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Control specifications and digital
control design techniques

» Control specifications
v" Rise time t, Time to reach the vicinity of its new set point (90%)

v Settling time t, :Time for the decay of transient (inside 1% of steady
state (final) value)

v" Overshoot M,: maximum overshoot from the final vale (usually in

percent)
M
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¢ is damping ratio
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Control specifications

> Therise timeis ¢ ~18
a)n

o L4646

» The settling time L= ‘o o

) -
» Maximum overshoot M ~e /ﬁ 0<¢ <1

» Note:

» The requirement on the natural frequency is obtained from the rise time

» The requirement on the magnitude of the real part of the pole is
obtained from the settling time

» The requirement the damping ratio is obtained from the overshoot
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Control specifications

» Example 1.5

Find the acceptable pole region on s-plane of
the following specifications

1. Over shoot less than 20% and settling time less
than 3sec

2. Over shoot less than 10% , settling time less than
10sec and rise time less than 5sec
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Specifications on steady state error

» For a system with unity feedback and forward transfer
function D(s)G(s) shown below the error e becomes

R(S) + e u y

E S) = I > >

)= I be60) R e L 28 U S T
From finalvaluetheorem the steady stateerror

: : : 1
lime(t) =e, =limsE(s) =lims R(s

t—)oo() > Ho( )= 1+ D(s)G(s) )

» Lets first define system type number.

Considerthe following forwardtransfere function

M
KTI(s—z,)
D(s)G(s) = '51 ,ITdenotesthe product,the zerosz, = 0and poles p, =0

s" IT(s—p,)
N definesthetypenumber of the system.
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steady state error cont..

» |F N=0,its type zero system: If N=1,its type one system: If
N=2,1t’s type two system and so on

» It is important to determine the steady state error for the three
standard test inputs (step, ramp and acceleration) for the unity
feedback system shown.

» Step input: Step input of magnitude A is given as R(s)=A/s.So the
steady state error becomes

lime(t)=e, =limsE(s)=lims R(s) =lim
t—o0 550 s>0 1+ D(s)G(s) =01+ D(S)G(S)
Define positionconstantas K = I:LnO D(s)G(s)
M
KII(s-z,)
So e, = , WhereK | =lim —& = forN>1

1+ K

s—>0 N
: s I1(s - p,)
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steady state error cont...

» Ramp input. A ramp (velocity) input of slope A is given as r(t)=At or
R(s)=A/s?.So the steady state error becomes

lime(t) =e, =limsE(s) =lims 1 R(s) =lim = lim A
t—so0 550 s>0 14+ D(s)G(s) 520 54+ SD(S)G(S) s~0 sD(s)G(s)

Definevelocityconstantas K, = lim sD(s)G(s)

s—0

A KH(S Z. )
So e, =g WhereK, =lim sD(s)G(s) = lim 5 =oo forN > 2.
v s—0 s—0 SN—l kHﬂ(S_ pk)

Ande, =0 forN > 2.
Note: If thetf has morethanoneint egrator,theerrorwill be zero.
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steady state error cont...

» Acceleration input: r(t)=At?/2 or R(s)=A/s?

1
I"leoo(t) Fs _“msiEo(S)_lslgf}SHD(s)G(s) R(s)
A

im—— =|im >
-0 §* +5°D(S)G(s) -0 s°D(S)G(s)

Defineacceleratbnerrorconstantas K, = lim s*D(s)G(s)

s—0

A _ _ KH(S Z )
So e, = WhereK, = lim s*D(s)G(s) = lim = =o forN >3.
a s—0 s—0 SN—2 g(s_ pk)

And e, =0 forN >3.
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steady state error cont...

Number of | Input
integrators in
D(s)G(s) or type
number Step input Ramp input Acceleration input
r(t)=A or R(s)=A/s | r(t)=At or R(s)=A/s? r(t)=At?/2 or
R(s)=A/s?
P i i

0 €~ A/(1+Kp) e..= °° eSS

1 ess=O €= A/Kv €=

2 eSS= eSS= O eSS= A/Ka
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Example

» Example 1.6

Find the value of K for the following unity
feedback system to have

1. Unit step steady state error<2%

2. Unit ramp input steady state error<1%
G(s)=(s+1)/(s3+55%+65)

P
m
Cle
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Digital controller design techniques

A/D

¢(kT) | Digital controller | #(KT) | | U | Plant
D() G
T
Clock

Sensor |

H

Block Diagram of a Digital Controller
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Digital controller design techniques

» Two approaches may be used in the design of digital
compensators.

