
Ch2 - Lesson 1:

Server Side Scripting Basics

1

OVERVIEW

 Webpage:

 Document, typically written in HTML that is almost always accessible

via HTTP.

 Pages on which, information is displayed on the web.

 Can be static or dynamic.

2

file:///C:/topic/html

OVERVIEW

 Scripting language :

 A programming language in a simple text format.

 Code written in a scripting language does not have to be compiled,

but interpreted.

 Scripts can be written to run either server-side or client-side.

 A script must be interpreted at the time it is requested from the web

server.
3

OVERVIEW

 Scripting language :

 A client-side script is executed on the client, by the browser.

 Client-scripting

 Is often used to validate data entered on a form by the user, before the

form is submitted to the server

 Present data on a browser and manage interactions between user and

application
4

OVERVIEW

 Server side scripting:

 Is executed on the server and produces HTML and which is then output

HTML to the client.

5

INTRODUCTION TO SERVER SIDE SCRIPTING

 Server-side scripting:

 A web technology in which a user's request is fulfilled by running a script

directly on the web server to generate dynamic webpages.

 Use to develop interactive web sites that interface to databases or other

data stores.

 The primary advantage of server-side scripting is the ability to highly

customize the response based on the user's requirements, access rights,

or queries from data stores.
6

INTRODUCTION TO SERVER SIDE SCRIPTING

 Server-side scripting:

 From security point of view, they are never visible to the browser as these

scripts are executed on the server and produce HTML corresponding to

user's input to the page.

 They are written in Java, Asp.Net, PHP, ColdFusion, Perl, Ruby, Go,

Python

 Executed by a web server when the user requests a document 7

INTRODUCTION TO SERVER SIDE SCRIPTING

 Server-side scripting:

 They produce output in a format understandable by web browsers (usually

HTML)

 The user cannot see the script's source and may not even be aware that a

script was executed.

 Documents produced by server-side scripts may, in turn, contain client-side

scripts. 8

INTRODUCTION TO SERVER SIDE SCRIPTING

 Server-side scripting:

 Its mostly about connecting websites with back end services

such as databases and data sources

 Enables two way communication:

 Client to server  users request to server for data and resources

 Server to client  responses sent to users computer 9

INTRODUCTION TO SERVER SIDE SCRIPTING

 Server-side scripting:

 A server side script can:

 Dynamically edit, change or add any content to a Web page to make it

more useful for individual users

 Respond to user queries or data submitted from HTML forms

 Access any data or databases and return the result to a browser

 Provide security since server side codes cannot be viewed from a

browser
10

INTRODUCTION TO SERVER SIDE SCRIPTING

 Server-side script languages:

11

PHP

ASP

Java (JSP)

JS using server side scripts

Perl, Ruby

Go, Python

Our focus :

WHAT IS PHP

 What is PHP?

 Hypertext Preprocessor

 Preprocessor  script runs on the web server, not on the users computer

 Works with many databases.

 Eg. MySQL, Informix, Oracle, Sybase, Solid, PostgreSQL, Generic ODBC,

Microsoft SQL Server

 PHP files can contain text, HTML tags and scripts
12

WHAT IS PHP

 What is PHP?

 PHP files are returned to the browser as plain HTML

 PHP file extension: *.php, php3, php4, php5 or phtml

 Why PHP?

 Allows easy storage and retrieval of information from supported databases

 Accessibility: You can reach the internet from any browser, any device,

anytime, anywhere

13

WHAT IS PHP

 What is PHP?

 Manageability: It does not require distribution of application code and it is

easy to change code.

 Security: source code is not exposed. Once user is authenticated, can

only allow certain actions. Also allows data encryption.

 Scalability: Web-based 3-tier architecture can scale out

14

GETTING STARTED WITH PHP

 Requirements

 A computer with web server (Apache, IIS etc), database server and PHP engine

installed.

 We can use web server as different flavors.

 Previous traditions were, installing this different software independently.

