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Classification of Fluid Flows

1) Uniform flow; steady flow

If we look at a fluid flowing under normal circumstances - a
river for example - the conditions (e.g. velocity, pressure) at
one point will vary from those at another point, then we have
non-uniform flow.

If the conditions at one point vary as time passes, then we
have unsteady flow.

Uniform flow: If the flow velocity is the same magnitude
and direction at every point in the flow it is said to be
uniform. That is, the flow conditions DO NOT change with
position.

Non-uniform: If at a given instant, the velocity is not the
same at every point the flow is non-uniform.




Classification of Fluid Flows

o Steady: A steady flow is one in which the conditions
(velocity, pressure and cross-section) may differ from point
to point but DO NOT change with time.

o Unsteady: If at any point in the fluid, the conditions change
with time, the flow is described as unsteady.

» Combining the above we can classify any flow in to
one of four types:

» Steady uniform flow. Conditions do not change with
position Iin the stream or with time. An example is the
flow of water In a pipe of constant diameter at constant
velocity.

o
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Classification of Fluid Flows

e Steady non-uniform flow. Conditions change from point
to point in the stream but do not change with time. An
example is flow in a tapering pipe with constant velocity
at the inlet - velocity will change as you move along the
length of the pipe toward the exit.

» Unsteady uniform flow. At a given instant in time the
conditions at every point are the same, but will change
with time. An example is a pipe of constant diameter
connected to a pump pumping at a constant rate which is
then switched off.

e Unsteady non-uniform flow. Every condition of the flow
may change from point to point and with time at every
point. An example Is surface waves in an open channel.
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Classification of Fluid Flows
e 2) One-, two-, and three-dimensional flows
A fluid flow is in general a three-dimensional, spatial and time

dependent phenomenon:-
V=VFt)=u(@,0i +v(F,0)]+wF, Dk

Where 7 =(x, ,z) is the position vector, (?}E) are the unit
vectors in the Cartesian coordinates, and (.v,w) are the

velocity components in these directions.

As defined above, the flow will be uniform if the velocity
components are independent of spatial position (.:n y,z) and
will be steady if the velocity components are independent of

time t.
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Classification of Fluid Flows

2) One-, two-, and
three-dimensional
flows

e Accordingly, a fluid oaiclo A
flow is called three- time 1
dimensional if all three
velocity components

Particle path

Particle A at
time ¢ + 8¢

are equally important.

e Athree-dimensional /_/
flow problem will
have the most complex

characters and is the
most difficult to solve.

X
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Classification of Fluid Flows

» Fortunately, in many engineering applications, the flow can
be considered as two-dimensional.

* In such a situation, one of the velocity components (say, w)
IS either identically zero or much smaller than the other two
components, and the flow conditions vary essentially only
In two directions (say, X and y).

» Hence, the velocity is reduced to ¥ =ui +vj where (u.v)
are functions of (X, y) (and possibly t).

e |t i1s sometimes possible to further simplify a flow analysis
by assuming that two of the velocity components are
negligible, leaving the velocity field to be approximated as
a one-dimensional flow field.

o Thatis, ¥ =i where the velocity u may vary across the
section of flow.
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Classification of Fluid Flows

» Typical examples are fully-developed flows in long
uniform pipes and open-channels.

* One-dimensional flow problems will require only

elementary analysis, and can be solved analytically in most
cases.
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Fig. One-dimensional ideal flow along a pipe, where the
velocity is uniform across the pipe section.
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Classification of Fluid Flows

 3) Viscous and inviscid flows

An inviscid flow is one in which viscous effects do not
significantly influence the flow and are thus neglected.

If the shear stresses in a flow are small and act over such
small areas that they do not significantly affect the flow
field the flow can be assumed as inviscid flow.

In a viscous flow the effects of viscosity are important
and cannot be ignored.

Based on experience, it has been found that the primary
class of flows, which can be modeled as inviscid flows, is
external flows, that is, flows of an unbounded fluid
which exist exterior to a body. Any viscous effects that
may exist are confined to a thin layer, called a boundary
layer, which is attached to the boundary.




Classification of Fluid Flows

e The velocity in a boundary layer is always zero at a fixed
wall, a result of viscosity.

» For many flow situations, boundary layers are so thin that
they can simply be ignored when studying the gross
features of a flow around a streamlined body

Boundary Edge of
Inviscid layer boundary

flow

(6) 2002 Wasswoeh Greup! Th omssa L eaming

o

External flow around an airfoil. Viscous flow in a boundary layer.
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Classification of Fluid Flows

e Viscous flows include the broad class of internal flows, such as
flows in pipes, hydraulic machines, and conduits and in open
channels.

 In such flows viscous effects cause substantial "losses" and
account for the huge amounts of energy that must be used to
transport oil and gas in pipelines. The no-slip condition resulting
In zero velocity at the wall, and the resulting shear stresses, lead
directly to these losses.

__!L» u(r) ({ J’L ;;ﬂy}
X X

(&) 2002 Wadeworth Group | Thomson Learning (a ) (b )

¢ Viscous internal flow: (a) in a pipe; (b) between two parallel plates.
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Classification of Fluid Flows
4) Incompressible and compressible flows

All fluids are compressible - even water - their density will
change as pressure changes.

Under steady conditions, and provided that the changes In
pressure are small, it is usually possible to simplify analysis of
the flow by assuming it is incompressible and has constant
density.

As you will appreciate, liquids are quite difficult to compress —
so under most steady conditions they are treated as
Incompressible.  In some unsteady conditions very high
pressure differences can occur and it is necessary to take these
Into account - even for liquids.

Gases, on the contrary, are very easily compressed, It Is
essential In cases of high-speed flow to treat these as
compressible, taking changes in pressure into account.
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Classification of Fluid Flows

» Low-speed gas flows, such as the atmospheric flow referred
to above, are also considered to be incompressible flows.
The Mach number is defined as

V
M=—
c

e where V Is the gas speed and c Is the speed of sound.

e The Mach number iIs useful in deciding whether a particular
gas flow can be studied as an incompressible flow.

e |If M < 0.3, density variations are at most 3% and the flow Is
assumed to be incompressible; for standard air this
corresponds to a velocity below about 100 m/s.

e |If M > 0.3, the density variations influence the flow and
compressibility effects should be accounted for.
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Classification of Fluid Flows

5) Laminar and turbulent flows

i \ ) e
\ Pip\i U D

N II
0= [ oesem I
— — - Transitional
K’Sn‘mth. well-rounded Il
entrance u
b ) Turbulent

(a) (b)

In the experiment shown above, a dye is injected into the
middle of pipe flow of water. The dye streaks will vary,
as shown in (b), depending on the flow rate in the pipe.
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Classification of Fluid Flows

e The top situation is called laminar flow, and the lower is
turbulent flow, occurring when the flow Is sufficiently
slow and fast, respectively.

 In laminar flow the motion of the fluid particles is very
orderly with all particles moving in straight lines parallel to
the pipe wall. There is essentially no mixing of neighboring
fluid particles.

* In sharp contrast, mixing is very significant in turbulent
flow, in which fluid particles move haphazardly in all
directions.

e |t is therefore impossible to trace motion of individual
particles in turbulent flow.
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Classification of Fluid Flows

* Whether the flow is laminar or not depends on the
Reynolds number,

Re= 274
u

p =density, p=viscosity, V' =section-mean velocity, d = diameter of pipe

e and It has been demonstrated experimentally that

-

< 2,000 laminar flow
Re < between 2,000 and 4,000 transitional flow
> 4.000 turbulent tlow

L




Fluid Flow analysis methods

 In analyzing fluid motion, we might take one of two paths:

1. Seeking to describe the detailed flow pattern at every
point (x, Yy, z) in the field or

2. Working with a finite region, making a balance of flow
In versus flow out, and determining gross flow effects

such as the force or torque on a body or the total energy
exchange.

» The second is the “control volume” method and is the subject
of this chapter.

e The first is the “differential” approach and is developed in
Chap. 4.

o




Basic Physical Laws of Fluid Mechanics

e Statics problems basically require only the density of the
fluid and knowledge of the position of the free surface, but
most flow problems require the analysis of an arbitrary state
of variable fluid motion defined by the geometry, the
boundary conditions, and the laws of mechanics.

e This chapter and the next two chapters outline the three
basic approaches to the analysis of arbitrary flow problems:

1. Control volume, or large-scale, analysis (Chap. 3).
2. Differential, or small-scale, analysis (Chap. 4).
3. Experimental, or dimensional, analysis (Chap. 5).
e Control volume analysis Is accurate for any flow distribution

but Is often based on average or “one dimensional” property
values at the boundaries.




