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Crisp relations

To understand the fuzzy relations, it is better to discuss first crisp
relation.

Suppose, A and B are two (crisp) sets. Then Cartesian product
denoted as A x B is a collection of order pairs, such that

Ax B={(a,b)lac Aand b € B}

Note :

(1VAxB#BxA

(2) [Ax B| = |A| x |B]|

(3)A x B provides a mapping from a€ Ato b € B.

The mapping so mentioned is called a relation.
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Crisp relations

Example 1:
Consider the two crisp sets A and B as given below. A={ 1, 2, 3, 4}
B={3,5,7}.

Then, Ax B={(1,3),(1,5),(1,7),(2,3),(2,5),(2,7),(3,3).(3,5),
(3:7),(4,3).(4,5),(4.7)}

Let us define a relation Ras R = {(a,b)lb=a-+1,(a,b) € Ax B}
Then, R = {(2,3),(4,5)} in this case.
We can represent the relation R in a matrix form as follows.

A0 O =
OO 0w
- OO O wu
O O OO N
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Operations on crisp relations

Suppose, R(x,y) and S(x, y) are the two relations define over two
crispsetsx c Aandy € B

Union:

R(x,y)U S(x,y) = max(R(x, y), S(x,y));
Intersection:

R(x,y) N S(x,y) = min(R(x, y), S(x, ¥));
Complement:

R(va):1 _R(X7y)
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Example: Operations on crisp relations

Example:

Suppose, R(x, y) and S(x, y) are the two relations define over two

crispsetsx c Aandy € B

0
R =

o O o
o o =

0

Find the following:

@ RUS
Q@ RNnS
QR
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Soft Computing Applications

06.02.2018

6/64



Composition of two crisp relations

Given R is a relation on X,Y and S is another relation on Y,Z.
Then R o Sis called a composition of relation on X and Z which is
defined as follows.

RoS={(x,2)|(x,y) e Rand (y,z) € SandVy € Y}

Max-Min Composition

Given the two relation matrices R and S, the max-min composition is
definedas T =Ro S;

T(x,z) = max{min{R(x,y),S(y,z) and ¥y € Y}}
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Composition: Composition

Example:

Given

X={1,3,5}Y={1,3,5LE R={(x,V)ly=x+2}S={(x,y)lx <y}
Here, Rand Sison X x Y.

Thus, we have

R= {(173)7(3’5)}
S= {(1’3)7(1?5)7(375)}

1.3 5 1.3 5

1 {0 10 1[0 1 1

R= 310 0 1| andS= 310 0 1
5 {0 0 0] 5 {0 0 0]

1.3 5

110 0 1

Using max-min composition R o S= 3 {O 0 0]
0 0O
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Fuzzy relations

@ Fuzzy relation is a fuzzy set defined on the Cartesian product of
crisp set Xi, Xo, ..., Xp

@ Here, n-tuples (xy, X2, ..., X,) may have varying degree of
memberships within the relationship.

@ The membership values indicate the strength of the relation
between the tuples.

Example:

X = { typhoid, viral, cold } and Y = { running nose, high temp,
shivering }

The fuzzy relation R is defined as

runningnose  hightemperature  shivering

typhoid 0.1 0.9 0.8
viral 0.2 0.9 0.7
cold 0.9 0.4 0.6
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Fuzzy Cartesian product

Suppose
Ais a fuzzy set on the universe of discourse X with pa(x)|x € X

Bis a fuzzy set on the universe of discourse Y with ug(y)|ly € Y

Then R=Ax B C X x Y ; where R has its membership function given
by pr(X.¥) = paxs(x,y) = min{ua(x), us(y)}

Example :
A={(ay,0.2),(a,0.7),(as,0.4)}and B = {(by,0.5),(b2,0.6)}
by by
a 02 02
R=AxB= a | 0.5 0.6
a | 04 04
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Operations on Fuzzy relations

Let R and S be two fuzzy relations on A x B.

