
Digital Control Systems (DCS) 

Lecture-4&5 

Control specifications and digital control 

design techniques 
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Control specifications and digital 

control design techniques  
 

 Control specifications 

 Rise time tr  Time to reach the vicinity of its new set point (90%) 

 Settling time ts :Time for the decay of transient (inside 1% of steady 

state (final) value) 

 Overshoot Mp: maximum overshoot from the final vale (usually in 

percent) 
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ζ is damping ratio 

ωn is the undamped 

natural frequency 



Control specifications 

 The rise time is 

 

 The settling time 

 

 

 Maximum overshoot  

 

 Note: 

 The requirement on the natural frequency is obtained from the rise time 

 The requirement on the magnitude of the real part of the pole is 

obtained from the settling time 

 The requirement the damping ratio is obtained from the overshoot 
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Control specifications 
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Example 1.5 

   Find the acceptable pole region on s-plane of 

the following specifications 

1. Over shoot less than 20% and settling time less 

than 3sec 

2. Over shoot less than 10% , settling time less than 

10sec and rise time less than 5sec 

 



Specifications on steady state error 

 For a system with unity feedback and forward transfer 

function D(s)G(s) shown below the error e becomes 

 

 

 

 

 Lets first define system type number. 
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D(s) G(s) 
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steady state error cont.. 

 IF N=0,its type zero system: If N=1,its type one system: If 

N=2,it’s type two system and so on 

 It is important to determine the steady state error for the three 

standard test inputs (step, ramp and acceleration) for the unity 

feedback system shown. 

 Step input: Step input of magnitude A is given as R(s)=A/s.So the 

steady state error becomes 
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steady state error cont… 

 Ramp input. A ramp (velocity) input of slope A is given as r(t)=At or 

R(s)=A/s2.So the steady state error becomes 
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steady state error cont… 

 Acceleration input: r(t)=At2/2 or R(s)=A/s3 
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steady state error cont… 

Number  of 
integrators in 

D(s)G(s) or type 
number 

Input 

Step input 
r(t)=A or R(s)=A/s 

Ramp input 
r(t)=At or R(s)=A/s2 

Acceleration input 
 r(t)=At2/2 or 

R(s)=A/s3 

0 ess= A/(1+Kp) ess= ∞ ess= ∞ 
 

1 ess=0 ess= A/Kv ess= ∞ 
 

2 ess=0 
 

ess= 0 ess= A/Ka 
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Example 
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Example 1.6 

   Find the value of K for the following unity 

feedback system to have 

1. Unit step steady state error<2% 

2. Unit ramp input steady state error<1% 

G(s)=(s+1)/(s3+5s2+6s) 

 
K G(s) 
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Digital controller design techniques 
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Digital controller design techniques 

 Two approaches may be used in the design of digital 

compensators.  

 Emulation: an analog compensator may be designed and then 

converted by some approximation procedures to a digital 

compensator, 

 Direct digital methods of designing digital compensators: as 

compared to the approximate methods of converting analog 

compensators to digital compensators. 
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Sampled data control system 
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P(s) 
D(s) 

 

D(z) 

 
P(z) 

 

Plant model ,and 

sample/hold as P(z) 
Approximation of D(s) 

wit D(z) 

Continuous time design 

Discrete time design 

Plant analog model 
Analog  controller 

Digital  controller 
Plant digital model 



Emulation Design vs Direct Digital  

Control 

Emulation 
 Can use continuous time methods (well developed) 

 Few new tools needed 

Works well if sampling fast 

Mapping of control law from continuous time to 

discrete time is not exact 

Ignore continuous system response between sampling 

times 
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Sampled data control system 

 Emulation 
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Sampled data control system 

Direct digital control 
Design of discrete time control law (and thus digital 

closed loop system) is exact for any sampling rate 

 Ignore continuous system response between sampling 

times 
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Discretization of continuous-time controllers 
• Basic idea: Reuse the analog design 

 

 

 

 

 

 

• Want to get: 

– A/D + Algorithm + D/A≈ G(s) 

• Methods: 

– Approximate s, i.e., H(z) = G(s’) 

– Other discretization methods (Matlab) 17 



Discretization of continuous-time controllers 
• Approximation Methods 

18 



Discretization of continuous-time controllers 
• Approximation Methods 

19 



Discretization of continuous-time controllers 
• Approximation Methods 
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Example-1 

• Using the three approximation methods to find the discrete-
time equivalent of a lead compensator. 

