
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Chapter Seven 

Introduction to Digital Electronics



8's 4's 2's 1's 

1 1 0 1 

1*8=8 1*4=4 0*2=0 1*1=1 

8 + 4 + 0 + 1 = 13 
 

 Number systems 
 

 
1.1. Decimal, binary, and hexadecimal numbers 

We all know the decimal number system. For example, 2019 means 2*1000 + 0*100 + 1*10 + 9*1. 
The numbers 2, 0, 1, 9 are called the digits of the number 2019. 

 
If we want to describe this mathematically, we will call the rightmost digit d0, the next digit d1, etc. If 
there are n digits: d0, d1, d2, ... dn-1, then the value v can be calculated by the formula 

𝑛−1 

v = ∑ 𝑑𝑖10𝑖 
𝑖=0 

In the example of 2019, we have d0 = 9, d1 = 1, d2 = 0, d3 = 2, n = 4. This gives v = 2019. 
 

10 is the base or radix of the number system. The reason why we are using ten as the radix is that 
this makes it easy to use our ten fingers for counting. The name decimal comes from Latin decem 
which means ten. The word digit means finger. 

 
If we use a number system with radix r then the above formula becomes 

𝑛−1 

v = ∑ 𝑑𝑖𝑟 𝑖 
𝑖=0 

For example, if the radix r is sixteen then 2019 does not mean two thousand and nineteen. Instead 
the value becomes 

 
2019(base 16) = 9*160 + 1*161 + 0*162 + 2*163 = 8217(base 10). 

 
 

1.1.1. Binary numbers 
Computers do not have ten fingers so the decimal number system is not the most efficient system to 
use in computers. Instead, the binary system with radix 2 is used. For example,  
1101(base 2) = 1*20 + 0*21 + 1*22 + 1*23 = 13(base 10). The rightmost digit is the least significant 
digit with 
the worth 20 = 1. We can call the least significant the 1's, the next digit from the right is the 2's. Next  
comes the 4's, the 8's, etc. The calculation is illustrated in this table: 

 
 
 
 
 
 
 
 

 
 
 
 
Each digit in a binary number can have only two different values: 0 and 1. These are conveniently 
represented in an electrical wire as two different voltages. The lower of the two voltages represents 0 
and the higher voltage represents 1. For example, we may choose 0V and 5V for the numbers 0 and 
1, respectively. A binary number with four digits, as in the example above, can be represented by four 
wires, where each wire has either 0V or 5V. 
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Digit Value 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

A 10 

B 11 

C 12 

D 13 

E 14 

F 15 
 

 
 

 
A binary digit is also called a bit. A bit can be 0 or 1. This is the smallest piece of information that you  
can store in any system. 

 
 

1.1.2. Hexadecimal numbers 
The hexadecimal number system has radix 16. The sixteen possible digits are written as this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For example 4AD1(base 16) = 1*160 + 13*161 + 10*162 + 4*163 = 19153(base 10). 

 
The hexadecimal system is often used as a short way to represent binary numbers with many digits. 
Each hexadecimal digit corresponds to four binary digits, because 16 = 24. For example, the binary 

number 0100101011010001(base 2) is easily converted to the hexadecimal number 4AD1(base 16) by 
dividing the bits into groups of four: 

 
 
 

0100 1010 1101 0001 

︸ ︸ ︸ ︸ 

4 A D 1 
 
 

1.2. Conversion from another number system to decimal 
There are two convenient ways to convert from any other number system to decimal. The first method 
starts with the rightmost digit (least significant digit) and multiplies by powers of the radix. We used 
this method above to convert the number 4AD1 from hexadecimal to decimal: 

 
4AD1(base 16) = 1*160 + 13*161 + 10*162 + 4*163 = 19153(base 10). 

 
The second method starts with the leftmost digit (most significant digit). Multiply the leftmost digit by 
the radix. Add the next digit. Multiply the result by the radix. Add the next digit, and so on. Stop after  
adding the last digit. Do not multiply by the radix after adding the last digit. 
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Number Division Fraction Remainder 

19153 3 
19153 / 16 = 4, remainder 2769 4 2769 

2769 2 
2769 / 16 = 10, remainder 209 10 209 

209 1 
209 / 16 = 13, remainder 1 13 1 

1 0 1 / 16 = 1, remainder 0   
1 0 

 

Number Division Fraction Remainder 

19153 19153 / 16 = 1197, remainder 1 1197 1 

1197 1197 / 16 = 74, remainder 13 74 13 

74 74 / 16 = 4, remainder 10 4 10 

4 4 / 16 = 0, remainder 4 0 4 
 

 
 

 
If we apply this method to the same example, we get: 

 
4AD1(base 16) = ((4 * 16 + 10) * 16 + 13) * 16 + 1 = 19153(base 10). 

 
The second method is convenient to use with a pocket calculator. 

 
 

1.3. Conversion from decimal to another number system 
There are also two ways to convert from decimal to another number system. The first method gives 
the rightmost digit (least significant digit) first: Divide the number repeatedly by the radix and get the 
integer part of each result. Save the remainders from each division. The remainders represent the 
converted number with the least significant digit first. This method is illustrated with the same 
example as above: 

 
Convert 19153 from decimal to hexadecimal: 

 
 
 
 
 
 
 
 

 
You get the result from the remainders in reverse order: 4 : 10 : 13 : 1 gives 4AD1(base 16). 

 
The second method gives the leftmost digit (most significant digit) first: Find the highest power of the 
radix that is not bigger than the number you want to convert. Divide by the highest power of the radix 
first. The result of the first division is the most significant digit of the result. Divide the remainder by 
the next lower power of the radix, and so no. Our example gives these results: 

 
Convert 19153 from decimal to hexadecimal: 

 
 
 
 
 
 
 
 
 
 

 
 
You get the result from the fractions: 4 : 10 : 13 : 1 gives 4AD1(base 16). 

 
You can choose the method you think is most logical or easiest to remember.  

 
 

1.3.1. Conversion from hexadecimal to binary 
It is easy to convert a number from hexadecimal to binary. Just convert each hexadecimal digit to four 
bits. If any digit gives less than four bits then you must remember to put zeroes in front of the number 
to get four bits. 

 
Converting 4AD1 from hexadecimal to binary: 
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4 
↓ 

 
 

 
A 
↓ 

 
 

 
D 
↓ 

 
 

 
1 
↓ 

0100 1010 1101 0001 
 
 

0100 : 1010 : 1101 : 0001 gives 0100101011010001 = 100101011010001. 
 
 

1.3.2. Conversion from binary to hexadecimal 
To convert from binary to hexadecimal, you divide the bits into groups of four. If the number of bits is 
not divisible by four then add extra zeroes in front of the number. Remember that you can add zeroes 
to the left of the number without changing the value. You cannot add a zero to the right of the number 
because this would multiply the number by two. 

 
To convert 100101011010001 from binary to hexadecimal, we divide it into groups of four. The 
leftmost group has only three bits so we add a zero in the front: 

 
0100 1010 1101 0001 

︸ ︸ ︸ ︸ 

4 A D 1 

 
It is easier to write 4AD1 than 100101011010001 and it is easy to convert between these two number 
systems. This is the reason why hexadecimal numbers are often used in digital systems. 

 
It is convenient to use the hexadecimal representation as an intermediate if you want to convert from 
binary to decimal or from decimal to binary. The conversion: binary → hexadecimal → decimal is 
easier than binary → decimal. Likewise, the conversion: decimal → hexadecimal → binary is faster 
than decimal → binary because you need fewer divisions. 

 
 

1.4. Addition of binary numbers 
Addition of binary numbers goes the same way as for decimal numbers, as we learned at school. This 
example calculates 7 + 21, using binary numbers: 

 
 
 

111 

00111 

+10101 

11100 

7 

+21 

28 
 

 
In the example above, we start with the 1's place which is the rightmost column. 1 + 1 = 2. The 
number 2 in binary is 10, so we get zero and a carry which goes to the 2's place. The carries are 
indicated in red here. The second column from the right is the 2's place. Here we have 1+1+0 = 2. 
This gives a zero in the 2's place and a carry to the 4's place. The third column from the right is the 
4's place. Here we have 1+1+1 = 3. The binary code for 3 is 11, so we get 1 in the 4's place and a 

 
6



binary decimal 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 10 

1011 11 

1100 12 

1101 13 

1110 14 

1111 15 
 

 
 

 
carry to the 8's place. There are no more carries, so the result is 00111 + 10101 = 11100, or in 
decimal: 7 + 21 = 28. 

 
 
 

1.5. Signed binary numbers 
There are several different ways of representing negative numbers. Today, almost all computers use 
a system called two's complement for representing numbers that can be both positive and negative. 
We will explain this system shortly. 

 
A digital system typically has a fixed number of bits to represent a binary number. For example, if we 
have four bits, we can have the numbers from 0 to 15: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can add 1 by going one step down in this table. The maximum number we can have with four bits 
is 15. If we try to add 1 to 15 we get the binary number 10000. Since we have only four bits in this 
example, we will not see the extra bit, but only 0000. In other words, if we add 1 to 15 in a four-bit 
system we get an overflow and the result will be 0. Likewise, if we try to subtract 1 from 0 we get an 
underflow and we will see the result 15. 

 
This behavior is illustrated in the wheel on figure 1.1. You add one by going one step clockwise.  
When you pass 1111 (15) you will see the number overflow back to zero. The binary numbers are 
shown in black. The unsigned decimal numbers are shown in blue. 

 
The idea of the two's complement system is that we use the same number wheel with a fixed number 
of bits and ignore overflow and underflow. We can find the representation of -1 by subtracting 1 from 
0. This will underflow and give the bits 1111. Now, we define that 1111 means -1 instead of 15. We 
can find -2 by subtracting 1 from -1. This gives 1110 as the representation for -2. We will use the left 
half of the circle for negative numbers and the right half for positive numbers. We want to make it 
easy to distinguish between positive and negative numbers, so we decide that the leftmost bit is 1 for 
negative numbers and 0 for positive numbers. This bit is called the sign bit. Now, the positive 
numbers go from 1 to 7, and the negative numbers go from -1 to -8. There are eight negative 
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numbers but only seven positive numbers because the value zero also has the sign bit set to 0. The 
signed numbers are shown in red on the figure. 

 
The same bit pattern can be interpreted in two different ways now. The bit pattern 1111 means 15 if 
we interpret it as an unsigned number (blue numbers on the figure), but it means -1 if we interpret this 
bit pattern as a signed number (red numbers on the figure). The values from 0000 to 0111 are the 
same whether you use signed or unsigned numbers, while the values from 1000 to 1111 are 
interpreted differently for signed and unsigned numbers. Some computer programming languages, 
such as C and C++, allow you to specify whether a binary variable is interpreted as a signed or an 
unsigned number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.1. Two's complement number system 
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number of bits range for unsigned numbers range for signed numbers 

8 0 ... 255 -128 ... +127 

16 0 ... 65535 -32768 ... +32767 
32 0 ... 4294967295 -2147483648 ... 

