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 Process Concept

 Process Scheduling 

 Operations on Processes

 Interprocess Communication (IPC)

 Threads
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Outline   



 To introduce the notion of a process—a program in execution,

which forms the basis of all computation.

 To describe the various features of processes, including

scheduling, creation, and termination.

 To explore interprocess communication using shared memory

and message passing.
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Objectives  



 Process is a program in execution.

 Program is a passive entity stored on disk (executable file)

where as process is active entity being executed.

 Program becomes process when an executable file is loaded into

memory.

 Execution of program can be started via GUI mouse clicks,

command line entry of its name, etc.

 One program can be several processes.

 Consider multiple users executing the same program as an example.
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Process Concept
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Process in Memory  

Process Concept …  

 A process is more than the program
code or the text section.

 It also includes:

 program counter to indicate next
instruction.

 stack as a temporary data storage
for parameters, return addresses
and local variables.

 data section for global variables.

 heap dynamically allocated for the
process at runtime.



 As a process executes, it changes state. A process may be in one

of the following states:

 new: the process is being created.

 running: instructions are being executed.

 waiting: the process is waiting for some event to occur.

 ready: the process is waiting to be assigned to a processor.

 terminated: the process has finished execution.
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Process State  

Process Concept …  
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Diagram of Process State

Process State …  

Process Concept …  
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Process Control Block (PCB)  

Process Concept …  

PCB (task control block) contains many pieces of
information associated with a specific process, including
these:

 Process state – new, ready, running, waiting, etc.

 Program counter – location of instruction to execute next.

 CPU registers – contents of all process-centric registers.

 CPU scheduling information- priorities, scheduling queue
pointers.

 Memory-management information – memory allocated to
the process, values of the base and index registers.

 Accounting information – includes: CPU used, real time
used, time limits, job or process numbers.

 I/O status information – I/O devices allocated to process,
list of open files.
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 The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization.

 The objective of time sharing is to switch the CPU among

processes so frequently that users can interact with each

program while it is running.

 To meet these objectives, the process scheduler selects

among available processes for execution on CPU.
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Process Scheduling  



 As processes enter the system, they are put into a job queue.

 Job queue – consists of all processes in the system.

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute. This queue is stored as a linked list.

 Device queues – set of processes waiting for a particular I/O

device. Each device has its own device queue.

 Processes migrate among the various queues.

Wednesday, April 29, 2020Operating Systems, 2. Processes, Debre Markos University

10

Process Scheduling …  

Scheduling Queues
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Ready Queue and Various I/O Device Queues

Process Scheduling …  



Queuing diagram represents queues, resources, flows
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Representation of Process Scheduling

Process Scheduling …  
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 Short-term scheduler (CPU scheduler) – selects which process should be
executed next and allocates CPU.

 Sometimes the only scheduler in a system.

 Short-term scheduler is invoked frequently (milliseconds)  (must be
fast)

 Long-term scheduler (job scheduler) – selects which processes should
be brought into the ready queue.

 Long-term scheduler is invoked infrequently (seconds, minutes) 
(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations.

 CPU-bound process – spends more time doing computations.

 Long-term scheduler selects a good process mix of I/O-bound and CPU-
bound processes.
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Schedulers 
Process Scheduling …  
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 Medium-term scheduler  can be added if degree of multiprogramming 

needs to decrease.

 Remove process from memory, store on disk, bring back in from 

disk to continue execution: swapping
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Addition of Medium Term Scheduling

Process Scheduling …  
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 When CPU switches to another process, the system must save the state

of the old process and load the saved state for the new process via a

context switch.

 Context of a process is represented in the PCB.

 Context-switch time is overhead since the system does no useful work

while switching.

 The more complex the OS and the PCB  the longer the context

switch.

 Context switch is highly dependent on hardware support.

 Some processors provide multiple sets of registers.
Wednesday, April 29, 2020

Context Switch

Process Scheduling …  
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 Parent process creates children processes, which, in turn
create other processes, forming a tree of processes.

 Generally, process is identified and managed via a process
identifier (pid).

 Resource sharing options between the parent & child processes.

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 Execution options

 Parent and children may execute concurrently.

