Chapter 3: Z-transforms

and its Implementation

Sem. II, 2010 E.C Electrical and Computer Engineering By: Waltengus

Morning

Good

C flollyooch Designs

3 Z-transforms and its Implementation

3.1 Introduction

- The z-transform is a useful tool in the analysis of discrete-time signals and systems.
- * Z-transform is the discrete-time counterpart of the Laplace transform for continuous-time signals and systems.
- * Z-transform may be used to solve constant coefficient difference equations, evaluate the response of a linear time-invariant system to a given input, and design linear filters.

3.2 Z-transforms

We saw that the discrete-time Fourier transform (DTFT) of a sequence x(n) is equal to the sum

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\omega}$$

Unfortunately, many of the signals that we would like to consider are not absolutely summable and, therefore, do not have a DTFT. Some examples include

$$x(n) = u(n)$$
 $x(n) = (0.5)^n u(-n)$ $x(n) = \sin n\omega_0$

Z-transform is a generalization of the DTFT that allows one to deal with such sequences and is defined as follows:

The z-transform of a discrete-time signal x(n) is defined by

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$

where $z = r e^{j\omega}$ is a complex variable. The values of z for which the sum converges define a region in the z-plane referred to as the region of convergence (ROC).

Notationally, if x(n) has a z-transform X(z), we write

$$x(n) \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z)$$

The z-transform may be viewed as the DTFT of an exponentially weighted sequence. Specifically, note that with $z = re^{j\omega}$,

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} = \sum_{n=-\infty}^{\infty} [r^{-n} x(n)] e^{-jn\omega}$$

and we see that X(z) is the discrete-time Fourier transform of the sequence $r^{-n}x(n)$. Furthermore, the ROC is determined by the range of values of r for which

$$\sum_{n=-\infty}^{\infty} |x(n)r^{-n}| < \infty$$

Because the z-transform is a function of a complex variable, it is convenient to describe it using the complex z-plane. With

$$z = \operatorname{Re}(z) + j\operatorname{Im}(z) = re^{j\omega}$$

- The axes of the z-plane are the real and imaginary parts of z as illustrated in Fig. 3.1, and the contour corresponding to I z I = 1 is a circle of unit radius referred to as the unit circle.
- * The z-transform evaluated on the unit circle corresponds to the DTFT,

Unit circle Unit circle in the complex z-plane
$$z = e^{j\omega}$$

Fig. 3.1. The unit circle in the complex z-plane.

$$X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

- * If $\alpha = 0$, the ROC may also include the point z = 0, and if $\beta = \infty$, the ROC may also include infinity. For a rational X(z), the region of convergence will contain **no poles**.
- The three properties of the region of convergence:
- A finite-length sequence has a z-transform with a region of convergence that includes the entire z-plane except, possibly, z = 0 and z = ∞. The point z = ∞ will be included if x(n) = 0 for n < 0, and the point z = 0 will be included if x(n) = 0 for n > 0.
- 2. A right-sided sequence has a z-transform with a region of convergence that is the exterior of a circle:

 $\operatorname{ROC}: |z| > \alpha$

3. A left-sided sequence has a z-transform with a region of convergence that is the *interior* of a circle:

 $ROC: |z| < \beta$

Example 3.2 Right-Sided Exponential Sequence

Consider the signal $x[n] = a^n u[n]$. Because it is nonzero only for $n \ge 0$, this is an example of a *right-sided* sequence. From Eq. (3.2),

$$X(z) = \sum_{n=-\infty}^{\infty} = a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (a z^{-1})^n.$$

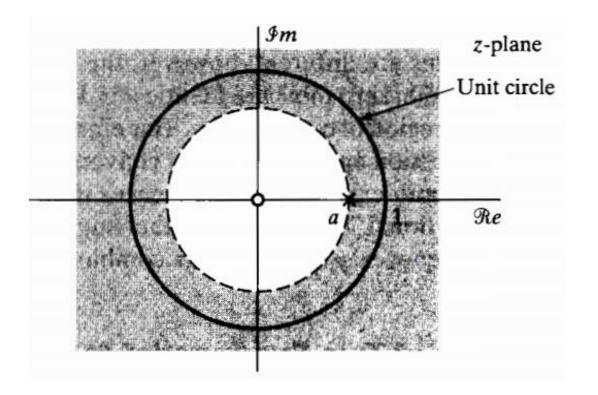
For convergence of X(z), we require that

$$\sum_{n=0}^{\infty} |az^{-1}|^n < \infty.$$

Thus, the region of convergence is the range of values of z for which $|az^{-1}| < 1$ or, equivalently, |z| > |a|. Inside the region of convergence, the infinite series converges to

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \qquad |z| > |a|.$$
$$X(z) = \frac{1}{1 - z^{-1}}, \qquad |z| > 1.$$

we see that X(z) has a zero at z = 0 and a pole at $z = \alpha$. A pole-zero diagram with the region of convergence is shown in the figure below.



Note that if $|\alpha| < 1$, the unit circle is included within the region of convergence, and the DTFT of x(n) exists.