+2147483647 

64 19 
0 ... 1.8∙10 

18              18 
-9.2∙10 ... +9.2∙10 

n n 
0 ... 2 -1 

n-1       n-1 
-2 ... +2 -1 

 

1001 We want to find out what this signed bit pattern means 

0110 Invert all bits 

0111 Add 1. This means 7. Therefore, 1001 means -7 
 

0101 Binary representation of 5 

1010 Invert all bits 

1011 Add 1. This is the representation of -5 
 

 
 

 
1.5.1. How to change the sign of a number 

You cannot change the sign of a number just by inverting the sign bit. The rule is that you change the 
sign of a number by inverting all bits and then add 1. For example, if you want to find the two's  
complement representation of -5, you first find the binary representation of 5. Then invert all bits and 
add 1: 

 
 
 
 
 
 
 

We can also use this rule to find the value of a bit pattern, for example 1001. The sign bit is 1 so it 
must be a negative number. We want to change the sign in order to find the corresponding positive 
number: 

 
 
 
 
 
 

 
1.5.2. The ranges of signed and unsigned n-bit numbers 

In the above example we used only four bits for the sake of simplicity. This gave us a quite limited 
range of possible values. Four bits gives us 24 = 16 different bit combinations, from 0000 to 1111. We 
can use these sixteen different bit combinations to represent either the unsigned numbers from 0 to 
15, or the signed numbers from -8 to +7. If we want higher numbers, then we need more bits. 

 
If we have eight bits then we have 28 = 256 different bit combinations, from 00000000 to 11111111. 
We can use these 256 different bit combinations to represent either the unsigned numbers from 0 to 
255, or the signed numbers from -128 to +127. 

 
In general, if we have n bits then we have 2n different bit combinations. We can use these 2n different 
bit combinations to represent either the unsigned numbers from 0 to 2n-1, or the signed numbers from 
-2n-1 to +2n-1-1. 

 
Modern computers typically use 8, 16, 32, or 64 bits for representing integer numbers. We can 
calculate the ranges using these formulas. 

 
 
 
 
 
 
 
 
 
 
 
 
 

1.6. Binary coded decimal numbers 
We prefer to use binary numbers in digital applications, but sometimes we have to use decimal  
numbers in order to make the numbers easier to read for humans. For example, we may want a 
decimal number on a display, or a human operator may enter a decimal number on a keyboard. We 
can represent a decimal number in a digital system by using four bits for each decimal digit. Four bits 
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gives us sixteen different combinations which is more than enough to represent the possible digits 
from 0 to 9. We are using only ten of the sixteen possible bit combinations. This method is called 
binary coded decimal numbers (BCD). 

 
If you need, for example, a display that can show the numbers from 000 to 999 then you need three 
groups of four wires each for the three digits. For example, the number 256 in binary code is 
100000000, while 256 in binary coded decimal is 0010 : 0101 : 0110. 

 
 

1.7. Exercises 

 
Exercise 1.1. 

 
The powers of 2 are used everywhere in digital systems. Write a table of the powers of 2 from 20 to 
210 in decimal, hexadecimal, and binary representation. 

 
Exercise 1.2. 

 
Convert these numbers from binary to decimal: 
1111 
1100100 

 
Exercise 1.3. 

 
Convert these numbers from decimal to binary: 
71 
1023 

 
Exercise 1.4. 

 
Convert these numbers from binary to hexadecimal: 
100100011 
1111000000001101 

 
Exercise 1.5. 

 
Convert the numbers in exercise 1.4 to decimal. Tip: It is easier to convert from hexadecimal to 
decimal than from binary to decimal. 

 
Exercise 1.6. 

 
Convert these numbers from hexadecimal to binary: 
2468 
ABCD 

 
Exercise 1.7. 

 
Find the sum of the numbers in exercise 1.4 by binary or hexadecimal addition. 

 
Exercise 1.8. 

 
How many different binary numbers can you write with: 
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4 bits 
5 bits 
n bits 

 
Exercise 1.9. 

 
Write the number -4 in two's complement representation for a binary system with 16 bits. 

 
Exercise 1.10. 

 
We want to build a digital thermometer that can show the temperature up to 200 °C without decimals. 

 
How many bits do we need to represent the temperature as a binary number if only positive 
temperatures can be shown? 

 
How many bits do we need to represent the temperature if the thermometer can also show negative 
temperatures, and the two's complement representation is used? 

 
How many bits do we need to represent the temperature in binary coded decimal (BCD) 
representation? 
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Operator Mathematics Software Engineering 

AND ∧ && A*B 

OR ∨ || A+B 

NOT ¬ ! A̅ 

 

A B A ∨ B A+B 

0 0 0 0 

0 1 1 1 

1 0 1 1 

1 1 1 2 
 

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

A B A AND B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

A NOT A 

0 1 

1 0 
 

 
 

 

2. Boolean algebra 
Boolean algebra is a branch of mathematics where variables can have only two possible values: false 
and true, or 0 and 1. The basic operations in Boolean algebra are AND, OR, and NOT. 

 
These operators are defined in the following tables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The AND operator gives 1 if both inputs are 1. The OR operator gives 1 if at least one input is 1. The 
NOT operator gives the opposite of the input. 

 
Different people use different symbols for these operators. Mathematicians use the symbols ∧ ∨ ¬ for 
AND, OR, NOT. Software programmers use && || ! in programming languages like C, Java, etc.  
 ngineers often write     as multiplication,    as addition, and   T as an overbar     . 

 
 
 
 
 
 
 
 

 
It is clear that Boolean AND is the same as multiplication if you look at the table for the AND 
operation. It is less obvious why engineers write A + B when they mean A OR B. The tables for OR 
and PLUS are slightly different: 

 
 
 
 
 
 
 
 
 
 

The reason why it is convenient to use the multiplication and addition signs for AND and OR is that 
the rules for multiplication and addition that we are used to from elementary algebra also apply to 
AND and OR in Boolean algebra, as we will see. We just have to remember that 1 + 1 = 1 when we 
are dealing with Boolean algebra. 

 
The normal rules for the precedence of operators apply. Multiplication comes before addition if there 
is no parenthesis: 
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A*0=0 A+1=1 

A*1=A A+0=A 

A*A=A A+A=A 

A * A̅ = 0 A + A̅ = 1 

A + A̅*B = A + B A * (A̅ + B) = A * B 

A̿ = A  

 

Name of law Boolean AND Boolean OR 

Commutative law A*B=B*A A+B=B+A 

Associative law A * (B * C) = (A * B) * C A + (B + C) = (A + B) + C 

Distributive law A * (B + C) = (A * B) + (A * C) A + (B * C) = (A + B) * (A + C) 
 

 
 

 
A + B * C = A + (B * C) 

 
This rule also applies if you use the other symbols ∧ ∨ or && ||. 

 
 

2.1. Laws and rules 
I am sure you have learned the basic rules of elementary algebra in school, even if you do not know 
the names of these rules: 

 
 
 
 
 
 
 
 

These laws are the same for elementary algebra and Boolean algebra, except the last one: 
A + (B * C) = (A + B) * (A + C) 

 
The latter law is valid for Boolean algebra, but not for elementary algebra. 

 
There are many other useful rules in Boolean algebra: 

 
 
 
 
 
 
 
 
 
 
 
 

These rules are easy to prove by inserting all possible values on the left hand side of the equation 
sign and see if you get the same values on the right hand side. 

 
One rule is particularly good to remember. It is called De Morgan's rule: 

 
𝐴   ∗ 𝐵  =         

 
𝐴   + 𝐵  =        

 
 

De Morgan's rule can be expressed more generally for any Boolean expression: You can invert the 
output of a Boolean expression by inverting all the inputs, replace all AND operations by OR, and 
replace all OR operations by AND. This rule is often used for simplifying digital circuits. 

 
All the tables above have two columns. The rules in the left column can be derived from the rules in 
the right column, or vice versa, by applying de Morgan's rule. Let's try this for the commutative law:  

 
A*B=B*A 

 efine   =    and   =   , and insert: 

        =         
 

Use de Morgen's rule on both sides: 

      
 
 =         
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A B C F = A * (B+C) sum of products expression 

0       0       0 0                       0 

0       0       1 0                       0 

0       1       0 0                       0 

0       1       1 0                       0 

1       0       0 0                       0 

1       0       1 1                     A*B̅*C 

1       1       0 1                     A*B*C̅ 

1       1       1 1                     A*B*C 

 

A B C F = A * (B+C) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
 

 
 

 
Invert on both sides 

 
X+Y=Y+X 

 
This is the result we want, just with different letters. 

 
 

2.2. Truth tables 
A truth table is a table of the value of a Boolean expression for all possible values of the inputs. For 
example, this is a table for the expression F = A * (B+C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Sometimes, you want to build a digital circuit with a given functionality that is defined only by a truth  
table. You can use the so-called sum-of-products method to find a Boolean expression that 
corresponds to a given truth table. This method works as follows: 

 
Find all the lines in the truth table for which the output is 1. Make one expression for each of these 
lines by AND'ing all the inputs and inverting those inputs that are 0 in that line. Each of these 
expressions is 1 in the corresponding line and 0 in the rest. The final result is the OR-combination of 
all these expressions. Let's try this method with the example above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ow we know that   =                        . 
 

This is called a sum of products, even though the * and + actually mean AND and OR. 
 

Now we have a valid expression for F, but not the simplest possible one. We may simplify this  
expression by using the laws and rules that we have learnt: 
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                        = 

                      = 

             1 = 

             = 

               = 

               = 
 

A * (B + C) 
 

If there are many 1's and few 0's in the output column, then it is easier to invert the output and apply 
the sum-of-products method to the inverted output. This gives a simpler expression, but we must 
remember to invert the result of the expression. We can use de Morgan's rule for converting the 
inverted sum of products to a "product of sums". 

 
 

2.3. Reducing a Boolean expression 
In the above example, we could reduce the expression by looking for common factors that we could 
put outside of a parenthesis. This may be hard, but at least you can do it in simple cases with a little 
practice. Unfortunately, some cases are so tricky that you basically have to know the result in 
advance in order to find a way to the result. I will give you one example here:  

  =                  
 

It is not obvious that this expression can be reduced, but look what happens when we use the rule 
       = 1: 

 
G= 
                 = 

             1     = 

                        = 

                            = 

                            = 

     1            1    = 

    1        1 = 

           
 

Pure magic! The term B*C just disappeared. This is not the way forward if we want to reduce Boolean 
expressions that may be more complicated than this example. There is a graphical method that 
makes this kind of reductions more intuitive. It is called a Karnaugh map (pronounced in French: Kar- 
nó map). The Karnaugh map shows geometrically that all input combinations covered by the term 
    in the above example are already covered by the two terms     and     . 
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(𝑋̅ + ̅̅ 

 
 

 
I will not teach you how to make a Karnaugh map because it takes some time and practice to learn, 
and it becomes quite difficult if there are more than four inputs. You may look up "Karnaugh map" on 
the web if you are interested. However, we have software that does the complicated job of finding the 
simplest possible expression for a given Boolean function. There is an online program at 
www.32x8.com that does the job. There is also an open source program called Karnaugh Map 
Minimizer that you can download from https://sourceforge.net/projects/k-map/. 

 
Today, complicated digital circuits are designed with the use of a hardware description language, 
such as VHDL or Verilog. There is not much need for learning how to make Karnaugh maps 
nowadays because the reduction of Boolean expressions comes automatically when you use such 
development tools. 

 
 
 

2.4. Exercises 
Exercise 2.1. 

 
The distributive law for Boolean algebra looks like this: 

 
A * (B + C) = (A * B) + (A * C) 

 
A + (B * C) = (A + B) * (A + C) 

 
Prove this by using truth tables. 

 
 

Exercise 2.2. 
 

Use the rules of Boolean algebra to reduce these expressions to the simplest possible: 
 

(1) 
 

(2) 
 

(3) 
 

(4) 
 

(5) 
 

(6) 

                      

             

        𝑌) ∗ (𝑋  + 𝑌 ) 

X*Y +                

                              

                          
 
 
 
 

Exercise 2.3. 
 

