
Operating Systems (ECEg-4181)

Wednesday, April 29, 2020

Mequanent Argaw Muluneh

Deadlocks

1

❖ System Model

❖ Deadlock Characterization

❖Methods for Handling Deadlocks

❖ Deadlock Prevention

❖ Deadlock Avoidance

❖ Deadlock Detection

❖ Recovery from Deadlock

Operating Systems, Debre Markos University

2

Outline

Wednesday, April 29, 2020

❖ To develop a description of deadlocks, which prevent

sets of concurrent processes from completing their tasks.

❖ To present a number of different methods for preventing

or avoiding deadlocks in a computer system.

Operating Systems, Debre Markos University

3

Objectives

Wednesday, April 29, 2020

Operating Systems, Debre Markos University

4

❖ A system consists of a finite number of resources to be
distributed among a number of competing processes.

❖ Resources can be partitioned into several types each
consisting of some number of identical instances. Types:

❖ CPU cycles, memory space, I/O devices

❖ Each process utilizes a resource in the following sequence:

❖ Request

❖ Use

❖ Release

❖ A set of processes is in a deadlocked state when every
process in the set is waiting for an event that can be
caused only by another process in the set.

System Model

Wednesday, April 29, 2020

Operating Systems, Debre Markos University

5

❖ Deadlock can arise if the following four conditions hold simultaneously.

❖ Mutual exclusion: only one process at a time can use a resource.

❖ Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes.

❖ No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task.

❖ Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes

such that P0 is waiting for a resource that is held by P1, P1 is waiting

for a resource that is held by P2, …, Pn–1 is waiting for a resource that

is held by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock Characterization

Wednesday, April 29, 2020

Necessary Conditions

Operating Systems, Debre Markos University

6

Wednesday, April 29, 2020

❖ Deadlocks can be described more precisely in terms of a directed graph

called a system resource-allocation graph which consists of a set of

vertices V and a set of edges E.

❖ V is partitioned into two different types of nodes:

❖ P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

❖ R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

❖ An edge may be either:

❖ a request edge – a directed edge Pi→ Rj or

❖ an assignment edge – a directed edge Rj→ Pi

Resource-Allocation Graph

Deadlock Characterization …

Operating Systems, Debre Markos University

7

Wednesday, April 29, 2020

❖ A process

❖ A resource type with 4 instances

❖ Pi requests instance of Rj

❖ Pi holds an instance of Rj

Resource-Allocation Graph …

Deadlock Characterization …

Pi

Pi

Operating Systems, Debre Markos University

8

Wednesday, April 29, 2020

Resource-Allocation Graph …

Deadlock Characterization …

❖ Example of a resource-allocation graph

❖ Circles represent processes whereas

rectangles represent resources.

❖ Request edges extend from circles to

rectangles whereas assignment edges

extend from a specific instance inside

the rectangle (resource type) to the

requesting circle (process).

Operating Systems, Debre Markos University

9

Wednesday, April 29, 2020

❖ Example of a resource allocation graph with a deadlock

❖Two circles

❖P1, R1, P2, R3, P3, R2, P1

❖P2, R3, P3, R2, P2

Resource-Allocation Graph …

Deadlock Characterization …

Operating Systems, Debre Markos University

10

Wednesday, April 29, 2020

Resource-Allocation Graph …

Deadlock Characterization …

❖ Example of a resource allocation graph with a cycle but

no deadlock.

❖ The circle P1, R1, P3, R2, P1

may not be a deadlock since P4

can release one of the

instances of R2.

Operating Systems, Debre Markos University

11

Wednesday, April 29, 2020

❖ Basic Facts

❖ If a graph contains no cycles  no deadlock state will

occur.

❖ If a graph contains a cycle

❖ if only there is one instance per resource type, then

deadlock state occurs.

❖ if there are several instances per resource type, there

will be a possibility of deadlock state.

Resource-Allocation Graph …

Deadlock Characterization …

Operating Systems, Debre Markos University

12

Wednesday, April 29, 2020

❖ We can deal with the deadlock problem in one of three ways:

❖Ensure that the system will never enter a deadlock state:

❖ Deadlock prevention

❖ Deadlock avoidance

❖ Allow the system to enter a deadlock state and then recover.

