
Introduction to Digital Control Systems & Preliminary 

Concepts 

Note:The contents of this presentation are mostly taken from the book “Digital Control 

Engineering, Analysis and Design”, by M S Fadali. 
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Digital Control Systems  



Lecture Outline 

• Introduction 

• Difference Equations 

• Review of Z-Transform 

• Inverse Z-transform 

• Relations between s-plane and z-plane 

• Solution of difference Equations 
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Recommended Book 

• M.S. Fadali, “Digital Control 
Engineering – Analysis and 
Design”, Elsevier, 2009. ISBN: 13: 
978-0-12-374498-2  
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Introduction 

• Digital control offers distinct advantages over analog 
control that explain its popularity. 

• Accuracy: Digital signals are more accurate than their 
analogue counterparts.  

• Implementation Errors: Implementation errors are 
negligible.  

• Flexibility: Modification of a digital controller is possible 
without complete replacement.  

• Speed: Digital computers may yield superior 
performance at very fast speeds  

• Cost: Digital controllers are more economical than 
analogue controllers.  
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Structure of a Digital Control System 
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Examples of Digital control Systems 

Closed-Loop Drug Delivery System 
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Examples of Digital control Systems 

Aircraft Turbojet Engine 
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• A difference equation expresses the change in 
some variable as a result of a finite change in 
another variable. 

 

• A differential equation expresses the change in 
some variable as a result of an infinitesimal 
change in another variable. 

Difference Equation vs Differential Equation 
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Difference Equations 
• Difference equations arise in problems where the 

independent variable, usually time, is assumed to have 
a discrete set of possible values. 

 

 

 

• Where coefficients 𝑎𝑛−1, 𝑎𝑛−2,… and 𝑏𝑛, 𝑏𝑛−1,… are 
constant.  

• 𝑢(𝑘) is forcing function  

𝑦 𝑘 + 𝑛 + 𝑎𝑛−1𝑦 𝑘 + 𝑛 − 1 +⋯+ 𝑎1𝑦 𝑘 + 1 + 𝑎0𝑦 𝑘
= 𝑏𝑛𝑢 𝑘 + 𝑛 + 𝑏𝑛−1𝑢 𝑘 + 𝑛 − 1 +⋯+ 𝑏1𝑢 𝑘 + 1 + 𝑏0𝑢 𝑘  
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Difference Equations 
 

• Example-1: For each of the following difference equations, 
determine the  (a) order of the equation. Is the equation (b) 
linear, (c) time invariant, or (d) homogeneous? 

 

1. 𝑦 𝑘 + 2 + 0.8𝑦 𝑘 + 1 + 0.07𝑦 𝑘 = 𝑢 𝑘  

2. 𝑦 𝑘 + 4 + sin⁡(0.4𝑘)𝑦 𝑘 + 1 + 0.3𝑦 𝑘 = 0 

3. 𝑦 𝑘 + 1 = −0.1𝑦2 𝑘  
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Difference Equations 
 

• Example-1: For each of the following difference equations, 
determine the  (a) order of the equation. Is the equation (b) 
linear, (c) time invariant, or (d) homogeneous? 
 

1. 𝑦 𝑘 + 2 + 0.8𝑦 𝑘 + 1 + 0.07𝑦 𝑘 = 𝑢 𝑘  

 
Solution:    

a) The equation is second order.  
b) All terms enter the equation linearly 
c) All the terms if the equation have constant coefficients. 

Therefore the equation is therefore LTI.  
d) A forcing function appears in the equation, so it is 

nonhomogeneous. 
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Difference Equations 
 

• Example-1: For each of the following difference equations, 
determine the  (a) order of the equation. Is the equation (b) 
linear, (c) time invariant, or (d) homogeneous? 

 

2. 𝑦 𝑘 + 4 + sin⁡(0.4𝑘)𝑦 𝑘 + 1 + 0.3𝑦 𝑘 = 0 

 

Solution:    

a) The equation is 4th order.  

b) All terms are linear 

c) The second coefficient is time dependent  

d) There is no forcing function therefore the equation is 
homogeneous. 
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Difference Equations 
 

• Example-1: For each of the following difference equations, 
determine the  (a) order of the equation. Is the equation (b) 
linear, (c) time invariant, or (d) homogeneous? 

 

3. 𝑦 𝑘 + 1 = −0.1𝑦2 𝑘  

 

Solution:    

a) The equation is 1st order.  

b) Nonlinear 

c) Time invariant 

d) Homogeneous 
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Z-Transform 
• Difference equations can be solved using classical methods 

analogous to those available for differential equations.  

