

Chapter Seven

Introduction to Digital Electronics

8's 4's 2's 1's

1 1 0 1

1*8=8 1*4=4 0*2=0 1*1=1

8 + 4 + 0 + 1 = 13

 Number systems

1.1. Decimal, binary, and hexadecimal numbers

We all know the decimal number system. For example, 2019 means 2*1000 + 0*100 + 1*10 + 9*1.
The numbers 2, 0, 1, 9 are called the digits of the number 2019.

If we want to describe this mathematically, we will call the rightmost digit d0, the next digit d1, etc. If
there are n digits: d0, d1, d2, ... dn-1, then the value v can be calculated by the formula

𝑛−1

v = ∑ 𝑑𝑖10𝑖
𝑖=0

In the example of 2019, we have d0 = 9, d1 = 1, d2 = 0, d3 = 2, n = 4. This gives v = 2019.

10 is the base or radix of the number system. The reason why we are using ten as the radix is that
this makes it easy to use our ten fingers for counting. The name decimal comes from Latin decem
which means ten. The word digit means finger.

If we use a number system with radix r then the above formula becomes

𝑛−1

v = ∑ 𝑑𝑖𝑟 𝑖
𝑖=0

For example, if the radix r is sixteen then 2019 does not mean two thousand and nineteen. Instead
the value becomes

2019(base 16) = 9*160 + 1*161 + 0*162 + 2*163 = 8217(base 10).

1.1.1. Binary numbers
Computers do not have ten fingers so the decimal number system is not the most efficient system to
use in computers. Instead, the binary system with radix 2 is used. For example,
1101(base 2) = 1*20 + 0*21 + 1*22 + 1*23 = 13(base 10). The rightmost digit is the least significant
digit with
the worth 20 = 1. We can call the least significant the 1's, the next digit from the right is the 2's. Next
comes the 4's, the 8's, etc. The calculation is illustrated in this table:

Each digit in a binary number can have only two different values: 0 and 1. These are conveniently
represented in an electrical wire as two different voltages. The lower of the two voltages represents 0
and the higher voltage represents 1. For example, we may choose 0V and 5V for the numbers 0 and
1, respectively. A binary number with four digits, as in the example above, can be represented by four
wires, where each wire has either 0V or 5V.

3

Digit Value

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

A binary digit is also called a bit. A bit can be 0 or 1. This is the smallest piece of information that you
can store in any system.

1.1.2. Hexadecimal numbers
The hexadecimal number system has radix 16. The sixteen possible digits are written as this:

For example 4AD1(base 16) = 1*160 + 13*161 + 10*162 + 4*163 = 19153(base 10).

The hexadecimal system is often used as a short way to represent binary numbers with many digits.
Each hexadecimal digit corresponds to four binary digits, because 16 = 24. For example, the binary

number 0100101011010001(base 2) is easily converted to the hexadecimal number 4AD1(base 16) by
dividing the bits into groups of four:

0100 1010 1101 0001

︸ ︸ ︸ ︸

4 A D 1

1.2. Conversion from another number system to decimal
There are two convenient ways to convert from any other number system to decimal. The first method
starts with the rightmost digit (least significant digit) and multiplies by powers of the radix. We used
this method above to convert the number 4AD1 from hexadecimal to decimal:

4AD1(base 16) = 1*160 + 13*161 + 10*162 + 4*163 = 19153(base 10).

The second method starts with the leftmost digit (most significant digit). Multiply the leftmost digit by
the radix. Add the next digit. Multiply the result by the radix. Add the next digit, and so on. Stop after
adding the last digit. Do not multiply by the radix after adding the last digit.

4

Number Division Fraction Remainder

19153 3
19153 / 16 = 4, remainder 2769 4 2769

2769 2
2769 / 16 = 10, remainder 209 10 209

209 1
209 / 16 = 13, remainder 1 13 1

1 0 1 / 16 = 1, remainder 0
1 0

Number Division Fraction Remainder

19153 19153 / 16 = 1197, remainder 1 1197 1

1197 1197 / 16 = 74, remainder 13 74 13

74 74 / 16 = 4, remainder 10 4 10

4 4 / 16 = 0, remainder 4 0 4

If we apply this method to the same example, we get:

4AD1(base 16) = ((4 * 16 + 10) * 16 + 13) * 16 + 1 = 19153(base 10).

The second method is convenient to use with a pocket calculator.

1.3. Conversion from decimal to another number system
There are also two ways to convert from decimal to another number system. The first method gives
the rightmost digit (least significant digit) first: Divide the number repeatedly by the radix and get the
integer part of each result. Save the remainders from each division. The remainders represent the
converted number with the least significant digit first. This method is illustrated with the same
example as above:

Convert 19153 from decimal to hexadecimal:

You get the result from the remainders in reverse order: 4 : 10 : 13 : 1 gives 4AD1(base 16).

The second method gives the leftmost digit (most significant digit) first: Find the highest power of the
radix that is not bigger than the number you want to convert. Divide by the highest power of the radix
first. The result of the first division is the most significant digit of the result. Divide the remainder by
the next lower power of the radix, and so no. Our example gives these results:

Convert 19153 from decimal to hexadecimal:

You get the result from the fractions: 4 : 10 : 13 : 1 gives 4AD1(base 16).

You can choose the method you think is most logical or easiest to remember.

1.3.1. Conversion from hexadecimal to binary
It is easy to convert a number from hexadecimal to binary. Just convert each hexadecimal digit to four
bits. If any digit gives less than four bits then you must remember to put zeroes in front of the number
to get four bits.

Converting 4AD1 from hexadecimal to binary:

5

4
↓

A
↓

D
↓

1
↓

0100 1010 1101 0001

0100 : 1010 : 1101 : 0001 gives 0100101011010001 = 100101011010001.

1.3.2. Conversion from binary to hexadecimal
To convert from binary to hexadecimal, you divide the bits into groups of four. If the number of bits is
not divisible by four then add extra zeroes in front of the number. Remember that you can add zeroes
to the left of the number without changing the value. You cannot add a zero to the right of the number
because this would multiply the number by two.

To convert 100101011010001 from binary to hexadecimal, we divide it into groups of four. The
leftmost group has only three bits so we add a zero in the front:

0100 1010 1101 0001

︸ ︸ ︸ ︸

4 A D 1

It is easier to write 4AD1 than 100101011010001 and it is easy to convert between these two number
systems. This is the reason why hexadecimal numbers are often used in digital systems.

It is convenient to use the hexadecimal representation as an intermediate if you want to convert from
binary to decimal or from decimal to binary. The conversion: binary → hexadecimal → decimal is
easier than binary → decimal. Likewise, the conversion: decimal → hexadecimal → binary is faster
than decimal → binary because you need fewer divisions.

1.4. Addition of binary numbers
Addition of binary numbers goes the same way as for decimal numbers, as we learned at school. This
example calculates 7 + 21, using binary numbers:

111

00111

+10101

11100

7

+21

28

In the example above, we start with the 1's place which is the rightmost column. 1 + 1 = 2. The
number 2 in binary is 10, so we get zero and a carry which goes to the 2's place. The carries are
indicated in red here. The second column from the right is the 2's place. Here we have 1+1+0 = 2.
This gives a zero in the 2's place and a carry to the 4's place. The third column from the right is the
4's place. Here we have 1+1+1 = 3. The binary code for 3 is 11, so we get 1 in the 4's place and a

6

binary decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

carry to the 8's place. There are no more carries, so the result is 00111 + 10101 = 11100, or in
decimal: 7 + 21 = 28.

1.5. Signed binary numbers
There are several different ways of representing negative numbers. Today, almost all computers use
a system called two's complement for representing numbers that can be both positive and negative.
We will explain this system shortly.

A digital system typically has a fixed number of bits to represent a binary number. For example, if we
have four bits, we can have the numbers from 0 to 15:

We can add 1 by going one step down in this table. The maximum number we can have with four bits
is 15. If we try to add 1 to 15 we get the binary number 10000. Since we have only four bits in this
example, we will not see the extra bit, but only 0000. In other words, if we add 1 to 15 in a four-bit
system we get an overflow and the result will be 0. Likewise, if we try to subtract 1 from 0 we get an
underflow and we will see the result 15.

This behavior is illustrated in the wheel on figure 1.1. You add one by going one step clockwise.
When you pass 1111 (15) you will see the number overflow back to zero. The binary numbers are
shown in black. The unsigned decimal numbers are shown in blue.

The idea of the two's complement system is that we use the same number wheel with a fixed number
of bits and ignore overflow and underflow. We can find the representation of -1 by subtracting 1 from
0. This will underflow and give the bits 1111. Now, we define that 1111 means -1 instead of 15. We
can find -2 by subtracting 1 from -1. This gives 1110 as the representation for -2. We will use the left
half of the circle for negative numbers and the right half for positive numbers. We want to make it
easy to distinguish between positive and negative numbers, so we decide that the leftmost bit is 1 for
negative numbers and 0 for positive numbers. This bit is called the sign bit. Now, the positive
numbers go from 1 to 7, and the negative numbers go from -1 to -8. There are eight negative

7

numbers but only seven positive numbers because the value zero also has the sign bit set to 0. The
signed numbers are shown in red on the figure.

The same bit pattern can be interpreted in two different ways now. The bit pattern 1111 means 15 if
we interpret it as an unsigned number (blue numbers on the figure), but it means -1 if we interpret this
bit pattern as a signed number (red numbers on the figure). The values from 0000 to 0111 are the
same whether you use signed or unsigned numbers, while the values from 1000 to 1111 are
interpreted differently for signed and unsigned numbers. Some computer programming languages,
such as C and C++, allow you to specify whether a binary variable is interpreted as a signed or an
unsigned number.

Fig. 1.1. Two's complement number system

8

number of bits range for unsigned numbers range for signed numbers

8 0 ... 255 -128 ... +127

16 0 ... 65535 -32768 ... +32767
32 0 ... 4294967295 -2147483648 ...

