
Programming language
A programming language is a formal language,
which comprises a set of instructions that produce
various kinds of output. Programming languages
are used in computer programming to implement
algorithms.

Most programming languages consist of
instructions for computers. There are
programmable machines that use a set of specific
instructions, rather than general programming
languages. Early ones preceded the invention of
the digital computer, the first probably being the
automatic flute player described in the 9th
century by the brothers Musa in Baghdad, during
the Islamic Golden Age.[1] Since the early 1800s,
programs have been used to direct the behavior of
machines such as Jacquard looms, music boxes
and player pianos.[2] The programs for these
machines (such as a player piano's scrolls) did not
produce different behavior in response to
different inputs or conditions.

Thousands of different programming languages have been created, and more are being created every year. Many programming
languages are written in an imperative form (i.e., as a sequence of operations to perform) while other languages use the declarative
form (i.e. the desired result is specified, not how to achieve it).

The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning). Some
languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while
other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the
basic language defined by a standard and extensions taken from the dominant implementation being common.

Definitions

History
Early developments
Refinement
Consolidation and growth

Elements
Syntax
Semantics

Static semantics
Dynamic semantics

Type system
Typed versus untyped languages

The source code for a simple computer program written in the C
programming language. When compiled and run, it will give the
output "Hello, world!".

Contents

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Machine_instruction
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/History_of_computing_hardware
https://en.wikipedia.org/wiki/Ban%C5%AB_M%C5%ABs%C4%81
https://en.wikipedia.org/wiki/Baghdad
https://en.wikipedia.org/wiki/Islamic_Golden_Age
https://en.wikipedia.org/wiki/Jacquard_loom
https://en.wikipedia.org/wiki/Music_box
https://en.wikipedia.org/wiki/Player_piano
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/File:C_Hello_World_Program.png
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Compiled
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Static versus dynamic typing
Weak and strong typing

Standard library and run-time system

Design and implementation
Specification
Implementation

Proprietary languages

Use
Measuring language usage

Dialects, flavors and implementations

Taxonomies

See also

References

Further reading

External links

A programming language is a notation for writing programs, which are specifications of a computation or algorithm.[3] Some authors
restrict the term "programming language" to those languages that can express all possible algorithms.[3][4] Traits often considered
important for what constitutes a programming language include:

Function and target
A computer programming language is a language used to write computer programs, which
involves a computer performing some kind of computation[5] or algorithm and possibly
control external devices such as printers, disk drives, robots,[6] and so on. For example,
PostScript programs are frequently created by another program to control a computer printer
or display. More generally, a programming language may describe computation on some,
possibly abstract, machine. It is generally accepted that a complete specification for a
programming language includes a description, possibly idealized, of a machine or processor
for that language.[7] In most practical contexts, a programming language involves a
computer; consequently, programming languages are usually defined and studied this way.[8]

Programming languages differ from natural languages in that natural languages are only
used for interaction between people, while programming languages also allow humans to
communicate instructions to machines.

Abstractions
Programming languages usually contain abstractions for defining and manipulating data
structures or controlling the flow of execution. The practical necessity that a programming
language support adequate abstractions is expressed by the abstraction principle.[9] This
principle is sometimes formulated as a recommendation to the programmer to make proper
use of such abstractions.[10]

Expressive power
The theory of computation classifies languages by the computations they are capable of
expressing. All Turing complete languages can implement the same set of algorithms.
ANSI/ISO SQL-92 and Charity are examples of languages that are not Turing complete, yet
often called programming languages.[11][12]

Markup languages like XML, HTML, or troff, which define structured data, are not usually considered programming
languages.[13][14][15] Programming languages may, however, share the syntax with markup languages if a computational semantics is
defined. XSLT, for example, is a Turing complete language entirely using XML syntax.[16][17][18] Moreover, LaTeX, which is mostly
used for structuring documents, also contains a Turing complete subset.[19][20]

Definitions

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Printer_(computing)
https://en.wikipedia.org/wiki/Disk_drive
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Abstraction_principle_(programming)
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/Charity_(programming_language)
https://en.wikipedia.org/wiki/Markup_languages
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Troff
https://en.wikipedia.org/wiki/Structured_data
https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/LaTeX

The term computer language is sometimes used interchangeably with programming language.[21] However, the usage of both terms
varies among authors, including the exact scope of each. One usage describes programming languages as a subset of computer
languages.[22] Similarly, languages used in computing that have a different goal than expressing computer programs are generically
designated computer languages. For instance, markup languages are sometimes referred to as computer languages to emphasize that
they are not meant to be used for programming.[23]

Another usage regards programming languages as theoretical constructs for programming abstract machines, and computer languages
as the subset thereof that runs on physical computers, which have finite hardware resources.[24] John C. Reynolds emphasizes that
formal specification languages are just as much programming languages as are the languages intended for execution. He also argues
that textual and even graphical input formats that affect the behavior of a computer are programming languages, despite the fact they
are commonly not Turing-complete, and remarks that ignorance of programming language concepts is the reason for many flaws in
input formats.[25]

Very early computers, such as Colossus, were programmed without the help of a stored program, by modifying their circuitry or
setting banks of physical controls.

Slightly later, programs could be written in machine language, where the programmer writes each instruction in a numeric form the
hardware can execute directly. For example, the instruction to add the value in two memory location might consist of 3 numbers: an
"opcode" that selects the "add" operation, and two memory locations. The programs, in decimal or binary form, were read in from
punched cards, paper tape, magnetic tape or toggled in on switches on the front panel of the computer. Machine languages were later
termed first-generation programming languages (1GL).

The next step was development of so-called second-generation programming languages (2GL) or assembly languages, which were
still closely tied to the instruction set architecture of the specific computer. These served to make the program much more human-
readable and relieved the programmer of tedious and error-prone address calculations.

The first high-level programming languages, or third-generation programming languages (3GL), were written in the 1950s. An early
high-level programming language to be designed for a computer was Plankalkül, developed for the German Z3 by Konrad Zuse
between 1943 and 1945. However, it was not implemented until 1998 and 2000.[26]

John Mauchly's Short Code, proposed in 1949, was one of the first high-level languages ever developed for an electronic
computer.[27] Unlike machine code, Short Code statements represented mathematical expressions in understandable form. However,
the program had to be translated into machine code every time it ran, making the process much slower than running the equivalent
machine code.

At the University of Manchester, Alick Glennie developed Autocode in the early 1950s. As a programming language, it used a
compiler to automatically convert the language into machine code. The first code and compiler was developed in 1952 for the Mark 1
computer at the University of Manchester and is considered to be the first compiled high-level programming language.[28][29]

The second autocode was developed for the Mark 1 by R. A. Brooker in 1954 and was called the "Mark 1 Autocode". Brooker also
developed an autocode for the Ferranti Mercury in the 1950s in conjunction with the University of Manchester. The version for the
EDSAC 2 was devised by D. F. Hartley of University of Cambridge Mathematical Laboratory in 1961. Known as EDSAC 2
Autocode, it was a straight development from Mercury Autocode adapted for local circumstances and was noted for its object code
optimisation and source-language diagnostics which were advanced for the time. A contemporary but separate thread of
development, Atlas Autocode was developed for the University of Manchester Atlas 1 machine.

History

Early developments

https://en.wikipedia.org/wiki/John_C._Reynolds
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Stored_program
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Front_panel
https://en.wikipedia.org/wiki/First-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Plankalk%C3%BCl
https://en.wikipedia.org/wiki/Z3_(computer)
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/John_Mauchly
https://en.wikipedia.org/wiki/Short_Code_(computer_language)
https://en.wikipedia.org/wiki/Electronic_computer
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/University_of_Manchester
https://en.wikipedia.org/wiki/Alick_Glennie
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Manchester_Mark_1
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Tony_Brooker
https://en.wikipedia.org/wiki/Ferranti_Mercury
https://en.wikipedia.org/wiki/EDSAC
https://en.wikipedia.org/wiki/David_Hartley_(computer_scientist)
https://en.wikipedia.org/wiki/University_of_Cambridge_Mathematical_Laboratory
https://en.wikipedia.org/wiki/Atlas_Autocode
https://en.wikipedia.org/wiki/Atlas_Computer_(Manchester)

In 1954, FORTRAN was invented at IBM by John Backus. It was the first widely used high-level general purpose programming
language to have a functional implementation, as opposed to just a design on paper.[30][31] It is still a popular language for high-
performance computing[32] and is used for programs that benchmark and rank the world's fastest supercomputers.[33]

Another early programming language was devised by Grace Hopper in the US, called FLOW-MATIC. It was developed for the
UNIVAC I at Remington Rand during the period from 1955 until 1959. Hopper found that business data processing customers were
uncomfortable with mathematical notation, and in early 1955, she and her team wrote a specification for an English programming
language and implemented a prototype.[34] The FLOW-MATIC compiler became publicly available in early 1958 and was
substantially complete in 1959.[35] FLOW-MATIC was a major influence in the design of COBOL, since only it and its direct
descendant AIMACO were in actual use at the time.[36]

The increased use of high-level languages introduced a requirement for low-level programming languages or system programming
languages. These languages, to varying degrees, provide facilities between assembly languages and high-level languages. They can
be used to perform tasks which require direct access to hardware facilities but still provide higher-level control structures and error-
checking.

