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Classification of Fluid Flows 

1) Uniform flow; steady flow 

 If we look at a fluid flowing under normal circumstances - a 

river for example - the conditions (e.g. velocity, pressure) at 

one point will vary from those at another point, then we have 

non-uniform flow. 

 If the conditions at one point vary as time passes, then we 

have unsteady flow. 

 Uniform flow: If the flow velocity is the same magnitude 

and direction at every point in the flow it is said to be 

uniform. That is, the flow conditions DO NOT change with 

position. 

 Non-uniform: If at a given instant, the velocity is not the 

same at every point the flow is non-uniform. 
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 Steady: A steady flow is one in which the conditions 

(velocity, pressure and cross-section) may differ from point 

to point but DO NOT change with time. 

 Unsteady: If at any point in the fluid, the conditions change 

with time, the flow is described as unsteady. 

 Combining the above we can classify any flow in to 

one of four types: 

 Steady uniform flow. Conditions do not change with 

position in the stream or with time. An example is the 

flow of water in a pipe of constant diameter at constant 

velocity. 
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Classification of Fluid Flows 

 Steady non-uniform flow. Conditions change from point 

to point in the stream but do not change with time. An 

example is flow in a tapering pipe with constant velocity 

at the inlet - velocity will change as you move along the 

length of the pipe toward the exit. 

 Unsteady uniform flow. At a given instant in time the 

conditions at every point are the same, but will change 

with time. An example is a pipe of constant diameter 

connected to a pump pumping at a constant rate which is 

then switched off. 

 Unsteady non-uniform flow. Every condition of the flow 

may change from point to point and with time at every 

point. An example is surface waves in an open channel. 
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 2) One-, two-, and three-dimensional flows 

 A fluid flow is in general a three-dimensional, spatial and time 

dependent phenomenon:-

 Where                     is the position vector,              are the unit 

vectors in the Cartesian coordinates, and                are the 

velocity components in these directions. 

 As defined above, the flow will be uniform if the velocity 

components are independent of spatial position                and 

will be steady if the velocity components are independent of 

time t. 
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2) One-, two-, and 

three-dimensional 

flows 

 Accordingly, a fluid 

flow is called three-

dimensional if all three 

velocity components 

are equally important. 

 A three-dimensional 

flow problem will 

have the most complex 

characters and is the 

most difficult to solve.
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 Fortunately, in many engineering applications, the flow can 

be considered as two-dimensional. 

 In such a situation, one of the velocity components (say, w) 

is either identically zero or much smaller than the other two 

components, and the flow conditions vary essentially only 

in two directions (say, x and y). 

 Hence, the velocity is reduced to                    where             

are functions of  (x, y) (and possibly t). 

 It is sometimes possible to further simplify a flow analysis 

by assuming that two of the velocity components are 

negligible, leaving the velocity field to be approximated as 

a one-dimensional flow field. 

 That is,             where the velocity u may vary across the 

section of flow. 
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 Typical examples are fully-developed flows in long 

uniform pipes and open-channels. 

 One-dimensional flow problems will require only 

elementary analysis, and can be solved analytically in most 

cases. 

Fig. One-dimensional ideal flow along a pipe, where the 

velocity is uniform across the pipe section. 
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 3) Viscous and inviscid flows

 An inviscid flow is one in which viscous effects do not 

significantly influence the flow and are thus neglected.

 If the shear stresses in a flow are small and act over such 

small areas that they do not significantly affect the flow 

field the flow can be assumed as inviscid flow. 

 In a viscous flow the effects of viscosity are important 

and cannot be ignored.  

 Based on experience, it has been found that the primary 

class of flows, which can be modeled as inviscid flows, is 

external flows, that is, flows of an unbounded fluid 

which exist exterior to a body. Any viscous effects that 

may exist are confined to a thin layer, called a boundary 

layer, which is attached to the boundary.
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 The velocity in a boundary layer is always zero at a fixed 

wall, a result of viscosity. 

 For many flow situations, boundary layers are so thin that 

they can simply be ignored when studying the gross 

features of a flow around a streamlined body 
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 Viscous flows include the broad class of internal flows, such as 

flows in pipes, hydraulic machines, and conduits and in open 

channels. 

 In such flows viscous effects cause substantial "losses" and 

account for the huge amounts of energy that must be used to 

transport oil and gas in pipelines. The no-slip condition resulting 

in zero velocity at the wall, and the resulting shear stresses, lead 

directly to these losses.
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4) Incompressible and compressible flows

 All fluids are compressible - even water - their density will

change as pressure changes.