 

 

• Compare the approximation result by plotting the frequency 
response of the continuous-time controller and the discrete-
time approximation for sampling periods T = 1, 0.5 and 0.1.  
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𝐺 𝑠 =
10𝑠 + 1

𝑠 + 1
 



Example-1 

• Solution: The approximations give the following relations: 

 

 

 

 

 

 

• Using Euler’s approximation method  

22 

𝐺 𝑧 =
10(
𝑧 − 1
𝑇 ) + 1

𝑧 − 1
𝑇 + 1

=
10 𝑧 − 1 + 𝑇

𝑍 − 1 + 𝑇
 



Example-1 

• Solution: The approximations give the following 
relations: 

 

 

 

 

 

 

• Using Backward Difference approximation method  
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𝐺 𝑧 =
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𝑧 − 1
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Example-1 

• Solution: The approximations give the following relations: 

 

 

 

 

 

 

• Using Tustin’s approximation method  
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𝐺 𝑧 =
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𝑇
𝑧 − 1
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2
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Example-1 
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• Frequency Response @ T=1 



Example-1 
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• Frequency Response @ T=0.5 



Example-1 
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• Frequency Response @ T=0.1 



PI Controller 
• Figure shows the diagram of a PI type analog controller.  

 

 

 

 

 

 

 

 

• The controller contains two channels (a proportional channel 
and an integral channel) that process the error between the 
reference signal and the output. 

28 



Digital PI Controller 
• Digital PI control law can even be obtained by the 

discretization of a PI analog controller.  

 

• The control law for an analog PI controller is given by 

 

 

• Using Tustin’s Approximation method 
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𝐶(𝑠) = 𝐾 1 +
1

𝑇𝑖𝑠
 

𝑖. 𝑒    𝑠 =
2

𝑇

𝑧 − 1

𝑧 + 1
 

𝐶(𝑧) = 𝐾 1 +
1

𝑇𝑖
2
𝑇
𝑧 − 1
𝑧 + 1

 



Digital PID Controller 
• Many practical control problems are solved by PID controllers 

or their variants. 

 

 

 

• The continuous-time transfer function of a PID controller can 
be obtained by taking the Laplace transform of above eq 

 

 

• PID controller is non-causal and cannot, and should not, be 
implemented. 
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𝑢(𝑡) = 𝐾𝑝 𝑒 𝑡 +
1

𝑇𝑖
 𝑒 𝑡

𝑡

𝑜

𝑑𝑡 + 𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 

𝐶𝑝𝑖𝑑(𝑠) =
𝐾𝑝(𝑇𝑖𝑇𝐷𝑠

2 + 𝑇𝑖𝑠 + 1) 

𝑇𝑖𝑠
 



Digital PID Controller 
 

 

• The main reason is that the derivative term is non-causal and that 
it amplifies high frequency noise in the measured signals.  

 

• Hence, the gain of the derivative action must be limited.  

 

• This can be achieved by introducing an additional low-pass filter 
to the derivative action: 
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𝐶𝑝𝑖𝑑(𝑠) =
𝐾𝑝(𝑇𝑖𝑇𝐷𝑠

2 + 𝑇𝑖𝑠 + 1) 

𝑇𝑖𝑠
 

𝐾𝐷𝑠 ≈
𝐾𝐷𝑠

𝜏𝐿𝑠 + 1
 



Digital PID Controller 
 

 

• With the augmentation of a low pass filter, the modified 
continuous-time PID controller can be written as 

 

 

• which introduced two zeros, a pole at the origin and another 
“fast” pole. 

 

• Any of the previous approximation methods can be used to 
approximate the PID controller. 
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𝐶𝑝𝑖𝑑(𝑠) =
𝐾𝑝(𝑇𝑖𝑇𝐷𝑠

2 + 𝑇𝑖𝑠 + 1) 

𝑇𝑖𝑠
 𝐾𝐷𝑠 ≈

𝐾𝐷𝑠

𝜏𝐿𝑠 + 1
 

𝐶𝑝𝑖𝑑(𝑠) =
𝐾𝑝(𝑇𝑖𝑇𝐷𝑠

2 + 𝑇𝑖𝑠 + 1) 

𝑇𝑖𝑠(𝜏𝐿𝑠 + 1)
 