Union:
/LRUS(av b) = max{:u'R(a7 b)a /’LS(av b)}
Intersection:
MROS(aa b) = min{ﬂl?(& b)7 /'LS(a7 b)}
Complement:
Mﬁ(aa b) =1- }U’R(aa b)
Composition

T=RoS
HRoS = maXyEY{min(:uFf(Xay)v /'LS(y7 Z))}
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Operations on Fuzzy relations: Examples

Example:
X =(x1,X2,X3); Y = (Y1, ¥2); £ = (21, 22, 23);
)4 Y2
x | 0.5 01
R= x | 0.2 0.9
X3 ! 0.8 0.6 ]
Z4 Zo Z3
S ¥ [ 06 04 07 ]
v | 0.5 08 0.9
Z4 Z Z3
x | 0.5 04 05
RoS= x | 0.5 0.8 0.9
X3 {0.6 0.6 0.7]

1Ros(X1, Y1) = max{min(xq, y1), min(y1, zy), min(xq, y2), min(yz, zy) }
= max{min(0.5,0.6), min(0.1,0.5)} = max{0.5,0.1} = 0.5 and so on.
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Fuzzy relation : An example

Consider the following two sets P and D, which represent a set of
paddy plants and a set of plant diseases. More precisely

P = {P1, P2, P3, P4} a set of four varieties of paddy plants
D = {Dy, D>, D3, D4} of the four various diseases affecting the plants

In addition to these, also consider another set S = {S1, Sy, Sz, S4} be
the common symptoms of the diseases.

Let, R be a relation on P x D, representing which plant is susceptible
to which diseases, then R can be stated as

Dy D, Ds Dy
p, [ 0.6 06 09 0.8
P, | 0.1 02 09 0.8
p; | 0.9 0.3 04 0.8
P, | 09 08 04 0.2
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Fuzzy relation : An example

Also, consider T be the another relation on D x S, which is given by
S S S3 Sa

p; [ 0.1 02 0.7 09

D, | 10 1.0 04 06

p; | 0.0 0.0 05 0.9

o, | 09 1.0 0.8 0.2

Obtain the association of plants with the different symptoms of the
disease using max-min composition.

Hint: Find R o T, and verify that

S S S S
p [ 0.8 08 08 0.9
P, | 0.8 0.8 0.8 0.9
p; | 0.8 0.8 0.8 0.9
P, | 0.8 0.8 0.7 0.9

S=

HOS:
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Fuzzy relation : Another example

Let, R = x is relevant to y
and S = y is relevant to z

be two fuzzy relations defined on X x Y and Y x Z, respectively,
where X = {1,2,3},Y ={«a,8,7,0} and Z = {a, b}.

Assume that R and S can be expressed with the following relation
matrices :

«a B 0% 19
1101 03 05 07
R= 2 l 04 02 08 09 ] and
06 08 03 0.2
a b
09 0.1
0.2 0.3

05 06
0.7 0.2

0))
]
> 2 ™ R
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Fuzzy relation : Another example

Now, we want to find R o S, which can be interpreted as a derived
fuzzy relation x is relevant to z.

Suppose, we are only interested in the degree of relevance between
2 € X and a € Z. Then, using max-min composition,

1Res(2, @) = max{(0.4 A 0.9),(0.2 A 0.2),(0.8 A 0.5), (0.9 A 0.7)}
= max{0.4,0.2,0.5,0.7} = 0.7

R s

/
R
N\

)
O,

OJOLC)

\

& OO

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.02.2018 16/64



2D Membership functions : Binary fuzzy relations

(Binary) fuzzy relations are fuzzy sets A x B which map each element
in A x B to a membership grade between 0 and 1 (both inclusive).
Note that a membership function of a binary fuzzy relation can be
depicted with a 3D plot.

(x.y)

'

laxg

Important: Binary fuzzy relations are fuzzy sets with two dimensional
MFs and so on.
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2D membership function : An example

Let, X = Rt = y (the positive real line)
and R = X x Y ="y is much greater than x”

The membership function of ug(x, y) is defined as

y=x) jf
- {51 22

0 if y<x
Suppose, X = {3,4,5} and Y = {3,4,5,6,7}, then
3 4 5 6 7

0 O 025 05 0.75

3|0 025 05 075 1.0
0 O 0 025 05
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Problems to ponder:

How you can derive the following?
If xis Aoryis BthenzisC;
Given that

Q@ Ry lfxisAthenzisc[R; € Ax C]
Q Ro:lfyisBthenzisC[R: € Bx (]

@ Hint:

@ You have given two relations Ry and Rs.

e Then, the required can be derived using the union operation of R;
and R,
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Fuzzy Propositions
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Two-valued logic vs. Multi-valued logic

@ The basic assumption upon which crisp logic is based - that every
proposition is either TRUE or FALSE.

