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4.2 Filter Design

* Filter design process begins with the filter specifications, which

L)

may include constraints on the magnitude and/or phase of the
frequency response, constraints on the unit sample response or
step response of the filter, specification of the type of filter (e.g.,
finite-length impulse response (FIR) or IIR), and the filter order.

» Once the specifications have been defined,

» The next step is to find a set of filter coefficients that produce an
acceptable filter.

» After the filter has been designed, the last step is to implement
the system in hardware or software, quantizing the filter
coefficients if necessary, and choosing an appropriate filter

_structure
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2.2.1 Filter specifications

+ Before a filter can be designed, a set of filter specifications
must be defined.

s For example, suppose that we would like to design a low-pass
filter with a cutoff frequency w..

s The frequency response of an ideal low-pass filter with linear

phase and a cutoff frequency wc is

— iy
: e w| = w,
H“'{f'r'r{j} — | i
() we < |w| =mw
which has a unit sample response
sin(n — o e,
J!!'Dr{.'” = - -- -
min — o)
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% Because this filter is unrealizable (non causal and unstable), it is
necessary to relax the ideal constraints on the frequency response and
allow some deviation from the ideal response.

% The specifications for a low-pass filter will typically have the form

| =8, < |[H(e'™)| <1 +38, 0 < |w| < w,

|H e’} < 8, w, =< |w| <

% As illustrated in Fig. 4-1. Thus, the specifications include the pass
band cutoff frequency, wy the stop band cutoff frequency, ws the pass
band deviation, 6p. and the stop band deviation, 6s.

% The pass band and stop band deviations are often given in decibels

(dB) as follows: o, = —20log(l — 4,)

o, = —201og(8,)
+ Where op is pass band attenuation and os the stop band attenuation



% The interval [wp, ws] is called the transition band.
% Once the filter specifications have been defined, the next step is to

design a filter that meets these specifications.
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Fig. 4-1. Filter specifications for a low-pass filter,
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4.3 FIR Filter Design

The frequency response of an Nth-order causal FIR filter is

"
l']'l.l'{‘:J._,I:I'.l.l-:l _ ZII,“:”:]F_ _ll"””';

rr=()

“* The design of an FIR filter involves finding the coefficients h(n) that
result in a frequency response that satisfies a given set of filter
specifications.

% FIR filters have two important advantages over IIR filters.

v" First, they are guaranteed to be stable, even after the filter coefficients
have been quantized.

v Second, they may be easily constrained to have (generalized) linear
phase. Because FIR filters are generally designed to have linear phase,

in the following we consider the design of linear phase FIR filters.
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4.3.1 Linear Phase FIR Design Using Windows

Let h4(n) be the unit sample response of an ideal frequency selective filter with linear phase,
H(e') = Afe!™)e /1ew=F)

Because h14(n) will generally be infinite in length, it 1s necessary to find an FIR approximation to Hy(e!™). With
the window design method, the filter is designed by windowing the unit sample response,

hin) = hy(myw(n)

where w(n) is a finite-length window that is equal to zero outside the interval 0 < n < N and is symmetric about
its midpoint:
win) = w(N —n)

The effect of the window on the frequency response may be seen from the complex convolution theorem,

. 1 . . 1
H{e!™) = o aely s« Wiel) = "

=) =

T
f H;;I{"”’ }w {Fﬂua—ﬁi} 46

T}

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.




% The ideal frequency response is smoothed by the discrete-time
Fourier transform of the window, W g/#).
< There are many different types of windows that may be used in the

window design method, a few of which are listed in Table 4-1.

Table 4-1 Some Common Windows

| D=n=N
Rectangular | win) =
)] else
2mn
Hanning win) = ﬂﬁ—ﬂﬁtﬂb(?) 0<n<N
() else

, l (.54 — {].-iﬁcus( ———) D<n=N
Hamming win) =

0 else

2mn ) 4 .u)
0.42 = 0.5¢cos| — | + 0L0O8 —- D=<n<N
Blackman win) = l ( ) ma( N ==

0 else

** This window is also called a Hann window or a von Hann window



“ How well the frequency response of a filter designed with the window
design method approximates a desired response, Hi(¢/“). is determined

by two factors (see Fig. 4-2):

I.  The width of the main lobe of W(e'®).
2. The peak side-lobe amplitude of W (e/®),

b W(e)|

Peak Sidelobe

-7 ——)l A |<* Mainlobe T

Width



Fig. 4-2. The DTFT of a typical window, which is characterized by the
wicth of itz main lobe A and the peak amplitude of its side lobes, A,

relative to the amplitude of Wi(e/”)arw = 0.

% ldeally, the main-lobe width should be narrow, and the side-lobe

amplitude should be small.