+2147483647

64 19
0 ... 1.8∙10

18 18
-9.2∙10 ... +9.2∙10

n n
0 ... 2 -1

n-1 n-1
-2 ... +2 -1

1001 We want to find out what this signed bit pattern means

0110 Invert all bits

0111 Add 1. This means 7. Therefore, 1001 means -7

0101 Binary representation of 5

1010 Invert all bits

1011 Add 1. This is the representation of -5

1.5.1. How to change the sign of a number

You cannot change the sign of a number just by inverting the sign bit. The rule is that you change the
sign of a number by inverting all bits and then add 1. For example, if you want to find the two's
complement representation of -5, you first find the binary representation of 5. Then invert all bits and
add 1:

We can also use this rule to find the value of a bit pattern, for example 1001. The sign bit is 1 so it
must be a negative number. We want to change the sign in order to find the corresponding positive
number:

1.5.2. The ranges of signed and unsigned n-bit numbers

In the above example we used only four bits for the sake of simplicity. This gave us a quite limited
range of possible values. Four bits gives us 24 = 16 different bit combinations, from 0000 to 1111. We
can use these sixteen different bit combinations to represent either the unsigned numbers from 0 to
15, or the signed numbers from -8 to +7. If we want higher numbers, then we need more bits.

If we have eight bits then we have 28 = 256 different bit combinations, from 00000000 to 11111111.
We can use these 256 different bit combinations to represent either the unsigned numbers from 0 to
255, or the signed numbers from -128 to +127.

In general, if we have n bits then we have 2n different bit combinations. We can use these 2n different
bit combinations to represent either the unsigned numbers from 0 to 2n-1, or the signed numbers from
-2n-1 to +2n-1-1.

Modern computers typically use 8, 16, 32, or 64 bits for representing integer numbers. We can
calculate the ranges using these formulas.

1.6. Binary coded decimal numbers
We prefer to use binary numbers in digital applications, but sometimes we have to use decimal
numbers in order to make the numbers easier to read for humans. For example, we may want a
decimal number on a display, or a human operator may enter a decimal number on a keyboard. We
can represent a decimal number in a digital system by using four bits for each decimal digit. Four bits

9

gives us sixteen different combinations which is more than enough to represent the possible digits
from 0 to 9. We are using only ten of the sixteen possible bit combinations. This method is called
binary coded decimal numbers (BCD).

If you need, for example, a display that can show the numbers from 000 to 999 then you need three
groups of four wires each for the three digits. For example, the number 256 in binary code is
100000000, while 256 in binary coded decimal is 0010 : 0101 : 0110.

1.7. Exercises

Exercise 1.1.

The powers of 2 are used everywhere in digital systems. Write a table of the powers of 2 from 20 to
210 in decimal, hexadecimal, and binary representation.

Exercise 1.2.

Convert these numbers from binary to decimal:
1111
1100100

Exercise 1.3.

Convert these numbers from decimal to binary:
71
1023

Exercise 1.4.

Convert these numbers from binary to hexadecimal:
100100011
1111000000001101

Exercise 1.5.

Convert the numbers in exercise 1.4 to decimal. Tip: It is easier to convert from hexadecimal to
decimal than from binary to decimal.

Exercise 1.6.

Convert these numbers from hexadecimal to binary:
2468
ABCD

Exercise 1.7.

Find the sum of the numbers in exercise 1.4 by binary or hexadecimal addition.

Exercise 1.8.

How many different binary numbers can you write with:

10

4 bits
5 bits
n bits

Exercise 1.9.

Write the number -4 in two's complement representation for a binary system with 16 bits.

Exercise 1.10.

We want to build a digital thermometer that can show the temperature up to 200 °C without decimals.

How many bits do we need to represent the temperature as a binary number if only positive
temperatures can be shown?

How many bits do we need to represent the temperature if the thermometer can also show negative
temperatures, and the two's complement representation is used?

How many bits do we need to represent the temperature in binary coded decimal (BCD)
representation?

11

Operator Mathematics Software Engineering

AND ∧ && A*B

OR ∨ || A+B

NOT ¬ ! A̅

A B A ∨ B A+B

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 2

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

A NOT A

0 1

1 0

2. Boolean algebra
Boolean algebra is a branch of mathematics where variables can have only two possible values: false
and true, or 0 and 1. The basic operations in Boolean algebra are AND, OR, and NOT.

These operators are defined in the following tables.

The AND operator gives 1 if both inputs are 1. The OR operator gives 1 if at least one input is 1. The
NOT operator gives the opposite of the input.

Different people use different symbols for these operators. Mathematicians use the symbols ∧ ∨ ¬ for
AND, OR, NOT. Software programmers use && || ! in programming languages like C, Java, etc.
 ngineers often write as multiplication, as addition, and T as an overbar .

It is clear that Boolean AND is the same as multiplication if you look at the table for the AND
operation. It is less obvious why engineers write A + B when they mean A OR B. The tables for OR
and PLUS are slightly different:

The reason why it is convenient to use the multiplication and addition signs for AND and OR is that
the rules for multiplication and addition that we are used to from elementary algebra also apply to
AND and OR in Boolean algebra, as we will see. We just have to remember that 1 + 1 = 1 when we
are dealing with Boolean algebra.

The normal rules for the precedence of operators apply. Multiplication comes before addition if there
is no parenthesis:

12

A*0=0 A+1=1

A*1=A A+0=A

A*A=A A+A=A

A * A̅ = 0 A + A̅ = 1

A + A̅*B = A + B A * (A̅ + B) = A * B

A̿ = A

Name of law Boolean AND Boolean OR

Commutative law A*B=B*A A+B=B+A

Associative law A * (B * C) = (A * B) * C A + (B + C) = (A + B) + C

Distributive law A * (B + C) = (A * B) + (A * C) A + (B * C) = (A + B) * (A + C)

A + B * C = A + (B * C)

This rule also applies if you use the other symbols ∧ ∨ or && ||.

2.1. Laws and rules
I am sure you have learned the basic rules of elementary algebra in school, even if you do not know
the names of these rules:

These laws are the same for elementary algebra and Boolean algebra, except the last one:
A + (B * C) = (A + B) * (A + C)

The latter law is valid for Boolean algebra, but not for elementary algebra.

There are many other useful rules in Boolean algebra:

These rules are easy to prove by inserting all possible values on the left hand side of the equation
sign and see if you get the same values on the right hand side.

One rule is particularly good to remember. It is called De Morgan's rule:

𝐴 ∗ 𝐵 =

𝐴 + 𝐵 =

De Morgan's rule can be expressed more generally for any Boolean expression: You can invert the
output of a Boolean expression by inverting all the inputs, replace all AND operations by OR, and
replace all OR operations by AND. This rule is often used for simplifying digital circuits.

All the tables above have two columns. The rules in the left column can be derived from the rules in
the right column, or vice versa, by applying de Morgan's rule. Let's try this for the commutative law:

A*B=B*A

 efine = and = , and insert:

 =

Use de Morgen's rule on both sides:

 =

13

A B C F = A * (B+C) sum of products expression

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 1 A*B̅*C

1 1 0 1 A*B*C̅

1 1 1 1 A*B*C

A B C F = A * (B+C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Invert on both sides

X+Y=Y+X

This is the result we want, just with different letters.

2.2. Truth tables
A truth table is a table of the value of a Boolean expression for all possible values of the inputs. For
example, this is a table for the expression F = A * (B+C).

Sometimes, you want to build a digital circuit with a given functionality that is defined only by a truth
table. You can use the so-called sum-of-products method to find a Boolean expression that
corresponds to a given truth table. This method works as follows:

Find all the lines in the truth table for which the output is 1. Make one expression for each of these
lines by AND'ing all the inputs and inverting those inputs that are 0 in that line. Each of these
expressions is 1 in the corresponding line and 0 in the rest. The final result is the OR-combination of
all these expressions. Let's try this method with the example above.

 ow we know that = .

This is called a sum of products, even though the * and + actually mean AND and OR.

Now we have a valid expression for F, but not the simplest possible one. We may simplify this
expression by using the laws and rules that we have learnt:

14

 =

 =

 1 =

 =

 =

 =

A * (B + C)

If there are many 1's and few 0's in the output column, then it is easier to invert the output and apply
the sum-of-products method to the inverted output. This gives a simpler expression, but we must
remember to invert the result of the expression. We can use de Morgan's rule for converting the
inverted sum of products to a "product of sums".

2.3. Reducing a Boolean expression
In the above example, we could reduce the expression by looking for common factors that we could
put outside of a parenthesis. This may be hard, but at least you can do it in simple cases with a little
practice. Unfortunately, some cases are so tricky that you basically have to know the result in
advance in order to find a way to the result. I will give you one example here:

 =

It is not obvious that this expression can be reduced, but look what happens when we use the rule
 = 1:

G=
 =

 1 =

 =

 =

 =

 1 1 =

 1 1 =

Pure magic! The term B*C just disappeared. This is not the way forward if we want to reduce Boolean
expressions that may be more complicated than this example. There is a graphical method that
makes this kind of reductions more intuitive. It is called a Karnaugh map (pronounced in French: Kar-
nó map). The Karnaugh map shows geometrically that all input combinations covered by the term
 in the above example are already covered by the two terms and .

15

(𝑋̅ + ̅̅

I will not teach you how to make a Karnaugh map because it takes some time and practice to learn,
and it becomes quite difficult if there are more than four inputs. You may look up "Karnaugh map" on
the web if you are interested. However, we have software that does the complicated job of finding the
simplest possible expression for a given Boolean function. There is an online program at
www.32x8.com that does the job. There is also an open source program called Karnaugh Map
Minimizer that you can download from https://sourceforge.net/projects/k-map/.

Today, complicated digital circuits are designed with the use of a hardware description language,
such as VHDL or Verilog. There is not much need for learning how to make Karnaugh maps
nowadays because the reduction of Boolean expressions comes automatically when you use such
development tools.

2.4. Exercises
Exercise 2.1.

The distributive law for Boolean algebra looks like this:

A * (B + C) = (A * B) + (A * C)

A + (B * C) = (A + B) * (A + C)

Prove this by using truth tables.

Exercise 2.2.

Use the rules of Boolean algebra to reduce these expressions to the simplest possible:

(1)

(2)

(3)

(4)

(5)

(6)

 𝑌) ∗ (𝑋 + 𝑌)

X*Y +

Exercise 2.3.

We want to implement a Boolean function F with the following truth table

16

http://www.32x8.com/
https://sourceforge.net/projects/k-map/
https://sourceforge.net/projects/k-map/

Inputs output

A B C D F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Write the expression for F as a sum of products.

Reduce the expression for F to the simplest possible by using the online program at www.32x8.com
or the program "Karnaugh Map Minimizer" from https://sourceforge.net/projects/k-map.

17

http://www.32x8.com/
https://sourceforge.net/projects/k-map
https://sourceforge.net/projects/k-map

3. Digital circuits

3.1. How Boolean gates are made

The Boolean operations AND and OR can be made with simple switches, as shown here:

A

A

B

B

A*B

ANDfunction:
Thelampwill light whenAandBare
bothon.

