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Introduction

Artificial Neural Networks (ANNs) are physical cellular systems, which
can acquire, store and utilize experiential knowledge.

ANNs are a set of parallel and distributed computational elements
classified according to topologies, learning paradigms and at the way
information flows within the network.

ANNs are generally characterized by their:

Architecture

Learning paradigm

Activation functions
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Typical Representation of a Feedforward ANN
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Interconnections Between Neurons
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History

A Brief History

ANNs have been originally designed in the early forties for pattern
classification purposes.
⇒ They have evolved so much since then.

ANNs are now used in almost every discipline of science and technology:

from Stock Market Prediction to the design of Space Station frame,

from medical diagnosis to data mining and knowledge discovery,

from chaos prediction to control of nuclear plants.
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Features of ANNs

ANN are classified according to the following:

Architecture

Feedforward
Recurrent

Activation Functions

Binary
Continuous

Learning Paradigms

Supervised
Unsupervised
Hybrid
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Neural Network Topologies

Neural Network Topologies

Feedforward Flow of Information
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Neural Network Topologies

Neural Network Topologies (cont.)

Recurrent Flow of Information
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Activation Functions

Binary Activation Functions

Step Function

step(x) =

{

1, if x > 0
0, otherwise
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Signum Function

sigum(x) =
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1, if x > 0
0, if x = 0

−1, otherwise
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Activation Functions

Differentiable Activation Functions

Differentiable functions

Sigmoid function Hyperbolic tangent

sigmoid(x) = 1
1+e−x tanh(x) = ex

−e−x

ex +e−x
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Activation Functions

Differentiable Activation Functions (cont.)

Differentiable functions

Sigmoid derivative Linear function

sigderiv(x) = e−x

(1+e−x )2 lin(x) = x
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Learning Paradigms

Learning Paradigms

Supervised Learning

Multilayer perceptrons

Radial basis function networks

Modular neural networks

LVQ (learning vector quantization)

Unsupervised Learning

Competitive learning networks

Kohonen self-organizing networks

ART (adaptive resonant theory)

Others

Autoassociative memories (Hopfield networks)
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Learning Paradigms

Supervised Learning

Training by example; i.e., priori known desired output for each input
pattern.

Particularly useful for feedforward networks.
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Learning Paradigms

Supervised Learning (cont.)

Training Algorithm

1 Compute error between desired and actual outputs

2 Use the error through a learning rule (e.g., gradient descent) to adjust the
network’s connection weights

3 Repeat steps 1 and 2 for input/output patterns to complete one epoch

4 Repeat steps 1 to 3 until maximum number of epochs is reached or an
acceptable training error is reached
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Learning Paradigms

Unsupervised Learning

No priori known desired output.

In other words, training data composed of input patterns only.

Network uses training patterns to discover emerging collective properties
and organizes the data into clusters.
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Learning Paradigms

Unsupervised Learning: Graphical Illustration
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Learning Paradigms

Unsupervised Learning (cont.)

Unsupervised Training

1 Training data set is presented at the input layer

2 Output nodes are evaluated through a specific criterion

3 Only weights connected to the winner node are adjusted

4 Repeat steps 1 to 3 until maximum number of epochs is reached or the
connection weights reach steady state

Rationale

Competitive learning strengths the connection between the incoming
pattern at the input layer and the winning output node.

The weights connected to each output node can be regarded as the
center of the cluster associated to that node.
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Learning Paradigms

Reinforcement Learning

Reinforcement learning mimics the way humans adjust their behavior
when interacting with physical systems (e.g., learning to ride a bike).

Network’s connection weights are adjusted according to a qualitative and
not quantitative feedback information as a result of the network’s
interaction with the environment or system.

The qualitative feedback signal simply informs the network whether or not
the system reacted “well” to the output generated by the network.
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Learning Paradigms

Reinforcement Learning: Graphical
Representation
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Learning Paradigms

Reinforcement Learning

Reinforcement Training Algorithm

1 Present training input pattern network

2 Qualitatively evaluate system’s reaction to network’s calculated output

If response is “Good”, the corresponding weights led to that output are
strengthened

If response is “Bad”, the corresponding weights are weakened.
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Fundamentals of ANNs

Late 1940’s : McCulloch Pitt Model (by McCulloch and Pitt)

Late 1950’s – early 1960’s : Perceptron (by Roseblatt)

Mid 1960’s : Adaline (by Widrow)

Mid 1970’s : Back Propagation Algorithm - BPL I (by Werbos)

Mid 1980’s : BPL II and Multi Layer Perceptron (by Rumelhart and Hinton)
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McCulloch-Pitts Model

McCulloch-Pitts Model

Overview

First serious attempt to model the computing process of the biological
neuron.

The model is composed of one neuron only.

Limited computing capability.

No learning capability.
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McCulloch-Pitts Model

McCulloch-Pitts Model: Architecture
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McCulloch-Pitts Model

McCulloch-Pitts Models (cont.)

Functionality

1 l input signals presented to the network: x1, x2, . . ., xl .

2 l hard-coded weights, w1, w2, . . ., wl , and bias θ, are applied to compute
the neuron’s net sum:

∑l
i=1 wi li − θ.

3 A binary activation function f is applied to the neuron’s net sum to

calculate the node’s output o: o = f

(

l
∑

i=1

wixi − θ

)

.
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McCulloch-Pitts Model

McCulloch-Pitts Models (cont.)

Remarks

It is sometimes simpler and more convenient to introduce a virtual input
x0 = 1 and assigning its corresponding weight w0 = −θ. Then,

o = f

(

l
∑

i=0

wixi

)

with x0 = 1, w0 = −θ

Synaptic weights are not updated due to the lack of a learning
mechanism.
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Perceptron

Perceptron

Overview

Uses supervised learning to adjust its weights in response to a
comparative signal between the network’s actual output and the target
output.

Mainly designed to classify linearly separable patterns.

Definition: Linear Separation

Patterns are linearly separable means that there exists a hyperplanar
multidimensional decision boundary that classifies the patterns into two
classes.
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Perceptron

Linearly Separable Patterns
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Perceptron

Non-Linearly Separable Patterns
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Perceptron

Perceptron

Remarks

One neuron (one output)

l input signals: x1, x2, . . ., xl

Adjustable weights w1, w2, . . ., wl , and bias θ

Binary activation function; i.e., step or hard limiter function
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Perceptron

Perceptron: Architecture
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Perceptron

Perceptron (cont.)

Perceptron Convergence Theorem

If the training set is linearly separable, there exists a set of weights for which
the training of the Perceptron will converge in a finite time and the training
patterns are correctly classified.

In the two-dimensional case, the
theorem translates into finding the line
defined by w1x1 + w2x2 − θ = 0, which
adequately classifies the training
patterns.

x1

x2

Class A (◦)

Class B (▽)

x2 =
w1

w2

x1+
θ

w2

Decision boundary

separating the two

classes A and B
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Perceptron

Training Algorithm

1 Initialize weights and thresholds to small random values.

2 Choose an input-output pattern (x (k), t (k)) from the training data.

3 compute the network’s actual output o(k) = f
(

∑l
i=1 wix

(k)
i − θ

)

·

4 Adjust the weights and bias according to the Perceptron learning rule:
∆wi = η[t (k) − o(k)]x (k)

i , and ∆θ = −η[t (k) − o(k)], where η ∈ [0, 1] is the
Perceptron’s learning rate.

If f is the the signum function, this becomes equivalent to:

∆wi =

{

2ηt (k)x (k)
i , if t (k) 6= o(k)

0 , otherwise
∆θ =

{

−2ηt (k) , if t (k) 6= o(k)

0 , otherwise

5 If a whole epoch is complete, then pass to the following step; otherwise go to
Step 2.

6 If the weights (and bias) reached steady state (∆wi ≈ 0)through the whole epoch,
then stop the learning; otherwise go through one more epoch starting from
Step 2.
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Perceptron

Example

Problem Statement

Classify the following patterns using η = 0.5:

Class (1) with target value (−1) :T = [2, 0]T , U = [2, 2]T , V = [1, 3]T

Class (2) with target value (+1) :X = [−1, 0]T , Y = [−2, 0]T , Z = [−1, 2]T

Let the initial weights be w1 = −1, w2 = 1, θ = −1·

Thus, initial boundary is defined by x2 = x1 − 1·
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Perceptron

Example

Solution

T properly classified, but not U and V .

