
1

Chapter – Four

Requirement Validation (RV)

Requirement Validation is a process of ensuring the specified requirements meet the

customer needs. It’s concerned with finding problems with the requirements.

Objectives of Validation

 Certifies that the requirements document is an acceptable description of the system to be

implemented

 Checks a requirements document for:

 Completeness and consistency

 Conformance to standards

 Requirements conflicts

 Technical errors

 Ambiguous requirements

Quality Assurance

The act of reviewing and auditing the project deliverables and activities to verify that they comply

with the applicable standards, guidelines, and processes adopted by your organization is called

quality assurance. Fundamentally, quality assurance attempts to answer the following questions:

"Are you building the right thing?" and "Are you building it the right way?" Perhaps a more

effective question to ask would be "Can we build this a better way?" because it would provide

valuable feedback that developers could use to improve the way that they work.

A key concept in quality assurance is that quality is often in the eye of the beholder, indicating

many aspects exist to software quality, including the following:

 Does it meet the needs of its users?

 Does it provide value to its stakeholders?

 Does it follow relevant standards?

 Is it easy to use by its intended users?

2

 Is it reasonably free of defects?

 Is it easy to maintain and to enhance?

 How easy will it integrate into the current technical environment?

Types of Validation Checks

 During the requirements validation process, different types of checks should be carried out

on the requirements.

 These checks include:

 Validity checks: The functions proposed by stakeholders should be aligned with what the

system needs to perform. You may find later that there are additional or different functions

are required instead.

 Consistency checks: Requirements in the document shouldn’t conflict or different

description of the same function

 Completeness checks: The document should include all the requirements and constrains.

 Realism checks: Ensure the requirements can actually be implemented using the

knowledge of existing technology, the budget, schedule, etc.

 Verifiability: Requirements should be written so that they can be tested. This means you

should be able to write a set of tests that demonstrate that the system meets the specified

requirements.

Analysis Validation

 Analysis works with raw requirements as elicited from the system stakeholders

 “Have we got the right requirements” is the key question to be answered at this

stage

 Validation works with a final draft of the requirements document i.e. with negotiated and

agreed requirements

 “Have we got the requirements right” is the key question to be answered at this

stage

3

Validation Inputs and Outputs

Validation inputs

 Requirements document

 Should be a complete version of the document, not an unfinished draft. Formatted

and organised according to organisational standards

 Organisational knowledge

 Knowledge, often implicit, of the organisation which may be used to judge the

realism of the requirements

 Organisational standards

 Local standards e.g. for the organisation of the requirements document

Validation Outputs

 Problem list

 List of discovered problems in the requirements document

 Agreed actions

 List of agreed actions in response to requirements problems.

 Some problems may have several corrective actions; some problems may have no

associated actions

List of problems

Agreed actions

Requirements
document

Organisational
standards

Organisational
knowledge

Requirements
validation

4

Requirements Reviews

 A group of people read and analyse the requirements, look for problems, meet and discuss

the problems and agree on actions to address these problems

Figure: Requirements Review Process

Review Activities

 Plan review

 The review team is selected and a time and place for the review meeting is chosen.

 Distribute documents

 The requirements document is distributed to the review team members

 Prepare for review

 Individual reviewers read the requirements to find conflicts, omissions,

inconsistencies, deviations from standards and other problems.

 Hold review meeting

 Individual comments and problems are discussed and a set of actions to address the

problems is agreed.

 Follow-up actions

 The chair of the review checks that the agreed actions have been carried out.

 Revise document

Plan review
Distribute
documents

Prepare for
review

Hold review
meeting

Follow-up
actions

Revise
document

5

 The requirements document is revised to reflect the agreed actions. At this stage, it

may be accepted or it may be re-reviewed

Problem Actions

 Requirements clarification

 The requirement may be badly expressed or may have accidentally omitted

information which has been collected during requirements elicitation.

 Missing information

 Some information is missing from the requirements document. It is the

responsibility of the requirements engineers who are revising the document to

discover this information from system stakeholders.

 Requirements conflict

 There is a significant conflict between requirements. The stakeholders involved

must negotiate to resolve the conflict.

 Unrealistic requirement

 The requirement does not appear to be implementable with the technology available

or given other constraints on the system. Stakeholders must be consulted to decide

how to make the requirement more realistic.