 This days, we install all this components as a single integrated environment

 Different options: WAMP (for Windows), LAMP (for Linux), XAMP,
15

GETTING STARTED WITH PHP

 Requirements

 Text Editors: Notepad, Notepad++, Sublime Text, Visual Studio Code,

PHPStorm, CodeLobster etc

 Web browser for displaying result. (IE, Chrome, Firefox, Opera, Safari etc)

16

PHP LANGUAGE FUNDAMENTALS

 Basic Syntax:

 Opening and closing tags:

 Canonical php tags: <?php …… ?>

 Short open tags (SGML-style): <? ……. ?>

 ASP-style tags: <% ……%>

 HTML-script tags: <script language=“php”> ……… </script>

 for maximum compatibility <?php ….?> is recommended.

17

PHP LANGUAGE FUNDAMENTALS

 Output statement:

 Statements end with semi-colons

 Two options to display output data on the browser. echo or print

 Echo has no return value but print has.

 Echo may take many parameters (evenif not mandatory), print can only

take one argument.

 Echo is faster than print
18

PHP LANGUAGE FUNDAMENTALS

 Output statement:

 Echo and print general format:

echo output1, output2, output3 …;

echo (output statement);

print output statement;

print (output statement);
19

PHP LANGUAGE FUNDAMENTALS

 Output statement:

 Example:

 echo 123; //output: 123

 echo “Hello World!”; // Hello world!

 echo (“Hello World!”); // Hello world!

 echo “Hello”,”World!”; // Hello World!

 echo Hello World!; // error, string should be enclosed in

quotes

 print (“Hello world!”); // Hello world!
20

PHP LANGUAGE FUNDAMENTALS

 Output statement:

 Its possible to embed HTML tag within output code.

echo “<u> <i> Hello world!</i></u>”;

 Multiline printing:

 Embed
 tag or use <<<end with print command.

21

PHP LANGUAGE FUNDAMENTALS

 Comments

 Single-line comment:

 # this is a comment or

 // this is a comment  this is recommended

 Multi-line comments

 /* This is a multiline comment example */

22

PHP LANGUAGE FUNDAMENTALS

 Variables

 All variables in PHP are denoted with a leading dollar sign ($)

 The value of the variable is its most recent assignment

 Assigned with = operator

 We can assign variables before declaring it

 Do not have intrinsic data types

 PHP can automatically convert data from one type into another when necessary
23

PHP LANGUAGE FUNDAMENTALS

 Variable Naming rules

 Must start with a alphabet or _ (underscore) character

 Can contain only characters (a-zA-Z0-9) and _ (underscore)

 Can’t contain spaces

 Variables are case sensitive

 Declaration:

 [$variable_name=initial_value]
24

PHP LANGUAGE FUNDAMENTALS

 Data types

 Total of 8 data types

 Integer, double, Boolean, null, strings

 Arrays, objects and resources

 The 1st 5 are simple types and the last two (arrays and objects) are

compound types

25

PHP LANGUAGE FUNDAMENTALS

 Data types

 Integers:

$int_var = 12345;

$another_int = -12345 + 12345;

 Doubles:

$pi= 3.14;

$version=1.12;

26

PHP LANGUAGE FUNDAMENTALS

 Data types

 Boolean: two possible values; true or false

 NULL: special type which has only one value. To give a variable a NULL

value, assign it like:

$my_var=NULL; // or null (it is not cases sensitive)

 A variable with NULL value has the ff properties

 Evaluates to false in a Boolean context

 Returns false when tested with isSet() function
27

PHP LANGUAGE FUNDAMENTALS

 Data types

 Examples:

 strings: sequences of characters

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted

string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters
28

PHP LANGUAGE FUNDAMENTALS

 Data types

 Single and double quotes

<?php

$variable = "name";

$literally = 'My $variable will not print!\\n';

print($literally);

$literally = "My $variable will print!\\n";

print($literally);

?>

29

Output:
My $variable will not print!\n

My name will print

PHP LANGUAGE FUNDAMENTALS

 PHP provides a large number of predefined variables to all scripts.

