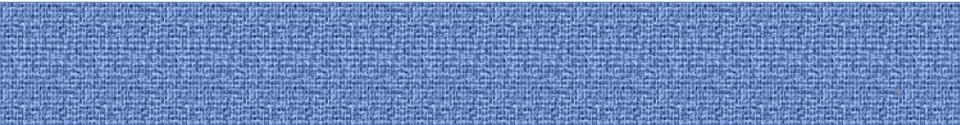
Digital Control Systems (DCS)

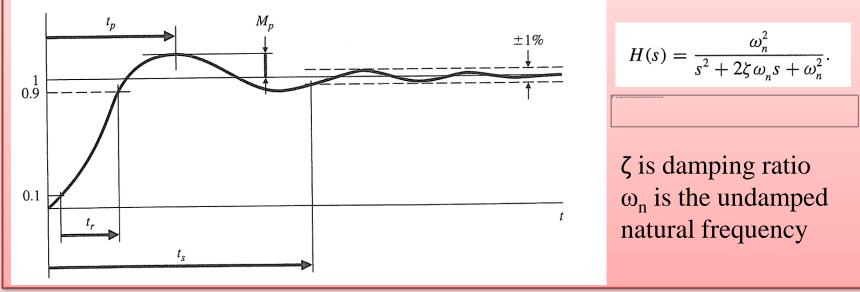
Lecture-4&5 Control specifications and digital control design techniques



Control specifications and digital control design techniques

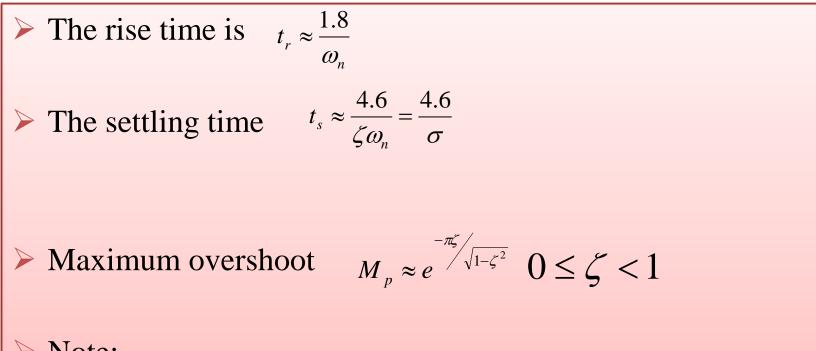
Control specifications

- ✓ Rise time t_r Time to reach the vicinity of its new set point (90%)
- ✓ Settling time t_s :Time for the decay of transient (inside 1% of steady state (final) value)
- ✓ Overshoot M_p: maximum overshoot from the final vale (usually in percent)



digital control system

Control specifications



Note:

- > The requirement on the natural frequency is obtained from the rise time
- The requirement on the magnitude of the real part of the pole is obtained from the settling time
- > The requirement the damping ratio is obtained from the overshoot

Control specifications

Example 1.5

Find the acceptable pole region on s-plane of the following specifications

- 1. Over shoot less than 20% and settling time less than 3sec
- Over shoot less than 10%, settling time less than 10sec and rise time less than 5sec

Specifications on steady state error

For a system with unity feedback and forward transfer function D(s)G(s) shown below the error e becomes

$$E(s) = \frac{R(s)}{1 + D(s)G(s)}$$

$$r \neq V$$

$$From final value theorem the steady state error$$

$$\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)}R(s)$$

$$F \text{ Lets first define system type number.}$$

$$Consider the following forward transfere function$$

$$D(s)G(s) = \frac{K\prod_{i=1}^{M}(s - z_i)}{s^{N}\prod_{k=1}^{Q}(s - p_k)}, \Pi \text{ denotes the product, the zeros } z_i \neq 0 \text{ and poles } p_i \neq 0$$

N defines the type number of the system.

digital control system

2012

steady state error cont..

- IF N=0,its type zero system: If N=1,its type one system: If N=2,it's type two system and so on
- It is important to determine the steady state error for the three standard test inputs (step, ramp and acceleration) for the unity feedback system shown.
 - Step input: Step input of magnitude A is given as R(s) = A/s. So the steady state error becomes $\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)} R(s) = \lim_{s \to 0} \frac{A}{1 + D(s)G(s)}$

Define position constant as $K_p = \lim_{s \to 0} D(s)G(s)$

So
$$e_{ss} = \frac{A}{1+K_p}$$
, $Where K_p = \lim_{s \to 0} \frac{K \prod_{i=1}^{M} (s-z_i)}{s^N \prod_{k=1}^{Q} (s-p_k)} = \infty \text{ for } N \ge 1$

digital control system

steady state error cont...

