
Digital Control Systems (DCS) 

Lecture-2 
Modeling of Digital Control Systems 
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Lecture Outline 

• Sampling Theorem 

• ADC Model 

• DAC Model 

• Combined Models 
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Sampling Theorem 

• Sampling is necessary for the processing of analog data 
using digital elements. 

 

• Successful digital data processing requires that the 
samples reflect the nature of the analog signal and that 
analog signals be recoverable from a sequence of samples. 
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Sampling Theorem 

• Following figure shows two distinct waveforms with 
identical samples.  

 

 

 

 

 

 

• Obviously, faster sampling of the two waveforms would 
produce distinguishable sequences.  
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Sampling Theorem 

• Thus, it is obvious that sufficiently fast sampling is a 
prerequisite for successful digital data processing.  

 

• The sampling theorem gives a lower bound on the 
sampling rate necessary for a given band-limited signal 
(i.e., a signal with a known finite bandwidth) 
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Sampling Theorem 

• The band limited signal with 

 

 

 

• can be reconstructed from the discrete-time waveform 

 

 

• if and only if the sampling angular frequency 𝜔𝑠 = 2𝜋 𝑇  
satisfies the condition 
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𝑓 𝑡
F
 𝐹 𝑗𝜔 , 𝐹 𝑗𝜔 ≠ 0, −𝜔𝑚 ≤ 𝜔 ≤ 𝜔𝑚 

     ,       𝐹 𝑗𝜔 = 0,        𝐸𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒             

𝑓∗ 𝑡 =  𝑓 𝑡 𝛿(𝑡 − 𝑘𝑇)

∞

𝑘=−∞

 

𝜔𝑠 > 2𝜔𝑚 



Selection of Sampling Frequency 

• A given signal often has a finite “effective bandwidth” beyond 
which its spectral components are negligible. 

 

• This allows us to treat physical signals as band limited and 
choose a suitable sampling rate for them based on the 
sampling theorem. 

 

• In practice, the sampling rate chosen is often larger than the 
lower bound specified in the sampling theorem. 

 

• A rule of thumb is to choose 𝜔𝑠 as 
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𝜔𝑠 = 𝑘𝜔𝑚, 5 ≤ 𝑘 ≤ 10 



Selection of Sampling Frequency 

 

• The choice of 𝑘 depends on the application. 

 

• In many applications, the upper bound on the sampling 
frequency is well below the capabilities of state-of-the-art 
hardware.  

 

• A closed-loop control system cannot have a sampling period 
below the minimum time required for the output 
measurement; that is, the sampling frequency is upper-
bounded by the sensor delay. 

8 

𝜔𝑠 = 𝑘𝜔𝑚, 5 ≤ 𝑘 ≤ 10 



Selection of Sampling Frequency 

• For example, oxygen sensors used in automotive air/fuel 
ratio control have a sensor delay of about 20 ms, which 
corresponds to a sampling frequency upper bound of 50 
Hz.  

• Another limitation is the computational time needed to 
update the control.  

 

• This is becoming less restrictive with the availability of 
faster microprocessors but must be considered in 
sampling rate selection. 
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Selection of Sampling Frequency 

• For a linear system, the output of the system has a spectrum 
given by the product of the frequency response and input 
spectrum.  

 

• Because the input is not known a priori, we must base our 
choice of sampling frequency on the frequency response. 
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Selection of Sampling Frequency (1st Order Systems) 

• The frequency response of first order system is 

 

 

• where K is the DC gain and 𝜔𝑏 is the system bandwidth. 

 

• Time constant and 3db bandwidth relationship 
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𝐻 𝑗𝜔 =
𝐾

𝑗𝜔 𝜔𝑏 + 1 
 

𝜔𝑏 =
1

𝑇
 

𝑓3𝑑𝑏 =
1

2𝜋𝑇
 



Selection of Sampling Frequency (1st Order Systems) 
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Selection of Sampling Frequency (1st Order Systems) 

• The frequency response amplitude drops below the DC level 
by a factor of about 10 at the frequency 7𝜔𝑏.  