We want to implement a Boolean function F with the following truth table 
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Inputs output 

A B C D F 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Write the expression for F as a sum of products. 
 

Reduce the expression for F to the simplest possible by using the online program at www.32x8.com 
or the program "Karnaugh Map Minimizer" from https://sourceforge.net/projects/k-map. 
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3. Digital circuits 
 

 
3.1. How Boolean gates are made 

The Boolean operations AND and OR can be made with simple switches, as shown here: 
 

A 
 
 
 

A 

 
 
 

B 

 
 

B 

 
 

A*B 
 
 
 

ANDfunction: 
Thelampwill light whenAandBare 
bothon. 

 
 

A+B 
 
 
 
ORfunction: 
Thelampwill light whenat least one 
of AandBis on. 

Fig. 3.1. Boolean functions implemented with switches 
 
 

Two switches connected in series will produce the AND function. Two switches connected in parallel 
will produce the OR function. 

 
This principle is used in digital circuits, where the switches are replaced by transistors. MOSFET 
transistors are often used for this. The symbols for two kinds of MOSFET transistors are shown here: 

 
 

drain 

 

gate 

source 

N-channel MOSFET 

 
 

drain 

 

gate 

source 

P-channel MOSFET 

Fig. 3.2. N-channel and P-channel MOSFETs 
 
 

A MOSFET has three connections named drain, source, and gate. There is no current going through 
the gate, but the voltage on the gate controls the current that can go between drain and source. We 
can use this as a switch that can be turned on and off by changing the voltage on the gate. The N- 
channel MOSFET is turned on by a positive voltage on the gate relative to the source. The P-channel 
MOSFET is turned on by a negative voltage on the gate relative to the source. 

 
The simplest digital circuit we can make of MOSFET transistors is an inverter. Our inverter is made 
of 
a p-channel and an n-channel MOSFET: 
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Fig. 3.3. CMOS inverter 

 

 
If the input is high (for example 5V) then the p-channel MOSFET is off and the n-channel MOSFET 
is 
on. The n-channel MOSFET connects the output to ground to make it low. 

 
If the input is low (0V) then the p-channel MOSFET if on and the n-channel MOSFET is off. The p- 
channel MOSFET connects the output to the positive supply (5V) to make it high. 

 
The circuit in figure 3.3 can be used as an inverter because a high input gives a low output, and a low 
input gives a high output. 

 
Now, we can make logical circuits by connecting the MOSFET switches in series or parallel. Such a 
circuit is called a logical gate. Figure 3.4 shows an OR gate with inverted output, also called a NOR 
gate. 

 
If the inputs A and B are both low, then the n-channel MOSFETs will be off and the p-channel 
MOSFETs will be on. The output is connected to the V+ through the p-channel MOSFETs so that the 
output is high. 

 
If both inputs are high, then the n-channel MOSFETs will be on and the p-channel MOSFETs will be 
off. The output is connected to ground through the n-channel MOSFETs so that the output is low. 

 
If one of the inputs is high and the other is low, then the output will be low because one of the n- 
channel MOSFETs is on, and these are connected in parallel to ground. The output has no 
connection to V+ in this case because one of the p-channel MOSFETs is off, and these are 
connected in series to V+. 
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A B A NOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 0 
 

 
 

 
V+ 

 
 

A 
 
 

 
B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
n 

 
 
p 
 
 
 
 
p 
 
 
 
 

 
n 

 
 
 
 
 
 
 
 
 
 
 
A+B 

 
 
 
 

Fig. 3.4. CMOS NOR gate 
 

 
The truth table for the NOR gate is: 

 
 
 
 
 
 
 
 
 
 

We can make an OR gate from this NOR gate by putting an inverter after the output. 
 

Figure 3.5 shows an AND gate with inverted output, also called a NAND gate: 
 

If the inputs A and B are both low, then the n-channel MOSFETs will be off and the p-channel 
MOSFETs will be on. The output is connected to the V+ through the p-channel MOSFETs so that the 
output is high. 

 
If both inputs are high, then the n-channel MOSFETs will be on and the p-channel MOSFETs will be 
off. The output is connected to ground through the n-channel MOSFETs so that the output is low. 

 
If one of the inputs is high and the other is low, then the output will be high because one of the p- 
channel MOSFETs is on, and these are connected in parallel to V+. The output has no connection to 
ground in this case because one of the n-channel MOSFETs is off, and these are connected in series 
to ground. 
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A B A NAND B 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
 

 
 

 

V+ 
 
 

 

A 

 
 
 
 
p 

 
 
 
 
p 

 
 

A*B 

 
n 

 
 
 

n 

B 
 
 
 

Fig. 3.5. CMOS NAND gate 

 
The truth table for a NAND gate is: 

 
 
 
 
 
 
 
 
 
 

 
We can make an AND gate from this NAND gate by putting an inverter after the output. 

 
More complicated Boolean functions can be made by combining these circuits. 

 
 

3.2. Gate symbols 
 
 

The symbols for the different gates are shown in figure 3.6. An inverted connection is indicated by a 
bubble. The AND gate with inverted output is called a NAND gate. The OR gate with inverted output 
is called a NOR gate. 

An exclusive-or gate, also called an XOR gate, has a high output if one – and only one – of the inputs 

is high. The XOR operator is sometimes written as a circled plus: ⊕ 
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A B A*B A+B 𝑨̅̅̅   ∗̅̅̅̅̅𝑩̅̅  𝑨̅̅̅   +̅̅̅̅𝑩̅  A⊕B 

0 0 0 0 1 1 0 

0 1 0 1 1 0 1 

1 0 0 1 1 0 1 

1 1 1 1 0 0 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.6. Gate symbols 

 
The truth tables for the different gates are as follows: 

 
 
 
 
 
 
 
 
 
 
 

You can combine these gates to make any Boolean function. Figure 3.7 shows an example. Usually, 
we prefer to draw the inputs to the left and the outputs to the right. It is not necessary to draw the 
power supply to all the gates because this will only make the diagram more complicated without 
adding any important information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.7. Boolean function implemented with gates 
 
 

All the different gates are available as integrated circuits. For example, the integrated circuit 74HC00 
contains four NAND gates in an integrated circuit with 14 pins as shown in figure 3.8. Vcc is the 
positive supply voltage (+5V), and GND is ground (0V). 
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Fig. 3.8. Pin configuration of 74HC00 NAND gate 

 
Many different integrated circuits are available with different digital functions. You can connect these 
together to make more complex circuits. An output can be connected to more than one input, but an 
input cannot be connected to more than one output, because you will have a short circuit if one output 
is high and the other output is low. All inputs must be connected to either an output, ground, or to the 
positive supply. 

 
The inputs of MOSFET circuits are controlled by the voltage on the input, not the current. The current 
that goes through an input is negligible (< 1 nA). Therefore, it is necessary that all inputs are connec- 
ted to something with a known voltage. An input that is not connected to anything will be floating. 
This 
means that it has a random and unpredictable voltage. Even the smallest electromagnetic noise can 
make a floating input change erratically. 

 
MOSFET circuits should be handled with care because they are easily destroyed by electrostatic 
charges, for example if you touch them after walking on a synthetic carpet. 

 
In the next chapter, we will look at some circuits we can build with the different gates. 

 
 

3.1. 

 
 
Exercises 

 
Exercise 3.1. 

 raw a diagram with gates to implement the function   =               . 
 
 

Exercise 3.2. 
 

Change the diagram from exercise 3.1 so that it uses only NAND gates. Tip: Use De Morgan's rule to 
convert the OR to an AND. 

 
The integrated circuit 74HC00 contains four NAND gates. How many 74HC00 chips do you need to 
implement this function? 
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Exercise 3.3. 

 
A 

 

 
Y 

 
 

B 
 

Write the truth table for this function. 
 

Is there a simpler way to make the same function if all types of gates are available? 
 
 

Exercise 3.4. 
 

What is wrong with this circuit? What will happen? 
 

A 

B 
 
 
 

C 

D 
 
 
 

Exercise 3.5. 
 

What is wrong with this circuit? What will happen? 
 

Q 
 

 
X 

 

 
W 

Y 
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A2 A1 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 
 

      ̅ ̅̅̅ 

 
 

 

4. Commonly used Boolean circuits 
 

 
4.1. Decoders 

 
A decoder is a circuit that converts a binary number to some other code that requires more wires. A 
very common kind of decoder has one output for each possible combination of the inputs. For 
example, if you have three inputs then you have eight possible input combinations corresponding to 
the binary numbers from 0 to 7. We want one output for each of these eight combinations. The truth 
table looks like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can implement this truth table with AND gates and inverters. For example,  
𝑌2 = 𝐴0 ∗ 𝐴1 ∗ 𝐴2. 

 
A diagram for the three-to-eight decoder is shown on figure 4.1. 

 
You can have decoders of any size. If the decoder has n inputs then it can have 2n outputs. 
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A0 

 
 

 
A0 A0 A1 A1 A2 A2 

 
 
 
 
 
Y0 

 
 

Y1 

A1 

Y2 
 
 
 

A2 

 
 
Y3 

 
Y4 

 
 

Y5 
 
 

Y6 
 
 

Y7 
 

Fig. 4.1. Three to eight decoder 
 

 
4.2. Encoders 

An encoder is the opposite of a decoder. It has more inputs than outputs. For example, if you have a 
keyboard with many keys and the user is pressing one key, you want the key number as a binary 
code. 

 
The truth table for an encoder with eight inputs may look like this: 

 
A0 A1 A2 A3 A4 A5 A6 A7 Y2 Y1 Y0 

 
V 

0 
1 
x 
x 
x 
x 
x 
x 
x 

0 
0 
1 
x 
x 
x 
x 
x 
x 

0 
0 
0 
1 
x 
x 
x 
x 
x 

0 
0 
0 
0 
1 
x 
x 
x 
x 

0 
0 
0 
0 
0 
1 
x 
x 
x 

0 
0 
0 
0 
0 
0 
1 
x 
x 

0 
0 
0 
0 
0 
0 
0 
1 
x 

0 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
1 
1 
0 
0 
1 
1 

0 
0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
1 
1 
1 
1 
1 
1 
1 

 
 

A complete truth table with eight inputs would need 28 = 256 lines in the table. We have joined some 
of the lines together to save space by writing x, meaning don't care. The output is the same 
regardless of the values of the x inputs. 
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As you can see from the table above, the output (Y2,Y1,Y0) indicates the highest input that is active.  
The extra output V (valid) is used for distinguishing between no input and input A0. 

 
 

4.3. Seven segment decoders 

 
A seven-segment decoder is used for showing numbers on a seven-segment display. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2. Use of 7-segment decoder 
 

 
The truth table looks like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input values above 9 do not necessarily produce any meaningful patterns on the display.  
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S2 S1 S0 I0-I7 out 

0 0 0 x I0 

0 0 1 x I1 

0 1 0 x I2 

0 1 1 x I3 

1 0 0 x I4 

1 0 1 x I5 

1 1 0 x I6 

1 1 1 x I7 
 

select A B out 

0 x x A 

1 x x B 

 

 
 

 
4.4. Multiplexers 

A multiplexer is a kind of switch that chooses between two or more inputs. The symbol and the truth 
table for a two-input multiplexer looks like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3. Two-to-one multiplexer 
 

 
The multiplexer can be implemented as shown in figure 4.4: 

 

A 

out 

B 
 
 
 

select 

Fig. 4.4. Two-to-one multiplexer implementation 
 
 

An eight-input multiplexer: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5. Eight-to-one multiplexer 
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carryi Ai Bi carryi+1 sumi 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
 

 
 

 
4.5. Adders 

We learned on page 6 how to add binary numbers by hand. Now we will construct a logical circuit 
that 
can do it for us. Let us look at the same example again: 

 
 
 
 
 
 
 
 
 
 
 
 
 

We can divide this calculation into columns. The rightmost column, or column 0, is the 1's place. The 
second column from the right, or column 1, is the 2's place. Column 2 is the 4's place, and so on. 
Column i is the 2i's place. 

