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% Fast Fourier Transforms Digital Filter Design
“ Decimation and Interpolation

“ Random Signals, and Applications.
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4. Fast Fourier transforms digital filter design

*We look at the computational requirements of the
DFT and derive some fast algorithms for
computing the DFT.

*These algorithms are known, generically, as Fast
Fourier transforms (FFTs)

*The radix-2 decimation in time FFT, an algorithm

published in 1965 by Cooley and Tukey.
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Motivation for Fast Fourier Transform (FFT)

*» Signal processing
** Image processing
“ Solving Poisson’s Equation nearly optimally

* Fast multiplication of large integers
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Digital Filters
* The term digital filter, or simply filter, is often used to refer to a
discrete-time system.

“ A digital filter is defined by J. E Kaiser as a . . computational
process or algorithm by which a sampled signal or sequence of
numbers (acting as the input) is transformed into a second sequence
of numbers termed the output signal.

< The computational process may be that of low pass filtering
(smoothing), band pass filtering, interpolation, the generation of
derivatives, etc."

% Filters may be characterized in terms of their system properties,
such as linearity, shift-invariance, causality, stability, etc., and they

may be classified in terms of the form of their frequency response.
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4.1. Radix-2 FFT Algorithms

The N -point DFT of an N -point sequence x(n) is

M=

Xtky= x(mWy

il

s Because x(n) may be either real or complex, evaluating X(k)
requires on the order of N complex multiplications and N complex
additions for each value of k.

< There are N values of X(k), computing an N-point DFT requires N°

complex multiplications and additions.
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4.1.1 Decimationin Time FFT

The decimation-in-time FFT algorithm is based on splitting (decimating) x(n) into
smaller sequences and finding X(k) from the DFTs of these decimated sequences.
This section describes how this decimation leads to an efficient algorithm when the
sequence length is a power of 2.

Let x(n) be a sequence of length N = 2", and suppose that x(n) is split (decimated)
into two subsequences, each of length N/2. As illustrated in Fig. 4-1, the first

seqguence, g(n), is formed from the even-index terms,

N
g(n) = x(2n) n=01....——1
2
and the second, h(n), 1s formed from the odd-index terms,
N
hf-ﬂ']:l’{zﬂ—'—!} ﬁ=0.l....,5'—l

In terms of these sequences, the N -point DFT of x(n) is

MN—1

M= foeven WO

N N
- | &

2 2
=Y eWI + > hw it

=0 =0
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Fig. 4 -1 Decimating a sequence of length N = B by a factor of 2.
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5 =1 v =1
X(k) = Z gUOWY L + W} Zmnw,,,ﬂ
=0
Note that the first term is the N /2-poimt DFT of g(#), and the second is the NV /2-point DFT of kin):
Xhy=Guky+WiHIk  k=0,1,....N =1

Although the N /2-point DFTs of g(n) and Ain) are sequences of length N /2, the periodicity of the complex
exponeniials allows us to write

N
Glky=0G (k+ 2) H{£}=H(k+%]

Therefore, X (k) may be computed from the N /2-point DFTs G (k) and H (k). Note that because
Wit = wiw = —wh

&

then Wy TH(k+ ) = —WiH K

Gik) = Zmn}ﬂf’",ﬁ = E 1.',’{1'1']!“"'"" 5 =+ Z g{n}w

=i noewen A uld
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Bit Reversal

» To perform the computations in place, the input sequence x(n)
must be stored (or accessed) in non sequential order.

* The shuffling of the input sequence that takes place is due to
the successive decimations of x(n).

* The ordering that results corresponds to a bit-reversed
indexing of the original sequence.

* In other words, if the index n is written in binary form, the

order in which in the input sequence must be accessed is

found by reading the binary representation for n in reverse

order as illustrated ill the table below for N = 8:
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s Alternate forms of FFT algorithms may be derived from the
decimation in time FFT by manipulating the flow graph and
rearranging the order in which the results of each stage of the

computation are stored.