Hence, training is needed.

Let us start by selecting pattern U.

sgn(2 × (−1) + 2 × (1) + 1) = 1 ⇒∆w1 = ∆w2 = −1 × (2) = −2,

⇒∆θ = +1

Updated boundary is defined by x2 = −3x1·

All patterns are now properly classified.
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Perceptron

Example: Graphical Solution

x1

x2

T

U

V

XY

Z

(◦) Class 1 = -1

(△) Class 2 = 1

Original bound-

ary x2 = x1 − 1

Updated bound-

ary x2 = −3x1
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Perceptron

Perceptron (cont.)

Remarks

Simple-layer perceptrons suffer from two major shortcomings:

1 Cannot separate linearly non-separable patterns.

2 Lack of generalization: once trained, it cannot adapt its weights to a new set
of data.
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Adaline (Adaptive Linear Neuron)

Adaline (Adaptive Linear Neuron)

Overview

More versatile than the Perceptron in terms of generalization.

More powerful in terms of weight adaptation.

An Adaline is composed of a linear combiner, a binary activation function
(hard limiter), and adaptive weights.
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Adaline (Adaptive Linear Neuron)

Adaline: Graphical Illustration
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Adaline (Adaptive Linear Neuron)

Adaline (cont.)

Learning in an Adaline

Adaline adjusts its weights according to the least mean squared (LMS)
algorithm (also known as the Widrow-Hoff learning rule) through gradient
descent optimization.

At every iteration, the weights are adjusted by an amount proportional to
the gradient of the cumulative error of the network E(w)·
⇒ ∆w = −η▽w E(w)
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Adaline (Adaptive Linear Neuron)

Adaline (cont.)

Learning in an Adaline (cont.)

The network’s cumulative error E(w) for all patterns (x (k), t(k)),
k = 1, 2, . . . , n. This is the error between the desired response t(k) and
the linear combiner’s output (

∑

i wix
(k)
i − θ).

E(w) =
∑

k

[

t(k) −

(

∑

i

wix
(k)
i − θ

)]2

Hence, individual weights are updated as:

∆wi = η

(

t(k) −
∑

i

wix
(k)
i

)

x (k)
i .
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Adaline (Adaptive Linear Neuron)

Adaline (cont.)

Training Algorithm

1 Initialize weights and thresholds to small random values.

2 Choose an input-output pattern (x (k), t(k)) from the training data.

3 Compute the linear combiner’s output r (k) =
∑

i=1 wix
(k)
i − θ.

4 Adjust the weights (and bias) according to the LMS rule as:

∆wi = η
(

t(k) −
∑

i wix
(k)
i

)

x (k)
i , where η ∈ [0, 1] being the learning rate.

5 If a whole epoch is complete, then pass to the following step; otherwise
go to Step 2.

6 If the weights (and bias) reached steady state (∆wi ≈ 0) through the
whole epoch, then stop the learning; otherwise go through one more
epoch starting from Step 2.
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Adaline (Adaptive Linear Neuron)

Adaline (cont.)

Advantages of the LMS Algorithm

Easy to implement.

Suitable for generalization, which is a missing feature in the Perceptron.
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Madaline

Shortcoming of Adaline

The adaline, while having attractive training capabilities, suffers also (similarly
to the perceptron) from the inability to train patterns belonging to nonlinearly
separable spaces.

Researchers have tried to circumvent this difficulty by setting cascade
layers of adaline units.

When first proposed, this seemingly attractive idea did not lead to much
improvement due to the lack of an existing learning algorithm capable of
adequately updating the synaptic weights of a cascade architecture of
perceptrons.

Other researchers were able to solve the nonlinear separability problem
by combining in parallel a number of adaline units called a madaline.
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Madaline: Graphical Representation
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Madaline: Example

Solving the XOR logic function by combining in parallel two adaline units
using the AND logic gate.

Graphical Solution

Related Binary Table

x1 x2 o = x1XORx2

0 0 1
0 1 -1
1 0 -1
1 1 1
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Madaline (cont.)

Remarks

Despite the successful implementation of the adaline and the madaline
units in a number of applications, many researchers conjectured that to
have successful connectionist computational tools, neural models should
involve a topology with a number of cascaded layers.

Schematics of the madaline implementation of the backpropagation
learning algorithm to neural network models composed of multiplelayers
of perceptrons.
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Case Study: Binary Classification Using
Perceptron

We need to train the network using the following set of input and desired
output training vectors:

(x (1) = [1,−2, 0,−1]T ; t(1) = −1),

(x (2) = [0, 1.5,−0.5,−1]T ; t(2) = −1),

(x (3) = [−1, 1, 0.5,−1]T ; t(3) = +1),

Initial weight vector w (1) = [1,−1, 0, 0.5]T

Learning rate η = 0.1
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Epoch 1

Introducing the first input vector x (1) to the network

Computing the output of the network

o(1) = sgn(w (1)T
x (1))

= sgn([1,−1, 0, 0.5][1,−2, 0,−1]T )

= +1 6= t(1),

Updating weight vector

w (2) = w (1) + η[t(1) − o(1)]x (1)

= w (1) + 0.1(−2)x (1)

= [0.8,−0.6, 0, 0.7]T
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Epoch 1

Introducing the first input vector x (2) to the network

Computing the output of the network

o(2) = sgn(w (2)T

x (2))

= sgn([0.8,−0.6, 0, 0.7][0, 1.5,−0.5,−1]T )

= −1 = t(2),

Updating weight vector

w (3) = w (2)
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Epoch 1

Introducing the first input vector x (3) to the network

Computing the output of the network

o(3) = sgn(w (3)T
x (3))

= sgn([0.8,−0.6, 0, 0.7][−1, 1, 0.5,−1]T )

= −1 6= t(3),

Updating weight vector

w (4) = w (3) + η[t(3) − o(3)]x (3)

= w (3) + 0.1(2)x (3)

= [0.6,−0.4, 0.1, 0.5]T
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Epoch 2

We reuse the training set (x (1), t(1)), (x (2), t(2)) and (x (3), t(3)) as
(x (4), t(4)), (x (5), t(5)) and (x (6), t(6)), respectively.

Introducing the first input vector x (4) to the network

Computing the output of the network

o(4) = sgn(w (4)T
x (4))

= sgn([0.6,−0.4, 0.1, 0.5][1,−2, 0,−1]T )

= +1 6= t(4),

Updating weight vector

w (5) = w (4) + η[t(4) − o(4)]x (4)

= w (4) + 0.1(−2)x (4)

= [0.4, 0, 0.1, 0.7]T
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Epoch 2

Introducing the first input vector x (5) to the network

Computing the output of the network

o(5) = sgn(w (5)T

x (5))

= sgn([0.4, 0, 0.1, 0.7][0, 1.5,−0.5,−1]T )

= −1 = t(5),

Updating weight vector

w (6) = w (5)

() May 22, 2009 53 / 61



Introduction Features Fundamentals Madaline Case Study: Binary Classification Using Perceptron

Epoch 2

Introducing the first input vector x (6) to the network

Computing the output of the network

o(6) = sgn(w (6)T
x (6))

= sgn([0.4, 0, 0.1, 0.7][−1, 1, 0.5,−1]T )

= −1 6= t(6),

Updating weight vector

w (7) = w (6) + η[t(6) − o(6)]x (6)

= w (6) + 0.1(2)x (6)

= [0.2, 0.2, 0.2, 0.5]T
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Epoch 3

We reuse the training set (x (1), t(1)), (x (2), t(2)) and (x (3), t(3)) as
(x (7), t(7)), (x (8), t(8)) and (x (9), t(9)), respectively.