* However, for a fixed-length window, these cannot be minimized

independently. Some general properties of windows are as follows:
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1. As the length N of the window increases, the width of the main lobe
decreases, which results in a decrease in the transition width between

pass bands and stop bands. This relationship is given approximately by
NAf=¢c

v Where Af is the transition width, and c is a parameter that depends on the

window.

2. The peak side-lobe amplitude of the window is determined by the shape
of the window, and it is essentially independent of the window length.
3. If the window shape is changed to decrease the side-lobe amplitude, the

width of the main lobe will generally increase.
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* Table 4.2 below are the side-lobe amplitudes of several windows along with
the approximate transition width and stop band attenuation that results

when the given window is used to design an Nth order low pass filter.

% The Peak Side-Lobe Amplitude of Some Common Windows and the
Approximate. Transition Width and Stop band Attenuation of an Nth-

Order Low-Pass Filter Designed Using the Given Window.

Window Side-Lobe Amplitude (dB) Transition Width (Af) Stopband Attenuation (dB)
Rectangular —~13 0.9/N =21
Hanning —31 31/N —44
Hamming —~41 3.3/N —353
Blackman | —357 5.5/N —74
Table 4.2

Example 4.3.1 Suppose that we would like to design an FIR linear phase

low-pass filter according to the following specifications:

0.99 = |Hie')| = 1.01 0 < |w| = 0.197
|Hie'™)| = 0.0] 0217 < |w| =



For a stopband attenuation of 20 logi{0.01} = —40dB. we may use a Hanning window. Although we could also use a Hamming
or a Blackman window, these windows would overdesign the filter and produce a larger stopband attenuation at the expense
of an increase in the transition width. Because the specihcation calls for a transition width of Aw = w;, — w, = 0.02x, or
Af = 0.01, with

NAf = 3.1

for a Hanning window an estimate of the required filier order is

i1
Fppe————— ] |
N Af 30

The last step is to find the unit sample response of the ideal low-pass filter that is to be windowed. With a cutoff frequency
of w, = (wy + wy)/2 =027, and a delay of & = N /2 = 155, the unil sample response is

sin[0.2x(n — 155}
{rn— 155~

frg(m) =
Kaiser developed a family of windows that are defined by

_ WAl = [(n = a)/a])' ]
In( £)

where @ = N /2, and ln(-) is a zeroth-order modified Bessel function of the first kind, which may be easily
generated using the power senes expansion

D=n=N

wim)

- k=2
Iox) =1+ ”m]

- k!



% The parameter p determines the shape of the window and thus controls
the trade-off between main-lobe width and side-lobe amplitude.
* A Kaiser window is nearly optimum in the sense of having the most

energy in its main lobe for a given side-lobe amplitude. Table 4-3
illustrates the effect of changing the parameter B.

% There are two empirically derived relationships for the Kaiser window
that facilitate the use of these windows to design FIR filters.

% The first relates the stop band ripple of a low-pass filter,

ay = —20 log(é;). tothe F;IE!_FHIHE:[EI' .

0.1102(, — B.7) o, > 50
B = {05842, — 21)"* + 0.07886(cr; — 21) 21 < @, =50
0.0 o, < 21



Table 4-3 Characteristics of the Kaiser Window as a Function of f

Parameter Side Lobe Transition Width Stopband Attenuation
B (dB) (NAF) (dB)
2.0 -19 1.5 —29
3.0 —24 2.0 —37
4.0 —30 2.6 —45
5.0 —37 3.2 —54
6.0 —d44 3.8 —63
7.0 —51 4.5 72
8.0 —59 5.1 —81
9.0 —67 5.7 —90

10.0 —74 6.4 -99

The second relates N to the transition width Af and the stopband attenuation «,,

o, —7.95
N =% 22 > 2]
1436AF 07

Note that if @, < 21 dB, a rectangular window may be used (f = 0),and N = 0.9/Af.
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Example 4.3.2
Suppose that we would like to design a low-pass filter with a cutoff frequency w, = m /4, a transition

width Aw = 0.027, and a stopband ripple &, = 0.01. Because o, = —2010g(0.01) = =40, the Kaiser window parameter is
B = 0.5842(40 — 21)°* + 0.07886(40 - 21) = 3.4

With Af = Aw/2m = 0.01, we have
40 ~7.95

= =224
14.36 - (0.01)

Therefore, hin) = hg(n)w(n)

sinf(n — 112)m /4]
(n=112)m

where hy(n) =

is the unit sample response of the ideal low-pass filter.
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s Although it is simple to design a filter using the window design method,
there are some limitations with this method.

% First, it is necessary to find a closed-form expression for ha(n) (or it
must be approximated using a very long DFT).

% Second, for a frequency selective filter, the transition widths between
frequency bands, and the ripples with in these bands, will be
approximately the same.