A+B

ORfunction:
Thelampwill light whenat least one
of AandBis on.

Fig. 3.1. Boolean functions implemented with switches

Two switches connected in series will produce the AND function. Two switches connected in parallel
will produce the OR function.

This principle is used in digital circuits, where the switches are replaced by transistors. MOSFET
transistors are often used for this. The symbols for two kinds of MOSFET transistors are shown here:

drain

gate

source

N-channel MOSFET

drain

gate

source

P-channel MOSFET

Fig. 3.2. N-channel and P-channel MOSFETs

A MOSFET has three connections named drain, source, and gate. There is no current going through
the gate, but the voltage on the gate controls the current that can go between drain and source. We
can use this as a switch that can be turned on and off by changing the voltage on the gate. The N-
channel MOSFET is turned on by a positive voltage on the gate relative to the source. The P-channel
MOSFET is turned on by a negative voltage on the gate relative to the source.

The simplest digital circuit we can make of MOSFET transistors is an inverter. Our inverter is made
of
a p-channel and an n-channel MOSFET:

18

Fig. 3.3. CMOS inverter

If the input is high (for example 5V) then the p-channel MOSFET is off and the n-channel MOSFET
is
on. The n-channel MOSFET connects the output to ground to make it low.

If the input is low (0V) then the p-channel MOSFET if on and the n-channel MOSFET is off. The p-
channel MOSFET connects the output to the positive supply (5V) to make it high.

The circuit in figure 3.3 can be used as an inverter because a high input gives a low output, and a low
input gives a high output.

Now, we can make logical circuits by connecting the MOSFET switches in series or parallel. Such a
circuit is called a logical gate. Figure 3.4 shows an OR gate with inverted output, also called a NOR
gate.

If the inputs A and B are both low, then the n-channel MOSFETs will be off and the p-channel
MOSFETs will be on. The output is connected to the V+ through the p-channel MOSFETs so that the
output is high.

If both inputs are high, then the n-channel MOSFETs will be on and the p-channel MOSFETs will be
off. The output is connected to ground through the n-channel MOSFETs so that the output is low.

If one of the inputs is high and the other is low, then the output will be low because one of the n-
channel MOSFETs is on, and these are connected in parallel to ground. The output has no
connection to V+ in this case because one of the p-channel MOSFETs is off, and these are
connected in series to V+.

19

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

V+

A

B

n

p

p

n

A+B

Fig. 3.4. CMOS NOR gate

The truth table for the NOR gate is:

We can make an OR gate from this NOR gate by putting an inverter after the output.

Figure 3.5 shows an AND gate with inverted output, also called a NAND gate:

If the inputs A and B are both low, then the n-channel MOSFETs will be off and the p-channel
MOSFETs will be on. The output is connected to the V+ through the p-channel MOSFETs so that the
output is high.

If both inputs are high, then the n-channel MOSFETs will be on and the p-channel MOSFETs will be
off. The output is connected to ground through the n-channel MOSFETs so that the output is low.

If one of the inputs is high and the other is low, then the output will be high because one of the p-
channel MOSFETs is on, and these are connected in parallel to V+. The output has no connection to
ground in this case because one of the n-channel MOSFETs is off, and these are connected in series
to ground.

20

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

V+

A

p

p

A*B

n

n

B

Fig. 3.5. CMOS NAND gate

The truth table for a NAND gate is:

We can make an AND gate from this NAND gate by putting an inverter after the output.

More complicated Boolean functions can be made by combining these circuits.

3.2. Gate symbols

The symbols for the different gates are shown in figure 3.6. An inverted connection is indicated by a
bubble. The AND gate with inverted output is called a NAND gate. The OR gate with inverted output
is called a NOR gate.

An exclusive-or gate, also called an XOR gate, has a high output if one – and only one – of the inputs

is high. The XOR operator is sometimes written as a circled plus: ⊕

21

A B A*B A+B 𝑨̅̅̅ ∗̅̅̅̅̅𝑩̅̅ 𝑨̅̅̅ +̅̅̅̅𝑩̅ A⊕B

0 0 0 0 1 1 0

0 1 0 1 1 0 1

1 0 0 1 1 0 1

1 1 1 1 0 0 0

Fig. 3.6. Gate symbols

The truth tables for the different gates are as follows:

You can combine these gates to make any Boolean function. Figure 3.7 shows an example. Usually,
we prefer to draw the inputs to the left and the outputs to the right. It is not necessary to draw the
power supply to all the gates because this will only make the diagram more complicated without
adding any important information.

Fig. 3.7. Boolean function implemented with gates

All the different gates are available as integrated circuits. For example, the integrated circuit 74HC00
contains four NAND gates in an integrated circuit with 14 pins as shown in figure 3.8. Vcc is the
positive supply voltage (+5V), and GND is ground (0V).

22

Fig. 3.8. Pin configuration of 74HC00 NAND gate

Many different integrated circuits are available with different digital functions. You can connect these
together to make more complex circuits. An output can be connected to more than one input, but an
input cannot be connected to more than one output, because you will have a short circuit if one output
is high and the other output is low. All inputs must be connected to either an output, ground, or to the
positive supply.

The inputs of MOSFET circuits are controlled by the voltage on the input, not the current. The current
that goes through an input is negligible (< 1 nA). Therefore, it is necessary that all inputs are connec-
ted to something with a known voltage. An input that is not connected to anything will be floating.
This
means that it has a random and unpredictable voltage. Even the smallest electromagnetic noise can
make a floating input change erratically.

MOSFET circuits should be handled with care because they are easily destroyed by electrostatic
charges, for example if you touch them after walking on a synthetic carpet.

In the next chapter, we will look at some circuits we can build with the different gates.

3.1.

Exercises

Exercise 3.1.

 raw a diagram with gates to implement the function = .

Exercise 3.2.

Change the diagram from exercise 3.1 so that it uses only NAND gates. Tip: Use De Morgan's rule to
convert the OR to an AND.

The integrated circuit 74HC00 contains four NAND gates. How many 74HC00 chips do you need to
implement this function?

23

Exercise 3.3.

A

Y

B

Write the truth table for this function.

Is there a simpler way to make the same function if all types of gates are available?

Exercise 3.4.

What is wrong with this circuit? What will happen?

A

B

C

D

Exercise 3.5.

What is wrong with this circuit? What will happen?

Q

X

W

Y

24

A2 A1 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

 ̅ ̅̅̅

4. Commonly used Boolean circuits

4.1. Decoders

A decoder is a circuit that converts a binary number to some other code that requires more wires. A
very common kind of decoder has one output for each possible combination of the inputs. For
example, if you have three inputs then you have eight possible input combinations corresponding to
the binary numbers from 0 to 7. We want one output for each of these eight combinations. The truth
table looks like this:

We can implement this truth table with AND gates and inverters. For example,
𝑌2 = 𝐴0 ∗ 𝐴1 ∗ 𝐴2.

A diagram for the three-to-eight decoder is shown on figure 4.1.

You can have decoders of any size. If the decoder has n inputs then it can have 2n outputs.

25

A0

A0 A0 A1 A1 A2 A2

Y0

Y1

A1

Y2

A2

Y3

Y4

Y5

Y6

Y7

Fig. 4.1. Three to eight decoder

4.2. Encoders

An encoder is the opposite of a decoder. It has more inputs than outputs. For example, if you have a
keyboard with many keys and the user is pressing one key, you want the key number as a binary
code.

The truth table for an encoder with eight inputs may look like this:

A0 A1 A2 A3 A4 A5 A6 A7 Y2 Y1 Y0

V

0
1
x
x
x
x
x
x
x

0
0
1
x
x
x
x
x
x

0
0
0
1
x
x
x
x
x

0
0
0
0
1
x
x
x
x

0
0
0
0
0
1
x
x
x

0
0
0
0
0
0
1
x
x

0
0
0
0
0
0
0
1
x

0
0
0
0
0
0
0
0
1

0
0
0
0
0
1
1
1
1

0
0
0
1
1
0
0
1
1

0
0
1
0
1
0
1
0
1

0
1
1
1
1
1
1
1
1

A complete truth table with eight inputs would need 28 = 256 lines in the table. We have joined some
of the lines together to save space by writing x, meaning don't care. The output is the same
regardless of the values of the x inputs.

26

As you can see from the table above, the output (Y2,Y1,Y0) indicates the highest input that is active.
The extra output V (valid) is used for distinguishing between no input and input A0.

4.3. Seven segment decoders

A seven-segment decoder is used for showing numbers on a seven-segment display.

Fig. 4.2. Use of 7-segment decoder

The truth table looks like this:

Input values above 9 do not necessarily produce any meaningful patterns on the display.

27

S2 S1 S0 I0-I7 out

0 0 0 x I0

0 0 1 x I1

0 1 0 x I2

0 1 1 x I3

1 0 0 x I4

1 0 1 x I5

1 1 0 x I6

1 1 1 x I7

select A B out

0 x x A

1 x x B

4.4. Multiplexers

A multiplexer is a kind of switch that chooses between two or more inputs. The symbol and the truth
table for a two-input multiplexer looks like this:

Fig. 4.3. Two-to-one multiplexer

The multiplexer can be implemented as shown in figure 4.4:

A

out

B

select

Fig. 4.4. Two-to-one multiplexer implementation

An eight-input multiplexer:

Fig. 4.5. Eight-to-one multiplexer

28

carryi Ai Bi carryi+1 sumi

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

4.5. Adders

We learned on page 6 how to add binary numbers by hand. Now we will construct a logical circuit
that
can do it for us. Let us look at the same example again:

We can divide this calculation into columns. The rightmost column, or column 0, is the 1's place. The
second column from the right, or column 1, is the 2's place. Column 2 is the 4's place, and so on.
Column i is the 2i's place.

Each column i has three inputs: carryi, Ai, Bi, and two outputs: sumi and the carry to the next column,
carryi+1.

If we want to write the truth table for this, we simply add the three inputs carryi, Ai, Bi. The sum can
be
any number from 0 to 3. We write this sum as a binary number from 00 to 11 with the least significant
bit in sumi and the most significant bit in the next carry, or carryi+1.

For example, the 2's place indicated by the green frame in the figure above has the inputs

carry1 + A1 + B1 = 1+1+0 = 2 = 10(base 2), where '+' means plus.

The binary sum is 10. These two bits are used so that the 0 goes to the sum in the 2's place:
sum1 = 0. The 1 is the carry for the 4's place: carry2 = 1.

