Chapter 2

Review of Network Parameters and Transmission Line Theory

Review of Network Parameters

Transmission Line Theory

Review of Network Parameters

Linear networks can be completely characterized by parameters measured at the network ports without knowing the content of the networks
Networks can have any number of ports.

Analysis of a **2-port network** is sufficient to explain the theory of network parameters

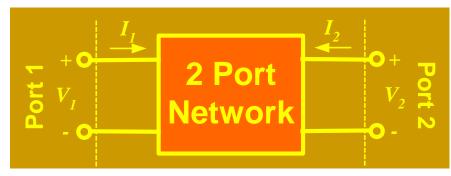


Fig. 2.1 Two port network The ports can be characterized with many **parameters** (**Z**, **Y**, **ABCD**, **S**)

Z- Parameters

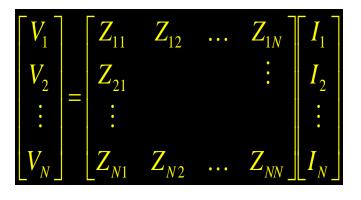
- Consider the two-port network shown in Fig2.1.
- Since the network is linear, the superposition principle can be applied
- Assuming that it contains no independent sources, voltage V1 and V2 can be expressed in terms of I1 and I2 as follows

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

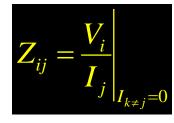
✤ Using the matrix representation, we can write

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \text{ or } [V] = [Z][I]$$

Generally, for N port network we can express the network parameters using the matrix representation



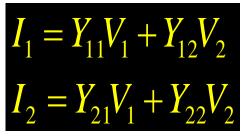
where



(Open circuit impedance)

Admittance Parameters

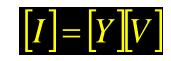
- Consider again the two-port network shown in Figure 2.1
- ✤ Since the network is linear, the superposition principle can be applied
- Assuming that it contains no independent sources, current II and I2 can be expressed in terms of two voltages:



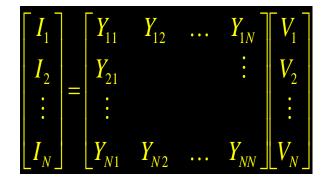
Using the matrix representation, we can write

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

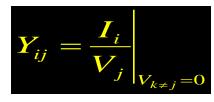
or



• Generally, for N port network we can express the network parameters using the matrix representation



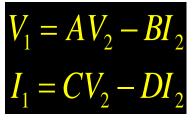
Where



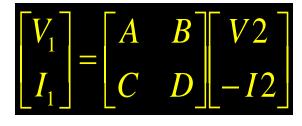
(Short circuit admittance)

Transmission (ABCD) Matrix

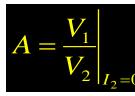
The transmission matrix describes the network given in Fig 2.1 above in terms of both voltage and current waves

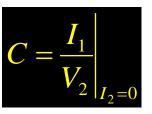


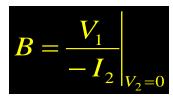
or

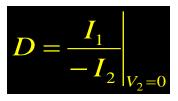


The coefficients can be calculated as follows:

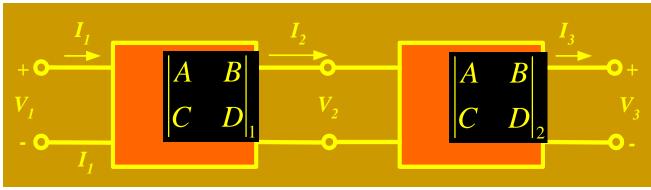






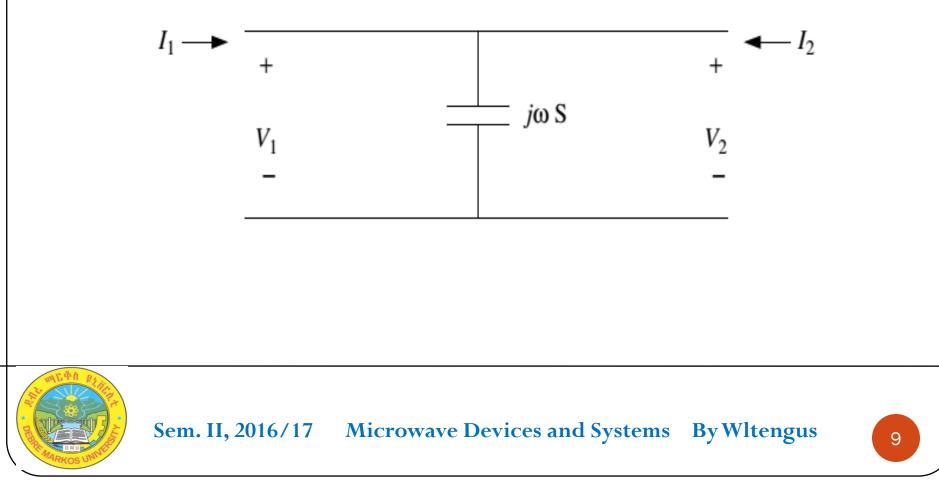


Since the ABCD matrix represents the ports in terms of currents and voltages, it is well suited for cascading elements