 

• If we consider 𝜔𝑚 = 7𝜔𝑏, the sampling frequency is chosen 
as 

 

 

• OR 
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𝜔𝑠 = 7𝑘𝜔𝑏 , 5 ≤ 𝑘 ≤ 10 

𝜔𝑠 = 𝑘𝜔𝑏 , 35 ≤ 𝑘 ≤ 70 



Selection of Sampling Frequency (2nd Order Systems) 

• The frequency response of second order system is 

 

 

 

• The bandwidth of the system is approximated by the damped 
natural frequency 

 

• Using a frequency of 7𝜔𝑑  as the maximum significant 
frequency, we choose the sampling frequency as 
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𝜔𝑠 = 𝑘𝜔𝑑 , 35 ≤ 𝑘 ≤ 70 
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Example-1 

• Given a first-order system of bandwidth 10 rad/s, select a 
suitable sampling frequency and find the corresponding 
sampling period. 

 

 

 

• We know 

 

 

• Choosing k=60 
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Solution 

𝜔𝑏 = 10 𝑟𝑎𝑑/𝑠𝑒𝑐 

𝜔𝑠 = 𝑘𝜔𝑏, 35 ≤ 𝑘 ≤ 70 

𝜔𝑠 = 60𝜔𝑏 = 600 𝑟𝑎𝑑/𝑠𝑒𝑐 



Example-1 

• Corresponding sapling period is calculated as  

 

 

16 

𝑇 =
2𝜋

𝜔𝑠
=
2 × 3141

600
= 0.01 𝑠𝑒𝑐 



Home work 

• Fort he following first-order system select a suitable sampling 
frequency and find the corresponding sampling period. 
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𝐺 𝑠 =
10

𝑠 + 1
 



Home work 
• Consider the following second order transfer function. Select 

a suitable sampling period for the system.  
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Example-4 
• A closed-loop control system must be designed for a damping 

ratio of about 0.7, and an undamped natural frequency of 10 
rad/s. Select a suitable sampling period for the system if the 
system has a sensor delay of 0.02 sec.  

 

 

• Let the sampling frequency be 
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Solution 

𝜔𝑠 ≥ 35𝜔𝑑 

2135   ns

27.011035 s



Example-4 
 

• The corresponding sampling period is 

 

 

 

 

 

• A suitable choice is T = 20 ms because this is equal to the 
sensor delay. 

20 

srads /   95.249

𝑇 ≤
2 × 3.141

249.95
 

𝑇 ≤ 0.025 𝑠𝑒𝑐 
𝑇 ≤ 25 𝑚𝑠 



Home Work 
• A closed-loop control system must be designed for a damping 

ratio of about 0.7, and an undamped natural frequency of 10 
rad/s. Select a suitable sampling period for the system if the 
system has a sensor delay of 0.03 sec.  
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Home Work 

• The following open-loop systems are to be 
digitally feedback-controlled. Select a suitable 
sampling period for each if the closed-loop 
system is to be designed for the given 
specifications. 

 

1. 𝐺 𝑠 =
1

𝑠+3
          ,  sensor delay=0.025s 

2. 𝐺 𝑠 =
1

𝑠2+7𝑠+25
 ,sensor delay=0.03s 
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Digital Control Systems 
• A common configuration of digital control system is shown in 

following figure.   
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ADC Model 
• Assume that 

– ADC outputs are exactly equal in magnitude to their inputs 
(i.e., quantization errors are negligible) 

– The ADC yields a digital output instantaneously 

– Sampling is perfectly uniform (i.e., occur at a fixed rate) 

 

• Then the ADC can be modeled as an ideal sampler with 
sampling period T. 
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DAC Model 
• Assume that 

– DAC outputs are exactly equal in magnitude to their inputs. 

– The DAC yields an analog output instantaneously. 

– DAC outputs are constant over each sampling period. 

 

 

 

 

 

• Then the input-output relationship of the DAC is given by 
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𝑢 𝑘

𝑍𝑂𝐻
𝑢ℎ 𝑡 = 𝑢 𝑘 , 𝑘𝑇 ≤ 𝑡 ≤ 𝑘 + 1 𝑇 

u(k) 
u(t) 

uh(t) 



DAC Model 
• Unit impulse response of ZOH 

 

 

 

 

 

 

 

• The transfer function can then be obtained by Laplace 
transformation of the impulse response. 
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DAC Model 
• As shown in figure the impulse response is a unit pulse of 

width T.  

 

 

• A pulse can be represented as a positive step at time zero 
followed by a negative step at time T. 

