
Digital Control Systems (DCS) 

Lecture-3 
Stability of Digital Control Systems 

Here, Focus on jury’s stability, since you are familiar with other methods  
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Introduction 
• Stability is a basic requirement for digital and analog control 

systems.  

• Digital control is based on samples and is updated every 
sampling period, and there is a possibility that the system will 
become unstable between updates. This obviously makes 
stability analysis different in the digital case.  

• There are different definitions and tests of the stability of 
linear time-invariant (LTI) digital systems based on transfer 
function models.  
 

– Input-output stability and internal stability.  

– Routh-Hurwitz criterion 

– Jury criterion, and the Nyquist criterion.  

– Gain margin and phase margin for digital systems 
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Asymptotic Stability 
• The most commonly used definitions of stability are based on 

the magnitude of the system response in the steady state. If 
the steady-state response is unbounded, the system is said to 
be unstable. 

• Asymptotic Stability: A system is said to be asymptotically 
stable if its response to any initial conditions decays to zero 
asymptotically in the steady state. 

 

 

• If the response due to the initial conditions remains bounded 
but does not decay to zero, the system is said to be marginally 
stable. 
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lim
𝑘→∞
𝑦 𝑘 = 0 



Asymptotic Stability 

• In the absence of pole-zero cancellation, an LTI digital system is 
asymptotically stable if its transfer function poles are in the 
open unit disc and marginally stable if the poles are in the 
closed unit disc with no repeated poles on the unit circle. 
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Unit Disc: A disc with radius 1. 

• The open unit disc is the region in 
the complex plane defined by 

𝑧: 𝑧 < 1  

• The closed unit disc is the region in 
the complex plane defined by 

𝑧: 𝑧 ≤ 1  

𝑟 = 1 



Asymptotic Stability 

• Consider a LTI system governed by difference equation 

 

 

• With initial conditions 𝑦 0 , 𝑦 1 , …𝑦(𝑛 − 1). 
 

• Using the z-transform of the output the response of the system 
due to the initial conditions with the input zero is of the form 

 

 

• where N(z) is a polynomial dependent on the initial 
conditions.  
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𝑦 𝑘 + 𝑛 + 𝑎𝑛−1𝑦 𝑘 + 𝑛 − 1 +⋯+ 𝑎1𝑦 𝑘 + 1 + 𝑎0𝑦 𝑘
= 𝑏𝑚𝑢 𝑘 + 𝑚 + 𝑏𝑚−1𝑢 𝑘 + 𝑚 − 1 +⋯+ 𝑏1𝑢 𝑘 + 1 + 𝑏0𝑢 𝑘  

      where 𝑘 = 1,2,3… 

𝑌 𝑧 =
𝑁(𝑧)

𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 +⋯+ 𝑎1𝑧1 + 𝑎0

 



Asymptotic Stability 
 

 

• Because transfer function zeros arise from transforming the input 
terms, they have no influence on the response due to the initial 
conditions.  
 

• The denominator of the output z-transform is the same as the 
denominator of the z-transfer function in the absence of pole-zero 
cancellation.  
 

• Hence, the poles of the function Y(z) are the poles of the system 
transfer function. 
 

• Thus, the output due to the initial conditions is bounded for system 
poles in the closed unit disc with no repeated poles on the unit 
circle. It decays exponentially for system poles in the open unit disc 
(i.e., inside the unit circle). 
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𝑌 𝑧 =
𝑁(𝑧)

𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 +⋯+ 𝑎1𝑧1 + 𝑎0

 



Example-1 

• Determine the asymptotic stability of the following 
systems: 
 

1. 𝐻 𝑧 =
4(𝑧−2)

(𝑧−2)(𝑧−0.1)
 

2. 𝐻 𝑧 =
4(𝑧−0.2)

(𝑧−0.2)(𝑧−0.1)
 

3. 𝐻 𝑧 =
5(𝑧−0.3)

(𝑧−0.2)(𝑧−0.1)
 

4. 𝐻 𝑧 =
8(𝑧−0.2)

(𝑧−0.1)(𝑧−1)
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BIBO Stability 
• The second definition of stability concerns the forced response 

of the system for a bounded input.  
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𝑢(𝑘) < 𝑏𝑢, 𝑘 = 1,2,3,… 
                                    0 < 𝑏𝑢 < ∞ 

• A bounded input satisfies the 
condition 
 
 
 
 

• A bounded sequence satisfying 
the constraint |u(k)| < 3 is 
shown in the figure. 

