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❖ Swapping

❖ Contiguous Memory Allocation

❖ Segmentation

❖ Paging

❖ Structure of the Page Table
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❖ To provide a detailed description of various ways of

organizing memory hardware.

❖ To explore various techniques of allocating memory to

processes.

❖ To discuss in detail how paging works in contemporary

computer systems.
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Objectives
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❖ Program must be brought (from disk) into memory and
placed within a process for it to be run.

❖ Main memory and registers are the only storages CPU can
access directly.

❖ Memory unit only sees a stream of addresses + read
requests, or address + data and write requests.

❖ Register access is done in one CPU clock cycle (or less).

❖ Main memory can take many cycles, causing a stall.

❖ Cache sits between main memory and CPU registers.

❖ Protection of memory required to ensure correct
operation.

Background 
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❖ A pair of base and limit

registers define the logical

address space.

❖ CPU must check every

memory access generated in

user mode to be sure it is

between base and limit for

that user.

Base and Limit Registers 
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Background … 



Operating Systems, Debre Markos University

6

❖ Hardware address protection with base and limit registers.

Wednesday, April 29, 2020

Hardware Address Protection

Background … 



Operating Systems, Debre Markos University

7

❖ Programs on disk which are ready to be brought into memory to execute
form an input queue.

❖ Most systems allow a user process to reside in any part of the physical
memory.

❖ Thus, although the address space of the computer may start at 00000,
the first address of the user process need not be 00000.

❖ Addresses may be represented in different ways while a user program goes
through several steps before being executed (see the figure in the next slide).

❖ Addresses in the source program are generally symbolic (such as count).

❖ A compiler typically binds these symbolic addresses to relocatable
addresses (such as “14 bytes from the beginning of this module”).

❖ The linkage editor or loader in turn binds the relocatable addresses to
absolute addresses (such as 74014).

❖ Each binding is a mapping from one address space to another.

Address Binding

Wednesday, April 29, 2020
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Address Binding …
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❖ Multistep processing of a user program.
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❖ Address binding of instructions and data to memory addresses can happen

at three different stages.

❖ Compile time. If memory location of a process is known at compile

time, absolute code can be generated; we must recompile the code if

starting location changes.

❖ Load time. Relocatable code must be generated if memory location is

not known at compile time.

❖ Execution time. Binding delayed until run time if the process can be

moved during its execution from one memory segment to another.

❖ Needs hardware support for address maps (e.g., base and limit registers)

Address Binding …
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❖ The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management.

❖ Logical address (virtual address) – is generated by the CPU.

❖ Physical address – address seen by the memory unit.

❖ Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme.

❖ Logical address space is the set of all logical addresses.

❖ Physical address space is the set of all physical addresses.

Logical vs. Physical Address Space
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Memory-Management Unit (MMU)
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❖ MMU is a hardware device that maps logical
address to physical address at run time.

❖ Consider a simple scheme where the value in
the relocation (base) register is added to
every address generated by a user process
at the time it is sent to memory.

❖ The user program deals with logical
addresses; it never sees the real physical
addresses.

❖ The memory-mapping hardware
converts logical addresses into physical
addresses.

❖ Execution-time binding occurs when
reference is made to location in
memory.
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❖With dynamic loading a routine is not loaded until it is invoked.

❖ It has a better memory-space utilization since unused routine is 
never loaded.

❖ All routines are kept on disk in a relocatable load format.

❖ It is useful when large amounts of code are needed to handle 
infrequently occurring cases.

❖ Dynamic loading requires no special support from the operating 
system.

❖ It is implemented through program design by the programmers.

❖ OS can help by providing libraries to implement dynamic loading.

Dynamic Loading 
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❖ Dynamically linked libraries: are system libraries that are linked to
user programs when the programs are run.

❖ Static linking: system libraries are treated like any other object module
and are combined by the loader into the binary program image.

❖ A stub indicates how to locate the appropriate memory-resident library
routine or how to load the library if the routine is not already present.

❖ The stub, a small piece of code, replaces itself with the address of the
routine, and executes the routine.

❖ Thus, the next time that particular code segment is reached, the library
routine is executed directly, incurring no cost for dynamic linking.

❖ Under this scheme, all processes that use a language library execute only
one copy of the library code.

Dynamic Linking

Wednesday, April 29, 2020
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❖ This feature can be extended to library updates (such as bug fixes).