Bit-Reversed
n | Binary Binary n'
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
| 4 100 001 |
| S 101 101 S
6 110 011 3
7 111 111 7
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Fig. 4-2. An Eight-point decimation-in-time FFT algorithm after the first decimation.
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Y

w1 =1 )
Glk) = z g(2mWL, + Wy X el(2n + WY,

w=l ifmell

where the first term is the N/4-point DFT of the even samples of g(n), and the second

is the N/4-point DFT of the odd samples.

z(0) O——s——
2-Pownt
DFT
£(4) O—e—o,
z(2) O—e—
2-Poimnt
DFT
z(6) O———e—

4-3. Decimation of the four-point DFT into two two-point DFTs in the decimation-in-

time FFT.
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q(0) - s 0]} = g(0) + q(1)

q(l1) O : o (1) = q{0) — g(1})

Fig. 4-4. A two-point DFT.

F = L * _“""""——"c - - -

TN/ Wk -1

(a) (b)
(a) The butterfly, which is the basic computational clement of the FFT algorithm

(b) A simplified butterfly with only one complex multiplication.
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Fig. 4-5. A complete Eight-point radix-2 decimation-in-lime FFT
Computing an N-point DFT using a radix-2 decimation-in-time FFT ismuch more efficient than calculating
the DFT directly. Forexample, if N =2", thereare log, N = v stages of computation. Because each stage requires
N /2 complex multiplies by the twiddle factors W}, and N complex additions, there are a total of 1N log, N
complex multiplications and N log, N' complex additions. .



Example

Assume that a complex multiply takes | us and that the amount of time to compute a DFT is determined
by the amount of time it takes to perform all of the multiplications.

(@) How much time does it take to compute a [024-point DFT directly?
(b) How much time is required if an FFT is used?
(¢} Repeat parts (a) and (b) for a 4096-point DFT.

{@) Including possible multiplications by +1, computing an N-point DFT directly requires N° complex multipli-
cations, If it takes | us per complex multiply, the direct evaluation of a 1024-point DFT requires

tper = (1024 . 10°%s == 1.05s

() Witharadix-2 FFT, the number of complex multiplications is approximately (¥ /2) log, N which, for N = 1024,
15 equal to 3120, Therefore, the amount of time to compute a 1024-point DFT using an FFT is

fepr = 5120 107 %ms = 5.12 ms

{c) If the length of the DFT is increased by a factor of 4 1o N = 4096, the number of multiplications necessary
to compute the DFT directly increases by a factor of 16, Therefore. the time required to evaluate the DFT

directly 1s
Inet = 16.78 5

If, on the other hand, an FFT is used, the number of multiplications is
2048 - log, 4,096 = 24,576
and the amount of time to evaluate the DFT is

IFET = 24.576 ms



4.2 Decimation in Frequency FFT

s Another class of FFT algorithms may be derived by decimating the
output sequence X(k) into smaller and smaller subsequences.

% These algorithms are called decimation-in-frequency FFTs and may

be derived as follows.

“ Let N be a power of 2, N = 2”. and consider separately evaluating the

even-index and odd-index samples of X(k). The even samples are

Nl
X2k = x(mw
f=({}
Separating this sum into the first ¥ /2 points and the last N /2 points, and using the fact that W™ = W', this
becomes

L]
" W=

X(2k) = Z.rhrhi'r'ﬂ_: + Z .1'{n]ii":f3

mail =l 2
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With a change in the indexing on the second sum we have

¥-1 §-1

s < N N
X6 =) x(mWily+ ) x(n - 3)“’?,;”‘

nal) =l

(3 M

Finally, because Wy " = W,

v
v~

X(2k) = Z [x(n) + x(n + %’-)]w;‘,,

=l

which is the N /2-point DFT of the sequence that is formed by adding the first N /2 points of x(n) to the last N /2.
Proceeding in the same way for the odd samples of X (k) leads to

-1
XQk+1)=)" w;[x(n) -x(n + I;)]W.Z‘,z

nwl)
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Fig. 4-6. An Eight-point decimation-in-frequency FFT algorithm after the first stage of’

decimation.

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.




By: Waltengus A.




FFT(0,1,2,3,...,13) = FFT{xxxx)
EVEn odd
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“*Filters may be characterized in terms of their system

properties, such as linearity, shift-invariance, causality,

stability, etc., and they may be classified in terms of the form

of their frequency response.

+» Some of these classifications are described below.