Ramp input. A ramp (velocity) input of slope A is given as r(t)=At or R(s)=A/s². So the steady state error becomes

$$\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)} R(s) = \lim_{s \to 0} \frac{A}{s + sD(s)G(s)} = \lim_{s \to 0} \frac{A}{sD(s)G(s)}$$

Define velocity constant as
$$K_v = \lim_{s \to 0} sD(s)G(s)$$

So
$$e_{ss} = \frac{A}{K_v}$$
, $Where K_v = \lim_{s \to 0} sD(s)G(s) = \lim_{s \to 0} \frac{K \prod_{i=1}^{M} (s - z_i)}{s^{N-1} \prod_{k=1}^{Q} (s - p_k)} = \infty \text{ for } N \ge 2.$

And $e_{ss} = 0$ for $N \ge 2$. Note: If the tf has more than one integrator, the error will be zero.

steady state error cont...

> Acceleration input: $r(t)=At^2/2$ or $R(s)=A/s^3$

$$\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)} R(s)$$

$$= \lim_{s \to 0} \frac{A}{s^{2} + s^{2}D(s)G(s)} = \lim_{s \to 0} \frac{A}{s^{2}D(s)G(s)}$$

Defineacceleration error constant as $K_v = \lim_{s \to 0} s^2 D(s) G(s)$

So
$$e_{ss} = \frac{A}{K_a}$$
, $Where K_a = \lim_{s \to 0} s^2 D(s) G(s) = \lim_{s \to 0} \frac{K \prod_{i=1}^m (s - z_i)}{s^{N-2} \prod_{k=1}^Q (s - p_k)} = \infty$ for $N \ge 3$.

And $e_{ss} = 0$ for $N \ge 3$.

steady state error cont...

Number of integrators in D(s)G(s) or type	Input		
number	Step input	Ramp input	Acceleration input
	r(t)=A or R(s)=A/s	$r(t)=At \text{ or } R(s)=A/s^2$	$r(t) = At^2/2$ or $R(s) = A/s^3$
0	e _{ss} = A/(1+K _p)	e _{ss} =∞	e _{ss} =∞
1	e _{ss} =0	e _{ss} = A/K _v	e _{ss} =∞
2	e _{ss} =0	e _{ss} = 0	e _{ss} = A/K _a

Example 1.6

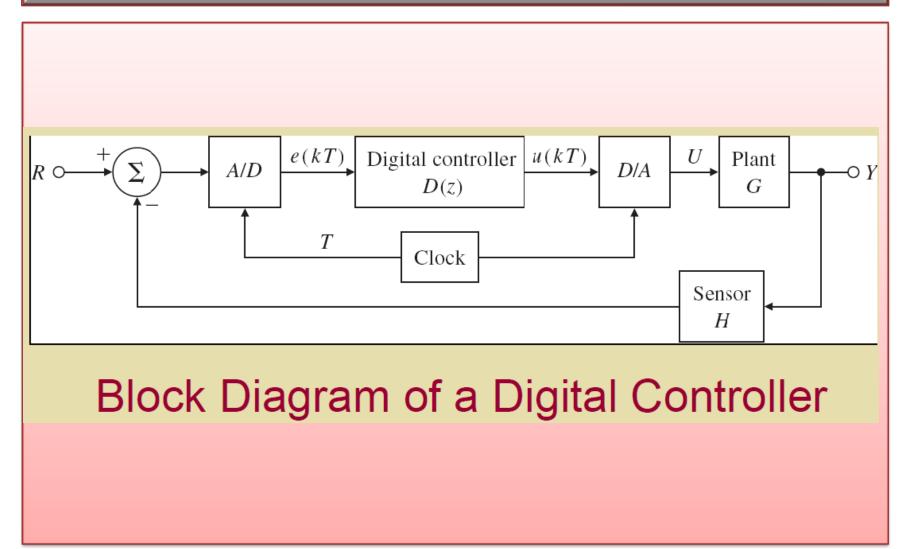
2012

Find the value of K for the following unity feedback system to have

- 1. Unit step steady state error<2%
- 2. Unit ramp input steady state error<1% G(s)=(s+1)/(s³+5s²+6s)

$$\xrightarrow{r} + \underbrace{e}_{E} \xrightarrow{k} \underbrace{u}_{U} \xrightarrow{g(s)} \underbrace{y}_{Y}$$