 As a result, the window design method requires that the filter be
designed to the tightest tolerances in all of the bands by selecting the
smallest transition width and the smallest ripple.

% Finally, window design filters are not, in general, optimum in the sense
that they do not have the smallest possible ripple for a given filter order

and a given set of cutoff frequencies.
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4.3.2 Frequency Sampling Filter Design

Another method for FIR filter design is the frequency sampling approach. In this approach, the desired frequency
response, Hy(e’), is first uniformly sampled at N equally spaced points between 0 and 27

H(k) = Hy(e”* ™) k=0,1,...,N -1

These frequency samples constitute an N -point DFT, whose inverse is an FIR filter of order N — 1:

1 N =] .
hn) = = Y Hke N g <n<N -1
k={)

The relationship between h{n) and h;(n) (see Chap. 3) 1s

oo
hin) = Zhd[n—kkh’) D<n<=N-1

k=—ng
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s Although the frequency samples match the ideal frequency response
exactly, there is no control on how the samples are interpolated
between the samples.

% Because filters designed with the frequency sampling method are not
generally very good, this method is often modified by introducing one
or more transition samples as illustrated in Fig. 4-3.

% These transition samples are optimized in an iterative manner to

maximize the stop band attenuation or minimize the pass band ripple.

H(k)
y

I

i i
T
rl I

22— —8—8—> Lk

-l
-

Transition
Band

Fig. 4-3. Introducing a transition sample with an amplitude of A1 in the frequency
sampling method.
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4.3.3 Equiripple Linear Phase Filters

The design of an FIR low-pass filter using the window design technigue is simple and generally results in a filter
with relatively good performance. However, in two respects, these filters are not optimal:

1. First, the passband and stopband deviations, 4, and d,, are approximately equal. Although it is common
to require &, to be much smaller than 4, these parameters cannot be independently controlled in the
window design method. Therefore, with the window design method, it is necessary to overdesign the
filter in the passband in order to satisfy the stricter requirements in the stopband.

2. Second, for most windows, the ripple is not uniform in either the passband or the stopband and generally
decreases when moving away from the transition band. Allowing the ripple to be uniformly distributed
over the entire band would produce a smaller peak ripple.

An equiripple linear phase filter, on the other hand, is optimal in the sense that the magnitude of the ripple
is minimized in all bands of interest for a given filter order, N. In the following discussion, we consider the
design of a type I linear phase filter. The results may be easily modified to design other types of linear phase
filters.

The frequency response of an FIR linear phase filter may be written as

H(e’®) = A(e/®)e~ /2@
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where the amplitude, A(e/®), is a real-valued function of w. For a type 1 linear phase filter,
hin) =N —n)

where N is an even integer. The symmetry of h(n) allows the frequency response to be expressed as

L
Ale!®) = Z al(k) cos(kw)

k=)
N
ﬂ{ﬂ] =h ( ?)

N
kY= hil k —_ k=1,2,...,—.
alk) r( +2) 5

where L = N /2 and

The terms cos(kw) may be expressed as a sum of powers of cos @ in the form
cos(kw) = Ti(cosw)
where T;(x) is a kth-order Chebyshev polynomial [see Eq. (9.9)]. Therefore, Eq. (9.4) may be written as
L
Ale’™)y =3 a(k)(cos w)*
& =(}

Thus, A(e’”) is an Lth-order polynomial in cos w.
With A4(e’*) a desired amplitude, and W(e’") a positive weighting function, let
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E(e’®) = W(e!”)| Ag(e’™) — A(e’™)]

be a weighted approximation error. The equiripple filter design problem thus involves finding the coefficients
a(k) that minimize the maximum absolute value of E(e'“) over a set of frequencies, F,

min { max |E{e*"“]!|
aik)y | weF

For example, to design a low-pass filter, the set F will be the frequencies in the passband, [0, @,], and the
stopband, |w,, 7], as illustrated in Fig. 9-4. The transition band, (w,, w,), is a don't care region, and it is not

A [H(e™)|
148, POOOONONMONNNNNNY
RS NSNS

5 + AANARAARRRARRRRRRRANY
+ — L
0 Wp g L]
A 5550 SR R NS R R RSP SN S L R

Don’t Care

Fig. 4-4. The set R in the equiripple filter design problem, consisting of the pass band

[0, @, ] and the stopband [w. w,]. The transition band (w,,, w,) is a don’t care region.
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considered in the minimization of the weighted error. The solution to this optimization problem is given in the
alternation theorem, which 1s as follows:

Alternation Theorem: Let F be a union of closed subsets over the interval [0, w]. Fora
positive weighting function W (¢/*), a necessary and sufficient condition for