 
Each column i has three inputs: carryi, Ai, Bi, and two outputs: sumi and the carry to the next column, 
carryi+1. 

 
If we want to write the truth table for this, we simply add the three inputs carryi, Ai, Bi. The sum can 
be 
any number from 0 to 3. We write this sum as a binary number from 00 to 11 with the least significant 
bit in sumi and the most significant bit in the next carry, or carryi+1. 

 
For example, the 2's place indicated by the green frame in the figure above has the inputs 

 
carry1 + A1 + B1 = 1+1+0 = 2 = 10(base 2), where '+' means plus. 

 
The binary sum is 10. These two bits are used so that the 0 goes to the sum in the 2's place:  
sum1 = 0. The 1 is the carry for the 4's place: carry2 = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The sumi output can be expressed as an exclusive-or of the three inputs: 

 
sumi = Ai ⊕ Bi ⊕ carryi 

 
The carry output is high if at least two of the inputs are high: 

 
carryi+1 = Ai*Bi + Ai*carryi + Bi*carryi 

 
We can build this with gates as shown in figure 4.6. 
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Ai 
 
 
 

Bi 
 
 

carryi 

 
 

sumi 
 
 
 
 
 

carryi+1 
 
 
 
 
 

Fig. 4.6. Full adder 
 
 

This circuit is called a full-adder. We need one full-adder for each column in our addition scheme. The 
carry output from each column goes to the carry input for the next column: 

 
 

Inputs AandB 
 
 
 
 
 

carry4 

 
 
 
 
A3  B3 

Full adder 

 
 
 
 
 
carry3 

 
 
 
 
A2  B2 

Full adder 

 
 
 
 
 
carry2 

 
 
 
 
A1  B1 

Full adder 

 
 
 
 
 
carry1 

 
 
 
 
A0  B0 

Full adder 

 
 
 
 
 
carry0 

sum3 sum2 
 
 
 
 
 

Sumoutput 

sum1 sum0 
 
 
 
 
ground 

Fig. 4.7. Four bit adder 
 
 

The carry input for the first full adder, carry0, is connected to ground so that it will be zero. The 
output 
from the last full-adder, carry4, may be used for indicating overflow for unsigned addition. 

 
 

4.6. Subtracting binary numbers 
The four-bit adder that we made above corresponds to the number wheel on figure 1.1 (page 8). You 
add a value B by going B places clockwise on the wheel. This adder circuit also works for signed 
numbers in two's complement representation because the two's complement system relies on the 
same number wheel. 

 
Now we want to subtract numbers. Remember how we changed the sign of a number? This is 
explained on page 9: invert all bits and add 1. So, we can calculate A - B as A + (-B), where 
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(-B) is generated by inverting all bits in B and adding 1. We can convert the adder in figure 4.7 to a 
subtractor by putting inverters on all the B input bits. We still have to add 1, and here the unused 
carry input comes in handy. We can simply add 1 by connecting the carry input to the positive voltage 
supply. 

 
Figure 4.8 shows how we can use the adder as subtractor. This subtractor works for both unsigned 
numbers and for signed numbers in two's complement representation. The carry4 output indicates 
unsigned overflow. 

 

Inputs AandB 

A3 B3 A2 B2 A1 B1 A0 B0 
 
 

V+ 
 
 

carry4 

 
 
 
Full adder 

sum3 

 
 
carry3 

 
 
 
Full adder 

sum2 

 
 
carry2 

 
 
 
Full adder 

sum1 

 
 
carry1 

 
 
 
Full adder 

sum0 

 
 
 
 
carry0 

 
 
 

A–Boutput 

Fig. 4.8. Four bit subtractor 
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4.7. Exercises 

Exercise 4.1. 
 

Construct a two-to-four decoder. Draw the truth table and a diagram of gates. 
 
 

Exercise 4.2. 
 

It is possible to construct any 3-input Boolean function by using an 8-to-1 multiplexer. Write the 
reduced Boolean equation for this multiplexer circuit: 

 

V+ 
 
 
 
 
 
 

8-to-1 
multi- 
plexer 

 
 
 
 
 
 
 

F 

 
 
 
 
 
 
 
 

 

ground S2 S1 S0 
 

Exercise 4.3. 
 

It is possible to construct Boolean functions from decoders and OR gates. Write the reduced Boolean 
equations for this decoder circuit: 

 
 
 
 
 

i0 

i1 

i2 

 
 
 
 
 
 
 

3-to-8 

decoder 

 
 
 
 
 
 
 

G 
 
 
 

H 
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Fig. 4.9. DIP switch and pull-down resistor 

 

 
 

 
Exercise 4.4. 

 
Test an adder on a breadboard. The integrated circuit 74HC283 contains a 4-bit adder like the one on 
figure 4.7. 

 
You can use a DIP switch with at least 8 bits for the inputs. Each switch must have a pull-down 
resistor to ground in order to make sure the input is low when the switch is off:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Connect light-emitting diodes (LED) to the outputs. The voltage over a LED is approximately 2V. The 
power supply is 5V, so we need a resistor in series with each LED to generate a voltage drop of 
5V - 2V = 3V. A suitable current for a LED is 10 mA, so you can use a resistor of 3V / 10 mA = 300 
Ω. 

 
Test if the adder works as you expect when adding binary numbers. 

 
 

Exercise 4.5. 
 

Modify the adder from exercise 4.4 into a calculator that can both add and subtract. An additional 
input named SUB controls the function so that your circuit calculates A + B when SUB = 0, and A - B 
when SUB = 1. 

 
Tip: you can use an XOR gate 74HC86 to invert the B inputs when SUB = 1 because 
B ⊕     is equal to   when     = 0 and equal to    when     = 1. 

 
SUB should also be connected to the carry input. 
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5. Flip-Flops 
The output depends only on the inputs on digital circuits that have no memory. Such a circuit is called 
combinational because the output is a combination of the inputs. The circuits we have seen in the 
previous chapters were all combinational. 

 
The output may depend not only on the inputs, but also on the past history, on circuits that contain 
memory elements. Such a circuit is called sequential because the output depends on a sequence of 
inputs. Now we will see how to create memory elements so that we can construct sequential circuits. 

 
 

5.1. Basic feed back circuit 
A flip-flop is a memory circuit that can remember one bit. It has two states, 0 and 1. Flip-flops are 
circuits with positive feedback. Consider this circuit built of two inverters: 

 
 
 
 

Q 

 
 
 
 

Q 
 
 
 
 

Fig. 5.1. Positive feedback circuit with two stable states 
 

 
This circuit can be in one of two states. Either it is high on the left side (Q) and low on the right side 
    , or vice versa.  hen you turn on the power, it will quickly go to one of these two stable states, 
because any state in between is unstable. You cannot predict which state it will end up in, because it 
is symmetrical. 

 
 

5.2. SR flip-flop 
The circuit above is not very useful because we cannot change the state. Now we will replace the 
inverters by NOR gates so that we can change the state. The input S is used for setting Q high. The 
input R is used for resetting Q to low. 

 

S 
 
 
 

Q 

 
 

Q 
 
 
 

R 

Fig. 5.2. SR flip-flop 

 
We have the same feedback as before as long as the two inputs S and R are both low. Either Q will 
be low and    will be high, or   will be high and    will be low.  e can force    to be low by setting   
high because the output of a NOR gate is always low when at least one of the inputs is high. We 
assume that R is still low, so Q will be high. In other words, we can change the circuit to the state 
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S R Q Q̅ 

0 0 remember last value remember last value 

0 1 0 1 

1 0 1 0 

1 1 0 0 
 

 
 

 
where Q is high by setting S high and low again. The opposite happens when we set R high and low 
again. This will make   low and    high. 

 
This circuit is called an SR flip-flop. The S stands for set, and R stands for reset. We can write the 
truth table: 

 
 
 
 
 
 
 
 
 
 

The SR flip-flop works as a memory as long as the inputs S and R are both low. We can set it to state 
1 (Q = 1) by setting S high and low again. And we can set it to state 0 (Q = 0) by setting R high and 
low again. It is not useful to set S and R both high at the same time. 

 
Usually, we prefer to have inputs on the left and outputs on the right. We can rewrite the diagram of 
the SR flip-flop to get this: 

 

R 
 
 
 
 

 

S 

 

Q 
 
 
 
 

Q 

Fig. 5.3. SR flip-flop 
 

 
5.3. SR flip-flop with enable 

We can put an enable input (E) on the SR flip-flop so that it can only change when E is high: 
 

 

R 

 

E 

 

S 

 
 
 

Q 
 
 
 
 

Q 

Fig. 5.4. SR flip-flop with enable 
 
 

The truth table is now: 
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E S R Q Q̅ 

0 x x remember last value remember last value 

1 0 0 remember last value remember last value 

1 0 1 0 1 

1 1 0 1 0 

1 1 1 0 0 
 

E D Q Q̅ 

0 x remember 

last value 

remember 

last value 

1 0 0 1 

1 1 1 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4. D latch 
 ow, we can set   =    because   and   should never both be high at the same time.  e can set the 
E input low when we want the circuit to remember a value. 

 
 
 

 

E 
 
 
 
 

D 

 
 
 
 

Q 
 
 
 
 

Q 

 
Fig. 5.5. D latch 

 
 

The   input has been renamed to    for data , while the   input is connected to   . The state can only 
change when E is high. It will change to state 1 when D = 1, and state 0 when D = 0. 

 
The D input is the data bit we want to save. The value of D is loaded into the D-latch when E is high 
and stored when E is low, as shown in this truth table: 

 
 
 
 
 
 
 
 
 

 
The D-latch is useful as a memory circuit. 

 
 

5.5. Edge-triggered D flip-flop 
Hold on! Now it is getting tricky. The D-latch can change as long as the E input is high. Now we want 
a memory circuit that can change only at specific points in time. This can be very useful when we 
want to handle data in a sequence, as we shall see below. 

 
We can obtain this by connecting two D-latches after each other and invert the enable input of the 
first one. The first latch is open when the enable input is low and the second latch is open when the 
enable input is high: 
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D1 

 

E1 

 
 
 
 

Q1 

D-latch 

Q1 

 
 
 
 

D2 
 
 

E2 

 
 
 
 
 
 

D-latch 

 
 
 
 

Q2 
 
 

Q2 

 
 
 
 

Q 
 
 

Q 
 

 

clock 

Fig. 5.6. Edge-triggered D flip-flop 

 
The D input contains the data bit that we want to save. The joined enable input is named clock. First, 
the clock input is low. This will make E1 high and E2 low, so that D is loaded into the first latch, 
while 
the second latch is on hold. Now we let the clock input go high. This will make E1 low and E2 high. 
Now the first latch is on hold while the second latch is loading the value of Q1. This will be the value 
that the D input had immediately before the clock input went high. When the clock goes low again, 
the 
second latch will be on hold so that the same value will be preserved until the clock goes high again. 