Pre-Review Checking

 Reviews are expensive because they involve a number of people spending time reading

and checking the requirements document

 This expense can be reduced by using pre-review checking where one person checks the

document and looks for straightforward problems such as missing requirements, lack of

conformance to standards, typographical errors, etc.

 Document may be returned for correction or the list of problems distributed to other

reviewers

6

Figure: Pre-review Checking

Review Team Membership

 Reviews should involve a number of stakeholders drawn from different backgrounds

 People from different backgrounds bring different skills and knowledge to the

review

 Stakeholders feel involved in the RE process and develop an understanding of the

needs of other stakeholders

 Review team should always involve at least a domain expert and an end-user

Review Checklists

 Understandability

 Can readers of the document understand what the requirements mean?

 Redundancy

 Is information unnecessarily repeated in the requirements document?

 Completeness

 Does the checker know of any missing requirements or is there any information

missing from individual requirement descriptions?

 Ambiguity

Are the requirements expressed using terms which are clearly defined? Could readers from

different backgrounds make different interpretations of the requirements?

 Consistency

 Do the descriptions of different requirements include contradictions? Are there

contradictions between individual requirements and overall system requirements?

 Organisation

Requirements
document

Problem report

Check
document

completeness

Check document
against

standards

Check document
structure

Run
automatic
checkers

7

 Is the document structured in a sensible way? Are the descriptions of requirements

organised so that related requirements are grouped?

 Conformance to standards

 Does the requirements document and individual requirements conform to defined

standards? Are departures from the standards, justified?

 Traceability

 Are requirements unambiguously identified, include links to related requirements

and to the reasons why these requirements have been included?

Checklist Questions

 Is each requirement uniquely identified?

 Are specialised terms defined in the glossary

 Does a requirement stand on its own or do you have to examine other requirements to

understand what it means?

 Do individual requirements use the terms consistently

 Is the same service requested in different requirements? Are there any contradictions in

these requests?

 If a requirement makes reference to some other facilities, are these described elsewhere in

the document?

 Are related requirements grouped together? If not, do they refer to each other?

Requirements Problem Example

“4. EDDIS will be configurable so that it will comply with the requirements of all UK and (where

relevant) international copyright legislation. Minimally, this means that EDDIS must provide a

form for the user to sign the Copyright Declaration statement. It also means that EDDIS must keep

track of Copyright Declaration statements which have been signed/not-signed. Under no

circumstances must an order be sent to the supplier if the copyright statement has not been signed.”

Problems

 Incompleteness

 What international copyright legislation is relevant?

 What happens if the copyright declaration is not signed?

 If a signature is a digital signature, how is it assigned?

8

 Ambiguity

 What does signing an electronic form mean? Is this a physical signature or a digital

signature?

 Standards

 More than 1 requirement. Maintenance of copyright is one requirement; issue of

documents is another

Prototyping

The user interface (UI) of an application is the portion the user directly interacts with: screens,

reports, documentation, and your software support staff. A user interface prototype is a user

interface that has been "mocked up" using a computer language or prototyping tool, but it does not

yet implement the full system functionality.

A prototype walkthrough is a testing process in which your users work through a series of usage

scenarios to verify that a user prototype meets their needs. It is basically usage scenario testing

applied to a user interface prototype instead of a domain model. The basic idea is that your users

pretend the prototype is the real application and try to use it to solve real business problems

described by the scenarios. Granted, they need to use their imaginations to fill in the functionality

the application is missing (such as reading and writing objects from/to permanent storage), but, for

the most part, this is a fairly straightforward process. Your users sit down at the computer and

begin to work through the use cases. Your job is to sit there and observe them, looking for places

where the system is difficult to use or is missing features. In many ways, prototype walkthroughs

are a lot like user-acceptance tests, the only difference being you are working with the prototype

instead of the real system.

 Prototypes for requirements validation demonstrate the requirements and help stakeholders

discover problems

 Validation prototypes should be complete, reasonably efficient and robust. It should be

possible to use them in the same way as the required system

 User documentation and training should be provided

9

User-Interface Testing

UI testing is the verification that the UI follows the accepted standards chosen by your organization

and the UI meets the requirements defined for it. User- interface testing is often referred to as

graphical user interface (GUI) testing. UI testing can be something as simple as verifying that your

application "does the right thing" when subjected to a defined set of user-interface events, such as

keyboard input, or something as complex as a usability study where human-factors engineers

verify that the software is intuitive and easy to use.

