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Sampling Theorem

 Sampling is necessary for the processing of analog data
using digital elements.

* Successful digital data processing requires that the
samples reflect the nature of the analog signal and that
analog signals be recoverable from a sequence of samples.



Sampling Theorem

* Following figure shows two distinct waveforms with
identical samples.

* Obviously, faster sampling of the two waveforms would
produce distinguishable sequences.



Sampling Theorem

 Thus, it is obvious that sufficiently fast sampling is a
prerequisite for successful digital data processing.

* The sampling theorem gives a lower bound on the
sampling rate necessary for a given band-limited signal
(i.e., a signal with a known finite bandwidth)



Sampling Theorem

The band limited signal with

T
f(t)>F(w), F(jw) # 0, —Wy < W < Wy,
, F(jw) =0, Elsewhere

can be reconstructed from the discrete-time waveform

fr@©= ) f@O8(—KT)

k=—o0
if and only if the sampling angular frequency w, = 2 /T
satisfies the condition

Wg > 20y,



Selection of Sampling Frequency

A given signal often has a finite “effective bandwidth” beyond
which its spectral components are negligible.

This allows us to treat physical signals as band limited and
choose a suitable sampling rate for them based on the
sampling theorem.

In practice, the sampling rate chosen is often larger than the
lower bound specified in the sampling theorem.

A rule of thumb is to choose wq as

W = Kwyy,, 5<k<10



Selection of Sampling Frequency

W = kw,y,, 5<k<10

* The choice of k depends on the application.

* In many applications, the upper bound on the sampling

frequency is well below the capabilities of state-of-the-art
hardware.

* A closed-loop control system cannot have a sampling period
below the minimum time required for the output
measurement; that is, the sampling frequency is upper-
bounded by the sensor delay.



Selection of Sampling Frequency

* For example, oxygen sensors used in automotive air/fuel
ratio control have a sensor delay of about 20 ms, which
corresponds to a sampling frequency upper bound of 50
Hz.

 Another limitation is the computational time needed to
update the control.

* This is becoming less restrictive with the availability of
faster microprocessors but must be considered in
sampling rate selection.



Selection of Sampling Frequency

* For a linear system, the output of the system has a spectrum
given by the product of the frequency response and input
spectrum.

* Because the input is not known a priori, we must base our
choice of sampling frequency on the frequency response.



Selection of Sampling Frequency (1%t Order Systems)

* The frequency response of first order system is

K
H(j =
(o) jw/wy, +1

* where K is the DC gain and w, is the system bandwidth.
* Time constant and 3db bandwidth relationship
Wp =

1
T

f3db = _ZnT



Selection of Sampling Frequency (1%t Order Systems)

G(s) =

3s+1

Magnitude (dB)

Phase (deg)

-10

-15

-20

-25

-45

-90

Bode Diagram

19 9 9 L & L © Lt g
~

<

wWwp =

1
T

Frequency (rad/s): 0.33
Magnitude (dB): -2.97

N

= 0.33 rad/sec .

AN’

7wy, = 2.31rad/sec

>H

System: sys
Frequency (rad/s): 2.31
Magnitude (dB): -16.9

rrF r r P r r rrrF

10

10 10

Frequency (rad/s)

10

12



Selection of Sampling Frequency (1%t Order Systems)

 The frequency response amplitude drops below the DC level
by a factor of about 10 at the frequency 7w,,.

* |If we consider w,;, = 7wy, the sampling frequency is chosen
as

ws = 7Tkwy, 5<k<10
* OR

ws = kwy, 35<5k<70



Selection of Sampling Frequency (2 Order Systems)
* The frequency response of second order system is

K

H (i) =
U = ol o 1 (@] @)’

* The bandwidth of the system is approximated by the damped
natural frequency
Wy = W, Vl_é/z

* Using a frequency of 7w, as the maximum significant
frequency, we choose the sampling frequency as

ws = kwyg, 35<5k<70



Example-1

e Given a first-order system of bandwidth 10 rad/s, select a
suitable sampling frequency and find the corresponding
sampling period.