 $\boldsymbol{\diamond}$ The matrices can be mathematically cascaded by multiplication

Example. Determine the transmission parameters of the network shown in fig 2.3 below



SOLUTION With a source connected at port 1 while port 2 has a short circuit (so that V_2 is zero),

$$I_2 = -I_1$$
 and $V_1 = 0V$ $B = \frac{V_1}{-I_2}\Big|_{V_2=0} = 0 \Omega$

$$D = \frac{I_1}{-I_2} \bigg|_{V_2 = 0} = 1$$

Similarly, with a source connected at port 1 while port 2 is open (so that I₂ is zero), $V_2 = V_1$ $A = \frac{V_1}{V_2}\Big|_{L=0} = 1$

Hence, transmission matrix of this network is

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ j\omega & 1 \end{bmatrix}$$

$$C = \left. \frac{I_1}{V_2} \right|_{I_2=0} = j\omega \qquad S$$

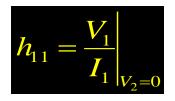
Microwave Devices and Systems By Waltengus Sem. II, 2016/17

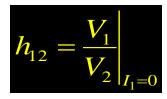
Hybrid Parameters

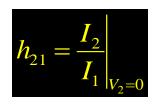
- Reconsider the two-port network of Figure 2.1
- Since the network is linear, **the superposition principle** can be applied
- Assuming that it contains no independent sources, voltage V1 at port 1 can be expressed in terms of current I1 at port 1 and voltageV2 at port 2
- \clubsuit Similarly, we can write I₂ in terms of I₁ and V₂

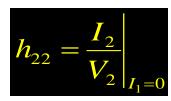
$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$









- $\clubsuit h_{11} = input impedance$

- \clubsuit In transistor circuit analysis, these are generally denoted by hi ,hf ,hr ,and h0, respectively

Transmission Line Theory

- Transmission line is a distributed-parameter network, where voltages and currents can vary in magnitude and phase over the length of the line
- Lumped Element Model for a Transmission Line
 ◆ Transmission lines usually consist of 2 parallel conductors
 ◆ A short segment *∆z* of transmission line can be modeled as a lumped-element circuit.

Continued i(z, t)+ v(z, t) $-\Delta z$ -Ζ. (a) $i(z + \Delta z, t)$ i(z, t) $L\Delta z$ $R\Delta z$ $G\Delta z$ $C\Delta z = v(z + \Delta z, t)$ v(z, t) Δz -(b)

Figure 2.4 Voltage and current definitions and equivalent circuit for an incremental length of transmission line. (a) Voltage and current definitions. (b) Lumped-element equivalent circuit.

Transmission line parameters

 \mathbf{R} = Series resistance per unit length for both conductors L = Series inductance per unit length for both conductors \mathbf{G} = Shunt conductance per unit length $\mathbf{O} = \mathbf{C}$ Shunt capacitance per unit length ✤ Applying KVL and KCL, $v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0 \quad (2.1a)$

$$i(z,t) - G\Delta zv(z + \Delta z, t) - C\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} - i(z + \Delta z, t) = 0 \quad (2.1b)$$

Wave Propagation on a Transmission Line

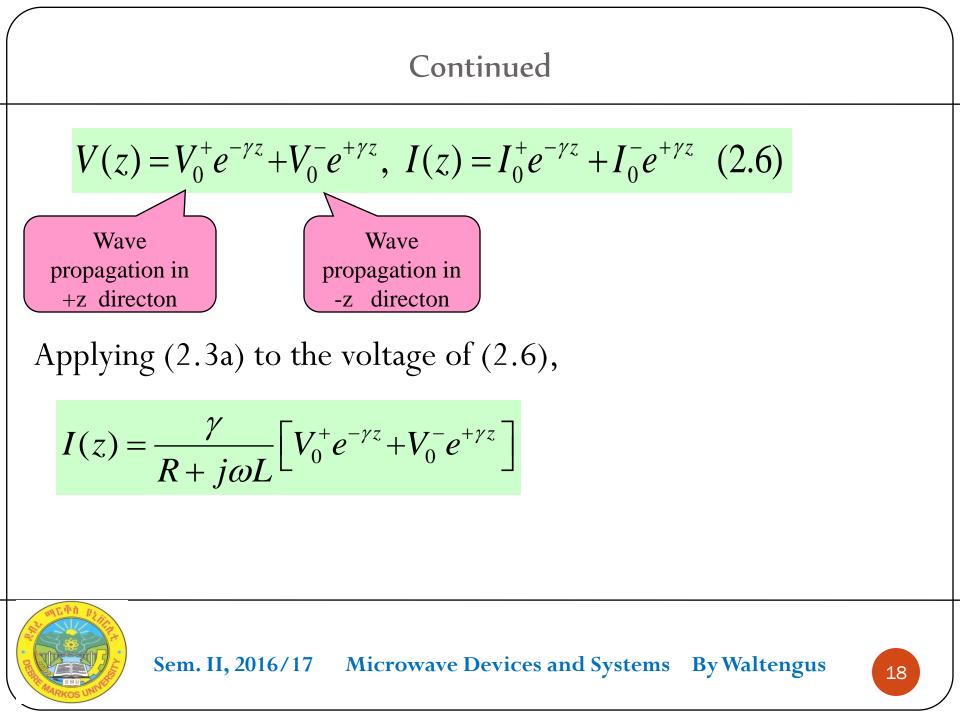
$$\frac{d^2 V(z)}{dz^2} = -\gamma^2 V(z) = 0 \quad (2.4a)$$

