
Programming language
A programming language is a formal language,
which comprises a set of instructions that produce
various kinds of output. Programming languages
are used in computer programming to implement
algorithms.

Most programming languages consist of
instructions for computers. There are
programmable machines that use a set of specific
instructions, rather than general programming
languages. Early ones preceded the invention of
the digital computer, the first probably being the
automatic flute player described in the 9th
century by the brothers Musa in Baghdad, during
the Islamic Golden Age.[1] Since the early 1800s,
programs have been used to direct the behavior of
machines such as Jacquard looms, music boxes
and player pianos.[2] The programs for these
machines (such as a player piano's scrolls) did not
produce different behavior in response to
different inputs or conditions.

Thousands of different programming languages have been created, and more are being created every year. Many programming
languages are written in an imperative form (i.e., as a sequence of operations to perform) while other languages use the declarative
form (i.e. the desired result is specified, not how to achieve it).

The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning). Some
languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while
other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the
basic language defined by a standard and extensions taken from the dominant implementation being common.
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A programming language is a notation for writing programs, which are specifications of a computation or algorithm.[3] Some authors
restrict the term "programming language" to those languages that can express all possible algorithms.[3][4] Traits often considered
important for what constitutes a programming language include:

Function and target
A computer programming language is a language used to write computer programs, which
involves a computer performing some kind of computation[5] or algorithm and possibly
control external devices such as printers, disk drives, robots,[6] and so on. For example,
PostScript programs are frequently created by another program to control a computer printer
or display. More generally, a programming language may describe computation on some,
possibly abstract, machine. It is generally accepted that a complete specification for a
programming language includes a description, possibly idealized, of a machine or processor
for that language.[7] In most practical contexts, a programming language involves a
computer; consequently, programming languages are usually defined and studied this way.[8]

Programming languages differ from natural languages in that natural languages are only
used for interaction between people, while programming languages also allow humans to
communicate instructions to machines.

Abstractions
Programming languages usually contain abstractions for defining and manipulating data
structures or controlling the flow of execution. The practical necessity that a programming
language support adequate abstractions is expressed by the abstraction principle.[9] This
principle is sometimes formulated as a recommendation to the programmer to make proper
use of such abstractions.[10]

Expressive power
The theory of computation classifies languages by the computations they are capable of
expressing. All Turing complete languages can implement the same set of algorithms.
ANSI/ISO SQL-92 and Charity are examples of languages that are not Turing complete, yet
often called programming languages.[11][12]

Markup languages like XML, HTML, or troff, which define structured data, are not usually considered programming
languages.[13][14][15] Programming languages may, however, share the syntax with markup languages if a computational semantics is
defined. XSLT, for example, is a Turing complete language entirely using XML syntax.[16][17][18] Moreover, LaTeX, which is mostly
used for structuring documents, also contains a Turing complete subset.[19][20]
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The term computer language is sometimes used interchangeably with programming language.[21] However, the usage of both terms
varies among authors, including the exact scope of each. One usage describes programming languages as a subset of computer
languages.[22] Similarly, languages used in computing that have a different goal than expressing computer programs are generically
designated computer languages. For instance, markup languages are sometimes referred to as computer languages to emphasize that
they are not meant to be used for programming.[23]

Another usage regards programming languages as theoretical constructs for programming abstract machines, and computer languages
as the subset thereof that runs on physical computers, which have finite hardware resources.[24] John C. Reynolds emphasizes that
formal specification languages are just as much programming languages as are the languages intended for execution. He also argues
that textual and even graphical input formats that affect the behavior of a computer are programming languages, despite the fact they
are commonly not Turing-complete, and remarks that ignorance of programming language concepts is the reason for many flaws in
input formats.[25]

Very early computers, such as Colossus, were programmed without the help of a stored program, by modifying their circuitry or
setting banks of physical controls.

Slightly later, programs could be written in machine language, where the programmer writes each instruction in a numeric form the
hardware can execute directly. For example, the instruction to add the value in two memory location might consist of 3 numbers: an
"opcode" that selects the "add" operation, and two memory locations. The programs, in decimal or binary form, were read in from
punched cards, paper tape, magnetic tape or toggled in on switches on the front panel of the computer. Machine languages were later
termed first-generation programming languages (1GL).