 Under steady conditions, and provided that the changes in

pressure are small, it is usually possible to simplify analysis of

the flow by assuming it is incompressible and has constant

density.

 As you will appreciate, liquids are quite difficult to compress –

so under most steady conditions they are treated as

incompressible. In some unsteady conditions very high

pressure differences can occur and it is necessary to take these

into account - even for liquids.

 Gases, on the contrary, are very easily compressed, it is

essential in cases of high-speed flow to treat these as

compressible, taking changes in pressure into account.13
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 Low-speed gas flows, such as the atmospheric flow referred 

to above, are also considered to be incompressible flows. 

The Mach number is defined as 

 where V is the gas speed and c is the speed of sound. 

 The Mach number is useful in deciding whether a particular 

gas flow can be studied as an incompressible flow.

 If M < 0.3, density variations are at most 3% and the flow is 

assumed to be incompressible; for standard air this 

corresponds to a velocity below about 100 m/s. 

 If M > 0.3, the density variations influence the flow and 

compressibility effects should be accounted for. 
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5) Laminar and turbulent flows

 In the experiment shown above, a dye is injected into the 

middle of pipe flow of water. The dye streaks will vary, 

as shown in (b), depending on the flow rate in the pipe. 
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 The top situation is called laminar flow, and the lower is 

turbulent flow, occurring when the flow is sufficiently 

slow and fast, respectively. 

 In laminar flow the motion of the fluid particles is very 

orderly with all particles moving in straight lines parallel to 

the pipe wall. There is essentially no mixing of neighboring 

fluid particles. 

 In sharp contrast, mixing is very significant in turbulent 

flow, in which fluid particles move haphazardly in all 

directions. 

 It is therefore impossible to trace motion of individual 

particles in turbulent flow. 
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 Whether the flow is laminar or not depends on the 

Reynolds number, 

 and it has been demonstrated experimentally that
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Fluid Flow analysis methods

 In analyzing fluid motion, we might take one of two paths: 

1. Seeking to describe the detailed flow pattern at every 

point (x, y, z) in the field or

2. Working with a finite region, making a balance of flow 

in versus flow out, and determining gross flow effects 

such as the force or torque on a body or the total energy 

exchange.

 The second is the “control volume” method and is the subject 

of this chapter. 

 The first is the “differential” approach and is developed in 

Chap. 4.
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Basic Physical Laws of Fluid Mechanics

 Statics problems basically require only the density of the

fluid and knowledge of the position of the free surface, but

most flow problems require the analysis of an arbitrary state

of variable fluid motion defined by the geometry, the

boundary conditions, and the laws of mechanics.

 This chapter and the next two chapters outline the three

basic approaches to the analysis of arbitrary flow problems:

1. Control volume, or large-scale, analysis (Chap. 3).

2. Differential, or small-scale, analysis (Chap. 4).

3. Experimental, or dimensional, analysis (Chap. 5).

 Control volume analysis is accurate for any flow distribution 

but is often based on average or “one dimensional” property 

values at the boundaries.
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 The differential equation approach can be applied to any 

problem. Only a few problems, such as straight pipe flow, 

yield to exact analytical solutions. 

 But the differential equations can be modeled numerically, 

and computational fluid dynamics (CFD) can be used to 

give good estimates for almost any geometry. 

 The dimensional analysis applies to any problem, whether 

analytical, numerical, or experimental. It is particularly 

useful to reduce the cost of experimentation.
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Systems and Control Volumes

 A system is defined as a quantity of 

matter or a region in space chosen for 

study. 

 The mass or region outside the system 

is called the surroundings.

 The real or imaginary surface that 

separates the system from its 

surroundings is called the boundary. 

 The  boundary of a system can be fixed 

or movable. 
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 Note that the boundary is the contact surface shared by both the 

system and the surroundings. Mathematically speaking, the 

boundary has zero thickness, and thus it can neither contain any 

mass nor occupy any volume in space.
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 Systems may be considered to be 

closed or open, depending on whether 

a fixed mass or a fixed volume in 

space is chosen for study. 

 A closed system (also known as a 

control mass) consists of a fixed 

amount of mass, and no mass can 

cross its boundary. That is, no mass 

can enter or leave a closed system.