Figure: Prototyping for Validation

Prototyping Activities

 Choose prototype testers

 The best testers are users who are fairly experienced and who are open-minded

about the use of new systems. End-users who do different jobs should be involved

so that different areas of system functionality will be covered.

 Develop test scenarios

 Careful planning is required to draw up a set of test scenarios which provide broad

coverage of the requirements. End-users shouldn’t just play around with the system

as this may never exercise critical system features.

 Execute scenarios

 The users of the system work, usually on their own, to try the system by executing

the planned scenarios.

 Document problems

 Its usually best to define some kind of electronic or paper problem report form

which users fill in when they encounter a problem.

Choose
prototype

testers

Document and extend prototype system

Develop
test

scenarios

Execute
scenarios

Document
problems

10

 User Manual Development

 Writing a user manual from the requirements forces a detailed requirements analysis and

thus can reveal problems with the document

 Information in the user manual

 Description of the functionality and how it is implemented

 Which parts of the system have not been implemented

 How to get out of trouble

 How to install and get started with the system

Model Validation/Reviews

A model review, also called a model walkthrough or a model inspection, is a validation technique

in which your modeling efforts are examined critically by a group of your peers. The basic idea is

that a group of qualified people, often both technical staff get together in a room to evaluate a

model or document. The purpose of this evaluation is to determine whether the models not only

fulfill the demands of the user community but also are of sufficient quality to be easy to develop,

maintain, and enhance. When model reviews are performed properly, they can have a large payoff

because they often identify defects early in the project, reducing the cost of fixing them

There are different "flavors" of model review. A requirements review is a type of model review in

which a group of users and/or recognized experts review your requirements artifacts. The purpose

of a user requirement review is to ensure your requirements accurately reflect the needs and

priorities of your user community and to ensure your understanding is sufficient from which to

develop software. Similarly an architecture review focuses on reviewing architectural models and

a design review focuses on reviewing design models. As you would expect the reviewers are often

technical staff.

 In general if you are going to hold a review, the following pointers should help you to make it

effective:

1. Get the right people in the review. You want people, and only those people, who know

what they are looking at and can provide valuable feedback. Better yet, include them in

your development efforts and avoid the review in the first place.

11

2. Review working software, not models. The traditional, near-serial development approach

currently favored within many organizations provides little else for project stakeholders to

look at during most of a project. However, because the iterative and incremental approach

of agile development techniques tightens the development cycle you will find that user-

acceptance testing can replace many model review efforts.

3. Stay focused. This is related to maximizing value: you want to keep reviews short and

sweet. The purpose of the review should be clear to everyone; for example, if it is a

requirements review do not start discussing database design issues. At the same time

recognize that it is okay for an informal or impromptu model review to "devolve" into a

modeling/working session as long as that effort remains focused on the issue at hand.

4. Understand that quality comes from more than just reviews. In application

development, quality comes from developers who understand how to build software

properly, who have learned from experience, and/or who have gained these skills from

training and education. Reviews help you to identify quality deficits, but they will not help

you build quality into your application from the outset. Reviews should be only a small

portion of your overall testing and quality strategy.

5. Set expectations ahead of time. The expectations of the reviewers must be realistic if the

review is to run smoothly. Issues that reviewers should be aware of are

o The more detail a document has, the easier it is to find fault.

o With an evolutionary approach your models are not complete until the software is

ready to ship.

o Agile developers are likely to be traveling light and therefore their documentation

may not be "complete" either.

o The more clearly defined a position on an issue, the easier it is to find fault.

o Finding many faults may often imply a good, not a bad, job has been performed.

o The goal is to find gaps in the work, so they can be addressed appropriately.

6. Understand you cannot review everything. You should prioritize your artifacts on a risk

basis and review those that present the highest risk to your project if they contain serious

defects.