Basic Physical Laws of Fluid Mechanics

» The differential equation approach can be applied to any
problem. Only a few problems, such as straight pipe flow,
yield to exact analytical solutions.

 But the differential equations can be modeled numerically,
and computational fluid dynamics (CFD) can be used to
give good estimates for almost any geometry.

» The dimensional analysis applies to any problem, whether
analytical, numerical, or experimental. It is particularly
useful to reduce the cost of experimentation.
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Basic Physical Laws of Fluid Mechanics

Systems and Control Volumes

» Asystem is defined as a quantity of
matter or a region in space chosen for
study.

e The mass or region outside the system
Is called the surroundings.

o The real or imaginary surface that
separates the system from its
surroundings is called the boundary. BOUNDARY

» The boundary of a system can be fixed
or movable.

SURROUNDINGS

* Note that the boundary is the contact surface shared by both the
system and the surroundings. Mathematically speaking, the
boundary has zero thickness, and thus it can neither contain any
mass nor occupy any volume in space.
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Basic Physical Laws of Fluid Mechanics

Systems and Control Volumes

e Systems may be considered to be
closed or open, depending on whether
a fixed mass or a fixed volume in
space is chosen for study.

» Aclosed system (also known as a
control mass) consists of a fixed
amount of mass, and no mass can
cross Its boundary. That is, no mass
can enter or leave a closed system.

» But energy, in the form of heat or
work, can cross the boundary; and the
volume of a closed system does not
have to be fixed.

 |If, as a special case, even energy is not
allowed to cross the boundary, that
system is called an isolated system.

= = = = == = =

CLOSED
SYSTEM

m = constant

—_— s e = == = == == == ==

Moving

GAS
2kg

Im?




4 Basic Physical Laws of Fluid Mechanics

Systems and Control Volumes

An open system, or a control volume, as it is often called, is a
properly selected region in space.

A control volume usually encloses a device that involves mass flow
such as a compressor, turbine, or nozzle. Flow through these devices is
best studied by selecting the region within the device as the control
volume. Both mass and energy can cross the boundary of a control
volume.

A large number of engineering problems involve mass flow in and out
of a system and, therefore, are modeled as control volumes.

A water heater, a car radiator, a turbine, and a compressor all involve
mass flow and should be analyzed as control volumes (open systems)
Instead of as control masses (closed systems).

In general, any arbitrary region in space can be selected as a control
volume. There are no concrete rules for the selection of control

volumes, but the proper choice certainly makes the analysis much
easier.
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Basic Physical Laws of Fluid Mechanics

Systems and Control Volumes

e The boundaries of a control volume are called a control surface, and
they can be real or imaginary. In the case of a nozzle, the inner
surface of the nozzle forms the real part of the boundary, and the
entrance and exit areas form the imaginary part, since there are no
physical surfaces there.

Imaginary Real boundary
munm\&

|
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(a) A control volume with real and (b) A control volume with fixed and
imaginary boundaries moving boundaries
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Basic Physical Laws of Fluid Mechanics

e The laws of mechanics state what happens when there is an
Interaction between the system and its surroundings.

 First, the system is a fixed quantity of mass, denoted by m.
Thus the mass of the system is conserved and does not
change. This is a law of mechanics and has a very simple
mathematical form, called conservation of mass:

Mgyt = CONSt

dm _
dt
e Second, if the surroundings exert a net force F on the

system, Newton’s second law states that the mass in the
system will begin to accelerate

dV d
@ ma = m 7 dt(m )

0




Basic Physical Laws of Fluid Mechanics

e Newton’s second law is called the linear momentum relation.

* Note that it is a vector law that implies the three scalar
equations F, = ma,, F, =ma,, and F, = ma,.

e Third, if the surroundings exert a net moment M about the
center of mass of the system, there will be a rotation effect

dH
M=——
dt

e where H =) (r xXV) om is the angular momentum of the
system about its center of mass. This is called the angular
momentum relation.




Basic Physical Laws of Fluid Mechanics

» Fourth, if heat 0Q Is added to the system or work 6W iIs done
by the system, the system energy dE must change according
to the energy relation, or first law of thermodynamics:

0Q — oW =dE
: . dE
_W:_

¢ dt

 Finally, the second law of thermodynamics relates entropy
change dS to heat added dQ and absolute temperature T:
o0

dS = —
T

e This Is valid for a system and can be written in control
volume form, but there are almost no practical applications in
fluid mechanics
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Basic Physical Laws of Fluid Mechanics

» The purpose of this chapter is to put the above four basic
laws into the control volume form suitable for arbitrary
regions in a flow: The four basic laws are:

1. Conservation of mass

2. The linear momentum relation
3. The angular momentum relation
4. The energy equation

» Wherever necessary to complete the analysis we also
Introduce a state relation such as the perfect-gas law.




Elementary Equations of Motion

o \We shall derive the three basic control-volume relations in
fluid mechanics:

1. The principle of conservation of mass, from which the
continuity equation is developed;

2. The principle of conservation of energy, from which the
energy equation is derived,

3. The principle of conservation of linear momentum, from
which equations evaluating dynamic forces exerted by flowing
fluids may be established.
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Control volume

» A control volume is a finite region,
chosen carefully by the analyst for a
particular problem, with open |

I
boundaries through which mass, n | Out
Control
momentum, and energy are allowedto = Vqlume —
Cross. | |
» The analyst makes a budget, or balance, e !

between the incoming and outgoing
fluid and the resultant changes within
the control volume. Therefore one can
calculate the gross properties (net force,
total power output, total heat transfer,
etc.) with this method.

o With this method, however, we do not
care about the details inside the control

@ volume. Y




Control volume

 |et us consider a control volume
that can be a tank, reservoir or a
compartment inside a system, and
consists of some definite one-
dimensional inlets and outlets, like
the one shown.

» Let us denote for each of the inlets
and outlets:-
V = velocity of fluid in a stream
A = sectional area of a stream
p = pressure of the fluid in a stream
p = density of the fluid

v




Control volume

» Then, the volume flow rate, or discharge (volume of flow

crossing a section per unit time) Is given by
Q= VA

o Similarly, the mass flow rate (mass of flow crossing a

section per unit time) is given by
m= pVd = pQ

e Then, the momentum flux, defined as the momentum of

flow crossing a section per unit time, Is given by mV
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Continuity equation

» By steadiness, the total mass of fluid contained in the
control volume must be invariant with time.

o Therefore there must be an exact balance between the total
rate of flow Into the control volume and that out of the
control volume:

Total Mass Outflow = Total Mass Inflow

e which translates into the following mathematical relation
M N

2.(pVA4), =2 (PV4),,

i=l1 i=1
Where M is the number of inlets, and N iIs the number of
outlets.

(-
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Continuity equation
e |f the fluid is Incompressible, e.g. water, with p being
effectively constant, then .
> (Vi) = 2V, o >(0), =2 (@)
(1)
.
— Q =V, A4 =V,A, = constant
/
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Example 1. Water Flow through a Garden Hose Nozzle

» A garden hose attached with
a nozzle is used to fill a 10-
gal bucket. The inner
diameter of the hose is 2 cm,
and 1t reduces to 0.8 cm at
the nozzle exit. If it takes 50
s to fill the bucket with
water, determine

* (a) the volume and mass
flow rates of water through
the hose, and (b) the average
velocity of water at the

nozzle exit.

Bucket
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SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water 1s an incompressible substance. 2 Flow through the
hose Is steady. 3 There Is no waste of water by splashing.

Properiies We take the density of water to be 1000 kg/m3® = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

gV _ 10 gal (3.?854 L
At 50s 1 gal

m= pV = (1kg/L)(0.757 L/s) = 0.757 kg/s
(b) The cross-sectional area of the nozzle exit Is
A, = 7ri = (0.4 cm)? = 0.5027 cm? = 0.5027 X 10" *m?

The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

VvV 0757Ls ( 1""'3)—151.“;5
° A, 0.5027 X 10~*m? \1000 L '

(- y

) = 0.757 L/s
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The Bernoulli Equation

» The Bernoulli equation is an approximate relation between
pressure, velocity, and elevation, and is valid in regions of
steady, incompressible flow where net frictional forces are
negligible.