 But energy, in the form of heat or 

work, can cross the boundary; and the 

volume of a closed system does not 

have to be fixed. 

 If, as a special case, even energy is not 

allowed to cross the boundary, that 

system is called an isolated system.
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 An open system, or a control volume, as it is often called, is a 

properly selected region in space. 

 A control volume usually encloses a device that involves mass flow 

such as a compressor, turbine, or nozzle. Flow through these devices is 

best studied by selecting the region within the device as the control 

volume. Both mass and energy can cross the boundary of a control 

volume.

 A large number of engineering problems involve mass flow in and out 

of a system and, therefore, are modeled as control volumes. 

 A water heater, a car radiator, a turbine, and a compressor all involve 

mass flow and should be analyzed as control volumes (open systems) 

instead of as control masses (closed systems).

 In general, any arbitrary region in space can be selected as a control 

volume. There are no concrete rules for the selection of control 

volumes, but the proper choice certainly makes the analysis much 

easier.
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 The boundaries of a control volume are called a control surface, and 

they can be real or imaginary. In the case of a nozzle, the inner 

surface of the nozzle forms the real part of the boundary, and the 

entrance and exit areas form the imaginary part, since there are no 

physical surfaces there.
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 The laws of mechanics state what happens when there is an 

interaction between the system and its surroundings.

 First, the system is a fixed quantity of mass, denoted by m. 

Thus the mass of the system is conserved and does not 

change. This is a law of mechanics and has a very simple 

mathematical form, called conservation of mass:

 Second, if the surroundings exert a net force F on the 

system, Newton’s second law states that the mass in the 

system will begin to accelerate
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 Newton’s second law is called the linear momentum relation. 

 Note that it is a vector law that implies the three scalar 

equations  Fx = max, Fy = may, and Fz =  maz.

 Third, if the surroundings exert a net moment M about the 

center of mass of the system, there will be a rotation effect

 where H = ∑(r xV) δm is the angular momentum of the 

system about its center of mass. This is called the angular 

momentum relation.
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 Fourth, if heat δQ is added to the system or work δW is done 

by the system, the system energy dE must change according 

to the energy relation, or first law of thermodynamics:

 Finally, the second law of thermodynamics relates entropy 

change dS to heat added dQ and absolute temperature T:

 This is valid for a system and can be written in control 

volume form, but there are almost no practical applications in 

fluid mechanics
27
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 The purpose of this chapter is to put the above four basic 

laws into the control volume form suitable for arbitrary 

regions in a flow: The four basic laws are:

1. Conservation of mass 

2. The linear momentum relation 

3. The angular momentum relation

4. The energy equation 

 Wherever necessary to complete the analysis we also 

introduce a state relation such as the perfect-gas law.
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 We shall derive the three basic control-volume relations in 

fluid mechanics: 

1. The principle of conservation of mass, from which the 

continuity equation is developed; 

2. The principle of conservation of energy, from which the 

energy equation is derived; 

3. The principle of conservation of linear momentum, from 

which equations evaluating dynamic forces exerted by flowing 

fluids may be established. 
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Control volume

 A control volume is a finite region, 

chosen carefully by the analyst for a 

particular problem, with open 

boundaries through which mass, 

momentum, and energy are allowed to 

cross. 

 The analyst makes a budget, or balance, 

between the incoming and outgoing 

fluid and the resultant changes within 

the control volume. Therefore one can 

calculate the gross properties (net force, 

total power output, total heat transfer, 

etc.) with this method. 

 With this method, however, we do not 

care about the details inside the control 

volume. 30



 let us consider a control volume 

that can be a tank, reservoir or a 

compartment inside a system, and 

consists of some definite one-

dimensional inlets and outlets, like 

the one shown.

 Let us denote for each of the inlets 

and outlets:-

 V = velocity of fluid in a stream 

 A = sectional area of a stream 

 p = pressure of the fluid in a stream 

 ρ = density of the fluid 
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 Then, the volume flow rate, or discharge (volume of flow 

crossing a section per unit time) is given by

Q= VA

 Similarly, the mass flow rate (mass of flow crossing a 

section per unit time) is given by

 Then, the momentum flux, defined as the momentum of 

flow crossing a section per unit time, is given by
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Continuity equation

 By steadiness, the total mass of fluid contained in the 

control volume must be invariant with time. 