L
Ale’®) = Za{k}cns[kw]
k=0

to be the unique function that minimizes the maximum value of the weighted error | E{e/*)|
over the set F is that the E(e/™) have at least L + 2 alternations. That is to say, there must be
at least L + 2 extremal frequencies,

Wy < W) << Wy
over the set JF such that

E(e/™) = —E(e/*+) k=0,1,....L

and |E{ei“°’*)!=ma§|5cei’“}| k=0.1.....L+1
teHE

Thus, the alternation theorem states that the optimum filter is equinpple. Although the alternation theorem
specifies the minimum number of extremal frequencies (or ripples) that the optimum filter must have, it may
have more. For example, a low-pass filter may have either L + 2 or L. + 3 extremal frequencies. A low-pass
filter with L + 3 extrema is called an extraripple filter.

From the alternation theorem, it follows that
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W)l Age™) — A =(-1'e  k=0.1.....L+]
where € = +max |E(e’)|
weF

is the maximum absolute weighted error. These equations may be written in matrix form in terms of the unknowns

al0),.... a(L) and € as follows:
1 coslwy) ce cos( L) 1/ W(el“®) 1r a(0) ] T Ay(ed™) T
1 cos{w;) o« cos(Lw) —1/Wie!™) a(l) Ayler™)
| costwy) oo cos(Lay)  (=DE/W(ekr) || aL) Aa(e)
|1 cos(wpar) - cos(Lapsy) (—DE Wiy | L€ 4 LAde™) ]
Given the extremal frequencies, these equations may be solved for a(0). .. .. a(L) and . To find the extremal

frequencies, there is an efficient iterative procedure known as the Parks-McClellan algorithm, which involves
the following steps:
I.  Guess an initial set of extremal frequencies.
2. Find € by solving Eq. (9.5). The value of € has been shown to be
L+1

Z: b(k)D(el™)
k=0

L1

> (= Drbk)/ W el )

&=l
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L4+1 l

here hik) = S
! ®) J:I# cos(awy ) — cos(w, )

3. Evaluate the weighted error function over the set F by interpolating between the extremal frequencies
using the Lagrange interpolation formula.

4. Select a new sel of extremal frequencies by choosing the L + 2 frequencies for which the interpolated
error function 1s maximum.,

5. If the extremal frequencies have changed, repeat the iteration from step 2.

A design formula that may be used to estimate the equiripple filter order for a low-pass filter with a transition
width Af, passband ripple 8,,, and stopband ripple 4, 1s

N — —10log(d,8,) — 13
B 14.6Af
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Example 4.3.3

Suppose that we would like 1o design an equiripple low-pass filter with a passband cutoff frequency

w, = (.37, a stopband cutoff frequency w, = 0.35r, a passhand ripple of 4, = 0.01, and a stopband ripple of &, = 0.001.
we find

~ ~10log(8,8,) - 13 _

14.6Af 2

Because we wani the ripple in the stopband to be 10 times smaller than the ripple in the passband, the error must be weighted
using the weighting funclion

Wiel 0<|w <037
&™) =
0 0¥r<iw <n

Using the Parks-McClellan algorithm to design the filter. we obtain a filter with the frequency response magnitude shown
below.
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20 log | H ()|

A
1
-20 +
40 +
-60 T
i
80 +
} } } t > W
/4 w/2 3 /4 T
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4.4 IR Filter Design

* There are two general approaches used to design |IR digital filters. The
most common is to design an analog IlIR filter and then map it into an
equivalent digital filter because the art of analog filter design is highly
advanced.

“ Therefore, it is prudent to consider optimal ways for mapping these
filters into the discrete-time domain.

% Furthermore, because there are powerful design procedures that
facilitate the design of analog filters, this approach to IIR filter design is
relatively simple.

% The second approach to design IIR digital filters is to use an algorithmic
design procedure, which generally requires the use of a computer to

solve a set of linear or nonlinear equations.
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% These methods may be used to design digital filters with arbitrary
frequency response characteristics for which no analog filter prototype
exists or to design filters when other types of constraints are imposed
on the design.

+ In this section, we consider the approach of mapping analog filters into
digital filters. Initially, the focus will be on the design of digital low-
pass filters from analog low-pass filters.

% Techniques for transforming these designs into more general frequency

selective filters will then be discussed.

4.4.1 Analog Low-Pass Filter Prototypes

+ To design an IIR digital low-pass filter from an analog low-pass filter,
we must first know how to design an analog low-pass filter.