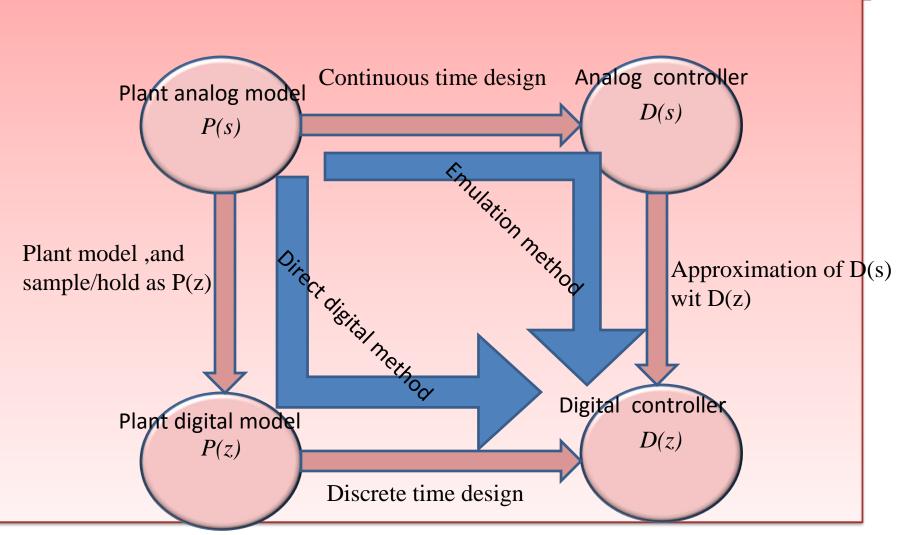
Digital controller design techniques



2012

Digital controller design techniques

- Two approaches may be used in the design of digital compensators.
- Emulation: an analog compensator may be designed and then converted by some approximation procedures to a digital compensator,
- Direct digital methods of designing digital compensators: as compared to the approximate methods of converting analog compensators to digital compensators.



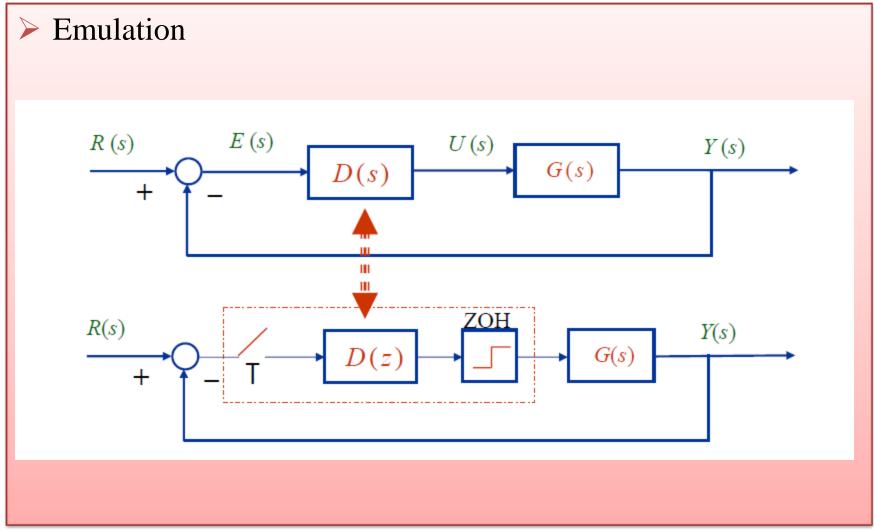
2012

Emulation Design vs Direct Digital Control

Emulation

- ✓ Can use continuous time methods (well developed)
- ✓ Few new tools needed
- ✓ Works well if sampling fast
- Mapping of control law from continuous time to discrete time is not exact
- ✓ Ignore continuous system response between sampling times