Introducing the first input vector x (7) to the network

Computing the output of the network

o(7) = sgn(w (7)T

x (7))

= sgn([0.2, 0.2, 0.2, 0.5][1,−2, 0,−1]T )

= −1 = t(7),

Updating weight vector

w (8) = w (7)
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Epoch 3

Introducing the first input vector x (8) to the network

Computing the output of the network

o(8) = sgn(w (8)T

x (8))

= sgn([0.2, 0.2, 0.2, 0.5][0, 1.5,−0.5,−1]T )

= −1 = t(8),

Updating weight vector

w (9) = w (8)
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Epoch 3

Introducing the first input vector x (9) to the network

Computing the output of the network

o(9) = sgn(w (9)T
x (9))

= sgn([0.2, 0.2, 0.2, 0.5][−1, 1, 0.5,−1]T )

= −1 6= t(9),

Updating weight vector

w (10) = w (9) + η[t(9) − o(9)]x (9)

= w (9) + 0.1(2)x (9)

= [0, 0.4, 0.3, 0.3]T
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Epoch 4

We reuse the training set (x (1), t(1)), (x (2), t(2)) and (x (3), t(3)) as
(x (10), t(10)), (x (11), t(11)) and (x (12), t(12)), respectively.

Introducing the first input vector x (10) to the network

Computing the output of the network

o(10) = sgn(w (10)T

x (10))

= sgn([0, 0.4, 0.3, 0.3][1,−2, 0,−1]T )

= −1 = t(10),

Updating weight vector

w (11) = w (10)
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Epoch 4

Introducing the first input vector x (11) to the network

Computing the output of the network

o(11) = sgn(w (11)T
x (11))

= sgn([0, 0.4, 0.3, 0.3][0, 1.5,−0.5,−1]T )

= +1 6= t(11),

Updating weight vector

w (12) = w (11) + η[t(11) − o(11)]x (11)

= w (11) + 0.1(−2)x (11)

= [0, 0.1, 0.4, 0.5]T
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Epoch 4

Introducing the first input vector x (12) to the network

Computing the output of the network

o(12) = sgn(w (12)T
x (12))

= sgn([0, 0.1, 0.4, 0.5][−1, 1, 0.5,−1]T )

= −1 6= t(12),

Updating weight vector

w (13) = w (12) + η[t(12) − o(12)]x (12)

= w (12) + 0.1(2)x (12)

= [−0.2, 0.3, 0.5, 0.3]T
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Final Weight Vector

Introducing the input vectors for another epoch will result in no change
to the weights which indicates that w (13) is the solution for this problem;

Final weight vector: w = [w1, w2, w3, w4] = [−0.2, 0.3, 0.5, 0.3]·
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Background

The perceptron lacks the important capability of recognizing
patterns belonging to non-separable linear spaces.

The madaline is restricted in dealing with complex functional
mappings and multi-class pattern recognition problems.

The multilayer architecture first proposed in the late sixties.
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Background (cont.)

MLP re-emerged as a solid connectionist model to solve a
wide range of complex problems in the mid-eighties.

This occurred following the reformulation of a powerful
learning algorithm commonly called the Back Propagation
Learning (BPL).

It was later implemented to the multilayer perceptron
topology with a great deal of success.
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Schematic Representation of MLP Network
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Backpropagation Learning Algorithm (BPL)

The backpropagation learning algorithm is based on the
gradient descent technique involving the minimization of
the network cumulative error.

E (k) =

q
∑

i=1

[ti (k) − oi (k)]2

i represents i-th neuron of the output layer composed of a
total number of q neurons.

It is designed to update the weights in the direction of the
gradient descent of the cumulative error.
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Backpropagation Learning Algorithm (cont.)

A Two-Stage Algorithm

1 First, patterns are presented to the network.

2 A feedback signal is then propagated backward with the main
task of updating the weights of the layers connections
according to the back-propagation learning algorithm.
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BPL: Schematic Representation

Schematic Representation of the MLP network illustrating the
notion of error back-propagation
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Backpropagation Learning Algorithm (cont.)

Objective Function

Using the sigmoid function as the activation function for all
the neurons of the network, we define Ec as

Ec =
n

∑

k=1

E (k) =
1

2

n
∑

k=1

q
∑

i=1

[ti (k) − oi (k)]2

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Background
Backpropagation Learning Algorithm
Examples
Applications and Limitations of MLP
Case Study

Backpropagation Learning Algorithm (cont.)

The formulation of the optimization problem can now be
stated as finding the set of the network weights that
minimizes Ec or E (k).

Objective Function: Off-Line Training

minwEc = minw
1

2

n
∑

k=1

q
∑

i=1

[ti (k) − oi (k)]2

Objective Function: On-Line Training

minwE (k) = minw
1

2

q
∑

i=1

[ti (k) − oi (k)]2

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Background
Backpropagation Learning Algorithm
Examples
Applications and Limitations of MLP
Case Study

BPL: On-Line Training

Objective Function: minwE (k) = minw
1
2

∑q
i=1[ti (k)− oi (k)]2

Updating Rule for Connection Weights

∆w (l) = −η
∂E (k)

∂w l
,

l is layer (l -th) and η denotes the learning rate parameter,

∆w
(l)
ij : the weight update for the connection linking the node

j of layer (l − 1) to node i located at layer l .
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BPL: On-Line Training (cont.)

Updating Rule for Connection Weights

o l−1
j : the output of the neuron j at layer l − 1, the one

located just before layer l ,

tot l
i : the sum of all signals reaching node i at hidden layer l

coming from previous layer l − 1·
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Illustration of Interconnection Between Layers of MLP
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Interconnection Weights Updating Rules

∆w (l) = ∆w
(l)
ij = −η[∂E(k)

∂o
(l)
i

][
∂o

(l)
i

∂tot
(l)
i

][
∂tot

(l)
i

∂w
(l)
ij

]

For the case where the layer (l) is the output layer (L):

∆w
(L)
ij = η[ti − o

(L)
i ][f ′(tot)

(L)
i ]o

(L−1)
j ; f ′(tot)

(l)
i =

∂f (tot
(l)
i

)

∂tot
(l)
i

By denoting δ
(L)
i = [ti − o

(L)
i ][f ′(tot)

(L)
i ] as being the error

signal of the i -th node of the output layer, the weight update

at layer (L) is as follows: ∆w
(L)
ij = ηδ

(L)
i o

(L−1)
j

In the case where f is the sigmoid function, the error signal
becomes expressed as:

δL
i = [(ti − o

(L)
i )o

(L)
i (1 − o

(L)
i )]
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Interconnection Weights Updating Rules (cont.)

Propagating the error backward now, and for the case where

(l) represents a hidden layer (l < L ), the expression of ∆w
(l)
ij

becomes given by: ∆w
(l)
ij = ηδ

(l)
i o

(l−1)
j ,

where δ
(l)
i = f ′(tot)

(l)
i

∑nl

p=1 δl+1
p w l+1

pi .

Again when f is taken as the sigmoid function, δ
(l)
i becomes

expressed as: δ
(l)
i = o

(l)
i (1 − o

(l)
i )

∑nl

p=1 δl+1
p w l+1

pi .
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Updating Rules: Off-Line Training

The weight update rule:

∆w (l) = −η
∂Ec

∂w l
.

All previous steps outlined for developing the on-line update
rules are reproduced here with the exception that E (k)
becomes replaced with Ec .

In both cases though, once the network weights have reached
steady state values, the training algorithm is said to converge.
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Required Steps for Backpropagation Learning Algorithm

Step 1: Initialize weights and thresholds to small random
values.

Step 2: Choose an input-output pattern from the training
input-output data set (x(k), t(k))·

Step 3: Propagate the k-th signal forward through the
network and compute the output values for all i neurons at
every layer (l) using o l

i (k) = f (
∑nl−1

p=0 w l
ipo

l−1
p )·

Step 4: Compute the total error value E = E (k) + E and the

error signal δ
(L)
i using formulae δ

(L)
i = [ti − o

(L)
i ][f ′(tot)

(L)
i ]·
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Required Steps for BPL (cont.)

Step 5: Update the weights according to

∆w
(l)
ij = −ηδ

(l)
i o

(l−1)
j , for l = L, · · · , 1 using

δ
(L)
i = [ti − o

(L)
i ][f ′(tot)

(L)
i ] and proceeding backward using

δ
(l)
i = o l

i (1 − o l
i )

∑nl

p=1 δl+1
p w l+1

pi for l < L·

Step 6: Repeat the process starting from step 2 using another
exemplar. Once all exemplars have been used, we then reach
what is known as one epoch training.

Step 7: Check if the cumulative error E in the output layer
has become less than a predetermined value. If so we say the
network has been trained. If not, repeat the whole process for
one more epoch.
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Momentum

The gradient descent requires by nature infinitesimal
differentiation steps.

For small values of the learning parameter η, this leads most
often to a very slow convergence rate of the algorithm.