@ The classical two-valued logic can be extended to multi-valued
logic.

@ As an example, three valued logic to denote true(1), false(0) and
indeterminacy ().
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Two-valued logic vs. Multi-valued logic

Different operations with three-valued logic can be extended as shown
in the following truth table:

alb/A|V]a|l=]|=
ojojojo}| 1t | 1 |1
olJ[o[2 [ 1] 1 [3
oj(1j0(1}] 1| 1 |0
10011 ][]
LA L S S Y IO
L I A B B
s 1l |15 1 |3
1/]0|/0(1| 1| O |O
PP I NN
T[T 111 [1

Fuzzy connectives used in the above table are:
AND (A), OR (V), NOT (=), IMPLICATION (=) and EQUAL (=).
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Three-valued logic

Fuzzy connectives defined for such a three-valued logic better can be
stated as follows:

Symbol | Connective Usage Definition

- NOT -P 1—T(P)

v OR PvQ max{T(P), T(Q) }
A AND PAQ min{ T(P),T(Q) }
= IMPLICATION (P= Q)or | max{(1 - T(P)),

(=PVv Q) T(Q }

EQUALITY (P=Q)or | 1-|T(P)=T(Q)
[(P= Q) A
(Q= P)]
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Fuzzy proposition

Example 1:

P : Ram is honest

@ T(P)=0.0 : Absolutely false

Q@ T(P)=0.2 : Partially false

Q@ TP)=04 : May be false or not false
Q T(P)=0.6 : May be true or not true
Q T(P)=0.8 : Partially true

Q T(P)=1.0 : Absolutely true.
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Example 2 :Fuzzy proposition

P : Mary is efficient ; T(P) = 0.8;
Q : Ram is efficient ; T(Q) = 0.6
@ Mary is not efficient.
T(-P)=1-T(P)=0.2

© Mary is efficient and so is Ram.
T(PAQ)=min{T(P), T(Q)} =0.6

© Either Mary or Ram is efficient
T(PvQ)=maxT(P), T(Q)=0.8

© If Mary is efficient then so is Ram
T(P= Q) =max{1—-T(P), T(Q)} =0.6
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Fuzzy proposition vs. Crisp proposition

@ The fundamental difference between crisp (classical) proposition
and fuzzy propositions is in the range of their truth values.

@ While each classical proposition is required to be either true or
false, the truth or falsity of fuzzy proposition is a matter of degree.

@ The degree of truth of each fuzzy proposition is expressed by a
value in the interval [0,1] both inclusive.
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Canonical representation of Fuzzy proposition

@ Suppose, X is a universe of discourse of five persons.
Intelligent of x € X is a fuzzy set as defined below.

Intelligent: {(xy,0.3),(x2,0.4), (x3,0.1),(x4,0.6), (x5,0.9)}

@ We define a fuzzy proposition as follows:

P : x is intelligent

@ The canonical form of fuzzy proposition of this type, P is
expressed by the sentence P : vis F.

@ Predicate in terms of fuzzy set.

P :vis F ;where vis an element that takes values v from some
universal set V and F is a fuzzy set on V that represents a fuzzy
predicate.

@ In other words, given, a particular element v, this element belongs
to F with membership grade pg(v).
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Graphical interpretation of fuzzy proposition

e (V)

T(P) P:visF

T(P) = pe(v) foraveVv

@ For a given value v of variable V in proposition P, T(P) denotes the

degree of truth of proposition P.
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Fuzzy Implications
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Fuzzy rule

@ A fuzzy implication (also known as fuzzy If-Then rule, fuzzy rule,
or fuzzy conditional statement) assumes the form :

If xis Athen yis B

where, A and B are two linguistic variables defined by fuzzy sets A
and B on the universe of discourses X and Y, respectively.