4.2.1 Linear Phase
A linear shift-invariant system is said to have linear phase if its

frequency response is of the form
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Hiel) = A(e/*)e 1
where & is a real number and A(e’™) is a real-valued function of w. Note that the phase of H(¢/) is

— Qi) when A(e/™) = 0

MOI=N o+r  when A(e™) <0

Similarly, a filter is said to have generalized linear phase if the frequency response has the form
Hie') = Ale/)e” 1P

s Thus, filters with linear phase or generalized linear phase have a

constant group delay.
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4.2.2 All pass

* A system is said to be all pass filter if the frequency response magnitude

is constant:
|H(e!") =c
An example of an allpass filter 1s the system that has a frequency response

g

] — el

—

Hig!™) =

where « is any real number with [e| < [. The unit sample response of this allpass filter 13

hin) = —ad(n) + (1 =i 'uln - 1)
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4.2.3 Frequency Selective Filters

 Many of the filters that are important in applications have
piecewise constant frequency response magnitudes.
% These include the low-pass, high-pass, band pass, and band

stop filters that are illustrated in Fig. 4-1.

** The intervals over which the frequency response magnitude is
equal to 1 are called the pass bands, and the intervals over
which it is equal to 0 are called the stop bands.

 The frequencies that mark the edges of the pass bands and

stop bands are the cutoff frequencies.
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Fig. 4-1. Ideal Filters.
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4.3 Interconnection of Systems

+* Filters are often interconnected to create systems that have
desirable properties.

** Two common types of connections are series (cascade) and
parallel. A cascade of two linear shift-invariant systems is

shown in the figure below.

ximl vinh
—— i) ———lt— hain) -

A cascade i1s equivalent to a single linear shift-invanant system with a unit sample response

hin) = hy(n) « hzin)
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and a frequency response
He'*) = Hy(e'®)Ha(e'™)

Note that the log magnitude of the cascade i1s the sum of the log magnitudes of the individual systems,
20 log|H (e} = 20 log|H(e’™)] + 20 log| Hale'™)|
and the phase and group delay are additive,

Plar) = gnlw) + dalw)

Tlw) = 1) 4+ T2iw)

A parallel connection of two linear shift-invariant systems is shown in the figure below.

* Feypdm) -

ximh + yim)

e haln) -

A parallel network is equivalent to a single linear shift-invanant system with a unit sample response
hin) = hy(n) + ha(n)
Therefore, the frequency response of the parallel network i1s

Hie!™) = H(e'™) + Ha(e™)
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Example 4.3 The cascade of a low-pass filter with a high-pass filter may be
used to implement a band pass filter. For example, the ideal band pass filter
shown in Fig. 4-1(c) may be realized by cascading a low-pass filter with

cutoff frequency o2 with a high-pass filter that has a cutoff frequency .

Similarly, the band stop filter shown in Fig. 4-1(d) may be realized with a
parallel connection of a low-pass filter with cutoff frequency o+ and a high-

pass filter with a cutoff frequency w2 with ®2> m1.

Another interconnection of systems that is commonly found in control

applications is the feedback network shown in the figure below.

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.




xim) win) yin}
* = EE} * fim} K B
+
-+ gln) -+

This network may be analyzed as follows. With
win) = x{n) 4+ gln) * yin)

and yin) = fin)=win)

We may use the Fourier analysis techniques described in the following

section to show that the frequency response of this system, if it exists, is

Fe'™)

Hig!™) =
& = T T FeGlem)
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4.4 Discrete Time Fourier Transform

The frequency response of a linear shifi-invariant system is found by multiplying h(n) by a complex exponential,
e~ im and summing over #. The discrete-time Fourier transform (DTFT) of a sequence, xin), is defined in the

same way,
A

X(e'*)= 3" xinje '™

A==

Given X (e/™), the sequence x(n) may be recovered using the inverse DTFT,

x{n}:i f Xie'™e! "™ de
2 J_

b}

The inverse DTFT may be viewed as adecomposition of x(n) into a linear combination of all complex exponentials
that have frequencies in the range —m < w < x. Table 2-1 contains a list of some useful DTFT pairs.
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Table 4-1 Some Common DTFT Pairs

Sequence Discrete-Time Fourier Transform
E(n) 1
Sln — ng) g
] 2 iw)
el 2 Bl — )
|
h |
auln), |a| = T
|
—a'u(—n— 1), la] =1
| —age /™
|
“uin}, 1 :
in 4 lia"win), lal = T ae-ivp