 
The result is that the Q output will remember the value that the D input had at the time when the clock 
changed from low to high. This is called an edge-triggered flip-flop. We say that the value of D is 
saved on the rising edge of the clock input. 

 
Let me explain this with an example. The timing diagram in figure 5.7 shows how the signals change 
in a time sequence. We are assuming that Q1 and Q2 are zero when we start. 

 
The clock input goes up and down all the time. The first latch, Q1, follows the D input when the clock 
is low (green) and stays constant when the clock is high (blue). The second latch, Q2, follows Q1 
when the clock is high (blue) and stays constant when the clock is low (green). The result is that Q2 
can change only when clock goes from low to high. The output value that we see on Q2 is the value 
that the D input had immediately before the clock went from low to high. 

 
 
 
 

clock 
 
 
 

D 
 
 
 

Q1 
 
 
 

Q2 
 

 

time 

Fig. 5.7. Timing diagram for edge-triggered D flip-flop 
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clock D S R Q 

0 x 0 0 remember last value 

1 x 0 0 remember last value 

rising edge 0 0 0 0 

rising edge 1 0 0 1 

x x 1 0 1 

x x 0 1 0 

x x 1 1 1 
 

clock D Q 

0 x remember last value 

1 x remember last value 

rising edge 0 0 

rising edge 1 1 
 

 
 
 
 
 

Edge-triggered D-flip-flops are widely used in digital electronics. We can buy an integrated circuit 
containing one or more such flip-flops. The signal Q1 is used only internally and is not available as an 
output from the  -flip-flop. The signal  2 is output with the name  . The inverted signal    is 
sometimes also available as output. 

 
Truth table for an edge-triggered D-flip-flop: 

 
 
 
 
 
 
 
 
 

 
The symbol for an edge-triggered flip-flop has a triangle or wedge at the clock input to indicate that 
this input is edge-triggered: 

 
 
 
 
 

clock 

 

 

D 

 

 
SET 
 
 
 
 
 
CL
R 

 

 

Q 
 
 
 

Q 

 
 

Fig. 5.8. Symbol for edge-triggered D flip-flop 
 
 

5.1. 

 
 
Edge-triggered D Flip-Flop with set and reset 

A flip-flop can have extra inputs to set and reset it, just like the SR flip-flop in figure 5.3. These inputs 
are used for setting the flip-flop to a desired state without giving it a clock pulse. 

 
Truth table for an edge-triggered D flip-flop with asynchronous set and reset: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9 shows the symbol for an edge-triggered D-flip-flop with set and reset: 
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D SETS Q 
 
 
 
 

CLR 
 
 
 
 

Fig. 5.9. Edge-triggered D flip-flop with set and reset 
 
 

5.2. Toggle flip-flop 
You can make an edge-triggered D flip-flop change at every clock pulse by connecting the inverted 
output,   , to the   input: 

 
 
 
 
 
 
 

clock 
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CL
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Fig. 5.10. Toggle flip-flop 
 
 

This can be illustrated with a timing diagram: 
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D=Q 
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time 

Fig. 5.11. Timing diagram for toggle flip-flop 
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If you put a square wave into the clock input of a toggle flip-flop, you get a square wave out with half 
the frequency. 

 
 

5.1. 

 
 
Ripple counter 

You can put multiple toggle flip-flops in a row so that each one will produce a square wave with half 
the frequency of the previous one: 
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Fig. 5.12. Ripple counter with three bits 

 
 

The timing diagram below shows that Q0 is changing on every rising edge of the clock input. Q1 
changes every second time, and Q2 changes every fourth time. 

 
The bit pattern (Q2,Q1,Q0) is actually the binary numbers from 000 to 111. After 111 it starts over  
again from 000. We can use this as a counter that counts the binary numbers from zero to seven. We 
can get more bits in the counter by adding more toggle flip-flops. 
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Fig. 5.13. Timing diagram for ripple counter 
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5.2. Exercises 

 
 

Exercise 5.1. 

Show the values of   and    for an    flip-flop on this timing diagram. 
 
 
 

S 
 

 
R 

 
 

Q 
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time 
 

Exercise 5.2. 

 how the values of   and    for a  -latch on this timing diagram. 
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time 

 
Exercise 5.3. 

 how the values of   and    for an edge-triggered D flip-flop on this timing diagram. 
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Exercise 5.4. 
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A series of edge-triggered D flip-flops with the same clock is called a shift register. 

 
Show the outputs Q1, Q2, Q3, Q4 on the timing diagram for this shift register. 
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clock E Q 

rising 

edge 

0 no change 

rising 

edge 

1 change to the 

opposite of last 
value 

 

X1 X0 RED YELLOW GREEN 

0 0 1 0 0 

0 1 1 1 0 

1 0 0 0 1 

1 1 0 1 0 
 

 
 
 
 
 
 

Exercise 5.5. 
 

How can you make a toggle flip-flop with enable? The Q output should change on the rising edge of 
the clock only if an enable input (E) is high. The truth table is shown below. Show with a diagram 
how 
you can implement this with an edge-triggered D flip-flop and gates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 5.6. 
 

Make a traffic light that changes in the sequence 

    →         LL   →       →   LL  . 
 

We can use a counter with two bits to switch between the four states, as shown in this truth table 
 
 
 
 
 
 
 
 

 
Show the Boolean equations for the three outputs RED, YELLOW, GREEN as functions of X1 and 
X0. 

 
Draw a diagram of these functions using gates. 

 
 
 

 
Exercise 5.7. 

 
Make the traffic light of exercise 5.6 on a breadboard. You can use the integrated circuit 74HC4060 
which contains an oscillator and a ripple counter with 14 toggle flop-flops. Connect it as shown 
below. 
Use two consecutive outputs, for example Q8 and Q9, as X0 and X1. Find the gates you need in the 
list of digital ICs, page 75. 

 se three L  s in the colors red, yellow, and green as outputs.  onnect a 300 Ω resistor in series 

with each LED. 
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A current state 

Q1,Q2 

next state 

Q1*,Q2* 

0 00 00 

1 00 10 

0 10 01 

1 10 11 

0 01 00 

1 01 10 

0 11 01 

1 11 11 
 

 
 

 

6. State machines 
A state machine is an apparatus that can be in a number of different states and can change its state 
depending on some inputs. It also has outputs that can be used for controlling something. 

 
An example is an elevator. It can be at different floors and it can move up and down depending on its 
current position and on the buttons pressed. 

 
Another example is a washing machine. It goes through different states: filling, heating, prewash, 
wash, rinse, spin. The transition from one state to the next depends on the buttons pushed and on 
various sensors. The outputs of the electronics control motors, valves, heater, and pump. 

 
State machines can be constructed in software or hardware. In this chapter we will learn how to build 
a state machine in hardware, using flip-flops and gates. 

 
Let us look at a simple example. Here, we have two edge-triggered D flip-flops connected to the 
same clock: 
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Fig. 6.1. Two bit shift register 
 
 

A rising edge of the clock will put the value of the A input on Q1 and put the previous value of Q1 on 
Q2. This circuit has four possible states, defined by (Q1,Q2) = 00, 01, 10, 11. A clock pulse will put it 
in a new state, depending on the A input. We can write a table of the possible state transitions. This is 
called a state table. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The state transitions can be illustrated in a state diagram: 
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A=0 
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01 

 
 
 

00 
 
 

A=1 

A=0 

 

A=1 

 
 
 
 
 
 
 
 
 

10 

 

A=0 

 
 

11 

 

 

A 

 

A=1 

Fig. 6.2. State diagram for shift register in figure 6.1. 
 

 
The ovals on the state diagram define the states. There are four states named 00, 01, 10, 11. The 
arrows indicate the transitions. The text on the arrows define the conditions for each transition. 

 
The state diagram above is interpreted like this: If we are in state 00, we will go to state 10 on the 
next clock pulse if A = 1 (blue arrow) or stay in state 00 if A = 0 (green arrow). If we are in state 10, 
we will go to state 11 on the next clock pulse if A = 1 (blue arrow) or to state 01 if A = 0 (green 
arrow). 
And so on. 

 
 
 

In the next example, we will start with a desired state diagram and then construct a state machine 
corresponding to this state diagram. This example will be a 2-bit counter with synchronous reset. We 
want it to count in the sequence of binary numbers 00, 01, 10, 11. Furthermore, we want it to go to 
state 00 when a reset input, named R, is high while the clock has a rising edge. The R input does 
nothing unless there is a rising edge of the clock. We can draw a state diagram for this: 
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input current state next state 

R Q1 Q0 Q1* Q0* 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 1 1 

0 1 1 0 0 

1 x x 0 0 
 

 

 

       ̅̅̅̅ 

 
 
 
 

R=1 
 

 

00 

 

R=0 
 
 

 

11 
 
 
 

R=0 

 
 
 

R=1 R=1 
 
 

10 

 
 
 
 
 
 
 
 

 

R 

 
 

 

01 

 
Fig. 6.3. State diagram for 2-bit counter with synchronous reset 

 
 

This state diagram shows that the counter follows the sequence 00 → 01 → 10 → 11 when   = 0. It  
goes from any state to state 00 when R = 1. The condition for each transition is written on the arrows. 
The black arrow has no condition because it goes from state 11 to state 00 regardless of R. We can 
write a state table based on the state diagram: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This table shows how the next state (Q1*,Q0*) depends on the current state (Q1,Q0) and the input 
(R). Now we can find the Boolean expressions for Q0* and Q1* using the sum-of-products method 
described on page 14. 

𝑄0∗ = 𝑄0 ∗ 𝑅  

𝑄1∗ = 𝑄0 ∗ 𝑄1 ∗ 𝑅  + 𝑄0 ∗ 𝑄1 ∗ 𝑅  = (𝑄0 ⊕ Q1) ∗ 𝑅  
 
 

Now we can build a circuit that implements this functionality. We need two flip-flops for Q0 and Q1, 
respectively. The Boolean expressions for the next state, Q0* and Q1*, are built with logical gates. 
These are connected to the inputs D0 and D1 so that they will generate the next state when there is a 
clock pulse. 
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Fig. 6.4. Implementation of 2-bit counter with synchronous reset 

 

 
A state machine can have various outputs. In the next example, we will make a two-bit counter with 
two outputs called max and min, indicating when the counter has reached its maximum and minimum 
value, respectively. Furthermore, we will make the counter so that it counts up when an input U is 
high, while it counts down when U is low. We will make the counter saturating, so that it does not 
wrap around from 11 to 00, but stays at the maximum value when it is counting up, and stays at the 
minimum value when it is counting down. This is shown in the following state diagram. 
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input current state next state outputs 

U Q1 Q0 Q1*   Q0* max min 

0 0 0 0      0 0 1 

1 0 0 0 1 0 1 

0 0 1 0 0 0 0 

1 0 1 1 0 0 0 

0 1 0 0 1 0 0 

1 1 0 1 1 0 0 

0 1 1 1 0 1 0 

1 1 1 1 1 1 0 
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U=1 
 
 
 
 
 

U=1 

 
 
 
 
 
 
10 
 
 
 
 
 
 
01 

 

U=0 
 
 
 
 
 

U=0 
 
 
 
 
 

U=0 

 

00 
 
 
 

U=0 

Fig. 6.5. State diagram for saturating up/down counter 
 

 
This state diagram shows that it is counting up when U = 1 (blue arrows) and stays at the maximum 
when we keep trying to count up. Likewise, it counts down when U = 0 (red arrows) and stays at the 
minimum when we keep trying to count down. The outputs max and min (violet) are indicated in the 
states where they are active. 