 

• Alternatively, z-transforms provide a convenient approach for 
solving LTI equations. 

 

• It simplifies the solution of discrete-time problems by 
converting LTI difference equations to algebraic equations 
and convolution to multiplication. 
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Z-Transform 

• Given the causal sequence {u0, u1, u2, …, uk}, its z-
transform is defined as 

 

 

 

 

 

• The variable z −1 in the above equation can be 
regarded as a time delay operator. 

𝑈 𝑧 = 𝑢𝑜 + 𝑢1𝑧
−1 + 𝑢2𝑧

−2 +…+ 𝑢𝑘 𝑧
−𝑘 

𝑈 𝑧 =  𝑢𝑘𝑧
−𝑘

∞

𝑘=0
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Z-Transform 

• Example-2: Obtain the z-transform of the 
sequence 

   ,...0 ,0 ,0 ,4 ,0 ,2 ,3 ,1 ,1
0




kku
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Relation between Laplace Transform and Z-Transform 

• Given the impulse train representation of a discrete-time signal 

 

 

 
 

 

𝑢∗ 𝑡 = 𝑢𝑜𝛿 𝑡 + 𝑢1𝛿 𝑡 − 𝑇 + 𝑢2𝛿 𝑡 − 2𝑇 +⋯+ 𝑢𝑘𝛿 𝑡 − 𝑘𝑇  

𝑢∗ 𝑡 =  𝑢𝑘𝛿 𝑡 − 𝑘𝑇

∞

𝑘=0

 

𝑢(𝑡) 

𝑢(𝑡) 

𝑈(𝑠) 𝑈∗(𝑠) 

𝑢∗(𝑡) 

𝑢∗(𝑡) 
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Relation between Laplace Transform and Z-Transform 

 

• The Laplace Transform of above equation is 

 
 

 

 

• And the Z-transform of 𝑢∗ 𝑡  is given as 

 

 

• Comparing (A) and (B) yields 

𝑢∗ 𝑡 = 𝑢𝑜𝛿 𝑡 + 𝑢1𝛿 𝑡 − 𝑇 + 𝑢2𝛿 𝑡 − 2𝑇 +⋯+ 𝑢𝑘𝛿 𝑡 − 𝑘𝑇  

𝑈∗ 𝑠 = 𝑢𝑜 + 𝑢1𝑒
−𝑠𝑇 + 𝑢2𝑒

−2𝑠𝑇 +⋯+ 𝑢𝑘𝑒
−𝑘𝑠𝑇 

𝑈∗ 𝑠 =  𝑢𝑘𝑒
−𝑘𝑠𝑇

∞

𝑘=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐴) 

𝑧 = 𝑒𝑠𝑇 
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𝑈 𝑧 =  𝑢𝑘𝑧
−𝑘

∞

𝑘=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐵) 



Conformal Mapping between s-plane to z-plane 

 

 
• Where 𝑠 = 𝜎 + 𝑗𝜔.  

 

 

• Then 𝑧 in polar coordinates is given by 

 

𝑧 = 𝑒(𝜎+𝑗𝜔)𝑇 
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𝑧 = 𝑒𝜎𝑇𝑒𝑗𝜔𝑇 

∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒𝑠𝑇 



Conformal Mapping between s-plane to z-plane 

• We will discuss following cases to map given points on s-plane 
to z-plane.  

– Case-1: Real pole in s-plane (𝑠 = 𝜎) 

– Case-2: Imaginary Pole in s-plane (𝑠 = 𝑗𝜔) 

– Case-3: Complex Poles (𝑠 = 𝜎 + 𝑗𝜔) 
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𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 



Conformal Mapping between s-plane to z-plane 

• Case-1: Real pole in s-plane (𝑠 = 𝜎) 

 

• We know 

 

 

 

• Therefore  
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒𝜎𝑇 ∠𝑧 = 0 



Conformal Mapping between s-plane to z-plane 

When  𝑠 = 0 
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒0𝑇 = 1 

∠𝑧 = 0𝑇 = 0 

𝑠 = 0 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

1 

Case-1: Real pole in s-plane (𝑠 = 𝜎) 



Conformal Mapping between s-plane to z-plane 

When  𝑠 = −∞ 
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒−∞𝑇 = 0 
∠𝑧 = 0 

−∞ 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

0 

Case-1: Real pole in s-plane (𝑠 = 𝜎) 