COS8 Ay I8 + g + e — g
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Example 4.4 Suppose X{e™) consists of an impulse at frequency w = wy
X(e™) = S — )

Using the inverse DTFT, we have

_L ! Jarsy o I _L JAng)
:in‘]-hj_ X(e™e dm-z ¢

i §

Note that although x(r) is not absolutely summable, by allowing the DTFT 1o conlain impulses, we may consider the DTFT
of sequences that contain complex exponentials, As another example, if
Xi{e™) = mllw — ag) + mlo + ay)

computing the inverse DTFT, we find
xin) = 1™ 4 Le™"™ = cos{nan)
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Table 4-2

Properties of the DTFT

Property Sequence Discrete-Time Fourier Transform
Linearity ax(n)+ byin) aX (e} + bY (e/*)
Shifi x(h — ng) e
Time-reversal x{—n) X (e~ i)
Modulation ey () X (gt
Convolulion i) vin) X (e!=)Y (el
Conjugation x*{n) X*e™ /")
Denvative nxin) J dX(e™)

e e
Multiplication xinhyin) o f ,H (e V¥ (el

Note: Given the DTFTs X{e™) and ¥{e/™) of xin) and y(n), this table lists the
DTFTs of sequences that are formed from cin) and vin).
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Applications

> Some applications of the DTFT in discrete-time
signal analysis.

“ Finding the frequency response of an LS| system
that is described by a difference equation,

“ Performing convolutions,

“ Solving difference equations that have zero initial

conditions, and

% Designing inverse systems.
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Outline

“ Filter Design Methods

“ Interpolation and Decimation
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4.2 Filter Design

% Filter design process begins with the filter specifications, which
may include constraints on the magnitude and/or phase of the
frequency response, constraints on the unit sample response or
step response of the filter, specification of the type of filter (e.g.,
finite-length impulse response (FIR) or IIR), and the filter order.

% Once the specifications have been defined,

% The next step is to find a set of filter coefficients that produce an
acceptable filter.

s After the filter has been designed, the last step is to implement
the system in hardware or software, quantizing the filter

coefficients if necessary, and choosing an appropriate filter

DSP  By: Waltengus A.



2.2.1 Filter specifications

+ Before a filter can be designed, a set of filter specifications
must be defined.

s For example, suppose that we would like to design a low-pass
filter with a cutoff frequency w..

s The frequency response of an ideal low-pass filter with linear

phase and a cutoff frequency wc is

— iy
: e w| = w,
H“'{f'r'r{j} — | i
() we < |w| =mw
which has a unit sample response
sin(n — o e,
J!!'Dr{.'” = - -- -
min — o)
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% Because this filter is unrealizable (non causal and unstable), it is
necessary to relax the ideal constraints on the frequency response and
allow some deviation from the ideal response.

% The specifications for a low-pass filter will typically have the form

| =8, < |[H(e'™)| <1 +38, 0 < |w| < w,

|H e’} < 8, w, =< |w| <

% As illustrated in Fig. 4-1. Thus, the specifications include the pass
band cutoff frequency, wy the stop band cutoff frequency, ws the pass
band deviation, 6,. and the stop band deviation, 6s.

* The pass band and stop band deviations are often given in decibels

(dB) as follows: o, = —20log(l — 4,)

o, = —201og(8,)
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% The interval [wp, ws] is called the transition hand.
% Once the filter specifications have been defined, the next step is to

design a filter that meets these specifications.
|H (e¥)]
4

S,
L+ s, AR

-
i
L:':h
%

—
e = em om
—_ e o s

<—— Passband — l--:—— Stopband ——:-l

h\\\\\\\\\\\\\\%

5 = W
g T

Transition ](-—
Band

Fig. 4-1. Filter specifications for a low-pass filter,

3
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4.3 FIR Filter Design

The frequency response of an Nth-order causal FIR filter is

"
.';l.l'{f_ll:l'.l.l-:l _ ZII,“:”:]F_ _ll"””';

rr=()

“* The design of an FIR filter involves finding the coefficients h(n) that
result in a frequency response that satisfies a given set of filter
specifications.

“ FIR filters have two important advantages over I|IR filters. First, they are
guaranteed to be stable, even after the filter coefficients have been
quantized.

