
Operating Systems (ECEg-4181)

Wednesday, April 29, 2020

Mequanent Argaw Muluneh

Memory Management

1

❖ Swapping

❖ Contiguous Memory Allocation

❖ Segmentation

❖ Paging

❖ Structure of the Page Table

Operating Systems, Debre Markos University

2

Outline

Wednesday, April 29, 2020

❖ To provide a detailed description of various ways of

organizing memory hardware.

❖ To explore various techniques of allocating memory to

processes.

❖ To discuss in detail how paging works in contemporary

computer systems.

Operating Systems, Debre Markos University

3

Objectives

Wednesday, April 29, 2020

Operating Systems, Debre Markos University

4

❖ Program must be brought (from disk) into memory and
placed within a process for it to be run.

❖ Main memory and registers are the only storages CPU can
access directly.

❖ Memory unit only sees a stream of addresses + read
requests, or address + data and write requests.

❖ Register access is done in one CPU clock cycle (or less).

❖ Main memory can take many cycles, causing a stall.

❖ Cache sits between main memory and CPU registers.

❖ Protection of memory required to ensure correct
operation.

Background

Wednesday, April 29, 2020

Operating Systems, Debre Markos University

5

❖ A pair of base and limit

registers define the logical

address space.

❖ CPU must check every

memory access generated in

user mode to be sure it is

between base and limit for

that user.

Base and Limit Registers

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

6

❖ Hardware address protection with base and limit registers.

Wednesday, April 29, 2020

Hardware Address Protection

Background …

Operating Systems, Debre Markos University

7

❖ Programs on disk which are ready to be brought into memory to execute
form an input queue.

❖ Most systems allow a user process to reside in any part of the physical
memory.

❖ Thus, although the address space of the computer may start at 00000,
the first address of the user process need not be 00000.

❖ Addresses may be represented in different ways while a user program goes
through several steps before being executed (see the figure in the next slide).

❖ Addresses in the source program are generally symbolic (such as count).

❖ A compiler typically binds these symbolic addresses to relocatable
addresses (such as “14 bytes from the beginning of this module”).

❖ The linkage editor or loader in turn binds the relocatable addresses to
absolute addresses (such as 74014).

❖ Each binding is a mapping from one address space to another.

Address Binding

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

8

Address Binding …

Wednesday, April 29, 2020

Background …

❖ Multistep processing of a user program.

Operating Systems, Debre Markos University

9

❖ Address binding of instructions and data to memory addresses can happen

at three different stages.

❖ Compile time. If memory location of a process is known at compile

time, absolute code can be generated; we must recompile the code if

starting location changes.

❖ Load time. Relocatable code must be generated if memory location is

not known at compile time.

❖ Execution time. Binding delayed until run time if the process can be

moved during its execution from one memory segment to another.

❖ Needs hardware support for address maps (e.g., base and limit registers)

Address Binding …

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

10

❖ The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management.

❖ Logical address (virtual address) – is generated by the CPU.

❖ Physical address – address seen by the memory unit.

❖ Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme.

❖ Logical address space is the set of all logical addresses.

❖ Physical address space is the set of all physical addresses.

Logical vs. Physical Address Space

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

11

Memory-Management Unit (MMU)

Wednesday, April 29, 2020

Background …

❖ MMU is a hardware device that maps logical
address to physical address at run time.

❖ Consider a simple scheme where the value in
the relocation (base) register is added to
every address generated by a user process
at the time it is sent to memory.

❖ The user program deals with logical
addresses; it never sees the real physical
addresses.

❖ The memory-mapping hardware
converts logical addresses into physical
addresses.

❖ Execution-time binding occurs when
reference is made to location in
memory.

Operating Systems, Debre Markos University

12

❖With dynamic loading a routine is not loaded until it is invoked.

❖ It has a better memory-space utilization since unused routine is
never loaded.

❖ All routines are kept on disk in a relocatable load format.

❖ It is useful when large amounts of code are needed to handle
infrequently occurring cases.

❖ Dynamic loading requires no special support from the operating
system.

❖ It is implemented through program design by the programmers.

❖ OS can help by providing libraries to implement dynamic loading.