The sumi output can be expressed as an exclusive-or of the three inputs:

sumi = Ai ⊕ Bi ⊕ carryi

The carry output is high if at least two of the inputs are high:

carryi+1 = Ai*Bi + Ai*carryi + Bi*carryi

We can build this with gates as shown in figure 4.6.

29

Ai

Bi

carryi

sumi

carryi+1

Fig. 4.6. Full adder

This circuit is called a full-adder. We need one full-adder for each column in our addition scheme. The
carry output from each column goes to the carry input for the next column:

Inputs AandB

carry4

A3 B3

Full adder

carry3

A2 B2

Full adder

carry2

A1 B1

Full adder

carry1

A0 B0

Full adder

carry0

sum3 sum2

Sumoutput

sum1 sum0

ground

Fig. 4.7. Four bit adder

The carry input for the first full adder, carry0, is connected to ground so that it will be zero. The
output
from the last full-adder, carry4, may be used for indicating overflow for unsigned addition.

4.6. Subtracting binary numbers
The four-bit adder that we made above corresponds to the number wheel on figure 1.1 (page 8). You
add a value B by going B places clockwise on the wheel. This adder circuit also works for signed
numbers in two's complement representation because the two's complement system relies on the
same number wheel.

Now we want to subtract numbers. Remember how we changed the sign of a number? This is
explained on page 9: invert all bits and add 1. So, we can calculate A - B as A + (-B), where

30

(-B) is generated by inverting all bits in B and adding 1. We can convert the adder in figure 4.7 to a
subtractor by putting inverters on all the B input bits. We still have to add 1, and here the unused
carry input comes in handy. We can simply add 1 by connecting the carry input to the positive voltage
supply.

Figure 4.8 shows how we can use the adder as subtractor. This subtractor works for both unsigned
numbers and for signed numbers in two's complement representation. The carry4 output indicates
unsigned overflow.

Inputs AandB

A3 B3 A2 B2 A1 B1 A0 B0

V+

carry4

Full adder

sum3

carry3

Full adder

sum2

carry2

Full adder

sum1

carry1

Full adder

sum0

carry0

A–Boutput

Fig. 4.8. Four bit subtractor

31

4.7. Exercises

Exercise 4.1.

Construct a two-to-four decoder. Draw the truth table and a diagram of gates.

Exercise 4.2.

It is possible to construct any 3-input Boolean function by using an 8-to-1 multiplexer. Write the
reduced Boolean equation for this multiplexer circuit:

V+

8-to-1
multi-
plexer

F

ground S2 S1 S0

Exercise 4.3.

It is possible to construct Boolean functions from decoders and OR gates. Write the reduced Boolean
equations for this decoder circuit:

i0

i1

i2

3-to-8

decoder

G

H

32

Fig. 4.9. DIP switch and pull-down resistor

Exercise 4.4.

Test an adder on a breadboard. The integrated circuit 74HC283 contains a 4-bit adder like the one on
figure 4.7.

You can use a DIP switch with at least 8 bits for the inputs. Each switch must have a pull-down
resistor to ground in order to make sure the input is low when the switch is off:

Connect light-emitting diodes (LED) to the outputs. The voltage over a LED is approximately 2V. The
power supply is 5V, so we need a resistor in series with each LED to generate a voltage drop of
5V - 2V = 3V. A suitable current for a LED is 10 mA, so you can use a resistor of 3V / 10 mA = 300
Ω.

Test if the adder works as you expect when adding binary numbers.

Exercise 4.5.

Modify the adder from exercise 4.4 into a calculator that can both add and subtract. An additional
input named SUB controls the function so that your circuit calculates A + B when SUB = 0, and A - B
when SUB = 1.

Tip: you can use an XOR gate 74HC86 to invert the B inputs when SUB = 1 because
B ⊕ is equal to when = 0 and equal to when = 1.

SUB should also be connected to the carry input.

33

5. Flip-Flops
The output depends only on the inputs on digital circuits that have no memory. Such a circuit is called
combinational because the output is a combination of the inputs. The circuits we have seen in the
previous chapters were all combinational.

The output may depend not only on the inputs, but also on the past history, on circuits that contain
memory elements. Such a circuit is called sequential because the output depends on a sequence of
inputs. Now we will see how to create memory elements so that we can construct sequential circuits.

5.1. Basic feed back circuit
A flip-flop is a memory circuit that can remember one bit. It has two states, 0 and 1. Flip-flops are
circuits with positive feedback. Consider this circuit built of two inverters:

Q

Q

Fig. 5.1. Positive feedback circuit with two stable states

This circuit can be in one of two states. Either it is high on the left side (Q) and low on the right side
 , or vice versa. hen you turn on the power, it will quickly go to one of these two stable states,
because any state in between is unstable. You cannot predict which state it will end up in, because it
is symmetrical.

5.2. SR flip-flop
The circuit above is not very useful because we cannot change the state. Now we will replace the
inverters by NOR gates so that we can change the state. The input S is used for setting Q high. The
input R is used for resetting Q to low.

S

Q

Q

R

Fig. 5.2. SR flip-flop

We have the same feedback as before as long as the two inputs S and R are both low. Either Q will
be low and will be high, or will be high and will be low. e can force to be low by setting
high because the output of a NOR gate is always low when at least one of the inputs is high. We
assume that R is still low, so Q will be high. In other words, we can change the circuit to the state

34

S R Q Q̅

0 0 remember last value remember last value

0 1 0 1

1 0 1 0

1 1 0 0

where Q is high by setting S high and low again. The opposite happens when we set R high and low
again. This will make low and high.

This circuit is called an SR flip-flop. The S stands for set, and R stands for reset. We can write the
truth table:

The SR flip-flop works as a memory as long as the inputs S and R are both low. We can set it to state
1 (Q = 1) by setting S high and low again. And we can set it to state 0 (Q = 0) by setting R high and
low again. It is not useful to set S and R both high at the same time.

Usually, we prefer to have inputs on the left and outputs on the right. We can rewrite the diagram of
the SR flip-flop to get this:

R

S

Q

Q

Fig. 5.3. SR flip-flop

5.3. SR flip-flop with enable

We can put an enable input (E) on the SR flip-flop so that it can only change when E is high:

R

E

S

Q

Q

Fig. 5.4. SR flip-flop with enable

The truth table is now:

35

E S R Q Q̅

0 x x remember last value remember last value

1 0 0 remember last value remember last value

1 0 1 0 1

1 1 0 1 0

1 1 1 0 0

E D Q Q̅

0 x remember

last value

remember

last value

1 0 0 1

1 1 1 0

5.4. D latch
 ow, we can set = because and should never both be high at the same time. e can set the
E input low when we want the circuit to remember a value.

E

D

Q

Q

Fig. 5.5. D latch

The input has been renamed to for data , while the input is connected to . The state can only
change when E is high. It will change to state 1 when D = 1, and state 0 when D = 0.

The D input is the data bit we want to save. The value of D is loaded into the D-latch when E is high
and stored when E is low, as shown in this truth table:

The D-latch is useful as a memory circuit.

5.5. Edge-triggered D flip-flop
Hold on! Now it is getting tricky. The D-latch can change as long as the E input is high. Now we want
a memory circuit that can change only at specific points in time. This can be very useful when we
want to handle data in a sequence, as we shall see below.

We can obtain this by connecting two D-latches after each other and invert the enable input of the
first one. The first latch is open when the enable input is low and the second latch is open when the
enable input is high:

36

D

D1

E1

Q1

D-latch

Q1

D2

E2

D-latch

Q2

Q2

Q

Q

clock

Fig. 5.6. Edge-triggered D flip-flop

The D input contains the data bit that we want to save. The joined enable input is named clock. First,
the clock input is low. This will make E1 high and E2 low, so that D is loaded into the first latch,
while
the second latch is on hold. Now we let the clock input go high. This will make E1 low and E2 high.
Now the first latch is on hold while the second latch is loading the value of Q1. This will be the value
that the D input had immediately before the clock input went high. When the clock goes low again,
the
second latch will be on hold so that the same value will be preserved until the clock goes high again.

The result is that the Q output will remember the value that the D input had at the time when the clock
changed from low to high. This is called an edge-triggered flip-flop. We say that the value of D is
saved on the rising edge of the clock input.

Let me explain this with an example. The timing diagram in figure 5.7 shows how the signals change
in a time sequence. We are assuming that Q1 and Q2 are zero when we start.

The clock input goes up and down all the time. The first latch, Q1, follows the D input when the clock
is low (green) and stays constant when the clock is high (blue). The second latch, Q2, follows Q1
when the clock is high (blue) and stays constant when the clock is low (green). The result is that Q2
can change only when clock goes from low to high. The output value that we see on Q2 is the value
that the D input had immediately before the clock went from low to high.

clock

D

Q1

Q2

time

Fig. 5.7. Timing diagram for edge-triggered D flip-flop

37

clock D S R Q

0 x 0 0 remember last value

1 x 0 0 remember last value

rising edge 0 0 0 0

rising edge 1 0 0 1

x x 1 0 1

x x 0 1 0

x x 1 1 1

clock D Q

0 x remember last value

1 x remember last value

rising edge 0 0

rising edge 1 1

Edge-triggered D-flip-flops are widely used in digital electronics. We can buy an integrated circuit
containing one or more such flip-flops. The signal Q1 is used only internally and is not available as an
output from the -flip-flop. The signal 2 is output with the name . The inverted signal is
sometimes also available as output.

Truth table for an edge-triggered D-flip-flop:

The symbol for an edge-triggered flip-flop has a triangle or wedge at the clock input to indicate that
this input is edge-triggered:

clock

D

SET

CL
R

Q

Q

Fig. 5.8. Symbol for edge-triggered D flip-flop

5.1.

Edge-triggered D Flip-Flop with set and reset

A flip-flop can have extra inputs to set and reset it, just like the SR flip-flop in figure 5.3. These inputs
are used for setting the flip-flop to a desired state without giving it a clock pulse.

Truth table for an edge-triggered D flip-flop with asynchronous set and reset:

Figure 5.9 shows the symbol for an edge-triggered D-flip-flop with set and reset:

38

R Q

D SETS Q

CLR

Fig. 5.9. Edge-triggered D flip-flop with set and reset

5.2. Toggle flip-flop
You can make an edge-triggered D flip-flop change at every clock pulse by connecting the inverted
output, , to the input:

clock

D

SET

CL
R

Q

Q

Fig. 5.10. Toggle flip-flop

This can be illustrated with a timing diagram:

clock

D=Q

Q

time

Fig. 5.11. Timing diagram for toggle flip-flop

39

If you put a square wave into the clock input of a toggle flip-flop, you get a square wave out with half
the frequency.