Larger learning parameters have been known to lead to
unwanted oscillations in the weight space.

To avoid these issues, the concept of momentum has been
introduced.
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Momentum (cont.)

The modified weight update formulae including momentum term
given as: ∆w (l)(t + 1) = −η

∂Ec (t)
∂w l + γ∆w l(t).
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Example 1

To illustrate this powerful algorithm, we apply it for the
training of the following network shown in the next page.

x : training patterns, and t : output data
x(1) = (0.3, 0.4), t(1) = 0.88
x(2) = (0.1, 0.6), t(2) = 0.82
x(3) = (0.9, 0.4), t(3) = 0.57

Biases: −1

Sigmoid activation function: f (tot) = 1
1+e−λtot , using λ = 1,

then f ′(tot) = f (tot)(1 − f (tot)).
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Example 1: Structure of the Network
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Example 1: Training Loop (1)

Step (1) Initialization

Initialize the weights to 0.2, set learning rate to η = 0.2 ; set
maximum tolerable error to Emax = 0.01 (i.e. 1% error), set
E = 0 and k = 1.

Step (2) - Apply input pattern

Apply the 1st input pattern to the input layer.
x (1) = (0.3, 0.4), t(1) = 0.88, then,

o0 = x1 = 0.3; o1 = x2 = 0.4; o2 = x3 = −1;
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Example 1: Training Loop (1)

Step (3) - Forward propagation

Propagate the signal forward through the network

o3 = f (w30o0 + w31o1 + w32o2) = 0.485

o4 = f (w40o0 + w41o1 + w42o2) = 0.485

o5 = −1

o6 = f (w63o3 + w64o4 + w65o5) = 0.4985
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Example 1: Training Loop (1)

Step (4) - Output error measure

Compute the error value E

E =
1

2
(t − o6)

2 + E = 0.0728

Compute the error signal δ6 of the output layer

δ6 = f ′(tot6)(t − o6)

= o6(1 − o6)(t − o6)

= 0.0945
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Example 1: Training Loop (1)

Step (5) - Error back-propagation

Third layer weight updates:

∆w63 = ηδ6o3 = 0.0093 wnew
63 = wold

63 + ∆w63 = 0.2093

∆w64 = ηδ6o4 = 0.0093 wnew
64 = wold

64 + ∆w64 = 0.2093

∆w65 = ηδ6o5 = 0.0191 wnew
65 = wold

65 + ∆w65 = 0.1809

Second layer error signals:

δ3 = f ′3(tot3)
∑6

i=6 wi3δi = o3(1 − o3)w63δ6 = 0.0048

δ4 = f ′4(tot4)
∑6

i=6 wi4δi = o4(1 − o4)w64δ6 = 0.0048
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Example 1: Training Loop (1)

Step (5) - Error back-propagation (cont.)

Second layer weight updates:
∆w30 = ηδ3o0 = 0.00028586 wnew

30 = wold
30 + ∆w30=0.2003

∆w31 = ηδ3o1 = 0.00038115 wnew
31 = wold

31 + ∆w31=0.2004

∆w32 = ηδ3o2 = −0.00095288 wnew
32 = wold

32 + ∆w32=0.199

∆w40 = ηδ4o0 = 0.00028586 wnew
40 = wold

40 + ∆w40=0.2003

∆w41 = ηδ4o1 = 0.00038115 wnew
41 = wold

41 + ∆w41=0.2004

∆w42 = ηδ4o2 = −0.00095288 wnew
42 = wold

42 + ∆w42=0.199
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Example 1: Training Loop (2)

Step (2) - Apply the 2nd input pattern
x(2) = (0.1, 0.6), t(2) = 0.82, then,
o0 = 0.1; o1 = 0.6; o2 = −1;

Step (3) - Forward propagation

o3 = f (w30o0 + w31o1 + w32o2) = 0.4853

o4 = f (w40o0 + w41o1 + w42o2) = 0.4853

o5 = −1

o6 = f (w63o3 + w64o4 + w65o5) = 0.5055

Step (4) - Output error measure
E = 1

2 (t − o6)
2 + E = 0.1222

= o6(1 − o6)(t − o6) = 0.0786
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Training Loop - Loop (2)

Step (5) - Error back-propagation

Third layer weight updates:

∆w63 = ηδ6o3 = 0.0076 wnew
63 = wold

63 + ∆w63 = 0.2169

∆w64 = ηδ6o4 = 0.0076 wnew
64 = wold

64 + ∆w64 = 0.2169

∆w65 = ηδ6o5 = 0.0157 wnew
65 = wold

65 + ∆w65 = 0.1652

Second layer error signals:

δ3 = f ′3(tot3)
∑6

i=6 wi3δi = o3(1 − o3)w63δ6 = 0.0041

δ4 = f ′4(tot4)
∑6

i=6 wi4δi = o4(1 − o4)w64δ6 = 0.0041
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Example 1: Training Loop (2)

Step (5) - Error back-propagation (cont.)

Second layer weight updates:
∆w30 = ηδ3o0 = 0.000082169 wnew

30 = wold
30 + ∆w30=0.2004

∆w31 = ηδ3o1 = 0.00049302 wnew
31 = wold

31 + ∆w31=0.2009

∆w32 = ηδ3o2 = −0.00082169 wnew
32 = wold

32 +∆w32=0.1982

∆w40 = ηδ4o0 = 0.000082169 wnew
40 = wold

40 + ∆w40=0.2004

∆w41 = ηδ4o1 = 0.00049302 wnew
41 = wold

41 + ∆w41=0.2009

∆w42 = ηδ4o2 = −0.00082169 wnew
42 = wold

42 +∆w42=0.1982
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Example 1: Training Loop (3)

Step (2) - Apply the 2nd input pattern
x(3) = (0.9, 0.4), t(3) = 0.57, then,
o0 = 0.9; o1 = 0.4; o2 = −1;

Step (3) - Forward propagation

o3 = f (w30o0 + w31o1 + w32o2) = 0.5156

o4 = f (w40o0 + w41o1 + w42o2) = 0.5156

o5 = −1

o6 = f (w63o3 + w64o4 + w65o5) = 0.5146

Step (4) - Output error measure

E = 1
2 (t − o6)

2 + E = 0.1237
= o6(1 − o6)(t − o6) = 0.0138
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Example 1: Training Loop (3)

Step (5) - Error back-propagation

Third layer weight updates:

∆w63 = ηδ6o3 = 0.0014 wnew
63 = wold

63 + ∆w63 = 0.2183

∆w64 = ηδ6o4 = 0.0014 wnew
64 = wold

64 + ∆w64 = 0.2183

∆w65 = ηδ6o5 = −0.0028 wnew
65 = wold

65 + ∆w65 = 0.1624

Second layer error signals:

δ3 = f ′3(tot3)
∑6

i=6 wi3δi = o3(1 − o3)w63δ6 = 0.00074948

δ4 = f ′4(tot4)
∑6

i=6 wi4δi = o4(1 − o4)w64δ6 = 0.00074948
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Example 1: Training Loop (3)

Step (5) - Error back-propagation (cont.)

Second layer weight updates:
∆w30 = ηδ3o0 = 0.00013491 wnew

30 = wold
30 + ∆w30=0.2005

∆w31 = ηδ3o1 = 0.000059958 wnew
31 = wold

31 + ∆w31=0.2009

∆w32 = ηδ3o2 = −0.0001499 wnew
32 = wold

32 + ∆w32=0.1981

∆w40 = ηδ4o0 = 0.00013491 wnew
40 = wold

40 + ∆w40=0.2005

∆w41 = ηδ4o1 = 0.000059958 wnew
41 = wold

41 + ∆w41=0.2009

∆w42 = ηδ4o2 = −0.0001499 wnew
42 = wold

42 + ∆w42=0.1981
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Example 1: Final Decision

Step (6) - One epoch looping

The training patterns have been cycled one epoch.

Step (7) - Total error checking

E = 0.1237 and Emax = 0.01 , which means that we have to
continue with the next epoch by cycling the training data
again.
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Example 2

Effect of Hidden Nodes on Function Approximation

Consider this function f (x) = x sin(x)

Six input/output samples were selected from the range [0, 10]
of the variable x

The first run was made for a network with 3 hidden nodes

Another run was made for a network with 5 and 20 nodes,
respectively.
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Example 2: Different Hidden Nodes
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Example 2: Remarks

A higher number of nodes is not always better. It may
overtrain the network.