❖ Ignore the problem and pretend that deadlocks never occur in

the system; used by most operating systems, including Linux

and Windows.

Methods for Handling Deadlocks

Operating Systems, Debre Markos University

13

Wednesday, April 29, 2020

❖ We can prevent deadlock occurrence by ensuring that at

least one of the four necessary conditions cannot hold.

❖ Mutual Exclusion – not required for sharable resources (e.g., read-only

files); must hold for non-sharable resources.

❖ Hold and Wait (never occurs)– we must guarantee that whenever a

process requests a resource, it does not hold any other resources.

❖ Two protocols: require a process to request and be allocated all its

resources before it begins execution, or allow a process to request

resources only when the process has none allocated to it.

❖ Both protocols may lead to low resource utilization and starvation.

Deadlock Prevention

Operating Systems, Debre Markos University

14

Wednesday, April 29, 2020

❖ No Preemption: is the third necessary condition for deadlocks.

❖ To ensure that this condition does not hold, we can use the following

protocol.

❖ If a process that is holding some resources requests another resource

that cannot be immediately allocated to it, then all resources currently

being held are released.

❖ Preempted resources are added to the list of resources for which the

process is waiting.

❖ Process will be restarted only when it can regain its old resources, as

well as the new ones that it is requesting.

Deadlock Prevention …

Operating Systems, Debre Markos University

15

Wednesday, April 29, 2020

❖ Circular Wait: one way to ensure that this condition never holds is to

impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration.

❖ Let R = {R1, R2, …, Rm} be the set of resource types having a unique

integer number for each.

❖ Formally, we define a one-to-one function F: R → N, where N is the set

of natural numbers. E.g.:

❖ F(R1) = 1, R1 may be a tape derive

❖ F(R2) = 5, R2 may be a disk derive

❖ F(R3) = 12, R3 may be a printer

Deadlock Prevention …

Operating Systems, Debre Markos University

16

Wednesday, April 29, 2020

❖ Circular Wait …

❖ Now, two protocols can be considered to prevent deadlocks.

❖ Each process can request resources only in an increasing

order of enumeration. After a process requests for Ri, it can

request instances of Rj if and only if F(Rj) > F(Ri).

❖ A process requesting an instance of resource type Rj must

have released any resources Ri such that F(Ri) ≥ F(Rj).

❖ If these two protocols are used, then the circular-wait

condition cannot hold.

Deadlock Prevention …

Operating Systems, Debre Markos University

17

Wednesday, April 29, 2020

❖ An alternative method for avoiding deadlocks is to require

additional information about how resources are to be requested.

❖ Simplest and most useful model requires that each process declares

the maximum number of resources of each type that it may need.

❖ A deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that there can never be a circular-

wait condition.

❖ Resource-allocation state is defined by the number of available and

allocated resources, and the maximum demands of the processes.

Deadlock Avoidance

Operating Systems, Debre Markos University

18

Wednesday, April 29, 2020

❖When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state.

❖ A system is in a safe state if there exists a sequence <P1, P2, …, Pn> of all the
processes in the system such that for each Pi, the resources that Pi can still
request can be satisfied by currently available resources plus the resources
held by all Pj, with j < i.

❖ That is:

❖ If the resources that Pi needs are not immediately available, then Pi can
wait until all Pj have finished.

❖When all Pj have finished, Pi can obtain all of its needed resources,
execute, return allocated resources, and terminate.

❖When Pi terminates, Pi +1 can obtain its needed resources, and so on.

❖ If no such sequence exists, then the system state is said to be unsafe.

Deadlock Avoidance …
Safe State

Operating Systems, Debre Markos University

19

Wednesday, April 29, 2020

Deadlock Avoidance …
Safe State …

❖ Basic Facts

❖ If a system is in safe state no deadlocks

❖ If a system is in unsafe state possibility of deadlock

❖ Avoidance  ensure that a system will never enter an

unsafe state.

Operating Systems, Debre Markos University

20

Wednesday, April 29, 2020

❖ If there is single instance of a resource type, use a resource-

allocation graph for deadlock avoidance.

❖ If there are multiple instances of a resource type, use the

banker’s algorithm.

