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Lecture 6 
Design of Control Systems in Sate Space 

Observer Based Approach 
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Introduction 

• In the pole-placement approach to the design of control systems, 
we assumed that all state variables are available for feedback.  

 

 

 

 

 

 

 

• In practice, however, not all state variables are available for 
feedback. 

 

• Then we need to estimate unavailable state variables. 



Introduction 
• Estimation of unmeasurable state variables is commonly called 

observation.  
 

• A device (or a computer program) that estimates or observes 
the state variables is called a state estimator, state observer, or 
simply an observer. 
 

• There are two types of state observers 
– Full Order State Observer 

• If the state observer observes all state variables of the system, 
regardless of whether some state variables are available for direct 
measurement, it is called a full-order state observer. 
 

– Reduced Order State Observer 
• If the state observer observes only those state variables which are not 

available for direct measurement, it is called a reduced-order state 
observer. 



Topology of State Feedback Control with Observer 
Based Approach 

 

• State feedback with state observer 



Topology of State Feedback Control with Observer 
Based Approach 

 

• State feedback Control 



Topology of State Feedback Control with Observer 
Based Approach 

• State Feedback with observer 



State Observer 

• A state observer estimates the state variables based on 
the measurements of the output and control variables. 

 

• Here the concept of observability plays an important 
role.  

 

• State observers can be designed if and only if the 
observability condition is satisfied. 



State Observer 
• Consider the plant defined by 

 

 
 

• The mathematical model of the observer is basically the same 
as that of the plant, except that we include an additional term 
that includes the estimation error to compensate for 
inaccuracies in matrices A and B and the lack of the initial 
error. 
 

• The estimation error or observation error is the difference 
between the measured output and the estimated output. 
 

• The initial error is the difference between the initial state 
and the initial estimated state. 

𝒙 = 𝑨𝒙 + 𝑩𝑢 

𝑦 = 𝑪𝒙 



State Observer 
• Thus we define the mathematical model of observer to be 

 

• Where 𝒙  is estimated state vector, 𝑪𝒙  is estimated output and 
𝑲𝒆 is observer gain matrix.  

𝒙  = 𝑨𝒙 + 𝑩𝑢 + 𝑲𝒆(𝑦 − 𝑪𝒙 ) 



Full Order State Observer 

• The order of the state observer that will be discussed here is 
the same as that of the plant. 

• Consider the plant define by following equations 

 

 

• Equation of state observer is given as 

 

• To obtain the observer error equation, let us subtract 
Equation (2) from Equation (1): 

𝑦 = 𝑪𝒙 

𝒙 = 𝑨𝒙 + 𝑩𝑢 (1) 

𝒙  = 𝑨𝒙 + 𝑩𝑢 + 𝑲𝑒(𝑦 − 𝑪𝒙 ) (2) 

𝒙 − 𝒙  = 𝑨𝒙 + 𝑩𝑢 − [𝑨𝒙 + 𝑩𝑢 + 𝑲𝑒 𝑦 − 𝑪𝒙 ] 

𝒙 − 𝒙  = 𝑨𝒙 + 𝑩𝑢 − 𝑨𝒙 − 𝑩𝑢 − 𝑲𝑒 𝑪𝒙 − 𝑪𝒙  



Full Order State Observer 

 

• Simplifications in above equation yields 

 

 

• Define the difference between 𝒙 and 𝒙  as the error vector 
e. 

 

• Equation (3) can now be written as 

𝒙 − 𝒙  = 𝑨𝒙 + 𝑩𝑢 − 𝑨𝒙 − 𝑩𝑢 − 𝑲𝑒 𝑪𝒙 − 𝑪𝒙  

𝒙 − 𝒙  = 𝑨(𝒙 − 𝒙 ) − 𝑲𝑒𝑪 𝒙 − 𝒙  (3) 

𝒆 = 𝒙 − 𝒙  

𝒆 = 𝑨𝒆 − 𝑲𝑒𝑪𝒆 

𝒆 = (𝑨 − 𝑲𝑒𝑪)𝒆 



Full Order State Observer 

 

• From above  we see that the dynamic behavior of the error 
vector is determined by the eigenvalues of matrix A-KeC.  

 

• If matrix A-KeC is a stable matrix, the error vector will 
converge to zero for any initial error vector e(0).  

 

• That is, 𝒙 (𝒕) will converge to 𝒙(𝒕) regardless of the values of 
x(0). 

 

• And if the eigenvalues of matrix A-KeC are chosen in such a 
way that the dynamic behavior of the error vector is 
asymptotically stable and is adequately fast, then any error 
vector will tend to zero (the origin) with an adequate speed. 

