be written as

 so that for an irrotational flow the velocity is expressible as 

the gradient of a scalar function ϕ.

 The velocity potential is a consequence of the irrotationality 

of the flow field, whereas the stream function is a 

consequence of conservation of mass
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 It is to be noted, however, that the velocity potential can be 

defined for a general three-dimensional flow, whereas the 

stream function is restricted to two-dimensional flows.

 For an incompressible fluid we know from conservation of 

mass that

 and therefore for incompressible, irrotational flow (with                 

) it follows that 
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Velocity Potential

 This differential equation arises in 

many different areas of engineering 

and physics and is called Laplace’s 

equation. Thus, inviscid, 

incompressible, irrotational flow 

fields are governed by Laplace’s 

equation. 

 This type of flow is commonly called 

a potential flow.

 Potential flows are irrotational flows. 

That is, the vorticity is zero 

throughout. If vorticity is present 

(e.g., boundary layer, wake), then the 

flow cannot be described by Laplace’s 

equation.64



 For some problems it will be convenient to use cylindrical 

coordinates, r,θ, and z. In this coordinate system the 

gradient operator is
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Velocity Potential
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Example 1

 The two-dimensional flow of a nonviscous, incompressible fluid 

in the vicinity of the corner of Fig. is described by the stream 

function

 where ψ has units of m2/s when r is in meters. Assume the fluid 

density is 103 kg/m3 and the x–y plane is horizontal that is, there 

is no difference in elevation between points (1) and (2).

FIND

a) Determine, if possible, the corresponding velocity potential.

b) If the pressure at point (1) on the wall is 30 kPa, what is the 

pressure at point (2)?
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Example 1

Solution

 The radial and tangential velocity components can be 

obtained from the stream function as
68



Solution

69
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Basic Plane Potential Flows

 For simplicity, only plane (two-dimensional) flows will be 

considered. In this case, by using Cartesian coordinates

 Since we can define a stream function for plane flow, we 

can also let
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Uniform Flow

 The simplest plane flow is one for which the streamlines 

are all straight and parallel, and the magnitude of the 

velocity is constant.  This type of flow is called a uniform 

flow. 

 For example, consider a uniform flow in the positive x 

direction as is illustrated in Fig a. 
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 In this instance, u = U and  v = 0, and in terms of the 

velocity potential

 These two equations can be integrated to yield

 where C is an arbitrary constant, which can be set equal to 

zero. 

 Thus, for a uniform flow in the positive x direction
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Uniform Flow



 The corresponding stream function can be obtained in a 

similar manner, since

 and, therefore,

 These results can be generalized to provide the velocity 

potential and stream function for a uniform flow at an angle 

α with the x axis, as in Fig. b. For this case

 and
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Source and Sink

 Consider a fluid flowing radially outward from a line 

through the origin perpendicular to the x–y plane as is 

shown in Fig.  Let m be the volume rate of flow emanating 

from the line (per unit length), and therefore to satisfy 

conservation of mass

 or 
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 A source or sink represents a purely radial flow.

 Since the flow is a purely radial flow,             , the 

corresponding velocity potential can be obtained by 

integrating the equations

 It follows that

 If m is positive, the flow is radially outward, and the flow is 

considered to be a source flow. If m is negative, the flow is 

toward the origin, and the flow is considered to be a sink 

flow. The flowrate, m, is the strength of the source or sink.
78

Source and Sink



 The stream function for the source can be obtained by 

integrating the relationships

 To yield

 The streamlines (lines of ψ = constant ) are radial lines, and 

the equipotential lines (lines of ϕ = constant)  are concentric 

circles centered at the origin.
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Example 2

 A nonviscous, incompressible fluid flows between wedge-

shaped walls into a small opening as shown in Fig.  The 

velocity potential (in ft/s2), which approximately describes 

this flow is

 Determine the volume rate of flow (per unit length) into the 

opening.
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The negative sign indicates that the flow is toward the opening,

that is, in the negative radial direction



Vortex

 We next consider a flow field in which the streamlines are 

concentric circles—that is, we interchange the velocity 

potential and stream function for the source. Thus, let

and
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where K is a constant. In this 

case the streamlines are 

concentric circles with               

and

This result indicates that the tangential velocity varies inversely 

with the distance from the origin



 A mathematical concept commonly associated with vortex 

motion is that of circulation. The circulation, Γ, is defined 

as the line integral of the tangential component of the 

velocity taken around a closed curve in the flow field. In 

equation form, Γ, can be expressed as
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Circulation

where the integral sign 

means that the integration 

is taken around a closed 

curve, C, in the

counterclockwise 

direction, and ds is a 

differential length along 

the curve



 For an irrotational flow

 This result indicates that for an irrotational flow the circulation 

will generally be zero.