Dynamic Loading

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

13

❖ Dynamically linked libraries: are system libraries that are linked to
user programs when the programs are run.

❖ Static linking: system libraries are treated like any other object module
and are combined by the loader into the binary program image.

❖ A stub indicates how to locate the appropriate memory-resident library
routine or how to load the library if the routine is not already present.

❖ The stub, a small piece of code, replaces itself with the address of the
routine, and executes the routine.

❖ Thus, the next time that particular code segment is reached, the library
routine is executed directly, incurring no cost for dynamic linking.

❖ Under this scheme, all processes that use a language library execute only
one copy of the library code.

Dynamic Linking

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

14

❖ This feature can be extended to library updates (such as bug fixes).

❖ A library may be replaced by a new version, and all programs that
reference the library will automatically use the new version.

❖ Without dynamic linking, all such programs would need to be relinked to
gain access to the new library.

❖ So, programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the
library.

❖ More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use.

❖ Programs linked before the new library was installed will continue using
the older library. This system is also known as shared libraries.

Dynamic Linking …

Wednesday, April 29, 2020

Background …

Operating Systems, Debre Markos University

15

❖A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

❖By swapping, total physical memory space of processes can exceed
physical memory which increases degree of multiprogramming.

❖Backing store is a fast disk which must be large enough to
accommodate copies of all memory images for all users; and it must
provide direct access to these memory images.

❖ The system maintains a ready queue consisting of all ready processes
whose memory images are on the backing store or in memory.

❖Roll out, roll in – is a swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

❖Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped.

Wednesday, April 29, 2020

Swapping

Operating Systems, Debre Markos University

16

❖ Schematic View of Swapping

Wednesday, April 29, 2020

Swapping …

Operating Systems, Debre Markos University

17

❖ Standard swapping is not used in modern operating systems.

❖ It requires too much swapping time and provides too little execution time

to be a reasonable memory-management solution.

❖ Modified versions of swapping, however, are found on many systems,

including UNIX, Linux, and Windows.

❖ In one common variation, swapping is normally disabled but will start

if the amount of free memory falls bellow a threshold amount.

❖ Swapping is halted when the amount of free memory increases.

❖ Another variation involves swapping portions of processes—rather

than entire processes—to decrease swap time.

Wednesday, April 29, 2020

Swapping …

Operating Systems, Debre Markos University

18

❖ If next processes to be put on CPU is not in memory, need to
swap out a process and swap in the target process.

❖ Context switch time can then be very high.

❖ Assume that a user process is 100 MB in size and the backing
store is a standard hard disk with a transfer rate of 50
MB/second.

❖ The actual transfer of the 100-MB process to or from main
memory takes 100 MB/50 MB per second = 2 seconds

❖ Swap out time of 2 sec + swap in time of 2 sec = 4 seconds.

❖ The total context switch swapping component time is then
4 seconds.

Wednesday, April 29, 2020

Swapping …

Context Switch Time including Swapping

Operating Systems, Debre Markos University

19

❖ Swapping is constrained by other factors as well.

❖ If we want to swap a process, we must be sure that it is

completely idle. Of particular concern is any pending I/O.

❖ A process may be waiting for an I/O operation when we want

to swap that process to free up memory.

❖ A process pending for I/O operation cannot be swapped.

Wednesday, April 29, 2020

Swapping …

Context Switch Time including Swapping …

Operating Systems, Debre Markos University

20

❖ Main memory must accommodate both OS and user processes.

❖ Contiguous memory allocation is one of the early methods used to allocate

memory in the most efficient way possible.

❖ Main memory is usually divided into two partitions:

❖ One for the resident operating system and one for the user processes.

❖ The operating system is mostly placed nearest to the interrupt vector in

the low memory.

❖ In contiguous memory allocation, each process is contained in a single

section of memory that is contiguous to the section containing the next

process.
Wednesday, April 29, 2020

Contiguous Memory Allocation

Operating Systems, Debre Markos University

21

❖ Relocation registers used to protect user processes from each other, and

from changing operating-system code and data.

❖ The relocation register (base register) contains value of the smallest

physical address.

