
Chapter 2

Operating Systems (ECEg-4181)

Wednesday, April 29, 2020

Mequanent Argaw Muluneh

Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication (IPC)

 Threads

Operating Systems, 2. Processes, Debre Markos University

2

Wednesday, April 29, 2020

Outline

 To introduce the notion of a process—a program in execution,

which forms the basis of all computation.

 To describe the various features of processes, including

scheduling, creation, and termination.

 To explore interprocess communication using shared memory

and message passing.

Operating Systems, 2. Processes, Debre Markos University

3

Wednesday, April 29, 2020

Objectives

 Process is a program in execution.

 Program is a passive entity stored on disk (executable file)

where as process is active entity being executed.

 Program becomes process when an executable file is loaded into

memory.

 Execution of program can be started via GUI mouse clicks,

command line entry of its name, etc.

 One program can be several processes.

 Consider multiple users executing the same program as an example.

Operating Systems, 2. Processes, Debre Markos University

4

Wednesday, April 29, 2020

Process Concept

Operating Systems, 2. Processes, Debre Markos University

5

Wednesday, April 29, 2020

Process in Memory

Process Concept …

 A process is more than the program
code or the text section.

 It also includes:

 program counter to indicate next
instruction.

 stack as a temporary data storage
for parameters, return addresses
and local variables.

 data section for global variables.

 heap dynamically allocated for the
process at runtime.

 As a process executes, it changes state. A process may be in one

of the following states:

 new: the process is being created.

 running: instructions are being executed.

 waiting: the process is waiting for some event to occur.

 ready: the process is waiting to be assigned to a processor.

 terminated: the process has finished execution.

Operating Systems, 2. Processes, Debre Markos University

6

Wednesday, April 29, 2020

Process State

Process Concept …

Operating Systems, 2. Processes, Debre Markos University

7

Wednesday, April 29, 2020

Diagram of Process State

Process State …

Process Concept …

Operating Systems, 2. Processes, Debre Markos University

8

Wednesday, April 29, 2020

Process Control Block (PCB)

Process Concept …

PCB (task control block) contains many pieces of
information associated with a specific process, including
these:

 Process state – new, ready, running, waiting, etc.

 Program counter – location of instruction to execute next.

 CPU registers – contents of all process-centric registers.

 CPU scheduling information- priorities, scheduling queue
pointers.

 Memory-management information – memory allocated to
the process, values of the base and index registers.

 Accounting information – includes: CPU used, real time
used, time limits, job or process numbers.

 I/O status information – I/O devices allocated to process,
list of open files.

Operating Systems, 2. Processes, Debre Markos University

9

 The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization.

 The objective of time sharing is to switch the CPU among

processes so frequently that users can interact with each

program while it is running.

 To meet these objectives, the process scheduler selects

among available processes for execution on CPU.

Wednesday, April 29, 2020

Process Scheduling

 As processes enter the system, they are put into a job queue.

 Job queue – consists of all processes in the system.

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute. This queue is stored as a linked list.

 Device queues – set of processes waiting for a particular I/O

device. Each device has its own device queue.

 Processes migrate among the various queues.

Wednesday, April 29, 2020Operating Systems, 2. Processes, Debre Markos University

10

Process Scheduling …

Scheduling Queues

Operating Systems, 2. Processes, Debre Markos University

11

Wednesday, April 29, 2020

Ready Queue and Various I/O Device Queues

Process Scheduling …

Queuing diagram represents queues, resources, flows

Operating Systems, 2. Processes, Debre Markos University

12

Wednesday, April 29, 2020

Representation of Process Scheduling

Process Scheduling …

Operating Systems, 2. Processes, Debre Markos University

13

 Short-term scheduler (CPU scheduler) – selects which process should be
executed next and allocates CPU.

 Sometimes the only scheduler in a system.

 Short-term scheduler is invoked frequently (milliseconds)  (must be
fast)

 Long-term scheduler (job scheduler) – selects which processes should
be brought into the ready queue.

 Long-term scheduler is invoked infrequently (seconds, minutes) 
(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations.