 However, for the free vortex with                , , the circulation 

around the circular path of radius r is 

 which shows that the circulation is nonzero.

 However, for irrotational flows the circulation around any path 

that does not include a singular point will be zero.
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Circulation



 The velocity potential and stream function for the free 

vortex are commonly expressed in terms of the circulation 

as

and 
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Doublet

 Doublet is formed by combining a source and sink in a 

special way. Consider the equal strength, source–sink pair 

shown. The combined stream function for the pair is
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 which can be rewritten as

 From the Fig. above it follows that

 And

 These results substitution gives
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Doublet



 So that

 For small values of the distance a
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Doublet

A doublet is formed by letting a source

and sink approach one another.

since the tangent of an angle 

approaches the value of the angle for 

small angles



 The so-called doublet is formed by letting the source and 

sink approach one another              while increasing the 

strength                   so that the product            remains 

constant. In this case, since

 where K, a constant equal to             is called the strength of 

the doublet.

 The corresponding velocity potential for the doublet is
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Doublet



 Plots of lines of constant ψ reveal that the streamlines for a 

doublet are circles through the origin tangent to the x axis 

as shown in fig below. 
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Doublet
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Rankine Ovals

 To study the flow around a closed body, a source and a sink 

of equal strength can be combined with a uniform flow as 

shown in Fig. below. 
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 The stream function for this combination is
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Rankine Ovals



 Using the stream function for the source–sink pair, the 

stream function for Rankine Ovals can be written as

 Or

 The corresponding streamlines for this flow field are 

obtained by setting ψ = constant. If several of these 

streamlines are plotted, it will be discovered that the 

streamline  ψ =0 forms a closed body as shown in fig. 

above. 
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Rankine Ovals



 Stagnation points occur at the upstream and downstream 

ends of the body. These points can be located by 

determining where along the x axis the velocity is zero. 

 The stagnation points correspond to the points where the 

uniform velocity, the source velocity, and the sink velocity 

all combine to give a zero velocity.

 The locations of the stagnation points depend on the value 

of a, m, and U. 

 The body half-length,

 When y= 0), can be expressed as

or
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Rankine Ovals



 The body half-width, h, can be obtained by determining the 

value of y where the y axis intersects the ψ = 0 streamline.

 Or

 both                    are functions of the dimensionless 

parameter,              . A large variety of body shapes with 

different length to width ratios can be obtained by using 

different values of Ua/m,
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Rankine Ovals



 As this parameter becomes large, 

flow around a long slender body is 

described, whereas for small values 

of the parameter, flow around a more 

blunt shape is obtained
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Flow around a Circular Cylinder

 When the distance between the source–sink pair 

approaches zero, the shape of the Rankine oval becomes 

more blunt and in fact approaches a circular shape. 

 Since the Doublet was developed by letting a source–sink 

pair approach one another, it might be expected that a 

uniform flow in the positive x direction combined with a 

doublet could be used to represent flow around a circular 

cylinder.

 This combination gives for the stream function

 and for the velocity potential
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 In order for the stream function to represent flow around a 

circular cylinder it is necessary that

where a is the radius of the cylinder.

 which indicates that the doublet strength, K, must be equal 

to         Thus, the stream function for flow around a circular 

cylinder can be expressed as
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Flow around a Circular Cylinder



 and the corresponding velocity potential is

 The velocity components are

 On the surface of the cylinder             it follows
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Flow around a Circular Cylinder



Fig.  The flow around a circular cylinder.
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Solved Problems

1. The velocity potential for a certain flow field is ϕ = 4xy. 

Determine the corresponding stream function.
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2. The stream function for an incompressible, two 

dimensional flow field is 

Where a and b are constants. Is this an irrotational flow? 

Explain. 
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3. The stream function for a given two dimensional flow filed 

is 

Determine the corresponding velocity potential.
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4.    Determine the stream function corresponding to the 

velocity potential ϕ = x3 – 3xy2. Sketch the streamline ψ

= 0, which passes through the origin.
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5.   The velocity potential for a certain inviscid, 

incompressible flow field is given by the equation

Where ϕ has the units of m2/s when x and y are in meters. 

Determine the pressure at the point x = 2 m, y = 2m if the 

pressure at x = 1 m, y = 1 m is 200 kPa. Elevation 

changes can be neglected and the fluid is water. 
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6. Water is flowing between wedge-shaped walls into a small 

opening as shown in the Fig. below. 

The velocity potential with units m2/s for this flow is

ϕ = -2ln r         with r in meters. 

Determine the pressure differential between points A and B.
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7. An ideal fluid flows between the inclined walls of a  two 

dimensional channel into a sink located at origin. The 

velocity potential for this flow field is
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End of Chapter 4

Next Lecture

Chapter 5: Dimensional Analysis And 

Similitude 
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