
Operating Systems (ECEg-4181)

Wednesday, April 29, 2020

Mequanent Argaw Muluneh

Process Synchronization



❖ The Critical Section Problem

❖ Peterson’s Solution

❖ Synchronization Hardware

❖Mutex Locks

❖ Semaphores

❖ Classic Problems of Synchronization

❖Monitors

Operating Systems, Debre Markos University

2

Outline   

Wednesday, April 29, 2020



❖ To introduce the critical-section problem, whose solutions can

be used to ensure the consistency of shared data.

❖ To present both software and hardware solutions of the

critical-section problem.

❖ To examine several classical process-synchronization

problems.

❖ To explore several tools that are used to solve process

synchronization problems.
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Objectives
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❖ Processes can execute concurrently or in parallel.

❖ The scheduler switches rapidly to provide concurrent execution.

❖ Thus, a process may only partially complete its execution before

another process is scheduled.

❖ Concurrent access to shared data may result in data inconsistency.

❖ Maintaining data consistency requires mechanisms to ensure the orderly

execution of cooperating processes.

❖ Illustration of the problem:

❖ Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers.

Background 

Wednesday, April 29, 2020



Operating Systems, Debre Markos University

5

while (true)

{

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) 

;   /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
Wednesday, April 29, 2020

❖ We can do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is set to 0. It is incremented

by the producer after it produces a new buffer and is decremented by
the consumer after it consumes a buffer.

Background … 

Producer-Consumer: Producer

This was[(in + 1) % BUFFER_SIZE == out]

previously.
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while (true)

{

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 

Wednesday, April 29, 2020

Background … 

Producer-Consumer: Consumer

This was[in == out]

previously.



❖ counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

❖ counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

❖ Consider this execution interleaving with “counter = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1   {register2 = 4} 
S4: producer execute counter = register1        {counter = 6 } 
S5: consumer execute counter = register2         {counter = 4}
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Race Condition
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❖ A situation like above, where several processes access and

manipulate the same data concurrently and the outcome of the

execution depends on the particular order in which the access

takes place, is called a race condition.

❖ To guard against the race condition above, we need to ensure

that only one process at a time can be manipulating the variable

counter.

❖ To make such a guarantee, we require that the processes be

synchronized in some way.
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Race Condition …
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❖ Consider system of n processes {p0, p1, … pn-1} each process

having critical section (CS) segment of code

❖ Process may be changing common variables, updating a

table, writing a file, and so on.

❖When one process executes its critical section, no other

process is allowed to execute its critical section.

❖ The critical-section problem is to design a protocol that the

processes can use to cooperate.
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The Critical Section Problem
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Wednesday, April 29, 2020

The Critical Section …

❖ Each process must request permission by its entry section to 
enter its critical section. 

❖ The critical section may be followed by an exit section. The 
remaining code is the remainder section.

❖ General structure of a typical 

process Pi  



❖ A solution to the critical-section problem must satisfy the
following three requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the processes that will enter the critical section next cannot be
postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a process
has made a request to enter its critical section and before that request is
granted.

❖ Assumption: each process is executing at a nonzero speed.
However, no assumption concerning the relative speed of the n
processes.
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Solution to Critical Section Problem
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The Critical Section …



❖ Two general approaches are used to handle critical sections in

operating systems:

❖ Preemptive kernels – allow a process to be preempted while it is

running in kernel mode.

❖ Non-preemptive kernels– do not allow a process running in

kernel mode to be preempted. It runs until it exits kernel mode,

blocks, or voluntarily yields control of the CPU.

❖ Hence, it is free from race conditions on kernel data

structures, as only one process is active in the kernel at a time.

Operating Systems, Debre Markos University

12

Critical Section Handling in OS
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❖ Petrson’s Solution is a good algorithmic description of solving the

critical section (CS) problem for two processes.

❖ Assume that the load and store machine-language instructions are

atomic; i.e. cannot be interrupted.

❖ The two processes share two variables:

❖ int turn;

❖ Boolean flag[2]

❖ The variable turn indicates whose turn it is to enter the critical section.