𝒆 = (𝑨 − 𝑲𝒆𝑪)𝒆 



Full Order State Observer 

 

• If the plant is completely observable, then it can be proved 
that it is possible to choose matrix Ke such that A-KeC has 
arbitrarily desired eigenvalues.  

 

• That is, the observer gain matrix Ke can be determined to yield 
the desired matrix A-KeC. 

𝒆 = (𝑨 − 𝑲𝒆𝑪)𝒆 



Duality Property 

• The design of the full-order observer becomes that of 
determining an appropriate Ke such that A-KeC has 
desired eigenvalues. 

 

• Thus, the problem here becomes the same as the pole-
placement problem.  

 

• In fact, the two problems are mathematically the same.  

 

• This property is called duality. 



Duality Property 

• Consider the system defined by 

 

 

• In designing the full-order state observer, we may solve 
the dual problem, that is, solve the pole-placement 
problem for the dual system. 

 

 

• Assuming the control signal 𝑣 to be 

𝒙 = 𝑨𝒙 + 𝑩𝑢 

𝑦 = 𝑪𝒙 

𝒛 = 𝑨∗𝒛 + 𝑪∗𝑣 

𝑛 = 𝑩∗𝒛 

𝑣 = −𝑲𝒛 



Duality Property 

• If the dual system is completely state controllable, then the 
state feedback gain matrix K can be determined such that 
matrix A*-C*K will yield a set of the desired eigenvalues. 

 

• If 𝜇1 , 𝜇2 ,…, 𝜇𝑛 , are the desired eigenvalues of the state 
observer matrix, then by taking the same 𝜇𝑖

′𝑠 as the 
desired eigenvalues of the state-feedback gain matrix of 
the dual system, we obtain 

 

• Noting that the eigenvalues of A*-C*K and those of A-
K*C are the same, we have 

 

𝑠𝐼 − (𝑨∗ − 𝑪∗𝑲 ) = (𝑠 − 𝜇1)( 𝑠 − 𝜇2) ⋯  𝑠 − 𝜇𝑛  

𝑠𝐼 − (𝑨∗ − 𝑪∗𝑲 ) = 𝑠𝐼 − (𝑨 − 𝑲∗𝑪 )  



Duality Property 

 

• Comparing the characteristic polynomial 𝑠𝐼 − (𝑨 − 𝑲∗𝑪 )  and 
the characteristic polynomial for the observer system 
𝑠𝐼 − (𝑨 − 𝑲𝑒𝑪 ) , we find that Ke and K* are related by 

 

 

 

 

• Thus, using the matrix K determined by the pole-
placement approach in the dual system, the observer 
gain matrix Ke for the original system can be determined 
by using the relationship Ke=K*. 

𝑠𝐼 − (𝑨∗ − 𝑪∗𝑲 ) = 𝑠𝐼 − (𝑨 − 𝑲∗𝑪 )  

𝑠𝐼 − (𝑨 − 𝑲∗𝑪 ) = 𝑠𝐼 − (𝑨 − 𝑲𝑒𝑪 )  

𝑲∗ = 𝑲𝑒 



Observer Gain Matrix 

• Using Transformation Matrix Q 

• Direct Substitution Method 

• Ackermann’s Formula 



Observer Gain Matrix 

• Using Transformation Matrix Q 

 

 

• Since  

𝑲 = 𝛼𝑛 − 𝑎𝑛 𝛼𝑛−1 − 𝑎𝑛−1 ⋯ 𝛼2 − 𝑎2 𝛼1 − 𝑎1  

𝑲𝑒 = 𝑲∗ 

𝑲𝑒 = 𝑲∗ =

𝛼𝑛 − 𝑎𝑛
𝛼𝑛−1 − 𝑎𝑛−1

⋮
𝛼2 − 𝑎2
𝛼1 − 𝑎1

 



Observer Gain Matrix 

• Direct Substitution Method 

𝑲𝒆 =

𝑘1
𝑘2
⋮
𝑘3
𝑘𝑛

 



Observer Gain Matrix 

• Ackermann’s Formula 

 

• For the dual system 

 

 

 

 

• Since 𝑲𝑒 = 𝑲∗ 

𝐾 = 0 0 ⋯0 1 𝐵 𝐴𝐵 𝐴2𝐵  ⋯ 𝐴𝑛−1𝐵
−1∅(𝐴) 

𝑲 = 0 0 ⋯0 1 𝐶∗ 𝐴∗𝐶∗ (𝐴∗)2𝐶∗⋯ (𝐴∗)𝑛−1𝐶∗ −1∅(𝐴∗) 