% Most analog filter approximation methods were developed for the

design of passive systems having a gain less than or equal to 1.
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Therefore, a typical set of specifications for these filters is as shown in Fig. 4-5(a),

with the pass band specifications having the form

A [HGO)) 2 |H(GO)]

1 DOOONNNN
1/VT+e€l -

1 -4, -

%

e

NN
+ » ()
i1,

e ——

SNSSS a1

= g

&
&

(«) Specifications in terms of §, and §,. (h) Specifications in terms of ¢« and A

Fig. 4-5. Two different conventions for specifying the pass band and stop band

deviations for an analog low-pass filter.
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Another convention that is commonly used is to describe the
passband and stopband constraints in terms of the parameters E and
A as illustrated in Fig. 4-5(h). Two auxiliary parameters of interest are

the discriminational factor

and the selectiviry factor

The three most commonly used analog low-pass filters are the Butterworth, Chebyshev, and elliptic filters.
These filters are described below.

Butterworth Filter

A low-pass Butterworth filter is an all-pole filter with a squared magnitude response given by

|H, (jQ)F = ——
/ | + (iR
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The parameter NV is the order of the filter (number of poles in the system function), and £2, is the 3-dB cutoff
frequency. The magnitude of the frequency response may also be written as
|

H (i) = —— e
722 I+ e2(jS2/ 8,

h ==L
WnNere £ (ﬂ,-)

The frequency response of the Butterworth filter decreases monotonically with increasing €2, and as the filter
order increases, the transition band becomes narrower. These properties are illustrated in Fig. 9-6, which shows
|H,(j€2)| for Butterworth filters of orders N = 2,4, 8, and 12. Because

|H (I = Hy()H,(—5)]

y=j52
from the magnitude-squared function, we may write
1
Gu(s) = Hy(s)H,(—s) = |
(=) ($)Ha(=$) I +is/ 82 )"
|Ha (52
A
! Increasing NV Fig. 5-6. The magnitude of the frequency
response for Butterworth filters of orders
¥ s N=2.4,S8.
|
I
|
| o n
Qe




Therefore, the poles of (,(s) are located at 2N equally spaced points around a circle of radius 2,

AN+ 1420

= (=" =9 f::&p‘; - k=0, 1,....2N -1

and are symmetrically located about the j$2-axis, Figure 9-7 shows these pole positions for N = 6and N = 7.
The system function, H,(s), is then formed from the N roots of H,(s)H,(—s) that lie in the left-half s-plane.
For a normalized Butterworth filter with €. = 1, the system function has the form

H.(s) = _ —
{ ) AN[H} sV -|-£|'|.TM_I + o4 ayo s+ ay

Table 5-4 lists the coefficients of Ay(s) for I < N < 8, Given Q2,,, Q;, 8,,, and 4, the steps involved in designing
a Butterworth filter are as follows:

| Find the values for the selectivity factor, k, and the discrimination factor, d. from the filter specifications.
2. Determine the order of the filter required to meet the specifications using the design formula

logd

N = —

~ logk

-

ay

S
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1 ! ] '
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. \ /
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\‘ ‘/ “w /’
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(«) Order N = 6. () Order N = 17.

Fig. 57. The poles of H,(a)H,(~5) for a Butterworth filter of order N = 6and N = 7.
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Table 54 The Coefficients in the System Function of a Normalized Butterworth Filter (£2, = 1) for

Orders1 < N <8

N iy (4 ] iy iy il g dy dy
| 10000

2 1.4142 10000

3 20000 200000 10000

4 2.6131 34142 26131 1 OO0

5 3.2361 5.2361 5.2361 3.2361 10000

iy 18637 7.4641 v 1416 7.464 1 3.8637 10000

7 4.4940 100978 14.5918 14.5918 10,0978 4.4940) I 0000

8 5.1258 13.1371 21.8462 25.6884 21.8462 13.1372 5.1258 10O
3. Set the 3-dB cutoff frequency, £2.. to any value in the range

Q1 —8,) 2 — 117" <@ <[5 1]

4. Synthesize the system function of the Butterworth filter from the poles of

|
I+ (s/jQ: 0"

Gals) = Ha(s)Hy(—5) =

that lie in the left-half s-plane. Thus,

N-—I

—55
Hd{I.:' -
J:!. 5 — 5

N 14+ 2k
where j{ + 1+ }.rr}

s = 2, E.‘H‘.p{ N



Example Let us design a low-pass Butterworth filter to meet the following specifications:

fs =6kHz fs = 10kHz dp =48, =0.1

First, we compute the discrimination and selectivity factors:

Because

(n=8,)2=17" Q, [
== = (L0487 k= — == =0.6
* [ 15;1 - | ] 2, 1y
log &

it follows that the minimum filter order is N = 6. With

and

folll = 8,072 = 117%™ = 6770

L5 =11 = 6819

the center frequency, [, may be any value in the range

H,(s) =

6770 < f. <6819
I

5% 4 3.86375% + T.46415% + 9141657 4 7.464 157 + 3.8637s5 + |

and then replacing s with 5/ €2 so that the cutoff frequency is €2, instead of unity



4.4.2 Design of |IR Filters from Analog Filters

The design of a digital filter from an analog prototype requires that we transform h,(t) to h(n) or H,(s) to H(z).
A mapping from the s-plane to the z-plane may be written as

H(z) = Hy(s)|

F=mi(z)

where s = m(z) is the mapping function. In order for this transformation to produce an acceptable digital filter,
the mapping m(z) should have the following properties:

[.  The mapping from the jQ-axis to the unit circle, |z| = 1, should be one to one and onto the unit circle
in order to preserve the frequency response characteristics of the analog filter.

