
Chapter Four Connecting to Databases

Page 1 of 15

DMIoT

Unit Four

4. Connecting to Databases

4.1. Introduction

One of the reasons for PHP’s popularity as a Web scripting language is its support for a wide

range of relational database systems. This support makes it easy for Web developers to create

data-driven Web sites and to prototype new Web applications quickly and efficiently.

PHP supports more than fifteen different database engines, including Microsoft SQL Server,

IBM DB2, PostgreSQL, MySQL, and Oracle. Using database in applications helps us to:

Read/write data, Store more data, have better organized data, faster access to data, easier to

manipulate and relate data to other data.

Database: is a set of tables. We should have 1 database for 1 application.

Tables: is a set of rows and columns. It represents a single concept such as products, customers,

orders etc. We can create relationships among tables.

Columns: a set of data of single data type. Ex. FirstName, LastName, Email, Password etc.

columns have types such as strings, integers, float, date etc.

Rows: single record of data. Ex. “Abebe”, “Kebede”, “abe@gmail.com”, “password”

 Field: is the intersection of a row and a column. Ex. FirstName: ”Abebe”

Index: data structure on a table to increase look up speed.

Foreign key: table columns whose values references rows in another table. It is the foundation

of relational table.

PHP allows developers to interact with databases in two ways: by using a customized database

specific extension, or by using the database-neutral PHP Data Objects (PDO) extension. While

the PDO extension is more portable, many developers still find it preferable to use the native

database extension, especially when the native extension offers better performance or more

features than the PDO version.

Of the various database engines supported by PHP, the most popular one by far is MySQL. Both

PHP and MySQL are open-source.

Chapter Four Connecting to Databases

Page 2 of 15

DMIoT

3.1. Connect to a MySQL server/existing Database

PHP provides us different APIs to deal with MySQL server databases: mysql(Original MySQL),

mysqli(MySQL improved) and PDO(PHP Data Objects). The differences between these APIs

are shown on the table given below:

PHP database interactions in five steps:

✓ Create a database connection

✓ Perform Database query

✓ Use returned data if any

✓ Release returned data

✓ Close database connection

Creating a database connection:

Before we enable do anything with MySQL in PHP, we should first connect to the MySQL

server using specific connection variables. Connection variables consist of the following

common parameters, of which the first one is required while others are optional:-

✓ Host name: This is the name of the server. We can change to whatever host is acting as

MySQL server.

✓ User name: The root user of the system.

✓ User’s password:- This is encrypted written with the form for security.

The common function in PHP that uses for server connection is mysql_connect() or

mysqli_connect() function. This function has the following syntax:- mysql_connect

("hostname", "user", "pass") to connect with MySQL server. PHP provides mysql_connect

function to open a database connection. This function can take up to five parameters and returns

a MySQL link identifier on success, or FALSE on failure.

The five parameters are the three above and the two below options.

Chapter Four Connecting to Databases

Page 3 of 15

DMIoT

new_link

Optional - If a second call is made to mysql_connect() with the same

arguments, no new connection will be established; instead, the identifier of the

already opened connection will be returned.

client_flags

Optional - A combination of the following constants:

MYSQL_CLIENT_SSL - Use SSL encryption

MYSQL_CLIENT_COMPRESS - Use compression protocol

MYSQL_CLIENT_IGNORE_SPACE - Allow space after function names

MYSQL_CLIENT_INTERACTIVE - Allow interactive timeout seconds of

inactivity before closing the connection

Therefore, mysql_connect() function written as follows with respective parameters:-

 mysql_connect(server,username,passwd,new_link,client_flag);

There are also functions in PHP which have different purposes. For instance,

✓ mysql_select_db("database name") or mysqli_select_db(“connection”,"database

name") : Equivalent to the MySQL command USE; makes the selected database the

active one.

✓ mysql_query("query"): Used to send any type of MySQL command to the server.

✓ mysql_fetch_rows("results variable from query"): Used to return a row of the entire

results of a database query.

✓ mysqli_affected_rows():Print out affected rows from different queries:

✓ mysql_fetch_array("results variable from query"): Used to return several rows of the

entire results of a database query.

✓ mysql_free_result(“result variable from query”): Used to release the returned results.

✓ mysql_error(): Shows the error message that has been returned directly from the

MySQL server.