𝒛 = 𝑨∗𝒛 + 𝑪∗𝑣 

𝑛 = 𝑩∗𝒛 

𝑲𝑒 = 𝑲∗ = 0 0 ⋯0 1 𝐶∗ 𝐴∗𝐶∗ (𝐴∗)2𝐶∗⋯ (𝐴∗)𝑛−1𝐶∗ −1∅(𝐴∗)
∗ 



Observer Gain Matrix 

• Simplifying it further 

𝑲𝑒 = 𝑲∗ = 0 0 ⋯0 1 𝐶∗ 𝐴∗𝐶∗ (𝐴∗)2𝐶∗⋯ (𝐴∗)𝑛−1𝐶∗ −1∅(𝐴∗)
∗ 

𝐾𝑒 = ∅(𝐴)

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−2

𝐶𝐴𝑛−1

−1
0
0
⋮
0
1

 

𝐾𝑒 = ∅(𝐴∗)∗ 𝐶∗ 𝐴∗𝐶∗ (𝐴∗)2𝐶∗⋯ (𝐴∗)𝑛−1𝐶∗ −1 ∗ 0 0 ⋯0 1 ∗  



Observer Gain Matrix 

• The feedback signal through the observer gain matrix Ke serves 
as a correction signal to the plant model to account for the 
unknowns in the plant.  

 

• If significant unknowns are involved, the feedback signal 
through the matrix Ke should be relatively large.  

 

• However, if the output signal is contaminated significantly by 
disturbances and measurement noises, then the output y is not 
reliable and the feedback signal through the matrix Ke should 
be relatively small. 



Observer Gain Matrix 

• The observer gain matrix Ke depends on the desired 
characteristic equation 

 

• The observer poles must be two to five times faster than the 
controller poles to make sure the observation error (estimation 
error) converges to zero quickly.  

 

• This means that the observer estimation error decays two to 
five times faster than does the state vector x.  

 

• Such faster decay of the observer error compared with the 
desired dynamics makes the controller poles dominate the 
system response. 

(𝑠 − 𝛽1)( 𝑠 − 𝛽2) ⋯ 𝑠 − 𝛽𝑛 = 0 



Observer Gain Matrix 

• It is important to note that if sensor noise is considerable, 
we may choose the observer poles to be slower than two 
times the controller poles, so that the bandwidth of the 
system will become lower and smooth the noise.  

 

• In this case the system response will be strongly influenced 
by the observer poles.  

 

• If the observer poles are located to the right of the 
controller poles in the left-half s plane, the system 
response will be dominated by the observer poles rather 
than by the control poles. 



Observer Gain Matrix 

• In the design of the state observer, it is desirable to determine 
several observer gain matrices Ke based on several different 
desired characteristic equations.  

 

• For each of the several different matrices Ke , simulation tests 
must be run to evaluate the resulting system performance.  

 

• Then we select the best Ke from the viewpoint of overall system 
performance.  

 

• In many practical cases, the selection of the best matrix Ke boils 
down to a compromise between speedy response and 
sensitivity to disturbances and noises. 



Example-1 

• Consider the system 

 

 

 

 

• We use observer based approach to design state feedback control 
such that  

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

• Design a full-order state observer assume that the desired eigenvalues of 
the observer matrix are 𝛽1 = −10, 𝛽2 = −10.  

𝑦 = 0 1
𝑥1
𝑥2

 

𝑢 = −𝑲𝒙  



Example-1 

 

 

 

 

• Let us examine the observability matrix first 

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

• Since rank(OM)=2 the given system is completely state observable and the 
determination of the desired observer gain matrix is possible. 

𝑦 = 0 1
𝑥1
𝑥2

 

𝑂𝑀 =
𝐶
𝐶𝐴

=
0 1
1 0

 



Example-1 (Method-1) 

 

 

 

 

• The given system is already in the observable canonical form. Hence, 
the transformation matrix Q is I.  

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

𝑦 = 0 1
𝑥1
𝑥2

 



Example-1 (Method-1) 

 

 

 

 

• The characteristic equation of the given system is 

 

 

• We have 

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

𝑦 = 0 1
𝑥1
𝑥2

 

𝑠𝐼 − 𝐴 = 𝑠2 − 20.6 = 0 

𝑎1 = 0,           𝑎2= −20.6 



Example-1 (Method-1) 

 

 

 

 

• The desired characteristic equation of the system is 

 

 

 

• We have 

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

𝑦 = 0 1
𝑥1
𝑥2

 

𝛼1 = 20,           𝛼2= 100 

(𝑠 − 𝛽1)( 𝑠 − 𝛽2) = (𝑠 + 10) 𝑠 + 10  

(𝑠 − 𝛽1)( 𝑠 − 𝛽2) = 𝑠2 + 20𝑠 + 100 



Example-1 (Method-1) 