Bounded sequence with bound bu = 3 



BIBO Stability 
• Bounded-Input–Bounded-Output Stability. A system is 

said to be bounded-input–bounded-output (BIBO) stable if 
its response to any bounded input remains bounded. 

 

• That is, for any input satisfying 

 

 

 

• The output satisfies 
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𝑢(𝑘) < 𝑏𝑢,  𝑘 = 1,2,3,… 
                                    0 < 𝑏𝑢 < ∞ 

𝑦(𝑘) < 𝑏𝑦, 𝑘 = 1,2,3,… 

                                    0 < 𝑏𝑦 < ∞ 



BIBO Stability 
• BIBO stability concerns the response of a system to a bounded 

input.  
 

• The response of the system to any input is given by the 
convolution summation 

 

 

• Where ℎ(𝑘) is impulse response sequence.  
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𝑦 𝑘 = ℎ 𝑘 − 𝑖 𝑢 𝑖 , 𝑘 = 0,1, 2, …

𝑘

𝑖=0

 



Asymptotic vs. BIBO Stability  

• LTI systems, with no pole-zero cancellation, 
BIBO and asymptotic stability are equivalent 
and can be investigated using the same tests.  

 

• Hence, the term stability is used in the 
literaturel to denote either BIBO or asymptotic 
stability with the assumption of no unstable 
pole-zero cancellation. 
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Internal Stability 
• So far, we have only considered stability as applied 

to an open-loop system.  

 

• However, the stability of the closed-loop transfer 
function is not always sufficient for proper system 
operation because some of the internal variables 
may be unbounded.  

 

• In a feedback control system, it is essential that all 
the signals in the loop be bounded when bounded 
exogenous inputs are applied to the system. 13 



Internal Stability 
• Consider a unity feedback digital control system shown in 

following figure. The system has two outputs, Y and U, and 
two inputs, R and D.  

 

 
 

• The transfer functions associated with the system are given 
by 
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𝑌(𝑧)
𝑈(𝑧)

=

𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝐺𝑍𝐴𝑆(𝑠)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝐶(𝑧)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝑅(𝑧)
𝐷(𝑧)

 



Internal Stability 
 

 

 
 

• If all the transfer functions that relate system inputs (R and 
D) to the possible system outputs (Y and U) are BIBO 
stable, then the system is said to be internally stable. 
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𝑌(𝑧)
𝑈(𝑧)

=

𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝐺𝑍𝐴𝑆(𝑠)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝐶(𝑧)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

1 + 𝐶(𝑧)𝐺𝑍𝐴𝑆(𝑠)

𝑅(𝑧)
𝐷(𝑧)

 



Routh-Hurwitz Criterion 
• The Routh-Hurwitz criterion determines conditions for left half 

plane (LHP) polynomial roots and cannot be directly used to 
investigate the stability of discrete-time systems. 

 

• The bilinear transformation transforms the inside of the unit 
circle to the LHP. This allows the use of the Routh-Hurwitz 
criterion for the investigation of discrete-time system stability. 