We issue this connection command with the PHP function called mysql_connect() or

mysqli_connect(). As with all of our PHP/MySQL statements, you can either put the information

into variables, or leave them as text in MySQL query as shown below:-:

 $host = “localhost”;

Chapter Four Connecting to Databases

Page 4 of 15

DMIoT

 $user = “root”;

 $pass = “”;

 $connect = mysql_connect($host, $user, $pass); Or simply $connect = mysql_connect(“localhost”, “root”, “”);

Or you can also use

 $connect=mysqli_connect($host, $user, $pass);

Choosing and Creating the working Database

After establishing a MySQL connection with the code above, you then need to choose which

database you will be using with this connection. This is done with the

mysql_select_db(“database-name”) or mysqli_select_db(“connection”,”databasename”)

function. If the database you are looking to work on is not available, you can create it using

mysql_query() or mysqli_query() function together with CREATE command followed by

database name. mysql_query function can take two parameters and returns TRUE on success or

FALSE on failure. The parameters are:- sql and connection. The syntax of the function is:-

mysql_query(sql, connection variable); or mysqli_query(connection variable,sql);

To create a database uses the following sql syntax:

CREATE DATABASE database_name

Example Using : mysql Example Using : mysqli

Chapter Four Connecting to Databases

Page 5 of 15

DMIoT

<?php

$connection=$mysql_connect("localhost", "root", "") ;

If($connection)

echo "Connected to MySQL
";

$sql=mysql_select_db("test");

If($sql){

 echo "Connected to Database";//display this message if

database is selected

}else{

 $result=mysql_query(“create database

test”,$connection);//create a database called test if not

available

If($result)

mysql_select_db("test");//select test database

else

 die(“Database not selected:”.mysql_error());

}

?>

mysql_close();//closing connection

<?php

$connection=$mysqli_connect("localhost", "root", "");

If($connection)

echo "Connected to MySQL
";

}else{

$result=mysqli_query($connection,“create database

test”);//create a database called test if not available

If($result)

mysqli_select_db($connection,"test")

else

die(“Database not

selected:”.mysql_error($connection));//select test

database

}

mysqli_close($connection);//closing connection

?>

Output:

Connected to MySQL

Connected to Database

✓ mysql_query ("create database test”,$connection): told MySQL to create a database

called test.

✓ die(mysql_error()); will print out an error if there is a problem in the database creation

process.

Closing Query

✓ When you are finished working with query results retrieved with the mysql_query() function,

use the mysql_free_result() function to close the resultset

✓ To close the resultset, pass to the mysql_free_result() function the

variable containing the result pointer from the mysql_query() function

Create Table MySQL

Before you enter data (rows) into a table, you must first define what kinds of data will be stored

(columns).This can be done using Create sql statement.

Chapter Four Connecting to Databases

Page 6 of 15

DMIoT

Syntax:

CREATE TABLE table_name (column_name1 data_type,column_name2 data_type,....)

We are now going to design a MySQL query to summon our table from database test.

Example Using : mysql Example Using : mysqli

<?php

// Make a MySQL Connection

 $server=”localhost”;

 $dbuser=”root”;

$dbpassword=””;

$dbname=”test”;

$connection=$mysql_connect($server,$dbuser,$dbpass

word);

if($connection)

{

$sql=mysql_select_db($dbname);

If($sql)

{ // Create a MySQL table in the selected database

 $sql2="CREATE TABLE example(

id INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(id),

 name VARCHAR(30), age INT)";

$result=mysql_query($sql2,$connection);

 If($result)

 echo "Table Created!";

 else

 die(“Table Creation failed:”.mysql_error());

}else{

 die(“Database selection failed:”.mysql_error());

}

}else{

die(“Mysql server Connection Failed:”.mysql_error());

}

mysql_close();//closing connection

?>

<?php

// Make a MySQL Connection

 $server=”localhost”;

 $dbuser=”root”;

$dbpassword=””;

$dbname=”test”;

$connection=$mysqli_connect($server,$dbuser,$dbpass

word,$dbname);

if($connection)

{ // Create a MySQL table in the selected database

 $sql2="CREATE TABLE example(

id INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(id),

 name VARCHAR(30), age INT)";

$result=mysqli_query($connection,$sql2);

 If($result)

 echo "Table Created!";

 else

 die(“Table Creation

failed:”.mysqli_error($connection));

}else{

die(“Mysql server Connection

Failed:”.mysqli_error($connection));

}

mysqli_close($connection);//closing connection

?>

Chapter Four Connecting to Databases

Page 7 of 15

DMIoT

3.2. Send/Insert Data to a Database

When data is put into a MySQL table it is referred to as inserting data. When inserting data it is

important to remember the exact names and types of the table's columns. If you try to place a 500

word essay into a column that only accepts integers of size three, you will end up with errors.

Inserting data into a table can be performed using Insert into sql statement.

