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Introduction
 This chapter deals with forces applied by fluids at rest or in 

rigid-body motion (there is no relative motion between 
adjacent layers). 

 In both instances there will be no shearing stresses in the fluid, 
and the only forces that develop on the surfaces of the particles 
will be due to the pressure. 

 The fluid property responsible for those forces is pressure, 
which is a normal force exerted by a fluid per unit area. 

 Thus, our principal concern is to investigate pressure and its 
variation throughout a fluid and the effect of pressure on 
submerged surfaces.
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Pressure
 Pressure is defined as a normal force exerted by a fluid per 

unit area. 
 We speak of pressure only when we deal with a gas or a liquid. 

The counterpart of pressure in solids is normal stress. 
 Since pressure is defined as force per unit area, it has the unit 

of newtons per square meter (N/m2), which is called a pascal 
(Pa). That is,  1 Pa = 1 N/m2

 The pressure unit pascal is too small for pressures encountered 
in practice. Therefore, its multiples kilopascal (1 kPa =103 Pa) 
and megapascal (1 MPa =106 Pa) are commonly used.

 Other pressure units commonly used in practice, especially in 
Europe, are bar and standard atmosphere
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Pressure
 The actual pressure at a given 

position is called the absolute 
pressure, and it is measured 
relative to absolute vacuum (i.e., 
absolute zero pressure).

 Most pressure-measuring devices, 
however, are calibrated to read 
zero in the atmosphere , and so 
they indicate the difference 
between the absolute pressure and 
the local atmospheric pressure.  

 This difference is called the gage 
pressure. 
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Fig. Some basic pressure gages.



Pressure
 Pressures below atmospheric pressure are called vacuum 

pressures and are measured by vacuum gages that indicate 
the difference between the atmospheric pressure and the 
absolute pressure.

 Absolute, gage, and vacuum pressures are all positive 
quantities and are related to each other by

 In thermodynamic relations and tables, absolute pressure is 
almost always used. Throughout this course, the pressure P 
will denote absolute pressure unless specified otherwise.
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 Pressure is the compressive force per unit area, and it gives 
the impression of being a vector. However, pressure at any 
point in a fluid is the same in all directions. That is, it has 
magnitude but not a specific direction, and thus it is a scalar 
quantity. 

 This can be demonstrated by considering a small wedge-
shaped fluid element that was obtained by removing a small 
triangular wedge of fluid from some arbitrary location 
within a fluid mass.

 Since we are considering the situation in which there are 
no shearing stresses, the only external forces acting on the 
wedge are due to the pressure and the weight. 
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 For simplicity the forces in the x direction are not shown, 
and the z axis is taken as the vertical axis so the weight acts 
in the negative z direction. 
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 From Newton’s second law, a force balance in the y- and z 
directions gives

 where ps, py and pz are the average pressures on the faces, γ
and ρ are the fluid specific weight and density

 From the geometry

 The last term in Eq. b drops out as δx ,δy and δz→0 and the 
wedge becomes infinitesimal, and thus the fluid element 
shrinks to a point.
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 Thus substituting and simplifying results 

 Thus we conclude that the pressure at a point in a fluid has 
the same magnitude in all directions.

 It can be shown in the absence of shear forces that this 
result is applicable to fluids in motion (rigid body motion, 
no relative motion between layers) as well as fluids at rest.

 This important result is known as Pascal’s law
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Variation of pressure with depth

 Pressure in a fluid increases with 
depth because more fluid rests on 
deeper layers, and the effect of 
this “extra weight” on a deeper 
layer is balanced by an increase in 
pressure.

 To obtain a relation for the 
variation of pressure with depth, 
consider a rectangular fluid 
element of height ∆z, length ∆x, 
and unit depth (into the page) in 
equilibrium. 

 Assuming the density of the fluid 
ρ to be constant, a force balance in 
the vertical z-direction gives12



 Where W =mg = ρg∆x∆z is the weight of the fluid element.
 Dividing by ∆x and rearranging gives

 γs = ρg is the specific weight of the fluid.
 Thus, we conclude that the pressure difference between two 

points in a constant density fluid is proportional to the 
vertical distance ∆z between the points and the density ρ of 
the fluid. 