 
Let us make a truth table for this saturating up/down counter: 
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 ̅ ̅     ̅ ̅         ̅ ̅̅̅      ̅̅           ̅̅ 

     ̅ ̅̅̅ 

 ̅ ̅     ̅ ̅ ̅ ̅̅̅      ̅̅  ̅̅ 

         ̅ ̅̅̅ 

+ ̅̅̅ 

 
 

 
We need the Boolean equations for the next state: Q0* and Q1*, and for the outputs: max and min. 
Using the sum-of-products method we get the expressions from the truth table: 

𝑄0∗ = 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈  ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 

𝑄1∗ = 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈  ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 

max = 𝑈   ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 

min = 𝑈   ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 
 

We can reduce these equations using the program at www.32x8.com or the program Karnaugh Map 
Minimizer. The reduced expressions are 

𝑄0∗ = 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 + 𝑈 ∗ 𝑄1 

𝑄1∗ = 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 + 𝑈 ∗ 𝑄1 
 

max = 𝑄0 ∗ 𝑄1 

min = 𝑄0    𝑄1 
 

Now we can make a diagram for the saturating up/down counter: 
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next statelogic 

 
 

statememory output logic 

Fig. 6.6. Implementation of saturating up/down counter 

 
This diagram illustrates the general form of a state machine. It consists of three blocks marked with 
colors on the diagram: next state logic (green), state memory (blue), and output logic (red). 

 
The state memory consists of edge-triggered D flip-flops. The two other blocks consist only of gates 
and inverters. The next state logic defines the next state (Q0*, Q1*) as a function of the current state 
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(Q0, Q1) and the input (U). The state memory is the flip-flops that define the current state. The output 
logic defines the outputs as functions of the current state. 

 
The general form of a state machine can be summarized in the following block diagram. 

 
current state 

 
 
 
 
 

inputs 

 
 
 

next state 
logic 

 
 
next 
state 

 
 
 
 

statememory 

 
 
 
 

output logic 

 
 
 
 

output 

 

clock 

Fig. 6.7. Block diagram showing the general structure of a state machine 

 
As you can see, the next state depends on the current state and the inputs. The output depends on 
the current state in this example. An output may actually depend on inputs as well. Such an output is 
called a Mealy output. A Mealy output can change if the input changes, even if there is no clock 
pulse. 

 
Let us summarize what we have learned about state machines now. It is useful to start with a state 
diagram if we want to make a state machine. The states are indicated with circles or ovals on the 
state diagram. The state transitions are indicated by arrows, where the conditions for going to another 
state are written on the arrows. Outputs are written in the states where they are active.  

 
We can make a state table based on the state diagram. The state table is a truth table where we have 
the current state and the inputs on the left side and the next state and outputs on the right side. We 
are using the state table to find the Boolean equations for the next state as a function of the current 
state and the inputs. We also have to find the Boolean equations for the outputs. 

 
Now, we can build the state machine. The state machine consists of three parts: 'next state logic',  
'state memory', and 'output logic'. The 'next state logic' is made of gates that generate the next state 
as a function of current state and inputs. The 'state memory' consists of edge-triggered D flip-flops. 
The 'output logic' is made of gates that generate the outputs as functions of the current state. 

 
The number of flip-flops that you need is determined by the number of states. If you have n flip-flops, 
then you have 2n possible states. Choose n so that 2n ≥ number of states.  ou may have some 
unused states if 2n is bigger than the desired number of states. The state machine may start in one of 
the unused states by accident when you turn on the power. Therefore, it is recommended that you 
make the state table so that all unused states will go immediately to a valid state. 

 
It is useful to have a reset input on a state machine so that you can set it to the desired state after 
turning on the power. Remember that it can start in a random state if you have no reset function. 
There are two kinds of reset: synchronous and asynchronous. The synchronous reset works only 
when there is a clock pulse. It is implemented as in figure 6.4. An asynchronous reset works 
immediately, regardless of the clock. It is implemented by using flip-flops with asynchronous reset as 
explained on page 38. 
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6.1. Synchronous design 

A digital circuit with flip-flops can be synchronous or asynchronous. Synchronous means that all flip- 
flops have the same clock, while the flip-flops can be connected to different clocks in an 
asynchronous design. We will now explain why a synchronous design is more reliable. 

 

 

A 

out 

B 
 

 

select 

Fig. 6.8. Two-to-one multiplexer 
 

 
Let us look at the multiplexer in figure 6.8 (same as figure 4.4). Assume that A and B are both high, 
and the select input goes from high to low. The signals will now change as shown in the following 
timing diagram. 

 
 
 
 

A 
 
 
 

B 
 
 

select 
 
 
 

B*select 
 
 
 

A*select 
 

 
out 

 
 

time 

Fig. 6.9. Timing diagram for multiplexer of fig. 6.8 
 

 
In this timing diagram, we have made a very fine time scale so that we can see the delays in the 
gates. The 𝐴 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡 signal goes up a few nanoseconds later than the 𝐵 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡 goes down because 
of the extra delay in the inverter. Now there is a very short moment of time where both of these 
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+      ̅̅̅ ̅ ̅̅ 

 
 

 
signals are low. The 'out' signal, which is the OR combination of these two signals, will have a short 
blip where it is low, even though it is supposed to be high both before and after the change in the 
select input. This kind of noise in the signal is called a glitch. Such a glitch can cause problems if the 
signal goes to some other circuit that has memory, such as a latch or a flip-flop. For example, we may 
get an extra count if this signal goes to the clock input of a counter. 

 
It can be difficult to detect this kind of errors because a glitch may be too short to see on an 
oscilloscope, but not too short to change the state of a flip-flop. 

 
A good remedy against such timing problems is to have everything controlled by the same clock, as 
we did in the design of state machines above. The 'next state logic' in a state machine can produce 
many glitches, but this will not cause any errors because all glitches will have died out before the next 
clock pulse. The only thing we have to care about is that the clock period must be longer than the 
worst-case delay in the circuits. A digital circuit where all signals are controlled by the same clock is  
called a synchronous design. 

 
The counters in figure 6.3 and 6.5 were synchronous designs. These are called synchronous 
counters. In the previous chapter we had a ripple counter in figure 5.12. This is an asynchronous 
counter because the flip-flops are not connected to the same clock. 

 
Let me explain why the asynchronous counter can be less safe to use. The output of the ripple 
counter in figure 5.12 is a three-bit binary number (Q2,Q1,Q0). It counts from binary 000 to 111 and 
then starts over at 000. 

 
Assume that we want a signal, P, every time the counter reaches 000. We can make this with a NOR 
gate: 𝑃 = 𝑄0    𝑄1     𝑄2. Now, the three output bits from the counter do not change exactly 
simultaneously. For example, let us see what happens when the counter goes from binary 011 (=3) to 
100 (=4). First Q0 goes low, then Q1 goes low, and then Q2 goes high. There will be a short moment 
of time after Q1 goes low, and before Q2 goes high, where the outputs are actually 000, and we will 
see a short glitch in the signal P. This may cause problems if P goes to a circuit with memory. 

 
The asynchronous counter is cheap, and it is good enough for many purposes, but the synchronous 
counter is better if you want a stable output. 

 
Figure 6.10 shows another example of an asynchronous design. Here we have an AND gate on the 
clock input of the second flip-flop so that it is only clocked when the input E (enable) is high. This 
design is unsafe because there is a short delay in the AND gate. The second flip-flop is clocked 
slightly later than the first flip-flop. We do not know whether the second flip-flop is getting the old 
value that Q1 had before the rising edge of the clock or the new value that Q1 has after the clock. It  
may be that it sometimes gets the old value of Q1 and sometimes the new value of Q1. Such an 
unreliable design is dangerous because it may work correctly when we test it, but fail later. 

 
Another problem is that the second flip-flop gets clocked at the rising edge of E if the clock is high. 
This is perhaps not the behavior we want. 
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Fig. 6.10. Unsafe circuit with gated clock 
 

 
A better way to enable and disable a flip-flop is a synchronous design: 
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Fig. 6.11. Synchronous alternative to fig. 6.10 

 
Here, the two flop-flops have the same clock. The multiplexer connects the D input of the second flip- 
flop to Q1 then E is high, while the value of Q2 is recycled when E is low. The effect is that changes 
in Q2 are enabled only when E is high. There is no undesired clocking at the rising edge of E. 

 
In general, it is safer to use a synchronous design because you avoid a lot of delicate timing 
problems. A synchronous design is not completely safe, though, if an input changes simultaneously 
with the clock. 
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6.2. Exercises 

 
 

Exercise 6.1. 
 

Which of these circuits are combinational and which are sequential? 

 

 
 
 
 
 
 
 
 
 

 
inverter 
decoder 
multiplexer 
D latch 
counter 
adder 
edge-triggered D flip-flop 
shift register 
state machine 
each of the three blocks in figure 6.7 

 
 
 

Exercise 6.2. 
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Make the state table and the state diagram for this state machine. 
 
 
 

Exercise 6.3. 
 

We want to design a state machine with the state diagram shown here. 
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B=0 
 

Make the state table. Write the Boolean equations for the next state as a function of the current state 
and the B input. Reduce these equations using the rules of Boolean algebra. 

 
Draw a diagram of this state machine, using as few gates as possible. 
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7. Interfacing digital circuits 
This chapter gives some practical advice on how to connect inputs and outputs to digital circuits. 

 
7.1. Pushbuttons 

The input of a MOSFET digital circuit is controlled by the voltage at the input, not the current. The 
input resistance of a MOSFET is extremely high and the input current is virtually zero. While an 
ordinary switch can turn on and off the current for a lamp, it cannot turn on and off the input of a 
MOSFET circuit because there is no current. An input that is not connected to anything will have a 
random and unpredictable voltage that is influenced by even the smallest amount of electromagnetic 
noise. If you connect a switch to an input then you need a pull-down resistor to make sure the input 
voltage is low when the switch is off. The value of the resistor is not important. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1. Switch with pull-down resistor 
 

 
You can invert the signal by connecting the switch to ground and a pull-up resistor to the positive 
supply: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.2. Inverted switch with pull-up resistor 
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7.2. Button with debouncing 
A mechanical switch will always produce noise when it is pressed or released. If you connect the 
output of the circuit in figure 7.1 to an oscilloscope it will typically look like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.3. Oscilloscope picture of key bounce 

 
This noise comes from mechanical vibrations in the switch. The click sound you hear when you press 
a switch is actually the sound of such mechanical vibrations. The signal goes up and down many 
times during a few milliseconds when the switch or button is pressed or released. The electrical noise 
from switches and pushbuttons is called key bounce. Relay switches and other mechanical devices 
can also produce bouncing noise. 

 
The key bounce is no problem when the button is connected to the input of an SR flip-flop. The SR 
flip-flop will be set whether the S input receives one pulse or a hundred pulses. But the key bounce is 
a big problem if the input is connected to an edge-triggered clock input or anything else that requires 
a clean signal. For example, if you connect a pushbutton to a counter in order to count how many 
times the button is pressed, you will see it counting maybe twenty times or more every time the button 
is pressed, and it may also count when the button is released. 

 
The noise will typically make the signal go up and down for a period of a few milliseconds for a new 
switch and up to 20 ms, or perhaps 50 ms, for an old and dirty switch. We have to remove this noise if 
the circuit cannot accept noise. Removing noise from a switch is called debouncing. We want to 
ignore the noise and accept a change in the signal only after a period of, for example, 50 ms. 

 
There are several ways to remove key bounce. Some different methods are described here. 