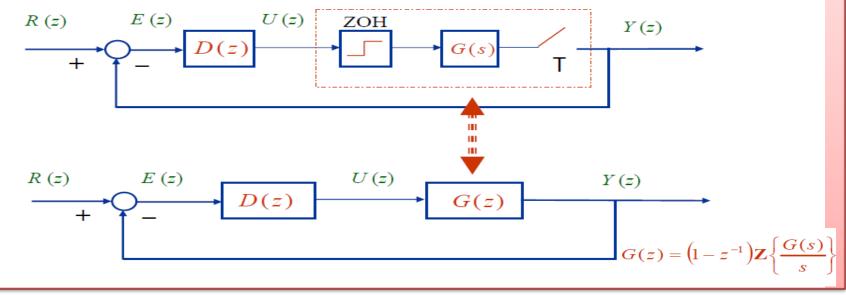
Sampled data control system



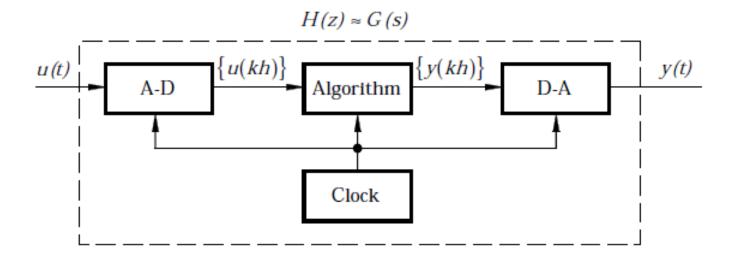
Sampled data control system

Direct digital control

- ✓ Design of discrete time control law (and thus digital closed loop system) is exact for any sampling rate
- Ignore continuous system response between sampling times



• Basic idea: Reuse the analog design



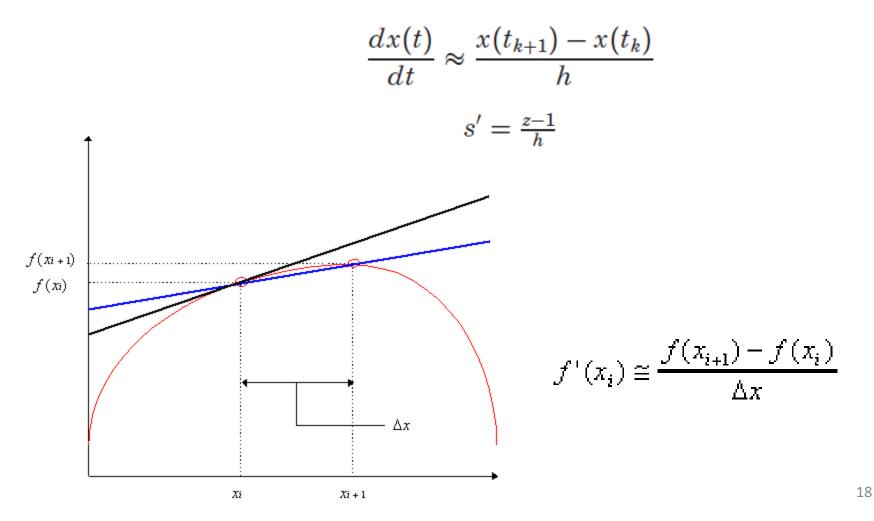
• Want to get:

- A/D + Algorithm + D/A \approx G(s)

- Methods:
 - Approximate s, i.e., H(z) = G(s')
 - Other discretization methods (Matlab)

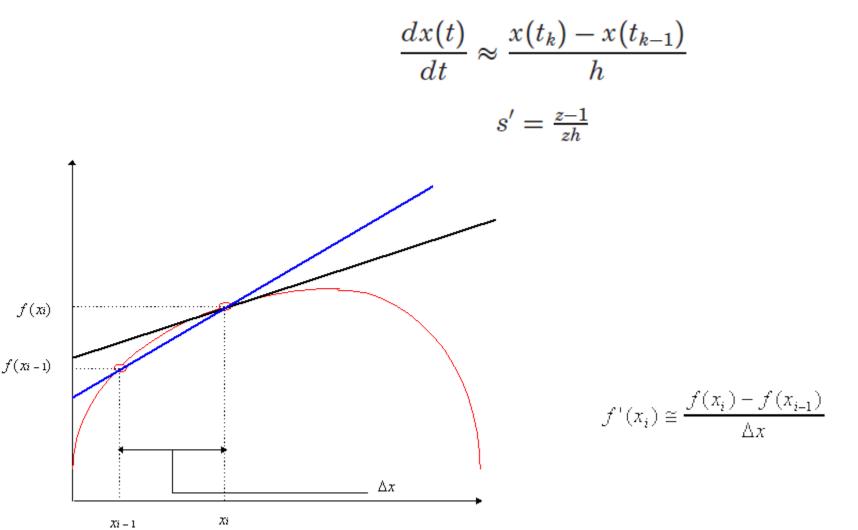
• Approximation Methods

Forward Difference (Euler's method):



• Approximation Methods

Backward Difference:



19

• Approximation Methods

Tustin:

$$\frac{\frac{dx(t)}{dt} + \frac{dx(t_{k+1})}{dt}}{2} \approx \frac{x(t_{k+1}) - x(t_k)}{h}$$
$$s' = \frac{2}{h} \frac{z-1}{z+1}$$

 Using the three approximation methods to find the discretetime equivalent of a lead compensator.

$$G(s) = \frac{10s+1}{s+1}$$

 Compare the approximation result by plotting the frequency response of the continuous-time controller and the discretetime approximation for sampling periods T = 1, 0.5 and 0.1.