The next step was development of so-called second-generation programming languages (2GL) or assembly languages, which were
still closely tied to the instruction set architecture of the specific computer. These served to make the program much more human-
readable and relieved the programmer of tedious and error-prone address calculations.

The first high-level programming languages, or third-generation programming languages (3GL), were written in the 1950s. An early
high-level programming language to be designed for a computer was Plankalkül, developed for the German Z3 by Konrad Zuse
between 1943 and 1945. However, it was not implemented until 1998 and 2000.[26]

John Mauchly's Short Code, proposed in 1949, was one of the first high-level languages ever developed for an electronic
computer.[27] Unlike machine code, Short Code statements represented mathematical expressions in understandable form. However,
the program had to be translated into machine code every time it ran, making the process much slower than running the equivalent
machine code.

At the University of Manchester, Alick Glennie developed Autocode in the early 1950s. As a programming language, it used a
compiler to automatically convert the language into machine code. The first code and compiler was developed in 1952 for the Mark 1
computer at the University of Manchester and is considered to be the first compiled high-level programming language.[28][29]

The second autocode was developed for the Mark 1 by R. A. Brooker in 1954 and was called the "Mark 1 Autocode". Brooker also
developed an autocode for the Ferranti Mercury in the 1950s in conjunction with the University of Manchester. The version for the
EDSAC 2 was devised by D. F. Hartley of University of Cambridge Mathematical Laboratory in 1961. Known as EDSAC 2
Autocode, it was a straight development from Mercury Autocode adapted for local circumstances and was noted for its object code
optimisation and source-language diagnostics which were advanced for the time. A contemporary but separate thread of
development, Atlas Autocode was developed for the University of Manchester Atlas 1 machine.
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In 1954, FORTRAN was invented at IBM by John Backus. It was the first widely used high-level general purpose programming
language to have a functional implementation, as opposed to just a design on paper.[30][31] It is still a popular language for high-
performance computing[32] and is used for programs that benchmark and rank the world's fastest supercomputers.[33]

Another early programming language was devised by Grace Hopper in the US, called FLOW-MATIC. It was developed for the
UNIVAC I at Remington Rand during the period from 1955 until 1959. Hopper found that business data processing customers were
uncomfortable with mathematical notation, and in early 1955, she and her team wrote a specification for an English programming
language and implemented a prototype.[34] The FLOW-MATIC compiler became publicly available in early 1958 and was
substantially complete in 1959.[35] FLOW-MATIC was a major influence in the design of COBOL, since only it and its direct
descendant AIMACO were in actual use at the time.[36]

The increased use of high-level languages introduced a requirement for low-level programming languages or system programming
languages. These languages, to varying degrees, provide facilities between assembly languages and high-level languages. They can
be used to perform tasks which require direct access to hardware facilities but still provide higher-level control structures and error-
checking.

The period from the 1960s to the late 1970s brought the development of the major language paradigms now in use:

APL introduced array programming and influenced functional programming.[37]

ALGOL refined both structured procedural programming and the discipline of language specification; the "Revised
Report on the Algorithmic Language ALGOL 60" became a model for how later language specifications were written.
Lisp, implemented in 1958, was the first dynamically typed functional programming language.
In the 1960s, Simula was the first language designed to support object-oriented programming; in the mid-1970s,
Smalltalk followed with the first "purely" object-oriented language.
C was developed between 1969 and 1973 as a system programming language for the Unix operating system and
remains popular.[38]

Prolog, designed in 1972, was the first logic programming language.
In 1978, ML built a polymorphic type system on top of Lisp, pioneering statically typed functional programming
languages.

Each of these languages spawned descendants, and most modern programming languages count at least one of them in their ancestry.

The 1960s and 1970s also saw considerable debate over the merits of structured programming, and whether programming languages
should be designed to support it.[39] Edsger Dijkstra, in a famous 1968 letter published in the Communications of the ACM, argued
that GOTO statements should be eliminated from all "higher level" programming languages.[40]

The 1980s were years of relative consolidation. C++ combined object-oriented and systems programming. The United States
government standardized Ada, a systems programming language derived from Pascal and intended for use by defense contractors. In
Japan and elsewhere, vast sums were spent investigating so-called "fifth-generation" languages that incorporated logic programming
constructs.[41] The functional languages community moved to standardize ML and Lisp. Rather than inventing new paradigms, all of
these movements elaborated upon the ideas invented in the previous decades.