α

$$\frac{d^2 I(z)}{dz^2} - \gamma^2 I(z) = 0 \ (2.4b)$$

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

- Propagation Constant in per meter
 - Attenuation Constant in nepers per meter
 - Phase Constant in radians per meter



(2.6) can be rewritten

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{+\gamma z} \quad (2.8)$$

Converting the phasor voltage of (2.6) to the time domain:

$$v(z,t) = \left| V_0^+ \right| \cos(\omega t - \beta z + \phi^+) e^{-\alpha z} + \left| V_0^- \right| \cos(\omega t + \beta z + \phi^-) e^{\alpha z}$$
(2.9)

The **wavelength** of the traveling waves:

$$\lambda = \frac{2\pi}{\beta}$$
 (2.10)

The **phase velocity** of the wave is defined as the **speed** at which a constant **phase** point travels down the line,

$$v_p = \frac{dz}{dt} = \frac{\omega}{\beta} = \lambda f \quad (2.11)$$

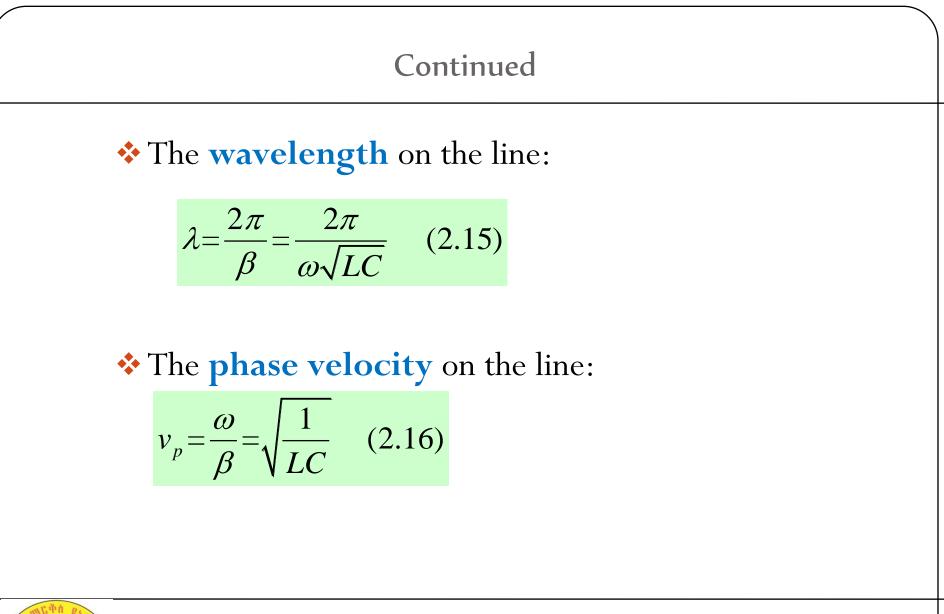
Lossless Transmission Lines

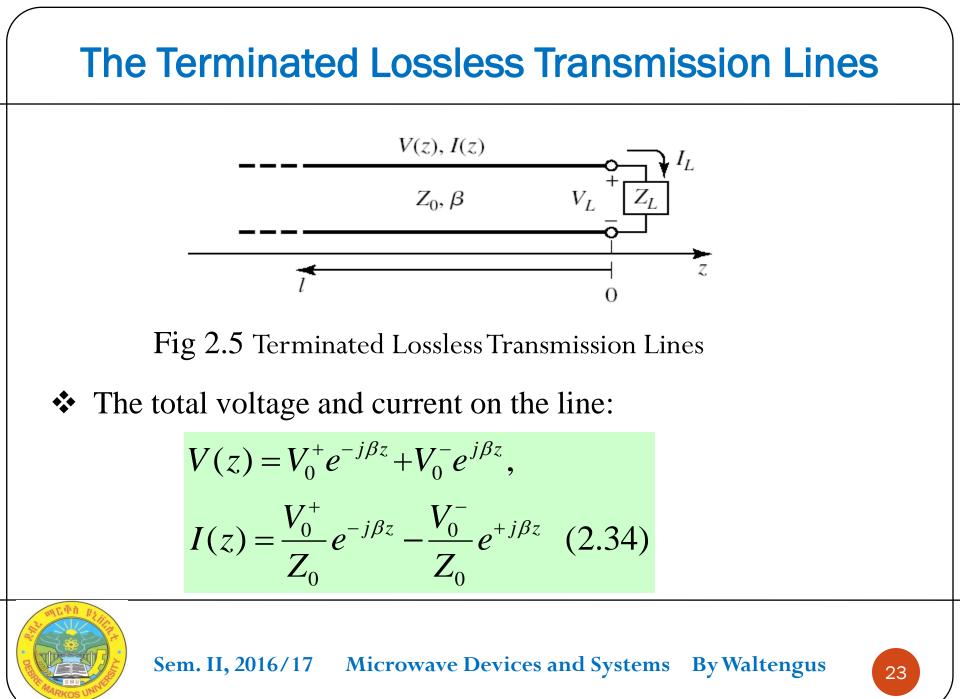
•
$$R = G = 0$$
 gives $\gamma = \alpha + j\beta = j\omega\sqrt{LC}$ or

$$\beta = \omega \sqrt{LC}, \quad \alpha = 0 \quad (2.12)$$
$$Z_0 = \sqrt{\frac{L}{C}} \quad (2.13)$$

✤ The general solutions for voltage and current on a lossless transmission line: $V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z},$

$$I(z) = \frac{I_0^+}{Z_0} e^{-j\beta z} - I_0^- e^{j\beta z} \quad (2.14)$$





The **total voltage** and **current** at the load are related by the load impedance, so at z = 0

$$Z_{L} = \frac{V(0)}{I(0)} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} Z_{0} \qquad \qquad V_{0}^{-} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} V_{0}^{+}$$

The **voltage reflection coefficient**: $\Gamma =$

$$\frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0} \qquad (2.35)$$