 
 

Method 1. Low-pass filter and Schmitt trigger 
 

We can use a low-pass filter to separate the signal from the noise because the noise has higher 
frequency than the signal from the switch. The diagram below shows a pushbutton with a pull-down 
resistor (R1) and a low-pass filter (R2 and C1). The low-pass filter will remove most of the noise, but 
it 
will also make the signal change slowly. An edge-triggered flip-flop requires that the clock input has 
sharp edges so that it is rising and falling very fast. We will use a so-called Schmitt trigger for this. 
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Fig. 7.4. Switch debouncing with low-pass filter and Schmitt trigger 
 
 

A Schmitt trigger has an input with two threshold values. The output goes high when the input passes 
the upper threshold, and it goes low again when the input passes the lower threshold. The output 
stays in the same state when the input is between the two thresholds. This makes sure that the 
output of the Schmitt trigger always changes fast. 

 
The integrated circuit 74HC14 contains six Schmitt triggers. There is an inverter on the output of each 
Schmitt trigger. In the diagram above, we have used an extra Schmitt trigger as inverter to get a non- 
inverted output. Alternatively, we could have inverted the input by connecting the pushbutton to 
ground, as in figure 7.2. 

 
The low-pass filter has a delay of 𝜏 = 𝑅2𝐶1𝑙𝑛2 = 47𝑚𝑠. This should be suitable in most cases. If the 
delay is too short you will get bounce problems when the pushbutton becomes old and worn. If the 
delay is too long you will get no response if the user pushes the button very fast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.5. Waveforms of circuit on fig. 7.4 

 
The black curve shows the noisy signal from the pushbutton. The red curve shows the signal after the 
low-pass filter. The green curve shows the signal after the Schmitt trigger. 
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Method 2. Use a double-throw switch 

 
Debouncing is easier if we have a double-throw switch (SPDT switch). In this diagram, we have made 
an SR flip-flop from NOR gates. This flip-flop will be set when the switch is up and reset when the 
switch is down. The flip-flop will stay in the same state during bounce periods and while the switch is 
in transition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.6. Debouncing of double-throw switch using SR flip-flop 
 

 
Method 3. Toggle flip flop with debounce 

 
Figure 7.7 shows a nice trick that makes it possible to build a toggle switch with debounce from a 
pushbutton and two CMOS NOR gates. The NOR gates are coupled as a flip-flop with positive 
feedback through R2. It is switched to the opposite state by the pushbutton due to the negative 
feedback that charges C1 through R1. The output will toggle every time the pushbutton is pressed. 

The debounce delay is 𝜏 = 𝑅1𝐶1𝑙𝑛2 = 47𝑚𝑠. R3 and C2 serve to reset the flip-flop when the power is 
turned on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.7. Pushbutton with debouncing toggle flip-flop 
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Method 4. Shift register 

 
Debouncing can be made by connecting the noisy signal to the D input of a shift register with two or 
more stages, as shown in figure 7.8. Connect a clock of approximately 100 Hz to the clock input. This 
will sample the signal every 10 ms. An SR flip-flop is set when all sample values are high and reset 
when all sample values are low. This method is used in programmable devices (FPGAs) where you 
do not have access to analogue filters. 
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Fig. 7.8. Switch debouncing with shift register 
 

 
Method 5. Software 

 
Software is generally cheaper than hardware. Key debouncing is therefore often made in software if 
the apparatus includes a microcontroller anyway. The software will sample the signal two or more 
times with 10 ms or more between, and accept a change only if the signal remains stable over 
several samples. 

 
7.3. Automatic power-on reset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.9. Automatic power-on reset 
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A system containing flip-flops should be set to a well-defined state when the power is turned on. This 
is done by sending a pulse to the reset inputs of all flip-flops. Figure 7.9 shows a circuit that 
generates a pulse when the power is turned on. The Schmitt trigger makes sure the signal has sharp 
edges. The length of the reset pulse is τ =  ∙ ∙ln 2 . 

 
 
 

7.4. LED output 
A light-emitting diode (LED) has a voltage-current characteristic like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.10. Voltage-current characteristic of LED 
 

 
Figure 7.10 shows that the LED needs a certain voltage before it can produce light. This voltage 
corresponds to the energy of the photons it emits. The photon energy for visible light ranges from 1.8 
eV for red to 3.9 eV for violet. The operating voltage of a LED corresponds to the color, so that red, 
yellow and green LEDs operate at approximately 2 V while blue and white LEDs require 3-4 V. 

 
You need to put a resistor in series with a LED in order to reduce the voltage and control the current, 
as shown in figure 7.11. The light intensity is controlled by the current. A current of 10 mA is suitable 
for a LED that is used as an indicator lamp. 

 
The resistor is calculated by Ohm's law. For example, if the digital signal is 5V and the LED needs 
2V, you need a voltage drop across the resistor of 5V - 2V = 3V. If you want a current of 10mA you 
need a resistor of   = 3V / 10m  = 300Ω. 

 
 
 
 
 
 
 
 
 
 
 
 
 

62



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.11. LED with series resistor 
 
 

The longest pin on the LED is the positive electrode (anode). The pin that holds the semiconductor 
chip inside the colored plastic house is the negative electrode (cathode) as shown in figure 7.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.12. LED terminals 
 

 
7.5. Relay output 

 
Figure 7.13 shows a relay driver. The transistor amplifies the current for the relay. This is needed if 
the relay coil requires more power than the digital circuit can provide. 

 
Note that the diode is connected in the direction where it does not conduct the current from V+. This 
diode protects the transistor against the inductive current that occurs when the relay is turned off.  

 
The same circuit can be used for driving motors, lamps, and other things. The diode is needed if the 
device contains coils or long wires or anything else that gives it a significant self-inductance. 
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Fig. 7.13. Relay driver 
 
 
 
 
 

7.6. Optocouplers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.14. Optocoupler 

 

 
An optocoupler consists of a light-emitting diode (LED) and a phototransistor mounted together in a 
non-transparent housing. There is no electrical connection between the two components - they are 
connected only through the light. The phototransistor is conducting when the LED throws light on it. 

 
An optocoupler is useful for transmitting signals between two circuits that do not have the same 
voltage level. The two circuits may have separate power supplies, separate voltage levels, and 
separate ground levels. An optocoupler is also useful if two circuits need to be isolated from each 
other for security reasons, for example if one circuit has high voltage and the other circuit is in contact 
with humans. 

 
The LED of the optocoupler is connected as in figure 7.11. The phototransistor is connected like a 
switch. 

 
 

64



 
 

 
 
 
 
 
 
 
 
 

signal from 

circuit 1 

 
 
 
 
 
 
 

series 

resistor 

 
 
 
 
 
 
 
 

optocoupler 

 
 

 

power supply 

of circuit 2 

 

signal to 

circuit 2 
 

ground 

of circuit 1 

 

pull down 

resistor 
 

ground 

of circuit 2 

Fig. 7.15. How to connect an optocoupler 
 
 
 
 
 

7.7. Digital-to-analog converters 
A digital-to-analog converter is a circuit that converts a binary digital signal to an analog signal. The 
input signal consists of multiple bits that are either 0 or 1. The output is a single line with a voltage 
that is proportional to the binary value of the input bits. 

 
A digital-to-analog converter can be constructed conveniently with a so-called R-2R ladder, as shown 
in figure 7.16. The resistors marked   all have the same value, for example 10 kΩ. The resistors 
marked 2  have exactly the double resistance, which would be 20 kΩ in our example. The binary bits 
are represented in the diagram as switches that connect a wire to ground when the bit is 0, and to a 
certain voltage V when the bit is 1. In reality, these are not mechanical switches but typically 
MOSFET transistors that connect a wire to ground or to the positive power supply for the logical  
values of 0 and 1, respectively. 

 
The voltage that comes out of the R-2R ladder can be calculated by repeated use of Thévenin's 
theorem. Let us start with the first node marked v0 on the drawing and disconnect it from the next 

1 
 

to R. 
 

Now we can calculate the Thévenin equivalent of the next node, v1, when it is connected to v0 but not 
1      1 

 
 

1      1      1 
 

resistance is R. 
 

1       1      1      1 
 
 
 
 

65



 
 

 
 

 
 
 
 

We can add an operational amplifier to amplify the signal v3 by the 
factor 

 
 
 
16 
𝑉 

 
 
 
16  
𝑉 

 
 
 
 
𝑣3 = 

𝑑0 + 2𝑑1 + 4𝑑2 + 8𝑑3. This voltage is indeed the same as the binary number formed by the four input 
bits. We can add more steps in the ladder if the input has more bits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.16. Digital-to-analog converter with R-2R ladder 
 

 
7.8. Analog-to-digital converters 

An analog-to-digital converter is the opposite of a digital-to-analog converter. The input is a single 
wire with an analog signal. The output is a binary signal consisting of multiple bits. The precision or 
resolution is determined by the number of output bits. With n bits we can get a resolution of the total 
range divided by 2n. 

 
We can make a simple analog-to-digital converter with a counter and a digital-to-analog converter. 
The counter counts up until the converted binary number exceeds the analog input value. The 
principle is outlined in figure 7.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.17. Analog-to-digital converter with counter 
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This method is slow because it will take up to 2n clock pulses before we have reached the desired 
value. 

 
We can get a faster conversion by using the successive approximation method. This method finds the 
n-bit binary value by first dividing the interval from 0 to 2n into two sub-intervals of half the size, 
from 0 
to 2n-1 and from 2n-1 to 2n. The system finds out whether the input is in the lower or the upper of 
these 
two half-intervals by comparing the analog input to 2n-1. Now that it knows which half-interval the 
number is in; it divides this half-interval into two intervals of 1/4 size by comparing the input to the 
middle value of the subinterval. It continues to divide the intervals into halves n times. The first  
comparison gives the most significant bit of the result, and the last comparison gives the least 
significant bit. The successive approximation method can be described by the flow chart in figure 
7.18. 

 
This flow chart can be implemented as a state machine that replaces the counter in figure 7.17. The 
successive approximation method is much faster than the counter method because it takes n clock 
cycles where the counter method uses up to 2n clock cycles. 

 
If you need an extremely fast analog-to-digital converter, you can use a flash converter. The flash 
converter contains 2n comparators, one for each possible output value. The flash converter becomes 
very big and expensive if n is big. Therefore, it is used only for low resolutions. 

 
There are several other methods for analog-to-digital conversion. I will not explain all the different 
types, but you can find more information on Wikipedia if you are interested. 
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7.9. Exercises 

 
 

Exercise 7.1. 
 

Make a circuit on a breadboard with a counter that counts every time a pushbutton is pressed. You 
can show the output as a binary number on LEDs, or as a decimal number on a 7-segment LED 
display if you prefer. Find the integrated circuits you need in the list of digital ICs, page 75. 

 
Test the circuit with and without debouncing. 
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8. Microprocessors and microcontrollers 
Figure 8.1 shows the basic construction of a computer. The central processing unit (CPU) is the brain 
of the computer. The CPU communicates with different kinds of memory and input and output 
devices. The different units are all connected through three buses called address bus, data bus, and 
control bus. A bus is a bundle of wires that connects multiple units. 

 
A big computer has the CPU on a separate silicon chip and the RAM and other devices on a number 
of other chips. A microcontroller is a small computer that has everything on a single chip. 

 
There are different kinds of memory. RAM stands for random access memory. This means that the 
CPU can read from the RAM and write to the RAM in random order. In principle, the RAM memory 
consists of a large number of flip-flops. The contents of the RAM memory is lost when the power is 
turned off. 