The period from the 1960s to the late 1970s brought the development of the major language paradigms now in use:

APL introduced array programming and influenced functional programming.[37]

ALGOL refined both structured procedural programming and the discipline of language specification; the "Revised
Report on the Algorithmic Language ALGOL 60" became a model for how later language specifications were written.
Lisp, implemented in 1958, was the first dynamically typed functional programming language.
In the 1960s, Simula was the first language designed to support object-oriented programming; in the mid-1970s,
Smalltalk followed with the first "purely" object-oriented language.
C was developed between 1969 and 1973 as a system programming language for the Unix operating system and
remains popular.[38]

Prolog, designed in 1972, was the first logic programming language.
In 1978, ML built a polymorphic type system on top of Lisp, pioneering statically typed functional programming
languages.

Each of these languages spawned descendants, and most modern programming languages count at least one of them in their ancestry.

The 1960s and 1970s also saw considerable debate over the merits of structured programming, and whether programming languages
should be designed to support it.[39] Edsger Dijkstra, in a famous 1968 letter published in the Communications of the ACM, argued
that GOTO statements should be eliminated from all "higher level" programming languages.[40]

The 1980s were years of relative consolidation. C++ combined object-oriented and systems programming. The United States
government standardized Ada, a systems programming language derived from Pascal and intended for use by defense contractors. In
Japan and elsewhere, vast sums were spent investigating so-called "fifth-generation" languages that incorporated logic programming
constructs.[41] The functional languages community moved to standardize ML and Lisp. Rather than inventing new paradigms, all of
these movements elaborated upon the ideas invented in the previous decades.

One important trend in language design for programming large-scale systems during the 1980s was an increased focus on the use of
modules or large-scale organizational units of code. Modula-2, Ada, and ML all developed notable module systems in the 1980s,
which were often wedded to generic programming constructs.[42]

The rapid growth of the Internet in the mid-1990s created opportunities for new languages. Perl, originally a Unix scripting tool first
released in 1987, became common in dynamic websites. Java came to be used for server-side programming, and bytecode virtual
machines became popular again in commercial settings with their promise of "Write once, run anywhere" (UCSD Pascal had been

Refinement

Consolidation and growth

https://en.wikipedia.org/wiki/FORTRAN
https://en.wikipedia.org/wiki/John_Backus
https://en.wikipedia.org/wiki/High-level_language
https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/FLOW-MATIC
https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/Remington_Rand
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/AIMACO
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/Array_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Programming_language_specification
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Fifth-generation_programming_language
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/UCSD_Pascal

popular for a time in the early 1980s). These developments were not
fundamentally novel, rather they were refinements of many existing languages
and paradigms (although their syntax was often based on the C family of
programming languages).

Programming language evolution continues, in both industry and research.
Current directions include security and reliability verification, new kinds of
modularity (mixins, delegates, aspects), and database integration such as
Microsoft's LINQ.

Fourth-generation programming languages (4GL) are computer programming
languages which aim to provide a higher level of abstraction of the internal
computer hardware details than 3GLs. Fifth-generation programming languages
(5GL) are programming languages based on solving problems using constraints
given to the program, rather than using an algorithm written by a programmer.

All programming languages have some primitive building blocks for the
description of data and the processes or transformations applied to them (like the
addition of two numbers or the selection of an item from a collection). These
primitives are defined by syntactic and semantic rules which describe their
structure and meaning respectively.

A programming language's surface form is known as its
syntax. Most programming languages are purely textual;
they use sequences of text including words, numbers,
and punctuation, much like written natural languages.
On the other hand, there are some programming
languages which are more graphical in nature, using
visual relationships between symbols to specify a
program.

The syntax of a language describes the possible
combinations of symbols that form a syntactically
correct program. The meaning given to a combination of
symbols is handled by semantics (either formal or hard-
coded in a reference implementation). Since most
languages are textual, this article discusses textual
syntax.

Programming language syntax is usually defined using a combination of regular expressions (for lexical structure) and Backus–Naur
form (for grammatical structure). Below is a simple grammar, based on Lisp:

expression ::= atom | list
atom ::= number | symbol
number ::= [+-]?['0'-'9']+
symbol ::= ['A'-'Z''a'-'z'].*
list ::= '(' expression* ')'

This grammar specifies the following:

A selection of textbooks that teach
programming, in languages both popular
and obscure. These are only a few of the
thousands of programming languages
and dialects that have been designed in
history.

Elements

Syntax

Parse tree of Python code with inset tokenization

https://en.wikipedia.org/wiki/Mixin
https://en.wikipedia.org/wiki/Delegation_(programming)
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Language_Integrated_Query
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Fifth-generation_programming_language
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Language_primitive
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Reference_implementation_(computing)
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/File:Bangalore_India_Tech_books_for_sale_IMG_5261.jpg
https://en.wikipedia.org/wiki/File:Python_add5_parse.png
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Python_(programming_language)

an expression is either an atom or a list;
an atom is either a number or a symbol;
a number is an unbroken sequence of one or more decimal
digits, optionally preceded by a plus or minus sign;
a symbol is a letter followed by zero or more of any
characters (excluding whitespace); and
a list is a matched pair of parentheses, with zero or more
expressions inside it.

The following are examples of well-formed token sequences in this
grammar: 12345, () and (a b c232 (1)).

Not all syntactically correct programs are semantically correct. Many
syntactically correct programs are nonetheless ill-formed, per the
language's rules; and may (depending on the language specification
and the soundness of the implementation) result in an error on
translation or execution. In some cases, such programs may exhibit
undefined behavior. Even when a program is well-defined within a
language, it may still have a meaning that is not intended by the person who wrote it.

Using natural language as an example, it may not be possible to assign a meaning to a grammatically correct sentence or the sentence
may be false:

"Colorless green ideas sleep furiously." is grammatically well-formed but has no generally accepted meaning.
"John is a married bachelor." is grammatically well-formed but expresses a meaning that cannot be true.

The following C language fragment is syntactically correct, but performs operations that are not semantically defined (the operation
*p >> 4 has no meaning for a value having a complex type and p->im is not defined because the value of p is the null pointer):

complex *p = NULL;
complex abs_p = sqrt(*p >> 4 + p->im);

If the type declaration on the first line were omitted, the program would trigger an error on undefined variable "p" during
compilation. However, the program would still be syntactically correct since type declarations provide only semantic information.

The grammar needed to specify a programming language can be classified by its position in the Chomsky hierarchy. The syntax of
most programming languages can be specified using a Type-2 grammar, i.e., they are context-free grammars.[43] Some languages,
including Perl and Lisp, contain constructs that allow execution during the parsing phase. Languages that have constructs that allow
the programmer to alter the behavior of the parser make syntax analysis an undecidable problem, and generally blur the distinction
between parsing and execution.[44] In contrast to Lisp's macro system and Perl's BEGIN blocks, which may contain general

computations, C macros are merely string replacements and do not require code execution.[45]

The term semantics refers to the meaning of languages, as opposed to their form (syntax).

The static semantics defines restrictions on the structure of valid texts that are hard or impossible to express in standard syntactic
formalisms.[3] For compiled languages, static semantics essentially include those semantic rules that can be checked at compile time.
Examples include checking that every identifier is declared before it is used (in languages that require such declarations) or that the
labels on the arms of a case statement are distinct.[46] Many important restrictions of this type, like checking that identifiers are used
in the appropriate context (e.g. not adding an integer to a function name), or that subroutine calls have the appropriate number and

Syntax highlighting is often used to aid
programmers in recognizing elements of source
code. The language above is Python.

Semantics

Static semantics

https://en.wikipedia.org/wiki/Undefined_behavior
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously
https://en.wikipedia.org/wiki/Well-formedness
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Null_pointer
https://en.wikipedia.org/wiki/Type_declaration
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Lisp_macro
https://en.wikipedia.org/wiki/Semantics#Computer_science
https://en.wikipedia.org/wiki/Identifier
https://en.wikipedia.org/wiki/Case_statement
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/File:Python_add5_syntax.svg
https://en.wikipedia.org/wiki/Syntax_highlighting
https://en.wikipedia.org/wiki/Python_(programming_language)

type of arguments, can be enforced by defining them as rules in a logic called a type system. Other forms of static analyses like data
flow analysis may also be part of static semantics. Newer programming languages like Java and C# have definite assignment
analysis, a form of data flow analysis, as part of their static semantics.

Once data has been specified, the machine must be instructed to perform operations on the data. For example, the semantics may
define the strategy by which expressions are evaluated to values, or the manner in which control structures conditionally execute
statements. The dynamic semantics (also known as execution semantics) of a language defines how and when the various constructs
of a language should produce a program behavior. There are many ways of defining execution semantics. Natural language is often
used to specify the execution semantics of languages commonly used in practice. A significant amount of academic research went
into formal semantics of programming languages, which allow execution semantics to be specified in a formal manner. Results from
this field of research have seen limited application to programming language design and implementation outside academia.