 

 

• The bilinear Transformation is a special case of conformal 
mapping used to convert continuous LTI transfer function into 
discrete shift invariant transfer function.   
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𝑧 =
1+𝑤

1−𝑤
  ⇔ 𝑤 =

1+𝑧

1−𝑧
 



Routh-Hurwitz Criterion 
• For the general z-polynomial, 

 

 

• Using the bilinear transformation 𝑧 =
1+𝑤

1−𝑤
 

 

 

 

• The Routh-Hurwitz approach becomes progressively more 
difficult as the order of the z-polynomial increases. But for 
low-order polynomials, it easily gives stability conditions. 
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𝐹 𝑧 = 𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 +⋯+ 𝑎𝑜 

𝐹 𝑤 = 𝑎𝑛(
1 + 𝑤

1 − 𝑤
)𝑛+𝑎𝑛−1(

1 + 𝑤

1 − 𝑤
)𝑛−1+⋯+ 𝑎𝑜 



Example-2 
• By using Routh-Hurwitz stability criterion, determine the 

stability of the following digital systems whose characteristic 
are given as. 

𝑧2 − 0.25 = 0 

 

• Transforming the characteristic equation 𝑧2 − 0.25 = 0 into 

𝑤 − 𝑑𝑜𝑚𝑎𝑖𝑛 by using the bilinear transformation 𝑧 =
𝑤+1

𝑤−1
 

gives: 
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Solution 

0.75𝑤2 + 2.5𝑤 + 0.75 = 0 



Example-2 
• Routh array can now be developed from the transformed 

characteristic equation.  

 

 

 

 

 

 

• Since there are no sign changes in the first column of the 
Routh array therefore the system is stable.  
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0.75𝑤2 + 2.5𝑤 + 0.75 = 0 

𝑤2 0.75 0.75 

𝑤1 2.5 0 

𝑤0 0.75 



Example-3 
• By using Routh-Hurwitz stability criterion, determine the 

stability of the following digital systems whose characteristic 
are given as. 

𝑧3 − 1.2𝑧2 − 1.375𝑧 − 0.25 = 0 

 

• Transforming the characteristic equation into 𝑤 − 𝑑𝑜𝑚𝑎𝑖𝑛 by 

using the bilinear transformation 𝑧 =
𝑤+1

𝑤−1
 gives: 
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Solution 

−1.875𝑤3 + 3.875𝑤2 + 4.875𝑤 + 1.125 = 0 



Example-3 
• Routh array can now be developed from the transformed 

characteristic equation.  

 

 

 

 

 

 

• From the table above, since there is one sign change in the 
first column above equation has one root in the right-half of 
the w-plane.  
 

• This, in turn, implies that there will be one root of the 
characteristic equation outside of the unit circle in the z-plane. 
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𝑤3 -1.875 4.875 

𝑤2 3.875 1.125 

𝑤1 5.419 0 

𝑤0 1125 

−1.875𝑤3 + 3.875𝑤2 + 4.875𝑤 + 1.125 = 0 



Jury’s Stability Test 

• Stability test method presented by Eliahu Ibraham Jury. 

 

 

 

 

• It is possible to investigate the stability of z-domain 
polynomials directly using the Jury test. 
 

• These tests involve determinant evaluations as in the Routh-
Hurwitz test for s-domain polynomials but are more time 
consuming. 
 



Jury’s Stability Test 
• For a polynomial 

 

• the roots of the polynomial are inside the unit circle if and 
only if 
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𝐹 𝑧 = 𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 +⋯+ 𝑎𝑜 = 0 

𝟏 .   𝐹 1 > 0 

𝟐 .  (−1)𝑛𝐹 −1 > 0 

𝟑 .  𝑎𝑜 < 𝑎𝑛 

𝟒 .  𝑏0 > 𝑏𝑛−1  

𝟓 .  𝑐0 > 𝑐𝑛−2  

⋮ 

𝒏 + 𝟏 .  𝑟0 > 𝑟2  



Jury’s Stability Test 
• Where the terms in the n+1 conditions are calculated from following Table. 
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Jury’s Stability Test 
• The entries of the table are calculated as follows 
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𝑏𝑘 =
𝑎𝑜 𝑎𝑛−𝑘
𝑎𝑛 𝑎𝑘

,  𝒌 = 𝟎, 𝟏,… , 𝒏 − 𝟏 

𝑐𝑘 =
𝑏𝑜 𝑏𝑛−𝑘
𝑏𝑛 𝑏𝑘

,  𝒌 = 𝟎, 𝟏,… , 𝒏 − 𝟐 

𝑟𝑜 =
𝑠𝑜 𝑠3
𝑠3 𝑠𝑜

,  𝑟1 =
𝑠𝑜 𝑠2
𝑠3 𝑠1

, 𝑟2 =
𝑠𝑜 𝑠1
𝑠3 𝑠2

 



Example-4 
• Test the stability of the polynomial. 