• Observer gain matrix Ke can be calculated using following formula 

 

 

• Where 

 

𝛼1 = 20,           𝛼2= 100 

𝑲𝑒 =
𝛼2 − 𝑎2
𝛼1 − 𝑎1

 

𝑎1 = 0,           𝑎2= −20.6 

𝑲𝑒 =
100 − (−20.6)

20 − 0
 

𝑲𝑒 =
120.6
20

 



Example-1 (Method-2) 

 

 

 

 

• The characteristic equation of observer error matric is 

 

• Assuming 

 

 

 

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

𝑦 = 0 1
𝑥1
𝑥2

 

𝑠𝑰 − 𝑨 +𝑲𝑒𝑪 = 0 

𝑲𝑒 =
𝑘𝑒1
𝑘𝑒2

 

𝑠𝑰 − 𝑨 +𝑲𝑒𝑪 =
𝑠 0
0 𝑠

−
0 20.6
1 0

+
𝑘𝑒1
𝑘𝑒2

0 1  

= 𝑠2 +𝑘𝑒2𝑠 − 20.6 + 𝑘𝑒1 



Example-1 (Method-2) 

• The desired characteristic polynomial is 

 

 

• Comparing coefficients of different powers of s  

𝑠2 + 20𝑠 + 100 = 𝑠2 +𝑘𝑒2𝑠 − 20.6 + 𝑘𝑒1 

(𝑠 − 𝛽1)( 𝑠 − 𝛽2) = 𝑠2 + 20𝑠 + 100 

𝑲𝑒 =
120.6
20

 



Example-1 (Method-3) 

 

 

 

 

• Using Ackermann’s formula 

 

 

• Where  

 

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

𝑦 = 0 1
𝑥1
𝑥2

 

𝑲𝑒 = ∅(𝑨)
𝑪
𝑪𝑨

−1 0
1

 

∅ 𝑨 = 𝐴2 + 𝛼1𝐴 + 𝛼2𝐼
 

𝛼1 = 20,           𝛼2= 100 

∅ 𝑨 = 𝐴2 + 20𝐴 + 100𝐼 



Example-1 (Method-3) 

 

 

 

∅ 𝑨 = 𝑨2 + 20𝑨 + 100𝑰 

∅ 𝑨 =
0 20.6
1 0

2

+ 20
0 20.6
1 0

+ 100
1 0
0 1

 

∅ 𝑨 =
120.6 412
20 120.6

 



Example-1 (Method-3) 

• Using Ackermann’s formula 

 
𝑲𝑒 = ∅(𝑨)

𝑪
𝑪𝑨

−1 0
1

 

𝑲𝑒 =
120.6 412
20 120.6

0 1
1 0

−1 0
1

 

𝑲𝑒 =
120.6
20

 



Example-1 

• We get the same Ke regardless of the method employed. 

 

• The equation for the full-order state observer is given by 

𝒙  = 𝑨𝒙 + 𝑩𝑢 + 𝑲𝒆(𝑦 − 𝑪𝒙 ) 

𝒙  𝟏
𝒙  𝟐

=
0 20.6
1 0

𝒙 1
𝒙 2

+
0
1
𝑢(𝑡) +

120.6
20

(𝑦 − 0 1
𝒙 1
𝒙 2

) 

𝒙  𝟏
𝒙  𝟐

=
0 20.6
1 0

𝒙 1
𝒙 2

+
0
1
𝑢(𝑡) +

120.6
20

𝑦 −
120.6
20

0 1
𝒙 1
𝒙 2

 

𝒙  𝟏

𝒙  𝟐
=

0 −100
1 −20

𝒙 1
𝒙 2

+
0
1
𝑢(𝑡) +

120.6
20

𝑦 



Example-2 

• Design a regulator system for the following plant: 

 

 

 

• The desired closed-loop poles for this system are at 𝜇1 = −1.8 +
𝑗2.4, 𝜇2 = −1.8 − 𝑗2.4. Compute the state feedback gain matrix K to 
place the poles of the system at desired location.  

 

• Suppose that we use the observed-state feedback control instead of 
the actual-state feedback. The desired eigenvalues of the observer 
matrix are 𝛽1 = −8, 𝛽2 = −8.  
 

• Obtain the observer gain matrix Ke and draw a block diagram for the 
observed-state feedback control system. 

𝑥 1
𝑥 2

=
0 20.6
1 0

𝑥1
𝑥2

+
0
1
𝑢(𝑡) 

𝑦 = 1 0
𝑥1
𝑥2

 