 Therefore there must be an exact balance between the total 

rate of flow into the control volume and that out of the 

control volume:

Total Mass Outflow = Total Mass Inflow

 which translates into the following mathematical relation

 Where M is the number of inlets, and N is the number of 

outlets. 

33



 If the fluid is incompressible, e.g. water, with ρ being 

effectively constant, then . 
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Example 1. Water Flow through a Garden Hose Nozzle

 A garden hose attached with 

a nozzle is used to fill a 10-

gal bucket. The inner 

diameter of the hose is 2 cm, 

and it reduces to 0.8 cm at 

the nozzle exit. If it takes 50 

s to fill the bucket with 

water, determine

 (a) the volume and mass 

flow rates of water through 

the hose, and (b) the average 

velocity of water at the 

nozzle exit.

35



36



The Bernoulli Equation

 The Bernoulli equation is an approximate relation between 

pressure, velocity, and elevation, and is valid in regions of 

steady, incompressible flow where net frictional forces are 

negligible. 

 Despite its simplicity, it has proven to be a very powerful 

tool in fluid mechanics.
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Derivation of the Bernoulli Equation

Assumptions

 Inviscid flow (ideal fluid, frictionless) 

 Steady flow

 Along a streamline 

 Constant density (incompressible flow) 

 No shaft work or heat transfer 

 Care must be exercised when applying the Bernoulli 

equation since it is an approximation that applies only to 

inviscid regions of flow.

 The Bernoulli approximation is typically useful in flow 

regions outside of boundary layers and wakes, where the 

fluid motion is governed by the combined effects of 

pressure and gravity forces.
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Derivation of the Bernoulli Equation

 A streamline (a line which follows the direction of the fluid 

velocity) is chosen with the coordinates shown in Fig below.

 Around this line, a cylindrical element of fluid having the 

cross-sectional area dA and length ds is considered. 
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 Let p be the pressure 

acting on the lower face, 

and pressure p + dp acts 

on the upper face a 

distance ds away.  

 The gravitational force 

acting on this element is 

its weight, ρgdAds. 



 Applying Newton’s second in the s-direction on a particle 

moving along a streamline gives

 The velocity may change with both position and time. In 

one-dimensional flow it therefore becomes a function of 

distance and time, v = v(s, t). The change in velocity dv 

over time dt may be written as
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 Summing forces in the direction of motion, the s-direction 

results

 Where                   and

 On substituting and dividing the equation by ρgdA, we can 

obtain Euler's equation:

 Note that Euler's equation is valid also for compressible 

flow.
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 Now if we further assume that the flow is incompressible 

so that the density is constant, we may integrate Euler's 

equation to get 

 The terms of in the equation represent energy per unit 

weight, and they have the units of length (m) so they are 

commonly termed heads.
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 A head corresponds to energy per unit weight of flow and 

has dimensions of length. 

 Piezometric head = pressure head + elevation head, 

which is the level registered by a piezometer connected to 

that point in a pipeline. 

 Total head = piezometric head + velocity head. 

 It follows that for ideal steady flow the total energy head is 

constant along a streamline, but the constant may differ in 

different streamlines .

 Applying the Bernoulli equation to any two points on the 

same streamline, we have 
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Application of Bernoulli’s equation

 Various problems on the one-dimensional flow of an ideal 

fluid can be solved by jointly using Bernoulli’s theorem and 

the continuity equation.

Venturi, nozzle and orifice meters 

 The Venturi, nozzle, and orifice-meters are three similar 

types of devices for measuring discharge in a pipe. 

 The Venturi meter consists of a rapidly converging section, 

which increases the velocity of flow and hence reduces the 

pressure. 

 It then returns to the original dimensions of the pipe by a 

gently diverging 'diffuser' section. 

 By measuring the pressure differences the discharge can be 

calculated. 
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 We assume the flow is 

horizontal 

steady, inviscid, and 

incompressible 

between points (1) and 

(2). The Bernoulli 

equation becomes

45

Application of Bernoulli’s equation



 If we assume the velocity profiles are uniform at sections 

(1) and (2), the continuity equation can be written as

 Where       is the small                  flow area at section (2). 