% Second, they may be easily constrained to have (generalized) linear
phase. Because FIR filters are generally designed to have linear phase,

in the following we consider the design of linear phase FIR filters.
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4.3.1 Linear Phase FIR Design Using Windows

Let h4(n) be the unit sample response of an ideal frequency selective filter with linear phase,
H(e') = Afe!™)e /1ew=F)

Because h14(n) will generally be infinite in length, it 1s necessary to find an FIR approximation to Hy(e!™). With
the window design method, the filter is designed by windowing the unit sample response,

hin) = hy(myw(n)

where w(n) is a finite-length window that is equal to zero outside the interval 0 < n < N and is symmetric about
its midpoint:
win) = w(N —n)

The effect of the window on the frequency response may be seen from the complex convolution theorem,

. 1 . . 1
H{e!™) = o aely s« Wiel) = "

=) =

T
f H;;I{"”’ }w {Fﬂua—ﬁi} 46

T}
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** The ideal frequency response is smoothed by the discrete-time
Fourier transform of the window, W (¢/®).
* There are many different types of windows that may be used in the

window designh method, a few of which are listed in Table 4-1.

< How well the frequency response of a filter designed with the window
design method approximates a desired response, H;l(¢ 'y is determined

by two factors (see Fig. 4-2):

.  The width of the main lobe of W (e'®).
2. The peak side-lobe amplitude of W (e/™).
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Peak Sidelobe

- —)l A |<7 Mainlobe ™

Width
Fig. 4-2. The DTFT of a typical window, which is characterized by the

width of its main lobe. A. and the peak amplitude of its side lobes, A,

relative to the amplitude of Wie'™) arw = 0.
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* ldeally, the main-lobe width should be narrow, and the side-lobe
amplitude should be small.
 However, for a fixed-length window, these cannot be minimized

independently. Some general properties of windows are as follows:

1. As the length N of the window increases, the width of the main lobe
decreases, which results in a decrease in the transition width between
pass bands and stop bands. This relationship is given approximately by
NAFf=r¢
v' where Af is the transition width, and c is a parameter that depends on the
window.

2. The peak side-lobe amplitude of the window is determined by the shape
of the window, and it is essentially independent of the window length.

3. If the window shape is changed to decrease the side-lobe amplitude, the

width of the main lobe will generally increase.
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* Listed in Table 4.2 are the side-lobe amplitudes of several windows
along with the approximate transition width and stop band attenuation
that results when the given window is used to design an Nth-order low-

pass filter.
Table 4-1 Some Common Windows

1 O<n=N
Rectangular | win) = |
0 else
2mrn
o {}.5——{}.5::::-5(-—) 0D=n=<N
Hanning win) = 1 N
| 0 else
27
| 0.54 — n.4ﬁcu.~;(—3) O<n<N
Hamming win) = 4 N -

0 else

2mn
0.42 —0.5cos( = ) +0.08cos[ — |} O0<n<AN
Blackman win) = { Lﬂ&( N ) + CU“"( ) =n =<

0 else

In the literature, this window is also called a Hann window or a von Hann window

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.




s Table 4-2 The Peak Side-Lobe Amplitude of Some Common Windows

and the Approximate. Transition Width and Stop band Attenuation of an

Nth-Order Low-Pass Filter Designed Using the Given Window.

Window Side-Lobe Amplitude (dB) Transition Width (A f) Stopband Attenuation (dB)
Rectangular ~13 0.9/N —21

Hanning —31 31/N —44

Hamming =41 3.3/N -53

Blackman —57 5.5/N —74

Example 4.3.1 Suppose that we would like to design an FIR linear phase

low-pass filter according to the following specifications:

0.99 < |H(e') = 1.01
(Hie'™)| < 0.01

0 < |ew| < 0,197

02In < |w| <
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For a stopband attenuation of 20 log(0.01) = —40dB. we may use a Hanning window. Although we could also use a Hamming
or a Blackman window, these windows would overdesign the filter and produce a larger stopband attenuation at the expense
of an increase in the transition width. Because the specification calls for a transition width of Aw = w, —w, = 0.027, or
Af = 0.01, with

NAf = 3.1

for a Hanning window (see Table 9.2), an estimate of the required filter order is