One important trend in language design for programming large-scale systems during the 1980s was an increased focus on the use of
modules or large-scale organizational units of code. Modula-2, Ada, and ML all developed notable module systems in the 1980s,
which were often wedded to generic programming constructs.[42]

The rapid growth of the Internet in the mid-1990s created opportunities for new languages. Perl, originally a Unix scripting tool first
released in 1987, became common in dynamic websites. Java came to be used for server-side programming, and bytecode virtual
machines became popular again in commercial settings with their promise of "Write once, run anywhere" (UCSD Pascal had been
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popular for a time in the early 1980s). These developments were not
fundamentally novel, rather they were refinements of many existing languages
and paradigms (although their syntax was often based on the C family of
programming languages).

Programming language evolution continues, in both industry and research.
Current directions include security and reliability verification, new kinds of
modularity (mixins, delegates, aspects), and database integration such as
Microsoft's LINQ.

Fourth-generation programming languages (4GL) are computer programming
languages which aim to provide a higher level of abstraction of the internal
computer hardware details than 3GLs. Fifth-generation programming languages
(5GL) are programming languages based on solving problems using constraints
given to the program, rather than using an algorithm written by a programmer.

All programming languages have some primitive building blocks for the
description of data and the processes or transformations applied to them (like the
addition of two numbers or the selection of an item from a collection). These
primitives are defined by syntactic and semantic rules which describe their
structure and meaning respectively.

A programming language's surface form is known as its
syntax. Most programming languages are purely textual;
they use sequences of text including words, numbers,
and punctuation, much like written natural languages.
On the other hand, there are some programming
languages which are more graphical in nature, using
visual relationships between symbols to specify a
program.

The syntax of a language describes the possible
combinations of symbols that form a syntactically
correct program. The meaning given to a combination of
symbols is handled by semantics (either formal or hard-
coded in a reference implementation). Since most
languages are textual, this article discusses textual
syntax.

Programming language syntax is usually defined using a combination of regular expressions (for lexical structure) and Backus–Naur
form (for grammatical structure). Below is a simple grammar, based on Lisp:

expression ::= atom | list  
atom       ::= number | symbol  
number     ::= [+-]?['0'-'9']+  
symbol     ::= ['A'-'Z''a'-'z'].*  
list       ::= '(' expression* ')'  

This grammar specifies the following:

A selection of textbooks that teach
programming, in languages both popular
and obscure. These are only a few of the
thousands of programming languages
and dialects that have been designed in
history.
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an expression is either an atom or a list;
an atom is either a number or a symbol;
a number is an unbroken sequence of one or more decimal
digits, optionally preceded by a plus or minus sign;
a symbol is a letter followed by zero or more of any
characters (excluding whitespace); and
a list is a matched pair of parentheses, with zero or more
expressions inside it.

The following are examples of well-formed token sequences in this
grammar: 12345, () and (a b c232 (1)).

Not all syntactically correct programs are semantically correct. Many
syntactically correct programs are nonetheless ill-formed, per the
language's rules; and may (depending on the language specification
and the soundness of the implementation) result in an error on
translation or execution. In some cases, such programs may exhibit
undefined behavior. Even when a program is well-defined within a
language, it may still have a meaning that is not intended by the person who wrote it.

Using natural language as an example, it may not be possible to assign a meaning to a grammatically correct sentence or the sentence
may be false:

"Colorless green ideas sleep furiously." is grammatically well-formed but has no generally accepted meaning.
"John is a married bachelor." is grammatically well-formed but expresses a meaning that cannot be true.

The following C language fragment is syntactically correct, but performs operations that are not semantically defined (the operation
*p >> 4 has no meaning for a value having a complex type and p->im is not defined because the value of p is the null pointer):

complex *p = NULL; 
complex abs_p = sqrt(*p >> 4 + p->im); 

If the type declaration on the first line were omitted, the program would trigger an error on undefined variable "p" during
compilation. However, the program would still be syntactically correct since type declarations provide only semantic information.