@ Often, x is A is called the antecedent or premise, while y is B is
called the consequence or conclusion.
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Fuzzy implication : Example 1

@ If pressure is High then temperature is Low
@ If mango is Yellow then mango is Sweet else mango is Sour

@ If road is Good then driving is Smooth else traffic is High

@ The fuzzy implication is denotedas R: A — B

@ In essence, it represents a binary fuzzy relation R on the
(Cartesian) product of A x B
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Fuzzy implication : Example 2

@ Suppose, P and T are two universes of discourses representing
pressure and temperature, respectively as follows.

o P={1234}and T ={ 10, 15, 20, 25, 30, 35, 40, 45, 50 }

@ Let the linguistic variable High temperature and Low pressure are
given as

® ThigH =
{(20,0.2), (25,0.4), (30,0.6), (35,0.6), (40,0.7), (45,0.8), (50, 0.8)}

@ Pow=(1,0.8),(2,0.8),(3,0.6),(4,0.4)
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Fuzzy implications : Example 2

@ Then the fuzzy implication If temperature is High then pressure
is Low can be defined as

R: ThigH — Prow

1 2 3 4
20 [ 0.2 02 02 0.2
25 | 04 04 04 04
30 | 0.6 06 06 04

where, R = 35 | 06 06 06 04
40 | 0.7 0.7 06 04
45 | 0.8 08 06 04
50 | 0.8 0.8 06 04 |

Note : If temperature is 40 then what about low pressure?
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Interpretation of fuzzy rules

In general, there are two ways to interpret the fuzzy rule A — B as

@ A coupled with B

@ Aentails B
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Interpretation as

R:A— B=AxB= [y, yupa(x)*us(y)l(xy) : where x is called a
T-norm operator.

T-norm operator

The most frequently used T-norm operators are:

Minimum : T,,,(a, b) = min(a,b) = aAb

Algebric product : Tyy(a,b) = ab

Bounded product : Tyy(a, b) =0V (a+b—1)

a if b=1
Drastic product: T, =q¢b if a=1
0 if ab<1

Here, a = ua(x) and b = ug(y). T, is called the function of T-norm operator.
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Interpretation as

Based on the T-norm operator as defined above, we can automatically
define the fuzzy rule R : A — B as a fuzzy set with two-dimentional MF:

nr(X,y) = f(ua(x), na(y)) = f(a, b) with a=pa(x) , b=pp(y), and f is
the fuzzy implication function.
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Interpretation as

In the following, few implicationsof R: A — B

Min operator:

Rmn=AxB= fxxy,uA(X) A MB(y)|(X,y) or fmin(a,b) = anb
[Mamdani rule]

Algebric product operator

Rap =Ax B= [y, yba(x)-u8(¥)lxy) Of fao(a, b) = ab
[Larsen rule]
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Product Operators

Bounded product operator

Rop = Ax B= [y, yba(X) © us(y)l(xy) =
fXxYO V (pa(x) + ps(y) — 1)’(x,y)

orfpp=0Vv(a+b—-1)

Drastic product operator
de =AxB= fxxyﬂA(X)sﬂB(}/”(x,y)
aif b=1

or fyp(a,b) = < b if a=1
0 if otherwise
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Interpretation of

There are three main ways to interpret such implication:
Material implication :
R:A—B=AUB

Propositional calculus :
R:A— B=AU(ANB)

Extended propositional calculus :
R:A—-B=(AnB)uB
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Interpretation of

With the above mentioned implications, there are a number of fuzzy
implication functions that are popularly followed in fuzzy rule-based
system.