2. Points in the left-half s-plane should map to points inside the unit circle to preserve the stability of the
analog filter,

3. The mapping m(z) should be a rational function of z so that a rational H,(s) is mapped to a rational
H(z).

Described below are two approaches that are commonly used to map analog filters into digital filters.
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Impulse Invariance

With the impulse invariance method, a digital filter is designed by sampling the impulse response of an analog
filter:
hiny = h,(nT,)

From the sampling theorem, it follows that the frequency response of the digital filter, H(e/*), is related to the
frequency response H,(j£2) of the analog filter as follows:

- [—— 0, 2k
He!") = H j=+J—
=3 2 (" r )
More generally, this may be extended into the complex plane as follows:

LS e

'[

The mapping between the s-plane and the z-plane is illustrated in Fig. 5-11. Note that although the j$2-axis
maps oafo the unit circle, the mapping is not one to one. In particular, each interval of length 27 /T, along the
J&2-axis is mapped onto the unit circle (1.e., the frequency response 15 aliased). In addition, each point in the
left-halt s-plane is mapped to a point inside the unit circle. Specifically, strips of width 27 /T, map onro the
z-plane. If the frequency response of the analog filter, H,(j£2). is sufficiently bandlimited, then

Hi{el®™) = ?H”( ;’f”)

Although the impulse invariance may produce a reasonable design in some cases, this technique is essentially
limited to bandlimited analog filters.



Im(z) i

Re(z) :\\\\\ I >
NN\ S

Fig, 5 11. Properties of the s-plane to z-plane mapping in the impulse invariance method.

To see how poles and zeros of an analog filter are mapped using the impulse invariance method, consider
an analog filter that has a system function

p

Ai
Hu(S) = Z . ‘V
— ¥

k="

The impulse response, h, (1), is

Il':l
hy(r) = Z Ape u(r)

h=|



Therefore, the digital filter that is formed using the impulse invariance technique is

F F pe
h(n) = hy(nT)) =Y Ave""u(nT,) = Aue") un)
k=1 b=

and the system function is

L rdl.j;
H(z} - 2 | — [:..':'j,T.lz—-]

k=1

Thus, a pole at s = s, in the analog filter is mapped to a pole at z = ¢ in the digital filter,

I |

e} -
5 — 5 | —enliz-]

The zeros, however, do not get mapped in any obvious way.

The Bilinear Transformation
The bilinear transformation is a mapping from the s-plane to the z-plane defined by

_21-:
T4z

Given an analog filter with a system function H,(s), the digital filter is designed as follows:

21 =z
fz) = Hu(ﬁ | + :")
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The bilinear transformation is a rational function that maps the left-half s-plane inside the unit circle and maps
the j£2-axis in a one-to-one manner onfo the umit circle. However, the relationship between the j£2-axis and the
unit circle is highly nonlinear and is given by the frequency warping function.

(ﬂ]’; )
= 2 arctan 5

As aresult of this warping, the bilinear transformation will only preserve the magnitude response of analog filters
that have an ideal response that is piecewise constant. Therefore, the bilinear transformation is generally only
used in the design of frequency selective filters.

The parameter T, in the bilinear transformation is normally included for historical reasons. However, it does
not enter into the design process, because it only scales the j$2-axis in the frequency warping function, and this
scaling may be done in the specification of the analog filter. Therefore, T, may be set to any value to simplify the
design procedure, The steps involved in the design of a digital low-pass filter with a passband cutoft frequency
w,, stopband cutoff frequency w;, passband ripple 8 ,,, and stopband ripple 3, are as follows:

I.  Prewarp the passband and stopband cutoff frequencies of the digital filter, w, and w,, using the inverse
of Eq. (9./2) to determine the passband and cutoff frequencies of the analog low-pass filter. With

T, = 2, the prewarping function is
N
Q =tan| —
dn( 2 )

2. Design an analog low-pass filter with the cutoff frequencies found in step 1 and a passband and stopband
ripple 8, and 4., respectively,

3. Apply the bilinear transformation to the filter designed in step 2.
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Example Let us design a first-order digital low-pass filter with a 3-dB cutoff frequency of w, = 0.257 by applying
the bilinear transformation to the analog Butterworth filter

H,(5) = ]—m

Because the 3-dB cutoff frequency of the Butterworth filter is 2., for a cutoff frequency @, = 0.25x in the digital filter, we
must have

2 0.25 0.828
2. = 7 lan( “) =

2 T'

.-

Therefore, the system function of the analog filter is

H,(s) =
W)= 5T 7088

Applying the bilinear transformation to the analog filter gives

| | 427!
b poael = = (.2920
et ,—“; 1+ (2/0828)|(1 == ")/(1 + ")) 1 -04159;-!