This happens when the network starts to memorize the
patterns instead of interpolating between them.

A smaller number of nodes was not able to approximate
faithfully the function given the nonlinearities induced by the
network was not enough to interpolate well in between the
samples.

It seems here that this network (with five nodes) was able to
interpolate quite well the nonlinear behavior of the curve.
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Example 3

Effect of Training Patterns on Function Approximation

Consider this function f (x) = x sin(x)

Assume a network with a fixed number of nodes (taken as five
here), but with a variable number of training patterns

The first run was made for a network with 3 three samples

Another run was made for a network with 10 and 20 samples,
respectively.
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Example 3: Different Samples
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Example 3: Remarks

The first run with three samples was not able to provide a
good mach with the original curve.

This can be explained by the fact that the three patterns, in
the case of a nonlinear function such as this, are not able to
reproduce the relatively high nonlinearities of the function.

A higher number of training points provided better results.

The best result was obtained for the case of 20 training
patterns. This is due to the fact that a network with five
hidden nodes interpolates extremely well in between close
training patterns.
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Applications of MLP

Multilayer perceptrons are currently among the most used
connectionist models.

This stems from the relative ease for training and
implementing, either in hardware or software forms.

Applications

• Signal processing • Weather forecasting
• Pattern recognition • Signal compression
• Financial market prediction
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Applications of MLP

Multilayer perceptrons are currently among the most used
connectionist models.

This stems from the relative ease for training and
implementing, either in hardware or software forms.

Applications

• Signal processing • Weather forecasting
• Pattern recognition • Signal compression
• Financial market prediction
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Limitations of MLP

Among the well-known problems that may hinder the
generalization or approximation capabilities of MLP is the one
related to the convergence behavior of the connection weights
during the learning stage.

In fact, the gradient descent based algorithm used to update
the network weights may never converge to the global
minima.

This is particularly true in the case of highly nonlinear
behavior of the system being approximated by the network.
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Limitations of MLP

Many remedies have been proposed to tackle this issue either
by retraining the network a number of times or by using
optimization techniques such as those based on:

Genetic algorithms,

Simulated annealing.
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MLP NN: Case Study

Function Estimation (Regression)
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MLP NN: Case Study

Use a feedforward backpropagation neural network that
contains a single hidden layer.

Each of hidden nodes has an activation function of the logistic
form.

Investigate the outcome of the neural network for the
following mapping.

f (x) = exp(−x2), x ∈ [0 2]

Experiment with different number of training samples and
hidden layer nodes
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MLP NN: Case Study

Experiment 1: Vary Number of Hidden Nodes

Uniformly pick six sample points from [0 2], use half of them
for training and the rest for testing

Evaluate regression performance increasing the number of
hidden nodes

Use sum of regression error (i.e.
∑

i∈test samples(Output(i) − True output(i)) ) as performance
measure

Repeat each test 20 times and compute average results,
compensating for potential local minima
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MLP NN: Case Study
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MLP NN: Case Study

Experiment 2: Vary Number of Training Samples

Construct neural network using three hidden nodes

Uniformly pick sample points from [0 2], increasing their
number for each test

Use half of sample data points for training and the rest for
testing

Use the same performance measure as experiment 1, i.e. sum
of regression error

Repeat each test 50 times and compute average results
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MLP NN: Case Study
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Radial Basis Function Network
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Topology

Radial basis function network (RBFN) represent a special
category of the feedforward neural networks architecture.

Early researchers have developed this connectionist model for
mapping nonlinear behavior of static processes and for
function approximation purposes.

The basic RBFN structure consists of an input layer, a
single hidden layer with radial activation function and an
output layer.
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Topology: Graphical Representation
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Topology (cont.)

The network structure uses nonlinear transformations in its
hidden layer (typical transfer functions for hidden functions
are Gaussian curves).

However, it uses linear transformations between the hidden
and output layers.

The rationale behind this is that input spaces, cast nonlinearly
into high-dimensional domains, are more likely to be linearly
separable than those cast into low-dimensional ones.
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Topology (cont.)

Unlike most FF neural networks, the connection weights
between the input layer and the neuron units of the hidden
layer for an RBFN are all equal to unity.

The nonlinear transformations at the hidden layer level have
the main characteristics of being symmetrical.

They also attain their maximum at the function center, and
generate positive values that are rapidly decreasing with the
distance from the center.
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Topology (cont.)

As such they produce radially activation signals that are
bounded and localized.

Parameters of Each activation
Function

The center

The width
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Topology (cont.)

For an optimal performance of the network, the hidden layer
nodes should span the training data input space.

Too sparse or too overlapping functions may cause the
degradation of the network performance.
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Radial Function or Kernel Function

In general the form taken by an RBF function is given as:

gi (x) = ri(
‖ x − vi ‖

σi

)

where x is the input vector,

vi is the vector denoting the center of the radial function gi ,

σi is width parameter.
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Famous Radial Functions

The Gaussian kernel function is the most widely used form of
RBF given by:

gi (x) = exp(
− ‖ x − vi ‖

2

2σ2
i

)

The logistic function has also been used as a possible RBF
candidate:

gi (x) =
1

1 + exp(‖x−vi‖2

σ2
i

)
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Output of an RBF Network

A typical output of an RBF network having n units in the
hidden layer and r output units is given by:

oj(x) =
n

∑

i=1

wijgi (x), j = 1, · · · , r ·

where wij is the connection weight between the i-th receptive
field unit and the j-th output,

gi is the i-th receptive field unit (radial function).
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Learning Algorithm

Two-Stage Learning Strategy

At first, an unsupervised clustering algorithm is used to
extract the parameters of the radial basis functions, namely
the width and the centers.

This is followed by the computation of the weights of the
connections between the output nodes and the kernel
functions using a supervised least mean square algorithm.
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Learning Algorithm: Hybrid Approach

The standard technique used to train an RBF network is the
hybrid approach.

Hybrid Approach

Step 1: Train the RBF layer to get the adaptation of centers
and scaling parameters using the unsupervised training.

Step 2: Adapt the weights of the output layer using
supervised training algorithm.
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Learning Algorithm: Step 1

To determine the centers for the RBF networks, typically
unsupervised training procedures of clustering are used:

K-means method,

”Maximum likelihood estimate” technique,

Self-organizing map method.

This step is very important in the training of RBFN, as the
accurate knowledge of vi and σi has a major impact on the
performance of the network.
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Learning Algorithm: Step 2

Once the centers and the widths of radial basis functions are
obtained, the next stage of the training begins.

To update the weights between the hidden layer and the
output layer, the supervised learning based techniques such as
are used:

Least-squares method,

Gradient method.

Because the weights exist only between the hidden layer and
the output layer, it is easy to compute the weight matrix for
the RBFN.
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Learning Algorithm: Step 2 (cont.)

In the case where the RBFN is used for interpolation
purposes, we can use the inverse or pseudo-inverse method
to calculate the weight matrix.

If we use Gaussian kernel as the radial basis functions and
there are n input data, we have:

G = [{gij}],

where

gij = exp(
− ‖ xi − vj ‖

2

2σ2
j

), i , j = 1, · · · , n
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Learning Algorithm: Step 2 (cont.)

Now we have:

D = GW

where D is the desired output of the training data.

If G−1 exists, we get:

W = G−1D

In practice however, G may be ill-conditioned (close to
singularity) or may even be a non-square matrix (if the
number of radial basis functions is less than the number of
training data) then W is expressed as:

W = G+D
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Learning Algorithm: Step 2 (cont.)

We had:

W = G+D,

where G+ denotes the pseudo-inverse matrix of G , which can
be defined as

G+ = (GT G)−1GT

Once the weight matrix has been obtained, all elements of the
RBFN are now determined and the network could operate on
the task it has been designed for.
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Learning Algorithm: Step 2 (cont.)

We had:

W = G+D,

where G+ denotes the pseudo-inverse matrix of G , which can
be defined as

G+ = (GT G)−1GT

Once the weight matrix has been obtained, all elements of the
RBFN are now determined and the network could operate on
the task it has been designed for.
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Example

Approximation of Function f (x) Using an RBFN

We use here the same function as the one used in the MLP
section, f (x) = x sin(x).