» Despite its simplicity, it has proven to be a very powerful
tool in fluid mechanics.

Bernoulli equation valid
e
---"""f—_ \

. N\

z —
N/ —
: v —
Bernoulli equation not valid




Derivation of the Bernoulli Equation

Assumptions
Inviscid flow (ideal fluid, frictionless)
Steady flow
Along a streamline
Constant density (incompressible flow)
No shaft work or heat transfer

o Care must be exercised when applying the Bernoulli

equation since it Is an approximation that applies only to
Inviscid regions of flow.

» The Bernoulli approximation is typically useful in flow
regions outside of boundary layers and wakes, where the
fluid motion is governed by the combined effects of
pressure and gravity forces.

(-
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Derivation of the Bernoulli Equation

» Astreamline (a line which follows the direction of the fluid
velocity) is chosen with the coordinates shown in Fig below.

e Around this line, a cylindrical element of fluid having the

cross-sectional area dA and length ds is considered.
i

[

Steady flow along a streamline
Y " * Let p be the pressure

acting on the lower face,
and pressure p + dp acts
on the upper face a
distance ds away.

dz e The gravitational force
i acting on this element is
Its weight, pgdAds.

(P +dP)dA
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Derivation of the Bernoulli Equation

» Applying Newton’s second in the s-direction on a particle
moving along a streamline gives

> Fy = mag

» The velocity may change with both position and time. In
one-dimensional flow it therefore becomes a function of
distance and time, v = v(s, t). The change in velocity dv
over time dt may be written as

) oV dv _4Vds 9V

=—ds + — — =
v dS ds ot dt and dt 9s u::ItJr ot

In steady flow dV/dt = 0 and thus V = V(s), and the acceleration in the s-

direction becomes
_dv_aVds _av,, dV

a ______ —_— —_—
* dt asdt as ds

o y




Derivation of the Bernoulli Equation

o Summing forces in the direction of motion, the s-direction
results

pdA—(p+dp)dA— pg ds dAsin0 = p ds d4 a,

* Where a, = Vci,—V and sin@ =dz/ds
s

e On substituting and dividing the equation by pgdA, we can
obtain Euler's equation:

dp+dé+ dV =0
PEg g

* Note that Euler's equation is valid also for compressible

@ flow.
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Derivation of the Bernoulli Equation

* Now if we further assume that the flow is incompressible
so that the density Is constant, we may integrate Euler's
equation to get

P v?
—+ 2 +——=constant

L8 2g

» The terms of in the equation represent energy per unit
weight, and they have the units of length (m) so they are
commonly termed heads.

—: velocity head

—: pressure head

z. potential head
(-




Derivation of the Bernoulli Equation

» A head corresponds to energy per unit weight of flow and
has dimensions of length.

* Piezometric head = pressure head + elevation head,
which is the level registered by a piezometer connected to
that point in a pipeline.

e Total head = piezometric head + velocity head.

« |t follows that for ideal steady flow the total energy head is
constant along a streamline, but the constant may differ in
different streamlines .

* Applying the Bernoulli equation to any two points on the
same streamline, we have

vy V,’
gl o, +——= . +z,+—=—

Pg 2g  pg 2g

@
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Application of Bernoulli’s equation

e Various problems on the one-dimensional flow of an ideal
fluid can be solved by jointly using Bernoulli’s theorem and
the continuity equation.

Venturl, nozzle and orifice meters

o The Venturl, nozzle, and orifice-meters are three similar
types of devices for measuring discharge in a pipe.

» The Venturi meter consists of a rapidly converging section,
which increases the velocity of flow and hence reduces the
pressure.

e |t then returns to the original dimensions of the pipe by a
gently diverging 'diffuser' section.

* By measuring the pressure differences the discharge can be
calculated.
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* \We assume the flow is
horizontal (z; = z»).
steady, inviscid, and
Incompressible
between points (1) and
(2). The Bernoulli
equation becomes

p1 +3pVi = p, + 3pV3

(-

Application of Bernoulli’s equation

(1) (2)

) PE

S C— Orifice

Nozzle

\_‘\,//’“Z—:/ﬁ

- - Venturi




Application of Bernoulli’s equation

 |f we assume the velocity profiles are uniform at sections
(1) and (2), the continuity equation can be written as

Q = A\Vy = 4,1,
o Where 4, isthe small (4, < 4,) flow area at section (2).
Combination of these two equations results in the following
theoretical flowrate

QZAE\/ 2(P1_Pz)
pl

1 — (Ag/fil)z]
e Thus for a given flow geometry (4, and 4,) and the
flowrate can be determined if the pressure difference, 1 — P2.
IS measured.

/




Example 2. Application of Bernoulli’s equation

o Air flows through a pipe at a rate of 200 L/s. The pipe
consists of two sections of diameters 20 cm and 10 cm with
a smooth reducing section that connects them. The pressure
difference between the two pipe sections is measured by a
water manometer. Neglecting frictional effects, determine
the differential height of water between the two pipe
sections. Take the air density to be 1.20 kg/m?.

20 cm

Air
200 L/fs

T

I1ﬂﬂm+>

-

F
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Example 2. Application of Bernoulli’s equation

» Assumptions .1The flow through the pipe is steady,
Incompressible, and with negligible friction (so that the
Bernoulli equation is applicable). 2 The losses in the
reducing section are negligible. 3 The pressure difference
across an air column is negligible because of the low
density of air, and thus the air column in the manometer can
be ignored.

» Analysis. We take points 1 and 2 along the centerline of the
pipe over the two tubes of the manometer. Noting that z, =
Z, (or, the elevation effects are negligible for gases), the
Bernoulli equation between points 1 and 2 gives

2 2 2 2
BV, BV pp pa®W)

-1
g 2g g 2g 2

o y




Example 2. Application of Bernoulli’s equation

* We let the differential height of the water manometer be h.
Then the pressure difference P, — P, can also be expressed

dS
B -PF=p,gh (2)
Combining Eqs. (1) and (2) and solving for A,

Paic (V5 1 )ZPWgh N thm( 2 1 )_ 2 1

2 2gp,,  28Pw! P

~—
. 20::111]@ @ Ilocm
_..—-"""’_.

200 L/s




Example 2. Application of Bernoulli’s equation

Calculating the velocities and substituting,

; r 3
A, Dy /4 x(02m)° /4
% % 0.2m>/
Vy=— == 2 25 51
A, D5 /4 7(0.1m)" /4
5 2 _(6. 2
po 223mS)” —(6.37m/S)” _ ) 020 —3.7cm

2(9.81m/s*)(1000/1.20)

Therefore, the differential height of the water column will be 3.7 cm.
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Exercise 1

o Water (assumed
Inviscid and
Incompressible) flows
steadily in the vertical
variable-area pipe
shown in the Fig.
Determine the
flowrate if the
pressure in each of the
gages reads 50 kPa.

o Answer. Q= 11.4 m3/s

/-lm

10m p=>50KkPa
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Application of Bernoulli’s equation- The Pitot Tube

» The Pitot Tube is a device used for measuring the velocity
of flow at any point in a pipe or a channel.

* Principle: If the velocity at any point decreases, the pressure
at that point increases due to the conservation of the Kinetic

energy into pressure energy. In simplest form, the Pitot tube
consists of a glass tube, bent at right angles.

Let p, = pressure at section 1 h

p, = pressure at section 2 l _

v, = velocity at section 1 |

v, = velocity at section 2 =0 H

H = depth of tube in the liquid > — 3

h =rise of liquid in the tube 1 P v

above the free surface

@ Point 2 is just at the inlet of the Pitot-tube
\ Point 1 is far away from the tube J



e

(-

Applying Bernoulli’s equations at sections 1 and 2, we get

2 2
LT BN R I But z, =z, ,and v, =0.
pPg 28 Pg 28
ol — Pressure head at 1=H
P8
Py — Pressure head at 2=h+H
P8 .
Substituting these values, we get H+ ;# =—h+H
g

—> v, =+j2gh

This is theoretical velocity. Actual velocity is given by

(v, )m =C,[2gh

C, = coefficient of pitot-tube
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Example 3. Velocity Measurement by a Pitot Tube

» A piezometer and a Pitot tube are tapped into a horizontal
water pipe, as shown in the Fig. , to measure static and
stagnation (static + dynamic) pressures. For the indicated

water column heights, determine the velocity at the center
of the pipe.