Syntax:

INSERT INTO table_name VALUES (value1, value2, value3,...) Or

INSERT INTO table_name (column1, column2,...) VALUES (value1, value2,...)

<html><style>

#style{ display:block;

 width:220px;

 height:120px;

 border:1px solid black;

 line-height:30px;

}

#style p{

 margin-left:20px;

 margin-right:20px;

}</style><body>

<?php

if(isset($_POST['submit']))

{

 //getting name and age from the user

 $name=$_POST['name'];

 $age=$_POST['age'];

 // Make a MySQL Connection

 $connection=mysql_connect("localhost", "root", "");

If($connection){

 $sql=mysql_select_db("test”);

 If($sql){

 // Insert a row of information into the table "example"

$sql2="INSERT INTO example(name, age) VALUES('$name', '$age') ";

$result=mysql_query($sql2,$connection) ;

Chapter Four Connecting to Databases

Page 8 of 15

DMIoT

If($result)

 echo "Data Inserted!";

 else

 die(“Data not inserted:”.mysql_error());

 } else

 die(“Database not selected:”.mysql_error());

}else{

 die(“Connection Failed:”.mysql_error());

 }

mysql_close();//closing connection

 ?>

<div id="style"><p><form action="" method="post">

Name:<input type="text" name="name" required="" placeholder="name">

Age:<input type="text" name="age" required="" placeholder="age">

<input type="submit" value="Submit" name="submit"><input type="reset" value="Reset">

</form></p></div></body></html>

If you want to use mysqli, replace mysql connection and data insertion by the following code:

// Make a MySQL Connection

 $connection=mysqli_connect("localhost", "root", "","test”);

If($connection){

 // Insert a row of information into the table "example"

$sql2="INSERT INTO example(name, age) VALUES('$name', '$age') ";

$result=mysqli_query($connection,$sql2) ;

If($result)

 echo "Data Inserted!";

 else

 die(“Data not inserted:”.mysqli_error($connection));

 } else

 die(“Database not selected:”.mysqli_error($connection));

}else{

 die(“Connection Failed:”.mysqli_error($connection));

 }

mysqli_close($connection);//closing connection

 ?>

Chapter Four Connecting to Databases

Page 9 of 15

DMIoT

3.3. Retrieve Data from a Database

Usually most of the work done with MySQL involves pulling down data from a MySQL

database. In MySQL, data is retrieved with the "SELECT" keyword. Think of SELECT as

working the same way as it does on your computer. If you want to copy some information in a

document, you would first select the desired information, then copy and paste.

Before attempting to retrieve data, be sure that you have created a table that contains some data.

In this example, we will output the first entry of our MySQL "examples" table to the web

browser.

The SELECT statement is used to select data from a database.

Syntax: SELECT column_name(s) FROM table_name

Example:

Example Using : mysql Example Using : mysqli

<?php

// Make a MySQL Connection

$connection=mysql_connect("localhost", "root", "");

If($connection){

 $sql=mysql_select_db("test");

 If($sql){

// Retrieving all records from "example" table

 $sql2="select * from example";

 $result=mysql_query($sql2,$connection) ;

 If($result){//Displaying the values using a table

echo "<table border=1><tr><th>Id</th>";

echo "<th>Name</th><th>Age</th></tr>";

 While($row=mysql_fetch_array($result))

 { echo "<tr><td>".$row['id']."</td>";

 echo "<td>".$row['name']."</td>";

 echo "<td>".$row['age']."</td></tr>";

 }

 echo "</table>";

 }else

 die("Record Not Selected:".mysql_error());

 } else

 die("Database not

<?php

// Make a MySQL Connection

$connection=mysqli_connect("localhost", "root", "","test”);

If($connection){

/ Retrieving all records from "example" table

 $sql=”select * from example ";

 $result=mysqli_query($connection,$sql) ;

 If($result){

//Displaying the values using a table

echo “<table border=1><tr><th>Id</th>”;

echo “<th>Name</th><th>Age</th></tr>”;

 While($row=mysqli_fetch_assoc($result))

 {

 echo “<tr><td>”.$row[‘id’].”</td>”;

 echo “<td>”.$row[‘name’].”</td>”;

 echo “<td>”.$row[‘age’].”</td></tr>”;

 }

 echo “</table>”;

 }else

 die(“Record Not Selected:”.mysqli_error($connection));

 }else{

 die(“Connection Failed:”.mysqli_error($connection));

Chapter Four Connecting to Databases

Page 10 of

15

DMIoT

selected:".mysql_error());

 }else{

 die("Connection Failed:".mysql_error());

 }

?>

 }

mysqli_close($connection);//closing connection

?>

Output:

When you select items from a database using mysql_query, the data is returned as a MySQL

result. Since we want to use this data in our table we need to store it in a variable. $result now

holds the result from our mysql_query.