A type system defines how a programming language classifies values and expressions into types, how it can manipulate those types
and how they interact. The goal of a type system is to verify and usually enforce a certain level of correctness in programs written in
that language by detecting certain incorrect operations. Any decidable type system involves a trade-off: while it rejects many
incorrect programs, it can also prohibit some correct, albeit unusual programs. In order to bypass this downside, a number of
languages have type loopholes, usually unchecked casts that may be used by the programmer to explicitly allow a normally
disallowed operation between different types. In most typed languages, the type system is used only to type check programs, but a
number of languages, usually functional ones, infer types, relieving the programmer from the need to write type annotations. The
formal design and study of type systems is known as type theory.

A language is typed if the specification of every operation defines types of data to which the operation is applicable.[47] For example,
the data represented by "this text between the quotes" is a string, and in many programming languages dividing a

number by a string has no meaning and will not be executed. The invalid operation may be detected when the program is compiled
("static" type checking) and will be rejected by the compiler with a compilation error message, or it may be detected while the
program is running ("dynamic" type checking), resulting in a run-time exception. Many languages allow a function called an
exception handler to handle this exception and, for example, always return "-1" as the result.

A special case of typed languages are the single-typed languages. These are often scripting or markup languages, such as REXX or
SGML, and have only one data type–—most commonly character strings which are used for both symbolic and numeric data.

In contrast, an untyped language, such as most assembly languages, allows any operation to be performed on any data, generally
sequences of bits of various lengths.[47] High-level untyped languages include BCPL, Tcl, and some varieties of Forth.

In practice, while few languages are considered typed from the type theory (verifying or rejecting all operations), most modern
languages offer a degree of typing.[47] Many production languages provide means to bypass or subvert the type system, trading type-
safety for finer control over the program's execution (see casting).

In static typing, all expressions have their types determined prior to when the program is executed, typically at compile-time. For
example, 1 and (2+2) are integer expressions; they cannot be passed to a function that expects a string, or stored in a variable that is
defined to hold dates.[47]

Dynamic semantics

Type system

Typed versus untyped languages

Static versus dynamic typing

https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Data_flow_analysis
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Definite_assignment_analysis
https://en.wikipedia.org/wiki/Evaluation_strategy
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Decidability_(logic)
https://en.wikipedia.org/wiki/Type_conversion#Explicit_type_conversion
https://en.wikipedia.org/wiki/Type_checking
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/String_literal
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/REXX
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/Type_conversion#Explicit_type_conversion
https://en.wikipedia.org/wiki/Type_system

Statically typed languages can be either manifestly typed or type-inferred. In the first case, the programmer must explicitly write types
at certain textual positions (for example, at variable declarations). In the second case, the compiler infers the types of expressions and
declarations based on context. Most mainstream statically typed languages, such as C++, C# and Java, are manifestly typed.
Complete type inference has traditionally been associated with less mainstream languages, such as Haskell and ML. However, many
manifestly typed languages support partial type inference; for example, C++, Java and C# all infer types in certain limited cases.[48]

Additionally, some programming languages allow for some types to be automatically converted to other types; for example, an int
can be used where the program expects a float.

Dynamic typing, also called latent typing, determines the type-safety of operations at run time; in other words, types are associated
with run-time values rather than textual expressions.[47] As with type-inferred languages, dynamically typed languages do not require
the programmer to write explicit type annotations on expressions. Among other things, this may permit a single variable to refer to
values of different types at different points in the program execution. However, type errors cannot be automatically detected until a
piece of code is actually executed, potentially making debugging more difficult. Lisp, Smalltalk, Perl, Python, JavaScript, and Ruby
are all examples of dynamically typed languages.

Weak typing allows a value of one type to be treated as another, for example treating a string as a number.[47] This can occasionally
be useful, but it can also allow some kinds of program faults to go undetected at compile time and even at run time.

Strong typing prevents these program faults. An attempt to perform an operation on the wrong type of value raises an error.[47]

Strongly typed languages are often termed type-safe or safe.

An alternative definition for "weakly typed" refers to languages, such as Perl and JavaScript, which permit a large number of implicit
type conversions. In JavaScript, for example, the expression 2 * x implicitly converts x to a number, and this conversion succeeds

even if x is null, undefined, an Array, or a string of letters. Such implicit conversions are often useful, but they can mask

programming errors. Strong and static are now generally considered orthogonal concepts, but usage in the literature differs. Some use
the term strongly typed to mean strongly, statically typed, or, even more confusingly, to mean simply statically typed. Thus C has
been called both strongly typed and weakly, statically typed.[49][50]

It may seem odd to some professional programmers that C could be "weakly, statically typed". However, notice that the use of the
generic pointer, the void* pointer, does allow for casting of pointers to other pointers without needing to do an explicit cast. This is
extremely similar to somehow casting an array of bytes to any kind of datatype in C without using an explicit cast, such as (int) or

(char).

Most programming languages have an associated core library (sometimes known as the 'standard library', especially if it is included
as part of the published language standard), which is conventionally made available by all implementations of the language. Core
libraries typically include definitions for commonly used algorithms, data structures, and mechanisms for input and output.

The line between a language and its core library differs from language to language. In some cases, the language designers may treat
the library as a separate entity from the language. However, a language's core library is often treated as part of the language by its
users, and some language specifications even require that this library be made available in all implementations. Indeed, some
languages are designed so that the meanings of certain syntactic constructs cannot even be described without referring to the core
library. For example, in Java, a string literal is defined as an instance of the java.lang.String class; similarly, in Smalltalk, an

anonymous function expression (a "block") constructs an instance of the library's BlockContext class. Conversely, Scheme

contains multiple coherent subsets that suffice to construct the rest of the language as library macros, and so the language designers
do not even bother to say which portions of the language must be implemented as language constructs, and which must be
implemented as parts of a library.

Weak and strong typing

Standard library and run-time system

https://en.wikipedia.org/wiki/Manifest_typing
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Declaration_(computer_science)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Weak_typing
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Strongly_typed_programming_language
https://en.wikipedia.org/wiki/Type_safety
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Anonymous_function
https://en.wikipedia.org/wiki/Scheme_(programming_language)

Programming languages share properties with natural languages related to their purpose as vehicles for communication, having a
syntactic form separate from its semantics, and showing language families of related languages branching one from another.[51][52]

But as artificial constructs, they also differ in fundamental ways from languages that have evolved through usage. A significant
difference is that a programming language can be fully described and studied in its entirety, since it has a precise and finite
definition.[53] By contrast, natural languages have changing meanings given by their users in different communities. While
constructed languages are also artificial languages designed from the ground up with a specific purpose, they lack the precise and
complete semantic definition that a programming language has.

Many programming languages have been designed from scratch, altered to meet new needs, and combined with other languages.
Many have eventually fallen into disuse. Although there have been attempts to design one "universal" programming language that
serves all purposes, all of them have failed to be generally accepted as filling this role.[54] The need for diverse programming
languages arises from the diversity of contexts in which languages are used:

Programs range from tiny scripts written by individual hobbyists to huge systems written by hundreds of
programmers.
Programmers range in expertise from novices who need simplicity above all else, to experts who may be
comfortable with considerable complexity.
Programs must balance speed, size, and simplicity on systems ranging from microcontrollers to supercomputers.
Programs may be written once and not change for generations, or they may undergo continual modification.
Programmers may simply differ in their tastes: they may be accustomed to discussing problems and expressing
them in a particular language.

One common trend in the development of programming languages has been to add more ability to solve problems using a higher
level of abstraction. The earliest programming languages were tied very closely to the underlying hardware of the computer. As new
programming languages have developed, features have been added that let programmers express ideas that are more remote from
simple translation into underlying hardware instructions. Because programmers are less tied to the complexity of the computer, their
programs can do more computing with less effort from the programmer. This lets them write more functionality per time unit.[55]

Natural language programming has been proposed as a way to eliminate the need for a specialized language for programming.
However, this goal remains distant and its benefits are open to debate. Edsger W. Dijkstra took the position that the use of a formal
language is essential to prevent the introduction of meaningless constructs, and dismissed natural language programming as
"foolish".[56] Alan Perlis was similarly dismissive of the idea.[57] Hybrid approaches have been taken in Structured English and SQL.

A language's designers and users must construct a number of artifacts that govern and enable the practice of programming. The most
important of these artifacts are the language specification and implementation.

The specification of a programming language is an artifact that the language users and the implementors can use to agree upon
whether a piece of source code is a valid program in that language, and if so what its behavior shall be.

A programming language specification can take several forms, including the following:

An explicit definition of the syntax, static semantics, and execution semantics of the language. While syntax is
commonly specified using a formal grammar, semantic definitions may be written in natural language (e.g., as in the
C language), or a formal semantics (e.g., as in Standard ML[58] and Scheme[59] specifications).
A description of the behavior of a translator for the language (e.g., the C++ and Fortran specifications). The syntax
and semantics of the language have to be inferred from this description, which may be written in natural or a formal
language.
A reference or model implementation, sometimes written in the language being specified (e.g., Prolog or ANSI
REXX[60]). The syntax and semantics of the language are explicit in the behavior of the reference implementation.