5.1.

Ripple counter

You can put multiple toggle flip-flops in a row so that each one will produce a square wave with half
the frequency of the previous one:

D

SE
T

Q

Q0

D

SE
T

Q

Q1

D

SE
T

Q

Q2

clock

CL
R

Q

CL
R

Q

CL
R

Q

Fig. 5.12. Ripple counter with three bits

The timing diagram below shows that Q0 is changing on every rising edge of the clock input. Q1
changes every second time, and Q2 changes every fourth time.

The bit pattern (Q2,Q1,Q0) is actually the binary numbers from 000 to 111. After 111 it starts over
again from 000. We can use this as a counter that counts the binary numbers from zero to seven. We
can get more bits in the counter by adding more toggle flip-flops.

clock

Q0

Q1

Q2

Q2,Q1,Q0 000

001

010

011

100

101

110

111

000

001

time

Fig. 5.13. Timing diagram for ripple counter

40

5.2. Exercises

Exercise 5.1.

Show the values of and for an flip-flop on this timing diagram.

S

R

Q

Q

time

Exercise 5.2.

 how the values of and for a -latch on this timing diagram.

D

E

Q

Q

time

Exercise 5.3.

 how the values of and for an edge-triggered D flip-flop on this timing diagram.

41

clock

D

Q

Q

time

Exercise 5.4.

A

D

SET

Q

Q1

D

SET

Q

Q2

D

SET

Q

Q3

D

SET

Q

Q4

clock

CL
R

Q

CL
R

Q

CL
R

Q

CL
R

Q

A series of edge-triggered D flip-flops with the same clock is called a shift register.

Show the outputs Q1, Q2, Q3, Q4 on the timing diagram for this shift register.

clock

D

Q1

Q2

Q3

Q4

time
42

clock E Q

rising

edge

0 no change

rising

edge

1 change to the

opposite of last
value

X1 X0 RED YELLOW GREEN

0 0 1 0 0

0 1 1 1 0

1 0 0 0 1

1 1 0 1 0

Exercise 5.5.

How can you make a toggle flip-flop with enable? The Q output should change on the rising edge of
the clock only if an enable input (E) is high. The truth table is shown below. Show with a diagram
how
you can implement this with an edge-triggered D flip-flop and gates.

Exercise 5.6.

Make a traffic light that changes in the sequence

 → LL → → LL .

We can use a counter with two bits to switch between the four states, as shown in this truth table

Show the Boolean equations for the three outputs RED, YELLOW, GREEN as functions of X1 and
X0.

Draw a diagram of these functions using gates.

Exercise 5.7.

Make the traffic light of exercise 5.6 on a breadboard. You can use the integrated circuit 74HC4060
which contains an oscillator and a ripple counter with 14 toggle flop-flops. Connect it as shown
below.
Use two consecutive outputs, for example Q8 and Q9, as X0 and X1. Find the gates you need in the
list of digital ICs, page 75.

 se three L s in the colors red, yellow, and green as outputs. onnect a 300 Ω resistor in series

with each LED.

43

+5V

ground

250kohm

100kohm

100nF
ground

44

A current state

Q1,Q2

next state

Q1*,Q2*

0 00 00

1 00 10

0 10 01

1 10 11

0 01 00

1 01 10

0 11 01

1 11 11

6. State machines
A state machine is an apparatus that can be in a number of different states and can change its state
depending on some inputs. It also has outputs that can be used for controlling something.

An example is an elevator. It can be at different floors and it can move up and down depending on its
current position and on the buttons pressed.

Another example is a washing machine. It goes through different states: filling, heating, prewash,
wash, rinse, spin. The transition from one state to the next depends on the buttons pushed and on
various sensors. The outputs of the electronics control motors, valves, heater, and pump.

State machines can be constructed in software or hardware. In this chapter we will learn how to build
a state machine in hardware, using flip-flops and gates.

Let us look at a simple example. Here, we have two edge-triggered D flip-flops connected to the
same clock:

A

D

SE
T

Q

Q1

D

SE
T

Q

Q2

clock

CL
R

Q

CL
R

Q

Fig. 6.1. Two bit shift register

A rising edge of the clock will put the value of the A input on Q1 and put the previous value of Q1 on
Q2. This circuit has four possible states, defined by (Q1,Q2) = 00, 01, 10, 11. A clock pulse will put it
in a new state, depending on the A input. We can write a table of the possible state transitions. This is
called a state table.

The state transitions can be illustrated in a state diagram:

45

A=0

A

01

00

A=1

A=0

A=1

10

A=0

11

A

A=1

Fig. 6.2. State diagram for shift register in figure 6.1.

The ovals on the state diagram define the states. There are four states named 00, 01, 10, 11. The
arrows indicate the transitions. The text on the arrows define the conditions for each transition.

The state diagram above is interpreted like this: If we are in state 00, we will go to state 10 on the
next clock pulse if A = 1 (blue arrow) or stay in state 00 if A = 0 (green arrow). If we are in state 10,
we will go to state 11 on the next clock pulse if A = 1 (blue arrow) or to state 01 if A = 0 (green
arrow).
And so on.

In the next example, we will start with a desired state diagram and then construct a state machine
corresponding to this state diagram. This example will be a 2-bit counter with synchronous reset. We
want it to count in the sequence of binary numbers 00, 01, 10, 11. Furthermore, we want it to go to
state 00 when a reset input, named R, is high while the clock has a rising edge. The R input does
nothing unless there is a rising edge of the clock. We can draw a state diagram for this:

46

input current state next state

R Q1 Q0 Q1* Q0*

0 0 0 0 1

0 0 1 1 0

0 1 0 1 1

0 1 1 0 0

1 x x 0 0

 ̅̅̅̅

R=1

00

R=0

11

R=0

R=1 R=1

10

R

01

Fig. 6.3. State diagram for 2-bit counter with synchronous reset

This state diagram shows that the counter follows the sequence 00 → 01 → 10 → 11 when = 0. It
goes from any state to state 00 when R = 1. The condition for each transition is written on the arrows.
The black arrow has no condition because it goes from state 11 to state 00 regardless of R. We can
write a state table based on the state diagram:

This table shows how the next state (Q1*,Q0*) depends on the current state (Q1,Q0) and the input
(R). Now we can find the Boolean expressions for Q0* and Q1* using the sum-of-products method
described on page 14.

𝑄0∗ = 𝑄0 ∗ 𝑅

𝑄1∗ = 𝑄0 ∗ 𝑄1 ∗ 𝑅 + 𝑄0 ∗ 𝑄1 ∗ 𝑅 = (𝑄0 ⊕ Q1) ∗ 𝑅

Now we can build a circuit that implements this functionality. We need two flip-flops for Q0 and Q1,
respectively. The Boolean expressions for the next state, Q0* and Q1*, are built with logical gates.
These are connected to the inputs D0 and D1 so that they will generate the next state when there is a
clock pulse.

47

Q0*

D0 SET Q0

Q0

R

CL
R

Q

clock

Q1*

D1 SET Q1

Q

-55CLR

Q1

Fig. 6.4. Implementation of 2-bit counter with synchronous reset

A state machine can have various outputs. In the next example, we will make a two-bit counter with
two outputs called max and min, indicating when the counter has reached its maximum and minimum
value, respectively. Furthermore, we will make the counter so that it counts up when an input U is
high, while it counts down when U is low. We will make the counter saturating, so that it does not
wrap around from 11 to 00, but stays at the maximum value when it is counting up, and stays at the
minimum value when it is counting down. This is shown in the following state diagram.

48

input current state next state outputs

U Q1 Q0 Q1* Q0* max min

0 0 0 0 0 0 1

1 0 0 0 1 0 1

0 0 1 0 0 0 0

1 0 1 1 0 0 0

0 1 0 0 1 0 0

1 1 0 1 1 0 0

0 1 1 1 0 1 0

1 1 1 1 1 1 0

U=1

11

U=1

U=1

U=1

10

01

U=0

U=0

U=0

00

U=0

Fig. 6.5. State diagram for saturating up/down counter

This state diagram shows that it is counting up when U = 1 (blue arrows) and stays at the maximum
when we keep trying to count up. Likewise, it counts down when U = 0 (red arrows) and stays at the
minimum when we keep trying to count down. The outputs max and min (violet) are indicated in the
states where they are active.

Let us make a truth table for this saturating up/down counter:

49

 ̅ ̅ ̅ ̅ ̅ ̅̅̅ ̅̅ ̅̅

 ̅ ̅̅̅

 ̅ ̅ ̅ ̅ ̅ ̅̅̅ ̅̅ ̅̅

 ̅ ̅̅̅

+ ̅̅̅

We need the Boolean equations for the next state: Q0* and Q1*, and for the outputs: max and min.
Using the sum-of-products method we get the expressions from the truth table:

𝑄0∗ = 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1

𝑄1∗ = 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1

max = 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1

min = 𝑈 ∗ 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 ∗ 𝑄1

We can reduce these equations using the program at www.32x8.com or the program Karnaugh Map
Minimizer. The reduced expressions are

𝑄0∗ = 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 + 𝑈 ∗ 𝑄1

𝑄1∗ = 𝑄0 ∗ 𝑄1 + 𝑈 ∗ 𝑄0 + 𝑈 ∗ 𝑄1

max = 𝑄0 ∗ 𝑄1

min = 𝑄0 𝑄1

Now we can make a diagram for the saturating up/down counter:

Q0*

D0 SET Q0

U

CL
R

Q

max

Q1*

D1 SET Q1

min

CL
R

Q

clock

next statelogic

statememory output logic

Fig. 6.6. Implementation of saturating up/down counter

This diagram illustrates the general form of a state machine. It consists of three blocks marked with
colors on the diagram: next state logic (green), state memory (blue), and output logic (red).

The state memory consists of edge-triggered D flip-flops. The two other blocks consist only of gates
and inverters. The next state logic defines the next state (Q0*, Q1*) as a function of the current state

50

http://k-map.sourceforge.net/
http://k-map.sourceforge.net/
http://k-map.sourceforge.net/

(Q0, Q1) and the input (U). The state memory is the flip-flops that define the current state. The output
logic defines the outputs as functions of the current state.

The general form of a state machine can be summarized in the following block diagram.

current state

inputs

next state
logic

next
state

statememory

output logic

output

clock

Fig. 6.7. Block diagram showing the general structure of a state machine

As you can see, the next state depends on the current state and the inputs. The output depends on
the current state in this example. An output may actually depend on inputs as well. Such an output is
called a Mealy output. A Mealy output can change if the input changes, even if there is no clock
pulse.