Combination of these two equations results in the following 

theoretical flowrate

 Thus for a given flow geometry                     and the 

flowrate can be determined if the pressure difference,                

is measured.
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Example 2. Application of Bernoulli’s equation 

 Air flows through a pipe at a rate of 200 L/s. The pipe

consists of two sections of diameters 20 cm and 10 cm with

a smooth reducing section that connects them. The pressure

difference between the two pipe sections is measured by a

water manometer. Neglecting frictional effects, determine

the differential height of water between the two pipe

sections. Take the air density to be 1.20 kg/m3.
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 Assumptions .1The flow through the pipe is steady, 

incompressible, and with negligible friction (so that the 

Bernoulli equation is applicable). 2 The losses in the 

reducing section are negligible. 3 The pressure difference 

across an air column is negligible because of the low 

density of air, and thus the air column in the manometer can 

be ignored.

 Analysis. We take points 1 and 2 along the centerline of the 

pipe over the two tubes of the manometer. Noting that z1 = 

z2 (or, the elevation effects are negligible for gases), the 

Bernoulli equation between points 1 and 2 gives
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 We let the differential height of the water manometer be h. 

Then the pressure difference P2 – P1 can also be expressed 

as
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Exercise 1

 Water (assumed 

inviscid and 

incompressible) flows 

steadily in the vertical 

variable-area pipe 

shown in the Fig. 

Determine the 

flowrate if the 

pressure in each of the 

gages reads 50 kPa.

 Answer. Q= 11.4 m3/s
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Application of Bernoulli’s equation- The Pitot Tube

 The Pitot Tube is a device used for measuring the velocity 

of flow at any point in a pipe or a channel.

 Principle: If the velocity at any point decreases, the pressure 

at that point increases due to the conservation of the kinetic 

energy into pressure energy. In simplest form, the Pitot tube 

consists of a glass tube, bent at right angles.
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Example 3. Velocity Measurement by a Pitot Tube

 A piezometer and a Pitot tube are tapped into a horizontal 

water pipe, as shown in the Fig. , to measure static and 

stagnation (static + dynamic) pressures. For the indicated 

water column heights, determine the velocity at the center 

of the pipe.
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Example 4

 Water flows through the pipe contraction shown in Fig. 

For the given 0.2-m difference in the manometer level, 

determine the flowrate as a function of the diameter of 

the small pipe, D.
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Example 5

 Water flows steadily through the variable area pipe 

shown in the Fig. with negligible viscous effects. 

Determine the manometer reading, H, if the flowrate is 

0.5 m3/s and the density of the manometer fluid is 600 

kg/m3.
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Example 6

 Water, considered an inviscid, incompressible fluid, 

flows steadily as shown in Fig. below. Determine h.
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The Momentum Equation and its Application

 On applying Newton's second law of motion to the control 

volume

 Note that this equation 

 follows from the principle of conservation of linear 

momentum: resultant force on the control volume is 

balanced by the net rate of momentum flux                   ) 

out through the control surface. 

 is a vector equation. Components of the forces and the 

velocities need to be considered. 
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 Further consider a steady-flow situation in which there is 

only one entrance (section 1) and one exit (section 2) across 

which uniform profiles can be assumed. By continuity
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 On applying the momentum equation, one needs to pay 

attention to the following two aspects 

Forces 

 represents all forces acting on the control volume, 

including 

 Surface forces resulting from the surrounding acting on the 

control volume: 

o Impact force, which is usually the unknown to be found, on 

the control surface in contact with a solid boundary 

o Pressure force on the control surface which cuts a flow inlet or 

exit. Remember that the pressure force is always a 

compressive force. 

 Body force that results from gravity. 
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Application of the momentum Equation:  Force on a 

pipe nozzle 

 A simple application of the momentum equation is to find 

the force on the nozzle at the outlet of a pipe. Because the 

fluid is contracted at the nozzle forces are induced in the 

nozzle. Anything holding the nozzle (e.g. a fireman) must be 

strong enough to withstand these forces. 

Steps in analysis: 

 Draw a control volume 

 Decide on a coordinate-axis system 

 Calculate the total force, given by the rate of change of 

momentum across the control volume 

 Calculate the pressure force Fp

 Calculate the body force FB

 Calculate the resultant reaction force FR68
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Force due to a two-dimensional jet hitting an 

inclined plane 

 Consider a two-dimensional jet hitting a flat plate at an 

angle θ. For simplicity gravity and friction are neglected 

from this analysis. 

 We want to find the reaction force normal to the plate so we 

choose the axis system such that it is normal to the plane. 
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Flow past a pipe bend 

 Consider the pipe bend shown above. We may first draw a 

free body diagram for the control volume with the forces: 
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Example 7

 The water jet in Fig. shown strikes normal to a fixed plate. 