 

 

 

• Using the Laplace transform of a unit step and the time delay 
theorem for Laplace transforms, 

28 L 𝑢(𝑡) =
1

𝑠
 L −𝑢(𝑡 − 𝑇) = −

𝑒−𝑇𝑠

𝑠
 



DAC Model 
 

 

• Thus, the transfer function of the ZOH is 
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L 𝑢(𝑡) =
1

𝑠
 L −𝑢(𝑡 − 𝑇) = −

𝑒−𝑇𝑠

𝑠
 

𝐺𝑍𝑂𝐻(𝑠) =
1 − 𝑒−𝑇𝑠

𝑠
 



DAC, Analog Subsystem, and ADC Combination 
Transfer Function 

• The cascade of a DAC, analog subsystem, and ADC is shown in 
following figure.  

 

 

 

 

 
• Because both the input and the output of the cascade are 

sampled, it is possible to obtain its z-domain transfer function 
in terms of the transfer functions of the individual subsystems. 
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DAC, Analog Subsystem, and ADC Combination 
Transfer Function 

• Using the DAC model, and assuming that the transfer function 
of the analog subsystem is G(s), the transfer function of the 
DAC and analog subsystem cascade is 
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𝐺𝑍𝐴 𝑠 = 𝐺𝑍𝑂𝐻(𝑠)𝐺(𝑠) 

𝐺𝑍𝐴 𝑠 =
1 − 𝑒−𝑇𝑠

𝑠
𝐺(𝑠) 



DAC, Analog Subsystem, and ADC Combination 
Transfer Function 

 
• The corresponding impulse response is 

 

 

 

 

 

• The impulse response is the analog system step response 
minus a second step response delayed by one sampling 
period. 
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𝐺𝑍𝐴 𝑠 =
1 − 𝑒−𝑇𝑠

𝑠
𝐺(𝑠) 

𝐺𝑍𝐴 𝑠 =
𝐺(𝑠) − 𝐺(𝑠) 𝑒−𝑇𝑠

𝑠
 

𝐺𝑍𝐴 𝑠 =
𝐺(𝑠)

𝑠
−
𝐺(𝑠) 𝑒−𝑇𝑠

𝑠
 



DAC, Analog Subsystem, and ADC Combination 
Transfer Function 
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𝐺𝑍𝐴 𝑠 =
𝐺(𝑠)

𝑠
−
𝐺(𝑠) 𝑒−𝑇𝑠

𝑠
 



DAC, Analog Subsystem, and ADC Combination 
Transfer Function 

 

 

• Inverse Laplace yields 

 

 

• Where 𝑔𝑠 𝑡 = L−1 𝐺(𝑠)

𝑠
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𝐺𝑍𝐴 𝑠 =
𝐺(𝑠)

𝑠
−
𝐺(𝑠) 𝑒−𝑇𝑠

𝑠
 

𝑔𝑍𝐴 𝑡 = 𝑔𝑠(𝑡) − 𝑔𝑠(𝑡 − 𝑇) 



DAC, Analog Subsystem, and ADC Combination 
Transfer Function 

 

• The analog response is sampled to give the sampled impulse 
response 

 

 

 

 

 

• By z-transforming, we can obtain the z-transfer function of the 
DAC (zero-order hold), analog subsystem, and ADC (ideal 
sampler) cascade. 
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𝑔𝑍𝐴 𝑡 = 𝑔𝑠(𝑡) − 𝑔𝑠(𝑡 − 𝑇) 

𝑔𝑍𝐴 𝑘𝑇 = 𝑔𝑠(𝑘𝑇) − 𝑔𝑠(𝑘𝑇 − 𝑇) 



DAC, Analog Subsystem, and ADC Combination 
Transfer Function 

 
• Z-Transform is given as 

 

 

 
 

• The * in above equation is to emphasize that sampling of a 
time function is necessary before z-transformation.  
 

• Having made this point, the equation can be rewritten more 
concisely as 
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𝑔𝑍𝐴 𝑘𝑇 = 𝑔𝑠(𝑘𝑇) − 𝑔𝑠(𝑘𝑇 − 𝑇) 

𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z 𝑔𝑠
∗(𝑡)  

𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z L−1 𝐺(𝑠)

𝑠

∗

 

𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z
𝐺(𝑠)

𝑠
 



Example-3 
• Find GZAS(z) for the cruise control system for the vehicle shown 

in figure, where u is the input force, v is the velocity of the car, 
and b is the viscous friction coefficient. 