 In other words, pressure in a fluid increases linearly with 
depth
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 For small to moderate 
distances, the variation of 
pressure with height is 
negligible for gases because of 
their low density. 

 The pressure in a tank 
containing a gas, for example, 
can be considered to be 
uniform since the weight of the 
gas is too small to make a 
significant difference. 

 Also, the pressure in a room 
filled with air can be assumed 
to be constant
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 If we take point 1 to be at the free 
surface of a liquid open to the 
atmosphere, where the pressure is the 
atmospheric pressure Patm then the 
pressure at a depth h from the free 
surface becomes

 Liquids are essentially incompressible 
substances, and thus the variation of 
density with depth is negligible. 

 This is also the case for gases when 
the elevation change is not very large.
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 For fluids whose density changes significantly with 
elevation, a relation for the variation of pressure with 
elevation can be written as

 The negative sign indicates that pressure decreases in an 
upward direction. 

 When the variation of density with elevation is known the 
pressure difference between points 1 and 2 can be 
determined by integration to be
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 Pressure is independent of the shape of the container.
 The pressure is the same at all points on a given horizontal 

plane in the same fluid.
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Application of Pascal’s law
 Two hydraulic cylinders of 

different areas could be 
connected, and the larger 
could be used to exert a 
proportionally greater 
force than that applied to 
the smaller. 

 Noting that P1 =P2 since 
both pistons are at the 
same level.
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Variation of pressure with depth

The area ratio A2 /A1 is called 
the ideal mechanical advantage 
of the hydraulic lift. 



The Manometer
 An elevation change of ∆z in a fluid at rest corresponds to 
∆P/ρg, which suggests that a fluid column can be used to 
measure pressure differences. 

 A device based on this principle is called a manometer, 
and it is commonly used to measure small and moderate 
pressure differences. 

 A manometer mainly consists of a glass or plastic U-tube 
containing one or more fluids such as mercury, water, 
alcohol, or oil. 

 To keep the size of the manometer to a manageable level, 
heavy fluids such as mercury are used if large pressure 
differences are anticipated.
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 Consider the manometer that 
is used to measure the 
pressure in the tank. 

 Since the gravitational effects 
of gases are negligible, the 
pressure anywhere in the tank 
and at position 1 has the same 
value. 

 Furthermore, since pressure in 
a fluid does not vary in the 
horizontal direction within a 
fluid, the pressure at point 2 is 
the same as the pressure at 
point 1, P2=P1.
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U-tube Manometer

The differential fluid column of 
height h is in static equilibrium, 
and it is open to the atmosphere. 
Then the pressure at point 2 is 
determined directly by



U-tube Manometer
 where ρ is the density of the 

fluid in the tube. Note that 
the cross-sectional area of the 
tube has no effect on the 
differential height h, and thus 
the pressure exerted by the 
fluid. 

 However, the diameter of the 
tube should be large enough 
(more than a few millimeters) 
to ensure that the surface 
tension effect and thus the 
capillary rise is negligible.
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EXAMPLE 1.  Measuring Pressure with a Manometer

 A manometer is used to measure the pressure in a tank. The 
fluid used has a specific gravity of 0.85, and the manometer 
column height is 55 cm, as shown in the Fig. If the local 
atmospheric pressure is 96 kPa, determine the absolute 
pressure within the tank.
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Solution
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 Many engineering problems and some manometers involve 
multiple immiscible fluids of different densities stacked on 
top of each other. 

 Such systems can be analyzed easily by remembering that 
(1) the pressure change across a fluid column of height h 

is ∆P = ρgh, 
(2) pressure increases downward in a given fluid and 

decreases upward (i.e., Pbottom >Ptop), and 
(3) two points at the same elevation in a continuous fluid 

at rest are at the same pressure.
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Multifluid Manometer
 The last principle, which is a result of 

Pascal’s law, allows us to “jump” from 
one fluid column to the next in 
manometers without worrying about 
pressure change as long as we don’t 
jump over a different fluid, and the 
fluid is at rest.

 Then the pressure at any point can be 
determined by starting with a point of 
known pressure and adding or 
subtracting ρgh terms as we advance 
toward the point of interest.
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Differential Manometer
 Manometers are particularly well-

suited to measure pressure drops 
across a horizontal flow section 
between two specified points due 
to the presence of a device such as 
a valve or heat exchanger or any 
resistance to flow. 