Design and implementation

Specification

Implementation

https://en.wikipedia.org/wiki/Constructed_languages
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Natural_language_programming
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Natural_language_programming
https://en.wikipedia.org/wiki/Alan_Perlis
https://en.wikipedia.org/wiki/Structured_English
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Standard_ML
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Meta-circular_evaluator
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/REXX

An implementation of a programming language provides a way to write programs in that language and execute them on one or more
configurations of hardware and software. There are, broadly, two approaches to programming language implementation: compilation
and interpretation. It is generally possible to implement a language using either technique.

The output of a compiler may be executed by hardware or a program called an interpreter. In some implementations that make use of
the interpreter approach there is no distinct boundary between compiling and interpreting. For instance, some implementations of
BASIC compile and then execute the source a line at a time.

Programs that are executed directly on the hardware usually run much faster than those that are interpreted in software.[61]

One technique for improving the performance of interpreted programs is just-in-time compilation. Here the virtual machine, just
before execution, translates the blocks of bytecode which are going to be used to machine code, for direct execution on the hardware.

Although most of the most commonly used programming languages have fully open specifications and implementations, many
programming languages exist only as proprietary programming languages with the implementation available only from a single
vendor, which may claim that such a proprietary language is their intellectual property. Proprietary programming languages are
commonly domain specific languages or internal scripting languages for a single product; some proprietary languages are used only
internally within a vendor, while others are available to external users.

Some programming languages exist on the border between proprietary and open; for example, Oracle Corporation asserts proprietary
rights to some aspects of the Java programming language,[62] and Microsoft's C# programming language, which has open
implementations of most parts of the system, also has Common Language Runtime (CLR) as a closed environment.[63]

Many proprietary languages are widely used, in spite of their proprietary nature; examples include MATLAB, VBScript, and
Wolfram Language. Some languages may make the transition from closed to open; for example, Erlang was originally an Ericsson's
internal programming language.[64]

Thousands of different programming languages have been created, mainly in the computing field.[65] Software is commonly built
with 5 programming languages or more.[66]

Programming languages differ from most other forms of human expression in that they require a greater degree of precision and
completeness. When using a natural language to communicate with other people, human authors and speakers can be ambiguous and
make small errors, and still expect their intent to be understood. However, figuratively speaking, computers "do exactly what they are
told to do", and cannot "understand" what code the programmer intended to write. The combination of the language definition, a
program, and the program's inputs must fully specify the external behavior that occurs when the program is executed, within the
domain of control of that program. On the other hand, ideas about an algorithm can be communicated to humans without the
precision required for execution by using pseudocode, which interleaves natural language with code written in a programming
language.

A programming language provides a structured mechanism for defining pieces of data, and the operations or transformations that
may be carried out automatically on that data. A programmer uses the abstractions present in the language to represent the concepts
involved in a computation. These concepts are represented as a collection of the simplest elements available (called primitives).[67]

Programming is the process by which programmers combine these primitives to compose new programs, or adapt existing ones to
new uses or a changing environment.

Programs for a computer might be executed in a batch process without human interaction, or a user might type commands in an
interactive session of an interpreter. In this case the "commands" are simply programs, whose execution is chained together. When a
language can run its commands through an interpreter (such as a Unix shell or other command-line interface), without compiling, it is
called a scripting language.[68]

Proprietary languages

Use

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Domain_specific_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Java_programming_language
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/VBScript
https://en.wikipedia.org/wiki/Wolfram_Language
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Language_primitive
https://en.wikipedia.org/wiki/Computer_Programming
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Command_(computing)
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Scripting_language

Determining which is the most widely used programming language is difficult since the definition of usage varies by context. One
language may occupy the greater number of programmer hours, a different one has more lines of code, and a third may consume the
most CPU time. Some languages are very popular for particular kinds of applications. For example, COBOL is still strong in the
corporate data center, often on large mainframes;[69][70] Fortran in scientific and engineering applications; Ada in aerospace,
transportation, military, real-time and embedded applications; and C in embedded applications and operating systems. Other
languages are regularly used to write many different kinds of applications.

Various methods of measuring language popularity, each subject to a different bias over what is measured, have been proposed:

counting the number of job advertisements that mention the language[71]

the number of books sold that teach or describe the language[72]

estimates of the number of existing lines of code written in the language – which may underestimate languages not
often found in public searches[73]

counts of language references (i.e., to the name of the language) found using a web search engine.

Combining and averaging information from various internet sites, stackify.com reported the ten most popular programming languages
as (in descending order by overall popularity): Java, C, C++, Python, C#, JavaScript, VB .NET, R, PHP, and MATLAB.[74]

A dialect of a programming language or a data exchange language is a (relatively small) variation or extension of the language that
does not change its intrinsic nature. With languages such as Scheme and Forth, standards may be considered insufficient, inadequate
or illegitimate by implementors, so often they will deviate from the standard, making a new dialect. In other cases, a dialect is created
for use in a domain-specific language, often a subset. In the Lisp world, most languages that use basic S-expression syntax and Lisp-
like semantics are considered Lisp dialects, although they vary wildly, as do, say, Racket and Clojure. As it is common for one
language to have several dialects, it can become quite difficult for an inexperienced programmer to find the right documentation. The
BASIC programming language has many dialects.

The explosion of Forth dialects led to the saying "If you've seen one Forth... you've seen one Forth."

There is no overarching classification scheme for programming languages. A given programming language does not usually have a
single ancestor language. Languages commonly arise by combining the elements of several predecessor languages with new ideas in
circulation at the time. Ideas that originate in one language will diffuse throughout a family of related languages, and then leap
suddenly across familial gaps to appear in an entirely different family.

The task is further complicated by the fact that languages can be classified along multiple axes. For example, Java is both an object-
oriented language (because it encourages object-oriented organization) and a concurrent language (because it contains built-in
constructs for running multiple threads in parallel). Python is an object-oriented scripting language.

In broad strokes, programming languages divide into programming paradigms and a classification by intended domain of use, with
general-purpose programming languages distinguished from domain-specific programming languages. Traditionally, programming
languages have been regarded as describing computation in terms of imperative sentences, i.e. issuing commands. These are
generally called imperative programming languages. A great deal of research in programming languages has been aimed at blurring
the distinction between a program as a set of instructions and a program as an assertion about the desired answer, which is the main
feature of declarative programming.[75] More refined paradigms include procedural programming, object-oriented programming,
functional programming, and logic programming; some languages are hybrids of paradigms or multi-paradigmatic. An assembly
language is not so much a paradigm as a direct model of an underlying machine architecture. By purpose, programming languages

Measuring language usage

Dialects, flavors and implementations

Taxonomies

https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Data_exchange_language
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Dialect
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/Racket_(programming_language)
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/BASIC_programming_language
https://en.wikipedia.org/wiki/List_of_BASIC_dialects
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Assembly_language

might be considered general purpose, system programming languages, scripting languages, domain-specific languages, or
concurrent/distributed languages (or a combination of these).[76] Some general purpose languages were designed largely with
educational goals.[77]

A programming language may also be classified by factors unrelated to programming paradigm. For instance, most programming
languages use English language keywords, while a minority do not. Other languages may be classified as being deliberately esoteric
or not.

Comparison of programming languages (basic instructions)
Comparison of programming languages
Computer programming
Computer science and Outline of computer science
Domain-specific language
Domain-specific modelling
Educational programming language
Esoteric programming language
Extensible programming
Category:Extensible syntax programming languages
Invariant based programming
List of BASIC dialects
Lists of programming languages
List of programming language researchers
Programming languages used in most popular websites
Language-oriented programming
Logic programming
Literate programming
Metaprogramming

Ruby (programming language) § Metaprogramming

Modeling language
Programming language theory
Pseudocode
Rebol § Dialects
Reflection
Scientific programming language
Scripting language
Software engineering and List of software engineering topics

1. Koetsier, Teun (May 2001). "On the prehistory of programmable machines; musical automata, looms, calculators".
Mechanism and Machine Theory. 36 (5): 589–603. doi:10.1016/S0094-114X(01)00005-2 (https://doi.org/10.1016%2
FS0094-114X%2801%2900005-2).

2. Ettinger, James (2004) Jacquard's Web, Oxford University Press

3. Aaby, Anthony (2004). Introduction to Programming Languages (https://web.archive.org/web/20121108043216/http://
www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/intro.htm). Archived from the original (http://www.emu.edu.t
r/aelci/Courses/D-318/D-318-Files/plbook/intro.htm) on 8 November 2012. Retrieved 29 September 2012.

4. In mathematical terms, this means the programming language is Turing-complete MacLennan, Bruce J. (1987).
Principles of Programming Languages. Oxford University Press. p. 1. ISBN 978-0-19-511306-8.