The mysql_fetch_array function gets the next-in-line associative/numeric array from a MySQL

result. The mysql_fetch_row function gets the next-in-line numeric array from a MySQL result.

The mysqli_fetch_assoc function gets the next-in-line associative array from a MySQL result.

By putting it in a while loop it will continue to fetch the next array until there is no next array to

fetch. This function can be called as many times as you want, but it will return FALSE when the

last associative array has already been returned.

By placing this function within the conditional statement of the while loop,

✓ We can retrieve the next associative array from our MySQL Resource, $result, so that we

can print out the id, name and age of that person.

✓ We can tell the while loop to stop printing out information when the MySQL Resource

has returned the last array, as False is returned when it reaches the end and this will cause

the while loop to halt.

In our MySQL table "example" there are only three fields: id, name and age. These fields are the

keys to extracting the data from our associative array. To get the id, name and age we use

$row[‘id’], $row['name'] and $row['age'] respectively. The html table tag is used to let the output

look better. The above select statement retrieves everything from the example table. If you want

to retrieve specific record, you can use where clause in the select statement. For example:

mysql_query(“select * from example where id=1”);

Chapter Four Connecting to Databases

Page 11 of

15

DMIoT

3.4. Modify/Updating Existing Data

Imagine that you have a MySQL table that holds the information of all the employees in your

company. One of the columns in this table is called "Seniority" and it holds an integer value of

how many months an employee has worked at your company. Unfortunately for you, your job is

to update these numbers every month.

You may be thinking that you'll have to open up your MySQL administration tool and edit each

entry by hand. That would take hours. On the other hand, you could master MySQL and have an

automated script that you run each month to get the job done for you.

The UPDATE statement is used to update existing records in a table.

Syntax

UPDATE table_name SET column1=value, column2=value2,... WHERE some_column=some_value

Example: In the example table we have 4 records. The person whose has an id number of 4 is

turned to 17. So change the persons age accordingly.

Example Using : mysql Example Using : mysqli

<?php

// Make a MySQL Connection

$connection=mysql_connect("localhost", "root", "");

If($connection){

 $sql=mysql_select_db("test");

 If($sql){

// Updating record

 $sql2=" update example set age=17 where id=4 ";

 $result=mysql_query($sql2,$connection) ;

 If($result){

 echo “Age successfully updated!”;

 }else

 die("Record Not updated:".mysql_error());

 } else

 die("Database not selected:".mysql_error());

 }else{

 die("Connection Failed:".mysql_error());

 }

<?php

// Make a MySQL Connection

$connection=mysqli_connect("localhost", "root", "","test”);

If($connection){

// Updating record

 $sql=”update example set age=17 where id=4 ";

 $result=mysqli_query($connection,$sql) ;

 If($result){

 echo “Age successfully updated!”;

 }else

 die(“Record Not Updated:”.mysqli_error($connection));

 }else{

 die(“Connection Failed:”.mysqli_error($connection));

 }

mysqli_close($connection);//closing connection

?>

Chapter Four Connecting to Databases

Page 12 of

15

DMIoT

?>

Output:

Age successfully updated!

In the above example:

✓ UPDATE - Performs an update MySQL query

✓ SET - The new values to be placed into the table follow SET

✓ WHERE - Limits which rows are affected

3.5. Remove Existing Data

Maintenance is a very common task that is necessary for keeping MySQL tables current. From

time to time, you may even need to delete items from your database. Some potential reasons for

deleting a record from MySQL include when: someone deletes a post from a forum.

The DELETE query is very similar to the UPDATE Query. We need to choose a table, tell

MySQL to perform the deletion, and provide the requirements that a record must have for it to be

deleted.

Syntax:

DELETE from table_name where column_name comparison_operator value

For example: delete all records in which age is below 18.

Example Using : mysql Example Using : mysqli

<?php

// Make a MySQL Connection

$connection=mysql_connect("localhost", "root", "");

If($connection){

 $sql=mysql_select_db("test");

 If($sql){

// deleting records

 $sql2="delete from example where age<18 ";

 $result=mysql_query($sql2,$connection) ;

 If($result){

 echo “Records Deleted!”;

<?php

// Make a MySQL Connection

$connection=mysqli_connect("localhost", "root", "","test”);

If($connection){

// Updating records

 $sql=” delete from example where age<18";

 $result=mysqli_query($connection,$sql) ;

 If($result){

 echo “Records Deleted!”;

 }else

 die(“Record Not Deleted:”.mysqli_error($connection));

http://www.tizag.com/mysqlTutorial/mysqlupdate.php

Chapter Four Connecting to Databases

Page 13 of

15

DMIoT

 }else

 die("Record Not deleted:".mysql_error());

 } else

 die("Database not selected:".mysql_error());

 }else{

 die("Connection Failed:".mysql_error());

 }

?>

 }else{

 die(“Connection Failed:”.mysqli_error($connection));

 }

mysqli_close($connection);//closing connection

?>

Output:

Records Deleted!