 Superglobals — Superglobals are built-in variables that are always

available in all scopes

 $GLOBALS — References all variables available in global scope

 $_SERVER — Server and execution environment information

 $_GET — HTTP GET variables

30

PHP LANGUAGE FUNDAMENTALS

 $_POST — HTTP POST variables

 $_FILES — HTTP File Upload variables

 $_REQUEST — HTTP Request variables, and can replace $_POST, $_GET

and $_COOKIE variables

31

http://www.php.net/manual/en/reserved.variables.post.php

PHP LANGUAGE FUNDAMENTALS

 $_SESSION — Session variables

 $_COOKIE — HTTP Cookies

 $php_errormsg — The previous error message

 $HTTP_RAW_POST_DATA — Raw POST data

32

PHP LANGUAGE FUNDAMENTALS

 $_SESSION — Session variables

 $_COOKIE — HTTP Cookies

 $http_response_header — HTTP response headers

 $argc — The number of arguments passed to script

 $argv — Array of arguments passed to script

33

PHP LANGUAGE FUNDAMENTALS

 Variable Scope:

 Local, and global variables

 Functions and static variables

 Local variables:

34

<?

$x = 4;

function assignx () {

$x = 0;

print "\$x inside function is $x.

";

}

assignx();

print "\$x outside of function is

$x. ";

?>
Output:

$x inside function is 0.

$x outside of function is 4.

PHP LANGUAGE FUNDAMENTALS

 Function parameters

35

<?

// multiply a value by 10 and

return it to the caller

function multiply ($value) {

$value = $value * 10;

return $value;

}

$retval = multiply (10);

Print "Return value is $retval\n";

?>

Output:

Return value is 100

PHP LANGUAGE FUNDAMENTALS

 Global variables: can be accessed in any part of the program.

36

<?

$somevar = 15;

function addit() {

GLOBAL $somevar;

$somevar++;

print "Somevar is $somevar";

}

addit();

?>

Output:

Somevar is 16

PHP LANGUAGE FUNDAMENTALS

 Static variables:

37

<?

function keep_track() {

STATIC $count = 0;

$count++;

print $count;

print " ";

}

keep_track();

keep_track();

keep_track();

?>

Output:

1

2

3

PHP LANGUAGE FUNDAMENTALS

 Constants:

 Constant: a variable whose value doesn’t change throughout the

execution of the program.

 Use define(“const_name”,value) to define a constant variable

 No need to prefix it with $ sign

 To access its value, simply use name of the constant you created

 You can also use function constant() to access its value
38

PHP LANGUAGE FUNDAMENTALS

 Example:

39

<?php

define("MINSIZE", 50);

echo MINSIZE;

echo constant("MINSIZE"); // same thing as the

previous line

?>

PHP LANGUAGE FUNDAMENTALS

 Differences between constants and variables:

 No need to write $ sign in constants

 Constants couldn’t be defined by simple assignment. We use define()

function

 Constants can be accessed anywhere in the program regardless of

scoping rules

 Once the constants have been set, couldn’t be redefined or undefined. 40

PHP LANGUAGE FUNDAMENTALS

 Working with numbers:

 PHP treats numbers into two groups: integers and floating points

 Doesn’t make you worry about the differences between the two

 Can automatically convert from one into another type

 1.5 is not 1 but its 1.5 unlike other programming languages

 In PHP 1+”1” is 2. 41

PHP LANGUAGE FUNDAMENTALS

 String functions:

 is_numeric()  checking the given value is numeric value

 Rounding floating point numbers: round(), ceil() and floor()

42

if (is_numeric('five')) { /* false */ }

if (is_numeric(5)) { /* true */ }

if (is_numeric('5')) { /* true */ }

$number = round(2.4); // $number = 2

$number = ceil(2.4); // $number = 3

$number = floor(2.4); // $number = 2

PHP LANGUAGE FUNDAMENTALS

 Operating on a series of integers:

 range(): returns an array populated with integers

 Is similar to a for loop:

43

foreach(range($start,$end) as $i) {

echo “$i
”;

}

for ($i = $start; $i <= $end; $i += $increment) {

echo “$i
”; }

PHP LANGUAGE FUNDAMENTALS

 Generating random numbers within a range:

 use mt_rand(); function

 Calculating exponents:

44

// random number between $upper and $lower,

inclusive

$random_number = mt_rand($lower, $upper);

$exp = exp(2); // 7.3890560989307

$exp = pow(2, M_E); // 6.5808859910179

$pow = pow(2, 10); // 1024

PHP LANGUAGE FUNDAMENTALS

 Formatting numbers:

 Use the number_format(); function to format a number as integer

 Specify a number of decimal places to format as a decimal:

45

$number = 1234.56;

print number_format($number); // 1,235 because

number is rounded up

print number_format($number, 2); // 1,234.56

Thank You!

46