Deadlock Avoidance …

Avoidance Algorithms

Operating Systems, Debre Markos University

21

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Resource-Allocation Graph Algorithm

❖ A new type of edge called a claim edge, a dashed line, is

introduced to indicate that process Pj may request resource Rj.

❖ A claim edge is converted to a request edge when a process

requests the resource.

❖ Request edge is converted to an assignment edge when the

resource is allocated to the process.

❖ When a resource is released by a process, assignment edge is

reconverted to a claim edge.

Operating Systems, Debre Markos University

22

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Resource-Allocation Graph Algorithm …

An unsafe state in
resource-allocation graph

Resource-allocation graph
for deadlock avoidance

Operating Systems, Debre Markos University

23

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Resource-Allocation Graph Algorithm …

❖ Suppose that process Pi requests a resource Rj

❖ The request can be granted only if converting the request

edge to an assignment edge does not result in the formation

of a cycle in the resource-allocation graph.

Operating Systems, Debre Markos University

24

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Banker’s Algorithm

❖ It is used for resource types having multiple instances.

❖ A new process entering the system must declare the maximum
number of instances of each resource type that it may need.

❖This number may not exceed the total number of resources in the
system.

❖ When a user requests a set of resources, the system must
determine whether the allocation of these resources will leave the
system in a safe state.

❖ If it will, the resources are allocated; otherwise, the process must
wait until some other process releases enough resources.

Operating Systems, Debre Markos University

25

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Banker’s Algorithm …

❖ Available: a vector of length m. If Available[j] = k, there are k
available instances of resource type Rj.

❖ Max: n x m matrix. If Max[i, j] = k, then process Pi may request at
most k instances of resource type Rj

❖ Allocation: n x m matrix. If Allocation[i, j] = k then Pi is currently
allocated k instances of Rj

❖ Need: n x m matrix. If Need[i, j] = k, then Pi may need k more
instances of Rj to complete its task.

❖Need [i, j] = Max[i, j] – Allocation [i, j]

Data Structures used for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

Operating Systems, Debre Markos University

26

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Banker’s Algorithm …

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an index i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state.

Safety Algorithm

Operating Systems, Debre Markos University

27

Wednesday, April 29, 2020

Deadlock Avoidance …
Avoidance Algorithms …
Banker’s Algorithm …

Let Requesti be the request vector for process Pi. If Requesti [j] = k, then
process Pi wants k instances of resource type Rj

1. If Requesti  Needi, go to step 2. Otherwise, raise an error condition,
since process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since
resources are not available.

3. Pretend to have allocated the requested resources to Pi by modifying the
state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state is
restored

Resource-Request Algorithm for Process Pi

Operating Systems, Debre Markos University

28

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Banker’s Algorithm …

❖ 5 processes P0 through P4;

3 resource types: A (10 instances), B (5 instances), and C (7 instances)

❖ Snapshot at time T0:

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Example

Need = Max – Allocation

The system is in a safe state
since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria.

Operating Systems, Debre Markos University

29

Wednesday, April 29, 2020

Deadlock Avoidance …

Avoidance Algorithms …

Banker’s Algorithm …

❖ Check that Request  Available (that is, (1, 0, 2)  (3, 3, 2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

❖ Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety
requirement.

❖ Can request for (3, 3, 0) by P4 be granted?

❖ Can request for (0, 2, 0) by P0 be granted?

Example of Banker’s Algorithm … Suppose P1 Request (1, 0, 2)

Unavailable Resource
Resulted in unsafe state

Operating Systems, Debre Markos University

30

Wednesday, April 29, 2020

Deadlock Detection

❖ If a system does not employ either a deadlock-prevention or

a deadlock avoidance algorithm, then a deadlock situation

may occur. In this environment, the system may provide:

❖ An algorithm that examines the state of the system to

determine whether a deadlock has occurred.

❖ An algorithm to recover from the deadlock.

Operating Systems, Debre Markos University

31

Wednesday, April 29, 2020

Deadlock Detection …

Single Instance of Each Resource Type

❖ A deadlock detection algorithm that uses a variant of the resource-

allocation graph, called a wait-for graph, can be used for single instances.

❖ In a wait-for graph, nodes are processes where resources are not included.

❖ Pi→ Pj if Pi is waiting for Pj to release a resource that Pi needs.