» Emulation: an analog compensator may be designed and then
converted by some approximation procedures to a digital
compensator,

» Direct digital methods of designing digital compensators: as
compared to the approximate methods of converting analog
compensators to digital compensators.
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Sampled data control system

Plant analog mo
P(s)

Plant model ,and
sample/hold as P(z)

Plapt digital mo
P(2)

| Continuous time design A
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Discrete time design

og controller
D(s)

Approximation of C
wit D(2)

(S)
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Emulation Design vs Direct Digital
Control

» Emulation
v" Can use continuous time methods (well developed)
v" Few new tools needed
v"Works well if sampling fast

v"Mapping of control law from continuous time to
discrete time is not exact

v"Ignore continuous system response between sampling
times
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Sampled data control system

» Emulation

R (s) E(s) U (s) Y (s)
N :T_ - I)(S) _‘l G(s)

A
e ﬁ_'_'_'_'_'_'_'_'_'_'_'_'_'"-
R(s) % LOIL ¥(s)
+;T a0 e B ey I -
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Sampled data control system

» Direct digital control

v'Design of discrete time control law (and thus digital
closed loop system) is exact for any sampling rate

v" Ignore continuous system response between sampling

times
R (=) E (2 vezom Ty
AT_ D(=) N e N P I
+ _ ; T
y
R (2) E @) UG v o
() o D(z) > G(2) .
+ T_
(}(:):(l—_—“)Z_J-G(S)I

Ls
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Discretization of continuous-time controllers

* Basic idea: Reuse the analog design

Hiz) =G (s)

u(t) | — ;‘I{;’?E — _{};n;} _____ | y(t)
—|L- A-D Algorithm F————=  D-A —|—|

o ; } |

| |

' [ oo ] I

|

- 1

* Want to get:
— A/D + Algorithm + D/A= G(s)
* Methods:
— Approximatess, i.e., H(z) = G(s’)
— Other discretization methods (Matlab)



Discretization of continuous-time controllers
* Approximation Methods

Forward Difference (Euler's method):

dx(t)  x(tpy1) —x(tg)
dt h

&

Jg _ z=1
S =7

f(x!:' F oot e e e e

Flx) — 7 ix)
Mx

Fiix)=




Discretization of continuous-time controllers
* Approximation Methods

Backward Difference:

f(.x!) For it imm e e e i

Jiz-1

FUx )= Fix)
Mx

Fiix)=




Discretization of continuous-time controllers
* Approximation Methods

Tustin:

dx(t) |, dx(tri1) . .
i+ g  X(feg1) — x(2k)

2 ~ h

f
S =

=t

by

2
h

tu
[
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Example-1

* Using the three approximation methods to find the discrete-
time equivalent of a lead compensator.

« Compare the approximation result by plotting the frequency
response of the continuous-time controller and the discrete-
time approximation for sampling periods T=1, 0.5 and 0.1.



Example-1

* Solution: The approximations give the following relations:

Forward Difference (Euler's method): s ==
Backward Difference: s'= =4
Tustin: ¢ = 2 z2-1

h z+

* Using Euler’s approximation method

z—1
07+ 10— +T
z—1 Z—1+T

—+1

G(z) =
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Example-1

« Solution: The approximations give the following
relations:

Forward Difference (Euler's method): s ==
Backward Difference: s'= =4
Tustin: ¢ = 2 z2-1

h z+

 Using Backward Difference approximation method
10(22_711) +1 _10(z—1) + 2T

z—1 Z—1+2zT
T + 1

G(z) =
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Example-1

* Solution: The approximations give the following relations:

Forward Difference (Euler's method): s ==
Backward Difference: s'= =4
Tustin: ¢ = 2 z2-1

h z+

* Using Tustin’s approximation method
10(%5 - i) t1 20z-1D+T(@z+1)

2z=1_ .,  2Z-D+T@Ez+1)
Tz+1

G(z) =
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* Frequency Response @ T=1
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* Frequency Response @ T=0.5
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Example-1

* Frequency Response @ T=0.1
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Pl Controller

* Figure shows the diagram of a Pl type analog controller.

Analog PI

y(t)

 The controller contains two channels (a proportional channel
and an integral channel) that process the error between the
reference signal and the output.



Digital Pl Controller

* Digital Pl control law can even be obtained by the
discretization of a Pl analog controller.

* The control law for an analog Pl controller is given by

-
1+—

C =K
(5) s

e Using Tustin’s Approximation method

_22—1
T Tz+1

l.e S

C(z)=K|1+ 57 —1
liz 71




Digital PID Controller

 Many practical control problems are solved by PID controllers
or their variants.

t
u(t) = K, [e(t) +Tlf e(t)dt + Ty

l
(0]

de(t)
dt

 The continuous-time transfer function of a PID controller can
be obtained by taking the Laplace transform of above eq

K, (T;Tps? + T;s + 1
C id(S) _ p( LD l )
p Tl'S

e PID controller is non-causal and cannot, and should not, be
implemented.




Digital PID Controller

K, (T;Tps* + Tys + 1)
TiS

Cpid (s) =

The main reason is that the derivative term is non-causal and that
it amplifies high frequency noise in the measured signals.

Hence, the gain of the derivative action must be limited.

This can be achieved by introducing an additional low-pass filter
to the derivative action:




Digital PID Controller

K,s K, (T;Tps? + T;s + 1
D Cpid(s) _ p( tL*D l )
TiS

With the augmentation of a low pass filter, the modified
continuous-time PID controller can be written as
Kp(TiTDSZ + TiS + 1)

Tis(t;s+ 1)

Cpid (s) =

which introduced two zeros, a pole at the origin and another
“fast” pole.

Any of the previous approximation methods can be used to
approximate the PID controller.