3.1
N=-==3I10
Af

The last step is to find the unit sample response of the ideal low-pass filter that is to be windowed. With a cutoff frequency
of w, = (w, + w,)/2 = 0.2x, and a delay of @« = N /2 = 155, the unit sample response is

sin[0.2mr(n — 155)]
{(n — 155)m

haln) =

In addition to the windows listed in Table 9-1, Kaiser developed a family of windows that are defined by

i — 24172
win) = ol Bl — [(n —a)/a]®) /"] 0<n<N

fu(B)

where « = N /2, and [y(-) is a zeroth-order modified Bessel function of the first kind, which may be easily
generated using the power series expansion

Io() =1+ [”i,} ]
k=1 :

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.




* The parameter p determines the shape of the window and thus controls
the trade-off between main-lobe width and side-lobe amplitude.

% A Kaiser window is nearly optimum in the sense of having the most
energy in its main lobe for a given side-lobe amplitude. Table 4-3

illustrates the effect of changing the parameter B.

* There are two empirically derived relationships for the Kaiser window
that facilitate the use of these windows to design FIR filters.

** The first relates the stop band ripple of a low-pass filter,

ay = —20log(d;), tothe F;aramclﬂr a,
[ 0.1102(ct; — 8.7) o, > 50
B =1 0.5842(a, — 21" + 0.07886(er, — 21) 21 <@, <50
0.0 o, < 21
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Table 4-3 Characteristics of the Kaiser Window as a Function of {3

Parameter Side Lobe Transition Width Stopband Attenuation
B (dB) (NAF) (dB)
2.0 -19 1.5 —29
3.0 —24 2.0 —37
4.0 —30 2.6 —45
5.0 —37 3.2 —54
6.0 —d44 3.8 —63
7.0 —51 4.5 72
8.0 —59 5.1 —81
9.0 —67 5.7 —90

10.0 —74 6.4 -99

The second relates N to the transition width Af and the stopband attenuation «,,

o, —7.95
_ % > 21
1436AF 07

Note that if @, < 21 dB, a rectangular window may be used (f = 0),and N = 0.9/Af.
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Example 4.3.2
Suppose that we would like to design a low-pass filter with a cutoff frequency w, = m /4, a transition

width Aw = 0.027, and a stopband ripple &, = 0.01. Because o, = —2010g(0.01) = =40, the Kaiser window parameter is
B = 0.5842(40 — 21)°* + 0.07886(40 - 21) = 3.4

With Af = Aw/2m = 0.01, we have
40 ~7.95

= =224
14.36 - (0.01)

Therefore, hin) = hg(n)w(n)

sinf(n — 112)m /4]
(n=112)m

where hy(n) =

is the unit sample response of the ideal low-pass filter.
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s Although it is simple to design a filter using the window design method,
there are some limitations with this method.

% First, it is necessary to find a closed-form expression for ha(n) (or it
must be approximated using a very long DFT).

% Second, for a frequency selective filter, the transition widths between
frequency bands, and the ripples with in these bands, will be
approximately the same.

 As a result, the window design method requires that the filter be
designed to the tightest tolerances in all of the bands by selecting the
smallest transition width and the smallest ripple.

% Finally, window design filters are not, in general, optimum in the sense
that they do not have the smallest possible ripple for a given filter order

and a given set of cutoff frequencies.
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4.3.2 Frequency Sampling Filter Design

Another method for FIR filter design is the frequency sampling approach. In this approach, the desired frequency
response, Hy(e’), is first uniformly sampled at N equally spaced points between 0 and 27

H(k) = Hy(e”* ™) k=0,1,...,N -1

These frequency samples constitute an N -point DFT, whose inverse is an FIR filter of order N — 1:

1 N =] .
hn) = = Y Hke N g <n<N -1
k={)

The relationship between h{n) and h;(n) (see Chap. 3) 1s

oo
hin) = Zhd[n—kkh’) D<n<=N-1

k=—ng
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s Although the frequency samples match the ideal frequency response
exactly, there is no control on how the samples are interpolated
between the samples.

% Because filters designed with the frequency sampling method are not
generally very good, this method is often modified by introducing one
or more transition samples as illustrated in Fig. 4-3.

% These transition samples are optimized in an iterative manner to

maximize the stop band attenuation or minimize the pass band ripple.