The RBF network is composed here of five radial functions.

Each radial function has its center at a training input data.

Three width parameters are used here: 0.5, 2.1, and 8.5.

The results of simulation show that the width of the function
plays a major importance.
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Example: Function Approximation with Gaussian Kernels

(σ = 0.5)
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Example: Function Approximation with Gaussian Kernels

(σ = 2.1)
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Example: Function Approximation with Gaussian Kernels

(σ = 8.5)

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Topology
Learning Algorithm for RBF
Examples
Applications

Example: Comparison
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Example: Remarks

A smaller width value 0.5 doesn’t seem to provide for a good
interpolation of the function in between sample data.

A width value 2.1 provides a better result and the
approximation by RBF is close to the original curve.

This particular width value seems to provide the network with
the adequate interpolation property.

A larger width value 8.5 seems to be inadequate for this
particular case, given that a lot of information is being lost
when the ranges of the radial functions are further away from
the original range of the function.
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Advantages/Disadvantages

Unsupervised learning stage of an RBFN is not an easy task.

RBF trains faster than a MLP.

Another advantage that is claimed is that the hidden layer is
easier to interpret than the hidden layer in an MLP.

Although the RBF is quick to train, when training is finished
and it is being used it is slower than a MLP, so where speed is
a factor a MLP may be more appropriate.
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Applications

Known to have universal approximation capabilities, good
local structures and efficient training algorithms, RBFN
have been often used for nonlinear mapping of complex
processes and for solving a wide range of classification
problems.

They have been used as well for control systems, audio and
video signals processing, and pattern recognition.
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Applications (cont.)

They have also been recently used for chaotic time series
prediction, with particular application to weather and power
load forecasting.

Generally, RBF networks have an undesirably high number of
hidden nodes, but the dimension of the space can be reduced
by careful planning of the network.
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Kohonen’s Self-Organizing Network
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Topology

The Kohonen’s Self-Organizing Network (KSON) belongs to
the class of unsupervised learning networks.

This means that the network, unlike other forms of supervised
learning based networks updates its weighting parameters
without the need for a performance feedback from a teacher
or a network trainer.
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Unsupervised Learning
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Topology (cont.)

One major feature of this network is that the nodes distribute
themselves across the input space to recognize groups of
similar input vectors.

However, the output nodes compete among themselves to be
fired one at a time in response to a particular input vector.

This process is known as competitive learning.
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Topology (cont.)

Two input vectors with similar pattern characteristics excite
two physically close layer nodes.

In other words, the nodes of the KSON can recognize groups
of similar input vectors.

This generates a topographic mapping of the input vectors to
the output layer, which depends primarily on the pattern of
the input vectors and results in dimensionality reduction of the
input space.
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A Schematic Representation of a Typical KSOM
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Learning

The learning here permits the clustering of input data into a
smaller set of elements having similar characteristics
(features).

It is based on the competitive learning technique also known
as the winner take all strategy.

Presume that the input pattern is given by the vector x .

Assume wij is the weight vector connecting the input elements
to an output node with coordinate provided by indices i and j .
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Learning

Nc is defined as the neighborhood around the winning output
candidate.

Its size decreases at every iteration of the algorithm until
convergence occurs.
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Steps of Learning Algorithm

Step 1: Initialize all weights to small random values. Set a
value for the initial learning rate α and a value for the
neighborhood Nc .

Step 2: Choose an input pattern x from the input data set.

Step 3: Select the winning unit c (the index of the best
matching output unit) such that the performance index I
given by the Euclidian distance from x to wij is minimized:

I = ‖x − wc‖ = minij‖x − wij‖
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Steps of Learning Algorithm (cont.)

Step 4: Update the weights according to the global network
updating phase from iteration k to iteration k + 1 as:

wij(k + 1) =

{

wij(k) + α(k)[x − wij(k)] if (i , j) ∈ Nc(k),

wij(k) otherwise.

where α(k) is the adaptive learning rate (strictly positive value
smaller than the unity),

Nc(k) the neighborhood of the unit c at iteration k .
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Steps of Learning Algorithm (cont.)

Step 5: The learning rate and the neighborhood are decreased
at every iteration according to an appropriate scheme.

For instance, Kohonen suggested a shrinking function in the
form of α(k) = α(0)(1 − k/T ), with T being the total
number of training cycles and α(0) the starting learning rate
bounded by one.

As for the neighborhood, several researchers suggested an
initial region with the size of half of the output grid and
shrinks according to an exponentially decaying behavior.

Step 6: The learning scheme continues until enough number
of iterations has been reached or until each output reaches a
threshold of sensitivity to a portion of the input space.
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Steps of Learning Algorithm (cont.)

Step 5: The learning rate and the neighborhood are decreased
at every iteration according to an appropriate scheme.

For instance, Kohonen suggested a shrinking function in the
form of α(k) = α(0)(1 − k/T ), with T being the total
number of training cycles and α(0) the starting learning rate
bounded by one.

As for the neighborhood, several researchers suggested an
initial region with the size of half of the output grid and
shrinks according to an exponentially decaying behavior.

Step 6: The learning scheme continues until enough number
of iterations has been reached or until each output reaches a
threshold of sensitivity to a portion of the input space.
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Steps of Learning Algorithm (cont.)

Step 5: The learning rate and the neighborhood are decreased
at every iteration according to an appropriate scheme.

For instance, Kohonen suggested a shrinking function in the
form of α(k) = α(0)(1 − k/T ), with T being the total
number of training cycles and α(0) the starting learning rate
bounded by one.

As for the neighborhood, several researchers suggested an
initial region with the size of half of the output grid and
shrinks according to an exponentially decaying behavior.

Step 6: The learning scheme continues until enough number
of iterations has been reached or until each output reaches a
threshold of sensitivity to a portion of the input space.
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Steps of Learning Algorithm (cont.)

Step 5: The learning rate and the neighborhood are decreased
at every iteration according to an appropriate scheme.

For instance, Kohonen suggested a shrinking function in the
form of α(k) = α(0)(1 − k/T ), with T being the total
number of training cycles and α(0) the starting learning rate
bounded by one.

As for the neighborhood, several researchers suggested an
initial region with the size of half of the output grid and
shrinks according to an exponentially decaying behavior.

Step 6: The learning scheme continues until enough number
of iterations has been reached or until each output reaches a
threshold of sensitivity to a portion of the input space.
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Example

A Kohonen self-organizing map is used to cluster four vectors
given by:

(1, 1, 1, 0),

(0, 0, 0, 1),

(1, 1, 0, 0),

(0, 0, 1, 1).

The maximum numbers of clusters to be formed is m = 3.
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Example

Suppose the learning rate (geometric decreasing) is given by:

α(0) = 0.3,

α(t + 1) = 0.2α(t).

With only three clusters available and the weights of only one
cluster are updated at each step (i.e., Nc = 0), find the weight
matrix. Use one single epoch of training.
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Example: Structure of the Network
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Example: Step 1

The initial weight matrix is:

W =









0.2 0.4 0.1
0.3 0.2 0.2
0.5 0.3 0.5
0.1 0.1 0.1









Initial radius: Nc = 0

Initial learning rate: α(0) = 0.3
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Example: Repeat Steps 2-3 for Pattern 1

Step 2: For the first input vector (1, 1, 1, 0), do steps 3 - 5.

Step 3:
I (1) = (1−0.2)2 +(1−0.3)2 +(1−0.5)2 +(0−0.1)2 = 1.39

I (2) = (1− 0.4)2 + (1− 0.2)2 + (1− 0.3)2 + (0− 0.1)2 = 1.5

I (3) = (1− 0.1)2 +(1− 0.2)2 +(1− 0.5)2 +(0− 0.1)2 = 1.71

The input vector is closest to output node 1. Thus node 1 is
the winner. The weights for node 1 should be updated.
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Example: Repeat Step 4 for Pattern 1

Step 4: weights on the winning unit are updated:

wnew (1) = wold(1) + α(x − wold(1))

= (0.2, 0.3, 0.5, 0.1) + 0.3(0.8, 0.7, 0.5, 0.9)

= (0.44, 0.51, 0.65, 0.37)

W =









0.44 0.4 0.1
0.51 0.2 0.2
0.65 0.3 0.5
0.37 0.1 0.1








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Example: Repeat Steps 2-3 for Pattern 2

Step 2: For the second input vector (0, 0, 0, 1), do steps 3 - 5.