Neglect gravity and friction, and compute the force F in 

newtons required to hold the plate fixed.     Ans. 503 N
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Example 8

 A horizontal circular jet of air strikes a stationary flat plate as 

indicated in the Fig. The jet velocity is 40 m/s and the jet 

diameter is 30 mm. If the air velocity magnitude remains 

constant as the air flows over the plate surface in the directions 

shown, determine:  (a) the magnitude of FA, the anchoring 

force required to hold the plate stationary; (b) the fraction of 

mass flow along the plate surface in each of the two directions 

shown.
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 To determine the magnitude of FA we apply the component 

of the linear momentum equation along the direction of FA
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Example 9

 A nozzle is attached to a 

vertical pipe and discharges 

water into the atmosphere 

as shown in the figure. 

When the discharge is 0.1 

m3/s, the gage pressure at 

the flange is 40 KPa. 

Determine the vertical 

component of the anchoring 

force required to hold the 

nozzle in place. The nozzle 

has a weight of 200 N, and 

the volume of water in the 

nozzle is 0.012 m3.
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 Application of the vertical or z- direction component of the 

linear momentum to the flow through the control volume 

leads to 
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Example 10

 A reducing elbow is used to deflect water flow at a rate of 30 kg/s 
in a horizontal pipe upward by an angle θ = 45° from the flow 

direction while accelerating it. The elbow discharges water into 

the atmosphere. The cross-sectional area of the elbow is 150 cm2

at the inlet and 25 cm2 at the exit. The elevation difference 

between the centers of the exit and the inlet is 40 cm. The mass of 

the elbow and the water in it is 50 kg. Determine the anchoring 

force needed to hold the elbow in place. 

87



 Assumptions 1 The flow is steady, frictionless, one-

dimensional, incompressible, and irrotational (so that the 

Bernoulli equation is applicable). 2 The weight of the elbow 

and the water in it is considered. 3 The water is discharged 

to the atmosphere, and thus the gage pressure at the outlet is 

zero. The momentum-flux correction factor for each inlet 

and outlet is given to be β = 1.03.
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 Taking the center of the inlet cross section as the reference level 

(z1 = 0) and noting that P2 = Patm, the Bernoulli equation for a 

streamline going through the center of the reducing elbow is 

expressed as

 The momentum equation for steady one-dimensional flow is
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 We let the x- and z- components of the anchoring force of the 

elbow be FRx and FRz, and assume them to be in the positive 

directions. We also use gage pressures to avoid dealing with the 

atmospheric pressure which acts on all surfaces. Then the 

momentum equations along the x and z axes become

 Discussion . Note that the magnitude of the anchoring force is 1.18 kN, and its 
line of action makes –39.7° from +x direction. Negative value for FRx indicates 

the assumed direction is wrong.
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 Many engineering problems involve the moment of the linear 

momentum of flow streams, and the rotational effects caused 

by them. 

 Such problems are best analyzed by the angular momentum 

equation, also called the moment of momentum equation. 

 An important class of fluid devices, called turbomachines, 

which include centrifugal pumps, turbines, and fans, is 

analyzed by the angular momentum equation.

 For steady two dimensional flow the angular momentum 

equation is given by
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 It states that the net torque acting on the control volume 

during steady flow is equal to the difference between the 

outgoing and incoming angular momentum flow rates. 

 where r represents the average normal distance between the 

point about which moments are taken and the line of action 

of the force or velocity, provided that the sign convention 

for the moments is observed. 

 That is, all moments in the counterclockwise direction are 

positive, and all moments in the clockwise direction are 

negative.
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Example. Bending Moment Acting at the Base of a 

Water Pipe

 Underground water is pumped to a sufficient height 

through a 10-cmdiameter pipe that consists of a 2-m-

long vertical and 1-m-long horizontal section, as shown 

in the Fig. below. Water discharges to atmospheric air at 

an average velocity of 3 m/s, and the mass of the 

horizontal pipe section when filled with water is 12 kg 

per meter length. The pipe is anchored on the ground by 

a concrete base. Determine the bending moment acting at 

the base of the pipe (point A) and the required length of 

the horizontal section that would make the moment at 

point A zero.
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 The free-body diagram of the L-shaped pipe is given in the Fig. 

Noting that the moments of all forces and momentum flows 

passing through point A are zero, the only force that yields a 

moment about point A is the weight W of the horizontal pipe 

section, and the only momentum flow that yields a moment is 

the outlet stream (both are negative since both moments are in 

the clockwise direction). 