See also

References

https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/Non-English-based_programming_languages
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://en.wikipedia.org/wiki/Comparison_of_programming_languages_(basic_instructions)
https://en.wikipedia.org/wiki/Comparison_of_programming_languages
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Outline_of_computer_science
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_modelling
https://en.wikipedia.org/wiki/Educational_programming_language
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://en.wikipedia.org/wiki/Extensible_programming
https://en.wikipedia.org/wiki/Category:Extensible_syntax_programming_languages
https://en.wikipedia.org/wiki/Invariant_based_programming
https://en.wikipedia.org/wiki/List_of_BASIC_dialects
https://en.wikipedia.org/wiki/Lists_of_programming_languages
https://en.wikipedia.org/wiki/List_of_programming_language_researchers
https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
https://en.wikipedia.org/wiki/Language-oriented_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Ruby_(programming_language)#Metaprogramming
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Programming_language_theory
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Rebol#Dialects
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Scientific_programming_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/List_of_software_engineering_topics
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2FS0094-114X%2801%2900005-2
https://web.archive.org/web/20121108043216/http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/intro.htm
http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/intro.htm
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-511306-8

5. ACM SIGPLAN (2003). "Bylaws of the Special Interest Group on Programming Languages of the Association for
Computing Machinery" (http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm). Archived (https://web.archive.org/web/
20060622110145/http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm) from the original on 22 June 2006. Retrieved
19 June 2006., "The scope of SIGPLAN is the theory, design, implementation, description, and application of
computer programming languages – languages that permit the specification of a variety of different computations,
thereby providing the user with significant control (immediate or delayed) over the computer's operation."

6. Dean, Tom (2002). "Programming Robots"
(http://www.cs.brown.edu/people/tld/courses/cs148/02/programming.html). Building Intelligent Robots. Brown
University Department of Computer Science. Archived (https://web.archive.org/web/20061029045949/http://www.cs.
brown.edu/people/tld/courses/cs148/02/programming.html) from the original on 29 October 2006. Retrieved
23 September 2006.

7. R. Narasimahan, Programming Languages and Computers: A Unified Metatheory, pp. 189—247 in Franz Alt, Morris
Rubinoff (eds.) Advances in computers, Volume 8, Academic Press, 1994, ISBN 0-12-012108-5, p.193 : "a complete
specification of a programming language must, by definition, include a specification of a processor—idealized, if you
will—for that language." [the source cites many references to support this statement]

8. Ben Ari, Mordechai (1996). Understanding Programming Languages. John Wiley and Sons. "Programs and
languages can be defined as purely formal mathematical objects. However, more people are interested in programs
than in other mathematical objects such as groups, precisely because it is possible to use the program—the
sequence of symbols—to control the execution of a computer. While we highly recommend the study of the theory of
programming, this text will generally limit itself to the study of programs as they are executed on a computer."

9. David A. Schmidt, The structure of typed programming languages, MIT Press, 1994, ISBN 0-262-19349-3, p. 32

10. Pierce, Benjamin (2002). Types and Programming Languages. MIT Press. p. 339. ISBN 978-0-262-16209-8.

11. Digital Equipment Corporation. "Information Technology – Database Language SQL (Proposed revised text of DIS
9075)" (http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt). ISO/IEC 9075:1992, Database Language
SQL. Archived (https://web.archive.org/web/20060621035823/http://www.contrib.andrew.cmu.edu/%7Eshadow/sql/s
ql1992.txt) from the original on 21 June 2006. Retrieved 29 June 2006.

12. The Charity Development Group (December 1996). "The CHARITY Home Page" (http://pll.cpsc.ucalgary.ca/charity1/
www/home.html). Archived (https://web.archive.org/web/20060718010551/http://pll.cpsc.ucalgary.ca/charity1/www/h
ome.html) from the original on 18 July 2006. Retrieved 29 June 2006., "Charity is a categorical programming
language...", "All Charity computations terminate."

13. XML in 10 points (http://www.w3.org/XML/1999/XML-in-10-points.html) Archived (https://web.archive.org/web/20090
906083110/http://www.w3.org/XML/1999/XML-in-10-points.html) 6 September 2009 at the Wayback Machine W3C,
1999, "XML is not a programming language."

14. Powell, Thomas (2003). HTML & XHTML: the complete reference. McGraw-Hill. p. 25. ISBN 978-0-07-222942-4.
"HTML is not a programming language."

15. Dykes, Lucinda; Tittel, Ed (2005). XML For Dummies (4th ed.). Wiley. p. 20. ISBN 978-0-7645-8845-7. "...it's a
markup language, not a programming language."

16. "What kind of language is XSLT?" (http://www.ibm.com/developerworks/library/x-xslt/). IBM.com. 20 April 2005.
Archived (https://web.archive.org/web/20110511192712/http://www.ibm.com/developerworks/library/x-xslt/) from the
original on 11 May 2011. Retrieved 3 December 2010.

17. "XSLT is a Programming Language" (http://msdn.microsoft.com/en-us/library/ms767587(VS.85).aspx).
Msdn.microsoft.com. Archived (https://web.archive.org/web/20110203015119/http://msdn.microsoft.com/en-us/librar
y/ms767587(VS.85).aspx) from the original on 3 February 2011. Retrieved 3 December 2010.

18. Scott, Michael (2006). Programming Language Pragmatics. Morgan Kaufmann. p. 802. ISBN 978-0-12-633951-2.
"XSLT, though highly specialized to the transformation of XML, is a Turing-complete programming language."

19. Oetiker, Tobias; Partl, Hubert; Hyna, Irene; Schlegl, Elisabeth (20 June 2016). "The Not So Short Introduction to
LATEX 2ε" (https://tobi.oetiker.ch/lshort/lshort.pdf) (Version 5.06). tobi.oetiker.ch. pp. 1–157. Archived (https://web.ar
chive.org/web/20170314015536/https://tobi.oetiker.ch/lshort/lshort.pdf) (PDF) from the original on 14 March 2017.
Retrieved 16 April 2017.

20. Syropoulos, Apostolos; Antonis Tsolomitis; Nick Sofroniou (2003). Digital typography using LaTeX. Springer-Verlag.
p. 213. ISBN 978-0-387-95217-8. "TeX is not only an excellent typesetting engine but also a real programming
language."

21. Robert A. Edmunds, The Prentice-Hall standard glossary of computer terminology, Prentice-Hall, 1985, p. 91

https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
https://web.archive.org/web/20060622110145/http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
http://www.cs.brown.edu/people/tld/courses/cs148/02/programming.html
https://web.archive.org/web/20061029045949/http://www.cs.brown.edu/people/tld/courses/cs148/02/programming.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-12-012108-5
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-19349-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-16209-8
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://web.archive.org/web/20060621035823/http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://pll.cpsc.ucalgary.ca/charity1/www/home.html
https://web.archive.org/web/20060718010551/http://pll.cpsc.ucalgary.ca/charity1/www/home.html
http://www.w3.org/XML/1999/XML-in-10-points.html
https://web.archive.org/web/20090906083110/http://www.w3.org/XML/1999/XML-in-10-points.html
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/W3C
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-222942-4
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7645-8845-7
http://www.ibm.com/developerworks/library/x-xslt/
https://web.archive.org/web/20110511192712/http://www.ibm.com/developerworks/library/x-xslt/
http://msdn.microsoft.com/en-us/library/ms767587(VS.85).aspx
https://web.archive.org/web/20110203015119/http://msdn.microsoft.com/en-us/library/ms767587(VS.85).aspx
https://en.wikipedia.org/wiki/Morgan_Kaufmann
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-633951-2
https://tobi.oetiker.ch/lshort/lshort.pdf
https://web.archive.org/web/20170314015536/https://tobi.oetiker.ch/lshort/lshort.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-95217-8

22. Pascal Lando, Anne Lapujade, Gilles Kassel, and Frédéric Fürst, Towards a General Ontology of Computer
Programs (http://home.mis.u-picardie.fr/~site-ic/site/IMG/pdf/ICSOFT2007_final.pdf) Archived (https://web.archive.or
g/web/20150707093557/http://home.mis.u-picardie.fr/~site-ic/site/IMG/pdf/ICSOFT2007_final.pdf) 7 July 2015 at the
Wayback Machine, ICSOFT 2007 (http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-1.html) Archived (https://web.archi
ve.org/web/20100427063709/http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-1.html) 27 April 2010 at the Wayback
Machine, pp. 163–170

23. S.K. Bajpai, Introduction To Computers And C Programming, New Age International, 2007, ISBN 81-224-1379-X, p.
346

24. R. Narasimahan, Programming Languages and Computers: A Unified Metatheory, pp. 189—247 in Franz Alt, Morris
Rubinoff (eds.) Advances in computers, Volume 8, Academic Press, 1994, ISBN 0-12-012108-5, p.215: "[...] the
model [...] for computer languages differs from that [...] for programming languages in only two respects. In a
computer language, there are only finitely many names—or registers—which can assume only finitely many values
—or states—and these states are not further distinguished in terms of any other attributes. [author's footnote:] This
may sound like a truism but its implications are far reaching. For example, it would imply that any model for
programming languages, by fixing certain of its parameters or features, should be reducible in a natural way to a
model for computer languages."