 CPU-bound process – spends more time doing computations.

 Long-term scheduler selects a good process mix of I/O-bound and CPU-
bound processes.

Wednesday, April 29, 2020

Schedulers
Process Scheduling …

Operating Systems, 2. Processes, Debre Markos University

14

 Medium-term scheduler can be added if degree of multiprogramming

needs to decrease.

 Remove process from memory, store on disk, bring back in from

disk to continue execution: swapping

Wednesday, April 29, 2020

Addition of Medium Term Scheduling

Process Scheduling …

Operating Systems, 2. Processes, Debre Markos University

15

 When CPU switches to another process, the system must save the state

of the old process and load the saved state for the new process via a

context switch.

 Context of a process is represented in the PCB.

 Context-switch time is overhead since the system does no useful work

while switching.

 The more complex the OS and the PCB  the longer the context

switch.

 Context switch is highly dependent on hardware support.

 Some processors provide multiple sets of registers.
Wednesday, April 29, 2020

Context Switch

Process Scheduling …

Operating Systems, 2. Processes, Debre Markos University

16

 Parent process creates children processes, which, in turn
create other processes, forming a tree of processes.

 Generally, process is identified and managed via a process
identifier (pid).

 Resource sharing options between the parent & child processes.

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 Execution options

 Parent and children may execute concurrently.

 Parent waits until its children have terminated.
Wednesday, April 29, 2020

Operations on Processes

Process Creation

Operating Systems, 2. Processes, Debre Markos University

17

Wednesday, April 29, 2020

Process Creation …

 Address space possibilities for a child process:

 Child is duplicate of its parent (the same program and data as parent).

 Child has a new program loaded into it.

 UNIX examples

 A new process is created by the fork() system call.

 After a fork() system call, one of the processes uses the exec() system

call to replace the process’s memory space with a new program.

Operations on Processes …

Operating Systems, 2. Processes, Debre Markos University

18

Wednesday, April 29, 2020

Process Creation …

Operations on Processes …

C Program Forking
Separate Process

Operating Systems, 2. Processes, Debre Markos University

19

 Process executes last statement and then asks the operating system to

delete it using the exit() system call.

 The process may return a status value to its parent process via

wait() system call.

 All process’ resources are deallocated by the operating system

 A parent may terminate the execution of one of its children for a variety of

reasons, such as these:

 The child has exceeded the allocated resources

 Task assigned to child process is no longer required.

 The parent is exiting and the operating system does not allow a child to

continue if its parent terminates.
Wednesday, April 29, 2020

Process Termination

Operations on Processes …

Operating Systems, 2. Processes, Debre Markos University

20

 If a process terminates, then all its children must also be terminated.

This phenomenon is referred to as cascading termination.

 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by using

the wait()system call. The call returns status information and the

pid of the terminated process

 pid = wait(&status);

 A terminated process whose parent has not yet called wait() is a

zombie process.

 If parent terminated without invoking wait(), process is an orphan.
Wednesday, April 29, 2020

Process Termination …

Operations on Processes …

 Processes within a system may be independent or cooperating.

 Independent process cannot affect or be affected by the execution of another
process

 Cooperating process can affect or be affected by other processes, including
sharing data.

 Any process that shares data with other processes is a cooperating process.

 Reasons for cooperating processes:

 Information sharing: several users may want to access the same data
concurrently.

 Computation speedup: subdividing a task to run faster if the system is
multicore.

 Modularity: dividing the system functions into separate processes or threads.

 Convenience: users may work many tasks at same time.

 Cooperating processes need interprocess communication (IPC) mechanism.

Operating Systems, 2. Processes, Debre Markos University

21

Wednesday, April 29, 2020

Interprocess Communication

Operating Systems, 2. Processes, Debre Markos University

22

(a) Message passing. (b) shared memory.

Wednesday, April 29, 2020

 There are two fundamental models of IPC.

Interprocess Communication …

Operating Systems, 2. Processes, Debre Markos University

23

 Shared memory is an area of memory shared among the

processes that wish to communicate

 The communication is under the control of the user processes

not the operating system.