H(z) = H,(5)

Note that the parameter 7, does not enter into the design.
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Table 55 The Transformation of an Analog Low-pass Filter with a
3-dB Cutoff Frequency 2, to Other Frequency Selective Filters

Transformation

|

Mapping

New Cutoff Frequencies

Low-pass

High-pass

Bandpass

Bandstop

5

- 2, —+

Q,
5 » AY

'3

S l’(fz.]’

-

| N

5 - -

A\

\" -4 (2;9,.

P \‘52. - Qy)
.\‘52,, — Q!)

"5+ QQ,

4.5 Filter design based on a least squares approach

The design techniques described in the previous section are based
on converting an analog filter into a digital filter. It is also possible to
perform the design directly in the time domain without any reference

to an analog filter. This section describes several methods for

designing a digital filter directly.




Table 56 The Transformation of a Digital Low-Pass Filter with a Cutoff Frequency w, to Other Frequency

Selective Filters

Filter Type

Mapping

Design Parameters

Low-pass

Bandpass

Bandstop

=1

! — o

i
| + az”!

— —

s 2aB/ B+ DT 1B = DB+ 1)

T B =D/ BE DI —[2aB/ B+ DT+ 1

. T Raf(B+ D) 1= B)0+ )
[(1=B)+ Bl 2= 2a/(B+ D]z~ +1

o sinf(w, — @ )f2]
~ sinl(e, + ')/2)
w/ = desired cutoff frequency

_cosl(w + w))/2]
cos[{w, — w')/2]
w, = desired cutoff frequency

v cosl(w,z + w,)/2]
cos[(w.; — w,)/2]
B = cot{w,; — w,)/2]tan(w, /2)

w, = desired lower cutoff frequency
w,; = desired upper cutoff frequency

_ cosliw,) + w2)/2]
- cos[(w,y — @,2)/2]
A = anf(w,> — w,,)/2] an(w, /2)

w,) = desired lower cutoff frequency
@2 = desired upper cutoff frequency




4.5.1 FIR Least-Squares Inverse

The inverse of a linear shift-invariant system with unit sample response g(n) and system function G(z) is the
system that has a unit sample response, h(n), such that

hin)* g(n) = din)

or Hiz)G(z) =1

In most applications, the system function H(z) = 1/G(z) is not a viable solution. One of the reasons is that,
unless (7(z) is minimum phase, 1/G(z) cannot be both causal and stable. Another consideration comes from the
fact that, in some applications, it may be necessary to constrain H(z) to be an FIR filter. Because 1/G(z) will be
infinite in length unless G(z) is an all-pole filter, constraining h(n) to be FIR would only be an approximation to
the inverse filter,

In the FIR least-squares inverse filter design problem. the goal is to find the FIR filter /i(n) of length N such
that

hin) # gin) == §(n)

The filter that minimizes the squared error
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M-
where e(n) = 8(n) — hin) = g(n) = d(n) — Zﬁ[f}g{n -1

=l

may be found by solving the linear equations

N-—I
g0y k=0
=
2 k=0 Iu k=1.2.... N -1
where relk) = Zg{nlﬁin - k)

n=l}

In many cases, constraining the least-squares inverse filter to minimize the difference between hi(n) = g(n)
and 8(n) is overly restrictive. For example, if a delay may be tolerated, we may consider finding the filter (n)
s0 that
hin) = g(n) = 8(n — ny)

for some delay ng. In most cases, a nonzero delay will produce a better approximate inverse filter and, in many
cases, the improvement will be substantial. The least-squares inverse filter with delay is found by solving the
linear equations

N=| _
A _ g[ﬂu“‘-] k=0.1.....nm
ﬂh“]ru’“'”-ln k=m+1..... N
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Examples

1 Use the window design method to design a linear phase FIR filter of order N = 24 to approximate the
following ideal frequency response magnitude:
I lw| = 0.2

H[F-'I.w =
IHa(e™) =1, 027 < |w| <7

The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency w, = 0.2x. With
N = 24, the frequency response of the filter that is to be designed has the form

24
H{Eji.--":l — Z hiﬁ}f FLLL
n={)
Therefore, the delay of A(n) is e = N /2 = 12, and the ideal unit sample response that is to be windowed is

sin[0.2m(n — 12)]