T

hy; =12 cm

l
!

h, =7cm

l
Water o h=3 cm_I: —V,
@O @X

A\ .
Stagnation
point




/ Analysis We take points 1 and 2 along the centerline of the pipe, with point
1 directly under the piezometer and point 2 at the tip of the Pitot tube. This
Is a steady flow with straight and parallel streamlines, and the gage pres-
sures at points 1 and 2 can be expressed as

P, = pg(h; + hy)

P, = pg(h; + h, + hy)
Noting that point 2 is a stagnation point and thus V, = 0 and z; = z,, the
application of the Bernoulli equation between points 1 and 2 gives

P V3 P, . vz 0 VZ P,— P,

= +
g 29 h g 2g & 29 pg

Substituting the P, and P, expressions gives

Vi _ P, — P, _ pg(hy + h; + h3) — pg(hy + hy)
29 Pg P9

=h3

Solving for V, and substituting,

V; = V2gh; = V/2(9.81 m/s9)(0.12 m) = 1.53 m/s

Discussion Note that to determine the flow velocity, all we need is to mea-
sure the height of the excess fluid column in the Pitot tube.

™
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Example 4

» Water flows through the pipe contraction shown in Fig.
For the given 0.2-m difference in the manometer level,
determine the flowrate as a function of the diameter of
the small pipe, D.

0.2 m
¥

) \ l
/

:D(%
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+._.L+z—-%+v=- +Z, ; i

where Z,=Z, and Vz2=0. ; X
* 2 |

A toh = £ ‘

But

g.—’- X and %r—' 0.2m +x So that

V2
X +_2_/7 = 0.2m +}( or

b /
V,=12gt02m) = (2(28:%)(02m))* = 1.98 2
Thus,
Q=AY =—f(0./m)2(/.7c?-_';”')= 0.0156 2 for any D

Ky
@ y
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Example 5

o Water flows steadily through the variable area pipe
shown in the Fig. with negligible viscous effects.
Determine the manometer reading, H, if the flowrate is

0.5 m3/s and the density of the manometer fluid is 600
kg/m3,

Density = 600 kg/m?

H
T

o

@ Area = 0.05 m? Area = 0.07 m?




Density = 600 kg/m®

R S e eV T

Area = 0.05 m? Area = 0,07 m®
From the Bernovlli equation

2
Ly Vo tZ, = 4@71 V; 1z, , where Z, 22,

0 g 2;(1/, ) = 7PV~
@ Bt @ =AV, =A: Ve <o That




(2)

(3

(-

3

Q 0.5% m Q o05=
= = - - o b - ' m
Vi =7, 0.05m* 05" and V=R =g gzpme = 7145

Hence, from Ey (1):
pu-fy <2099 5 (102 - (22" ] = 29,510 (KL /m
= 24.5X/0 ;n/%

For the manometer

ﬂ_d;/;.oh man” f’- I/a(h'”/)
so that

fz ’ﬂ //2.0 (h ) - b d/;MIJ # N (5/320—10)'4ﬁ) !/ =y(p//zﬂfpman)y
Hence, from Fgs ( l)zmd (3):

_ 3__/! ” m k - k
24.5x10 -3 -—9.6’/3-;(?99;’% 500;,75)”

or
H=6.26m
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Example 6

» Water, considered an inviscid, incompressible fluid,
flows steadily as shown in Fig. below. Determine h.

O =4 ft3/s
Ny

0.5-ft diameter

3 ft

Y

Water
e

1-ft diameter




0.5 ft diameter AL  '1 B 1 ft diérmeter
3ft hias et

p 0z +7pU% = p, LrzdonE

where Z,=0, z,,:sf{, V, =0 and l{=;§'= 43&3 = .5‘.09ﬁ
r (I g

Ths,
,0 7 (1.9¢ ’—”2‘5)(5 i) = 4 +62. 4ﬁ3 (3f4)

@ ﬂ'ﬂ = /;2?’,%




But from the manometer,

4, - (L+38) +5(h+k) = 4,

or

£ —62. ¢H, (32F) +62.4 A,, h =fa
Hence,

fr=p 187 - 62.4h  which when combined with £g.l/) guves

fz+ 187 —62.4h ~f, =/b2
or

h= 040071t

(-




The Momentum Equation and its Application

* On applying Newton's second law of motion to the control
volume f

'

* Note that this equation \

follows from the principle of conservation of linear
momentum: resultant force on the control volume is
balanced by the net rate of momentum flux (ie., m7))
out through the control surface.

IS a vector equation. Components of the forces and the
velocities need to be considered.

™~
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The Momentum Equation and its Application

 Further consider a steady-flow situation in which there is
only one entrance (section 1) and one exit (section 2) across
which uniform profiles can be assumed. By continuity

m, =m, = pQ = mass flow rate

@),

(1)
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The Momentum Equation and its Application

The momentum equation now reduces to Zﬁ = pQ(I?g — I?])

or 1n terms of their components 1n (x, v, :) coordinates

Y F.=pQ
2.5 =r0
> F. =pQ

;(V;)g (7,
(r),-(7,
(), (7.

)]
)]
)

where (V) | 1s the x-component of the velocity at section 1, and so on.

(-




The Momentum Equation and its Application

e On applying the momentum equation, one needs to pay
attention to the following two aspects

Forces

» > F represents all forces acting on the control volume,
Including

 Surface forces resulting from the surrounding acting on the
control volume:

o Impact force, which is usually the unknown to be found, on
the control surface in contact with a solid boundary

o Pressure force on the control surface which cuts a flow inlet or
exit. Remember that the pressure force is always a
compressive force.

» Body force that results from gravity.

o




Application of the momentum Equation: Force on a
pipe nozzle

o Asimple application of the momentum equation is to find
the force on the nozzle at the outlet of a pipe. Because the
fluid 1s contracted at the nozzle forces are induced in the
nozzle. Anything holding the nozzle (e.g. a fireman) must be
strong enough to withstand these forces.

Steps in analysis:
e Draw a control volume
Decide on a coordinate-axis system

Calculate the total force, given by the rate of change of
momentum across the control volume

Calculate the pressure force F,
Calculate the body force Fg
Calculate the resultant reaction force Fg

©




1 & 2. Control volume and co-ordinate axis are shown in the figure below.

:
ol
: ot

SR o

Notice how this is a one-dimensional system which greatly simplifies matters.

3. Calculate the total force

> F=po(V,-V)

By continuity, Q =4V, = A4V, , so

™~




4 N

4. Calculate the pressure force (red arrows)

F, = pressure force at 1 — pressure force at 2 = p, 4, — p, 4,
We use the Bernoulli equation to calculate the pressure

V2 V,*
P +_:&+Zz+i

pg 2g  pg 2g

Since the nozzle 1s horizontal, z; = z,, and the pressure outside is atmospheric, p, = 0, and with
continuity the Bernoulli equation gives

pQ’ 1
he {Az 4]

S F - 994( IJ
2 4 4




4 N

5. Calculate the body force

The only body force 1s the weight due to gravity in the y-direction - but we need not consider this as
the only forces we are considering are in the x-direction.

6. Calculate the reaction force that the nozzle acts on the fluid (green arrow)

Since the indicated direction of the reaction force 1s opposite to x-axis, a negative sign is included

11
S F=-F+F, +%—pQ2[AAJ
<2 1

ORI IR W)
o2 £ 2 4, 4) 24 (4,

So the fireman must be able to resist the force of F7,.

@ y




4 N

Force due to a two-dimensional jet hitting an
Inclined plane
» Consider a two-dimensional jet hitting a flat plate at an
angle 0. For simplicity gravity and friction are neglected
from this analysis.

* We want to find the reaction force normal to the plate so we
choose the axis system such that it is normal to the plane.

Qs
Az, Vz f ot-©
’.-"'
J.-”
(
N S te
Q"
¢ £ 1?;&




4 N

Force due to a two-dimensional jet hitting an
Inclined plane

We do not know the velocities of flow in each direction. To find these we can apply the Bernoulli

equation
2 2 VZ
NN (U NP SN
Pg 2g pg 2¢g pg 2g

The height differences are negligible i.e., z; = z, = z, , and the pressures are all atmospheric = 0. So

N=n,=r=r
By continuity
O=0,+0; = N4 =V4,+14,
= A =4,+ 4,

Using this we can calculate the forces in the same way as before.