 
ROM means read-only memory. The ROM may contain some important code that the computer 
needs for start-up. The contents of the ROM memory is permanent. 

 
A newer type of memory is FLASH. FLASH memory is often used instead of ROM because the 
contents can be changed, and it is not lost when the power is turned off. FLASH memory cannot 
replace RAM because writing to FLASH is slower and more complicated. FLASH memory is used in 
telephones, cameras, USB memory sticks, microcontrollers, and solid-state hard discs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clock 
 
 

Fig. 8.1. Block diagram of computer with three-bus architecture 

 
The CPU needs two kinds of data: (1) the program code and (2) the variables and other data that the 
program works on. The program code can be stored in RAM, ROM, or FLASH memory. The program 
data is stored in RAM memory. 

 
The memory is organized into blocks containing eight bits each. A block of eight bits is called a byte. 
Each byte in the memory has an address. The first byte has address 0, the next byte has address 1, 
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and so on. Small microcomputers have thousands of memory bytes. Bigger computers have millions, 
or even billions, of memory bytes. 

 
The address of the byte we want to read or write is placed on the address bus. This is the yellow line 
on figure 8.1. The address bus consists of a number of wires to represent the address as a binary 
number. The number of wires in the address bus depends on how much memory you have. With 10 
address wires, you can have 210 = 1024 different addresses and 1024 bytes of memory. 1024 bytes is 
called a kilobyte. With 20 address wires you can have 220 = 1048576 bytes = 1 megabyte. With 30 
address wires you can have 230 = 1073741824 bytes = 1 gigabyte. 

 
The program code is written in a programming language, for example C++, and then compiled. The 
compiler translates the C++ code into machine code. The machine code is a long list of simple 
machine instructions. Each machine instruction consists of a binary code telling the CPU what to do, 
for example to add two numbers. The machine instruction may also contain the address of the data 
that it is working on. 

 
The CPU is a very big state machine that typically reads and executes one machine instruction for 
each clock cycle. The CPU consists of gates and D flip-flops just like the state machines we learned 
about in chapter 6. 

 
The CPU is fetching the machine instructions, one by one, from the memory (RAM or ROM). It does 
this in the following way: It puts the address of the machine instruction on the address bus (yellow 
line 
on figure 8.1). Then it puts a read signal on the control bus (pink line on figure 8.1). If one of the 
memory blocks recognizes the address as belonging to itself, it puts the value of the byte on the data 
bus (blue line). The CPU reads this byte, interprets it, and does whatever this instruction tells it to do. 

 
The CPU can read program data from RAM memory in the same way. The CPU can also write 
program data to RAM memory. It does this by putting the address of the memory cell on the address 
bus in the same way as before. Then the CPU puts the value on the data bus and a write signal on 
the control bus. 

 
Note that the data can go both ways on the data bus, while the address bus and the control bus go 
only one way, from the CPU to the memory and other devices. Only one unit at a time can put data 
on the data bus. All the other units must leave the data bus untouched. This is like in class when the 
teacher says the name of one student who is allowed to talk, while everybody else must keep silent. 
Each memory cell must have a unique address just as each student must have a unique name if you 
want reliable communication. 

 
The data bus has at least eight wires so that it can read or write one byte at a time. It may have 16, 
32, 64, or more wires so that it can read or write multiple bytes at the same time. 

 
The control bus needs at least two wires, one for a read signal and one for a write signal. 

 
 

8.1. Input ports and output ports 
External devices such as screen, display, keyboard, mouse, hard disk, and network are connected to 
the data bus via input ports and output ports. Each input or output port has a unique address just like 
each byte-cell in the memory has a unique address. 
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Fig. 8.2. Principle of output port 

 
An output port contains a comparator that compares the fixed address of the port with the value on 
the address bus. An 8-bit latch stores the value from the data bus if the address is equal to the port 
address and there is a write signal on the control bus, as shown on figure 8.2. 

 
An input port contains a so-called three-state buffer. This is a device where the output can be in one 
of three states: low, high, or disconnected. Each of the eight inputs from the external device goes 
through a three-state buffer before it is connected to the data bus. The three-state buffer is enabled 
when the value on the address bus is equal to the fixed address of the input port and there is a read 
signal on the control bus. The three-state buffer is disabled when the address is not matching. A 
three-state buffer is not disturbing the data bus when it is disabled – the output of the three-state 
buffer is simply disconnected so that the voltage on the data bus can be set high or low by some 
other device. 
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Fig. 8.3. Principle of input port 

 
Figure 8.4 shows how a three-state buffer is constructed. It has a p-channel MOSFET and an n- 
channel MOSFET just like the inverter on figure 3.3 (page 19). The p-channel MOSFET will make 
the 
output high by connecting it to V+ when its gate is low. This happens when the data input is high and 
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enable is high. The n-channel MOSFET will make the output low by connecting it to ground when its 
gate is high. This happens when the input is low and enable is high. Both MOSFETS are off when the 
enable signal is low. 
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Fig. 8.4. Three-state buffer 
 

 
The truth table for a three-state buffer looks like this: 

 
 
 
 
 
 
 
 
 
 

The 'Z' in the truth table means that the output is disconnected. This state is called 'high impedance'.  
The difference between 0 and Z is that the output is connected to ground in state 0 but not connected 
to anything in state Z. 

 
 
 

8.2. Interrupt 
If we press a key on a keyboard or we move a mouse we want to see the response immediately on 
the computer screen, even if the computer is busy doing something else. This problem can be solved 
with a mechanism called interrupt. One task is interrupted by an external event where the computer 
has to do some other task that has higher priority. It will return to the first task when the high-priority 
task has been completed. 

 
It is very inefficient if the software code has to check all the time if a key has been pressed. Instead, 
computers have a hardware mechanism to support interrupts. This is illustrated in figure 8.5. 

 
The instructions are executed one by one during the normal operation of the CPU. The sequence of 
program instructions in memory are shown as the green boxes on figure 8.5. An interrupt can happen 
at any time regardless of which instruction is being executed. The CPU does not execute the next 
instruction in the sequence when an interrupt has been detected. Instead, it jumps to another 
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sequence of instructions called an interrupt service routine (yellow boxes on the figure). It remembers 
where it came from so that it can return and continue where it left when the interrupt service routine 
has finished. The interrupt service routine must save all registers that it uses and restore them to their 
original value before it returns to the main program so that all registers have the same value that they 
had before the interrupt. 
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Fig. 8.5. Principle of interrupt 
 
 

We need a mechanism that allows the CPU to remember where it was interrupted so that it can return 
to the right place when the interrupt service routine has finished. The address of the instruction that it 
has to return to is stored in a piece of RAM memory called a stack. The stack stores information in a 
first-in-last-out basis. The first-in-last-out scheme is necessary in case the interrupt service routine is 
interrupted again by something else with a higher priority. 

 
The stack can also be used for returning from function calls and for temporary storage of local data in 
a function. 
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Buffers per 

package 

Type 

number 

Description 

6 74HC04 Hex inverter 

6 74HC4050 Hex buffer 

6 74HC4049 Hex inverting buffer 

6 74HC14 Hex inverting Schmitt trigger 

6 74HC367 Hex tri-state buffer 

8 74HC244 Octal tri-state buffer 

8 74HC243 Octal transceiver 

4 74HC4066 Quad analog switch 

6 4504 Hex voltage level converter 
 

Gates per 

package 

Inputs 

per gate 

AND NAND OR NOR XOR 

4 2 74HC08 74HC00 74HC32 74HC02 74HC86 

3 3 74HC11 74HC10 74HC4075 74HC27  

2 4 74HC21 74HC20 74HC4072 74HC4002  

1 8  74HC30 74HC4078 74HC4078  
 

 
 

 

9. Appendix A: List of digital integrated circuits 
 
 

There are several families of digital integrated circuits: 

4000 series: CMOS. 3–15 V supply. Output 0.5 mA. 

74HC00 series: CMOS. 2–6 V supply. Output 5 mA. Faster than the 4000 series. 
 

74LS00 series: TTL. 5V supply. This is an older series with asymmetric signal levels and higher 
power consumption. Do not use the TTL series unless you have a special reason to do so. 

 
The 4000 series and 74HC00 series are compatible with each other. An output from a 4000 series 
circuit cannot drive an input of a 74LS00 series. An output from a 74LS00 series circuit must have a 
pull-up resistor if it is connected to an input of a CMOS circuit. The output of a 4000 series cannot 
drive a LED. 

 
There are many other variants of the 74xx00 series with different letters in the name. Types with C in 
the name are CMOS types, all others are TTL types. The 74HCT00 series has CMOS technology but 
TTL signal levels. These are compatible with both the TTL and CMOS types.  

 
Below is a list of selected digital ICs suitable for small projects. 

 
 
 

Gates: 
 
 
 
 
 
 
 
 
 
 
 
 

Buffers, inverters, Schmitt triggers, miscellaneous 
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Number per 

package 

Type 

number 

Description 

2 74HC139 Dual 1-of-4 decoder with inverted outputs 

1 74HC138 1-of-8 decoder with inverted outputs 

1 74HC238 1-of-8 decoder 

1 74HC42 1-of-10 decoder with inverted outputs 

1 74HC154 1-of-16 decoder with inverted outputs 

1 74HC4511 BCD to 7-segment decoder, for common cathode 

1 74LS247 BCD to 7-segment decoder, for common anode 

1 74HC4543 BCD to 7-segment decoder, for LCD displays 

4 74HC157 Quad 2-input multiplexer 

2 74HC153 Dual 4-input multiplexer 

1 74HC151 8-input multiplexer 

1 74HC283 4 bit adder 

1 74HC85 4 bit magnitude comparator 

1 74HC688 8 bit magnitude comparator 
 

Counter 

states 

Type 

number 

Description 

12 2 74HC4040 12 stage ripple counter with asynchronous reset 
14 2 74HC4060 14 stage ripple counter with RC oscillator and 

asynchronous reset 

10 74HC4017 Counter with 10 decoded outputs and asynchr. reset 

10, 100 74HC390 Dual BCD counter with asynchronous reset 

10 74HC160 4 bit synchronous BCD counter with count enable, 
asynchronous reset and synchronous load 

16 74HC161 4 bit synchronous binary counter with count enable, 
asynchronous reset and synchronous load 

16 74HC163 4 bit synchronous binary counter with count enable, 

synchronous reset and synchronous load 

10 74HC190 up/down BCD counter w. count enable and asyn. reset 

16 74HC191 up/down binary counter w. count enable and asyn. reset 
 

Number per 

package 

Type 

number 

Description 

2 74HC74 D Flip-flop with inverted set and reset 

4 74HC175 D Flip-flop with inverted reset 

6 74HC174 D Flip-flop with inverted reset 

8 74HC273 D Flip-flop with inverted reset 

4 74HC75 D-latch 

8 74HC373 D-latch 
 

 
 

 
Decoders, encoders, multiplexers, arithmetic circuits 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flip-flops and latches 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Counters 
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Number of 

bits 

Type 

number 

Description 

8 74HC4094 Serial in parallel out shift register with output latch and 

3-state output 

8 74HC595 Serial in parallel out shift register with clocked output 

register and 3-state output 

4 74HC194 4 bit universal bidirectional shift register with 

synchronous load 

4 74HC195 4 bit universal shift register with synchronous load 

8 74HC164 8-bit serial in parallel out shift register 

8 74HC165 8-bit parallel in serial out shift register 
 

 
 

 
Shift registers 
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