The total voltage and current on the line:

$$V(z) = V_0^+ \left[e^{-j\beta z} + \Gamma e^{j\beta z} \right],$$
$$I(z) = \frac{V_0^+}{Z_0} \left[e^{-j\beta z} - \Gamma e^{j\beta z} \right] \quad (2.36)$$

★ It is seen that the voltage and current on the line consist of a superposition of an incident and reflected wave. → *Standing waves*★ When $\Gamma = 0$ → matched.

***** For the **time-average power** flow along the line at the point *z*:

$$P_{avg} = \frac{1}{2} \operatorname{Re} \left\{ V(z) I^{*}(z) \right\} = \frac{1}{2} \frac{\left| V_{0}^{+} \right|^{2}}{Z_{0}} \operatorname{Re} \left\{ 1 - \Gamma^{*} e^{-2j\beta z} + \Gamma e^{2j\beta z} - \left| \Gamma \right|^{2} \right\}$$
$$= \frac{1}{2} \frac{\left| V_{0}^{+} \right|^{2}}{Z_{0}} \left(1 - \left| \Gamma \right|^{2} \right)$$

- When the load is mismatched, not all of the available power from the generator is delivered to the load.
- * This loss is return loss (RL): $RL = -20 \log |\Gamma| dB$
- ♦ If the load is matched to the line, $\Gamma = 0$ and $|V(z)| = |V_0^+|$ (constant) → flat When the load is mismatched,

$$|V(z)| = |V_0^+| |1 + \Gamma e^{2j\beta z}| = |V_0^+| |1 + \Gamma e^{-2j\beta l}| = |V_0^+| |1 + |\Gamma| e^{j(\theta - 2\beta l)} |(2.39)$$

$$V_{\max} = |V_0^+| (1+|\Gamma|), \quad V_{\min} = |V_0^+| (1-|\Gamma|) \quad (2.40)$$

A measure of the mismatch of a line, called the voltage standing wave ratio (VSWR)

 $SWR = \frac{1 + |\Gamma|}{1 - |\Gamma|} \qquad (1 < VSWR < \infty)$

✤ From (2.39), the distance between 2 successive voltage maxima (or minima) is $l = 2\pi/2\beta = \lambda/2$ ($2\beta l = 2\pi$), while the distance between a maximum and a minimum is $l = \pi/2\beta = \lambda/4$.