• Solution: The approximations give the following relations:

Forward Difference (Euler's method): $s' = \frac{z-1}{h}$ Backward Difference: $s' = \frac{z-1}{zh}$ Tustin: $s' = \frac{2}{h} \frac{z-1}{z+1}$

• Using Euler's approximation method

$$G(z) = \frac{10(\frac{z-1}{T})+1}{\frac{z-1}{T}+1} = \frac{10(z-1)+T}{Z-1+T}$$

• Solution: The approximations give the following relations:

Forward Difference (Euler's method): $s' = \frac{z-1}{h}$

Backward Difference: $s' = \frac{z-1}{zh}$

Tustin: $s' = \frac{2}{h} \frac{z-1}{z+1}$

• Using Backward Difference approximation method

$$G(z) = \frac{10(\frac{z-1}{zT}) + 1}{\frac{z-1}{zT} + 1} = \frac{10(z-1) + zT}{Z - 1 + zT}$$

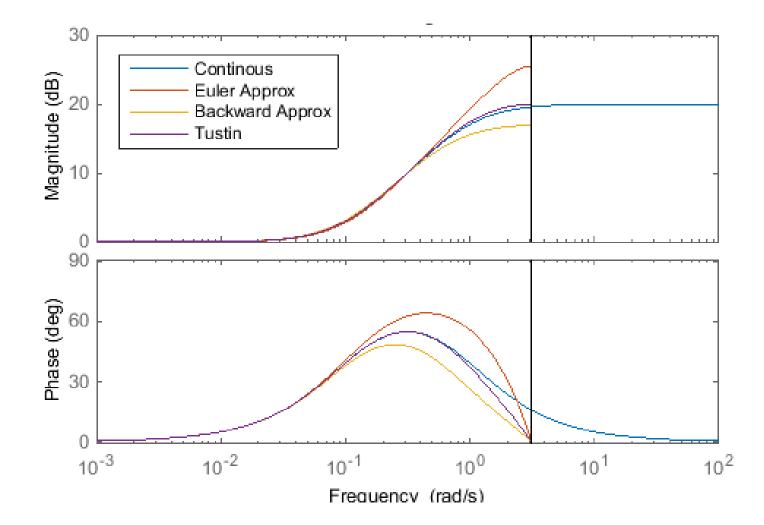
• Solution: The approximations give the following relations:

Forward Difference (Euler's method): $s' = \frac{z-1}{h}$ Backward Difference: $s' = \frac{z-1}{zh}$ Tustin: $s' = \frac{2}{h} \frac{z-1}{z+1}$

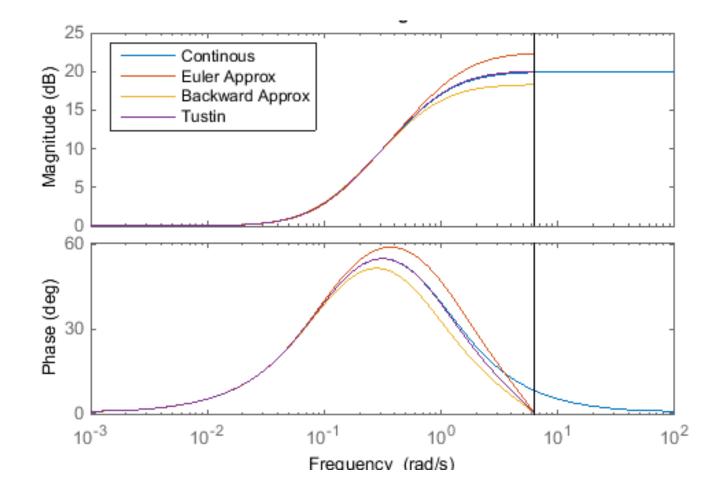
• Using Tustin's approximation method

$$G(z) = \frac{10(\frac{2}{T}\frac{z-1}{z+1})+1}{\frac{2}{T}\frac{z-1}{z+1}+1} = \frac{20(z-1)+T(z+1)}{2(Z-1)+T(z+1)}$$