❖ The flag array is used to indicate if a process is ready to enter the

critical section. flag[i] = true implies that process Pi is ready!
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Peterson’s Solution

Wednesday, April 29, 2020



do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 
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The structure of process Pi in Peterson’s solution.
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Peterson’s Solution …



❖ Provable that the three critical section requirements are met in

Peterson’s solution:

❖ Mutual exclusion is preserved since Pi enters CS only if:

❖ either flag[j] = false or turn = i

❖ If Pj resets flag[j] to true, it must also set turn to i.

Thus, since Pi does not change the value of the variable turn

while executing the while statement, Pi will enter the critical

section (progress) after at most one entry by Pj (bounded

waiting).
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Peterson’s Solution …
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❖Many systems provide hardware support for implementing the critical
section code.

❖ All solutions to be discussed below ranging from hardware to software-
APIs are based on idea of locking.

❖ Protecting critical regions via locks.

❖ Single-processor environments could disable interrupts while modifying a
shared variable to solve the CS problem.

❖ Currently running code would execute without preemption.

❖ Disabling interrupts is not feasible on multiprocessor systems.

❖ Modern machines provide special atomic (non-interruptible) hardware
instructions. These instructions allow us to:

❖ Either test memory word and set value

❖ Or compare and swap contents of two memory words atomically.
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Synchronization Hardware
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do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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Solution to Critical Section Problem Using Locks
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Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.
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Test_and_Set Instruciton

Wednesday, April 29, 2020

Synchronization Hardware …



❖ The shared boolean variable lock, is initialized to false.

❖ Solution:

do {

while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true); 
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Solution Using Test_and_Set()
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Synchronization Hardware …

Do you think that all the above three requirements are satisfied?



❖ Definition:

int compare_and_swap(int *value,int expected,int new_value){ 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set the value of the passed parameter “new_value” to the variable “value” but

only if “value” ==“expected”. That is, the swap takes place only under this

condition.
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Compare_and_Swap Instruction
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Synchronization Hardware …



❖ The shared integer  “lock” is initialized to 0; 

❖ Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 
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Solution Using Compare_and_Swap
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Synchronization Hardware …

Do you think that all the above three requirements are satisfied?



do {
waiting[i] = true;
key = true;
while (waiting[i] && key) 

key = test_and_set(&lock); 

waiting[i] = false; 

/* critical section */ 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = false; 

else 

waiting[j] = false; 

/* remainder section */ 

} while (true); Operating Systems, Debre Markos University
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Bounded_Waiting Mutual Exclusion with Test_and_Set
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Synchronization Hardware …

Both test_and_set() and

compare_and_swap()

algorithms satisfy mutual

exclusion but not bounded-

waiting. test_and_set() is

improved as shown on the

right to meet the bounded-

waiting requirement. Both

waiting[i] and key are

initialized to false.



❖ The hardware-based solutions to the CS problem discussed above are 
complicated and generally inaccessible to application programmers.

❖ OS designers build software tools to solve critical section problem.

❖ The simplest of these tools is the mutex lock.

❖ Protect a CS since a process must first acquire() a lock before entering 
the CS and then release() the lock when it exiting the CS.

❖ Mutex lock uses a boolean variable available whose value 

indicates if lock is available or not.

❖ Calls to acquire() and release() must be performed atomically.

❖ Often implemented using one of the above hardware mechanisms.

❖ The main disadvantage of the implementation given here is that it 
requires busy waiting.

❖ This lock is therefore called a spinlock since a process “spins” while 
waiting for the lock to become available.
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Mutex Locks
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❖ acquire() {
while (!available) 

; /* busy wait */ 

available = false;; 

} 

❖ release() { 

available = true; 

} 

❖ do { 

acquire lock

critical section

release lock 

remainder section 

} while (true); 
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acquire() and release()
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Mutex Locks …

Definition of acquire()

Definition of release()

Solution to the critical-section 
problem using mutex locks.



❖ Semaphore is a robust tool that can behave similarly to a mutex lock

but can also provide more sophisticated ways for processes to

synchronize their activities.