 This is done by connecting the two 
legs of the manometer to these two 
points, as shown in the Fig.

 The working fluid can be either a 
gas or a liquid whose density is ρ1. 
The density of the manometer fluid 
is ρ2, and the differential fluid 
height is h.
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Fig.  Measuring the pressure 
drop across a flow section or 
a flow device by a 
differential manometer.



 A relation for the pressure 
difference P1-P2 can be 
obtained by starting at point 
1 with P1, moving along the 
tube by adding or subtracting 
the ρgh terms until we reach 
point 2, and setting the result 
equal to P2:
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Differential Manometer

Note that we jumped from point A horizontally to point B and 
ignored the part underneath since the pressure at both points is 
the same. Simplifying



EXAMPLE 2. Measuring Pressure with a Multifluid Manometer

 The water in a tank is pressurized by air, and the pressure is measured 
by a multifluid manometer as shown in Fig. below. The tank is located 
on a mountain at an altitude of 1400 m where the atmospheric pressure 
is 85.6 kPa. Determine the air pressure in the tank if h1 =0.1 m, h2 =0.2 
m, and h3 = 0.35 m. Take the densities of water, oil, and mercury to be 
1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.
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Solution
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Exercise 1
 The gage pressure of the air in the tank shown in Fig. 

below is measured to be 65 kPa. Determine the 
differential height h of the mercury column.

30
Ans.  h= 47 cm



Exercise 2

 Freshwater and seawater flowing in parallel horizontal  
pipelines are connected to each other by a double U-tube 
manometer, as shown in the Fig. Determine the pressure 
difference between the two pipelines. Take the density of 
seawater at that location to be ρ = 1035 kg/m3. Can the air 
column be ignored in the analysis?

31
Ans.  3.39 kPa



Exercise 3
 Two water tanks are connected to each other through a

mercury manometer with inclined tubes, as shown in the
Fig. below. If the pressure difference between the two tanks
is 20 kPa, calculate a and θ.

32 Ans     a= 7.50 cm     θ = 34.0o



Hydrostatic Forces on Submerged Plane 
surfaces

 A plate exposed to a liquid, such 
as a gate valve in a dam, the 
wall of a liquid storage tank is 
subjected to fluid pressure 
distributed over its surface

 On a plane surface, the 
hydrostatic forces form a system 
of parallel forces, and we often 
need to determine the magnitude 
of the force and its point of 
application, which is called the 
center of pressure.
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Hydrostatic Forces on Submerged Plane 
surfaces

 In most cases, the other 
side of the plate is open to 
the atmosphere (such as 
the dry side of a gate), and 
thus atmospheric pressure 
acts on both sides of the 
plate, yielding a zero 
resultant. 

 In such cases, it is 
convenient to subtract 
atmospheric pressure and 
work with the gage 
pressure only
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 Consider the top 
surface of a flat plate of 
arbitrary shape 
completely submerged 
in a liquid.

 The plane of this 
surface (normal to the 
page) intersects the 
horizontal free surface 
with an angle θ, and we 
take the line of 
intersection to be the x-
axis.

35
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 The absolute pressure above the liquid is P0, which is the 
local atmospheric pressure Patm if the liquid is open to the 
atmosphere (but P0 may be different than Patm if the space 
above the liquid is evacuated or pressurized). 

 Then the absolute pressure at any point on the plate is

 where h is the vertical distance of the point from the free 
surface and y is the distance of the point from the x-axis. 

 The resultant hydrostatic force FR acting on the surface is 
determined by integrating the force P dA acting on a 
differential area dA over the entire surface area,
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 But the first moment of area         is related to the y-
coordinate of the centroid (or center) of the surface by

 Substituting
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Hydrostatic Forces on Submerged Plane surfaces

Where                        is the 
pressure at the centroid of the 
surface, which is equivalent to 
the average pressure on the 
surface, and                               
is the vertical distance of the 
centroid from the free surface 
of the liquid . 