Let us summarize what we have learned about state machines now. It is useful to start with a state
diagram if we want to make a state machine. The states are indicated with circles or ovals on the
state diagram. The state transitions are indicated by arrows, where the conditions for going to another
state are written on the arrows. Outputs are written in the states where they are active.

We can make a state table based on the state diagram. The state table is a truth table where we have
the current state and the inputs on the left side and the next state and outputs on the right side. We
are using the state table to find the Boolean equations for the next state as a function of the current
state and the inputs. We also have to find the Boolean equations for the outputs.

Now, we can build the state machine. The state machine consists of three parts: 'next state logic',
'state memory', and 'output logic'. The 'next state logic' is made of gates that generate the next state
as a function of current state and inputs. The 'state memory' consists of edge-triggered D flip-flops.
The 'output logic' is made of gates that generate the outputs as functions of the current state.

The number of flip-flops that you need is determined by the number of states. If you have n flip-flops,
then you have 2n possible states. Choose n so that 2n ≥ number of states. ou may have some
unused states if 2n is bigger than the desired number of states. The state machine may start in one of
the unused states by accident when you turn on the power. Therefore, it is recommended that you
make the state table so that all unused states will go immediately to a valid state.

It is useful to have a reset input on a state machine so that you can set it to the desired state after
turning on the power. Remember that it can start in a random state if you have no reset function.
There are two kinds of reset: synchronous and asynchronous. The synchronous reset works only
when there is a clock pulse. It is implemented as in figure 6.4. An asynchronous reset works
immediately, regardless of the clock. It is implemented by using flip-flops with asynchronous reset as
explained on page 38.

51

6.1. Synchronous design

A digital circuit with flip-flops can be synchronous or asynchronous. Synchronous means that all flip-
flops have the same clock, while the flip-flops can be connected to different clocks in an
asynchronous design. We will now explain why a synchronous design is more reliable.

A

out

B

select

Fig. 6.8. Two-to-one multiplexer

Let us look at the multiplexer in figure 6.8 (same as figure 4.4). Assume that A and B are both high,
and the select input goes from high to low. The signals will now change as shown in the following
timing diagram.

A

B

select

B*select

A*select

out

time

Fig. 6.9. Timing diagram for multiplexer of fig. 6.8

In this timing diagram, we have made a very fine time scale so that we can see the delays in the
gates. The 𝐴 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡 signal goes up a few nanoseconds later than the 𝐵 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡 goes down because
of the extra delay in the inverter. Now there is a very short moment of time where both of these

52

+ ̅̅̅ ̅ ̅̅

signals are low. The 'out' signal, which is the OR combination of these two signals, will have a short
blip where it is low, even though it is supposed to be high both before and after the change in the
select input. This kind of noise in the signal is called a glitch. Such a glitch can cause problems if the
signal goes to some other circuit that has memory, such as a latch or a flip-flop. For example, we may
get an extra count if this signal goes to the clock input of a counter.

It can be difficult to detect this kind of errors because a glitch may be too short to see on an
oscilloscope, but not too short to change the state of a flip-flop.

A good remedy against such timing problems is to have everything controlled by the same clock, as
we did in the design of state machines above. The 'next state logic' in a state machine can produce
many glitches, but this will not cause any errors because all glitches will have died out before the next
clock pulse. The only thing we have to care about is that the clock period must be longer than the
worst-case delay in the circuits. A digital circuit where all signals are controlled by the same clock is
called a synchronous design.

The counters in figure 6.3 and 6.5 were synchronous designs. These are called synchronous
counters. In the previous chapter we had a ripple counter in figure 5.12. This is an asynchronous
counter because the flip-flops are not connected to the same clock.

Let me explain why the asynchronous counter can be less safe to use. The output of the ripple
counter in figure 5.12 is a three-bit binary number (Q2,Q1,Q0). It counts from binary 000 to 111 and
then starts over at 000.

Assume that we want a signal, P, every time the counter reaches 000. We can make this with a NOR
gate: 𝑃 = 𝑄0 𝑄1 𝑄2. Now, the three output bits from the counter do not change exactly
simultaneously. For example, let us see what happens when the counter goes from binary 011 (=3) to
100 (=4). First Q0 goes low, then Q1 goes low, and then Q2 goes high. There will be a short moment
of time after Q1 goes low, and before Q2 goes high, where the outputs are actually 000, and we will
see a short glitch in the signal P. This may cause problems if P goes to a circuit with memory.

The asynchronous counter is cheap, and it is good enough for many purposes, but the synchronous
counter is better if you want a stable output.

Figure 6.10 shows another example of an asynchronous design. Here we have an AND gate on the
clock input of the second flip-flop so that it is only clocked when the input E (enable) is high. This
design is unsafe because there is a short delay in the AND gate. The second flip-flop is clocked
slightly later than the first flip-flop. We do not know whether the second flip-flop is getting the old
value that Q1 had before the rising edge of the clock or the new value that Q1 has after the clock. It
may be that it sometimes gets the old value of Q1 and sometimes the new value of Q1. Such an
unreliable design is dangerous because it may work correctly when we test it, but fail later.

Another problem is that the second flip-flop gets clocked at the rising edge of E if the clock is high.
This is perhaps not the behavior we want.

53

Q1

Q2

A

D
SET

Q

D
SET

Q

CL
R

Q

CL
R

Q

clock

E

Fig. 6.10. Unsafe circuit with gated clock

A better way to enable and disable a flip-flop is a synchronous design:

Q1

Q2

A D
SE

T

Q
0
1

D

SE
T

Q

CL
R

Q

CL
R

Q

clock

E

Fig. 6.11. Synchronous alternative to fig. 6.10

Here, the two flop-flops have the same clock. The multiplexer connects the D input of the second flip-
flop to Q1 then E is high, while the value of Q2 is recycled when E is low. The effect is that changes
in Q2 are enabled only when E is high. There is no undesired clocking at the rising edge of E.

In general, it is safer to use a synchronous design because you avoid a lot of delicate timing
problems. A synchronous design is not completely safe, though, if an input changes simultaneously
with the clock.

54

6.2. Exercises

Exercise 6.1.

Which of these circuits are combinational and which are sequential?

inverter
decoder
multiplexer
D latch
counter
adder
edge-triggered D flip-flop
shift register
state machine
each of the three blocks in figure 6.7

Exercise 6.2.

Q1

Q2

A

D

SE
T

CL
R

Q

Q

D

SE
T

CL
R

Q

Q

clock

Make the state table and the state diagram for this state machine.

Exercise 6.3.

We want to design a state machine with the state diagram shown here.

55

B=0

B=1

00

B=1

10

B=1

B=0

B=0

11

B=1

01

B=0

Make the state table. Write the Boolean equations for the next state as a function of the current state
and the B input. Reduce these equations using the rules of Boolean algebra.

Draw a diagram of this state machine, using as few gates as possible.

56

7. Interfacing digital circuits
This chapter gives some practical advice on how to connect inputs and outputs to digital circuits.

7.1. Pushbuttons

The input of a MOSFET digital circuit is controlled by the voltage at the input, not the current. The
input resistance of a MOSFET is extremely high and the input current is virtually zero. While an
ordinary switch can turn on and off the current for a lamp, it cannot turn on and off the input of a
MOSFET circuit because there is no current. An input that is not connected to anything will have a
random and unpredictable voltage that is influenced by even the smallest amount of electromagnetic
noise. If you connect a switch to an input then you need a pull-down resistor to make sure the input
voltage is low when the switch is off. The value of the resistor is not important.

Fig. 7.1. Switch with pull-down resistor

You can invert the signal by connecting the switch to ground and a pull-up resistor to the positive
supply:

Fig. 7.2. Inverted switch with pull-up resistor

57

7.2. Button with debouncing
A mechanical switch will always produce noise when it is pressed or released. If you connect the
output of the circuit in figure 7.1 to an oscilloscope it will typically look like this:

Fig. 7.3. Oscilloscope picture of key bounce

This noise comes from mechanical vibrations in the switch. The click sound you hear when you press
a switch is actually the sound of such mechanical vibrations. The signal goes up and down many
times during a few milliseconds when the switch or button is pressed or released. The electrical noise
from switches and pushbuttons is called key bounce. Relay switches and other mechanical devices
can also produce bouncing noise.

The key bounce is no problem when the button is connected to the input of an SR flip-flop. The SR
flip-flop will be set whether the S input receives one pulse or a hundred pulses. But the key bounce is
a big problem if the input is connected to an edge-triggered clock input or anything else that requires
a clean signal. For example, if you connect a pushbutton to a counter in order to count how many
times the button is pressed, you will see it counting maybe twenty times or more every time the button
is pressed, and it may also count when the button is released.

The noise will typically make the signal go up and down for a period of a few milliseconds for a new
switch and up to 20 ms, or perhaps 50 ms, for an old and dirty switch. We have to remove this noise if
the circuit cannot accept noise. Removing noise from a switch is called debouncing. We want to
ignore the noise and accept a change in the signal only after a period of, for example, 50 ms.

There are several ways to remove key bounce. Some different methods are described here.

Method 1. Low-pass filter and Schmitt trigger

We can use a low-pass filter to separate the signal from the noise because the noise has higher
frequency than the signal from the switch. The diagram below shows a pushbutton with a pull-down
resistor (R1) and a low-pass filter (R2 and C1). The low-pass filter will remove most of the noise, but
it
will also make the signal change slowly. An edge-triggered flip-flop requires that the clock input has
sharp edges so that it is rising and falling very fast. We will use a so-called Schmitt trigger for this.

58

Fig. 7.4. Switch debouncing with low-pass filter and Schmitt trigger

A Schmitt trigger has an input with two threshold values. The output goes high when the input passes
the upper threshold, and it goes low again when the input passes the lower threshold. The output
stays in the same state when the input is between the two thresholds. This makes sure that the
output of the Schmitt trigger always changes fast.

The integrated circuit 74HC14 contains six Schmitt triggers. There is an inverter on the output of each
Schmitt trigger. In the diagram above, we have used an extra Schmitt trigger as inverter to get a non-
inverted output. Alternatively, we could have inverted the input by connecting the pushbutton to
ground, as in figure 7.2.

The low-pass filter has a delay of 𝜏 = 𝑅2𝐶1𝑙𝑛2 = 47𝑚𝑠. This should be suitable in most cases. If the
delay is too short you will get bounce problems when the pushbutton becomes old and worn. If the
delay is too long you will get no response if the user pushes the button very fast.