 Parent waits until its children have terminated.
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Operations on Processes

Process Creation  
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Process Creation …  

 Address space possibilities for a child process:

 Child is duplicate of its parent (the same program and data as parent).

 Child has a new program loaded into it.

 UNIX examples

 A new process is created by the fork() system call.

 After a fork() system call, one of the processes uses the exec() system

call to replace the process’s memory space with a new program.

Operations on Processes …
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Process Creation …  

Operations on Processes …

C Program Forking
Separate Process
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 Process executes last statement and then asks the operating system to

delete it using the exit() system call.

 The process may return a status value to its parent process via

wait() system call.

 All process’ resources are deallocated by the operating system

 A parent may terminate the execution of one of its children for a variety of

reasons, such as these:

 The child has exceeded the allocated resources

 Task assigned to child process is no longer required.

 The parent is exiting and the operating system does not allow a child to

continue if its parent terminates.
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Process Termination  

Operations on Processes …
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 If a process terminates, then all its children must also be terminated.

This phenomenon is referred to as cascading termination.

 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by using

the wait()system call. The call returns status information and the

pid of the terminated process

 pid = wait(&status);

 A terminated process whose parent has not yet called wait() is a

zombie process.

 If parent terminated without invoking wait(), process is an orphan.
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Process Termination …

Operations on Processes …



 Processes within a system may be independent or cooperating.

 Independent process cannot affect or be affected by the execution of another
process

 Cooperating process can affect or be affected by other processes, including
sharing data.

 Any process that shares data with other processes is a cooperating process.

 Reasons for cooperating processes:

 Information sharing: several users may want to access the same data
concurrently.

 Computation speedup: subdividing a task to run faster if the system is
multicore.

 Modularity: dividing the system functions into separate processes or threads.

 Convenience: users may work many tasks at same time.

 Cooperating processes need interprocess communication (IPC) mechanism.
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Interprocess Communication 
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(a) Message passing.  (b) shared memory. 

Wednesday, April 29, 2020

 There are two fundamental models of IPC.

Interprocess Communication … 



Operating Systems, 2. Processes, Debre Markos University

23

 Shared memory is an area of memory shared among the

processes that wish to communicate

 The communication is under the control of the user processes

not the operating system.

 Major issue is to provide a mechanism that will allow the user

processes to synchronize their actions when they access

shared memory.

 Processes are not allowed to write simultaneously.
Wednesday, April 29, 2020

Interprocess Communication …

Shared Memory
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 It is a common paradigm for cooperating processes.

 Producer process produces information that is consumed by a
consumer process.

 There must be a buffer of items that can be filled by the producer
and emptied by the consumer. The buffer may be:

 unbounded-buffer places no practical limit on the size of the
buffer. Producer produces without limit while the consumer
waits when the buffer is empty.

 bounded-buffer assumes that there is a fixed buffer size.
Producer waits when buffer is full and consumer waits when
buffer is empty.
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Producer-Consumer Problem

Interprocess Communication … 
Shared Memory …
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 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Wednesday, April 29, 2020

Bounded-Buffer  Solution

Shared Memory …

Interprocess Communication … 

Producer-Consumer Problem …
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item next_produced; 

while (true) { 

/* produce an item in next produced */ 

while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing  -- no free buffers */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

} 
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Shared Memory …

Bounded-Buffer: Producer 

Producer-Consumer Problem …

The producer process has a local variable next_produced in which the 

new item to be produced is stored.

Interprocess Communication … 
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item next_consumed; 

while (true) {
while (in == out) 

; /* do nothing */
next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */ 

} 
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Shared Memory …

Producer-Consumer Problem …

Bounded-Buffer: Consumer 

Interprocess Communication … 
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 Message passing provides a mechanism for processes to communicate and

to synchronize their actions without sharing the same address space.

 It is particularly useful in a distributed environment.

 IPC facility provides at least two operations:

 send(message)

 receive(message)

 Themessage size can be either fixed or variable

Wednesday, April 29, 2020

Message Passing

Interprocess Communication … 



Operating Systems, 2. Processes, Debre Markos University

29

 If processes P and Qwish to communicate, they need to:

 Establish a communication link between them.