 Major issue is to provide a mechanism that will allow the user

processes to synchronize their actions when they access

shared memory.

 Processes are not allowed to write simultaneously.
Wednesday, April 29, 2020

Interprocess Communication …

Shared Memory

Operating Systems, 2. Processes, Debre Markos University

24

 It is a common paradigm for cooperating processes.

 Producer process produces information that is consumed by a
consumer process.

 There must be a buffer of items that can be filled by the producer
and emptied by the consumer. The buffer may be:

 unbounded-buffer places no practical limit on the size of the
buffer. Producer produces without limit while the consumer
waits when the buffer is empty.

 bounded-buffer assumes that there is a fixed buffer size.
Producer waits when buffer is full and consumer waits when
buffer is empty.

Wednesday, April 29, 2020

Producer-Consumer Problem

Interprocess Communication …
Shared Memory …

Operating Systems, 2. Processes, Debre Markos University

25

 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Wednesday, April 29, 2020

Bounded-Buffer Solution

Shared Memory …

Interprocess Communication …

Producer-Consumer Problem …

Operating Systems, 2. Processes, Debre Markos University

26

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing -- no free buffers */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Wednesday, April 29, 2020

Shared Memory …

Bounded-Buffer: Producer

Producer-Consumer Problem …

The producer process has a local variable next_produced in which the

new item to be produced is stored.

Interprocess Communication …

Operating Systems, 2. Processes, Debre Markos University

27

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Wednesday, April 29, 2020

Shared Memory …

Producer-Consumer Problem …

Bounded-Buffer: Consumer

Interprocess Communication …

Operating Systems, 2. Processes, Debre Markos University
28

 Message passing provides a mechanism for processes to communicate and

to synchronize their actions without sharing the same address space.

 It is particularly useful in a distributed environment.

 IPC facility provides at least two operations:

 send(message)

 receive(message)

 Themessage size can be either fixed or variable

Wednesday, April 29, 2020

Message Passing

Interprocess Communication …

Operating Systems, 2. Processes, Debre Markos University

29

 If processes P and Qwish to communicate, they need to:

 Establish a communication link between them.

 Exchange messages via send/receive.

 Here are several methods for logically implementing a link and the

send()/receive() operations:

 Direct or indirect communication

 Synchronous or asynchronous communication

 Automatic or explicit buffering

Wednesday, April 29, 2020

Message Passing …

Interprocess Communication …

Operating Systems, 2. Processes, Debre Markos University

30

 Processes must name each other explicitly:

 send (P, message) – send a message to process P.

 receive(Q, message) – receive a message from process Q.

 Properties of communication link in this scheme:

 Links are established automatically if processes to communicate

know each other’s identity.

 A link is associated with exactly two processes.

 Between each pair of processes, there exists exactly one link.

Wednesday, April 29, 2020

Direct Communication

Interprocess Communication …

Message Passing …

Operating Systems, 2. Processes, Debre Markos University

31

 Messages are sent to and received from mailboxes, or ports.

 Each mailbox has a unique id and processes can communicate only if they

have a shared a mailbox.

 send (A, message) – send a message to mailbox A.

 receive(A, message) – receive a message from mailbox A.

 Properties of communication link

 The link is established only if processes share a common mailbox.

 A link may be associated with more than two processes.

 Each pair of processes may share several communication links.
Wednesday, April 29, 2020

Indirect Communication

Interprocess Communication …
Message Passing …

Operating Systems, 2. Processes, Debre Markos University

32

 Message passing may be either blocking or non-blocking.

 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is received.

 Blocking receive -- the receiver blocks until a message is available.

 Non-blocking is considered asynchronous

 Non-blocking send -- the sender sends the message and continues.

 Non-blocking receive -- the receiver receives either a valid message
or null.

 Different combinations of send() and receive() are possible.

 If both send() and receive() are blocking, we have a rendezvous (like
planned meeting with a certain time and place.)

Wednesday, April 29, 2020

Synchronization

Interprocess Communication …
Message Passing …

Operating Systems, 2. Processes, Debre Markos University

33

 Messages exchanged by communicating processes reside in a temporary

queue.

