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Chapter 3: Z-transforms 

and its Implementation



3  Z-transforms and its Implementation

3.1 Introduction

 The z-transform is a useful tool in the analysis of discrete-time

signals and systems.

 Z-transform is the discrete-time counterpart of the Laplace

transform for continuous-time signals and systems.

 Z-transform may be used to solve constant coefficient difference

equations, evaluate the response of a linear time-invariant

system to a given input, and design linear filters.



3.2  Z-transforms

We saw that the discrete-time Fourier transform (DTFT) of  a sequence x(n) 

is equal to the sum 

Unfortunately, many of the signals that we would like to consider are not

absolutely summable and, therefore, do not have a DTFT. Some examples

include

Z-transform is a generalization of the DTFT that allows one to deal with

such sequences and is defined as follows:



The z-transform of  a discrete-time signal x(n) is defined by

where is a complex variable. The values of z for which the

sum converges define a region in the z-plane referred to as the region

of convergence (ROC).

Notationally, if  x(n) has a z-transform X(z), we write 

The z-transform may be viewed as the DTFT of an exponentially weighted

sequence. Specifically, note that with



Because the z-transform is a function of  a complex variable, it is convenient 

to describe it using the complex z-plane. With



 The axes of the z-plane are the real and imaginary parts of z as

illustrated in Fig. 3.1, and the contour corresponding to I z l = 1 is a

circle of unit radius referred to as the unit circle.

 The z-transform evaluated on the unit circle corresponds to the DTFT,

Fig. 3.1.  The unit circle in the complex z-plane.



 If α = 0, the ROC may also include the point z = 0, and if β = , the ROC

may also include infinity. For a rational X(z), the region of convergence

will contain no poles.

 The three properties of the region of convergence:



Example 3.2





Example 3.3





Table 3-1  Common z-Transform Pairs



 Just as with the DTFT, there are a number of important and useful z-

transform properties. A few of these properties are described below.

3.2.1 Linearity

As with the DTFT, the z-transform is a linear operator. Therefore, if x(n)

has a z-transform X(z) with a region of convergence Rx and if y(n) has a

z-transform Y(z) with a region of convergence Ry



 However, the region of convergence of W(z) may be larger. For example,

if x(n) = u(n) and y(n) = u(n - 1), the ROC of X(z) and Y(z) is I z l > 1.

 However, the z-transform of ω(n) = x(n) - y(n) = δ(n) is the entire z-plane.

3.2.2 Shifting Property 

 Shifting a sequence (delaying or advancing) multiplies the z-transform 

by a power of  z. That is to say, if  x(n) has a z-transform X (z),

 Because shifting a sequence does not affect its absolute summability,

shifting does not change the region of convergence.

 Therefore, the z-transforms of s(n) and x(n - no) have the same region of

convergence, with the possible exception of adding or deleting the

points z = 0 and z = .



3.2.3 Time Reversal 

If  x(n) has a z-transform X(z) with a region of  convergence Rx that is the 

annulus α < l z l  < β, the z-transform of  the time-reversed sequence x(- n) is

3.2.4 Multiplication by an Exponential 

If  a sequence x(n) is multiplied by a complex exponential



3.2.5 Convolution Theorem

 The most important z-transform property is the convolution theorem,

which states that convolution in the time domain is mapped into

multiplication in the frequency domain, that is,

 The region of  convergence of  Y(z) includes the intersection of  Rx and Ry

This corresponds to a scaling of the z-plane. If the region of convergence of

X(z) is r- < l z l < r+ which will be denoted by Rx the region of convergence of

which is denoted by lαl Rx. As a special

case, note that if x(n) is multiplied by a complex exponential. which

corresponds to a rotation of the z-plane.



 However, the region of  convergence of  Y(z) may be larger, if  there is a 

pole-zero cancellation in the product X(z)H(z). 

Example 3.3 Consider the two sequences



3.2.6 Conjugation 

 If  X(z) is the z-transform of  x(n), the z-transform of  the complex 

conjugate of  x(n) is 

3.2.7 Derivative 

If  X(z) is the z-transform of  x(n), the z-transform of  nx(n) is 



 These properties are summarized in Table 3-2. As illustrated in the

following example, these properties are useful in simplifying the

evaluation of z-transforms.

Table 3-2  Properties of  the z-Transform





Example 3.4

 A property that may be used to find the initial value of  a causal sequence 

from its z-transform is the initial value theorem. 



3.2.8 Initial Value Theorem

3.3 The Inverse Z-Transform

 The z-transform is a useful tool in linear systems analysis.

 For finding the z-transform of a sequence are methods that may be

used to invert the z-transform and recover the sequence x(n) from X(z).

 Three possible approaches are described below



3.3.1  Partial Fraction Expansion 

For z-transforms that are rational functions of  z,





3.3.2  Power Series 

The z-transform is a power series expansion,

Example 3.3.2  Consider the z-transform



3.3.3 Contour Integration

 Another approach that may be used to find the inverse z-transform of

X(z) is to use contour integration.

 This procedure relies on Cauchy's integral theorem, which states that

if C is a closed contour that encircles the origin in a counterclockwise

direction,

 Cauchy's integral theorem may be used to show that the coefficients 

x(n) may be found from X(z) as follows:
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 Where C is a closed contour within the region of convergence of X(z)

that encircles the origin in a counter clockwise direction.

 Contour integrals of this form may often by evaluated with the help of

Cauchy's residue theorem,



Table 3.3  Some common z-Transform pairs