❖ A library may be replaced by a new version, and all programs that
reference the library will automatically use the new version.

❖ Without dynamic linking, all such programs would need to be relinked to
gain access to the new library.

❖ So, programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the
library.

❖ More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use.

❖ Programs linked before the new library was installed will continue using
the older library. This system is also known as shared libraries.

Dynamic Linking …
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❖A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

❖By swapping, total physical memory space of processes can exceed
physical memory which increases degree of multiprogramming.

❖Backing store is a fast disk which must be large enough to
accommodate copies of all memory images for all users; and it must
provide direct access to these memory images.

❖ The system maintains a ready queue consisting of all ready processes
whose memory images are on the backing store or in memory.

❖Roll out, roll in – is a swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

❖Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped.

Wednesday, April 29, 2020
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❖ Schematic View of Swapping
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❖ Standard swapping is not used in modern operating systems.

❖ It requires too much swapping time and provides too little execution time

to be a reasonable memory-management solution.

❖ Modified versions of swapping, however, are found on many systems,

including UNIX, Linux, and Windows.

❖ In one common variation, swapping is normally disabled but will start

if the amount of free memory falls bellow a threshold amount.

❖ Swapping is halted when the amount of free memory increases.

❖ Another variation involves swapping portions of processes—rather

than entire processes—to decrease swap time.

Wednesday, April 29, 2020
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❖ If next processes to be put on CPU is not in memory, need to
swap out a process and swap in the target process.

❖ Context switch time can then be very high.

❖ Assume that a user process is 100 MB in size and the backing
store is a standard hard disk with a transfer rate of 50
MB/second.

❖ The actual transfer of the 100-MB process to or from main
memory takes 100 MB/50 MB per second = 2 seconds

❖ Swap out time of 2 sec + swap in time of 2 sec = 4 seconds.

❖ The total context switch swapping component time is then
4 seconds.

Wednesday, April 29, 2020

Swapping … 

Context Switch Time including Swapping
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❖ Swapping is constrained by other factors as well.

❖ If we want to swap a process, we must be sure that it is

completely idle. Of particular concern is any pending I/O.

❖ A process may be waiting for an I/O operation when we want

to swap that process to free up memory.

❖ A process pending for I/O operation cannot be swapped.

Wednesday, April 29, 2020
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Context Switch Time including Swapping …
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❖ Main memory must accommodate both OS and user processes.

❖ Contiguous memory allocation is one of the early methods used to allocate

memory in the most efficient way possible.

❖ Main memory is usually divided into two partitions:

❖ One for the resident operating system and one for the user processes.

❖ The operating system is mostly placed nearest to the interrupt vector in

the low memory.

❖ In contiguous memory allocation, each process is contained in a single

section of memory that is contiguous to the section containing the next

process.
Wednesday, April 29, 2020
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❖ Relocation registers used to protect user processes from each other, and

from changing operating-system code and data.

❖ The relocation register (base register) contains value of the smallest

physical address.

❖ The limit register contains range of logical addresses – each logical

address must be less than the value in the limit register.

❖ MMU maps logical address dynamically by adding the value in the

relocation register.

Wednesday, April 29, 2020
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Wednesday, April 29, 2020

Hardware Support for Relocation and Limit Registers

Contiguous Memory Allocation …

Memory Protection …
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❖ The simplest method for allocating memory is to divide it into several
fixed-sized partitions.

❖ The degree of multiprogramming is bound by the number of partitions.

❖ In the variable-partition scheme, the operating system keeps a table
indicating which parts of memory are available and which are occupied.

❖ Initially, all memory is available for user processes and is considered one
large block of available memory, a hole.

❖When a process arrives, it is allocated with memory from a hole large
enough to accommodate it.

❖ Exiting process frees its partition and adjacent free partitions
combined with the freed partition.

❖ Operating system maintains information about:

❖ a) allocated partitions b) free partitions (holes)

Wednesday, April 29, 2020

Contiguous Memory Allocation …
Memory Allocation 
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❖ How to satisfy a request of size n from a list of free holes?

❖ First-fit. Allocate the first hole that is big enough.

❖ Best-fit. Allocate the smallest hole that is big enough; must

search entire list, unless the list is ordered by size.

❖ This strategy produces the smallest leftover hole.

❖ Worst-fit. Allocate the largest hole; must also search entire

list unless the list is ordered by size.