Zadeh’s arithmetic rule :

Rea=AUB= [y, v1 A1 = pa(X)+ 18(¥))|xy)
or

Zadeh’s max-min rule :

Rmm =AU (ANB) = [y,.y(1 = pa(X)) V (1a(x) A pa(y))
or

fmm(a,b) = (1 —a) v(aAb)

(x.y)
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Interpretation of

Boolean fuzzy rule

Hbf = /z\ UuB= fXXY(1 — MA(X)) \ ,U/B(X)‘(x,y)
or

fbf(a, b) = (1 — a) V b;

Goguen’s fuzzy rule:

1 if a<b

Rot = [xxcy #a(x) * na(¥)(x,y) where ax b = { if a>b

I\le)]
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Example 3: Zadeh’s Max-Min rule

If x is A then y is B with the implication of Zadeh’s max-min rule can
be written equivalently as :
Rmm = (A x B)U(Z\X Y)

Here, Y is the universe of discourse with membership values for all
yeYist, thatis, uy(y) =1vy e Y.

Suppose X = {a,b,c,d} and Y = {1,2,3,4}

and A = {(a,0.0),(bh,0.8),(c,0.6),(d,1.0)}
B={(1,0.2),(2,1.0),(3,0.8),(4,0.0)} are two fuzzy sets.

We are to determine Rmm = (A x B)U (A x Y)
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Example 3: Zadeh’s min-max rule:

The computation of Rym = (A x B) U (A x Y) is as follows:

1 2 3 4
a[ 0 0 0
b| 02 08 08 0
AxB= «| 02 06 06 0| 2
4| 02 10 08 0
1 2 3 4
a1 1 1 1
- b | 02 02 02 02
Ax Y= c| 04 04 04 04
il 0 0 0 0
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Example 3: Zadeh’s min-max rule:

Therefore,

1 2 3 4
1 1 1 1
02 08 08 02
04 06 06 04
02 10 08 O

Rmm=(Ax B)U(Ax Y) =

Q O T o

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.02.2018 44 /64



X ={a,b,c,d}

Y={1,2,3,4}

Let, A= {(a,0.0),(b,0.8),(c,0.6),(d,1.0)}
B={(1,0.2),(2,1.0),(3,0.8),(4,0.0)}
Determine the implication relation :

If x is Athen yis B

1 2 3 4

a[ 0 0 0 0

b | 02 08 08 0

Here, Ax B = ¢c| 02 06 06 0
|02 10 08 0
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andAx Y =

Q O T o

0O 0 O

RBmm=(Ax B)U(AxY)=

This R represents If x is A then y is

Debasis Samanta (IIT Kharagpur) Soft Computing Applications
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a
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c| 04 06 06 04
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IF x is ATHEN y is BELSE y is C.

The relation R is equivalent to

R=(AxB)U(Ax C)

The membership function of R is given by

pr(X, y) =max[min{ua(x), ps(y)}, min{puz(x), nc(y)]
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Example 4:

X ={a,b,c,d}

Y={1,23,4}
A={(a,0.0),(b,0.8),(c,0.6),(d,1.0)}
B=1{(1,0.2),(2,1.0),(3,0.8),(4,0.0)}
c={(1,0),(2,0.4),(3,1.0),(4,0.8)}
Determine the implication relation :

If xis Athen yisBelse yisC

1 2 3 4
a[ 0 0
b | 02 08 08 0
Here, Ax B = c| 02 06 06 0
d |02 10 08 0
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Example 4:

1 2 3 4
20 04 10 08
§ b |0 02 02 02
and Ax C = c| 0 04 04 04
4|0 0 0 o0

1 2 3 4

0 04 10 08

. 02 08 08 02

02 06 06 04
02 10 08 O

Q O T

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.02.2018 49 /64



Interpretation of fuzzy implication

If xis Athen yis B

y

-{ Z

W

=7
A

If xis Athen yis Belse yis C

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.02.2018 50/ 64



Fuzzy Inferences
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Fuzzy inferences

Let’s start with propositional logic. We know the following in
propositional logic.

@ Modus Ponens : P,P = Q, < Q
© Modus Tollens : P — Q,—-Q &, P
© Chainrule: P— Q. Q=R s, P—R
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An example from propositional logic

Given
@ CvD
Q@ ~H= (AA~B)
Q@ CvD=—=~H
Q (AA~B)=(RVS)
From the above can we infer RV S?