 Exchange messages via send/receive.

 Here are several methods for logically implementing a link and the

send()/receive() operations:

 Direct or indirect communication

 Synchronous or asynchronous communication

 Automatic or explicit buffering
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Message Passing … 

Interprocess Communication … 
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 Processes must name each other explicitly:

 send (P, message) – send a message to process P.

 receive(Q, message) – receive a message from process Q.

 Properties of communication link in this scheme:

 Links are established automatically if processes to communicate

know each other’s identity.

 A link is associated with exactly two processes.

 Between each pair of processes, there exists exactly one link.
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Direct Communication

Interprocess Communication … 

Message Passing … 
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 Messages are sent to and received from mailboxes, or ports.

 Each mailbox has a unique id and processes can communicate only if they

have a shared a mailbox.

 send (A, message) – send a message to mailbox A.

 receive(A, message) – receive a message from mailbox A.

 Properties of communication link

 The link is established only if processes share a common mailbox.

 A link may be associated with more than two processes.

 Each pair of processes may share several communication links.
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Indirect Communication 

Interprocess Communication … 
Message Passing … 
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 Message passing may be either blocking or non-blocking.

 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is received.

 Blocking receive -- the receiver blocks until a message is available.

 Non-blocking is considered asynchronous

 Non-blocking send -- the sender sends the message and continues.

 Non-blocking receive -- the receiver receives either a valid message
or null.

 Different combinations of send() and receive() are possible.

 If both send() and receive() are blocking, we have a rendezvous (like
planned meeting with a certain time and place.)
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Synchronization 

Interprocess Communication … 
Message Passing … 
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 Messages exchanged by communicating processes reside in a temporary

queue.

 Such queues can be implemented in three ways:

1. Zero capacity – no messages are queued on the link. Sender must

block to wait for receiver (rendezvous).

2. Bounded capacity – the queue has finite length n, thus n of

messages. Sender must block (wait) if link full.

3. Unbounded capacity – infinite queue length. Sender never blocks.
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Buffering 

Interprocess Communication … 
Message Passing … 



 POSIX Shared Memory is organized using memory-mapped files.

 Process first creates shared memory segment

int shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 The last parameter establishes the directory permissions of the shared-

memory object. Also used to open an existing segment to share it.

 Set the size of the object

ftruncate(shm_fd, 4096); 

 Now the process could write to the shared memory

sprintf(shm_fd, "Writing to shared memory");
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Examples: POSIX Shared Memory

Interprocess Communication … 
Message Passing … 
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Interprocess Communication … 
Message Passing … 



Operating Systems, 2. Processes, Debre Markos University

36

 A thread is a basic unit of CPU utilization.

 It comprises a threadID, a program counter, a register set, and a

stack.

 It shares with other threads belonging to the same process its

code section, data section, and other operating-system resources,

such as open files and signals.

 A traditional (or heavy weight) process has a single thread of

control. If a process has multiple threads of control, it can perform

more than one task at a time.
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Threads
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Single and Multithreaded Processes

Threads …
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 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces.

 Resource Sharing – threads share memory and the resources

of process, easier than shared memory or message passing.

 Economy – cheaper than process creation, thread switching

lower overhead than context switching.

 Scalability – process can take advantage of multiprocessor

architectures.
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Benefits of Multithreaded Programming

Threads …



 Multicore or multiprocessor systems putting pressure on programmers,
challenges include:

 Identifying tasks: involves examining applications to find areas that can be
divided into separate, concurrent tasks.

 Balance: programmers must also ensure that the tasks perform equal
work of equal value.

 Data splitting: as tasks divide, the data used to run them need to be
divided.

 Data dependency: data accessed by tasks must be checked for
dependency and synchronized.

 Testing and debugging: is more difficult in parallel tasks passing different
paths.

 Parallelism implies a system can perform more than one task simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency
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Multicore Programming 

Threads …
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 There are two primary ways of implementing a thread library.

 To implement a library entirely in user space with no kernel
support.

 To implement a kernel-level library supported directly by the
OS.