25. John C. Reynolds, "Some thoughts on teaching programming and programming languages", SIGPLAN Notices,
Volume 43, Issue 11, November 2008, p.109

26. Rojas, Raúl, et al. (2000). "Plankalkül: The First High-Level Programming Language and its Implementation". Institut
für Informatik, Freie Universität Berlin, Technical Report B-3/2000. (full text) (http://www.zib.de/zuse/Inhalt/Programm
e/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm) Archived (https://web.archive.org/web/20141018204625/h
ttp://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm) 18 October 2014 at
the Wayback Machine

27. Sebesta, W.S Concepts of Programming languages. 2006;M6 14:18 pp.44. ISBN 0-321-33025-0

28. Knuth, Donald E.; Pardo, Luis Trabb. "Early development of programming languages". Encyclopedia of Computer
Science and Technology. 7: 419–493.

29. Peter J. Bentley (2012). Digitized: The Science of Computers and how it Shapes Our World (https://books.google.co
m/books?id=kpYX_lNI0VMC). Oxford University Press. p. 87. ISBN 9780199693795. Archived (https://web.archive.o
rg/web/20160829191955/https://books.google.com/books?id=kpYX_lNI0VMC) from the original on 29 August 2016.

30. "Fortran creator John Backus dies - Tech and gadgets- msnbc.com" (http://www.msnbc.msn.com/id/17704662/).
MSNBC. 20 March 2007. Archived (https://web.archive.org/web/20100117182533/http://www.msnbc.msn.com/id/177
04662/) from the original on 17 January 2010. Retrieved 25 April 2010.

31. "CSC-302 99S : Class 02: A Brief History of Programming Languages" (http://www.math.grin.edu/~rebelsky/Course
s/CS302/99S/Outlines/outline.02.html). Math.grin.edu. Archived (https://web.archive.org/web/20100715042920/htt
p://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html) from the original on 15 July 2010.
Retrieved 25 April 2010.

32. Eugene Loh (18 June 2010). "The Ideal HPC Programming Language" (http://queue.acm.org/detail.cfm?id=182051
8). Queue. 8 (6). Archived (https://web.archive.org/web/20160304015345/http://queue.acm.org/detail.cfm?id=182051
8) from the original on 4 March 2016.

33. "HPL – A Portable Implementation of the High-Performance Linpack Benchmark for Distributed-Memory Computers"
(http://www.netlib.org/benchmark/hpl). Archived (https://web.archive.org/web/20150215031500/http://www.netlib.org/
benchmark/hpl/) from the original on 15 February 2015. Retrieved 21 February 2015.

34. Hopper (1978) p. 16.

35. Sammet (1969) p. 316

36. Sammet (1978) p. 204.

37. Richard L. Wexelblat: History of Programming Languages, Academic Press, 1981, chapter XIV.

38. François Labelle. "Programming Language Usage Graph" (http://www.cs.berkeley.edu/~flab/languages.html).
SourceForge. Archived (https://web.archive.org/web/20060617055109/http://www.cs.berkeley.edu/%7Eflab/language
s.html) from the original on 17 June 2006. Retrieved 21 June 2006.. This comparison analyzes trends in number of
projects hosted by a popular community programming repository. During most years of the comparison, C leads by a
considerable margin; in 2006, Java overtakes C, but the combination of C/C++ still leads considerably.

39. Hayes, Brian (2006). "The Semicolon Wars". American Scientist. 94 (4): 299–303. doi:10.1511/2006.60.299 (https://
doi.org/10.1511%2F2006.60.299).

http://home.mis.u-picardie.fr/~site-ic/site/IMG/pdf/ICSOFT2007_final.pdf
https://web.archive.org/web/20150707093557/http://home.mis.u-picardie.fr/~site-ic/site/IMG/pdf/ICSOFT2007_final.pdf
https://en.wikipedia.org/wiki/Wayback_Machine
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-1.html
https://web.archive.org/web/20100427063709/http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-1.html
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/81-224-1379-X
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-12-012108-5
https://en.wikipedia.org/wiki/SIGPLAN
https://en.wikipedia.org/wiki/Ra%C3%BAl_Rojas
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm
https://web.archive.org/web/20141018204625/http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-321-33025-0
https://books.google.com/books?id=kpYX_lNI0VMC
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780199693795
https://web.archive.org/web/20160829191955/https://books.google.com/books?id=kpYX_lNI0VMC
http://www.msnbc.msn.com/id/17704662/
https://web.archive.org/web/20100117182533/http://www.msnbc.msn.com/id/17704662/
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
https://web.archive.org/web/20100715042920/http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
http://queue.acm.org/detail.cfm?id=1820518
https://web.archive.org/web/20160304015345/http://queue.acm.org/detail.cfm?id=1820518
http://www.netlib.org/benchmark/hpl
https://web.archive.org/web/20150215031500/http://www.netlib.org/benchmark/hpl/
http://www.cs.berkeley.edu/~flab/languages.html
https://en.wikipedia.org/wiki/SourceForge
https://web.archive.org/web/20060617055109/http://www.cs.berkeley.edu/~flab/languages.html
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1511%2F2006.60.299

40. Dijkstra, Edsger W. (March 1968). "Go To Statement Considered Harmful" (http://www.cs.utexas.edu/users/EWD/ew
d02xx/EWD215.PDF) (PDF). Communications of the ACM. 11 (3): 147–148. doi:10.1145/362929.362947 (https://doi.
org/10.1145%2F362929.362947). Archived (https://web.archive.org/web/20140513014557/http://www.cs.utexas.edu/
users/EWD/ewd02xx/EWD215.PDF) (PDF) from the original on 13 May 2014. Retrieved 22 May 2014.

41. Tetsuro Fujise, Takashi Chikayama, Kazuaki Rokusawa, Akihiko Nakase (December 1994). "KLIC: A Portable
Implementation of KL1" Proc. of FGCS '94, ICOT Tokyo, December 1994. "Archived copy" (https://web.archive.org/w
eb/20060925132105/http://www.icot.or.jp/ARCHIVE/HomePage-E.html). Archived from the original (http://www.icot.o
r.jp/ARCHIVE/HomePage-E.html) on 25 September 2006. Retrieved 9 October 2006. KLIC is a portable
implementation of a concurrent logic programming language KL1.

42. Jim Bender (15 March 2004). "Mini-Bibliography on Modules for Functional Programming Languages" (http://readsch
eme.org/modules/). ReadScheme.org. Archived (https://web.archive.org/web/20060924085057/http://readscheme.or
g/modules/) from the original on 24 September 2006. Retrieved 27 September 2006.

43. Michael Sipser (1996). Introduction to the Theory of Computation. PWS Publishing. ISBN 978-0-534-94728-6.
Section 2.2: Pushdown Automata, pp.101–114.

44. Jeffrey Kegler, "Perl and Undecidability (http://www.jeffreykegler.com/Home/perl-and-undecidability) Archived (http
s://web.archive.org/web/20090817183115/http://www.jeffreykegler.com/Home/perl-and-undecidability) 17 August
2009 at the Wayback Machine", The Perl Review. Papers 2 and 3 prove, using respectively Rice's theorem and
direct reduction to the halting problem, that the parsing of Perl programs is in general undecidable.

45. Marty Hall, 1995, Lecture Notes: Macros (http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html) Archived (https://we
b.archive.org/web/20130806054148/http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html) 6 August 2013 at the
Wayback Machine, PostScript version (http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps) Archived (https://web.arc
hive.org/web/20000817211709/http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps) 17 August 2000 at the Wayback
Machine

46. Michael Lee Scott, Programming language pragmatics, Edition 2, Morgan Kaufmann, 2006, ISBN 0-12-633951-1, p.
18–19

47. Andrew Cooke. "Introduction To Computer Languages" (http://www.acooke.org/comp-lang.html). Archived (https://we
b.archive.org/web/20120815140215/http://www.acooke.org/comp-lang.html) from the original on 15 August 2012.
Retrieved 13 July 2012.

48. Specifically, instantiations of generic types are inferred for certain expression forms. Type inference in Generic Java
—the research language that provided the basis for Java 1.5's bounded parametric polymorphism extensions—is
discussed in two informal manuscripts from the Types mailing list: Generic Java type inference is unsound (http://ww
w.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html) Archived (https://web.archive.org/web/20070
129073839/http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html) 29 January 2007 at the
Wayback Machine (Alan Jeffrey, 17 December 2001) and Sound Generic Java type inference (http://www.seas.upen
n.edu/~sweirich/types/archive/1999-2003/msg00921.html) Archived (https://web.archive.org/web/20070129073849/h
ttp://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html) 29 January 2007 at the Wayback
Machine (Martin Odersky, 15 January 2002). C#'s type system is similar to Java's, and uses a similar partial type
inference scheme.

49. "Revised Report on the Algorithmic Language Scheme" (http://www.schemers.org/Documents/Standards/R5RS/HT
ML/r5rs-Z-H-4.html). 20 February 1998. Archived (https://web.archive.org/web/20060714212928/http://www.schemer
s.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-4.html) from the original on 14 July 2006. Retrieved 9 June 2006.