❖ The limit register contains range of logical addresses – each logical

address must be less than the value in the limit register.

❖ MMU maps logical address dynamically by adding the value in the

relocation register.

Wednesday, April 29, 2020

Contiguous Memory Allocation …

Memory Protection

Operating Systems, Debre Markos University

22

Wednesday, April 29, 2020

Hardware Support for Relocation and Limit Registers

Contiguous Memory Allocation …

Memory Protection …

Operating Systems, Debre Markos University

23

❖ The simplest method for allocating memory is to divide it into several
fixed-sized partitions.

❖ The degree of multiprogramming is bound by the number of partitions.

❖ In the variable-partition scheme, the operating system keeps a table
indicating which parts of memory are available and which are occupied.

❖ Initially, all memory is available for user processes and is considered one
large block of available memory, a hole.

❖When a process arrives, it is allocated with memory from a hole large
enough to accommodate it.

❖ Exiting process frees its partition and adjacent free partitions
combined with the freed partition.

❖ Operating system maintains information about:

❖ a) allocated partitions b) free partitions (holes)

Wednesday, April 29, 2020

Contiguous Memory Allocation …
Memory Allocation

Operating Systems, Debre Markos University

24

Wednesday, April 29, 2020

Contiguous Memory Allocation …

Operating Systems, Debre Markos University

25

❖ How to satisfy a request of size n from a list of free holes?

❖ First-fit. Allocate the first hole that is big enough.

❖ Best-fit. Allocate the smallest hole that is big enough; must

search entire list, unless the list is ordered by size.

❖ This strategy produces the smallest leftover hole.

❖ Worst-fit. Allocate the largest hole; must also search entire

list unless the list is ordered by size.

❖ This strategy produces the largest leftover hole.
Wednesday, April 29, 2020

Dynamic Storage-Allocation Problem

Contiguous Memory Allocation …

Operating Systems, Debre Markos University

26

❖ Memory fragmentation can be internal as well as external.

❖ Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is unused memory internal to a

partition.

❖ External Fragmentation – total memory space exists to satisfy a request,

but it is not contiguous.

❖ Fragmentation can be a severe problem. E.g. first fit analysis reveals that

given N blocks allocated, 0.5 N blocks lost to fragmentation.

❖ 1/3 of memory may be unusable which is known as the 50-percent

rule.
Wednesday, April 29, 2020

Fragmentation

Contiguous Memory Allocation …

Operating Systems, Debre Markos University

27

❖ One solution to the problem of external fragmentation is compaction.

❖ The goal is to shuffle the memory contents so as to place all free

memory together in one large block.

❖ Compaction is possible only if relocation is dynamic, and is done at

execution time.

❖ Another possible solution to the external-fragmentation problem is to

permit the logical address space of the processes to be noncontiguous.

❖ Allow a process to be allocated physical memory wherever such
memory is available.

❖ Two complementary techniques achieve this solution: segmentation
and paging.

Wednesday, April 29, 2020

Fragmentation …

Contiguous Memory Allocation …

Operating Systems, Debre Markos University

28

❖The user’s or programmer’s view of memory is not the same as the

actual physical memory.

❖ What if the hardware could provide a memory mechanism that

mapped the programmer’s view to the actual physical memory?

❖ The system would have more freedom to manage memory,

while the programmer would have a more natural programming

environment.

❖ Segmentation provides such a mechanism.

❖A logical address is a collection of segments. Each segment has a

name and a length.
Wednesday, April 29, 2020

Segmentation

Operating Systems, Debre Markos University

29

Wednesday, April 29, 2020

Segmentation …

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Operating Systems, Debre Markos University

30

❖ For simplicity of implementation, segments are numbered and are referred

to by a segment number, rather than by a segment name.

❖ Thus, a logical address consists of a two tuple:

<segment-number, offset>

❖ Although the programmer can now refer to objects in the program by a

two-dimensional address, the actual physical memory is still, of course, a

one-dimensional sequence of bytes.

❖ Thus, we must define an implementation to map two-dimensional user-

defined addresses into one-dimensional physical addresses.

Wednesday, April 29, 2020

Segmentation …

Segmentation Hardware

Operating Systems, Debre Markos University

31

❖This mapping is effected by a segment table.