 Three primary thread libraries are in use today:

 Pthreads: the threads extension of the POSIX standard.
Pthreads may be provided as either a user-level or a kernel-level
library.

 Windows thread library: is a kernel-level library on Windows
systems.

 Java threads: created and managed directly in Java programs.
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User Threads and Kernel Threads

Threads …
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User Threads and Kernel Threads …

Threads …

(a) A user-level threads package
(b) A threads package managed 
by the kernel.
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 A kernel thread, also known as a lightweight process, is a
thread that the operating system knows about.

 Switching between kernel threads of the same process
requires a small context switch.

 The values of registers, program counter, and stack pointer
must be changed.

 Memory management information does not need to be
changed since the threads share an address space.

 The kernel must manage and schedule threads (as well as
processes), but it can use the same process scheduling
algorithms.

 Switching between kernel threads is slightly faster than
switching between processes.
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Kernel Threads

Threads …
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 A user-level thread is a thread that the OS does not know

about.

 The OS only knows about the process containing the threads.

 The OS only schedules the process, not the threads within the

process.

 The programmer uses a thread library to manage threads

(create and delete them, synchronize them, and schedule

them).

Wednesday, April 29, 2020

User-Level Threads 

Threads …
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 There is no context switch involved when switching threads.

 User-level thread scheduling is more flexible.

 A user-level code can define a problem-dependent thread

scheduling policy.

 Each process might use a different scheduling algorithm for its own

threads.

 A thread can voluntarily give up the processor by telling the

scheduler it will yield to other threads.

 User-level threads do not require system calls to create them or context

switches to move between them.

 User-level threads are typically much faster than kernel thread.
Wednesday, April 29, 2020

User-Level Threads … 
Advantages … 

Threads …
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 Since the OS does not know about the existence of the user-level threads, it

may make poor scheduling decisions:

 It might run a process that only has idle threads.

 If a user-level thread is waiting for I/O, the entire process will wait.

 Solving this problem requires communication between the kernel and

the user-level thread manager.

 Since the OS just knows about the process, it schedules the process the

same way as other processes, regardless of the number of user threads.

 For kernel threads, the more threads a process creates, the more time slices

the OS will dedicate to it.
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User-Level Threads … 

Disadvantages … 

Threads …
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 A relationship must exist between user threads 

and kernel threads.

 Three common ways of establishing such a 

relationship:

 Many-to-One

 One-to-One

 Many-to-Many

Wednesday, April 29, 2020

Multithreading Models

Threads …
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 Many user-level threads mapped to single kernel thread.

 Entire process will be blocked if a thread makes a blocking system call.

 Multiple threads cannot run in parallel on multicore system because

only one thread can access the kernel at a time.

 Few systems currently use this model.

 Examples:

 Solaris Green Threads

 GNU Portable Threads

Wednesday, April 29, 2020

Many-to-One

Threads …
Multithreading Models …
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 Each user-level thread mapped to a kernel thread.

 This allows more concurrency than many-to-one model.

 Creating a user-level thread requires creating a corresponding kernel

thread.

 Number of threads per process sometimes restricted due to the

overhead creating kernel threads.

 Examples

 Windows, Linux, Solaris 9

and later

Wednesday, April 29, 2020

One-to-One

Threads …
Multithreading Models …
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 Multiplexes many user-level threads to a smaller or equal number of

kernel threads.

 Allows developers to create sufficient number of user threads.

 E.g. Solaris older versions then version 9.
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Many-to-Many Model

Threads …
Multithreading Models …



 Thread library provides programmer with API for creating and

managing threads

 There are two primary ways of implementing a thread library.

 To provide a library entirely in user space with no kernel support.

 To implement a kernel-level library supported directly by the

operating system.
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Thread Libraries 

Threads …
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 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) defining an API for thread

creation and synchronization.

 This is a Specification for thread behavior, not implementation.

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)
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PThreads

Threads …
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PThreads Example

Operating Systems, 2. Processes, Debre Markos University

Threads …
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PThreads Example …

Threads …
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End of Chapter 2

Questions???

Reference: Silberschatz et al., Operating System Concepts, Ninth Edition, 2013.