Hydrostatic Forces on Submerged Plane surfaces

Thus we conclude that

 The magnitude of the 
resultant force acting 
on a plane surface of a 
completely submerged 
plate in a homogeneous 
(constant density) fluid 
is equal to the product 
of the pressure PC at 
the centroid of the 
surface and the area A 
of the surface.
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Center of pressure
 The line of action of the resultant hydrostatic force, in 

general, does not pass through the centroid of the surface—
it lies underneath where the pressure is higher. 

 The point of intersection of the line of action of the 
resultant force and the surface is the center of pressure.

 The vertical location of the line of action is determined by 
equating the moment of the resultant force to the moment 
of the distributed pressure force about the x-axis. It gives

 or
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Center of pressure
 where yP is the distance of the center of pressure from the 

x-axis and                       is the second moment of area  

(also  called the area moment of inertia) about the x-axis.
 The second moments of area are widely available for 

common shapes in engineering handbooks, but they are 
usually given about the axes passing through the centroid of 
the area.

 Fortunately, the second moments of area about two parallel 
axes are related to each other by the parallel axis theorem, 
which in this case is expressed as
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 where I xx, C  is the second moment of area about the x-axis 
passing through the centroid of the area and yC (the y 
coordinate of the centroid) is the distance between the two 
parallel axes.

 Substituting the FR relation and the I xx, O relation and 
solving for yP gives

 For P0 =0, which is usually the case when the atmospheric 
pressure is ignored, it simplifies to

41

Hydrostatic Forces on Submerged Plane surfaces



 Knowing yP, the vertical distance of the center of 
pressure from the free surface is determined from

 The I xx, C values for some common areas are given below. 
For these and other areas that possess symmetry about the 
y-axis, the center of pressure lies on the y-axis directly 
below the centroid. 

 The location of the center of pressure in such cases is 
simply the point on the surface of the vertical plane of 
symmetry at a distance hP from the free surface.
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Hydrostatic Forces on Submerged Plane surfaces

Special Case: 
Submerged Rectangular Plate
 Consider a completely submerged 

rectangular flat plate of height b and 
width a tilted at an angle θ from the 
horizontal and whose top edge is 
horizontal and is at a distance s from 
the free surface along the plane of 
the plate, as shown in the Fig. 

 The resultant hydrostatic force on 
the upper surface is equal to the 
average pressure, which is the 
pressure at the midpoint of the 
surface, times the surface area A. 
That is,44



 The force acts at a vertical distance of                         from 
the free surface directly beneath the centroid of the plate 
where

 When the upper edge of the plate is at the free surface and 
thus s =0
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Hydrostatic Forces on submerged curved surfaces

 For a submerged curved surface, the determination of the 
resultant hydrostatic force is more involved since it 
typically requires the integration of the pressure forces that 
change direction along the curved surface.

 The easiest way to determine the resultant hydrostatic force 
FR acting on a two-dimensional curved surface is to 
determine the horizontal and vertical components FH and 
FV separately.

 Consider the free-body diagram of the liquid block 
enclosed by the curved surface and the two plane surfaces 
(one horizontal and one vertical) passing through the two 
ends of the curved surface as shown in the fig. below.
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 The resultant force acting on the curved solid surface is 
then equal and opposite to the force acting on the curved 
liquid surface (Newton’s third law).
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 The weight of the enclosed liquid block of volume V is 
simply W =ρgV, and it acts downward through the centroid 
of this volume. 

 Noting that the fluid block is in static equilibrium, the force 
balances in the horizontal and vertical directions give

 where the summation Fy +W is a vector addition (i.e., add 
magnitudes if both act in the same direction and subtract if 
they act in opposite directions).

 The magnitude of the resultant hydrostatic force acting on 
the curved surface is                           , and the tangent of 
the angle it makes with the horizontal is 
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 Thus, we conclude that
1. The horizontal component of the hydrostatic force acting 

on a curved surface is equal (in both magnitude and the 
line of action) to the hydrostatic force acting on the 
vertical projection of the curved surface.

2. The vertical component of the hydrostatic force acting on 
a curved surface is equal to the hydrostatic force acting on 
the horizontal projection of the curved surface, plus 
(minus, if acting in the opposite direction) the weight of 
the fluid block.