 Then the angular momentum equation about point A becomes
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THE ENERGY EQUATION

 The first law of thermodynamics, also known as the 

conservation of energy principle, states that energy can 

be neither created nor destroyed during a process; it can 

only change forms. 
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The Energy Equation

 The change in the energy content of a system is equal to the 

difference between the energy input and the energy output, 

and the conservation of energy principle for any system can 

be expressed simply as

 The energy content of a fixed quantity of mass (a closed 

system) can be changed by two mechanisms: heat transfer Q 

and work transfer W. Then the conservation of energy for a 

fixed quantity of mass can be expressed in rate form as

 Where                                     is the net rate of heat transfer 

to the system (negative, if from the system)
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 is the net 

power input to the system in all 

forms (negative, if power 

output)

 is the rate of change of 

the total energy content of the 

system.

(N.B: The overdot stands for 

time rate)
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For simple compressible systems, total energy consists of 

internal, kinetic, and potential energies, and it is expressed 

on a unit-mass basis as



Energy Transfer by Heat, Q

 The transfer of thermal energy from one system to another as a 

result of a temperature difference is called heat transfer.

 A process during which there is no heat transfer is called an 

adiabatic process. 

 There are two ways a process can be adiabatic: Either the 

system is well insulated so that only a negligible amount of 

heat can pass through the system boundary, or both the system 

and the surroundings are at the same temperature and therefore 

there is no driving force (temperature difference) for heat 

transfer. 

 An adiabatic process should not be confused with an isothermal 

process. Even though there is no heat transfer during an 

adiabatic process, the energy content and thus the temperature 

of a system can still be changed by other means such as work 

transfer.102



Energy Transfer by Work, W

 An energy interaction is work if it is associated with a 

force acting through a distance. 

 A rising piston, a rotating shaft, and an electric wire 

crossing the system boundary are all associated with work 

interactions. 

 The time rate of doing work is called power and is denoted 

by 

 Car engines and hydraulic, steam, and gas turbines produce 

work; compressors, pumps, fans, and mixers consume 

work.

 Work-consuming devices transfer energy to the fluid, and 

thus increase the energy of the fluid. A fan in a room, for 

example, mobilizes the air and increases its kinetic energy.
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 A system may involve numerous forms of work, and the 

total work can be expressed as

 Wshaft is the work transmitted by a rotating shaft 

 Wpressure is the work done by the pressure forces on the 

control surface, 

 Wviscous is the work done by the normal and shear 

components of viscous forces on the control surface,

 Wother is the work done by other forces such as electric, 

magnetic, and surface tension, which are insignificant for 

simple compressible systems

 Wviscous is usually very small relative to other terms. So it 

is not considered in control volume analysis.104
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 For steady flows, the 

energy equation is given by

 It states that the net rate of 

energy transfer to a control 

volume by heat and work 

transfers during steady flow 

is equal to the difference 

between the rates of 

outgoing and incoming 

energy flows with mass.
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 Many practical problems involve just one inlet and one outlet. 

The mass flow rate for such single-stream devices remains 

constant, and the energy equation reduces to

 where subscripts 1 and 2 stand for inlet and outlet, respectively.

 on a unit-mass basis

 Using the definition of enthalpy                            and 

rearranging, the steady-flow energy equation can also be 

expressed as
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 where u is the internal energy, P/ρ is the flow energy, 

V2/2 is the kinetic energy, and gz is the potential energy 

of the fluid, all per unit mass. These relations are valid 

for both compressible and incompressible flows

Mechanical Energy             Mechanical Energy 

Input                                 Output

 If the flow is ideal with no irreversibilities such as friction, 

the total mechanical energy must be conserved. Thus u2 - u1-

qnet in must be equal to zero.
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 u2 - u1- qnet in represents the mechanical energy loss

 For single-phase fluids (a gas or a liquid), we have

where cv is the constant-volume specific heat.

 The steady-flow energy equation on a unit-mass basis can 

be written conveniently as a mechanical energy balance 

as
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 Noting that

 the mechanical energy balance can be written more 

explicitly as

 where wpump is the mechanical work input (due to the 

presence of a pump, fan, compressor, etc.) and wturbine is the 

mechanical work output.