50. Luca Cardelli and Peter Wegner. "On Understanding Types, Data Abstraction, and Polymorphism" (http://citeseer.ist.
psu.edu/cardelli85understanding.html). Manuscript (1985). Archived (https://web.archive.org/web/20060619072646/
http://citeseer.ist.psu.edu/cardelli85understanding.html) from the original on 19 June 2006. Retrieved 9 June 2006.

51. Steven R. Fischer, A history of language, Reaktion Books, 2003, ISBN 1-86189-080-X, p. 205

52. Éric Lévénez (2011). "Computer Languages History" (http://www.levenez.com/lang/). Archived (https://web.archive.o
rg/web/20060107162045/http://www.levenez.com/lang/) from the original on 7 January 2006.

53. Jing Huang. "Artificial Language vs. Natural Language" (http://www.cs.cornell.edu/info/Projects/Nuprl/cs611/fall94not
es/cn2/subsection3_1_3.html). Archived (https://web.archive.org/web/20090903084542/http://www.cs.cornell.edu/inf
o/Projects/Nuprl/cs611/fall94notes/cn2/subsection3_1_3.html) from the original on 3 September 2009.

https://en.wikipedia.org/wiki/Edsger_Dijkstra
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F362929.362947
https://web.archive.org/web/20140513014557/http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
https://web.archive.org/web/20060925132105/http://www.icot.or.jp/ARCHIVE/HomePage-E.html
http://www.icot.or.jp/ARCHIVE/HomePage-E.html
https://en.wikipedia.org/wiki/KL1
http://readscheme.org/modules/
https://web.archive.org/web/20060924085057/http://readscheme.org/modules/
https://en.wikipedia.org/wiki/Michael_Sipser
https://en.wikipedia.org/wiki/Introduction_to_the_Theory_of_Computation
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-534-94728-6
http://www.jeffreykegler.com/Home/perl-and-undecidability
https://web.archive.org/web/20090817183115/http://www.jeffreykegler.com/Home/perl-and-undecidability
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Halting_problem
http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html
https://web.archive.org/web/20130806054148/http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/PostScript
http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps
https://web.archive.org/web/20000817211709/http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-12-633951-1
http://www.acooke.org/comp-lang.html
https://web.archive.org/web/20120815140215/http://www.acooke.org/comp-lang.html
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html
https://web.archive.org/web/20070129073839/http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Alan_Jeffrey
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html
https://web.archive.org/web/20070129073849/http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Martin_Odersky
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-4.html
https://web.archive.org/web/20060714212928/http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-4.html
https://en.wikipedia.org/wiki/Luca_Cardelli
https://en.wikipedia.org/wiki/Peter_Wegner
http://citeseer.ist.psu.edu/cardelli85understanding.html
https://web.archive.org/web/20060619072646/http://citeseer.ist.psu.edu/cardelli85understanding.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-86189-080-X
http://www.levenez.com/lang/
https://web.archive.org/web/20060107162045/http://www.levenez.com/lang/
http://www.cs.cornell.edu/info/Projects/Nuprl/cs611/fall94notes/cn2/subsection3_1_3.html
https://web.archive.org/web/20090903084542/http://www.cs.cornell.edu/info/Projects/Nuprl/cs611/fall94notes/cn2/subsection3_1_3.html

54. IBM in first publishing PL/I, for example, rather ambitiously titled its manual The universal programming language
PL/I (IBM Library; 1966). The title reflected IBM's goals for unlimited subsetting capability: "PL/I is designed in such a
way that one can isolate subsets from it satisfying the requirements of particular applications." ("PL/I" (http://www.enc
yclopediaofmath.org/index.php?title=PL/I&oldid=19175). Encyclopedia of Mathematics. Archived (https://web.archiv
e.org/web/20120426010947/http://www.encyclopediaofmath.org/index.php?title=PL%2FI&oldid=19175) from the
original on 26 April 2012. Retrieved 29 June 2006.). Ada and UNCOL had similar early goals.

55. Frederick P. Brooks, Jr.: The Mythical Man-Month, Addison-Wesley, 1982, pp. 93–94

56. Dijkstra, Edsger W. On the foolishness of "natural language programming." (http://www.cs.utexas.edu/users/EWD/tra
nscriptions/EWD06xx/EWD667.html) Archived (https://web.archive.org/web/20080120201526/http://www.cs.utexas.e
du/users/EWD/transcriptions/EWD06xx/EWD667.html) 20 January 2008 at the Wayback Machine EWD667.

57. Perlis, Alan (September 1982). "Epigrams on Programming" (http://www-pu.informatik.uni-tuebingen.de/users/klaere
n/epigrams.html). SIGPLAN Notices Vol. 17, No. 9. pp. 7–13. Archived (https://web.archive.org/web/1999011703444
5/http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html) from the original on 17 January 1999.

58. Milner, R.; M. Tofte; R. Harper; D. MacQueen (1997). The Definition of Standard ML (Revised). MIT Press.
ISBN 978-0-262-63181-5.

59. Kelsey, Richard; William Clinger; Jonathan Rees (February 1998). "Section 7.2 Formal semantics" (http://www.sche

mers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-10.html#%_sec_7.2). Revised5 Report on the Algorithmic
Language Scheme. Archived (https://web.archive.org/web/20060706081110/http://www.schemers.org/Documents/St
andards/R5RS/HTML/r5rs-Z-H-10.html#%_sec_7.2) from the original on 6 July 2006. Retrieved 9 June 2006.

60. ANSI – Programming Language Rexx, X3-274.1996

61. Steve, McConnell. Code complete (Second ed.). Redmond, Washington. pp. 590, 600. ISBN 0735619670.
OCLC 54974573 (https://www.worldcat.org/oclc/54974573).

62. See: Oracle America, Inc. v. Google, Inc.

63. "Guide to Programming Languages | ComputerScience.org" (https://www.computerscience.org/resources/computer-
programming-languages/). ComputerScience.org. Retrieved 2018-05-13.

64. "The basics" (https://www.ibm.com/developerworks/library/os-erlang1/index.html). www.ibm.com. 2011-05-10.
Retrieved 2018-05-13.

65. "HOPL: an interactive Roster of Programming Languages" (https://web.archive.org/web/20110220044217/http://hopl.
murdoch.edu.au/). Australia: Murdoch University. Archived from the original (http://hopl.murdoch.edu.au/) on 20
February 2011. Retrieved 1 June 2009. "This site lists 8512 languages."

66. Mayer, Philip; Bauer, Alexander (2015). An empirical analysis of the utilization of multiple programming languages in
open source projects. Proceedings of the 19th International Conference on Evaluation and Assessment in Software
Engineering – EASE '15. New York, NY, USA: ACM. pp. 4:1–4:10. doi:10.1145/2745802.2745805 (https://doi.org/10.
1145%2F2745802.2745805). ISBN 978-1-4503-3350-4. "Results: We found (a) a mean number of 5 languages per
project with a clearly dominant main general-purpose language and 5 often-used DSL types, (b) a significant
influence of the size, number of commits, and the main language on the number of languages as well as no
significant influence of age and number of contributors, and (c) three language ecosystems grouped around XML,
Shell/Make, and HTML/CSS. Conclusions: Multi-language programming seems to be common in open-source
projects and is a factor which must be dealt with in tooling and when assessing development and maintenance of
such software systems."

67. Abelson, Sussman, and Sussman. "Structure and Interpretation of Computer Programs" (https://web.archive.org/we
b/20090226050622/http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html). Archived from the original (http://mit
press.mit.edu/sicp/full-text/book/book-Z-H-10.html) on 26 February 2009. Retrieved 3 March 2009.

68. Brown Vicki (1999). "Scripting Languages" (http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguag
es/index.html). mactech.com. Archived (https://web.archive.org/web/20171202235828/http://www.mactech.com/articl
es/mactech/Vol.15/15.09/ScriptingLanguages/index.html) from the original on 2 December 2017. Retrieved
17 November 2014.

69. Georgina Swan (21 September 2009). "COBOL turns 50" (http://www.computerworld.com.au/article/319269/cobol_tu
rns_50/). computerworld.com.au. Archived (https://web.archive.org/web/20131019181128/http://www.computerworld.
com.au/article/319269/cobol_turns_50/) from the original on 19 October 2013. Retrieved 19 October 2013.