 The location of the line of action of the resultant force (e.g., 
its distance from one of the end points of the curved 
surface) can be determined by taking a moment about an 
appropriate point.
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 When a curved 
surface is above the 
liquid, the weight 
of the liquid and the 
vertical component 
of the hydrostatic 
force act in the 
opposite directions.
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 When the curved surface is a 
circular arc (full circle or any part 
of it), the resultant hydrostatic force 
acting on the surface always passes 
through the center of the circle. 

 This is because the pressure forces 
are normal to the surface, and all 
lines normal to the surface of a 
circle pass through the center of the 
circle. 

 Thus, the pressure forces form a 
concurrent force system at the 
center, which can be reduced to a 
single equivalent force at that point
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 Finally, hydrostatic forces acting on a plane or curved surface 
submerged in a multilayered fluid of different densities can 
be determined by considering different parts of surfaces in 
different fluids as different surfaces, finding the force on each 
part, and then adding them using vector addition. 

 For a plane surface, it can be expressed as 

 Where                                 is the pressure at the centroid of 
the portion of the surface in fluid i and Ai is the area of the 
plate in that fluid. 

 The line of action of this equivalent force can be determined 
from the requirement that the moment of the equivalent force 
about any point is equal to the sum of the moments of the 
individual forces about the same point.
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 The hydrostatic force on a 
surface submerged in a 
multilayered fluid can be 
determined by considering 
parts of the surface in 
different fluids as different 
surfaces.
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Example 3. Hydrostatic Force Acting on the Door
of a Submerged Car

 A heavy car plunges into 
a lake during an accident 
and lands at the bottom of 
the lake on its wheels. 
The door is 1.2 m high 
and 1 m wide, and the top 
edge of the door is 8 m 
below the free surface of 
the water.

 Determine the hydrostatic 
force on the door and the 
location of the pressure 
center.
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Solution

Assumptions 
1. The bottom surface of the lake is horizontal. 
2. The passenger cabin is well-sealed so that no water leaks 

inside.
3. The door can be approximated as a vertical rectangular 

plate. 
4. The pressure in the passenger cabin remains at 

atmospheric value since there is no water leaking in, and  
thus no compression of the air inside. Therefore, 
atmospheric pressure cancels out in the calculations since 
it acts on both sides of the door. 

5. The weight of the car is larger than the buoyant force 
acting on it.
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Example 4

 A 4-m-high, 5-m-wide 
rectangular plate blocks the 
end of a 4-m-deep 
freshwater channel, as 
shown in the Fig. The plate 
is hinged about a horizontal 
axis along its upper edge 
through a point A and is 
restrained from opening by a 
fixed ridge at point B. 

 Determine the force exerted 
on the plate by the ridge.
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Solution

 A rectangular plate hinged 
about a horizontal axis along 
its upper edge blocks a fresh 
water channel. The plate is 
restrained from opening by a 
fixed ridge at a point B. The 
force exerted to the plate by 
the ridge is to be determined.

 Assumptions.  Atmospheric 
pressure acts on both sides of 
the plate, and thus it can be 
ignored in calculations for 
convenience.
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Example 5

 A long solid cylinder of 
radius 0.8 m hinged at point A 
is used as an automatic gate. 
When the water level reaches 
5 m, the gate opens by turning 
about the hinge at point A.

 Determine the hydrostatic 
force acting on the cylinder 
and its line of action when the 
gate opens and 
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Example 6

 A 4-m-long quarter-circular 
gate of radius 3 m and of 
negligible weight is hinged 
about its upper edge A, as 
shown in the Fig. The gate 
controls the flow of water 
over the ledge at B, where the 
gate is pressed by a spring. 
Determine the minimum 
spring force required to keep 
the gate closed when the 
water level rises to A at the 
upper edge of the gate.
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Solution

 Assumptions  1. The hinge is 
frictionless.  2.  Atmospheric pressure 
acts on both sides of the gate, and thus 
it can be ignored in calculations for 
convenience.  3.  The weight of the 
gate is negligible.

 We consider the free body diagram of 
the liquid block enclosed by the 
circular surface of the gate and its 
vertical and horizontal projections. 