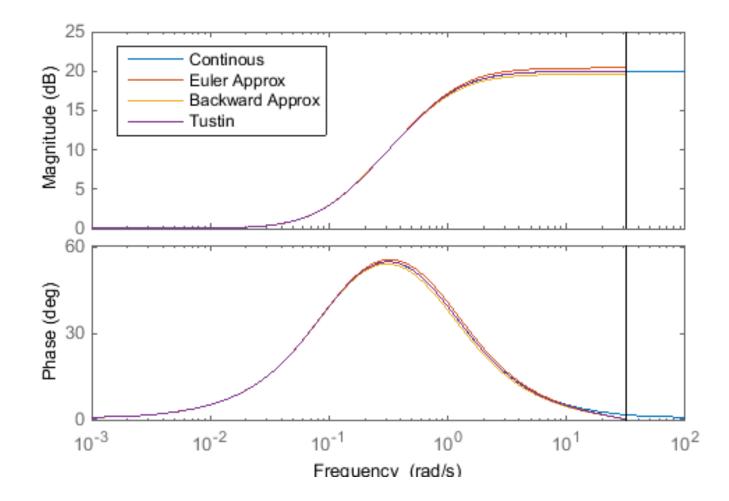
• Frequency Response @ T=1



• Frequency Response @ T=0.5

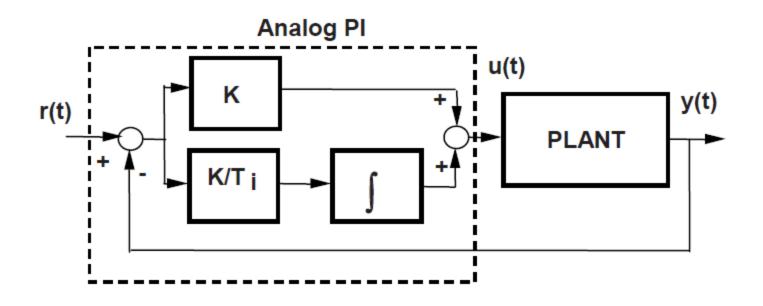


• Frequency Response @ T=0.1



PI Controller

• Figure shows the diagram of a PI type analog controller.



 The controller contains two channels (a proportional channel and an integral channel) that process the error between the reference signal and the output.

Digital PI Controller

- Digital PI control law can even be obtained by the discretization of a PI analog controller.
- The control law for an analog PI controller is given by

$$C(s) = K\left[1 + \frac{1}{T_i s}\right]$$

• Using Tustin's Approximation method

$$i.e \quad s = \frac{2}{T} \frac{z - 1}{z + 1}$$

$$C(z) = K \left[1 + \frac{1}{T_i \frac{2}{T} \frac{z - 1}{z + 1}} \right]$$

Digital PID Controller

 Many practical control problems are solved by PID controllers or their variants.

$$u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_{o}^{t} e(t) dt + T_d \frac{de(t)}{dt} \right]$$

 The continuous-time transfer function of a PID controller can be obtained by taking the Laplace transform of above eq

$$C_{pid}(s) = \frac{K_p(T_i T_D s^2 + T_i s + 1)}{T_i s}$$

 PID controller is non-causal and cannot, and should not, be implemented.

Digital PID Controller

$$C_{pid}(s) = \frac{K_p(T_i T_D s^2 + T_i s + 1)}{T_i s}$$

- The main reason is that the derivative term is non-causal and that it amplifies high frequency noise in the measured signals.
- Hence, the gain of the derivative action must be limited.
- This can be achieved by introducing an additional low-pass filter to the derivative action:

$$K_D s \approx \frac{K_D s}{\tau_L s + 1}$$

Digital PID Controller

$$K_D s \approx \frac{K_D s}{\tau_L s + 1} \qquad \qquad C_{pid}(s) = \frac{K_p (T_i T_D s^2 + T_i s + 1)}{T_i s}$$

• With the augmentation of a low pass filter, the modified continuous-time PID controller can be written as

$$C_{pid}(s) = \frac{K_p(T_i T_D s^2 + T_i s + 1)}{T_i s(\tau_L s + 1)}$$

- which introduced two zeros, a pole at the origin and another "fast" pole.
- Any of the previous approximation methods can be used to approximate the PID controller.