 

 

 

 

• The transfer function of system is given as 

 

 

• Re-writing transfer function in standard form  
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Solution 

𝐺 𝑠 =
𝑉(𝑠)

𝑈(𝑠)
=

1

𝑀𝑠 + 𝑏
 

𝐺 𝑠 =
𝐾

𝜏𝑠 + 1
=

𝐾/𝜏

𝑠 + 1/𝜏
 



Example-3 

 
• Where 𝐾 = 1/𝑏 and 𝜏 = 𝑀/𝑏 

• Now we know 

 

 

• Therefore,  

 

• The corresponding partial fraction expansion is 
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𝐺 𝑠

𝑠
=

𝐾/𝜏

𝑠(𝑠 + 1/𝜏)
 

𝐺 𝑠 =
𝐾/𝜏

𝑠 + 1/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z
𝐺(𝑠)

𝑠
 

𝐺 𝑠

𝑠
=

𝐾

𝜏

𝜏

𝑠
−

𝜏

𝑠 + 1/𝜏
 



Example-3 

 
 

• Using the z-transform table, the desired z-domain transfer 
function is 
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𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z
𝐾

𝜏

𝜏

𝑠
−

𝜏

𝑠 + 1/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z 𝐾
1

𝑠
−

1

𝑠 + 1/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 =
𝑧 − 1

𝑧
𝐾

𝑧

𝑧 − 1
−

𝑧

𝑧 − 𝑒−𝑇/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = 𝐾 1 −
𝑧 − 1

𝑧 − 𝑒−𝑇/𝜏
 



Example-3 
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𝐺𝑍𝐴𝑆 𝑧 = 𝐾 1 −
𝑧 − 1

𝑧 − 𝑒−𝑇/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = 𝐾 
𝑧 − 𝑒−

𝑇
𝜏 − 𝑧 + 1

𝑧 − 𝑒−𝑇/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = 𝐾 
1 − 𝑒−

𝑇
𝜏

𝑧 − 𝑒−𝑇/𝜏
 



Example-4 
• Find GZAS(z) for the vehicle position control system, where u is 

the input force, y is the position of the car, and b is the viscous 
friction coefficient. 

 

 

 

• The transfer function of system is given as 

 

 

• Re-writing transfer function in standard form  
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Solution 

𝐺 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠(𝑀𝑠 + 𝑏)
 

𝐺 𝑠 =
𝐾

𝑠(𝜏𝑠 + 1)
=

𝐾/𝜏

𝑠(𝑠 +
1
𝜏
)
 

𝑦 𝑏𝑦  



Example-4 

 
• Where 𝐾 = 1/𝑏 and 𝜏 = 𝑀/𝑏 

• Now we know 

 

 

• Therefore,  

 

• The corresponding partial fraction expansion is 
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𝐺 𝑠

𝑠
=

𝐾/𝜏

𝑠2(𝑠 + 1/𝜏)
 

𝐺 𝑠 =
𝐾/𝜏

𝑠(𝑠 +
1
𝜏
)
 

𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z
𝐺(𝑠)

𝑠
 

𝐺 𝑠

𝑠
= 𝐾

1

𝑠2
−
𝜏

𝑠
+

𝜏

𝑠 + 1/𝜏
 



Example-4 
• The desired z-domain transfer function can be obtained as 
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𝐺𝑍𝐴𝑆 𝑧 = (1 − 𝑧−1)Z𝐾
1

𝑠2
−
𝜏

𝑠
+

𝜏

𝑠 + 1/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 =
𝑧 − 1

𝑧
 𝐾

𝑧

(𝑧 − 1)2
−

𝜏𝑧

𝑧 − 1
+

𝜏𝑧

𝑧 − 𝑒−𝑇/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = 𝐾
1

𝑧 − 1
− 𝜏 +

𝜏(𝑧 − 1)

𝑧 − 𝑒−𝑇/𝜏
 

𝐺𝑍𝐴𝑆 𝑧 = 𝐾
1 − 𝜏 + 𝜏𝑒−

𝑇
𝜏 𝑧 + 𝜏 − 𝑒−

𝑇
𝜏(𝜏 + 1)

(𝑧 − 1)(𝑧 − 𝑒−𝑇/𝜏)
 



Home work 
• Find GZAS(z) for the series R-L circuit shown in Figure with 

the inductor voltage as output. 
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