Step 3:

I (1) = (0 − 0.44)2 + (0 − 0.51)2 + (0 − 0.65)2 + (1 − 0.37)2

= 1.2731

I (2) = (0 − 0.4)2 + (0 − 0.2)2 + (0 − 0.3)2 + (1 − 0.1)2 = 1.1

I (3) = (0 − 0.1)2 + (0 − 0.2)2 + (0 − 0.5)2 + (1 − 0.1)2 = 1.11

The input vector is closest to output node 2. Thus node 2 is
the winner. The weights for node 2 should be updated.
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Example: Repeat Step 4 for Pattern 2

Step 4: weights on the winning unit are updated:

wnew (2) = wold(2) + α(x − wold(2))

= (0.4, 0.2, 0.3, 0.1) + 0.3(−0.4, −0.2, −0.3, 0.9)

= (0.28, 0.14, 0.21, 0.37)

W =









0.44 0.28 0.1
0.51 0.14 0.2
0.65 0.21 0.5
0.37 0.37 0.1








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Example: Repeat Steps 2-3 for Pattern 3

Step 2: For the second input vector (1, 1, 0, 0), do steps 3 - 5:

Step 3:

I (1) = (1 − 0.44)2 + (1 − 0.51)2 + (0 − 0.65)2 + (0 − 0.37)2

= 1.1131

I (2) = (1 − 0.28)2 + (1 − 0.14)2 + (0 − 0.21)2 + (0 − 0.37)2

= 1.439

I (3) = (1 − 0.1)2 + (1 − 0.2)2 + (0 − 0.5)2 + (0 − 0.1)2 = 1.71

The input vector is closest to output node 1. Thus node 1 is
the winner. The weights for node 1 should be updated.
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Example: Repeat Step 4 for Pattern 3

Step 4: weights on the winning unit are updated:

wnew (1) = wold(1) + α(x − wold(1))

= (0.44, 0.51, 0.65, 0.37) + 0.3(0.56, 0.49,−0.65,−0.37)

= (0.608, 0.657, 0.455, 0.259)

W =









0.608 0.28 0.1
0.657 0.14 0.2
0.455 0.21 0.5
0.259 0.37 0.1








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Example: Repeat Steps 2-3 for Pattern 4

Step 2: For the second input vector (0, 0, 1, 1), do steps 3 - 5:

Step 3:

I (1) = (0 − 0.608)2 + (0 − 0.657)2 + (1 − 0.455)2 + (1 − 0.259)2

= 1.647419

I (2) = (0 − 0.28)2 + (0 − 0.14)2 + (1 − 0.21)2 + (1 − 0.37)2

= 1.119

I (3) = (0 − 0.1)2 + (0 − 0.2)2 + (1 − 0.5)2 + (1 − 0.1)2 = 1.11

The input vector is closest to output node 3. Thus node 3 is
the winner. The weights for node 3 should be updated.
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Example: Repeat Step 4 for Pattern 4

Step 4: weights on the winning unit are updated:

wnew (3) = wold(3) + α(x − wold(3))

= (0.1, 0.2, 0.5, 0.1) + 0.3(−0.1, −0.2, 0.5, 0.9)

= (0.07, 0.14, 0.65, 0.37)

W =









0.608 0.28 0.07
0.657 0.14 0.14
0.455 0.21 0.65
0.259 0.37 0.37








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Example: Step 5

Epoch 1 is complete.

Reduce the learning rate:
α(t + 1) = 0.2α(t) = 0.2(0.3) = 0.06

Repeat from the start for new epochs until ∆wj becomes
steady for all input patterns or the error is within a tolerable
range.
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Applications

A Variety of KSONs could be applied to different applications
using the different parameters of the network, which are:

Neighborhood size,

Shape (circular, square, diamond),

Learning rate decaying behavior, and

Dimensionality of the neuron array (1-D, 2-D or n-D).
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Applications (cont.)

Given their self-organizing capabilities based on the
competitive learning rule, KSONs have been used extensively
for clustering applications such as

Speech recognition,

Vector coding,

Robotics applications, and

Texture segmentation.
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Hopfield Network
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Recurrent Topology
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Origin

A very special and interesting case of the recurrent topology.

It is the pioneering work of Hopfield in the early 1980’s that
led the way for the designing of neural networks with feedback
paths and dynamics.

The work of Hopfield is seen by many as the starting point for
the implementation of associative (content addressable)
memory by using a special structure of recurrent neural
networks.
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Associative Memory Concept

The associative memory concept is able to recognize newly
presented (noisy or incomplete) patterns using an already
stored ’complete’ version of that pattern.

We say that the new pattern is ‘attracted’ to the stable
pattern already stored in the network memories.

This could be stated as having the network represented by an
energy function that keeps decreasing until the system has
reached stable status.
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General Structure of the Hopfield Network

The structure of Hopfield network is made up of a number of
processing units configured in one single layer (besides the input
and the output layers) with symmetrical synaptic connections; i.e.,

wij = wji
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General Structure of the Hopfield Network (cont.)
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Hopfield Network: Alternative Representations
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Network Formulation

In the original work of Hopfield, the output of each unit can
take a binary value (either 0 or 1) or a bipolar value (either -1
or 1).

This value is fed back to all the input units of the network
except to the one corresponding to that output.

Let us suppose here that the state of the network with
dimension n (n neurons) takes bipolar values.

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Topology
Learning Algorithm
Example
Applications and Limitations

Network Formulation: Activation Function

The activation rule for each neuron is provided by the
following:

oi = sign(
n

∑

j=1

wijoj − θi) =

{

1 if
∑

i 6=j wijoj > θi

−1 if
∑

i 6=j wijoj < θi

oi : the output of the current processing unit (Hopfield neuron)

θi : threshold value
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Network Formulation: Energy Function

An energy function for the network

E = −1/2
∑ ∑

i 6=j

wijoioj +
∑

oiθi

E is so defined as to decrease monotonically with variation of
the output states until a minimum is attained.
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Network Formulation: Energy Function (cont.)

This could be readily noticed from the expression relating the
variation of E with respect to the output states variation.

∆E = −∆oi(
∑

i 6=j

wijoj − θi )

This expression shows that the energy function E of the
network continues to decrease until it settles by reaching a
local minimum.
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Transition of Patterns from High Energy Levels to Lower

Energy Levels
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Hebbian Learning

The learning algorithm for the Hopfield network is based on
the so called Hebbian learning rule.

This is one of the earliest procedures designed for carrying out
supervised learning.

It is based on the idea that when two units are simultaneously
activated, their interconnection weight increase becomes
proportional to the product of their two activities.
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Hebbian Learning (cont.)

The Hebbian learning rule also known as the outer product
rule of storage, as applied to a set of q presented patterns
pk(k = 1, ..., q) each with dimension n (n denotes the number
of neuron units in the Hopfield network), is expressed as:

wij =











1
n

q
∑

k=1

pkjpki if i 6= j

0 if i = j

The weight matrix W = {wij} could also be expressed in
terms of the outer product of the vector pk as:

W = {wij} =
1

n

q
∑

k=1

pkpT
k −

q

n
I
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Learning Algorithm

Step 1 (storage): The first stage is to store the patterns
through establishing the connection weights. Each of the q
fundamental memories presented is a vector of bipolar
elements (+1 or -1).

Step 2 (initialization): The second stage is initialization and
consists in presenting to the network an unknown pattern u
with same dimension as the fundamental patterns.

Every component of the network outputs at the initial
iteration cycle is set as

o(0) = u
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Learning Algorithm

Step 1 (storage): The first stage is to store the patterns
through establishing the connection weights. Each of the q
fundamental memories presented is a vector of bipolar
elements (+1 or -1).

Step 2 (initialization): The second stage is initialization and
consists in presenting to the network an unknown pattern u
with same dimension as the fundamental patterns.

Every component of the network outputs at the initial
iteration cycle is set as

o(0) = u
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Learning Algorithm (cont.)

Step 3 (retrieval 1): Each one of the component oi of the
output vector o is updated from cycle l to cycle l + 1 by:

oi (l + 1) = sgn(

n
∑

j=1

wijoj(l))

This process is known as asynchronous updating.

The process continues until no more changes are made and
convergence occurs.