• From (2.34) with
$$z = -1$$
,

$$\Gamma(l) = \frac{V_0^- e^{-j\beta l}}{V_0^+ e^{j\beta l}} = \Gamma(0) \ e^{-2j\beta l} \ (2.42)$$

At a distance
$$l = -z$$
,

$$Z_{in} = \frac{V(-l)}{I(-l)} = Z_0 \frac{V_0^+}{V_0^+} \left[\frac{e^{j\beta l} + \Gamma e^{-j\beta l}}{e^{j\beta l} - \Gamma e^{-j\beta l}} \right] = Z_0 \frac{1 + \Gamma e^{-2j\beta l}}{1 - \Gamma e^{-2j\beta l}} \quad (2.43)$$

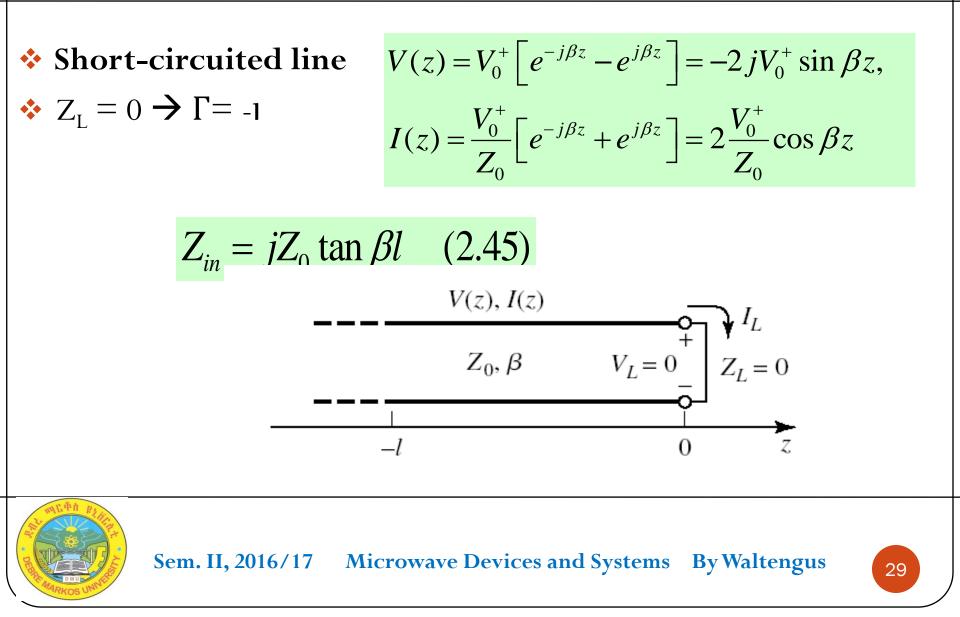
$$= Z_0 \frac{(Z_L + Z_0) e^{j\beta l} + (Z_L - Z_0) e^{-j\beta l}}{(Z_L + Z_0) e^{j\beta l} - (Z_L - Z_0) e^{-j\beta l}}$$

$$= Z_0 \frac{Z_L \cos \beta l + jZ_0 \sin \beta l}{Z_0 \cos \beta l + jZ_L \sin \beta l}$$

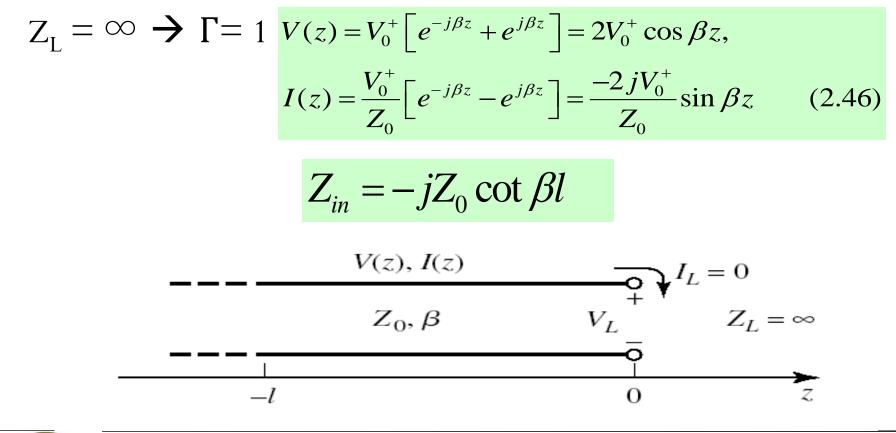
$$= Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \quad (2.44)$$