'ﬁr.l'{”} = n— IE::l_ﬂ'

All that is left to do in the design is to select a window. With the length of the window fixed, there is a trade-off
between the width of the transition band and the amplitude of the passband and stopband ripple. With a rectangular
window, which provides the smallest transition band,

9
Aew = 2 - %4— = 0.075m

and the filter is

sin[0.2m(n — 12)]
hin) = (n— 12
0 otherwise

0=n=24



However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of 4, = 0.089. With a Hamming
window, on the other hand,

0=<n=<24

2mn ] sin[0.2(n — 12)]
24) '

hin) = |0.54 — 0.46cos| —
(n) [ C :-,( T
and the stopband attenuation i1s 53 dB, or 4, = (0.0022. However, the width of the transition band increases to
3.3
Aw=2mr - — =0.2757
“ 24
which, for most designs, would be too wide.

2 Use the window design method to design a minimum-order high-pass filter with a stopband cutoff
frequency w, = 0.22m, a passband cutoff frequency w, = 0.287, and a stopband ripple &, = 0.003.

A stopband ripple of 8, = 0.003 corresponds to a stopband attenuation of &, = — 20 log §, = 50.46. For the minimum-
order filter, we use a Kaiser window with

f=01102(c, — 8.7) =4.6

Because the transition width is Aw = 0,067, or Af = 0.03. the required window length is

795
N=2T177 9867
14.36Af
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Rounding this up to N = 99 results in a type I Linear phase filter, which will have a zero in its system function at
z = —1. Because this produces a null in the frequency response at @ = m, this is not acceptable, Therefore, we
increase the order by 1 to obtain a type I linear phase filter with N = 100,

In order to have a transition band that extends from w, = 0.227 10 w, = 0.287, we set the cutoff frequency of
the ideal high-pass filter equal to the midpoint:

Wyt o,

= 0.257

(e

The unit sample response of an ideal zero-phase high-pass filter with a cutoff frequency w, = 0.257 is

() = 1) ~ sm{ﬂ.lﬁsﬂr_}

nn

where the second term is a low-pass filter with a cutoff frequency . = 0.257. Delaying hyy(n) by N/2 = 50, we

have .
. sinjl. 2ymin —
hain) = (n - 50) P

and the resulting FIR high-pass filter is
hin) = hy(n)- win)

where win) is a Kaiser window with ¥ = |00 and f = 4.6,
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3 As the order of an analog Butterworth filter is increased, the slope of |H,(j2)|* at the 3-dB cutoff
frequency, £, increases. Derive an expression for the slope of | H,(j2)|* at Q. as a function of the filter
order, V.

The magnitude squared of the Butterworth filter’s frequency response is

B = ey
To evaluate the slope of |H,( Q) at 2 =Q,, we may set £, = | and evaluate the derivative at £ = |, Therefore,
with

H(F =
AN o=
we have ‘%wui JF = {Tzfgm?
Evaluating this at {2 = [, we have
;—RIHMQ}I: = —g

{l=|
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Design a low-pass Butterworth filter that has a 3-dB cutoff frequency of 1.5 kHz and an attenuation of
40 dB at 3.0 kHz.

Given the 3-dB cutoff frequency of the Butterworth filter, all that is needed is to find the filter order, N, that will
give 40 dB of attenuation at 3 kHz, or €, = 2x - 3000. At the stopband cutoff frequency £2,, the magnitude of the
frequency response squared is

| I

2
H,(jQ = B
|H,(j }Jn-zr-ﬂﬂﬁﬂ L+ GQUQPN | e T2

Therefore, if we want the magnitude of the frequency response to be down 40 dB at €2, = 2x - 3000, the magnitude
squared must be no larger than 104, or

|
< 10~*
142N =

Thus, we want
B log(10° = 1)

log 2
or N = 7. For a seventh-order Butterworth filter, the 14 poles of

2N = 13.29

l
b+ (s/j82. 0%

Ha(s)H(—5) =

lie on a circle of radius 2. = 2 - 3000, at angles of

_ (N + 1+ 2k _ (4 + k)

k=0,1,...,13
N 7 0

Hy

as illustrated in the following figure:



The poles of H;is) are the seven poles of H,(s)H,{—s) that lie in the left-half s-plane, that is,
5 = —G etn/T k=0,1,273

Except for the isolated pole at s = —£2,, the remaining six poles occur in complex conjugate pairs. The conjugate
pairs may be combined to form second-order factors with real coefficients to yield factors of the form

|
Hyls) = k=1.2,3
W)= 300, costka /s + Q2

Thus, the system function of the seventh-order Butterworth filter is

N O —
= k=p ¥ — i RS i1 8% =20 cos{km (T)s + 822

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.




