Digital Control Systems (DCS)

Lecture-4&5 Control specifications and digital control design techniques

Control specifications and digital control design techniques

\triangleright Control specifications

- \checkmark Rise time t_r Time to reach the vicinity of its new set point (90%)
- Settling time t_s : Time for the decay of transient (inside 1% of steady state (final) value)
- \checkmark Overshoot M_p: maximum overshoot from the final vale (usually in percent)

digital control system

Control specifications

- \triangleright The requirement on the natural frequency is obtained from the rise time
- \triangleright The requirement on the magnitude of the real part of the pole is obtained from the settling time
- \triangleright The requirement the damping ratio is obtained from the overshoot

2012

Control specifications

Example 1.5

 Find the acceptable pole region on s-plane of the following specifications

- 1. Over shoot less than 20% and settling time less than 3sec
- 2. Over shoot less than 10% , settling time less than 10sec and rise time less than 5sec

Specifications on steady state error

 For a system with unity feedback and forward transfer function *D(s)G(s)* shown below the error *e* becomes

$$
E(s) = \frac{R(s)}{1 + D(s)G(s)} \qquad \frac{r}{R} \sum_{k=1}^{n} \log \left(\frac{w}{k} \right)
$$

\nFrom final value theorem the steady state error\n
$$
\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)} R(s)
$$
\n
$$
\sum_{k=1}^{n} \log \left(\frac{1}{1 + D(s)G(s)} \right)
$$
\nConsider the following forward transfer function\n
$$
D(s)G(s) = \frac{K \prod_{i=1}^{M} (s - z_i)}{s^N \prod_{k=1}^{Q} (s - p_k)}, \text{T denotes the product, the zeros } z_i \neq 0 \text{ and poles } p_i \neq 0
$$

. *N definesthetypenumber of the system*

 $digital control system$

2012

steady state error cont..

- \triangleright IF N=0, its type zero system: If N=1, its type one system: If N=2,it's type two system and so on
- \triangleright It is important to determine the steady state error for the three standard test inputs (step, ramp and acceleration) for the unity feedback system shown.
	- Step input: Step input of magnitude A is given as $R(s) = A/s$. So the steady state error becomes $1 + D(s)G(s)$ $(s) = lim$ $1 + D(s)G(s)$ 1 $\lim e(t) = e_{ss} = \lim sE(s) = \lim$ $\sum_{s=0}^{s} 0$ $1+D(s)G(s)$ $\sum_{s=0}^{s} 1+$ $=$ $\ddot{}$ $=e_{ss}=\lim sE(s)=$ $\rightarrow \infty$ s_{s} **d** $s \rightarrow 0$ **b** $1 + D(s)G(s)$ **b** $s \rightarrow 0$ **d** $1 + D(s)G(s)$ *A R s* $D(s)G(s)$ $e(t) = e_{ss} = \lim sE(s) = \lim s$ $s \rightarrow 0$ $s \rightarrow 0$ $1 + D(s)G(s)$ s *ss t*

Define position constant as $K_p = \lim D(s)G(s)$ $s\rightarrow 0$

So
$$
e_{ss} = \frac{A}{1 + K_p}
$$
, Where $K_p = \lim_{s \to 0} \frac{K \prod_{i=1}^{M} (s - z_i)}{s^N \prod_{k=1}^{Q} (s - p_k)} = \infty$ for $N \ge 1$

 $digital control system$

steady state error cont…

 \triangleright Ramp input. A ramp (velocity) input of slope A is given as $r(t) = At$ or $R(s) = A/s^2$. So the steady state error becomes

$$
\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)} R(s) = \lim_{s \to 0} \frac{A}{s + sD(s)G(s)} = \lim_{s \to 0} \frac{A}{sD(s)G(s)}
$$

$$
Define velocity cons \tan t \ as \ K_v = \lim_{s \to 0} sD(s)G(s)
$$

So
$$
e_{ss} = \frac{A}{K_v}
$$
, Where $K_v = \lim_{s \to 0} sD(s)G(s) = \lim_{s \to 0} \frac{K \prod_{i=1}^{M} (s - z_i)}{s^{N-1} \prod_{k=1}^{Q} (s - p_k)} = \infty$ for $N \ge 2$.

: If the tf has more than one int egrator, the error will be zero. And $e_{ss} = 0$ for $N \ge 2$. And $e_{ss} = 0$ for $N \ge 2$.
Note: If thet f has more than one integrator, the error will be zero

steady state error cont…

Acceleration input: $r(t)=At^2/2$ or $R(s)=A/s^3$

$$
\lim_{t \to \infty} e(t) = e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + D(s)G(s)} R(s)
$$

$$
= \lim_{s \to 0} \frac{A}{s^2 + s^2 D(s)G(s)} = \lim_{s \to 0} \frac{A}{s^2 D(s)G(s)}
$$

M

Defineacceleration error constant as $K_v = \lim s^2 D(s)G(s)$ $s\rightarrow 0$

So
$$
e_{ss} = \frac{A}{K_a}
$$
, Where $K_a = \lim_{s \to 0} s^2 D(s)G(s) = \lim_{s \to 0} \frac{K \prod_{i=1}^{n} (s - z_i)}{s^{N-2} \prod_{k=1}^{Q} (s - p_k)} = \infty$ for $N \ge 3$.

And $e_{ss} = 0$ for $N \geq 3$.

steady state error cont…

Example 1.6

2012

Find the value of K for the following unity feedback system to have

- 1. Unit step steady state error<2%
- 2. Unit ramp input steady state error<1% $G(s)=(s+1)/(s^3+5s^2+6s)$

$$
\frac{r}{R} + \bigotimes_{I} \frac{e}{E} \longrightarrow K \qquad \xrightarrow{u} \qquad G(s) \qquad \xrightarrow{y} \qquad
$$

Digital controller design techniques

digital control system 11

2012

Digital controller design techniques

- \triangleright Two approaches may be used in the design of digital compensators.
- \triangleright Emulation: an analog compensator may be designed and then converted by some approximation procedures to a digital compensator,
- \triangleright Direct digital methods of designing digital compensators: as compared to the approximate methods of converting analog compensators to digital compensators.