The grammar needed to specify a programming language can be classified by its position in the Chomsky hierarchy. The syntax of
most programming languages can be specified using a Type-2 grammar, i.e., they are context-free grammars.[43] Some languages,
including Perl and Lisp, contain constructs that allow execution during the parsing phase. Languages that have constructs that allow
the programmer to alter the behavior of the parser make syntax analysis an undecidable problem, and generally blur the distinction
between parsing and execution.[44] In contrast to Lisp's macro system and Perl's BEGIN blocks, which may contain general

computations, C macros are merely string replacements and do not require code execution.[45]

The term semantics refers to the meaning of languages, as opposed to their form (syntax).

The static semantics defines restrictions on the structure of valid texts that are hard or impossible to express in standard syntactic
formalisms.[3] For compiled languages, static semantics essentially include those semantic rules that can be checked at compile time.
Examples include checking that every identifier is declared before it is used (in languages that require such declarations) or that the
labels on the arms of a case statement are distinct.[46] Many important restrictions of this type, like checking that identifiers are used
in the appropriate context (e.g. not adding an integer to a function name), or that subroutine calls have the appropriate number and
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code. The language above is Python.
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type of arguments, can be enforced by defining them as rules in a logic called a type system. Other forms of static analyses like data
flow analysis may also be part of static semantics. Newer programming languages like Java and C# have definite assignment
analysis, a form of data flow analysis, as part of their static semantics.

Once data has been specified, the machine must be instructed to perform operations on the data. For example, the semantics may
define the strategy by which expressions are evaluated to values, or the manner in which control structures conditionally execute
statements. The dynamic semantics (also known as execution semantics) of a language defines how and when the various constructs
of a language should produce a program behavior. There are many ways of defining execution semantics. Natural language is often
used to specify the execution semantics of languages commonly used in practice. A significant amount of academic research went
into formal semantics of programming languages, which allow execution semantics to be specified in a formal manner. Results from
this field of research have seen limited application to programming language design and implementation outside academia.

A type system defines how a programming language classifies values and expressions into types, how it can manipulate those types
and how they interact. The goal of a type system is to verify and usually enforce a certain level of correctness in programs written in
that language by detecting certain incorrect operations. Any decidable type system involves a trade-off: while it rejects many
incorrect programs, it can also prohibit some correct, albeit unusual programs. In order to bypass this downside, a number of
languages have type loopholes, usually unchecked casts that may be used by the programmer to explicitly allow a normally
disallowed operation between different types. In most typed languages, the type system is used only to type check programs, but a
number of languages, usually functional ones, infer types, relieving the programmer from the need to write type annotations. The
formal design and study of type systems is known as type theory.

A language is typed if the specification of every operation defines types of data to which the operation is applicable.[47] For example,
the data represented by "this text between the quotes" is a string, and in many programming languages dividing a

number by a string has no meaning and will not be executed. The invalid operation may be detected when the program is compiled
("static" type checking) and will be rejected by the compiler with a compilation error message, or it may be detected while the
program is running ("dynamic" type checking), resulting in a run-time exception. Many languages allow a function called an
exception handler to handle this exception and, for example, always return "-1" as the result.

A special case of typed languages are the single-typed languages. These are often scripting or markup languages, such as REXX or
SGML, and have only one data type–—most commonly character strings which are used for both symbolic and numeric data.

In contrast, an untyped language, such as most assembly languages, allows any operation to be performed on any data, generally
sequences of bits of various lengths.[47] High-level untyped languages include BCPL, Tcl, and some varieties of Forth.

In practice, while few languages are considered typed from the type theory (verifying or rejecting all operations), most modern
languages offer a degree of typing.[47] Many production languages provide means to bypass or subvert the type system, trading type-
safety for finer control over the program's execution (see casting).

In static typing, all expressions have their types determined prior to when the program is executed, typically at compile-time. For
example, 1 and (2+2) are integer expressions; they cannot be passed to a function that expects a string, or stored in a variable that is
defined to hold dates.[47]
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Statically typed languages can be either manifestly typed or type-inferred. In the first case, the programmer must explicitly write types
at certain textual positions (for example, at variable declarations). In the second case, the compiler infers the types of expressions and
declarations based on context. Most mainstream statically typed languages, such as C++, C# and Java, are manifestly typed.
Complete type inference has traditionally been associated with less mainstream languages, such as Haskell and ML. However, many
manifestly typed languages support partial type inference; for example, C++, Java and C# all infer types in certain limited cases.[48]

Additionally, some programming languages allow for some types to be automatically converted to other types; for example, an int
can be used where the program expects a float.