 Such queues can be implemented in three ways:

1. Zero capacity – no messages are queued on the link. Sender must

block to wait for receiver (rendezvous).

2. Bounded capacity – the queue has finite length n, thus n of

messages. Sender must block (wait) if link full.

3. Unbounded capacity – infinite queue length. Sender never blocks.

Wednesday, April 29, 2020

Buffering

Interprocess Communication …
Message Passing …

 POSIX Shared Memory is organized using memory-mapped files.

 Process first creates shared memory segment

int shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 The last parameter establishes the directory permissions of the shared-

memory object. Also used to open an existing segment to share it.

 Set the size of the object

ftruncate(shm_fd, 4096);

 Now the process could write to the shared memory

sprintf(shm_fd, "Writing to shared memory");

Operating Systems, 2. Processes, Debre Markos University

34

Wednesday, April 29, 2020

Examples: POSIX Shared Memory

Interprocess Communication …
Message Passing …

Operating Systems, 2. Processes, Debre Markos University

35

Wednesday, April 29, 2020

Interprocess Communication …
Message Passing …

Operating Systems, 2. Processes, Debre Markos University

36

 A thread is a basic unit of CPU utilization.

 It comprises a threadID, a program counter, a register set, and a

stack.

 It shares with other threads belonging to the same process its

code section, data section, and other operating-system resources,

such as open files and signals.

 A traditional (or heavy weight) process has a single thread of

control. If a process has multiple threads of control, it can perform

more than one task at a time.

Wednesday, April 29, 2020

Threads

Operating Systems, 2. Processes, Debre Markos University

37

Wednesday, April 29, 2020

Single and Multithreaded Processes

Threads …

Operating Systems, 2. Processes, Debre Markos University

38

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces.

 Resource Sharing – threads share memory and the resources

of process, easier than shared memory or message passing.

 Economy – cheaper than process creation, thread switching

lower overhead than context switching.

 Scalability – process can take advantage of multiprocessor

architectures.

Wednesday, April 29, 2020

Benefits of Multithreaded Programming

Threads …

 Multicore or multiprocessor systems putting pressure on programmers,
challenges include:

 Identifying tasks: involves examining applications to find areas that can be
divided into separate, concurrent tasks.

 Balance: programmers must also ensure that the tasks perform equal
work of equal value.

 Data splitting: as tasks divide, the data used to run them need to be
divided.

 Data dependency: data accessed by tasks must be checked for
dependency and synchronized.

 Testing and debugging: is more difficult in parallel tasks passing different
paths.

 Parallelism implies a system can perform more than one task simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

Operating Systems, 2. Processes, Debre Markos University

39

Wednesday, April 29, 2020

Multicore Programming

Threads …

Operating Systems, 2. Processes, Debre Markos University

40

 There are two primary ways of implementing a thread library.

 To implement a library entirely in user space with no kernel
support.

 To implement a kernel-level library supported directly by the
OS.

 Three primary thread libraries are in use today:

 Pthreads: the threads extension of the POSIX standard.
Pthreads may be provided as either a user-level or a kernel-level
library.

 Windows thread library: is a kernel-level library on Windows
systems.

 Java threads: created and managed directly in Java programs.

Wednesday, April 29, 2020

User Threads and Kernel Threads

Threads …

Operating Systems, 2. Processes, Debre Markos University

41

Wednesday, April 29, 2020

User Threads and Kernel Threads …

Threads …

(a) A user-level threads package
(b) A threads package managed
by the kernel.

Operating Systems, 2. Processes, Debre Markos University

42

 A kernel thread, also known as a lightweight process, is a
thread that the operating system knows about.

 Switching between kernel threads of the same process
requires a small context switch.

 The values of registers, program counter, and stack pointer
must be changed.

 Memory management information does not need to be
changed since the threads share an address space.

 The kernel must manage and schedule threads (as well as
processes), but it can use the same process scheduling
algorithms.

 Switching between kernel threads is slightly faster than
switching between processes.