H(k)
y

I

i i
T
rl I

22— —8—8—> Lk

-l
-

Transition
Band

Fig. 4-3. Introducing a transition sample with an amplitude of A1 in the frequency
sampling method.
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4.3.3 Equiripple Linear Phase Filters

The design of an FIR low-pass filter using the window design technigue is simple and generally results in a filter
with relatively good performance. However, in two respects, these filters are not optimal:

1. First, the passband and stopband deviations, 4, and d,, are approximately equal. Although it is common
to require &, to be much smaller than 4, these parameters cannot be independently controlled in the
window design method. Therefore, with the window design method, it is necessary to overdesign the
filter in the passband in order to satisfy the stricter requirements in the stopband.

2. Second, for most windows, the ripple is not uniform in either the passband or the stopband and generally
decreases when moving away from the transition band. Allowing the ripple to be uniformly distributed
over the entire band would produce a smaller peak ripple.

An equiripple linear phase filter, on the other hand, is optimal in the sense that the magnitude of the ripple
is minimized in all bands of interest for a given filter order, N. In the following discussion, we consider the
design of a type I linear phase filter. The results may be easily modified to design other types of linear phase
filters.

The frequency response of an FIR linear phase filter may be written as

H(e’®) = A(e/®)e~ /2@
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where the amplitude, A(e/®), is a real-valued function of w. For a type 1 linear phase filter,
hin) =N —n)

where N is an even integer. The symmetry of h(n) allows the frequency response to be expressed as

L
Ale!®) = Z al(k) cos(kw)

k=)
N
ﬂ{ﬂ] =h ( ?)

N
kY= hil k —_ k=1,2,...,—.
alk) r( +2) 5

where L = N /2 and

The terms cos(kw) may be expressed as a sum of powers of cos @ in the form
cos(kw) = Ti(cosw)
where T;(x) is a kth-order Chebyshev polynomial [see Eq. (9.9)]. Therefore, Eq. (9.4) may be written as
L
Ale’™)y =3 a(k)(cos w)*
& =(}

Thus, A(e’”) is an Lth-order polynomial in cos w.
With A4(e’*) a desired amplitude, and W(e’") a positive weighting function, let
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E(e’®) = W(e!”)| Ag(e’™) — A(e’™)]

be a weighted approximation error. The equiripple filter design problem thus involves finding the coefficients
a(k) that minimize the maximum absolute value of E(e'“) over a set of frequencies, F,

min { max |E{e*"“]!|
aik)y | weF

For example, to design a low-pass filter, the set F will be the frequencies in the passband, [0, @,], and the
stopband, |w,, 7], as illustrated in Fig. 9-4. The transition band, (w,, w,), is a don't care region, and it is not

A [H(e™)|
148, POOOONONMONNNNNNY
RS NSNS

5 + AANARAARRRARRRRRRRANY
+ — L
0 Wp g L]
A 5550 SR R NS R R RSP SN S L R

Don’t Care

Fig. 4-4. The set R in the equiripple filter design problem, consisting of the pass band

[0, @, ] and the stopband [w. w,]. The transition band (w,,, w,) is a don’t care region.
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considered in the minimization of the weighted error. The solution to this optimization problem is given in the
alternation theorem, which 1s as follows:

Alternation Theorem: Let F be a union of closed subsets over the interval [0, w]. Fora
positive weighting function W (¢/*), a necessary and sufficient condition for

L
Ale’®) = Za{k}cns[kw]
k=0

to be the unique function that minimizes the maximum value of the weighted error | E{e/*)|
over the set F is that the E(e/™) have at least L + 2 alternations. That is to say, there must be
at least L + 2 extremal frequencies,

Wy < W) << Wy
over the set JF such that

E(e/™) = —E(e/*+) k=0,1,....L

and |E{ei“°’*)!=ma§|5cei’“}| k=0.1.....L+1
teHE

Thus, the alternation theorem states that the optimum filter is equinpple. Although the alternation theorem
specifies the minimum number of extremal frequencies (or ripples) that the optimum filter must have, it may
have more. For example, a low-pass filter may have either L + 2 or L. + 3 extremal frequencies. A low-pass
filter with L + 3 extrema is called an extraripple filter.