Dynamic typing, also called latent typing, determines the type-safety of operations at run time; in other words, types are associated
with run-time values rather than textual expressions.[47] As with type-inferred languages, dynamically typed languages do not require
the programmer to write explicit type annotations on expressions. Among other things, this may permit a single variable to refer to
values of different types at different points in the program execution. However, type errors cannot be automatically detected until a
piece of code is actually executed, potentially making debugging more difficult. Lisp, Smalltalk, Perl, Python, JavaScript, and Ruby
are all examples of dynamically typed languages.

Weak typing allows a value of one type to be treated as another, for example treating a string as a number.[47] This can occasionally
be useful, but it can also allow some kinds of program faults to go undetected at compile time and even at run time.

Strong typing prevents these program faults. An attempt to perform an operation on the wrong type of value raises an error.[47]

Strongly typed languages are often termed type-safe or safe.

An alternative definition for "weakly typed" refers to languages, such as Perl and JavaScript, which permit a large number of implicit
type conversions. In JavaScript, for example, the expression 2 * x implicitly converts x to a number, and this conversion succeeds

even if x is null, undefined, an Array, or a string of letters. Such implicit conversions are often useful, but they can mask

programming errors. Strong and static are now generally considered orthogonal concepts, but usage in the literature differs. Some use
the term strongly typed to mean strongly, statically typed, or, even more confusingly, to mean simply statically typed. Thus C has
been called both strongly typed and weakly, statically typed.[49][50]

It may seem odd to some professional programmers that C could be "weakly, statically typed". However, notice that the use of the
generic pointer, the void* pointer, does allow for casting of pointers to other pointers without needing to do an explicit cast. This is
extremely similar to somehow casting an array of bytes to any kind of datatype in C without using an explicit cast, such as (int) or

(char).

Most programming languages have an associated core library (sometimes known as the 'standard library', especially if it is included
as part of the published language standard), which is conventionally made available by all implementations of the language. Core
libraries typically include definitions for commonly used algorithms, data structures, and mechanisms for input and output.

The line between a language and its core library differs from language to language. In some cases, the language designers may treat
the library as a separate entity from the language. However, a language's core library is often treated as part of the language by its
users, and some language specifications even require that this library be made available in all implementations. Indeed, some
languages are designed so that the meanings of certain syntactic constructs cannot even be described without referring to the core
library. For example, in Java, a string literal is defined as an instance of the java.lang.String class; similarly, in Smalltalk, an

anonymous function expression (a "block") constructs an instance of the library's BlockContext class. Conversely, Scheme

contains multiple coherent subsets that suffice to construct the rest of the language as library macros, and so the language designers
do not even bother to say which portions of the language must be implemented as language constructs, and which must be
implemented as parts of a library.

Weak and strong typing

Standard library and run-time system
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Programming languages share properties with natural languages related to their purpose as vehicles for communication, having a
syntactic form separate from its semantics, and showing language families of related languages branching one from another.[51][52]

But as artificial constructs, they also differ in fundamental ways from languages that have evolved through usage. A significant
difference is that a programming language can be fully described and studied in its entirety, since it has a precise and finite
definition.[53] By contrast, natural languages have changing meanings given by their users in different communities. While
constructed languages are also artificial languages designed from the ground up with a specific purpose, they lack the precise and
complete semantic definition that a programming language has.

Many programming languages have been designed from scratch, altered to meet new needs, and combined with other languages.
Many have eventually fallen into disuse. Although there have been attempts to design one "universal" programming language that
serves all purposes, all of them have failed to be generally accepted as filling this role.[54] The need for diverse programming
languages arises from the diversity of contexts in which languages are used:

Programs range from tiny scripts written by individual hobbyists to huge systems written by hundreds of
programmers.
Programmers range in expertise from novices who need simplicity above all else, to experts who may be
comfortable with considerable complexity.
Programs must balance speed, size, and simplicity on systems ranging from microcontrollers to supercomputers.
Programs may be written once and not change for generations, or they may undergo continual modification.
Programmers may simply differ in their tastes: they may be accustomed to discussing problems and expressing
them in a particular language.