❖ Each entry in the segment table has a segment base and a

segment limit.

❖ The segment base contains the starting physical address

where the segment resides in memory.

❖ The segment limit specifies the length of the segment.

❖ The use of a segment table is illustrated in the figure shown in

the next slide.
Wednesday, April 29, 2020

Segmentation …

Segmentation Hardware …

Operating Systems, Debre Markos University

32

Wednesday, April 29, 2020

Segmentation …

Segmentation Hardware …

❖ A logical address consists of two

parts: a segment number, s, and an

offset into that segment, d.

❖ The segment number is used as

an index to the segment table. The

offset d of the logical address must

be between 0 and the segment limit.

Operating Systems, Debre Markos University

33

❖ Segmentation permits noncontiguous physical address space for a

process.

❖ Paging is another memory-management scheme that offers this

advantage.

❖However, paging avoids external fragmentation and the need for

compaction, whereas segmentation does not.

❖ It also solves the considerable problem of fitting memory chunks of

varying sizes onto the backing store.

❖ Paging is implemented through cooperation between the operating

system and the computer hardware.
Wednesday, April 29, 2020

Paging

Operating Systems, Debre Markos University

34

❖ The basic method for implementing paging involves:

❖ breaking physical memory into fixed-sized blocks, frames and

❖ breaking logical memory into blocks of the same size, pages.

❖ When a process is to be executed, its pages are loaded into

any available memory frames from their source.

❖ The backing store is divided into fixed-sized blocks that are

the same size as the memory frames or clusters of multiple

frames.

Wednesday, April 29, 2020

Paging …
Basic Method

Operating Systems, Debre Markos University

35

❖ Every address generated by the CPU is divided into two parts:

❖ A page number (p): is used as an index into a page table

which contains base address of each page in physical

memory.

❖ A page offset (d): combined with base address to define

the physical memory address that is sent to the memory

unit.

Wednesday, April 29, 2020

Paging …

Basic Method …

Operating Systems, Debre Markos University

36

Wednesday, April 29, 2020

Paging …

Basic Method …

❖ Paging Hardware

Operating Systems, Debre Markos University

37

❖ Paging Model of Logical and Physical Memory

Wednesday, April 29, 2020

Paging …

Basic Method …

Operating Systems, Debre Markos University

38

❖ The page size (like the frame size) is defined by the hardware.

❖ The size of a page is a power of 2, varying between 512 bytes and 1 GB per

page, depending on the computer architecture.

❖ If the size of the logical address space is 2m, and a page size is 2n bytes,

then the high-order m − n bits of a logical address designate the page

number, and the n low-order bits designate the page offset.

❖ Thus, the logical address is as follows:

where p is an index into the page table and d is the displacement within the

page.
Wednesday, April 29, 2020

Paging …

Basic Method …

Operating Systems, Debre Markos University

39

Wednesday, April 29, 2020

Paging …

Basic Method …

n=2 and m=4 32-byte memory and 4-byte pages

❖ Paging example for a 32-byte

memory with 4-byte pages.

Operating Systems, Debre Markos University

40

❖ Calculating internal fragmentation

❖ Page size = 2,048 bytes

❖ Process size = 72,766 bytes

❖ 35 pages + 1,086 bytes

❖ Internal fragmentation of 2,048 - 1,086 = 962 bytes

❖Worst case fragmentation = 1 frame for only 1 byte requirement

❖ If process size is independent of page size, we expect internal

fragmentation to average one-half page per process.

❖ This consideration suggests that small page sizes are desirable.

Wednesday, April 29, 2020

Paging …

Basic Method …

Operating Systems, Debre Markos University

41

Wednesday, April 29, 2020

Paging …

Basic Method …

Before Allocation After Allocation ❖ Free Frames

Operating Systems, Debre Markos University

42

❖ Page table is kept in main memory.

❖ Page-table base register (PTBR) points to the page table.

❖ Page-table length register (PTLR) indicates size of the page table.

❖ In this scheme every data/instruction access requires two memory

accesses.

❖ One for the page table and one for the data / instruction.