Solution

wy = 10 rad/sec
* We know

ws = kwy, 355k <70

* Choosing k=60

ws = 60wy, = 600 rad/sec



Example-1

* Corresponding sapling period is calculated as

~2m 2% 3141
w600

T = 0.01 sec



Home work

* Fort he following first-order system select a suitable sampling
frequency and find the corresponding sampling period.

10
s+ 1

G(s) =



Home work

e Consider the following second order transfer function. Select
a suitable sampling period for the system.

16
G(s) =
(5) s*+8s5+16




Example-4

* A closed-loop control system must be designed for a damping
ratio of about 0.7, and an undamped natural frequency of 10

rad/s. Select a suitable sampling period for the system if the
system has a sensor delay of 0.02 sec.

Solution

* Let the sampling frequency be

Wq = 35a)d

w, > 35w, +\J1-¢7

. >35x1041-0.72



Example-4
@, >249.95 rad/s
 The corresponding sampling period is

2 X 3.141
T <
249.95

T < 0.025 sec
T < 25ms

* A suitable choice is T = 20 ms because this is equal to the
sensor delay.



Home Work

* A closed-loop control system must be designed for a damping
ratio of about 0.7, and an undamped natural frequency of 10

rad/s. Select a suitable sampling period for the system if the
system has a sensor delay of 0.03 sec.



Home Work

* The following open-loop systems are to be
digitally feedback-controlled. Select a suitable
sampling period for each if the closed-loop
system is to be designed for the given
specifications.

1. G(s) = i , sensor delay=0.025s

1
s24+7s+25

2. G(s) =

,sensor delay=0.03s



Digital Control Systems

A common configuration of digital control system is shown in
following figure.
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ADC Model

e Assume that

— ADC outputs are exactly equal in magnitude to their inputs
(i.e., quantization errors are negligible)

— The ADC yields a digital output instantaneously
— Sampling is perfectly uniform (i.e., occur at a fixed rate)

* Then the ADC can be modeled as an ideal sampler with

sampling period T. .

A

A u(t) A u*(t)




Sampling Process

T
u(t) >< u*(t)
u’(t)
U(t) A 6T(t) .
X - i leee
g [ [ [ [ : SERRE
0 g 0 !
Modulation modulating modulated
signal pulse(carrier) wave

u (t) = iu(t)&(t —kT)



DAC Model

* Assume that
— DAC outputs are exactly equal in magnitude to their inputs.
— The DAC yields an analog output instantaneously.
— DAC outputs are constant over each sampling period.

u(k)
u(t)

un(t)

* Then the input-output relationship of the DAC is given by

ZOH
u(k) — uy(t) = ulk), kT <t<(k+ 1T



DAC Model

e Unit impulse response of ZOH

|

kT 7ero-Order kT (k+1)T
> >
Hold

Positive Step

Negative Step

* The transfer function can then be obtained by Laplace
transformation of the impulse response.



DAC Model

 As shown in figure the impulse response is a unit pulse of
width T.

kT (kt1)T

A pulse can be represented as a positive step at time zero
followed by a negative step at time T.

Positive Step

Negative Step

* Using the Laplace transform of a unit step and the time delay
theorem for Laplace transforms,

—Ts

Liu()} = % H{—ut-T)}=- ©

S



DAC Model

Liu()} = - L{—u(t—T)} = —

S S

 Thus, the transfer function of the ZOH is

1—eTIs

Gzou(s) = S



DAC, Analog Subsystem, and ADC Combination
Transfer Function

 The cascade of a DAC, analog subsystem, and ADC is shown in
following figure.

1 :

kT | Zero-Order kT (k+DT Analog _. ,
Hold Subsystem Y

Positive step at kT

Negative step at (k+1)T

e Because both the input and the output of the cascade are
sampled, it is possible to obtain its z-domain transfer function
in terms of the transfer functions of the individual subsystems.