Conformal Mapping between s-plane to z-plane 

Consider  𝑠 = −𝑎 
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒−𝑎𝑇 
∠𝑧 = 0 

−𝑎 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

1 

Case-1: Real pole in s-plane (𝑠 = 𝜎) 

0 



Conformal Mapping between s-plane to z-plane 

• Case-2: Imaginary pole in s-plane (𝑠 = ±𝑗𝜔) 

 

• We know 

 

 

 

• Therefore  
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 1 ∠𝑧 = ±𝜔𝑇 



Conformal Mapping between s-plane to z-plane 

Consider  𝑠 = 𝑗𝜔 
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒0𝑇 = 1 

∠𝑧 = 𝜔𝑇 

𝑠 = 𝑗𝜔 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

1 

−1 

−1 

1 

𝜔𝑇 

Case-2: Imaginary pole in s-plane (𝑠 = ±𝑗𝜔) 



Conformal Mapping between s-plane to z-plane 

When  𝑠 = −𝑗𝜔 
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒0𝑇 = 1 

∠𝑧 = −𝜔𝑇 

𝑠 = −𝑗𝜔 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

1 

−1 

−1 

1 

−𝜔𝑇 

Case-2: Imaginary pole in s-plane (𝑠 = ±𝑗𝜔) 



Conformal Mapping between s-plane to z-plane 

When  𝑠 = ±𝑗
𝜋

𝑇
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒0𝑇 = 1 

∠𝑧 = ±𝜋 

−𝑗
𝜋

𝑇
 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

1 

−1 

−1 

1 

𝜋 

𝑗
𝜋

𝑇
 

Case-2: Imaginary pole in s-plane (𝑠 = ±𝑗𝜔) 



Conformal Mapping between s-plane to z-plane 

• Anything in the Alias/Overlay region in the S-Plane will be 
overlaid on the Z-Plane along with the contents of the strip 

between ±𝑗
𝜋

𝑇
.   

29 



Conformal Mapping between s-plane to z-plane 
• In order to avoid aliasing, there must be nothing in this region, i.e. there 

must be no signals present with radian frequencies higher than w  p/T, 
or cyclic frequencies higher than f = 1/2T.  

• Stated another way, the sampling frequency must be at least twice the 
highest frequency present (Nyquist rate). 
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Conformal Mapping between s-plane to z-plane 
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∠𝑧 = 𝜔𝑇 𝑧 = 𝑒𝜎𝑇 

𝑧 = 𝑒𝜎𝑇 

∠𝑧 = ±𝜔𝑇 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 

1 

−1 

−1 

1 

Case-3: Complex pole in s-plane (𝑠 = 𝜎 ± 𝑗𝜔) 



Mapping regions of  the s-plane onto 
the z-plane 
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Mapping regions of  the s-plane onto 
the z-plane 
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Mapping regions of  the s-plane onto 
the z-plane 
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Example-3 

• Map following s-plane poles onto z-plane assume 
(T=1). Also comment on the nature of step 
response in each case.  

 
1. 𝑠 = −3 

2. 𝑠 = ±4𝑗 

3. 𝑠 = ±𝜋𝑗 

4. 𝑠 = ±2𝜋𝑗 

5. 𝑠 = −10 ± 5𝑗 
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z-Transforms of Standard Discrete-Time Signals 

• The following identities are used repeatedly to derive several 
important results. 
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 𝑎𝑘
𝑛

𝑘=0

=
1 − 𝑎𝑛+1

1 − 𝑎
, ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎 ≠ 1 

 𝑎𝑘
∞

𝑘=0

=
1

1 − 𝑎
, ⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑎 ≠ 1 



z-Transforms of Standard Discrete-Time Signals 

• Unit Impulse 

 

 

 

 

 

• Z-transform of the signal  
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𝛿 𝑘 =  
1,
0,
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑘 = 0

𝑘 ≠ 0
 

𝛿 𝑧 = 1 



z-Transforms of Standard Discrete-Time Signals 

• Sampled Step 

 

 

• or 

 

 

• Z-transform of the signal  
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𝑢 𝑘 =  
1,
0,
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑘 ≥ 0

𝑘 < 0
 

𝑈 𝑧 = 1 + 𝑧−1 + 𝑧−2 + 𝑧−3 +⋯+ 𝑧−𝑘 =  𝑧−𝑘
𝑛

𝑘=0

 

𝑢 𝑘 = 1, 1, 1,1,…         𝑘 ≥ 0 

𝑈 𝑧 =
1

1−𝑧−1
=
𝑧

𝑧−1
                 𝑧 < 1 



z-Transforms of Standard Discrete-Time Signals 

• Sampled Ramp 

 