 The hydrostatic forces acting on the 
vertical and horizontal plane surfaces 
as well as the weight of the liquid 
block are determined as follows

 We take the density of water to be 
1000 kg/m3 throughout.
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 Then the magnitude and direction of the hydrostatic force 
acting on the surface of the 4-m long quarter-circular 
section of the gate become

 The minimum spring force needed is determined by taking 
a moment about the point A where the hinge is, and setting 
it equal to zero,
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Buoyancy, Floatation and stability

 It is a common experience that an object feels lighter and 
weighs less in a liquid than it does in air. This can be 
demonstrated easily by weighing a heavy object in water by 
a waterproof spring scale. Also, objects made of wood or 
other light materials float on water. 

 These and other observations suggest that a fluid exerts an 
upward force on a body immersed in it. This force that 
tends to lift the body is called the buoyant force and is 
denoted by FB.

 The buoyant force is caused by the increase of pressure in a 
fluid with depth.
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 Consider, for example, a flat 
plate of thickness h 
submerged in a liquid of 
density ρf parallel to the free 
surface, as shown in the Fig.  

 The area of the top (and also 
bottom) surface of the plate 
is A, and its distance to the 
free surface is s. 

 The pressures at the top and 
bottom surfaces of the plate 
are ρf gs and ρf g(s + h), 
respectively. 
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 Then the hydrostatic force Ftop 
= ρf gsA acts downward on the 
top surface, and the larger 
force Fbottom = ρf g(s + h)A 
acts upward on the bottom 
surface of the plate. 

 The difference between these 
two forces is a net upward 
force, which is the buoyant 
force,
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 where V = hA is the volume of the plate. But the relation ρf gV
is simply the weight of the liquid whose volume is equal to the 
volume of the plate. 

 Thus, we conclude that the buoyant force acting on the plate is 
equal to the weight of the liquid displaced by the plate. 

 Note that the buoyant force is independent of the distance of 
the body from the free surface. It is also independent of the 
density of the solid body.

 This is known as Archimedes’ principle, after the Greek 
mathematician Archimedes (287–212 BC), and is expressed as
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Buoyancy, Floatation and stability

The buoyant force acting on a body immersed in a fluid is 
equal to the weight of the fluid displaced by the body, and 
it acts upward through the centroid of the displaced 
volume.



 Floating bodies are a special case; only a portion of the 
body is submerged, with the remainder poking up out of the 
free surface. 
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 A body immersed in a 
fluid 

1) Remains at rest at any 
point in the fluid when 
its density is equal to 
the density of the fluid, 

2) Sinks to the bottom 
when its density is 
greater than the density 
of the fluid, and 

3) Rises to the surface of 
the fluid and floats 
when the density of the 
body is less than the 
density of the fluid

73
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Example 1

 A crane is used to lower 
weights into the sea (density 
=1025 kg/m3) for an 
underwater construction 
project. 

 Determine the tension in the 
rope of the crane due to a 
rectangular 0.4-m x 0.4-m x 3-
m concrete block (density = 
2300 kg/m3) when it is (a) 
suspended in the air and (b) 
completely immersed in water.

74



75



Example 2
 A 170-kg granite rock (ρ = 2700 kg/m3) is dropped into a 

lake. A man dives in and tries to lift the rock. Determine 
how much force the man needs to apply to lift it from the 
bottom of the lake. Do you think he can do it?
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Example 2

 This force corresponds 
to a mass of

 Therefore, a person who 
can lift 107 kg on earth 
can lift this rock in water.
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Stability of Immersed and Floating Bodies

 An important application 
of the buoyancy concept is 
the assessment of the 
stability of immersed and 
floating bodies with no 
external attachments. 

 This topic is of great 
importance in the design 
of ships and submarines
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 A body is said to be in a stable 
equilibrium position if, when displaced, 
it returns to its equilibrium position. 

 Conversely, it is in an unstable 
equilibrium position if, when displaced 
(even slightly), it moves to a new 
equilibrium position.

 Stability considerations are particularly 
important for submerged or floating 
bodies since the centers of buoyancy and 
gravity do not necessarily coincide.