3.6. Data base security using server side scripting

Nowadays, databases are cardinal components of any web based application by enabling

websites to provide varying dynamic content. Since very sensitive or secret information can be

stored in a database, you should strongly consider protecting your databases.

To retrieve or to store any information you need to connect to the database, send a legitimate

query, fetch the result, and close the connection.

Encryption in PHP

Once an attacker gains access to your database directly (bypassing the web server), stored

sensitive data may be exposed or misused, unless the information is protected by the database

itself. Encrypting the data is a good way to mitigate this threat, but very few databases offer this

type of data encryption.

The easiest way to work around this problem is to first create your own encryption package, and

then use it from within your PHP scripts. PHP provides us with different types of encryptions

such as: md5, sha1, hash, crypt, hashed_password etc.

Example:

<?php

$pass="12345678";

echo "md5 encryption $pass=".md5($pass)."
";

echo "sha1 encryption $pass=".sha1($pass)."
";

echo "hash encryption $pass=".hash('sha1',$pass)."
";

Chapter Four Connecting to Databases

Page 14 of

15

DMIoT

echo "crypt encryption $pass=".crypt($pass,$salt);

?>

Output:

md5 encryption 12345678=25d55ad283aa400af464c76d713c07ad

sha1 encryption 12345678=7c222fb2927d828af22f592134e8932480637c0d

hash encryption 12345678=7c222fb2927d828af22f592134e8932480637c0d

crypt encryption 12345678=1.90.tj5.$CG0sUopGFc1ADWxBqDjPu.

In the above example, the salt parameter is optional. However, crypt () creates a weak password

without the salt. Make sure to specify a strong enough salt for better security.

SQL Injection

SQL injection attacks are extremely simple to defend against, but many applications are still

vulnerable. Consider the following SQL statement:

<?php

$sql = "INSERT INTO users (reg_username,reg_password,reg_email) VALUES ('{$_POST['reg_username']}',

'$reg_password', '{$_POST['reg_email']}')";

?>

This query is constructed with $_POST, which should immediately look suspicious.

Assume that this query is creating a new account. The user provides a desired username and an

email address. The registration application generates a temporary password and emails it to the

user to verify the email address. Imagine that the user enters the following as a username:

bad_guy', 'mypass', ''), ('good_guy

This certainly doesn't look like a valid username, but with no data filtering in place, the

application can't tell. If a valid email address is given (shiflett@php.net, for example),

and 1234 is what the application generates for the password, the SQL statement becomes the

following:

<?php

$sql = "INSERT INTO users (reg_username,reg_password,reg_email) VALUES ('bad_guy', 'mypass', ''),

('good_guy','1234',

 'shiflett@php.net')";

?>

Chapter Four Connecting to Databases

Page 15 of

15

DMIoT

Rather than the intended action of creating a single account (good_guy) with a valid email

address, the application has been tricked into creating two accounts, and the user supplied every

detail of the bad_guy account.

While this particular example might not seem so harmful, it should be clear that worse things

could happen once an attacker can make modifications to your SQL statements.

For example, depending on the database you are using, it might be possible to send multiple

queries to the database server in a single call. Thus, a user can potentially terminate the existing

query with a semicolon and follow this with a query of the user's choosing.

MySQL, until recently, does not allow multiple queries, so this particular risk is mitigated.

Newer versions of MySQL allow multiple queries, but the corresponding PHP extension

(ext/mysqli) requires that you use a separate function if you want to send multiple queries

(mysqli_multi_query() instead of mysqli_query()). Only allowing a single query is safer,

because it limits what an attacker can potentially do.

Protecting against SQL injection is easy:

✓ Filter your data: This cannot be overstressed. With good data filtering in place, most

security concerns are mitigated, and some are practically eliminated.

✓ Quote your data: If your database allows it (MySQL does), put single quotes around all

values in your SQL statements, regardless of the data type.

✓ Escape your data: Sometimes valid data can unintentionally interfere with the format of

the SQL statement itself. Use mysql_escape_string() or mysqli_real_escape_string() an

escaping function native to your particular database. If there isn't a specific

one, addslashes() is a good last resort.