70. Ed Airey (3 May 2012). "7 Myths of COBOL Debunked" (http://www.developer.com/lang/other/7-myths-of-cobol-debu
nked.html). developer.com. Archived (https://web.archive.org/web/20131019171802/http://www.developer.com/lang/
other/7-myths-of-cobol-debunked.html) from the original on 19 October 2013. Retrieved 19 October 2013.

http://www.encyclopediaofmath.org/index.php?title=PL/I&oldid=19175
https://web.archive.org/web/20120426010947/http://www.encyclopediaofmath.org/index.php?title=PL%2FI&oldid=19175
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/UNCOL
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html
https://web.archive.org/web/20080120201526/http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html
https://en.wikipedia.org/wiki/Wayback_Machine
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
https://web.archive.org/web/19990117034445/http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
https://en.wikipedia.org/wiki/Robin_Milner
https://en.wikipedia.org/wiki/Mads_Tofte
https://en.wikipedia.org/wiki/Robert_Harper_(computer_scientist)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-63181-5
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-10.html#%_sec_7.2
https://web.archive.org/web/20060706081110/http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-10.html#%_sec_7.2
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0735619670
https://en.wikipedia.org/wiki/OCLC
https://www.worldcat.org/oclc/54974573
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.
https://www.computerscience.org/resources/computer-programming-languages/
https://www.ibm.com/developerworks/library/os-erlang1/index.html
https://web.archive.org/web/20110220044217/http://hopl.murdoch.edu.au/
https://en.wikipedia.org/wiki/Murdoch_University
http://hopl.murdoch.edu.au/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F2745802.2745805
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-3350-4
https://web.archive.org/web/20090226050622/http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
https://web.archive.org/web/20171202235828/http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.computerworld.com.au/article/319269/cobol_turns_50/
https://web.archive.org/web/20131019181128/http://www.computerworld.com.au/article/319269/cobol_turns_50/
http://www.developer.com/lang/other/7-myths-of-cobol-debunked.html
https://web.archive.org/web/20131019171802/http://www.developer.com/lang/other/7-myths-of-cobol-debunked.html

71. Nicholas Enticknap. "SSL/Computer Weekly IT salary survey: finance boom drives IT job growth" (http://www.comput
erweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm).
Computerweekly.com. Archived (https://web.archive.org/web/20111026035734/http://www.computerweekly.com/Artic
les/2007/09/11/226631/SSLComputer-Weekly-IT-salary-survey-finance-boom-drives-IT-job.htm) from the original on
26 October 2011. Retrieved 14 June 2013.

72. "Counting programming languages by book sales" (https://web.archive.org/web/20080517023127/http://radar.oreilly.
com/archives/2006/08/programming_language_trends_1.html). Radar.oreilly.com. 2 August 2006. Archived from the
original (http://radar.oreilly.com/archives/2006/08/programming_language_trends_1.html) on 17 May 2008. Retrieved
3 December 2010.

73. Bieman, J.M.; Murdock, V., Finding code on the World Wide Web: a preliminary investigation, Proceedings First
IEEE International Workshop on Source Code Analysis and Manipulation, 2001

74. "Most Popular and Influential Programming Languages of 2018" (https://stackify.com/popular-programming-language
s-2018/). stackify.com. 2017-12-18. Retrieved 2018-08-29.

75. Carl A. Gunter, Semantics of Programming Languages: Structures and Techniques, MIT Press, 1992, ISBN 0-262-
57095-5, p. 1

76. "TUNES: Programming Languages" (http://tunes.org/wiki/programming_20languages.html). Archived (https://web.arc
hive.org/web/20071020203251/http://tunes.org/wiki/programming_20languages.html) from the original on 20 October
2007.

77. Wirth, Niklaus (1993). Recollections about the development of Pascal (http://portal.acm.org/citation.cfm?id=155378).
Proc. 2nd ACM SIGPLAN Conference on History of Programming Languages. 28. pp. 333–342.
CiteSeerX 10.1.1.475.6989 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.6989).
doi:10.1145/154766.155378 (https://doi.org/10.1145%2F154766.155378). ISBN 978-0-89791-570-0. Retrieved
30 June 2006.

Abelson, Harold; Sussman, Gerald Jay (1996).
Structure and Interpretation of Computer Programs
(2nd ed.). MIT Press. Archived from the original on 9
March 2018. Retrieved 22 October 2011.

Raphael Finkel: Advanced Programming Language
Design, Addison Wesley 1995.

Daniel P. Friedman, Mitchell Wand, Christopher T.
Haynes: Essentials of Programming Languages, The
MIT Press 2001.

Maurizio Gabbrielli and Simone Martini: "Programming
Languages: Principles and Paradigms", Springer,
2010.

David Gelernter, Suresh Jagannathan: Programming
Linguistics, The MIT Press 1990.

Ellis Horowitz (ed.): Programming Languages, a
Grand Tour (3rd ed.), 1987.

Ellis Horowitz: Fundamentals of Programming
Languages, 1989.

Shriram Krishnamurthi: Programming Languages:
Application and Interpretation, online publication.

Bruce J. MacLennan: Principles of Programming
Languages: Design, Evaluation, and Implementation,
Oxford University Press 1999.

John C. Mitchell: Concepts in Programming
Languages, Cambridge University Press 2002.

Benjamin C. Pierce: Types and Programming
Languages, The MIT Press 2002.

Terrence W. Pratt and Marvin V. Zelkowitz:
Programming Languages: Design and Implementation
(4th ed.), Prentice Hall 2000.

Peter H. Salus. Handbook of Programming Languages
(4 vols.). Macmillan 1998.

Ravi Sethi: Programming Languages: Concepts and
Constructs, 2nd ed., Addison-Wesley 1996.

Michael L. Scott: Programming Language Pragmatics,
Morgan Kaufmann Publishers 2005.

Robert W. Sebesta: Concepts of Programming
Languages, 9th ed., Addison Wesley 2009.

Franklyn Turbak and David Gifford with Mark Sheldon:
Design Concepts in Programming Languages, The
MIT Press 2009.

Peter Van Roy and Seif Haridi. Concepts, Techniques,
and Models of Computer Programming, The MIT
Press 2004.

David A. Watt. Programming Language Concepts and
Paradigms. Prentice Hall 1990.

David A. Watt and Muffy Thomas. Programming
Language Syntax and Semantics. Prentice Hall 1991.

David A. Watt. Programming Language Processors.
Prentice Hall 1993.

David A. Watt. Programming Language Design
Concepts. John Wiley & Sons 2004.

Further reading

http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
https://web.archive.org/web/20111026035734/http://www.computerweekly.com/Articles/2007/09/11/226631/SSLComputer-Weekly-IT-salary-survey-finance-boom-drives-IT-job.htm
https://web.archive.org/web/20080517023127/http://radar.oreilly.com/archives/2006/08/programming_language_trends_1.html
http://radar.oreilly.com/archives/2006/08/programming_language_trends_1.html
https://stackify.com/popular-programming-languages-2018/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-57095-5
http://tunes.org/wiki/programming_20languages.html
https://web.archive.org/web/20071020203251/http://tunes.org/wiki/programming_20languages.html
https://en.wikipedia.org/wiki/Niklaus_Wirth
http://portal.acm.org/citation.cfm?id=155378
https://en.wikipedia.org/wiki/CiteSeerX
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.6989
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F154766.155378
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-89791-570-0
https://en.wikipedia.org/wiki/Harold_Abelson
https://en.wikipedia.org/wiki/Gerald_Jay_Sussman
https://web.archive.org/web/20180309173822/https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html
https://en.wikipedia.org/wiki/Raphael_Finkel
https://web.archive.org/web/20141022141742/http://www.nondot.org/sabre/Mirrored/AdvProgLangDesign/
https://en.wikipedia.org/wiki/Daniel_P._Friedman
https://en.wikipedia.org/wiki/Mitchell_Wand
https://en.wikipedia.org/w/index.php?title=Christopher_T._Haynes&action=edit&redlink=1
https://en.wikipedia.org/wiki/Essentials_of_Programming_Languages
https://en.wikipedia.org/wiki/David_Gelernter
https://en.wikipedia.org/w/index.php?title=Suresh_Jagannathan&action=edit&redlink=1
https://en.wikipedia.org/wiki/The_MIT_Press
https://en.wikipedia.org/wiki/Ellis_Horowitz
https://en.wikipedia.org/wiki/Shriram_Krishnamurthi
https://en.wikipedia.org/wiki/Programming_Languages:_Application_and_Interpretation
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
https://en.wikipedia.org/w/index.php?title=Bruce_J._MacLennan&action=edit&redlink=1
https://en.wikipedia.org/wiki/Oxford_University_Press
https://en.wikipedia.org/wiki/John_C._Mitchell
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Benjamin_C._Pierce
https://en.wikipedia.org/wiki/Types_and_Programming_Languages
https://en.wikipedia.org/w/index.php?title=Terrence_W._Pratt&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Marvin_V._Zelkowitz&action=edit&redlink=1
https://en.wikipedia.org/wiki/Peter_H._Salus
https://en.wikipedia.org/wiki/Ravi_Sethi
https://en.wikipedia.org/wiki/Addison-Wesley
https://en.wikipedia.org/wiki/Michael_L._Scott
https://en.wikipedia.org/wiki/Morgan_Kaufmann_Publishers
https://en.wikipedia.org/w/index.php?title=Robert_W._Sebesta&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Franklyn_Turbak&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=David_Gifford&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Mark_Sheldon&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Peter_Van_Roy&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Seif_Haridi&action=edit&redlink=1
https://en.wikipedia.org/wiki/Concepts,_Techniques,_and_Models_of_Computer_Programming
https://en.wikipedia.org/wiki/David_A._Watt
https://en.wikipedia.org/w/index.php?title=Muffy_Thomas&action=edit&redlink=1

Retrieved from "https://en.wikipedia.org/w/index.php?title=Programming_language&oldid=891798739"

This page was last edited on 10 April 2019, at 06:57 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

External links

https://en.wikipedia.org/w/index.php?title=Programming_language&oldid=891798739
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