 A small rotation can result in either a 
restoring or overturning couple. 
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 For example, for the completely 
submerged body shown in the Fig. , 
which has a center of gravity below 
the center of buoyancy, a rotation 
from its equilibrium position will 
create a restoring couple formed by 
the weight , and the buoyant force, 
which causes the body to rotate back 
to its original position. 

 Thus, for this configuration the body 
is stable. It is to be noted that as long 
as the center of gravity falls below 
the center of buoyancy, this will 
always be true; that is, the body is in 
a stable equilibrium position with 
respect to small rotations.
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 If the center of gravity of the 
completely submerged body 
is above the center of 
buoyancy, the resulting 
couple formed by the weight 
and the buoyant force will 
cause the body to overturn and 
move to a new equilibrium 
position.

 Thus, a completely submerged 
body with its center of gravity 
above its center of buoyancy 
is in an unstable equilibrium 
position.
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 For floating bodies the stability problem is more complicated, 
since as the body rotates the location of the center of 
buoyancy (which passes through the centroid of the displaced 
volume) may change. 

 A floating body can be stable even though the center of 
gravity lies above the center of buoyancy. This is true since as 
the body rotates the buoyant force, shifts to pass through the 
centroid of the newly formed displaced volume and, as 
illustrated, combines with the weight, to form a couple which 
will cause the body to return to its original equilibrium 
position. 

 However, for the relatively tall, slender body shown in Fig. 
below, a small rotational displacement can cause the buoyant 
force and the weight to form an overturning couple as 
illustrated.82
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 A floating body is stable if the body is bottom-heavy and thus 
the center of gravity G is below the centroid B of the body, or 
if the metacenter M is above point G. However, the body is 
unstable if point M is below point G.84

Stability of Immersed and Floating Bodies



85

Fluids in Rigid-Body Motion

Part II



Fluids in Rigid-body Motion
 In this section we obtain relations for the variation of pressure 

in fluids moving like a solid body with or without acceleration 
in the absence of any shear stresses (i.e., no motion between 
fluid layers relative to each other).

 Many fluids such as milk and gasoline are transported in 
tankers. In an accelerating tanker, the fluid rushes to the back, 
and some initial splashing occurs. But then a new free surface 
(usually non-horizontal) is formed, each fluid particle assumes 
the same acceleration, and the entire fluid moves like a rigid 
body. 

 No shear stresses develop within the fluid body since there is 
no deformation and thus no change in shape. Rigid-body 
motion of a fluid also occurs when the fluid is contained in a 
tank that rotates about an axis.
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Fluids in Rigid-body Motion
 Consider a differential 

rectangular fluid element of 
side lengths dx, dy, and dz in
the x-, y-, and z-directions, 
respectively, with the z-axis 
being upward in the vertical 
direction . 

 Noting that the differential 
fluid element behaves like a 
rigid body, Newton’s second 
law of motion for this 
element can be expressed as
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 is the acceleration, and        is the net force acting on 
the element.

 Two types forces act on the fluid element
i. Body forces such as gravity that act throughout the 

entire body of the element and are proportional to the 
volume of the body (and also electrical and magnetic 
forces, which will not be considered in this course), and 

ii. Surface forces such as the pressure forces that act on the 
surface of the element and are proportional to the surface 
area (shear stresses are also surface forces, but they do 
not apply in this case since the relative positions of fluid 
elements remain unchanged).

 Note that pressure represents the compressive force applied 
on the fluid element by the surrounding fluid and is always 
directed to the surface.88
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 Taking the pressure at the center of the element to be P, the 
pressures at the top and bottom surfaces of the element can be 
expressed as                             and                              respectively.

 Noting that the pressure force acting on a surface is equal to the 
average pressure multiplied by the surface area, the net surface 
force acting on the element in the z-direction is the difference 
between the pressure forces acting on the bottom and top faces,
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 Then the surface force (which is simply the pressure force) 
acting on the entire element can be expressed in vector form 
as

is the pressure gradient.