@ y




4 N

2. Calculate the pressure force

All zero as the pressure 1s everywhere atmospheric.

3.Calculate the body force

As the control volume is small, hence the weight of fluid is small, we can ignore the body forces.

4. Calculate the resultant reaction force

> F,=—F,+ F + J} =—pQV cos8 — F.=pOV cosf
which is the force exerted on the fluid by the plate.

We can further find out how much discharge goes along in each direction on the plate. Along the
plate, in the y-direction, the total force must be zero, Z F =0, since friction 1s 1gnored.

Also 1n the y-direction: V, = Vsin®, Vy,, =V, V;,=-VF, so

> F,=p| (01, + OV, ) - OV, | = V[0, — 0, — O sin 6] = pV*[ 4, - 4, - 4,5in )

@etting this to zero, we get




0=4,—4,—A4smnd

and as found earlier we have 4, = 4, + 43 _so on solving

l1+siné
— A
4 3[l—sinfj?')

. . : 1 . 1 .
by which we readily obtain that % —a = E(l +sind), G l—a= E(l—sm 0)

So we know how the discharge 1s divided between the two jets leaving the plate.

@
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Flow past a pipe bend

Area= Ay

Velocity = ¥}

Density = Py

Pressure = P

Elevation =21
Area= AZ_
Velocity = V2
Density =P2
Pressure = F2

Elevation =<2

» Consider the pipe bend shown above. We may first draw a
free body diagram for the control volume with the forces:

/




/ Force due to

pressure on pEAQ

the outlet
sechion 5
s

Force due to -7 ’

pressure on - P
the inlet

section

74,

Impact force the
W bend 1s acting on the
Weight of fluid fluid inside control
Ay in the control volume

volume if the
bendisin a

vertical plane

> X
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Paying due regard to the positive x and y directions, we may write the summation of forces in these
two directions:

ZFx :pl‘41 _pZAQ COS&_FI
Y F =F —p,d,sing-w

Relating these components to the net change of momentum flux through the inlet and exit surfaces

x-Direction
P — p,4, 086 —F, = pQ(V, cos 67,

y-Direction
F,—p,4,sm0-W = J,DQ(T/_;I 51116'—0)

From these two equations and using the continuity equation and the Bernoulli equation, we may
calculate the two force components. The magnitude and direction of the resultant force from the

bend on the fluid are
. 2 2
F = 1/Fx +Fy

$=tan" (F; fo)

As a reaction, the impact force on the pipe bend 1s equal in magnitude, but opposite in direction to
the one on the fluid.

™~
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Example 7

e The water jet in Fig. shown strikes normal to a fixed plate.
Neglect gravity and friction, and compute the force F in
newtons required to hold the plate fixed. Ans. 503 N

‘ Plate

Dj=lﬂcm
—— |
lf}=8mf's
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Example 8

e A horizontal circular jet of air strikes a stationary flat plate as
Indicated in the Fig. The jet velocity Is 40 m/s and the jet
diameter is 30 mm. If the air velocity magnitude remains
constant as the air flows over the plate surface in the directions
shown, determine: (a) the magnitude of FA, the anchoring
force required to hold the plate stationary; (b) the fraction of
mass flow along the plate surface in each of the two directions

shown. v,

V= T
40 m/s / 30°




control volvre )

\/3=\£. 3

 To determine the magnitude of F, we apply the component
of the linear momentum equation along the direction of F,

IL;"’ ”;‘/-5/;730'.-/0/4‘[/.[/.57",;0‘: /07]'0.," (4-1.)'/;13’0’
2
_ /23 %9 ) 7 (0.030m) " 40 2)sir 30°)

C 4 ) (%) /f:';

or
0.676 N

W

(-




control yolume )

=

V, \; 3

(b) To determmne +he Fraction of wass Fflow aleng 'he plate Surface n
each Of 1he 2 divections shown n the sketrh above, we agyly the

cammenf‘ of The /mear wmioméntum cgkaﬁ'an pavalle! > _/?,g, surface
of 1he plate, ,ESCIPV'H dA=ZFy, 1o obtain

e"’”’? Pfdk = mlv;_—h&.?l_; -I;IJ. l:;.cds_?a' ()
Surfree

(-
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Since The adir velocity magnjtude remains constant , The value of R ”

. 0ng plae
/s 3m* Thus from Eg./ we oblain Surtge
MV, = m, V, - vV cos 30° (2)

Since I.g, =V = p_; ) Eg. 2 oecomls
] . o
3 = mz_ mJ- Cos 30 (3')
Prom consevvalion o mass we conclude Thal

Py, = My F g 44

&mé.ﬂ'm;y Eﬁ:. 2 and ¥ we f‘ef
my = mj —m.? -n:; cos Jo
or
oz (t-co550°) -  »51.(0.0670)
J 2 J/

y y - = m./0.
m, = (1 0.067) = m-(0.733)

Thws, m, involves 9237 4 ”;y,- and ", involes 6.79 of n. .

@ - -
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Example 9

* Anozzle is attached to a
vertical pipe and discharges

water into the atmosphere conb2!

as shown in the figure. Volume 2>,
When the discharge is 0.1

m3/s, the gage pressure at Nozzle —,

the flange Is 40 KPa.

Determine the vertical Fax x ﬁ
component of the anchoring (,!) U

it
force required to hold the p= 40 kPa == Area = 0,02 m?
nozzle in place. The nozzle | |

has a weight of 200 N, and | BA |
the volume of water in the N~
nozzle is 0.012 m3. fmg m¥s




e Application of the vertical or z- direction component of the
linear momentum to the flow through the control volume

leads to
| Oﬁifﬁ»

o - ’
PV sia30'-V ) =pA ~F ~W-W = F 4,53 (1)
ﬁ;/w‘ﬂj EJ' / Sor fq:;. yf'erc‘d;

. e ,
Lo = ﬁﬁr'%ﬁ-"%*m({-” 30~V ) .

Fr m we use m = pE&
Foorr W we wnre %zf{f

W
Frovm ﬂ@&'ﬁrb’ﬁ‘)()'an 07C hass Wwe ﬂ‘"ﬁuﬂ
Q = &,
er
f- 8
A




Also we nof that | = [

A
Thus, Eg4.2 becomes
_ ._'l?‘?— Q(_smza-—__)
fe” hA- W £
il 1000 o ) — 200N
- /1 M ol g.02m" | —
()’ = )( m)( )
u(o'ﬂfzm")(fé’ )//ﬂf’
- 4’-? N.5? ]
[ﬁ? /xw"* )( : C}m s )5[ 3&-( )
0.0t m*
L
anc

F . = 800N - 200N-11.6N~ ON = 482N downwara

—
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Example 10

* Areducing elbow is used to deflect water flow at a rate of 30 kg/s
In a horizontal pipe upward by an angle 6 = 45- from the flow

direction while accelerating it. The elbow discharges water into
the atmosphere. The cross-sectional area of the elbow is 150 cm?
at the inlet and 25 cm? at the exit. The elevation difference
between the centers of the exit and the inlet is 40 cm. The mass of
the elbow and the water in it is 50 kg. Determine the anchoring
force needed to hold the elbow in place.

25 cm?
45°

\
o =S
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* Assumptions 1 The flow is steady, frictionless, one-
dimensional, incompressible, and irrotational (so that the
Bernoulli equation is applicable). 2 The weight of the elbow
and the water in it is considered. 3 The water is discharged
to the atmosphere, and thus the gage pressure at the outlet is
zero. The momentum-flux correction factor for each inlet
and outlet 1s given to be B = 1.03.

zﬁcu:F@

457




Amnalysis The weight of the elbow and the water m 1t 15
W = mg = (50 ke)(9.81m/s”) = 490.5 N = 0.4905 kN

We take the elbow as the control volume, and designate the
entrance by 1 and the outlet by 2. We also designate the
honzontal coordinate by x (with the direction of flow as bemng
the positive direction) and the vertical coordinate by z. The
continuity equation for this one-mlet one-outlet steady flow
system 1s my, =m, =m=30kg/s. Noting that m= pdV . the
mlet and outlet velocities of water are

v m__ 3{l31:ga"5 : _20mfs
ad; (1000 kg/m>)(0.0150m?)
v, - m 30 kg/s 12 ms

ad, (1000 kg/m>)0.0025m2)




e

 Taking the center of the inlet cross section as the reference level
(z, = 0) and noting that P, = P_,.,, the Bernoulli equation for a
streamline going through the center of the reducing elbow is
expressed as

Substituting
(12 m/s)? — (2 m/s)? N |
2(9.81m/s?)