❖ This strategy produces the largest leftover hole.
Wednesday, April 29, 2020
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❖ Memory fragmentation can be internal as well as external.

❖ Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is unused memory internal to a

partition.

❖ External Fragmentation – total memory space exists to satisfy a request,

but it is not contiguous.

❖ Fragmentation can be a severe problem. E.g. first fit analysis reveals that

given N blocks allocated, 0.5 N blocks lost to fragmentation.

❖ 1/3 of memory may be unusable which is known as the 50-percent

rule.
Wednesday, April 29, 2020
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❖ One solution to the problem of external fragmentation is compaction.

❖ The goal is to shuffle the memory contents so as to place all free

memory together in one large block.

❖ Compaction is possible only if relocation is dynamic, and is done at

execution time.

❖ Another possible solution to the external-fragmentation problem is to

permit the logical address space of the processes to be noncontiguous.

❖ Allow a process to be allocated physical memory wherever such
memory is available.

❖ Two complementary techniques achieve this solution: segmentation
and paging.

Wednesday, April 29, 2020
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❖The user’s or programmer’s view of memory is not the same as the

actual physical memory.

❖ What if the hardware could provide a memory mechanism that

mapped the programmer’s view to the actual physical memory?

❖ The system would have more freedom to manage memory,

while the programmer would have a more natural programming

environment.

❖ Segmentation provides such a mechanism.

❖A logical address is a collection of segments. Each segment has a

name and a length.
Wednesday, April 29, 2020
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Logical View of Segmentation 
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❖ For simplicity of implementation, segments are numbered and are referred

to by a segment number, rather than by a segment name.

❖ Thus, a logical address consists of a two tuple:

<segment-number, offset>

❖ Although the programmer can now refer to objects in the program by a

two-dimensional address, the actual physical memory is still, of course, a

one-dimensional sequence of bytes.

❖ Thus, we must define an implementation to map two-dimensional user-

defined addresses into one-dimensional physical addresses.

Wednesday, April 29, 2020
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❖This mapping is effected by a segment table.

❖ Each entry in the segment table has a segment base and a

segment limit.

❖ The segment base contains the starting physical address

where the segment resides in memory.

❖ The segment limit specifies the length of the segment.

❖ The use of a segment table is illustrated in the figure shown in

the next slide.
Wednesday, April 29, 2020
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Segmentation Hardware … 
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Wednesday, April 29, 2020

Segmentation … 

Segmentation Hardware …

❖ A logical address consists of two

parts: a segment number, s, and an

offset into that segment, d.

❖ The segment number is used as

an index to the segment table. The

offset d of the logical address must

be between 0 and the segment limit.



Operating Systems, Debre Markos University

33

❖ Segmentation permits noncontiguous physical address space for a

process.

❖ Paging is another memory-management scheme that offers this

advantage.

❖However, paging avoids external fragmentation and the need for

compaction, whereas segmentation does not.

❖ It also solves the considerable problem of fitting memory chunks of

varying sizes onto the backing store.

❖ Paging is implemented through cooperation between the operating

system and the computer hardware.
Wednesday, April 29, 2020
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❖ The basic method for implementing paging involves:

❖ breaking physical memory into fixed-sized blocks, frames and

❖ breaking logical memory into blocks of the same size, pages.

❖ When a process is to be executed, its pages are loaded into

any available memory frames from their source.

❖ The backing store is divided into fixed-sized blocks that are

the same size as the memory frames or clusters of multiple

frames.

Wednesday, April 29, 2020
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❖ Every address generated by the CPU is divided into two parts:

❖ A page number (p): is used as an index into a page table

which contains base address of each page in physical

memory.

❖ A page offset (d): combined with base address to define

the physical memory address that is sent to the memory

unit.

Wednesday, April 29, 2020

Paging … 

Basic Method … 
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Basic Method … 

❖ Paging Hardware
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❖ Paging Model of Logical and Physical Memory

Wednesday, April 29, 2020
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❖ The page size (like the frame size) is defined by the hardware.

❖ The size of a page is a power of 2, varying between 512 bytes and 1 GB per

page, depending on the computer architecture.

❖ If the size of the logical address space is 2m, and a page size is 2n bytes,

then the high-order m − n bits of a logical address designate the page

number, and the n low-order bits designate the page offset.