One common trend in the development of programming languages has been to add more ability to solve problems using a higher
level of abstraction. The earliest programming languages were tied very closely to the underlying hardware of the computer. As new
programming languages have developed, features have been added that let programmers express ideas that are more remote from
simple translation into underlying hardware instructions. Because programmers are less tied to the complexity of the computer, their
programs can do more computing with less effort from the programmer. This lets them write more functionality per time unit.[55]

Natural language programming has been proposed as a way to eliminate the need for a specialized language for programming.
However, this goal remains distant and its benefits are open to debate. Edsger W. Dijkstra took the position that the use of a formal
language is essential to prevent the introduction of meaningless constructs, and dismissed natural language programming as
"foolish".[56] Alan Perlis was similarly dismissive of the idea.[57] Hybrid approaches have been taken in Structured English and SQL.

A language's designers and users must construct a number of artifacts that govern and enable the practice of programming. The most
important of these artifacts are the language specification and implementation.

The specification of a programming language is an artifact that the language users and the implementors can use to agree upon
whether a piece of source code is a valid program in that language, and if so what its behavior shall be.

A programming language specification can take several forms, including the following:

An explicit definition of the syntax, static semantics, and execution semantics of the language. While syntax is
commonly specified using a formal grammar, semantic definitions may be written in natural language (e.g., as in the
C language), or a formal semantics (e.g., as in Standard ML[58] and Scheme[59] specifications).
A description of the behavior of a translator for the language (e.g., the C++ and Fortran specifications). The syntax
and semantics of the language have to be inferred from this description, which may be written in natural or a formal
language.
A reference or model implementation, sometimes written in the language being specified (e.g., Prolog or ANSI
REXX[60]). The syntax and semantics of the language are explicit in the behavior of the reference implementation.

Design and implementation
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Implementation
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An implementation of a programming language provides a way to write programs in that language and execute them on one or more
configurations of hardware and software. There are, broadly, two approaches to programming language implementation: compilation
and interpretation. It is generally possible to implement a language using either technique.

The output of a compiler may be executed by hardware or a program called an interpreter. In some implementations that make use of
the interpreter approach there is no distinct boundary between compiling and interpreting. For instance, some implementations of
BASIC compile and then execute the source a line at a time.

Programs that are executed directly on the hardware usually run much faster than those that are interpreted in software.[61]

One technique for improving the performance of interpreted programs is just-in-time compilation. Here the virtual machine, just
before execution, translates the blocks of bytecode which are going to be used to machine code, for direct execution on the hardware.

Although most of the most commonly used programming languages have fully open specifications and implementations, many
programming languages exist only as proprietary programming languages with the implementation available only from a single
vendor, which may claim that such a proprietary language is their intellectual property. Proprietary programming languages are
commonly domain specific languages or internal scripting languages for a single product; some proprietary languages are used only
internally within a vendor, while others are available to external users.

Some programming languages exist on the border between proprietary and open; for example, Oracle Corporation asserts proprietary
rights to some aspects of the Java programming language,[62] and Microsoft's C# programming language, which has open
implementations of most parts of the system, also has Common Language Runtime (CLR) as a closed environment.[63]

Many proprietary languages are widely used, in spite of their proprietary nature; examples include MATLAB, VBScript, and
Wolfram Language. Some languages may make the transition from closed to open; for example, Erlang was originally an Ericsson's
internal programming language.[64]

Thousands of different programming languages have been created, mainly in the computing field.[65] Software is commonly built
with 5 programming languages or more.[66]

Programming languages differ from most other forms of human expression in that they require a greater degree of precision and
completeness. When using a natural language to communicate with other people, human authors and speakers can be ambiguous and
make small errors, and still expect their intent to be understood. However, figuratively speaking, computers "do exactly what they are
told to do", and cannot "understand" what code the programmer intended to write. The combination of the language definition, a
program, and the program's inputs must fully specify the external behavior that occurs when the program is executed, within the
domain of control of that program. On the other hand, ideas about an algorithm can be communicated to humans without the
precision required for execution by using pseudocode, which interleaves natural language with code written in a programming
language.