Fig. 7.5. Waveforms of circuit on fig. 7.4

The black curve shows the noisy signal from the pushbutton. The red curve shows the signal after the
low-pass filter. The green curve shows the signal after the Schmitt trigger.

59

Method 2. Use a double-throw switch

Debouncing is easier if we have a double-throw switch (SPDT switch). In this diagram, we have made
an SR flip-flop from NOR gates. This flip-flop will be set when the switch is up and reset when the
switch is down. The flip-flop will stay in the same state during bounce periods and while the switch is
in transition.

Fig. 7.6. Debouncing of double-throw switch using SR flip-flop

Method 3. Toggle flip flop with debounce

Figure 7.7 shows a nice trick that makes it possible to build a toggle switch with debounce from a
pushbutton and two CMOS NOR gates. The NOR gates are coupled as a flip-flop with positive
feedback through R2. It is switched to the opposite state by the pushbutton due to the negative
feedback that charges C1 through R1. The output will toggle every time the pushbutton is pressed.

The debounce delay is 𝜏 = 𝑅1𝐶1𝑙𝑛2 = 47𝑚𝑠. R3 and C2 serve to reset the flip-flop when the power is
turned on.

Fig. 7.7. Pushbutton with debouncing toggle flip-flop

60

Method 4. Shift register

Debouncing can be made by connecting the noisy signal to the D input of a shift register with two or
more stages, as shown in figure 7.8. Connect a clock of approximately 100 Hz to the clock input. This
will sample the signal every 10 ms. An SR flip-flop is set when all sample values are high and reset
when all sample values are low. This method is used in programmable devices (FPGAs) where you
do not have access to analogue filters.

V+

ground

D

SE
T

CL
R

Q

Q

D

SE
T

CL
R

Q

Q

D

SE
T

CL
R

Q

Q

S

R

output

clock 100HZ

Fig. 7.8. Switch debouncing with shift register

Method 5. Software

Software is generally cheaper than hardware. Key debouncing is therefore often made in software if
the apparatus includes a microcontroller anyway. The software will sample the signal two or more
times with 10 ms or more between, and accept a change only if the signal remains stable over
several samples.

7.3. Automatic power-on reset

Fig. 7.9. Automatic power-on reset

61

A system containing flip-flops should be set to a well-defined state when the power is turned on. This
is done by sending a pulse to the reset inputs of all flip-flops. Figure 7.9 shows a circuit that
generates a pulse when the power is turned on. The Schmitt trigger makes sure the signal has sharp
edges. The length of the reset pulse is τ = ∙ ∙ln 2 .

7.4. LED output
A light-emitting diode (LED) has a voltage-current characteristic like this:

Fig. 7.10. Voltage-current characteristic of LED

Figure 7.10 shows that the LED needs a certain voltage before it can produce light. This voltage
corresponds to the energy of the photons it emits. The photon energy for visible light ranges from 1.8
eV for red to 3.9 eV for violet. The operating voltage of a LED corresponds to the color, so that red,
yellow and green LEDs operate at approximately 2 V while blue and white LEDs require 3-4 V.

You need to put a resistor in series with a LED in order to reduce the voltage and control the current,
as shown in figure 7.11. The light intensity is controlled by the current. A current of 10 mA is suitable
for a LED that is used as an indicator lamp.

The resistor is calculated by Ohm's law. For example, if the digital signal is 5V and the LED needs
2V, you need a voltage drop across the resistor of 5V - 2V = 3V. If you want a current of 10mA you
need a resistor of = 3V / 10m = 300Ω.

62

Fig. 7.11. LED with series resistor

The longest pin on the LED is the positive electrode (anode). The pin that holds the semiconductor
chip inside the colored plastic house is the negative electrode (cathode) as shown in figure 7.12.

Fig. 7.12. LED terminals

7.5. Relay output

Figure 7.13 shows a relay driver. The transistor amplifies the current for the relay. This is needed if
the relay coil requires more power than the digital circuit can provide.

Note that the diode is connected in the direction where it does not conduct the current from V+. This
diode protects the transistor against the inductive current that occurs when the relay is turned off.

The same circuit can be used for driving motors, lamps, and other things. The diode is needed if the
device contains coils or long wires or anything else that gives it a significant self-inductance.

63

V+

D1

relay

signal

R1

T1

ground

Fig. 7.13. Relay driver

7.6. Optocouplers

Fig. 7.14. Optocoupler

An optocoupler consists of a light-emitting diode (LED) and a phototransistor mounted together in a
non-transparent housing. There is no electrical connection between the two components - they are
connected only through the light. The phototransistor is conducting when the LED throws light on it.

An optocoupler is useful for transmitting signals between two circuits that do not have the same
voltage level. The two circuits may have separate power supplies, separate voltage levels, and
separate ground levels. An optocoupler is also useful if two circuits need to be isolated from each
other for security reasons, for example if one circuit has high voltage and the other circuit is in contact
with humans.

The LED of the optocoupler is connected as in figure 7.11. The phototransistor is connected like a
switch.

64

signal from

circuit 1

series

resistor

optocoupler

power supply

of circuit 2

signal to

circuit 2

ground

of circuit 1

pull down

resistor

ground

of circuit 2

Fig. 7.15. How to connect an optocoupler

7.7. Digital-to-analog converters
A digital-to-analog converter is a circuit that converts a binary digital signal to an analog signal. The
input signal consists of multiple bits that are either 0 or 1. The output is a single line with a voltage
that is proportional to the binary value of the input bits.

A digital-to-analog converter can be constructed conveniently with a so-called R-2R ladder, as shown
in figure 7.16. The resistors marked all have the same value, for example 10 kΩ. The resistors
marked 2 have exactly the double resistance, which would be 20 kΩ in our example. The binary bits
are represented in the diagram as switches that connect a wire to ground when the bit is 0, and to a
certain voltage V when the bit is 1. In reality, these are not mechanical switches but typically
MOSFET transistors that connect a wire to ground or to the positive power supply for the logical
values of 0 and 1, respectively.

The voltage that comes out of the R-2R ladder can be calculated by repeated use of Thévenin's
theorem. Let us start with the first node marked v0 on the drawing and disconnect it from the next

1

to R.

Now we can calculate the Thévenin equivalent of the next node, v1, when it is connected to v0 but not
1 1

1 1 1

resistance is R.

1 1 1 1

65

We can add an operational amplifier to amplify the signal v3 by the
factor

16
𝑉

16
𝑉

𝑣3 =

𝑑0 + 2𝑑1 + 4𝑑2 + 8𝑑3. This voltage is indeed the same as the binary number formed by the four input
bits. We can add more steps in the ladder if the input has more bits.

Fig. 7.16. Digital-to-analog converter with R-2R ladder

7.8. Analog-to-digital converters

An analog-to-digital converter is the opposite of a digital-to-analog converter. The input is a single
wire with an analog signal. The output is a binary signal consisting of multiple bits. The precision or
resolution is determined by the number of output bits. With n bits we can get a resolution of the total
range divided by 2n.

We can make a simple analog-to-digital converter with a counter and a digital-to-analog converter.
The counter counts up until the converted binary number exceeds the analog input value. The
principle is outlined in figure 7.17.

Fig. 7.17. Analog-to-digital converter with counter

66

This method is slow because it will take up to 2n clock pulses before we have reached the desired
value.

We can get a faster conversion by using the successive approximation method. This method finds the
n-bit binary value by first dividing the interval from 0 to 2n into two sub-intervals of half the size,
from 0
to 2n-1 and from 2n-1 to 2n. The system finds out whether the input is in the lower or the upper of
these
two half-intervals by comparing the analog input to 2n-1. Now that it knows which half-interval the
number is in; it divides this half-interval into two intervals of 1/4 size by comparing the input to the
middle value of the subinterval. It continues to divide the intervals into halves n times. The first
comparison gives the most significant bit of the result, and the last comparison gives the least
significant bit. The successive approximation method can be described by the flow chart in figure
7.18.

This flow chart can be implemented as a state machine that replaces the counter in figure 7.17. The
successive approximation method is much faster than the counter method because it takes n clock
cycles where the counter method uses up to 2n clock cycles.

If you need an extremely fast analog-to-digital converter, you can use a flash converter. The flash
converter contains 2n comparators, one for each possible output value. The flash converter becomes
very big and expensive if n is big. Therefore, it is used only for low resolutions.

There are several other methods for analog-to-digital conversion. I will not explain all the different
types, but you can find more information on Wikipedia if you are interested.

67

start

set upa register
withnbits, all =0

set anindex tothe
most significant bit

set theindexed
bit =1

is DACoutput >
analog input?

no

set index tothe
next lower bit

yes

set theindexed
bit back to0

no

havewe
finished
all bits?

yes

output all bits

andfinish

Fig. 7.18. Flow chart for successive approximation
analog-to-digital converter

68

7.9. Exercises

Exercise 7.1.

Make a circuit on a breadboard with a counter that counts every time a pushbutton is pressed. You
can show the output as a binary number on LEDs, or as a decimal number on a 7-segment LED
display if you prefer. Find the integrated circuits you need in the list of digital ICs, page 75.

Test the circuit with and without debouncing.

69

8. Microprocessors and microcontrollers
Figure 8.1 shows the basic construction of a computer. The central processing unit (CPU) is the brain
of the computer. The CPU communicates with different kinds of memory and input and output
devices. The different units are all connected through three buses called address bus, data bus, and
control bus. A bus is a bundle of wires that connects multiple units.

A big computer has the CPU on a separate silicon chip and the RAM and other devices on a number
of other chips. A microcontroller is a small computer that has everything on a single chip.

There are different kinds of memory. RAM stands for random access memory. This means that the
CPU can read from the RAM and write to the RAM in random order. In principle, the RAM memory
consists of a large number of flip-flops. The contents of the RAM memory is lost when the power is
turned off.

ROM means read-only memory. The ROM may contain some important code that the computer
needs for start-up. The contents of the ROM memory is permanent.

A newer type of memory is FLASH. FLASH memory is often used instead of ROM because the
contents can be changed, and it is not lost when the power is turned off. FLASH memory cannot
replace RAM because writing to FLASH is slower and more complicated. FLASH memory is used in
telephones, cameras, USB memory sticks, microcontrollers, and solid-state hard discs.

clock

Fig. 8.1. Block diagram of computer with three-bus architecture

The CPU needs two kinds of data: (1) the program code and (2) the variables and other data that the
program works on. The program code can be stored in RAM, ROM, or FLASH memory. The program
data is stored in RAM memory.