 \rightarrow Transmission line impedance equation

Special Cases of Terminated Transmission Lines



• Open-circuited line

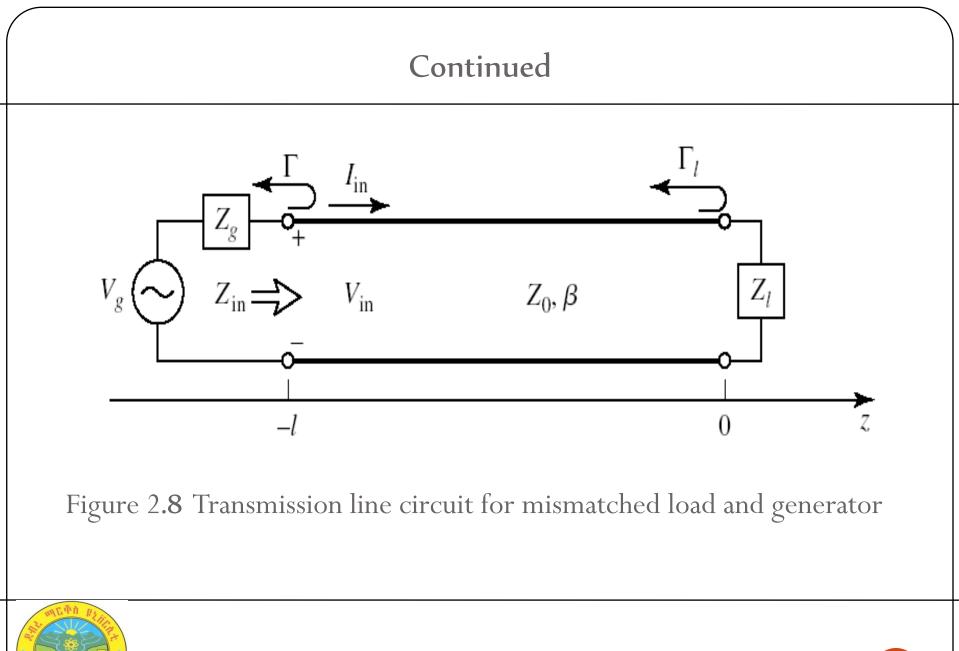


Generator and Load Mismatches

- Because both the generator and load are mismatched, multiple reflections can occur on the line.
- ✤ In the steady state, the net result is a single wave traveling toward the load, and a single reflected wave traveling toward the generator. where z = -1,

$$Z_{in} = Z_0 \frac{1 + \Gamma_l e^{-2j\beta l}}{1 - \Gamma_l e^{-2j\beta l}} = Z_0 \frac{Z_l + jZ_0 \tan\beta l}{Z_0 + jZ_l \tan\beta l} \quad (2.67)$$

$$\Gamma_{l} = \frac{Z_{l} - Z_{0}}{Z_{l} + Z_{0}} \quad (2.68)$$



The voltage on the line:

$$V(-l) = V_{g} \frac{Z_{in}}{Z_{in} + Z_{g}} = V_{0}^{+} (e^{j\beta l} + \Gamma_{l} e^{-j\beta l})$$

$$V_{0}^{+} = V_{g} \frac{Z_{in}}{Z_{in} + Z_{g}} \frac{1}{e^{j\beta l} + \Gamma_{l} e^{-j\beta l}} \qquad (2.70)$$

$$W = V_{g} \frac{Z_{0}}{Z_{0} + Z_{g}} \frac{e^{-j\beta l}}{(1 - \Gamma_{l} \Gamma_{g} e^{-2j\beta l})} \qquad (2.71)$$

$$By (2.67)$$

$$W_{g} = \frac{V_{g} (2.67)}{V_{g} (2.71)}$$

$$W_{g} = \frac{Z_{g} - Z_{0}}{Z_{g} + Z_{0}}$$

Power delivered to the load:

$$P_{l} = \frac{1}{2} \operatorname{Re}\left\{V_{in}I_{in}^{*}\right\} = \frac{1}{2} \operatorname{Re}\left\{|V_{in}|^{2} \frac{1}{Z_{in}^{*}}\right\} = \frac{1}{2} \operatorname{Re}\left\{|V_{g}|^{2} \left|\frac{Z_{in}}{Z_{in} + Z_{g}}\right|^{2} \frac{1}{Z_{in}^{*}}\right\}$$
$$= \frac{1}{2} |V_{g}|^{2} \frac{R_{in}}{(R_{in} + R_{g})^{2} + (X_{in} + X_{g})^{2}} \quad (2.39)$$

Case 1: the load is matched to the line, $Z_1 = Z_0$, $\Gamma_1 = 0$, SWR = 1, $Z_{in} = Z_0$, $P = \frac{1}{|V|^2} = \frac{Z_0}{|Z_0|}$ (2.40)

$$P_{l} = \frac{1}{2} |V_{g}|^{2} \frac{Z_{0}}{(Z_{0} + R_{g})^{2} + X_{g}^{2}} \quad (2.40)$$