Step 4 (retrieval 2): Continue the process for other presented
unknown patterns by starting again from step 2.
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Learning Algorithm (cont.)

Step 3 (retrieval 1): Each one of the component oi of the
output vector o is updated from cycle l to cycle l + 1 by:

oi (l + 1) = sgn(

n
∑

j=1

wijoj(l))

This process is known as asynchronous updating.

The process continues until no more changes are made and
convergence occurs.

Step 4 (retrieval 2): Continue the process for other presented
unknown patterns by starting again from step 2.
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Learning Algorithm (cont.)

Step 3 (retrieval 1): Each one of the component oi of the
output vector o is updated from cycle l to cycle l + 1 by:

oi (l + 1) = sgn(

n
∑

j=1

wijoj(l))

This process is known as asynchronous updating.

The process continues until no more changes are made and
convergence occurs.

Step 4 (retrieval 2): Continue the process for other presented
unknown patterns by starting again from step 2.
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Example

Problem Statement

We need to store a fundamental pattern (memory) given
by the vector O = [1, 1, 1,−1]T in a four node binary
Hopefield network.

Presume that the threshold parameters are all equal to zero.
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Establishing Connection Weights

Weight matrix expression discarding 1/4 and having q = 1

W =
1

n

q
∑

k=1

pkpT
k −

q

n
I = p1p

T
1 − I

Therefore:

W =









1
1
1
−1









[

1 1 1 −1
]

−









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









=









0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0








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Network’ States and Their Code

Total number of states: There are 2n = 24 = 16 different states.

State Code

A 1 1 1 1
B 1 1 1 -1
C 1 1 -1 -1
D 1 1 -1 1
E 1 -1 -1 1
F 1 -1 -1 -1
G 1 -1 1 -1
H 1 -1 1 1

State Code

I -1 -1 1 1
J -1 -1 1 -1
K -1 -1 -1 -1
L -1 -1 -1 1
M -1 1 -1 1
N -1 1 -1 -1
O -1 1 1 -1
P -1 1 1 1

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Topology
Learning Algorithm
Example
Applications and Limitations

Computing Energy Level of State A = [1, 1, 1, 1]

All thresholds are equal to zero: θi = 0, i = 1, 2, 3, 4·
Therefore,

E = −1/2

4
∑

i=1

4
∑

j=1

wijoioj

E = −1/2(w11o1o1 + w12o1o2 + w13o1o3 + w14o1o4+

w21o2o1 + w22o2o2 + w23o2o3 + w24o2o4+

w31o3o1 + w32o3o2 + w33o3o3 + w34o3o4+

w41o4o1 + w42o4o2 + w43o4o3 + w44o4o4)
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Computing Energy Level of State A (cont.)

For state A, we have A = [o1, o2, o3, o4] = [1, 1, 1, 1]· Thus,

E = −1/2(0 + (1)(1)(1) + (1)(1)(1) + (−1)(1)(1)+

(1)(1)(1) + 0 + (1)(1)(1) + (−1)(1)(1)+

(1)(1)(1) + (1)(1)(1) + 0 + (−1)(1)(1)+

(−1)(1)(1) + (−1)(1)(1) + (−1)(1)(1) + 0)

E = −1/2(0 + 1 + 1 − 1+

1 + 0 + 1 − 1+

1 + 1 + 0 − 1+

− 1 − 1 − 1 + 0)

E = −1/2(6 − 6) = 0
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Energy Level of All States

Similarly, we can compute the
energy level of the other states.

Two potential attractors: the
original fundamental pattern
[1, 1, 1,−1]T and its
complement [−1,−1,−1, 1]T .
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Retrieval Stage

We update the components of each state asynchronously
using equation:

oi = sgn(

n
∑

j=1

wijoj − θi)

Updating the state asynchronously means that for every state
presented we activate one neuron at a time.

All states change from high energy to low energy levels.

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Topology
Learning Algorithm
Example
Applications and Limitations

State Transition for State J = [−1,−1, 1,−1]T

Transition 1 (o1)

o1 = sgn(
4

∑

j=1

wijoj − θi) = sgn(w12o2 + w13o3 + w14o4 − 0)

= sgn((1)(−1) + (1)(1) + (−1)(−1))

= sgn(+1)

= +1

As a result, the first component of the state J changes from
−1 to 1. In other words, the state J transits to the state G at
the end of first transition.

J = [−1,−1, 1,−1]T (2) → G = [1,−1, 1,−1]T (0)
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State Transition for State J (cont.)

Transition 2 (o2)

o2 = sgn(
4

∑

j=1

wijoj − θi) = sgn(w21o1 + w23o3 + w24o4)

= sgn((1)(1) + (1)(1) + (−1)(−1))

= sgn(+3)

= +1

As a result, the second component of the state G changes
from −1 to 1. In other words, the state G transits to the
state B at the end of first transition.

G = [1,−1, 1,−1]T (0) → B = [1, 1, 1,−1]T (−6)
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State Transition for State J (cont.)

Transition 3 (o3)

As state B is a fundamental pattern, no more transition will occur.
Let us see!

o3 = sgn(
4

∑

j=1

wijoj − θi) = sgn(w31o1 + w32o2 + w34o4)

= sgn((1)(1) + (1)(1) + (−1)(−1))

= sgn(+3)

= +1

No transition is observed.

B = [1, 1, 1,−1]T (−6) → B = [1, 1, 1,−1]T (−6)
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State Transition for State J (cont.)

Transition 4 (o4)

Again as state B is a fundamental pattern, no more transition will
occur. Let us see!

o4 = sgn(
4

∑

j=1

wijoj − θi) = sgn(w41o1 + w42o2 + w43o3)

= sgn((−1)(1) + (−1)(1) + (−1)(1))

= sgn(−3)

= −1

No transition is observed.

B = [1, 1, 1,−1]T (−6) → B = [1, 1, 1,−1]T (−6)
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Asynchronous State Transition Table

By repeating the same procedure for the other states,
asynchronous transition table is easily obtained.
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Some Sample Transitions

Fundamental Pattern B = [1, 1, 1,−1]T

There is no change of the energy level and no transition
occurs to any other state.

It is in its stable state because this state has the lowest energy.

State A = [1, 1, 1, 1]T

Only the forth element o4 is updated asynchronously.

The state transits to O = [1, 1, 1,−1]T , representing the
fundamental pattern with the lowest energy value ”-6”.
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Some Sample Transitions (cont.)

Complement of Fundamental Pattern L = [−1,−1,−1, 1]T

Its energy level is the same as B and hence it is another stable
state.

Every complement of a fundamental pattern is a
fundamental pattern itself.

This means that the Hopefield network has the ability to
remember the fundamental memory and its complement.
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Some Sample Transitions (cont.)

State D = [1, 1,−1, 1]T

It could transit a few times to end up at state C after being
updated asynchronously.

Update the bit o1, the state becomes M = [−1, 1,−1, 1]T

with energy 0

Update the bit o2, the state becomes E = [1,−1,−1, 1]T

with energy 0

Update the bit o3, the state becomes A = [1, 1, 1, 1]T , the
state A with energy 0

Update the bit o4, the state becomes C = [1, 1,−1,−1]T

with energy 0

Major Classes of Neural Networks



Multi-Layer Perceptrons (MLPs)
Radial Basis Function Network

Kohonen’s Self-Organizing Network
Hopfield Network

Topology
Learning Algorithm
Example
Applications and Limitations

Some Sample Transitions (cont.)

State D: Remarks

From the process we know that state D can transit to four
different states.

This depends on which bit is being updated.

If the state D transits to state A or C , it will continue the
updating and ultimately transits to the fundamental state B,
which has the energy −6, the lowest energy.

If the state D transits to state E or M , it will continue the
updating and ultimately transits to state L, which also has the
lowest energy −6.
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Transition of States J and N from High Energy Levels to

Low Energy Levels
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State Transition Diagram

Each node is characterized by its vector state and its energy
level.
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Applications

Information retrieval and for pattern and speech recognition,

Optimization problems,

Combinatorial optimization problems such as the traveling
salesman problem.
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Limitations

Limited stable-state storage capacity of the network,

Hopfield estimated roughly that a network with n processing
units should allow for 0.15n stable states.

Many studies have been carried out recently to increase the
capacity of the network without increasing much the number
of the processing units

Major Classes of Neural Networks
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