❖ Thus, the logical address is as follows:

where p is an index into the page table and d is the displacement within the

page.
Wednesday, April 29, 2020
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Wednesday, April 29, 2020

Paging … 

Basic Method … 

n=2 and m=4   32-byte memory and 4-byte pages

❖ Paging example for a 32-byte

memory with 4-byte pages.
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❖ Calculating internal fragmentation

❖ Page size = 2,048 bytes

❖ Process size = 72,766 bytes

❖ 35 pages + 1,086 bytes

❖ Internal fragmentation of 2,048 - 1,086 = 962 bytes

❖Worst case fragmentation = 1 frame for only 1 byte requirement

❖ If process size is independent of page size, we expect internal

fragmentation to average one-half page per process.

❖ This consideration suggests that small page sizes are desirable.

Wednesday, April 29, 2020
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Before Allocation After Allocation ❖ Free Frames  
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❖ Page table is kept in main memory.

❖ Page-table base register (PTBR) points to the page table.

❖ Page-table length register (PTLR) indicates size of the page table.

❖ In this scheme every data/instruction access requires two memory

accesses.

❖ One for the page table and one for the data / instruction.

❖ The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-

aside buffers (TLBs)

Wednesday, April 29, 2020
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Hardware Support 
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Hardware Support … 

Paging hardware with TLB
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❖ Memory protection is implemented by associating a protection bit with

each frame to indicate if read-only or read-write access is allowed.

❖We can also add more bits to indicate page execute-only, and so on.

❖ Valid-invalid bit is attached to each entry in the page table:

❖ “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page.

❖ “invalid” indicates that the page is not in the process’ logical address

space.

❖ Any violations result in a trap to the kernel.

Wednesday, April 29, 2020
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Memory Protection 
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❖ Valid (v) or Invalid (i) Bit in a Page Table

Wednesday, April 29, 2020

Paging … 

Memory Protection … 
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❖Memory structures for paging can get huge using straight-forward
methods.

❖Consider a 32-bit logical address space as on modern computers

❖Page size of 4 KB (212)

❖Page table would have 1 million entries (232 / 212)

❖ If each entry is 4 bytes -> 4 MB of physical address space /
memory is required for page table alone.

❖That amount of memory used costs a lot.

❖We don’ t want to allocate that contiguously in main
memory.

❖Hierarchical Paging

❖Hashed Page Tables

❖ Inverted Page Tables
Wednesday, April 29, 2020
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❖ Break up the logical address space into multiple page tables.

❖ A simple technique is a two-level page table.

❖ We then page the page table.

Wednesday, April 29, 2020
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❖ Two-Level Page-Table Scheme

Hierarchical Page Tables
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❖ Two-Level Paging Example

❖ A logical address (on 32-bit machine with 1K page size) is divided into:

❖ a page number consisting of 22 bits

❖ a page offset consisting of 10 bits

❖ Since the page table is paged, the page number is further divided into:

❖ a 12-bit page number

❖ a 10-bit page offset

❖ Thus, a logical address is as follows:

❖ where p1 is an index into the outer page table, and p2 is the displacement
within the page of the inner page table

❖ Known as forward-mapped page table

Wednesday, April 29, 2020
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Hierarchical Page Tables
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❖ Common in address spaces > 32 bits

❖ The virtual page number is hashed into a page table

❖ This page table contains a chain of elements hashing to the same

location

❖ Each element contains (1) the virtual page number (2) the value of the

mapped page frame (3) a pointer to the next element

❖ Virtual page numbers are compared in this chain searching for a match

❖ If a match is found, the corresponding physical frame is extracted

Wednesday, April 29, 2020
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Hashed Page Tables
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❖

Wednesday, April 29, 2020

Structure of the Page Table …

Hashed Page Tables
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❖Rather than each process having a page table and keeping track of all
possible logical pages, track all physical pages.

❖One entry for each real page of memory.

❖Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that
page.

❖Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

❖Use hash table to limit the search to one — or at most a few — page-
table entries.

❖TLB can accelerate access.

❖But how to implement shared memory?

❖One mapping of a virtual address to the shared physical address.
Wednesday, April 29, 2020
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Structure of the Page Table …
Inverted Page Table … 

Inverted Page Table Architecture
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End of Chapter 6

Questions???

Reference: Silberschatz et al., Operating System Concepts, Ninth Edition, 2013.