The memory is organized into blocks containing eight bits each. A block of eight bits is called a byte.
Each byte in the memory has an address. The first byte has address 0, the next byte has address 1,

70

and so on. Small microcomputers have thousands of memory bytes. Bigger computers have millions,
or even billions, of memory bytes.

The address of the byte we want to read or write is placed on the address bus. This is the yellow line
on figure 8.1. The address bus consists of a number of wires to represent the address as a binary
number. The number of wires in the address bus depends on how much memory you have. With 10
address wires, you can have 210 = 1024 different addresses and 1024 bytes of memory. 1024 bytes is
called a kilobyte. With 20 address wires you can have 220 = 1048576 bytes = 1 megabyte. With 30
address wires you can have 230 = 1073741824 bytes = 1 gigabyte.

The program code is written in a programming language, for example C++, and then compiled. The
compiler translates the C++ code into machine code. The machine code is a long list of simple
machine instructions. Each machine instruction consists of a binary code telling the CPU what to do,
for example to add two numbers. The machine instruction may also contain the address of the data
that it is working on.

The CPU is a very big state machine that typically reads and executes one machine instruction for
each clock cycle. The CPU consists of gates and D flip-flops just like the state machines we learned
about in chapter 6.

The CPU is fetching the machine instructions, one by one, from the memory (RAM or ROM). It does
this in the following way: It puts the address of the machine instruction on the address bus (yellow
line
on figure 8.1). Then it puts a read signal on the control bus (pink line on figure 8.1). If one of the
memory blocks recognizes the address as belonging to itself, it puts the value of the byte on the data
bus (blue line). The CPU reads this byte, interprets it, and does whatever this instruction tells it to do.

The CPU can read program data from RAM memory in the same way. The CPU can also write
program data to RAM memory. It does this by putting the address of the memory cell on the address
bus in the same way as before. Then the CPU puts the value on the data bus and a write signal on
the control bus.

Note that the data can go both ways on the data bus, while the address bus and the control bus go
only one way, from the CPU to the memory and other devices. Only one unit at a time can put data
on the data bus. All the other units must leave the data bus untouched. This is like in class when the
teacher says the name of one student who is allowed to talk, while everybody else must keep silent.
Each memory cell must have a unique address just as each student must have a unique name if you
want reliable communication.

The data bus has at least eight wires so that it can read or write one byte at a time. It may have 16,
32, 64, or more wires so that it can read or write multiple bytes at the same time.

The control bus needs at least two wires, one for a read signal and one for a write signal.

8.1. Input ports and output ports
External devices such as screen, display, keyboard, mouse, hard disk, and network are connected to
the data bus via input ports and output ports. Each input or output port has a unique address just like
each byte-cell in the memory has a unique address.

71

address bus

control bus, write
signal

comparator

data bus

E

D0-D
7

latch

Q0-Q7

8bits to
external device

Fig. 8.2. Principle of output port

An output port contains a comparator that compares the fixed address of the port with the value on
the address bus. An 8-bit latch stores the value from the data bus if the address is equal to the port
address and there is a write signal on the control bus, as shown on figure 8.2.

An input port contains a so-called three-state buffer. This is a device where the output can be in one
of three states: low, high, or disconnected. Each of the eight inputs from the external device goes
through a three-state buffer before it is connected to the data bus. The three-state buffer is enabled
when the value on the address bus is equal to the fixed address of the input port and there is a read
signal on the control bus. The three-state buffer is disabled when the address is not matching. A
three-state buffer is not disturbing the data bus when it is disabled – the output of the three-state
buffer is simply disconnected so that the voltage on the data bus can be set high or low by some
other device.

address bus

comparator

control bus, readsignal

E

data
bus

D0-D7

3-state
buffer

I0-I7

8bits from
external device

Fig. 8.3. Principle of input port

Figure 8.4 shows how a three-state buffer is constructed. It has a p-channel MOSFET and an n-
channel MOSFET just like the inverter on figure 3.3 (page 19). The p-channel MOSFET will make
the
output high by connecting it to V+ when its gate is low. This happens when the data input is high and

72

input enable output

0 1 0

1 1 1

0 0 Z

1 0 Z

enable is high. The n-channel MOSFET will make the output low by connecting it to ground when its
gate is high. This happens when the input is low and enable is high. Both MOSFETS are off when the
enable signal is low.

enable

V+

input

p

output

n

ground

Fig. 8.4. Three-state buffer

The truth table for a three-state buffer looks like this:

The 'Z' in the truth table means that the output is disconnected. This state is called 'high impedance'.
The difference between 0 and Z is that the output is connected to ground in state 0 but not connected
to anything in state Z.

8.2. Interrupt
If we press a key on a keyboard or we move a mouse we want to see the response immediately on
the computer screen, even if the computer is busy doing something else. This problem can be solved
with a mechanism called interrupt. One task is interrupted by an external event where the computer
has to do some other task that has higher priority. It will return to the first task when the high-priority
task has been completed.

It is very inefficient if the software code has to check all the time if a key has been pressed. Instead,
computers have a hardware mechanism to support interrupts. This is illustrated in figure 8.5.

The instructions are executed one by one during the normal operation of the CPU. The sequence of
program instructions in memory are shown as the green boxes on figure 8.5. An interrupt can happen
at any time regardless of which instruction is being executed. The CPU does not execute the next
instruction in the sequence when an interrupt has been detected. Instead, it jumps to another

73

sequence of instructions called an interrupt service routine (yellow boxes on the figure). It remembers
where it came from so that it can return and continue where it left when the interrupt service routine
has finished. The interrupt service routine must save all registers that it uses and restore them to their
original value before it returns to the main program so that all registers have the same value that they
had before the interrupt.

Program

instructions

sequential
execution

of
instructions

interrupt

occurs here

in

to

Interrupt

service

routine

sequential
execution

of interrupt
service
routine

sequential
execution
resumes

Fig. 8.5. Principle of interrupt

We need a mechanism that allows the CPU to remember where it was interrupted so that it can return
to the right place when the interrupt service routine has finished. The address of the instruction that it
has to return to is stored in a piece of RAM memory called a stack. The stack stores information in a
first-in-last-out basis. The first-in-last-out scheme is necessary in case the interrupt service routine is
interrupted again by something else with a higher priority.

The stack can also be used for returning from function calls and for temporary storage of local data in
a function.

74

Buffers per

package

Type

number

Description

6 74HC04 Hex inverter

6 74HC4050 Hex buffer

6 74HC4049 Hex inverting buffer

6 74HC14 Hex inverting Schmitt trigger

6 74HC367 Hex tri-state buffer

8 74HC244 Octal tri-state buffer

8 74HC243 Octal transceiver

4 74HC4066 Quad analog switch

6 4504 Hex voltage level converter

Gates per

package

Inputs

per gate

AND NAND OR NOR XOR

4 2 74HC08 74HC00 74HC32 74HC02 74HC86

3 3 74HC11 74HC10 74HC4075 74HC27

2 4 74HC21 74HC20 74HC4072 74HC4002

1 8 74HC30 74HC4078 74HC4078

9. Appendix A: List of digital integrated circuits

There are several families of digital integrated circuits:

4000 series: CMOS. 3–15 V supply. Output 0.5 mA.

74HC00 series: CMOS. 2–6 V supply. Output 5 mA. Faster than the 4000 series.

74LS00 series: TTL. 5V supply. This is an older series with asymmetric signal levels and higher
power consumption. Do not use the TTL series unless you have a special reason to do so.

The 4000 series and 74HC00 series are compatible with each other. An output from a 4000 series
circuit cannot drive an input of a 74LS00 series. An output from a 74LS00 series circuit must have a
pull-up resistor if it is connected to an input of a CMOS circuit. The output of a 4000 series cannot
drive a LED.

There are many other variants of the 74xx00 series with different letters in the name. Types with C in
the name are CMOS types, all others are TTL types. The 74HCT00 series has CMOS technology but
TTL signal levels. These are compatible with both the TTL and CMOS types.

Below is a list of selected digital ICs suitable for small projects.

Gates:

Buffers, inverters, Schmitt triggers, miscellaneous

75

Number per

package

Type

number

Description

2 74HC139 Dual 1-of-4 decoder with inverted outputs

1 74HC138 1-of-8 decoder with inverted outputs

1 74HC238 1-of-8 decoder

1 74HC42 1-of-10 decoder with inverted outputs

1 74HC154 1-of-16 decoder with inverted outputs

1 74HC4511 BCD to 7-segment decoder, for common cathode

1 74LS247 BCD to 7-segment decoder, for common anode

1 74HC4543 BCD to 7-segment decoder, for LCD displays

4 74HC157 Quad 2-input multiplexer

2 74HC153 Dual 4-input multiplexer

1 74HC151 8-input multiplexer

1 74HC283 4 bit adder

1 74HC85 4 bit magnitude comparator

1 74HC688 8 bit magnitude comparator

Counter

states

Type

number

Description

12 2 74HC4040 12 stage ripple counter with asynchronous reset
14 2 74HC4060 14 stage ripple counter with RC oscillator and

asynchronous reset

10 74HC4017 Counter with 10 decoded outputs and asynchr. reset

10, 100 74HC390 Dual BCD counter with asynchronous reset

10 74HC160 4 bit synchronous BCD counter with count enable,
asynchronous reset and synchronous load

16 74HC161 4 bit synchronous binary counter with count enable,
asynchronous reset and synchronous load

16 74HC163 4 bit synchronous binary counter with count enable,

synchronous reset and synchronous load

10 74HC190 up/down BCD counter w. count enable and asyn. reset

16 74HC191 up/down binary counter w. count enable and asyn. reset

Number per

package

Type

number

Description

2 74HC74 D Flip-flop with inverted set and reset

4 74HC175 D Flip-flop with inverted reset

6 74HC174 D Flip-flop with inverted reset

8 74HC273 D Flip-flop with inverted reset

4 74HC75 D-latch

8 74HC373 D-latch

Decoders, encoders, multiplexers, arithmetic circuits

Flip-flops and latches

Counters

76

Number of

bits

Type

number

Description

8 74HC4094 Serial in parallel out shift register with output latch and

3-state output

8 74HC595 Serial in parallel out shift register with clocked output

register and 3-state output

4 74HC194 4 bit universal bidirectional shift register with

synchronous load

4 74HC195 4 bit universal shift register with synchronous load

8 74HC164 8-bit serial in parallel out shift register

8 74HC165 8-bit parallel in serial out shift register

Shift registers

© 2019 Creative Commons Attribution-Share Alike 4.0

77

https://creativecommons.org/licenses/by-sa/4.0/