 

 

• Develop Jury’s Table [(2n-3) rows]. 
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𝐹 𝑧 = 𝑧5 + 2.6𝑧4 − 0.56𝑧3 − 2.05𝑧2 + 0.0775𝑧 + 0.35 
Solution 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 𝑏𝑜 𝑏1 𝑏2 𝑏3 𝑏4 

4 𝑏4 𝑏3 𝑏2 𝑏1 𝑏𝑜 

5 𝑐𝑜 𝑐1 𝑐2 𝑐3 

6 𝑐3 𝑐2 𝑐1 𝑐𝑜 

7 𝑑𝑜 𝑑1 𝑑2 



Example-4 
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Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 𝑏𝑜 𝑏1 𝑏2 𝑏3 𝑏4 

4 𝑏4 𝑏3 𝑏2 𝑏1 𝑏𝑜 

5 𝑐𝑜 𝑐1 𝑐2 𝑐3 

6 𝑐3 𝑐2 𝑐1 𝑐𝑜 

7 𝑑𝑜 𝑑1 𝑑2 

𝑏𝑜 =
𝑎𝑜 𝑎5
𝑎5 𝑎𝑜

=
0.35 1
1 0.35

= −0.8775 

𝑏1 =
𝑎𝑜 𝑎4
𝑎𝟓 𝑎1

=
0.35 2.6
1 0.0775

= −2.5728 

𝑏2 =
𝑎𝑜 𝑎3
𝑎𝟓 𝑎2

=
0.35 −0.56
1 −2.05

= −0.1575 

𝑏4 =
𝑎𝑜 𝑎1
𝑎𝟓 𝑎4

=
0.35 0.0775
1 2.6

= 0.8352 

𝑏3 =
𝑎𝑜 𝑎2
𝑎𝟓 𝑎3

=
0.35 −2.05
1 −0.56

= 1.854 

𝑏𝑘 =
𝑎𝑜 𝑎𝑛−𝑘
𝑎𝑛 𝑎𝑘

 

• 3rd row is calculated using 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 −0.8775 −2.5728 −0.1575 1.854 0.8352 

4 𝑏4 𝑏3 𝑏2 𝑏1 𝑏𝑜 

5 𝑐𝑜 𝑐1 𝑐2 𝑐3 

6 𝑐3 𝑐2 𝑐1 𝑐𝑜 

7 𝑑𝑜 𝑑1 𝑑2 



Example-4 
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• 4rth row is same as 3rd row in reverse order 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 −0.8775 −2.5728 −0.1575 1.854 0.8352 

4 0.8352 1.854 −0.1575 −2.5728 −0.8775 

5 𝑐𝑜 𝑐1 𝑐2 𝑐3 

6 𝑐3 𝑐2 𝑐1 𝑐𝑜 

7 𝑑𝑜 𝑑1 𝑑2 



Example-4 
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𝑐𝑘 =
𝑏𝑜 𝑏𝑛−𝑘
𝑏𝑛 𝑏𝑘

 

• 5th row is calculated using 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 −0.8775 −2.5728 −0.1575 1.854 0.8352 

4 0.8352 1.854 −0.1575 −2.5728 −0.8775 

5 0.077 0.7143 0.2693 0.5151 

6 𝑐3 𝑐2 𝑐1 𝑐𝑜 

7 𝑑𝑜 𝑑1 𝑑2 



Example-4 
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• 6th row is same as 5th row in reverse order 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 −0.8775 −2.5728 −0.1575 1.854 0.8352 