❖ A semaphore S is an integer variable that, apart from initialization, is

accessed only through two standard atomic operations: wait() and

signal().

❖ The definition of wait() operation

❖ The definition of signal() operation
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Semaphores 
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wait(S) {

while (S <= 0)

; // busy wait

S--;

}

signal(S) {

S++;

}



❖ Operating systems often distinguish between counting and binary

semaphores.

❖ The value of a counting semaphore can range over an unrestricted

domain.

❖ The value of a binary semaphore can range only between 0 and 1.

❖ Thus, binary semaphores behave similarly to mutex locks.

❖ Consider P1 and P2 that require S1 to happen before S2

❖ Create a semaphore “synch” initialized to 0.
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Semaphore Usage
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Semaphores … 

P2:

wait(synch);

S2;

P1:

S1;

signal(synch);



❖ Semaphore implementation must guarantee that no two processes can

execute the wait() and signal() on the same semaphore at the same

time.

❖ Thus, the implementation becomes the critical section problem where the

wait and signal code are placed in the critical section.

❖ We could now have busy waiting in critical section implementation

❖ But implementation code is short.

❖ Little busy waiting if critical section is rarely occupied.

❖ Note that applications may spend lots of time in critical sections and

therefore this is not a good solution.
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Semaphore Implementation 
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❖With each semaphore there is an associated waiting queue.

❖ Each entry in a waiting queue has two data items:

❖ value (of type integer)

❖ pointer to next record in the list

❖ Two operations:

❖ block – place the process invoking the operation on the
appropriate waiting queue.

❖wakeup – remove one of processes in the waiting queue and
place it in the ready queue.

typedef struct{

int value;

struct process *list;

} semaphore;
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Semaphore Implementation With No Busy Waiting 
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Semaphores … 



wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {
add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {
remove a process P from S->list; 

wakeup(P); 

} 

} 
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Implementation With No Busy Waiting …
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Semaphores … 



❖ Deadlock – two or more processes are waiting indefinitely for an event

that can be caused by only one of the waiting processes.

❖ Let S and Q be two semaphores initialized to 1 and accessed by

processes P0 and P1.

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

❖ Starvation – indefinite blocking: a process may never be removed

from the semaphore queue in which it is suspended.
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Deadlock and Starvation
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Semaphores … 



❖ Classical problems used to test newly-proposed synchronization 

schemes.

❖ Bounded-Buffer Problem

❖ Readers and Writers Problem

❖ Dining-Philosophers Problem
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Classical Problems of Synchronization
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❖ n buffers, each can hold one item.

❖ Semaphore mutex initialized to the value 1

❖ Semaphore full initialized to the value 0

❖ Semaphore empty initialized to the value n
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Bounded-Buffer Problem
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❖ Structure of the producer process
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Bounded-Buffer Problem …
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Classical Problems of Sync …

❖ Structure of the consumer process

do { 

...

/* produce an item in

next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next_produced

to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);

Do { 

wait(full); 

wait(mutex); 

...

/* remove an item from 

buffer to 

next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item 

in next consumed */ 

...

} while (true); 



❖ A data set is shared among a number of concurrent processes.

❖ Readers – only read the data set; they do not perform any updates.

❖Writers – can both read and write.

❖ Problem – allow multiple readers to read at the same time and only
one single writer can access the shared data at a time.

❖ There are several variations of how readers and writers are considered
all involving some form of priorities.

❖ Shared data set includes:

❖ Semaphore rw_mutex initialized to 1

❖ Semaphore mutex initialized to 1

❖ Integer read_count initialized to 0
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Readers-Writers Problem 
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❖ The structure of a 

writer process
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Readers-Writers Problem …
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do {

wait(rw_mutex); 

...

/* writing 

is performed */ 

... 

signal(rw_mutex); 

} while (true);

do {

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read_count--;

if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);

❖ The structure of a reader process



❖ First variation – no reader is kept waiting unless writer has already

obtained permission to use shared object.

❖ Second variation – once writer is ready, it performs the write as soon

as possible.