♦ Case 2: the generator is matched to the input impedance of a transmission line, $Z_{in} = Z_g$

$$P_{l} = \frac{1}{2} |V_{g}|^{2} \frac{R_{g}}{4\left(R_{g}^{2} + X_{g}^{2}\right)} \quad (2.41)$$

•If
$$Z_g$$
 is fixed, to maximize P_l ,

$$\frac{\partial P_l}{\partial R_{in}} = 0 \longrightarrow \frac{1}{(R_{in} + R_g)^2 + (X_{in} + X_g)^2} - \frac{2R_{in}(R_{in} + R_g)}{\left[(R_{in} + R_g)^2 + (X_{in} + X_g)^2\right]^2} = 0$$

or
$$R_g^2 - R_{in}^2 + (X_{in} + X_g)^2 = 0$$

$$\frac{\partial P_l}{\partial X_{in}} = 0 \longrightarrow \frac{-2X_{in}(X_{in} + X_g)}{\left[(R_{in} + R_g)^2 + (X_{in} + X_g)^2 \right]^2} = 0$$

or
$$X_{in}(X_{in} + X_g) = 0$$

✤ Therefore, $R_{in} = R_g$ and $X_{in} = -X_{g}$, or $Z_{in} = Z_g^*$ ♦ Under these conditions

$$P_{l} = \frac{1}{2} |V_{g}|^{2} \frac{1}{4R_{g}} \quad (2.44)$$

Example 1

An air line has characteristic impedance of 70 Ω and phase constant of 3 rad/m at 100 MHz. Calculate the inductance per meter and the capacitance per meter of the line.

Solution:

An air line can be regarded as a lossless line since $\sigma \simeq 0$. Hence

$$R = 0 = G$$
 and $\alpha = 0$

$$Z_{\rm o} = R_{\rm o} = \sqrt{\frac{L}{C}}$$

$$\beta = \omega \sqrt{LC}$$

$$\frac{R_o}{\beta} = \frac{1}{\omega C}$$

Received and the second second

cont'd

$$C = \frac{\beta}{\omega R_o} = \frac{3}{2\pi \times 100 \times 10^6 (70)} = 68.2 \text{ pF/m}$$
$$L = R_o^2 C = (70)^2 (68.2 \times 10^{-12}) = 334.2 \text{ nH/m}$$

A transmission line operating at 500 MHz has $Z_0 = 80 \Omega$, $\alpha = 0.04$ Np/m, $\beta = 1.5$ rad/m. Find the line parameters *R*, *L*, *G*, and *C*.

Answer: 3.2 Ω/m , 38.2 nH/m, 5 × 10⁻⁴ S/m, 5.97 pF/m.

Example 2

A distortionless line has $Z_0 = 60 \Omega$, $\alpha = 20 \text{ mNp/m}$, u = 0.6c, where c is the speed of light in a vacuum. Find R, L, G, C, and λ at 100 MHz.

Solution:

For a distortionless line,

$$RC = GL \quad \text{or} \quad G = \frac{RC}{L}$$

and hence
$$Z_{o} = \sqrt{\frac{L}{C}}$$
$$\alpha = \sqrt{RG} = R \sqrt{\frac{C}{L}} = \frac{R}{Z_{o}}$$

or
$$R = \alpha Z_{o}$$

Cont'd

But

$$u = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$

 $R = \alpha Z_0 = (20 \times 10^{-3})(60) = 1.2 \,\Omega/m$

$$L = \frac{Z_0}{u} = \frac{60}{0.6 \,(3 \times 10^8)} = 333 \,\text{nH/m}$$

$$G = \frac{\alpha^2}{R} = \frac{400 \times 10^{-6}}{1.2} = 333 \,\mu\text{S/m}$$

$$uZ_{o} = \frac{1}{C}$$

or

$$C = \frac{1}{uZ_o} = \frac{1}{0.6 (3 \times 10^8) 60} = 92.59 \text{ pF/m}$$
$$\lambda = \frac{u}{f} = \frac{0.6 (3 \times 10^8)}{10^8} = 1.8 \text{ m}$$

Example 3

A certain transmission line operating at $\omega = 10^6$ rad/s has $\alpha = 8$ dB/m, $\beta = 1$ rad/m, and $Z_0 = 60 + j40 \Omega$, and is 2 m long. If the line is connected to a source of $10/0^\circ$ V, $Z_g = 40 \Omega$ and terminated by a load of $20 + j50 \Omega$, determine

- (a) The input impedance
- (b) The sending-end current
- (c) The current at the middle of the line

Solution:

ar.中市

(a) Since 1 Np = 8.686 dB,

$$\alpha = \frac{8}{8.686} = 0.921 \text{ Np/m}$$
$$\gamma = \alpha + j\beta = 0.921 + j1 /m$$
$$\gamma \ell = 2(0.921 + j1) = 1.84 + j2$$