= (1000 kg/m’)(9.81 m/s>
Hoonee = g X }[ 1000 kg - m/s*

e The momentum equation for steady one-dimensional flow is

Zﬁ= Z,&mﬁ—z BV

(-

™~

n.4l LkN ]=?3_9m;m1=?3_9k1*a




4 N

* \We let the x- and z- components of the anchoring force of the
elbow be F5, and Fg,, and assume them to be in the positive
directions. We also use gage pressures to avoid dealing with the
atmospheric pressure which acts on all surfaces. Then the
momentum equations along the x and z axes become

FRI +Pl,gage“41 =_ﬂj’.|']?2 Eﬂﬁﬂ_ﬁﬁyl ﬂ.ﬂd FRE’ _H'r=ﬁﬁy2 EiII.E
Solving for Fg, and Fg., and substituting the given values,

1 kN
1000 kg - m/s’

Fy. = Prin(Vy cos 80—V ), — B, o =1.03(30 kg/s)[(12cos45°-2) mfs][ ]—{?3_9 kN/m® )(0.0150 m")

— —0.908 kN
1kN
1000 kg -m/s>

Fg. = BV, sin 6 +W =1.03(30 kg;"s)[lEsi.uﬂlS“m-"s)[ J+ﬂ-49:]5]ﬂ'¢ = 0.753kN

=-39.7°

2 2 2 2 1 FRE’ 1 0.753
Fg=+Fp +Fp =+(—0908)? +(0.753)> =1.18kN, 6 =tan ot o

» Discussion . Note that the magnitude of the anchoring force is 1.18 kN, and its
line of action makes —39.7- from +x direction. Negative value for Fg, indicates

the assumed direction is wrong.

(- y
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The Angular Momentum Equation and its Application

» Many engineering problems involve the moment of the linear
momentum of flow streams, and the rotational effects caused
by them.

» Such problems are best analyzed by the angular momentum
equation, also called the moment of momentum equation.

» An important class of fluid devices, called turbomachines,
which include centrifugal pumps, turbines, and fans, is
analyzed by the angular momentum equation.

 For steady two dimensional flow the angular momentum
equation is given by

M= >rmV— >rmv

out in

(-




The Angular Momentum Equation and its Application

* |t states that the net torgue acting on the control volume
during steady flow is equal to the difference between the
outgoing and incoming angular momentum flow rates.

» where r represents the average normal distance between the
point about which moments are taken and the line of action
of the force or velocity, provided that the sign convention
for the moments is observed.

e That is, all moments in the counterclockwise direction are
positive, and all moments in the clockwise direction are
negative.
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Example. Bending Moment Acting at the Base of a
Water Pipe

» Underground water is pumped to a sufficient height
through a 10-cmdiameter pipe that consists of a 2-m-
long vertical and 1-m-long horizontal section, as shown
In the Fig. below. Water discharges to atmospheric air at
an average velocity of 3 m/s, and the mass of the
horizontal pipe section when filled with water is 12 kg
per meter length. The pipe Is anchored on the ground by
a concrete base. Determine the bending moment acting at
the base of the pipe (point A) and the required length of
the horizontal section that would make the moment at
point A zero.




rh=05m

il

=N

¥

|471 m 4.| 3 m/s
ﬁ“““““‘ )

A
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Analysis We take the entire L-shaped pipe as the control volume, and desig-
nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is m; = m, = m, and V;, = V, = V since A, = constant. The
mass flow rate and the weight of the horizontal section of the pipe are

m = pAN = (1000 kg/m?)[7(0.10 m)*/4](3 m/s) = 23.56 kg/s
TN 2) =118 N

1kg - m/s
To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This Is a
steady-flow problem, and all forces and momentum flows are in the same
plane. Therefore, the angular momentum equation in this case can be
expressed as

W = mg = (12 kg/m)(1 m)(9.81 mfsz)(

M= DrmV— > rmV
out in

where r is the average moment arm, V Is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-
: wise direction are negative. /
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Noting that the moments of all forces and momentum flows
passing through point A are zero, the only force that yields a
moment about point A is the weight W of the horizontal pipe
section, and the only momentum flow that yields a moment is
the outlet stream (both are negative since both moments are in

the clockwise direction).
» Then the angular momentum equation about point A becomes

Solving for M, and substituting give
MA - F1W — rgm"‘jg

= (0.5 m)(118 N) — (2 m)(23.56 kg/s)(3 m/s) (1 k; _Nm !52)

= —825N -m

@

* The free-body diagram of the L-shaped pipe is given in the Fig.

™~




The negative sign indicates that the assumed direction for M, is wrong and
should be reversed. Therefore, a moment of 82.5 N - m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N - m moment on the pipe stem in the clockwise direction to counter-
act the excess moment caused by the exit stream.

The weight of the horizontal pipe iIs w = W/L = 118 N per m length.
Therefore, the weight for a length of L m is Lw with a moment arm of r,
= L/2. Setting M, = O and substituting, the length L of the horizontal pipe
that will cause the moment at the pipe stem to vanish is determined to be

[] = F1W - rzmvz — U = {UE}LW - rzm"‘jz

2r,mv, \/2><‘|4‘I.4N*m
L=/ - — 2.40m
W 118 N/m

Discussion Note that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.

(-
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THE ENERGY EQUATION

» The first law of thermodynamics, also known as the

conservation of energy principle, states that energy can
be neither created nor destroyed during a process; it can
only change forms.

PE, =10 kJ
KE1:0

Energy cannot be created or
o destroyed during a process;
It can only change forms.

e o

mo KE, = 3kJ




e
The Energy Equation

» The change in the energy content of a system is equal to the
difference between the energy input and the energy output,
and the conservation of energy principle for any system can
be expressed simply as

Ein _ Enut = AE

» The energy content of a fixed quantity of mass (a closed
system) can be changed by two mechanisms: heat transfer Q
and work transfer W. Then the conservation of energy for a
fixed quantity of mass can be expressed in rate form as
Qnet in T V\.,netin — dES)’S or Qnetin T Wnetin — E J pE dv

dt at Jg,.

o Where Qpetin = Qin — Qg is the net rate of heat transfer
to the system (negative, if from the system)

@




The Energy Equation

- o Q,,=3k
netin — Win — Wy is the net -

power input to the system in all  —===—==== f__1
forms (negative, if power | |
output) | AE= ili’1ﬂﬁk] 3)+6 |

] ] I = I
dE, . /dt is the rate of change of i | Woep = 6 k)
the total energy content of the | I A
system. | gt-:—rt
(N.B: The overdot stands for L———f— ————— -
time rate) Q, =15k

For simple compressible systems, total energy consists of

Internal, kinetic, and potential energies, and it is expressed

on a unit-mass basis as v
e=u+ke+pe=u+?+gz
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Energy Transfer by Heat, Q

e The transfer of thermal energy from one system to another as a
result of a temperature difference is called heat transfer.

» A process during which there is no heat transfer is called an
adiabatic process.

e There are two ways a process can be adiabatic: Either the
system is well insulated so that only a negligible amount of
heat can pass through the system boundary, or both the system
and the surroundings are at the same temperature and therefore
there Is no driving force (temperature difference) for heat
transfer.

» An adiabatic process should not be confused with an isothermal
process. Even though there is no heat transfer during an
adiabatic process, the energy content and thus the temperature
of a system can still be changed by other means such as work

transfer.
@ y
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Energy Transfer by Work, W

e An energy interaction is work if it Is associated with a
force acting through a distance.

e Arrising piston, a rotating shaft, and an electric wire
crossing the system boundary are all associated with work
Interactions.

e The time rate of doing work is called power and is denoted
by W.

e Car engines and hydraulic, steam, and gas turbines produce
work; compressors, pumps, fans, and mixers consume
work.

» Work-consuming devices transfer energy to the fluid, and
thus increase the energy of the fluid. A fan in a room, for
example, mobilizes the air and increases its Kinetic energy.