From the alternation theorem, it follows that
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W)l Age™) — A =(-1'e  k=0.1.....L+]
where € = +max |E(e’)|
weF

is the maximum absolute weighted error. These equations may be written in matrix form in terms of the unknowns

al0),.... a(L) and € as follows:
1 coslwy) ce cos( L) 1/ W(el“®) 1r a(0) ] T Ay(ed™) T
1 cos{w;) o« cos(Lw) —1/Wie!™) a(l) Ayler™)
| costwy) oo cos(Lay)  (=DE/W(ekr) || aL) Aa(e)
|1 cos(wpar) - cos(Lapsy) (—DE Wiy | L€ 4 LAde™) ]
Given the extremal frequencies, these equations may be solved for a(0). .. .. a(L) and . To find the extremal

frequencies, there is an efficient iterative procedure known as the Parks-McClellan algorithm, which involves
the following steps:
I.  Guess an initial set of extremal frequencies.
2. Find € by solving Eq. (9.5). The value of € has been shown to be
L+1

Z: b(k)D(el™)
k=0

L1

> (= Drbk)/ W el )

&=l
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L4+1 l

here hik) = S
! ®) J:I# cos(awy ) — cos(w, )

3. Evaluate the weighted error function over the set F by interpolating between the extremal frequencies
using the Lagrange interpolation formula.

4. Select a new sel of extremal frequencies by choosing the L + 2 frequencies for which the interpolated
error function 1s maximum.,

5. If the extremal frequencies have changed, repeat the iteration from step 2.

A design formula that may be used to estimate the equiripple filter order for a low-pass filter with a transition
width Af, passband ripple 8,,, and stopband ripple 4, 1s

N — —10log(d,8,) — 13
B 14.6Af
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Example 4.3.3

Suppose that we would lhike o design an equiripple low-pass filter with a passband cutoffl frequency

w, = 0.3, a stopband cutoff frequency w, = 0.35r, a passband ripple of 8, = 0.01, and a stopband nipple of §, = 0.001.
Estimating the filter using Eq. (9.6), we find

- 14.6Af

N = |02

Because we want the ripple in the stopband to be 10 times smaller than the ripple in the passband, the error must be weighted
using the weighting function

I 0 < |wl <037

w pary
€I=110 0 0357 <o <n

Using the Parks-McClellan algorithm to design the filter. we obtain a filter with the frequency response magnitude shown
below.
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20 log | H ()|

A
1
-20 +
40 +
-60 T
i
80 +
} } } t > W
/4 w/2 3 /4 T
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4.4 |IR Filter Design

* There are two general approaches used to design |IR digital filters. The
most common is to design an analog IIR filter and then map it into an
equivalent digital filter because the art of analog filter design is highly
advanced.

“ Therefore, it is prudent to consider optimal ways for mapping these
filters into the discrete-time domain. Furthermore, because there are
powerful design procedures that facilitate the design of analog filters,
this approach to IIR filter design is relatively simple.

% The second approach to design lIR digital filters is to use an algorithmic
design procedure, which generally requires the use of a computer to

solve a set of linear or nonlinear equations.
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% These methods may be used to design digital filters with arbitrary
frequency response characteristics for which no analog filter prototype
exists or to design filters when other types of constraints are imposed
on the design.

+ In this section, we consider the approach of mapping analog filters into
digital filters. Initially, the focus will be on the design of digital low-
pass filters from analog low-pass filters.

% Techniques for transforming these designs into more general frequency

selective filters will then be discussed.

4.4.1 Analog Low-Pass Filter Prototypes

+ To design an IIR digital low-pass filter from an analog low-pass filter,
we must first know how to design an analog low-pass filter.

% Most analog filter approximation methods were developed for the

design of passive systems having a gain less than or equal to 1.

Sem. IL, 2010 E.C Electrical and Computer Engineering DSP  By: Waltengus A.



Therefore, a typical set of specifications for these filters is as shown in Fig.
4-5(a), with the pass band specifications having the form

s |Ha(G)] A 1Ha(9)
| AN L AN
=6 1 IVTHE TRy

2

e

NN
+ > ()
i,

=
B e ——

SNSSS a1

2,

15.. T

k=
&

(«) Specifications in terms of §, and §,. (h) Specifications in terms of ¢« and A

Fig. 4-5. Two different conventions for specifying the pass band and stop
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