Using the formula for tanh(x + jy), we obtain

$$\begin{aligned} \tanh \gamma \ell &= 1.033 - j0.03929 \\ Z_{\rm in} &= Z_{\rm o} \left(\frac{Z_L}{Z_{\rm o}} + \frac{Z_{\rm o} \tanh \gamma \ell}{Z_{\rm o} + Z_L \tanh \gamma \ell} \right) \\ &= (60 + j40) \left[\frac{20}{60} + \frac{j50}{j40} + \frac{(60 + j40)(1.033 - j0.03929)}{(50 + j40)(1.033 - j0.03929)} \right] \\ Z_{\rm in} &= 60.25 + j38.79 \ \Omega \end{aligned}$$

(b) The sending-end current is $I(z = 0) - I_{or}$

下. 单直

$$I(z = 0) = \frac{V_g}{Z_{in} + Z_g} = \frac{10}{60.25} + \frac{10}{j38.79} + \frac{40}{40}$$
$$= 93.03 / -21.15^{\circ} \text{ mA}$$

(c) To find the current at any point, we need V_0^+ and V_0^- . But

$$I_{o} = I(z = 0) = 93.03 / -21.15^{\circ} \text{ mA}$$

$$V_{o} = Z_{in}I_{o} = (71.66 / 32.77^{\circ})(0.09303 / -21.15^{\circ}) = 6.667 / 11.62^{\circ} \text{ V}$$

$$V_{o}^{\dagger} = \frac{1}{2} (V_{o} + Z_{o}I_{o})$$

$$= \frac{1}{2} [6.667 / 11.62^{\circ} + (60 + j40)(0.09303 / -21.15^{\circ})] = 6.687 / 12.08^{\circ}$$

$$V_{o}^{-} = \frac{1}{2} (V_{o} - Z_{o}I_{o}) = 0.0518 / 260^{\circ}$$

At the middle of the line, $z = \ell/2$, $\gamma z = 0.921 + j1$. Hence, the current at this point is

$$I_{s}(z = \ell/2) = \frac{V_{o}^{4}}{Z_{o}} e^{-\gamma z} - \frac{V_{o}^{-}}{Z_{o}} e^{\gamma z}$$
$$= \frac{(6.687e^{j12.08^{\circ}})e^{-0.921-j1}}{60+j40} - \frac{(0.0518e^{j260^{\circ}})e^{0.921+j9}}{60+j40}$$

Note that j1 is in radians and is equivalent to j57.3°. Thus,

$$I_{s}(z = \ell/2) = \frac{6.687e^{j12.08^{\circ}}e^{-0.921}e^{-j57.3^{\circ}}}{72.1e^{j33.69^{\circ}}} - \frac{0.0518e^{j260^{\circ}}e^{0.921}e^{j57.3^{\circ}}}{72.1e^{33.69^{\circ}}}$$
$$= 0.0369e^{-j78.91^{\circ}} - 0.001805e^{j283.61^{\circ}}$$
$$= 6.673 - j34.456 \text{ mA}$$
$$= 35.10/281^{\circ} \text{ mA}$$

Sem. II, 2016/17

2016/17 Microwave Devices and Systems By Waltengus

Example 4

A 30-m-long lossless transmission line with $Z_0 = 50 \Omega$ operating at 2 MHz is terminated with a load $Z_L = 60 + j40 \Omega$. If u = 0.6c on the line, find

- (a) The reflection coefficient Γ
- (b) The standing wave ratio s
- (c) The input impedance

Solution:

This problem will be solved with and without using the Smith chart.

(a)
$$\Gamma = \frac{Z_L - Z_o}{Z_L + Z_o} = \frac{60 + j40 - 50}{50 + j40 + 50} = \frac{10 + j40}{110 + j40}$$

= 0.3523/56°
(b) $s = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \frac{1 + 0.3523}{1 - 0.3523} = 2.088$
(c) Since $u = \omega/\beta$, or $\beta = \omega/u$,

Microwave Devices and Systems By Waltengus Sem. II, 2016/17

$$\beta \ell = \frac{\omega \ell}{u} = \frac{2\pi (2 \times 10^6)(30)}{0.6 (3 \times 10^8)} = \frac{2\pi}{3} = 120^\circ$$

Note that $\beta \ell$ is the electrical length of the line.

$$Z_{in} = Z_{o} \left[\frac{Z_{L} + jZ_{o} \tan \beta \ell}{Z_{o} + jZ_{L} \tan \beta \ell} \right]$$

= $\frac{50 (60 + j40 + j50 \tan 120^{\circ})}{[50 + j(60 + j40) \tan 120^{\circ}]}$
= $\frac{50 (6 + j4 - j5\sqrt{3})}{(5 + 4\sqrt{3} - j6\sqrt{3})} = 24.01/(3.22^{\circ})$
= $23.97 + j1.35 \Omega$