@
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Energy Transfer by Work, W

» A system may involve numerous forms of work, and the
total work can be expressed as

Wtotal = Wshaft + Wpressure + insc.nus + Wamer

* W« IS the work transmitted by a rotating shaft

* Wressure 1S the work done by the pressure forces on the
control surface,

* W,:.ous IS the work done by the normal and shear
components of viscous forces on the control surface,

* W,,or IS the work done by other forces such as electric,
magnetic, and surface tension, which are insignificant for
simple compressible systems

* W, i.ous 1S USUally very small relative to other terms. So it
@ IS not considered in control volume analysis.
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Energy Analysis of Steady Flows

 For steady flows, the
energy equation is given by

Ve Ve
Qnet in T wshafL netin — E ITI( T T QI) E ﬁ'l(h T ? + gz)

in

e |t states that the net rate of ( V2 )
mihy+ +0Z3 _

energy transfer to a control R

volume by heat and work ) \
transfers during steady flow @3\ Fixed

IS equal to the difference volume j
between the rates of

outgoing and incoming Dut///

energy flows with mass. Q”“‘““WS"“ et

+ 912




Energy Analysis of Steady Flows

Many practical problems involve just one inlet and one outlet.
The mass flow rate for such single-stream devices remains
constant, and the energy equation reduces to

V5 — V]

+ g(z, — 21))

where subscripts 1 and 2 stand for inlet and outlet, respectively.
on a unit-mass basis

Qrmlin + Wshaf‘t, netin — m(hz o h1 +

E’_'u‘%
Unet in + Wshatt, netin = hz _ h1 + 2 + Q{Ez _ 31)

Using the definition of enthalpy h = u + P/p and
rearranging, the steady-flow energy equation can also be
expressed as

P, V? P, V2
Wshaft, net in + E + ? T gz, = E + ? + gz, + (u2 — Uy — qnetin)




e
Energy Analysis of Steady Flows

e where u Is the internal energy, P/p is the flow energy;,
V?/2 is the Kinetic energy, and gz is the potential energy
of the fluid, all per unit mass. These relations are valid
for both compressible and incompressible flows

W +P+E+z E+V—2+z+(u )
shaft, net in P 2 g 1 0, 2 g 2 2 U, qnet in
\ ] )

! v
Mechanical Energy Mechanical Energy
Input Output

o If the flow is ideal with no irreversibilities such as friction,
the total mechanical energy must be conserved. Thus u, - u,-
Onetin MUst be equal to zero.

@ |deal flow (no mechanical energy loss): Onetin = Uz — Uy




Energy Analysis of Steady Flows

® U, - Us- Qetin represents the mechanical energy loss
Mechanical energy loss: mech. loss = Uz — Uy — Onetin

» For single-phase fluids (a gas or a liquid), we have
u, —uy = ¢l — 1y)
where c, Is the constant-volume specific heat.

e The steady-flow energy equation on a unit-mass basis can
be written conveniently as a mechanical energy balance
as

Emech, in = Emech, out T Emech, loss

P, V2 p, V2
Wsrnﬂ.r-etin+_+_+'£131=_+?+§12+ememmsa

@ P2 P2




Energy Analysis of Steady Flows

e Noting that
Wahatt, net in — Wshart, in — Wshatt, ot = Wpump — Wiurbine
 the mechanical energy balance can be written more

explicitly as

EJr\“r—EJri;;a+w =PE+V%+gz + Wypine + €

p 2 pump = " 2 T Whurbine T €mech, loss
* where w,,.., Is the mechanical work input (due to the

presence of a pump, fan, compressor, etc.) and W, .. IS the
mechanical work output.

e Multiplying the above energy equation by the mass flow rate m

gives
I:'I'l VE . PE VE . :
@ b T 79T W pump = o, 2 19T Wiurbine + E mecn, toss
S




Energy Analysis of Steady Flows
Where

* W, is the shaft power input through the pump’s shaft,

o Wumine turbine is the shaft power output through the turbine’s
shaft, and

* Epnecn 10ss » 105S is the total mechanical power loss, which

consists of pump and turbine losses as well as the frictional
losses 1n the piping network.

E

mech, loss Ema:h loss, pump + Ema:h loss, turbine + Ema:h loss, piping

» The energy equation can be expressed in its most common
form in terms of heads as

p, V2 P, VI

— + - +1Z;+h =——+ =+ Z3 + Nyrpine e +
P10 EQ 1 pump. u P20 2{] 2 turbine, e L




Energy Analysis of Steady Flows
e Where

h _ Woump.u _ Woump.u _ TpumpY pump
pump, u g g Mg is the useful head

delivered to the fluid by the pump

h . _ wmmine.e _ wu:hine. e _ wturbine
e g mg NwbineMJ 1S the extracted
head removed from the fluid by the turbine.

h, = Emech loss, piping EITIE{‘.h loss, piping

g mg is the irreversible head
loss between 1 and 2 due to all components of the piping
system other than the pump or turbine.




Energy Analysis of Steady Flows

* Note that the head loss h, represents the frictional losses
associated with fluid flow in piping, and it does not include
the losses that occur within the pump or turbine due to the
Inefficiencies of these devices—these losses are taken into

account by 7pump and Mypine

Control volume Wiyrbine

Emam |oss, pump Emm}ms.
I\
I Erruam fluid, out

Y L5 _
—V Emech loss, piping
|




Energy Analysis of Steady Flows

e The pump head is zero If the piping system does not
Involve a pump, a fan, or a compressor, and the turbine
head Is zero If the system does not involve a turbine.

* Also, the head loss h, can sometimes be ignored when the
frictional losses in the piping system are negligibly small
compared to the other terms

Special Case: Incompressible Flow with No Mechanical
Work Devices and Negligible Friction

» When piping losses are negligible, there is negligible
dissipation of mechanical energy into thermal energy, and

thus hL = €mech loss, |:l1plng"rg 0, and Npump,u = DPuurbine,e = 0
P, Vi P, V3 T
—+—+hh=—+ "+ I or — + — + 7 = consiant
P 29 P9 29 PY 29

@  which is the Bernoulli equation
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Energy Analysis of Steady Flows

Kinetic Energy Correction Factor, o

» the kinetic energy of a fluid stream obtained from V?/2 is

not the same as the actual kinetic energy of the fluid stream
since the square of a sum Is not equal to the sum of the
squares of its components

This error can be corrected by replacing the kinetic energy
terms V2/2 in the energy equation by aV,,, /2, where o is
the Kinetic energy correction factor.

The correction factor is 2.0 for fully developed laminar
pipe flow, and it ranges between 1.04 and 1.11 for fully
developed turbulent flow in a round pipe.

The kinetic energy correction factors are often ignored (i.e.,
a Is set equal to 1) in an elementary analysis since (1) most
flows encountered in practice are turbulent, for which the
correction factor is near unity, and

Vg




Energy Analysis of Steady Flows

* (2) the kinetic energy terms are often small relative to the other
terms in the energy equation, and multiplying them by a factor
less than 2.0 does not make much difference.

» When the kinetic energy correction factors are included, the
energy equations for steady incompressible flow become

P "'n.l'rE |:J- UE
(Jr;r T 2 " QEJ T Wp”mp (p T a; 9 + QEE) + Wiyrbine + E mech, toss

P, UE 1 P, VE i 1
E+fl’1£+z1+ pump, u pg+“2 EQ—I_IE—I_ wrbine, e T 1.
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Example 1

e A steam turbine generator unit used to produce electricity.
Assume the steam enters a turbine with a velocity of 30 m/s and
enthalpy, h,, of 3348 kJ/kg .The steam leaves the turbine as a
mixture of vapor and liquid having a velocity of 60 m/s and an
enthalpy of 2550 kJ/kg. The flow through the turbine is
adiabatic, and changes in elevation are negligible. Determine
the work output involved per unit mass of steam through-flow.