A programming language provides a structured mechanism for defining pieces of data, and the operations or transformations that
may be carried out automatically on that data. A programmer uses the abstractions present in the language to represent the concepts
involved in a computation. These concepts are represented as a collection of the simplest elements available (called primitives).[67]

Programming is the process by which programmers combine these primitives to compose new programs, or adapt existing ones to
new uses or a changing environment.

Programs for a computer might be executed in a batch process without human interaction, or a user might type commands in an
interactive session of an interpreter. In this case the "commands" are simply programs, whose execution is chained together. When a
language can run its commands through an interpreter (such as a Unix shell or other command-line interface), without compiling, it is
called a scripting language.[68]

Proprietary languages
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Determining which is the most widely used programming language is difficult since the definition of usage varies by context. One
language may occupy the greater number of programmer hours, a different one has more lines of code, and a third may consume the
most CPU time. Some languages are very popular for particular kinds of applications. For example, COBOL is still strong in the
corporate data center, often on large mainframes;[69][70] Fortran in scientific and engineering applications; Ada in aerospace,
transportation, military, real-time and embedded applications; and C in embedded applications and operating systems. Other
languages are regularly used to write many different kinds of applications.

Various methods of measuring language popularity, each subject to a different bias over what is measured, have been proposed:

counting the number of job advertisements that mention the language[71]

the number of books sold that teach or describe the language[72]

estimates of the number of existing lines of code written in the language – which may underestimate languages not
often found in public searches[73]

counts of language references (i.e., to the name of the language) found using a web search engine.

Combining and averaging information from various internet sites, stackify.com reported the ten most popular programming languages
as (in descending order by overall popularity): Java, C, C++, Python, C#, JavaScript, VB .NET, R, PHP, and MATLAB.[74]

A dialect of a programming language or a data exchange language is a (relatively small) variation or extension of the language that
does not change its intrinsic nature. With languages such as Scheme and Forth, standards may be considered insufficient, inadequate
or illegitimate by implementors, so often they will deviate from the standard, making a new dialect. In other cases, a dialect is created
for use in a domain-specific language, often a subset. In the Lisp world, most languages that use basic S-expression syntax and Lisp-
like semantics are considered Lisp dialects, although they vary wildly, as do, say, Racket and Clojure. As it is common for one
language to have several dialects, it can become quite difficult for an inexperienced programmer to find the right documentation. The
BASIC programming language has many dialects.

The explosion of Forth dialects led to the saying "If you've seen one Forth... you've seen one Forth."

There is no overarching classification scheme for programming languages. A given programming language does not usually have a
single ancestor language. Languages commonly arise by combining the elements of several predecessor languages with new ideas in
circulation at the time. Ideas that originate in one language will diffuse throughout a family of related languages, and then leap
suddenly across familial gaps to appear in an entirely different family.

The task is further complicated by the fact that languages can be classified along multiple axes. For example, Java is both an object-
oriented language (because it encourages object-oriented organization) and a concurrent language (because it contains built-in
constructs for running multiple threads in parallel). Python is an object-oriented scripting language.

In broad strokes, programming languages divide into programming paradigms and a classification by intended domain of use, with
general-purpose programming languages distinguished from domain-specific programming languages. Traditionally, programming
languages have been regarded as describing computation in terms of imperative sentences, i.e. issuing commands. These are
generally called imperative programming languages. A great deal of research in programming languages has been aimed at blurring
the distinction between a program as a set of instructions and a program as an assertion about the desired answer, which is the main
feature of declarative programming.[75] More refined paradigms include procedural programming, object-oriented programming,
functional programming, and logic programming; some languages are hybrids of paradigms or multi-paradigmatic. An assembly
language is not so much a paradigm as a direct model of an underlying machine architecture. By purpose, programming languages

Measuring language usage

Dialects, flavors and implementations

Taxonomies
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might be considered general purpose, system programming languages, scripting languages, domain-specific languages, or
concurrent/distributed languages (or a combination of these).[76] Some general purpose languages were designed largely with
educational goals.[77]

A programming language may also be classified by factors unrelated to programming paradigm. For instance, most programming
languages use English language keywords, while a minority do not. Other languages may be classified as being deliberately esoteric
or not.
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