❖ To detect deadlocks, the system needs to maintain the wait-for graph and

periodically invoke an algorithm that searches for a cycle in the graph.

❖ An algorithm to detect a cycle in a graph requires an order of n2 operations,

where n is the number of vertices in the graph.

Operating Systems, Debre Markos University

32

Wednesday, April 29, 2020

Deadlock Detection …

Single Instance of Each Resource Type …

Resource-Allocation Graph Corresponding wait-for graph

Operating Systems, Debre Markos University

33

Wednesday, April 29, 2020

Deadlock Detection …

Several Instances of a Resource Type

❖ A deadlock detection algorithm applicable for systems with multiple

instances of each resource type employs several time-varying data

structures that are similar to those used in the banker’s algorithm.

❖ Available: a vector of length m indicates the number of available

resources of each type.

❖ Allocation: an n x m matrix defines the number of resources of each type

currently allocated to each process.

❖ Request: an n x m matrix indicates the current request of each process.

If Request [i][j] = k, then process Pi is requesting k more instances of

resource type Rj.

Operating Systems, Debre Markos University

34

Wednesday, April 29, 2020

Deadlock Detection …

Several Instances of a Resource Type …

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in a deadlock
state. Moreover, if Finish[i] == false, then Pi is deadlocked.

Detection Algorithm

Operating Systems, Debre Markos University

35

Wednesday, April 29, 2020

Deadlock Detection …

Several Instances of a Resource Type …

❖ Five processes P0 through P4; three resource types: A (7 instances), B (2

instances), and C (6 instances).

❖ Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

❖ Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Example of Detection Algorithm

Operating Systems, Debre Markos University

36

Wednesday, April 29, 2020

Deadlock Detection …

Several Instances of a Resource Type …

❖ Suppose P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

❖ State of system?

❖We can reclaim resources held by process P0, but insufficient to
fulfill requests of other processes.

❖ Deadlock exists, consisting of processes P1, P2, P3, and P4

Example of Detection Algorithm …

Operating Systems, Debre Markos University

37

Wednesday, April 29, 2020

Deadlock Detection …

Detection-Algorithm Usage

❖ When, and how often, to invoke the detection algorithm
depends on:

❖ How often a deadlock is likely to occur?

❖ How many processes will be affected by deadlock when
it happens?

❖ In the extreme, we can invoke the deadlock detection
algorithm every time a request for allocation cannot be
granted immediately.

❖ In this case, we can identify not only the deadlocked set of
processes but also the specific process that “caused” the
deadlock.

Operating Systems, Debre Markos University

38

Wednesday, April 29, 2020

Recovery from Deadlock

❖ When a detection algorithm determines that a deadlock

exists, several alternatives are available.

❖ Inform the operator that a deadlock has occurred and let

the operator deal with the deadlock manually.

❖ Let the system recover from the deadlock automatically.

❖ There are two options for breaking a deadlock.

❖ Abort one or more processes to break the circular wait.

❖ Preempt some resources from one or more of the

deadlocked processes.

Operating Systems, Debre Markos University

39

Wednesday, April 29, 2020

Recovery from Deadlock …

Process Termination

❖ We can use one of the two methods to abort processes.

❖ Abort all deadlocked processes.

❖ Abort one process at a time until the deadlock cycle is
eliminated.

❖ Many factors may affect which process is chosen for abortion:

1. What is the priority of the process

2. How long process has computed, and how much longer the
process will compute before completion.

3. How many and what types of resources the process has used

4. How many more resources the process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch

Operating Systems, Debre Markos University

40

Wednesday, April 29, 2020

Recovery from Deadlock …

Resource Preemption

❖ We successively preempt some resources from processes and give

them to other processes until the deadlock cycle is broken.

❖ If preemption is required to deal with deadlocks, then three issues

need to be addressed:

❖ Selecting a victim: determine order of preemption to minimize cost.

❖ Rollback: return the process of which the resource is preempted to

some safe state and restart it from that safe state.

❖ Starvation: the same process may always be picked as victim. To

solve this, include the number of rollbacks in the cost factor.

Wednesday, April 29, 2020Operating Systems, Debre Markos University

41

Questions???

Reference: Silberschatz et al., Operating System Concepts, Ninth Edition, 2013.