7. Focus on communication. Reviews are vehicles for knowledge transfer, that they are

opportunities for people to share and discuss ideas. However, working closely with your

co-workers and project stakeholders while you are actually modeling is even more effective

12

for this purpose than reviews. This philosophy motivates agile developers to avoid formal

reviews, due to their restrictions on how people are allowed to interact, in favor of other

model validation techniques.

8. Put observers to work. People will often ask to observe a review either to become trained

in the review process or to get updated on the project.

 Objectives of model validation

 To demonstrate that each model is self-consistent

 If there are several models of the system, to demonstrate that these are internally

and externally consistent

 To demonstrate that the models accurately reflect the real requirements of

system stakeholders

 Some checking is possible with automated tools

 Paraphrasing the model is an effective checking technique

Figure: Data-flow diagram for Issue

Paraphrased Description

Check
user

Check
item

Issue item

User details

User status

Item status

Issued item

Update details

Library card

Requested item

13

Requirements Testing

 Each requirement should be testable i.e. it should be possible to define tests to check

whether or not that requirement has been met.

 Inventing requirements tests is an effective validation technique as missing or ambiguous

information in the requirements description may make it difficult to formulate tests

 Each functional requirement should have an associated test

Test cases

 What usage scenario might be used to check the requirement?

 Does the requirement, on its own, include enough information to allow a test to be defined?

 Is it possible to test the requirement using a single test or are multiple test cases required?

 Could the requirement be re-stated to make the test cases more obvious?

Test record form

 The requirement’s identifier

 There should be at least one for each requirement.

 Related requirements

 These should be referenced as the test may also be relevant to these requirements.

Check user

Inputs and sources User’s library card from end-user

Transformation function Checks that the user is a valid library

user

Transformation outputs The user’s status

Control information User details from the database

Check i tem

Inputs and sources The user’s status from Check user

Transformation function Checks if an item is available for issue

Transformation outputs The item’s status

Control information The availability of the item

Issue i tem

Inputs and sources None

Transformation function Issues an item to the library user. Items

are stamped with a return date.

Transformation outputs The item issued to the end user

Database update details

Control information Item status - items only issued if

available

14

 Test description

 A brief description of the test and why this is an objective requirements test. This

should include system inputs and corresponding outputs.

 Requirements problems

 A description of problems which made test definition difficult or impossible.

 Comments and recommendations

 These are advice on how to solve requirements problems which have been

discovered.

Requirements test form

Requirements tested: 10.(iv)

Related requirements: 10.(i), 10.(ii), 10.(iii),
10.(vi), 10. (vii)

Test applied: For each class of user, prepare
a login script and identify the services expected
for that class of user.

The results of the login should be a web page
with a menu of available services.

Requirements problems: We don't know the
different classes of EDDIS user and the
services which are available to each user class.
Apart from the administrator, are all other
EDDIS users in the same class?

Recommendations: Explicitly list all user
classes and the services which they can access.

15

Hard-to-test Requirements

 System requirements

 Requirements which apply to the system as a whole. In general, these are the most

difficult requirements to validate irrespective of the method used as they may be

influenced by any of the functional requirements. Tests, which are not executed,

cannot test for non-functional system-wide characteristics such as usability.

 Exclusive requirements

 These are requirements which exclude specific behaviour. For example, a

requirement may state that system failures must never corrupt the system database.

It is not possible to test such a requirement exhaustively.

 Some non-functional requirements

 Some non-functional requirements, such as reliability requirements, can only be

tested with a large test set. Designing this test set does not help with requirements

validation.

Key points

 Requirements validation should focus on checking the final draft of the requirements

document for conflicts, omissions and deviations from standards.

 Inputs to the validation process are the requirements document, organisational standards

and implicit organisational knowledge. The outputs are a list of requirements problems and

agreed actions to address these problems.

 Reviews involve a group of people making a detailed analysis of the requirements.

 Review costs can be reduced by checking the requirements before the review for deviations

from organisational standards. These may result from more serious requirements problems.

 Checklists of what to look for may be used to drive a requirements review process.

 Prototyping is effective for requirements validation if a prototype has been developed

during the requirements elicitation stage.

 Systems models may be validated by paraphrasing them. This means that they are

systematically translated into a natural language description.

 Designing tests for requirements can reveal problems with the requirements. If the

requirement is unclear, it may be impossible to define a test for it.