❖ The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-

aside buffers (TLBs)

Wednesday, April 29, 2020

Paging …

Hardware Support

Operating Systems, Debre Markos University

43

Wednesday, April 29, 2020

Paging …

Hardware Support …

Paging hardware with TLB

Operating Systems, Debre Markos University

44

❖ Memory protection is implemented by associating a protection bit with

each frame to indicate if read-only or read-write access is allowed.

❖We can also add more bits to indicate page execute-only, and so on.

❖ Valid-invalid bit is attached to each entry in the page table:

❖ “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page.

❖ “invalid” indicates that the page is not in the process’ logical address

space.

❖ Any violations result in a trap to the kernel.

Wednesday, April 29, 2020

Paging …

Memory Protection

Operating Systems, Debre Markos University

45

❖ Valid (v) or Invalid (i) Bit in a Page Table

Wednesday, April 29, 2020

Paging …

Memory Protection …

Operating Systems, Debre Markos University

46

❖Memory structures for paging can get huge using straight-forward
methods.

❖Consider a 32-bit logical address space as on modern computers

❖Page size of 4 KB (212)

❖Page table would have 1 million entries (232 / 212)

❖ If each entry is 4 bytes -> 4 MB of physical address space /
memory is required for page table alone.

❖That amount of memory used costs a lot.

❖We don’ t want to allocate that contiguously in main
memory.

❖Hierarchical Paging

❖Hashed Page Tables

❖ Inverted Page Tables
Wednesday, April 29, 2020

Structure of the Page Table

Operating Systems, Debre Markos University

47

❖ Break up the logical address space into multiple page tables.

❖ A simple technique is a two-level page table.

❖ We then page the page table.

Wednesday, April 29, 2020

Structure of the Page Table …

Hierarchical Page Tables

Operating Systems, Debre Markos University

48

Wednesday, April 29, 2020

Structure of the Page Table …

❖ Two-Level Page-Table Scheme

Hierarchical Page Tables

Operating Systems, Debre Markos University

49

❖ Two-Level Paging Example

❖ A logical address (on 32-bit machine with 1K page size) is divided into:

❖ a page number consisting of 22 bits

❖ a page offset consisting of 10 bits

❖ Since the page table is paged, the page number is further divided into:

❖ a 12-bit page number

❖ a 10-bit page offset

❖ Thus, a logical address is as follows:

❖ where p1 is an index into the outer page table, and p2 is the displacement
within the page of the inner page table

❖ Known as forward-mapped page table

Wednesday, April 29, 2020

Structure of the Page Table …

Hierarchical Page Tables

Operating Systems, Debre Markos University

50

Wednesday, April 29, 2020

Structure of the Page Table …

Address-Translation Scheme

Operating Systems, Debre Markos University

51

❖ Common in address spaces > 32 bits

❖ The virtual page number is hashed into a page table

❖ This page table contains a chain of elements hashing to the same

location

❖ Each element contains (1) the virtual page number (2) the value of the

mapped page frame (3) a pointer to the next element

❖ Virtual page numbers are compared in this chain searching for a match

❖ If a match is found, the corresponding physical frame is extracted

Wednesday, April 29, 2020

Structure of the Page Table …

Hashed Page Tables

Operating Systems, Debre Markos University

52

❖

Wednesday, April 29, 2020

Structure of the Page Table …

Hashed Page Tables

Operating Systems, Debre Markos University

53

❖Rather than each process having a page table and keeping track of all
possible logical pages, track all physical pages.

❖One entry for each real page of memory.

❖Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that
page.

❖Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

❖Use hash table to limit the search to one — or at most a few — page-
table entries.

❖TLB can accelerate access.

❖But how to implement shared memory?

❖One mapping of a virtual address to the shared physical address.
Wednesday, April 29, 2020

Structure of the Page Table …
Inverted Page Table

Operating Systems, Debre Markos University

54

Wednesday, April 29, 2020

Structure of the Page Table …
Inverted Page Table …

Inverted Page Table Architecture

Wednesday, April 29, 2020Operating Systems, Debre Markos University

55

End of Chapter 6

Questions???

Reference: Silberschatz et al., Operating System Concepts, Ninth Edition, 2013.