Wednesday, April 29, 2020

Kernel Threads

Threads …

Operating Systems, 2. Processes, Debre Markos University

43

 A user-level thread is a thread that the OS does not know

about.

 The OS only knows about the process containing the threads.

 The OS only schedules the process, not the threads within the

process.

 The programmer uses a thread library to manage threads

(create and delete them, synchronize them, and schedule

them).

Wednesday, April 29, 2020

User-Level Threads

Threads …

Operating Systems, 2. Processes, Debre Markos University

44

 There is no context switch involved when switching threads.

 User-level thread scheduling is more flexible.

 A user-level code can define a problem-dependent thread

scheduling policy.

 Each process might use a different scheduling algorithm for its own

threads.

 A thread can voluntarily give up the processor by telling the

scheduler it will yield to other threads.

 User-level threads do not require system calls to create them or context

switches to move between them.

 User-level threads are typically much faster than kernel thread.
Wednesday, April 29, 2020

User-Level Threads …
Advantages …

Threads …

Operating Systems, 2. Processes, Debre Markos University

45

 Since the OS does not know about the existence of the user-level threads, it

may make poor scheduling decisions:

 It might run a process that only has idle threads.

 If a user-level thread is waiting for I/O, the entire process will wait.

 Solving this problem requires communication between the kernel and

the user-level thread manager.

 Since the OS just knows about the process, it schedules the process the

same way as other processes, regardless of the number of user threads.

 For kernel threads, the more threads a process creates, the more time slices

the OS will dedicate to it.
Wednesday, April 29, 2020

User-Level Threads …

Disadvantages …

Threads …

Operating Systems, 2. Processes, Debre Markos University

46

 A relationship must exist between user threads

and kernel threads.

 Three common ways of establishing such a

relationship:

 Many-to-One

 One-to-One

 Many-to-Many

Wednesday, April 29, 2020

Multithreading Models

Threads …

Operating Systems, 2. Processes, Debre Markos University

47

 Many user-level threads mapped to single kernel thread.

 Entire process will be blocked if a thread makes a blocking system call.

 Multiple threads cannot run in parallel on multicore system because

only one thread can access the kernel at a time.

 Few systems currently use this model.

 Examples:

 Solaris Green Threads

 GNU Portable Threads

Wednesday, April 29, 2020

Many-to-One

Threads …
Multithreading Models …

Operating Systems, 2. Processes, Debre Markos University

48

 Each user-level thread mapped to a kernel thread.

 This allows more concurrency than many-to-one model.

 Creating a user-level thread requires creating a corresponding kernel

thread.

 Number of threads per process sometimes restricted due to the

overhead creating kernel threads.

 Examples

 Windows, Linux, Solaris 9

and later

Wednesday, April 29, 2020

One-to-One

Threads …
Multithreading Models …

Operating Systems, 2. Processes, Debre Markos University

49

 Multiplexes many user-level threads to a smaller or equal number of

kernel threads.

 Allows developers to create sufficient number of user threads.

 E.g. Solaris older versions then version 9.

Wednesday, April 29, 2020

Many-to-Many Model

Threads …
Multithreading Models …

 Thread library provides programmer with API for creating and

managing threads

 There are two primary ways of implementing a thread library.

 To provide a library entirely in user space with no kernel support.

 To implement a kernel-level library supported directly by the

operating system.

Operating Systems, 2. Processes, Debre Markos University

50

Wednesday, April 29, 2020

Thread Libraries

Threads …

Operating Systems, 2. Processes, Debre Markos University

51

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) defining an API for thread

creation and synchronization.

 This is a Specification for thread behavior, not implementation.

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Wednesday, April 29, 2020

PThreads

Threads …

52

Wednesday, April 29, 2020

PThreads Example

Operating Systems, 2. Processes, Debre Markos University

Threads …

Operating Systems, 2. Processes, Debre Markos University

53

Wednesday, April 29, 2020

PThreads Example …

Threads …

Wednesday, April 29, 2020Operating Systems, 2. Processes, Debre Markos University

54

End of Chapter 2

Questions???

Reference: Silberschatz et al., Operating System Concepts, Ninth Edition, 2013.