Control volume =

— % /IL Steam turbine —
H-"""-._H_‘HH |
Section(l)/ = |
v, = 30 m/s —X
h, = 3348 kJ/kg Wepar = ? Section (2)
Vo, =60 mfs

@ h, = 2550 kJ/kg




Solution

0 (elevation change 1s negligible)

0 (adiabatic flow)
I + vVi-ri
m|hy — hy + + g(z2°< 21) Qnet t Wamae (D)

2 net in

The work output per umit mass of steam through-flow, w5 ;. Can
be obtained by dividing Eq. 1 by the mass flow rate, m, to obtain

]-lshaft 2 2
[ 5 . Vs — V
net in 2 1
W ———— =M —n + 2)
vy m 2 ! 2

SINCE Wt et omt = — Wahaft net ine WE 0DIAIN

2 2

i L7 F 1 —— VE
Waag — M — Mo
net out 2




Solution

wy.. = 3348 kl/kg — 2550 kJ/kg

net oot

[(30 m/s)* — (60 m/s)*][1 J/(N-m)]
2[1 (kg-m)/(N-s*)](1000 J/kJ)

Wa.a = 3348 kl/kg — 2550k]/kg — 1.35kJ/kg

net ont

= 797 kJ/kg (Ans)




Example 2. Pumping Power and Frictional Heating
In a Pump

e The pump of a water distribution system is powered by a
15-kW electric motor whose efficiency is 90 percent. The
water flow rate through the pump is 50 L/s. The diameters
of the inlet and outlet pipes are the same, and the elevation
difference across the pump is negligible. If the pressures at
the inlet and outlet of the pump are measured to be 100 kPa
and 300 kPa (absolute), respectively, determine

a) the mechanical efficiency of the pump and

b) the temperature rise of water as it flows through the
pump due to the mechanical inefficiency.
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Example 2. Pumping Power and Frictional Heating
In a Pump

Water
1 50 L/s

300 kPa .

e Schematic for Example 2

(- y
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Example 2. Pumping Power and Frictional Heating
In a Pump

Assumptions 1 The flow i1s steady and incompressible. 2 The pump is driven
by an external motor so that the heat generated by the motor is dissipated to
the atmosphere. 3 The elevation difference between the inlet and outlet of
the pump is negligible, z7 = z. 4 The inlet and outlet diameters are the
same and thus the inlet and outlet velocities and kinetic energy correction
factors are equal, V; =V, and a; = as.

Properties We take the density of water to be 1 kg/L = 1000 kg/m?® and its
specific heat to be 4.18 kl/kg - °C.

Analysis (a) The mass flow rate of water through the pump is
m = pV = (1 kg/L)(50 L/s) = 50 kg/s

The motor draws 1b kW of power and is 90 percent efficient. Thus the
mechanical (shaft) power it delivers to the pump is

Woump, snat = MmotorWetearic = (0.90)(15 kW) = 13.5 kW

(- y
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Example 2. Pumping Power and Frictional Heating
In a Pump

To determine the mechanical efficiency of the pump, we need to know the
increase in the mechanical energy of the fluid as it flows through the pump,

which is
P, Vi P, V2
ﬂ'EIII-EH:h;ﬂIJId Emu:hml‘. Erml:hm_m P"‘“E?_I_QIE P+ﬂ'1?+gz1

Simplifying it for this case and substituting the given values,

. o PE—P1)_ ({3{}[}—1ﬂﬂ]kPa)( 1K) )_
ﬁE"‘”‘”“‘“—m( s )~ ORI\ So00kgmt N\Twea-mi) ~ 1OKW

Then the mechanical efficiency of the pump becomes

B mep. u ﬁE mech, fluid 10 KW
TTpump =\ T 135 kW

=0.741 or 714.1%

pump, shaft Wpunp. shaft

@ y




Example 2. Pumping Power and Frictional Heating
In a Pump

(D) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is
imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-
verted to thermal energy due to frictional effects, and this “lost” mechanical
energy manifests itself as a heating effect in the fluid,

E mech. toss = W pump, snat — AF mech, fwia = 13.5 — 10 = 3.5 kKW

The temperature rise of water due to this mechanical inefficiency is deter-
mined from the thermal energy balance, E ., 1os = MUy — u7) = mcAT.
Solving for AT,

AT E mech, loss _ 3.5 KW
mc (50 kg/s)(4.18 kJ/ kg - °C)

= 0.017°C

Therefore, the water will experience a temperature rise of 0.017°C due to
mechanical inefficiency, which is very small, as it flows through the pump.

@
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Example 3. Hydroelectric Power Generation from a Dam
* In a hydroelectric power @

plant, 100 m3/s of water C —

flows from an elevation of

120 m to a turb_lne, where 100 m3/s

electric power is generated. A\ | _ ¢ o 0"

The total irreversible head v

loss in the piping system Turbine _"_.®

from point 1 to point 2
(excluding the turbine unit)
is determined to be 35 m. If ~Generator i
the overall efficiency of the = urbine-gen = 5
turbine—generator is 80

percent, estimate the

electric power output.

_\_’\
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Example 3. Hydroelectric Power Generation from a Dam

SOLUTION The available head, flow rate, head loss, and efficiency of a
hydroelectric turbine are given. The electric power output is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Water levels at the
reservoir and the discharge site remain constant.

Properties We take the density of water to be 1000 kg/m?3.

Analysis The mass flow rate of water through the turbine is
m = pV = (1000 kg/m?) (100 m¥s) = 10° kg/s

We take point 2 as the reference level, and thus z, = 0. Also, both points 1
and 2 are open to the atmosphere (P, = F, = P, ) and the flow velocities

are negligible at both points (V;, = V, = 0). Then the energy equation for
steady, incompressible flow reduces to

P ; P
£+u1§§+21+hmpu ﬁ‘Fﬂ'g%‘FEg +ht|.lrblr|EE-+hL_}

htl_rhlne,e —

(- y
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Example 3. Hydroelectric Power Generation from a Dam

Substituting, the exiracted turbine head and the corresponding turbine
power are

_ | 1 klikg
W irbine, e = MGNurine, e = (10° kgfs)(9.81 m/s?)(85 m) (1{)[}[} m?/s?

) = 83,400 kKW

Therefore, a perfect turbine—generator would generate 83,400 kW of elec-
tricity from this resource. The electric power generated by the actual unit is

W etectric = Mhurbine—genW urbine, e = (0.80)(83.4 MW) = 66.7 MW

Discussion Note that the power generation would increase by almost 1 MW
for each percentage point improvement in the efficiency of the turbine—
generator unit.
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Example 4. Head and Power Loss During Water Pumping

» Water iIs pumped from a
lower reservoir to a higher
reservoir by a pump that
provides 20 kW of useful
mechanical power to the
water. The free surface of the
upper reservoir is 45 m
higher than the surface of the
lower reservoir. If the flow
rate of water is measured to
be 0.03 m3/s, determine the
Irreversible head loss of the
system and the lost
mechanical power during this

process.
(- y

Control
surface
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Properties We take the density of water to be 1000 kg/m3.
Analysis The mass flow rate of water through the system is

m = pV = (1000 kg/m®)(0.03 m®/s) = 30 kg/s

We choose points 1 and 2 at the free surfaces of the lower and upper reser-
voirs, respectively, and take the surface of the lower reservoir as the refer-
ence level (z; = 0). Both points are open to the atmosphere (P, = P,
= P,.) and the velocities at both locations are negligible (V;, = V, = 0).
Then the energy equation for steady incompressible flow for a control volume
between 1 and 2 reduces to

0
E; .
m(% + a1?1;| + gz‘fﬂ) + W pump
0 0
P V3 .
= rh(—} + ey + 912) + Wibine + E mech, toss

wwmp = Mgz, + Erml::h loss — EII'IECl'I loss — wpl.ll‘l']] — Mgz,

Substituting, the lost mechanical power and head loss are determined to be

- ) : 1N 1kW
E mech, toss = 20 KW — (30 kg/s)(9.81 m/s)(45 m](1 kg - m,.'sz)(ﬂ}[}[} N - m:"s)

= 6.76 kW




Example 4. Solution.....

Noting that the entire mechanical losses are due to frictional losses in piping

and thus E .1 1oss = Emech, loss, pipings the irreversible head loss is determined
to be

E.mm:h loss, piping 6.76 kW (1 kg y rru'sz) (1{](](]' N - ITI."'S)
: = = 23.0m
mg (30 kg/s)(9.81 m/s?) TN 1 kw

Discussion The 6.76 kW of power is used to overcome the friction in the
piping system. Note that the pump could raise the water an additional 23 m
if there were no irreversible head losses in the system. In this ideal case, the
pump would function as a turbine when the water is allowed to flow from the

upper reservoir to the lower reservoir and extract 20 kW of power from the
water.

h|_=

@




End of Chapter 3

Next Lecture
Chapter 4: Differential Relations For A
Fluid Flow