❖ Both may have starvation leading to even more variations.
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Readers-Writers Problem Variations
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❖ Philosophers spend their lives alternating

thinking and eating.

❖ Don’t interact with their neighbors, occasionally

try to pick up 2 chopsticks (one at a time) to eat

from bowl.

❖ Need both to eat, then release both when

done.

❖ In the case of 5 philosophers.

❖ Shared data

❖ Bowl of rice (data set).

❖ Semaphore chopstick [5] initialized to 1.
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Dining-Philosophers Problem
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❖ Deadlock handling

❖ Allow at most 4 philosophers to be sitting simultaneously at the

table.

❖ Allow a philosopher to pick up the forks only if both are available

(picking must be done in a critical section).

❖ Use an asymmetric solution - an odd-numbered philosopher

picks up first the left chopstick and then the right chopstick. Even-

numbered philosopher picks up first the right chopstick and then

the left chopstick.
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Dining-Philosophers Problem …
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❖ Using semaphores incorrectly can result in timing errors that are difficult to

detect.

❖ These errors happen only if particular execution sequences take place and

these sequences do not always occur.

❖ Some incorrect use of semaphore operations:

❖ signal (mutex) …. wait (mutex)

❖ wait (mutex) … wait (mutex)

❖ Omitting of wait (mutex) or signal (mutex) (or both)

❖ Deadlock and starvation are possible and mutual exclusion can be

violated.

Operating Systems, Debre Markos University

39

Problems with Semaphores
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❖Monitor is a high-level abstraction that provides a convenient and
effective mechanism for process synchronization.

❖ Abstract data type, internal variables are only accessible by code within
the procedure.

❖ Only one process is active within the monitor at a time.

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
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Schematic View of a Monitor
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❖ However, this monitor construct is not
sufficiently powerful to model some
synchronization schemes.

❖ For this purpose, we need to define
additional synchronization mechanisms.

❖ These mechanisms are provided by the
condition construct.

❖ A programmer who needs to write a
tailor-made synchronization scheme can
define one or more variables of type
condition:
❖ condition x, y;



❖ Two operations are allowed on a condition variable:

❖ x.wait() – a process that invokes the operation is

suspended until x.signal().

❖ x.signal() – resumes one of processes (if any) that

invoked x.wait().

❖ If no x.wait() on the variable, then it has no effect on

the variable.
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Condition Variables
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Monitor with Condition Variables
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❖ If process P invokes

x.signal(), and process Q

is suspended in x.wait(),

what should happen next?

❖ Both Q and P cannot

execute in parallel.

❖ If Q is resumed, then P

must wait.



❖ Two possibilities exist

❖ Signal and wait – P waits until Q either leaves the monitor or it waits

for another condition.

❖ Signal and continue – Q waits until P either leaves the monitor or it

waits for another condition.

❖ Both options have pros and cons – language implementer can decide.

❖ Monitors implemented in Concurrent Pascal compromise between the

two choices: when P executes signal, it immediately leaves the monitor &

Q is resumed.
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Condition Variables Choices 
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monitor DiningPhilosophers

{ 

enum { THINKING, HUNGRY, EATING} state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Monitor Solution to Dining Philosophers
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void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] == EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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Monitor Solution to Dining Philosophers …
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❖ Each philosopher i invokes the operations pickup() and putdown()

in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

❖ No deadlock, but starvation is possible which leads a philosopher to

death.
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Monitor Solution to Dining-Philosophers …
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❖ If several processes queued on a condition x, and x.signal() is 

executed, which process should be resumed?

❖ FCFS is used frequently even if it is not adequate.

❖ conditional-wait construct of the form x.wait(c)

❖Where c is priority number

❖ Process with lowest number (highest priority) is scheduled next.
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❖ Allocate a single resource among competing processes using priority

numbers that specify the maximum time a process plans to use the

resource.

R.acquire(t);

...

access the resurce;

...

R.release;

❖Where R is an instance of  type ResourceAllocator
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Single Resource Allocation



monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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A Monitor to Allocate Single Resource
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Questions???

Reference: Silberschatz et al., Operating System Concepts, Ninth Edition, 2013.