Similar concept is also followed in fuzzy logic to infer a fuzzy rule from
a set of given fuzzy rules (also called fuzzy rule base).
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Inferring procedures in Fuzzy logic

Two important inferring procedures are used in fuzzy systems :

@ Generalized Modus Ponens (GMP)
If xis AThenyis B
xis A

yis B

@ Generalized Modus Tollens (GMT)
If xis AThen yis B
yis B

xis A
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Fuzzy inferring procedures

@ Here, A, B,A and B are fuzzy sets.

@ To compute the membership function A" and B’ the max-min
composition of fuzzy sets B and A" respectively with R(x, y)
(which is the known implication relation) is to be used.

@ Thus,
B = A oR(x.y) pa(y) = max[min(jy (x), pa(X, y))]
A =B oR(x.y) pa(x) = max{min(ug (y), na(X, y))!
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Generalized Modus Ponens

Generalized Modus Ponens (GMP)
P:lfxisAthenyis B

Let us consider two sets of variables x and y be
X ={xq1,Xx2,x3} and Y = {yy, y»}, respectively.

Also, let us consider the following.

A= {(x1,0.5),(x2,1),(x3,0.6)}

B={(y1,1),(y2,0.4)}

Then, giyen a fact expressed by the proposition x is A,
where A = {(x1,0.6), (x2,0.9), (x3,0.7)}

derive a conclusion in the form y is B' (using generalized modus
ponens (GMP)).
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Example: Generalized Modus Ponens

If xis AThen yis B

xis A

yis B
We are to find B = A" o R(x, y) where R(x,y) = max{Ax B,Ax Y}

n Y2 n Yo

x | 0.5 04 xx | 0.5 0.5

Ax B= x 1 04 |andAx Y= x 0 0
xs | 0.6 04 xs | 0.4 04

Note: For A x B, paxs(X, y) = min(uax, 1s(y))
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Example: Generalized Modus Ponens

V1 Y2

B x [ 05 05
Rx,y)=(AxB)U(Ax y)= x 1 04
06 04

X3
Now, A" = {(x1,0.6), (x2,0.9), (x3,0.7)}
Therefore, B = A" o R(x,y) =
05 05

(06 09 07]o|1 04| =[09 05]
06 0.4

Thus we derive that y is B' where B' = {(y1,0.9), (y2,0.5)}
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Example: Generalized Modus Tollens

Generalized Modus Tollens (GMT)

P: IfxisAThenyisB

Q: yis B

xis A
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Example: Generalized Modus Tollens

@ Let sets of variables x and y be X = {x1, x2, X3} and y = {y1, y»},
respectively.

@ Assume that a proposition If x is A Then y is B given where
A={(x1,0.5),(x2,1.0),(x3,0.6)} and B = {(y1,0.6), (y2,0.4)}

@ Assume now that a fact expressed by a proposition y is B is given
where B’ = {(y4,0.9), (y2,0.7)}.

@ From the above, we are to conclude that x is A". That is, we are to
determine A’
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Example: Generalized Modus Tollens

@ We first calculate R(x,y) = (Ax B)U (A x y)
n Y2
x | 0.5 05
R(x,y) = x [ 1 0.4}

06 04

X3

@ Next, we calculate A" = B' o R(x, y)
n Y2
x | 0.5 0.5
A =[09 07]0 x {

X3

06 04

@ Hence, we calculate that x is A" where
A = [(X1 , 05), (XQ, 09), (X3, 06)]

1 0.4] —[05 09 0.6]
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Apply the fuzzy GMP rule to deduce Rotation is quite slow
Given that :

@ If temperature is High then rotation is Slow.

@ temperature is Very High
Let,

X = {30,40,50,60,70,80,90,100} be the set of temperatures.
Y = {10, 20, 30, 40,50, 60} be the set of rotations per minute.
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The fuzzy set High(H), Very High (VH), Slow(S) and Quite Slow (QS)
are given below.

H = {(70,1),(80,1),(90,0.3)}
VH = {(90,0.9), (100, 1)}
S ={(30,0.8), (40, 1.0), (50, 0.6)}
QS ={(10,1),(20,0.8)}
@ If temperature is High then the rotation is Slow.
R=(HxS)U(HxY)
@ temperature is Very High

Thus, to deduce “rotation is Quite Slow”, we make use the composition
rule QS = VHo R(x,y)
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Any questions??
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