4 0.8352 1.854 −0.1575 −2.5728 −0.8775 

5 0.077 0.7143 0.2693 0.5151 

6 0.5151 0.2693 0.7143 0.077 

7 𝑑𝑜 𝑑1 𝑑2 



Example-4 
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𝑑𝑘 =
𝑑𝑜 𝑑𝑛−𝑘
𝑑𝑛 𝑑𝑘

 

• 7th row is calculated using 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 −0.8775 −2.5728 −0.1575 1.854 0.8352 

4 0.8352 1.854 −0.1575 −2.5728 −0.8775 

5 0.077 0.7143 0.2693 0.5151 

6 0.5151 0.2693 0.7143 0.077 

7 −0.2593 −0.0837 −0.3472 



Example-4 

nth  order system 5th order System 

32 

• Now we need to evaluate following conditions 

𝟏 .   𝐹 1 > 0 

𝟐 .  (−1)𝑛𝐹 −1 > 0 

𝟑 .  𝑎𝑜 < 𝑎𝑛 

𝟒 .  𝑏0 > 𝑏𝑛−1  

𝟓 .  𝑐0 > 𝑐𝑛−2  

⋮ 

𝒏 + 𝟏 .  𝑟0 > 𝑟2  

𝟏 .   𝐹 1 > 0 

𝟐 .  (−1)5𝐹 −1 > 0 

𝟑 .  𝑎𝑜 < 𝑎5 

𝟒 .  𝑏0 > 𝑏4  

𝟓 .  𝑐0 > 𝑐3  

𝟔 .  𝑑0 > 𝑑2  



Example-4 
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• The first two conditions require the evaluation of F(z) at z = ±1. 

𝟏 .   𝐹 1 > 0 

𝟐 .  (−1)5𝐹 −1 > 0 

𝐹 𝑧 = 𝑧5 + 2.6𝑧4 − 0.56𝑧3 − 2.05𝑧2 + 0.0775𝑧 + 0.35 

𝐹 1 = 1 + 2.6 − 0.56 − 2.05 + 0.0775 + 0.351.4175 

𝐹 −1 = −1 + 2.6 + 0.56 − 2.05 − 0.0775 + 0.35 = 0.3825 

Satisfied 

Not Satisfied 



Example-4 
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• Next four conditions require Jury’s table 

𝟑 .  𝑎𝑜 < 𝑎5 

𝟒 .  𝑏0 > 𝑏4  

𝟓 .  𝑐0 > 𝑐3  

𝟔 .  𝑑0 > 𝑑2  

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 

1 0.35 0.0775 -2.05 -0.56 2.6 1 

2 1 2.6 -0.56 -2.05 0.0775 0.35 

3 −0.8775 −2.5728 −0.1575 1.854 0.8352 

4 0.8352 1.854 −0.1575 −2.5728 −0.8775 

5 0.077 0.7143 0.2693 0.5151 

6 0.5151 0.2693 0.7143 0.077 

7 −0.2593 −0.0837 −0.3472 

Satisfied 

Satisfied 

Not Satisfied 

Satisfied 



Example-5 
• Test the stability of the polynomial. 

 

 

• Develop Jury’s Table [(2n-3) rows]. 
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𝐹 𝑧 = 𝑧2 − 0.25 

Solution 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 

1 -0.25 0 1 

𝐹 1 = 1 − 0.25 = 0.75 𝐹 −1 = 1 − 0.25 = 0.75 

𝟏 .   𝐹 1 > 0 

𝟐 .  (−1)2𝐹 −1 > 0 

Satisfied 

Satisfied 



Example-5 

• Next four conditions require Jury’s table 
 
 
 
 
 
 
 
 
 
 

• Since all the conditions are satisfied, the system is stable. 

𝟑 .  𝑎𝑜 < 𝑎2 Satisfied 

Row 𝒛𝟎 𝒛𝟏 𝒛𝟐 

1 -0.25 0 1 



Home work 
• Determine the stability of a discrete data system described by 

the following CE by using Jury’s Stability criterion. 
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𝐹 𝑧 = 𝑧3 − 1.2𝑧2 − 1.375𝑧 − 0.25 