 Note that the      or “del” is a vector operator that is used to 
express the gradients of a scalar function compactly in vector 
form.90
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 The only body force acting on the fluid element is the 
weight of the element acting in the negative z-direction, 
and it is expressed as

or in vector form as

 Then the total force acting on the element becomes

 Substituting into Newton’s second law of motion

and canceling dx dy dz, the general equation of motion for 
a fluid that acts as a rigid body (no shear stresses) is 
determined to be
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 Resolving the vectors into their components, this relation 
can be expressed more explicitly as

 where ax, ay, and az are accelerations in the x-, y-, and z-
directions, respectively.
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Special Case 1: Fluids at Rest
 For fluids at rest or moving on a straight path at constant 

velocity, all components of acceleration are zero, and the 
relations reduce to

 which confirm that, in fluids at rest, the pressure remains 
constant in any horizontal direction (P is independent of x 
and y) and varies only in the vertical direction as a result of 
gravity [and thus P = P(z)]. 

 These relations are applicable for both compressible and 
incompressible fluids.
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Special Case 2: Free Fall of a Fluid Body
 A freely falling body accelerates under the influence of 

gravity. When the air resistance is negligible, the acceleration 
of the body equals the gravitational acceleration, and 
acceleration in any horizontal direction is zero.

 Therefore, ax = ay = 0 and az = - g. Then the equations of 
motion for accelerating fluids reduce to

 Therefore, in a frame of reference moving with the fluid, it 
behaves like it is in an environment with zero gravity. Also, 
the gage pressure in a drop of liquid in free fall is zero 
throughout.
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Special Case 2: Free Fall of a 
Fluid Body

 When the direction of motion 
is reversed and the fluid is 
forced to accelerate vertically 
with az = +g by placing the 
fluid container in an elevator 
or a space vehicle propelled 
upward by a rocket engine, 
the pressure gradient in the z-
direction is ,

 Therefore, the pressure 
difference across a fluid layer 
now doubles relative to the 
stationary fluid case95

Fluids in Rigid-body Motion

Fig. The effect of acceleration on 
the pressure of a liquid during free
fall and upward acceleration.



Acceleration on a Straight Path
 Consider a container 

partially filled with a liquid. 
The container is moving on 
a straight path with a 
constant acceleration. 

 We take the projection of 
the path of motion on the 
horizontal plane to be the x-
axis, and the projection on 
the vertical plane to be the 
z-axis
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is no movement in the y-direction, and thus the acceleration 
in that direction is zero, ay = 0. 



 Then the equations of motion for accelerating fluids reduce 
to

 Therefore, pressure is independent of y. 
 Then the total differential of P

 For ρ = constant, the pressure difference between two 
points 1 and 2 in the fluid is determined by integration to be

 Taking point 1 to be the origin (x = 0, z = 0) where the 
pressure is P0 and point 2 to be any point in the fluid (no 
subscript), the pressure distribution can be expressed as
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 The vertical rise (or drop) of the free surface at point 2 
relative to point 1 can be determined by choosing both 1 
and 2 on the free surface (so that P1= P2), and solving for 
z2 - z1 ,

 where zs is the z-coordinate of the liquid’s free surface
 The equation for surfaces of constant pressure, called isobars, 

is obtained from by setting dP = 0 
and replacing z by zisobar, which is the z-coordinate (the vertical 
distance) of the surface as a function of x. It gives
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 Thus we conclude that the 
isobars (including the free 
surface) in an incompressible 
fluid with constant 
acceleration in linear motion 
are parallel surfaces

 whose slope in the xz-plane is
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 Obviously, the free surface of 
such a fluid is a plane surface, 
and it is inclined unless ax = 0 
(the acceleration is in the vertical 
direction only).

 Also, the conservation of mass 
together with the assumption of 
incompressibility (ρ = constant) 
requires that the volume of the 
fluid remain constant before and 
during acceleration. 

 Therefore, the rise of fluid level 
on one side must be balanced by a 
drop of fluid level on the other 
side
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Example. Overflow from a Water Tank During 
Acceleration

 An 80-cm-high fish tank of 
cross section 2 m x 0.6 m that 
is initially filled with water is to 
be transported on the back of a 
truck . The truck accelerates 
from 0 to 90 km/h in 10 s. If it 
is desired that no water spills 
during acceleration, determine 
the allowable initial water 
height in the tank. Would you 
recommend the tank to be 
aligned with the long or short 
side parallel to the direction of 
motion?
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End of Chapter 2

Next Lecture
Chapter 3: Integral Relations For A 

Control Volume 
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