 Multiplying the above energy equation by the mass flow rate     

gives
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Where     

 is the shaft power input through the pump’s shaft,

 turbine is the shaft power output through the turbine’s 

shaft, and 

 , loss is the total mechanical power loss, which 

consists of pump and turbine losses as well as the frictional 

losses in the piping network. 

 The energy equation can be expressed in its most common 

form in terms of heads as
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 Where

is the useful head 

delivered to the fluid by the pump

is the extracted 

head removed from the fluid by the turbine.

is the irreversible head 

loss between 1 and 2 due to all components of the piping 

system other than the pump or turbine.
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 Note that the head loss hL represents the frictional losses 

associated with fluid flow in piping, and it does not include 

the losses that occur within the pump or turbine due to the 

inefficiencies of these devices—these losses are taken into 

account by
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 The pump head is zero if the piping system does not 

involve a pump, a fan, or a compressor, and the turbine 

head is zero if the system does not involve a turbine.

 Also, the head loss hL can sometimes be ignored when the 

frictional losses in the piping system are negligibly small 

compared to the other terms

Special Case: Incompressible Flow with No Mechanical 

Work Devices and Negligible Friction

 When piping losses are negligible, there is negligible 

dissipation of mechanical energy into thermal energy, and 

thus                                            and

 which is the Bernoulli equation113
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Kinetic Energy Correction Factor, α

 the kinetic energy of a fluid stream obtained from V2/2 is 

not the same as the actual kinetic energy of the fluid stream 

since the square of a sum is not equal to the sum of the 

squares of its components

 This error can be corrected by replacing the kinetic energy 

terms V2/2 in the energy equation by αVavg
2 /2, where α is 

the kinetic energy correction factor.

 The correction factor is 2.0 for fully developed laminar 

pipe flow, and it ranges between 1.04 and 1.11 for fully 

developed turbulent flow in a round pipe.

 The kinetic energy correction factors are often ignored (i.e., 

a is set equal to 1) in an elementary analysis since (1) most 

flows encountered in practice are turbulent, for which the 

correction factor is near unity, and114
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 (2) the kinetic energy terms are often small relative to the other 

terms in the energy equation, and multiplying them by a factor 

less than 2.0 does not make much difference.

 When the kinetic energy correction factors are included, the 

energy equations for steady incompressible flow become
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Example 1 

 A steam turbine generator unit used to produce electricity. 

Assume the steam enters a turbine with a velocity of 30 m/s and 

enthalpy, h1, of 3348 kJ/kg .The steam leaves the turbine as a 

mixture of vapor and liquid having a velocity of 60 m/s and an 

enthalpy of 2550 kJ/kg. The flow through the turbine is 

adiabatic, and changes in elevation are negligible. Determine 

the work output involved per unit mass of steam through-flow.
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Example 2. Pumping Power and Frictional Heating

in a Pump

 The pump of a water distribution system is powered by a 

15-kW electric motor whose efficiency is 90 percent. The 

water flow rate through the pump is 50 L/s. The diameters 

of the inlet and outlet pipes are the same, and the elevation 

difference across the pump is negligible. If the pressures at 

the inlet and outlet of the pump are measured to be 100 kPa 

and 300 kPa (absolute), respectively, determine

a) the mechanical efficiency of the pump and

b) the temperature rise of water as it flows through the 

pump due to the mechanical inefficiency.
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 Schematic for Example 2
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Example 2. Pumping Power and Frictional Heating

in a Pump
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Example 3. Hydroelectric Power Generation from a Dam

 In a hydroelectric power 

plant, 100 m3/s of water 

flows from an elevation of 

120 m to a turbine, where 

electric power is generated. 

The total irreversible head 

loss in the piping system 

from point 1 to point 2 

(excluding the turbine unit) 

is determined to be 35 m. If 

the overall efficiency of the 

turbine–generator is 80 

percent, estimate the 

electric power output.
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Example 4. Head and Power Loss During Water Pumping

 Water is pumped from a 

lower reservoir to a higher 

reservoir by a pump that 

provides 20 kW of useful 

mechanical power to the 

water. The free surface of the 

upper reservoir is 45 m 

higher than the surface of the 

lower reservoir. If the flow 

rate of water is measured to 

be 0.03 m3/s, determine the 

irreversible head loss of the 

system and the lost 

mechanical power during this 

process.
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Example 4. Solution…..
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End of Chapter 3

Next Lecture

Chapter 4: Differential Relations For A 

Fluid Flow
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