 

 

 

• Z-transform of the signal  
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𝑟 𝑘 =  
𝑘,
0,
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑘 ≥ 0

𝑘 < 0
 

𝑈 𝑧 =
𝑧

𝑧 − 1 2
 

𝑟 𝑘  

𝑘 
0 1 2 3 

…… 



z-Transforms of Standard Discrete-Time Signals 

• Sampled Parabolic Signal 

 

 

 

• Then 
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𝑢 𝑘 =  
𝑎𝑘 ,
0,
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑘 ≥ 0

𝑘 < 0
 

𝑈 𝑧 = 1 + 𝑎𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3 +⋯+ 𝑎𝑘𝑧−𝑘 =  (𝑎𝑧)−𝑘
𝑛

𝑘=0

 

𝑈 𝑧 =
1

1−𝑎𝑧−1
=
𝑧

𝑧−𝑎
                 𝑧 < 1 



Properties of Z-Transform 
• Linearity Property 

 

 

• Time delay Property 

 

 

• Time advance Property 

 
 

• Multiplication by exponential 
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𝒵 𝛼𝑓1 𝑘 + 𝛽𝑓2 𝑘 = 𝛼𝐹1 𝑧 + 𝛽𝐹2 𝑧  

𝒵 𝑓 𝑘 − 𝑛 = 𝑧−𝑛𝐹 𝑧  

𝒵 𝑓 𝑘 + 𝑛 = 𝑧𝑛𝐹 𝑧 − 𝑧𝑛𝑓 0 − 𝑧𝑛−1𝑓 1 −⋯− 𝑧𝑓(𝑛 − 1) 

𝒵 𝑎−𝑘𝑓 𝑘 = 𝐹 𝑎𝑧  



Exercise 

• Find the z-transform of following causal sequences. 
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1. 𝑓 𝑘 = 2 × 1 𝑘 + 4 × 𝛿 𝑘 , ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 

2. 𝑓 𝑘 =  
4, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 2,3,…
0, ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 

3. 𝑓 𝑘 = *4, 8,16, 24,… +, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 

4. 𝑓 𝑘 = 𝑒−𝑎𝑘𝑇 , ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 



Exercise 

• Find the z-transform of following causal sequences. 
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1. ⁡⁡𝑓 𝑘 = 2 × 1 𝑘 + 4 × 𝛿 𝑘 , ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 

Solution: Using Linearity Property 

𝐹 𝑧 = 𝒵*2 × 1 𝑘 + 4 × 𝛿 𝑘 + 

𝐹 𝑧 = 2 × 𝒵 1 𝑘 + 4 × 𝒵*𝛿 𝑘 + 

𝐹 𝑧 = 2 ×
𝑧

𝑧 − 1
+ 4 

𝐹 𝑧 =
6𝑧 − 4

𝑧 − 1
 



Exercise 

• Find the z-transform of following causal sequences. 
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2. ⁡⁡⁡𝑓 𝑘 =  
4, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 2,3,…
0, ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 

Solution: The given sequence is a sampled step starting at k-2 rather than 
k=0 (i.e. it is delayed by two sampling periods). Using the delay property, 
we have 

𝐹 𝑧 = 𝒵*4 × 1 𝑘 − 2 + 

𝐹 𝑧 = 4𝑧−2⁡𝒵*1 𝑘 − 2 + 

𝐹 𝑧 = 4𝑧−2
𝑧

𝑧 − 1
=
4

𝑧(𝑧 − 1)
 



Exercise 

• Solution: The sequence can be written as 

 

 

• where g(k) is the exponential time function 

 

 

• Using the time advance property, we write the transform 

45 

3. 𝑓 𝑘 = *4, 8,16, 24,… +, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 

𝑓 𝑘 = 2𝑘+2 = 𝑔 𝑘 + 2 , ⁡𝑘 = 0, 1, 2, … 

𝑔 𝑘 = 2𝑘, ⁡𝑘 = 0, 1, 2,… 

𝐹 𝑧 = 𝑧2𝐺 𝑧 − 𝑧2𝑔 0 − 𝑧𝑔 1  

𝐹 𝑧 = 𝑧2
𝑧

𝑧 − 2
− 𝑧2 − 2𝑧 =

4𝑧

𝑧 − 2
 



Exercise 

• observe that f (k) can be rewritten as 

 

 

• Then apply the multiplication by exponential 
property to obtain 
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4. 𝑓 𝑘 = 𝑒−𝑎𝑘𝑇 , ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 