Sampled data control system

2012

Emulation Design vs Direct Digital Control

Emulation

- Can use continuous time methods (well developed)
- Few new tools needed
- Works well if sampling fast
- Mapping of control law from continuous time to discrete time is not exact
- Ignore continuous system response between sampling times

Sampled data control system

Sampled data control system

Direct digital control

- Design of discrete time control law (and thus digital closed loop system) is exact for any sampling rate
- \checkmark Ignore continuous system response between sampling times

Basic idea: Reuse the analog design

Want to get:

 $-$ A/D + Algorithm + D/A \approx *G*(*s*)

- Methods:
	- Approximate *s*, i.e., *H*(*z*) = *G*(*s'*)
	- Other discretization methods (Matlab) 17

• Approximation Methods

Forward Difference (Euler's method):

• Approximation Methods

Backward Difference:

• Approximation Methods

Tustin:

$$
\frac{\frac{dx(t)}{dt} + \frac{dx(t_{k+1})}{dt}}{2} \approx \frac{x(t_{k+1}) - x(t_k)}{h}
$$

$$
s' = \frac{2}{h} \frac{z-1}{z+1}
$$

• Using the three approximation methods to find the discretetime equivalent of a lead compensator.

$$
G(s) = \frac{10s + 1}{s + 1}
$$

Compare the approximation result by plotting the frequency response of the continuous-time controller and the discretetime approximation for sampling periods $T = 1$, 0.5 and 0.1.

• Solution: The approximations give the following relations:

Forward Difference (Euler's method): $s' = \frac{z-1}{h}$ $s' = \frac{z-1}{zh}$ **Backward Difference:** Tustin: $s' = \frac{2}{h} \frac{z-1}{z+1}$

• Using Euler's approximation method

$$
G(z) = \frac{10(\frac{z-1}{T}) + 1}{\frac{z-1}{T} + 1} = \frac{10(z-1) + T}{Z - 1 + T}
$$

• Solution: The approximations give the following relations:

Forward Difference (Euler's method): $s' = \frac{z-1}{b}$

 $s' = \frac{z-1}{zh}$ **Backward Difference:**

Tustin: $s' = \frac{2}{h} \frac{z-1}{z+1}$

• Using Backward Difference approximation method

$$
G(z) = \frac{10(\frac{z-1}{zT}) + 1}{\frac{z-1}{zT} + 1} = \frac{10(z-1) + zT}{Z - 1 + zT}
$$

• Solution: The approximations give the following relations:

Forward Difference (Euler's method): $s' = \frac{z-1}{h}$ $s'=\frac{z-1}{zh}$ **Backward Difference:** Tustin: $s' = \frac{2}{h} \frac{z-1}{z+1}$

• Using Tustin's approximation method

$$
G(z) = \frac{10(\frac{2}{T}\frac{z-1}{z+1})+1}{\frac{2}{T}\frac{z-1}{z+1}+1} = \frac{20(z-1) + T(z+1)}{2(z-1) + T(z+1)}
$$

• Frequency Response @ T=1

• Frequency Response @ T=0.5

• Frequency Response @ T=0.1

PI Controller

Figure shows the diagram of a PI type analog controller.

• The controller contains two channels (a proportional channel and an integral channel) that process the error between the reference signal and the output.

Digital PI Controller

- Digital PI control law can even be obtained by the discretization of a PI analog controller.
- The control law for an analog PI controller is given by

$$
C(s) = K \left[1 + \frac{1}{T_i s} \right]
$$

Using Tustin's Approximation method

$$
i.e \quad s = \frac{2z - 1}{Tz + 1}
$$

$$
C(z) = K \left[1 + \frac{1}{T_i \frac{2z - 1}{Tz + 1}} \right]
$$

Digital PID Controller

• Many practical control problems are solved by PID controllers or their variants.

$$
u(t) = K_p \left[e(t) + \frac{1}{T_i} \int\limits_o^t e(t) \, dt + T_d \frac{de(t)}{dt} \right]
$$

• The continuous-time transfer function of a PID controller can be obtained by taking the Laplace transform of above eq

$$
C_{pid}(s) = \frac{K_p(T_i T_D s^2 + T_i s + 1)}{T_i s}
$$

• PID controller is non-causal and cannot, and should not, be implemented.

Digital PID Controller

$$
C_{pid}(s) = \frac{K_p(T_i T_D s^2 + T_i s + 1)}{T_i s}
$$

- The main reason is that the derivative term is non-causal and that it amplifies high frequency noise in the measured signals.
- Hence, the gain of the derivative action must be limited.
- This can be achieved by introducing an additional low-pass filter to the derivative action:

$$
K_D s \approx \frac{K_D s}{\tau_L s + 1}
$$

Digital PID Controller

$$
K_D s \approx \frac{K_D s}{\tau_L s + 1}
$$
\n
$$
C_{pid}(s) = \frac{K_p (T_i T_D s^2 + T_i s + 1)}{T_i s}
$$

• With the augmentation of a low pass filter, the modified continuous-time PID controller can be written as

$$
C_{pid}(s) = \frac{K_p(T_i T_D s^2 + T_i s + 1)}{T_i s(\tau_L s + 1)}
$$

- which introduced two zeros, a pole at the origin and another "fast" pole.
- Any of the previous approximation methods can be used to approximate the PID controller.