DAC, Analog Subsystem, and ADC Combination
Transfer Function

e Using the DAC model, and assuming that the transfer function
of the analog subsystem is G(s), the transfer function of the
DAC and analog subsystem cascade is

Zero-Order kT (DT Analog
Hold Subsystem

Gza(S) = Gzou(S)G(S)

— e—TS
Gza(s) = S G(s)




DAC, Analog Subsystem, and ADC Combination
Transfer Function

1—e7Ts
Gza(s) = S G(s)

* The corresponding impulse response is
G(s) —G(s)e !5
S

Gza(s) =

G(s) G(s)e™Ts
s s

Gza(s) =

* The impulse response is the analog system step response

minus a second step response delayed by one sampling
period.



DAC, Analog Subsystem, and ADC Combination
Transfer Function
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DAC, Analog Subsystem, and ADC Combination
Transfer Function

G(s) G(s)e™ s
s s

Gza(s) =

* Inverse Laplace yields

gza(t) = gs(t) — gs(t —T)

« Where g.(t) = L~* {@}

S



DAC, Analog Subsystem, and ADC Combination
Transfer Function

9za(t) = gs(t) — gs(t—T)
* The analog response is sampled to give the sampled impulse
response

1 :

kT Zero-Order kT (kDT Analog ) "
Hold Subsystem X

9za(kT) = gs(kT) — gs(kT —T)

* By z-transforming, we can obtain the z-transfer function of the
DAC (zero-order hold), analog subsystem, and ADC (ideal
sampler) cascade.



DAC, Analog Subsystem, and ADC Combination
Transfer Function

9za(kT) = gs(kT) — gs(kT —T)

Z-Transform is given as
Gzas(2) = (1 —z7HZ{gs" (1)}
G
Gzas(z) = (1 — _1):2:[ _1{ S )} ]

The * in above equation is to emphasize that sampling of a
time function is necessary before z-transformation.

Having made this point, the equation can be rewritten more
concisely as (s)

Gzas(z) = (1 — _1)«2[



Example-3

* Find G,,((z) for the cruise control system for the vehicle shown
in figure, where u is the input force, v is the velocity of the car,
and b is the viscous friction coefficient.

bv il

Solution

* The transfer function of system is given as

V) 1
Gls) = U(s) Ms+b
* Re-writing transfer function in standard form
K K/t
G(s) =

Ts+1zs+1/r



Example-3

K/t
s+1/t
Where K = 1/bandt = M/b

Now we know

G(s) =

G (S)]

Gzas(z) = (1 — Z_l)zl S

Therefore, G(s) K/t
s s(s+1/7)

The corresponding partial fraction expansion is

G(s) (K\|z T
2= ()




Example-3

K
e !

* Using the z-transform table, the desired z-domain transfer
function is

G <Z>—<1_Z—1>z[1<{1_ : }]
ZASAES T s s+1/t

Gzas(z) = 21 [K{ : - }]

Z z—1 z—e T/t

-1
Gzas(z) = [K {1 — i e‘T/T}]




Example-3

z—1
Gzas(z) = [K{1 - ——_
T
—e 1t—2z+4+1
Gzas(z) = K ——_
T
1—e 7
Gzas(z) =K




Example-4

* Find G,,(z) for the vehicle position control system, where u is
the input force, y is the position of the car, and b is the viscous
friction coefficient.

by y
rp’__J_ f h «—] M e

— | 1 7N 7
| A A

Solution
* The transfer function of system is given as

Y(s) 1
U(s) s(Ms+Db)
* Re-writing transfer function in standard form

K/t

G(s) =

D
~
W
—
|l
|

) s(s +%)



Example-4

Where K = 1/bandt = M/b
Now we know

G
Gzas(z) = (1 — Z_l)zl S

Therefore, G(s) K/t
s s2(s+1/7)

The corresponding partial fraction expansion is

G(S) T
“E it




Example-4

e The desired z-domain transfer function can be obtained as

1 = T
Gras(z) =1 —z"YHZK [— ——+

s?2 s s+1/t

C _Z—lK Z TZ TZ
zas(2) = Z (Z—1)2_2—1+Z—6‘T/T

- T(Z—l)]

G =K
zas(2) L 1 7

(1 — 7+ Te_%)z + [T — e%(r + 1)]
(z—1)(z—eT/7)

Gzas(z) = K




Home work

* Find G,,4(2) for the series R-L circuit shown in Figure with
the inductor voltage as output.
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