𝑓 𝑘 = (𝑒𝑎𝑇)−𝑘× 1, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,1,2,… 

𝒵* 𝑒𝑎𝑇 −𝑘 × 𝑓(𝑘)+ =
𝑒𝑎𝑇𝑧

𝑒𝑎𝑇𝑧 − 1
 

𝐹(𝑧) =
𝑧

𝑧 − 𝑒−𝑎𝑇
 



Inverse Z-transform 

1. Long Division: We first use long division to 
obtain as many terms as desired of the z-
transform expansion. 

 

2. Partial Fraction: This method is almost identical 
to that used in inverting Laplace transforms. 
However, because most z-functions have the 
term z in their numerator, it is often convenient 
to expand F(z)/z rather than F(z). 
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Inverse Z-transform 

• Example-4: Obtain the inverse z-transform of 
the function 

 

• Solution 

• 1. Long Division 

𝐹 𝑧 =
𝑧 + 1

𝑧2 + 0.2𝑧 + 0.1
 

48 



Inverse Z-transform 

• 1. Long Division 

 

 

 

 

• Thus 

 

• Inverse z-transform 

𝐹 𝑧 =
𝑧 + 1

𝑧2 + 0.2𝑧 + 0.1
 

𝐹 𝑧 = 0 + 𝑧−1 + 0.8𝑧−2 − 0.26𝑧−3 +⋯ 

𝑓 𝑘 = 0, 1, 0.8, −0.26, …   
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Inverse Z-transform 

• Example-5: Obtain the inverse z-transform of 
the function 

 

• Solution 

• 2. Partial Fractions 

𝐹 𝑧 =
𝑧 + 1

𝑧2 + 0.3𝑧 + 0.02
 

𝐹 𝑧

𝑧
=

𝑧 + 1

𝑧(𝑧2 + 0.3𝑧 + 0.02)
 

𝐹 𝑧

𝑧
=

𝑧 + 1

𝑧(𝑧2 + 0.1𝑧 + 0.2𝑧 + 0.02)
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Inverse Z-transform 
𝐹 𝑧

𝑧
=

𝑧 + 1

𝑧(𝑧 + 0.1)(𝑧 + 0.2)
 

𝐹 𝑧
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Inverse Z-transform 

𝐹 𝑧

𝑧
=
50

𝑧
−
90

𝑧 + 0.1
+
40

𝑧 + 0.2
 

𝐹 𝑧 = 50 −
90𝑧

𝑧 + 0.1
+
40𝑧

𝑧 + 0.2
 

• Taking inverse z-transform (using z-transform table) 

𝑓 𝑘 = 50𝛿 𝑘 − 90 −0.1 𝑘 + 40 −0.2 𝑘 
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Home Work 

• For each of the following equations, determine the order 
of the equation and then test it for (i) linearity, (ii) time 
invariance, (iii) homogeneity. 
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a) ⁡𝑦 𝑘 + 2 = 𝑦 𝑘 + 1 𝑦 𝑘 + 𝑢(𝑘) 

b)⁡𝑦 𝑘 + 3 + 2𝑦 𝑘 = 0 

c) ⁡𝑦 𝑘 + 4 + 𝑦 𝑘 − 1 = 𝑢(𝑘) 

d)⁡𝑦 𝑘 + 5 = 𝑦 𝑘 + 4 + 𝑢 𝑘 + 1 − 𝑢(𝑘) 

e) ⁡𝑦 𝑘 + 2 = 𝑦 𝑘 𝑢(𝑘) 



Home Work 

• Find the z-transforms of the following sequences 
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a) ⁡*0, 1, 2, 4, 0, 0, … + 

b)⁡*0, 0, 0, 1, 1, 1, 0, 0, 0, … + 

c) ⁡*0, 2−0.5, 1, 2−0.5, 0, 0, 0, … + 



Home Work 

• Find the inverse transforms of the following functions 
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e) 𝐹 𝑧 =
𝑧

(𝑧+0.1)(𝑧+0.2)(𝑧+0.3)
 

a) ⁡𝐹 𝑧 = 1 + 3𝑧−1 + 4𝑧−2 

b)⁡𝐹 𝑧 = 5𝑧−1 + 4𝑧−5 

c) ⁡𝐹 𝑧 =
𝑧

𝑧2+0.3𝑧+0.02
 

d)𝐹 𝑧 =
𝑧−0.1

𝑧2+0.04𝑧+0.25
 