Example 3.3 Left-Sided Exponential Sequence

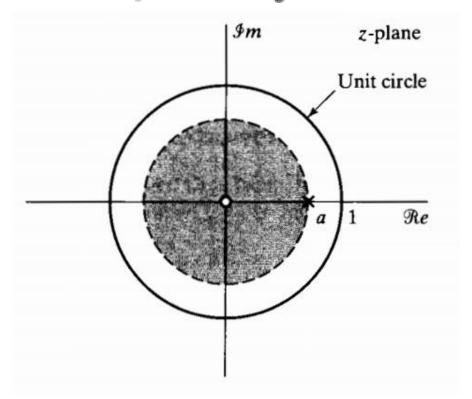
Now let $x[n] = -a^n u[-n-1]$. Since the sequence is nonzero only for $n \le -1$, this is a *left-sided* sequence. Then

$$\begin{split} K(z) &= -\sum_{n=-\infty}^{\infty} a^n u [-n-1] z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n} \\ &= -\sum_{n=1}^{\infty} a^{-n} z^n = 1 - \sum_{n=0}^{\infty} (a^{-1} z)^n. \end{split}$$

If $|a^{-1}z| < 1$ or, equivalently, |z| < |a|, the sum converges, and

$$X(z) = 1 - \frac{1}{1 - a^{-1}z} = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \qquad |z| < |a|.$$

with the sum converging if $|\alpha^{-1}z| < 1$ or $|z| < |\alpha|$. A pole-zero diagram with the region of convergence indicated is given in the figure below.



Note that for |a| < 1, the sequence $-a^n u[-n-1]$ grows exponentially as $n \to -\infty$, and thus, the Fourier transform does not exist.

Table 3-1 Common z-Transform Pairs

Sequence	z-Transform	Region of Convergence
$\delta(n)$	1	all z
$\alpha^n u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$-\alpha^n u(-n-1)$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
$n\alpha^n u(n)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$-n\alpha^n u(-n-1)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
$\cos(n\omega_0)u(n)$	$\frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}$	z > 1
$sin(n\omega_0)u(n)$	$\frac{(\sin \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}$	z > 1

 Just as with the DTFT, there are a number of important and useful ztransform properties. A few of these properties are described below.

3.2.1 Linearity

As with the DTFT, the z-transform is a **linear operator**. Therefore, if x(n) has a z-transform X(z) with a region of convergence R_x and if y(n) has a z-transform Y(z) with a region of convergence R_y

$$w(n) = ax(n) + by(n) \xleftarrow{Z} W(z) = aX(z) + bY(z)$$

and the ROC of w(n) will *include* the intersection of R_x and R_y , that is,

 R_w contains $R_x \cap R_y$

However, the region of convergence of W(z) may be larger. For example, if x(n) = u(n) and y(n) = u(n - 1), the ROC of X(z) and Y(z) is I z I > 1.
However, the z-transform of ω(n) = x(n) - y(n) = δ(n) is the entire z-plane.

3.2.2 Shifting Property

 ✓ Shifting a sequence (delaying or advancing) multiplies the z-transform by a power of z. That is to say, if x(n) has a z-transform X (z),

$$x(n-n_0) \xleftarrow{Z} z^{-n_0} X(z)$$

- Because shifting a sequence does not affect its absolute summability, shifting does not change the region of convergence.
- Therefore, the z-transforms of s(n) and x(n no) have the same region of convergence, with the possible exception of adding or deleting the points z = 0 and z = ∞.

3.2.3 Time Reversal

If x(n) has a z-transform X(z) with a region of convergence R_x that is the annulus $\alpha < |z| < \beta$, the z-transform of the time-reversed sequence x(-n) is

$$x(-n) \xleftarrow{Z} X(z^{-1})$$

and has a region of convergence $1/\beta < |z| < 1/\alpha$, which is denoted by $1/R_x$.

3.2.4 Multiplication by an Exponential

If a sequence x(n) is multiplied by a complex exponential α^n ,

$$\alpha^n x(n) \xleftarrow{Z} X(\alpha^{-1}z)$$

This corresponds to a scaling of the z-plane. If the region of convergence of X(z) is $\mathbf{r} < |\mathbf{z}| < \mathbf{r}$ which will be denoted by R_x the region of convergence of $X(\alpha^{-1}z)$ is $|\alpha|r_- < |z| < |\alpha|r_+$, which is denoted by $|\alpha| R_x$. As a special case, note that if x(n) is multiplied by a complex exponential $e^{jn\omega_0}$, which corresponds to a rotation of the z-plane.

$$e^{jn\omega_0}x(n) \xleftarrow{Z} X(e^{-j\omega_0}z)$$

3.2.5 Convolution Theorem

The most important z-transform property is the convolution theorem, which states that convolution in the time domain is mapped into multiplication in the frequency domain, that is,

$$y(n) = x(n) * h(n) \xleftarrow{Z} Y(z) = X(z)H(z)$$

* The region of convergence of Y(z) includes the intersection of R_x and R_y

$$R_w$$
 contains $R_x \cap R_y$

However, the region of convergence of Y(z) may be larger, if there is a pole-zero cancellation in the product X(z)H(z).

Example 3.3 Consider the two sequences

$$x(n) = \alpha^n u(n)$$
 $h(n) = \delta(n) - \alpha \delta(n-1)$

The *z*-transform of x(n) is

$$X(z) = \frac{1}{1 - \alpha z^{-1}}$$
 $|z| > |\alpha|$

and the *z*-transform of h(n) is

$$H(z) = 1 - \alpha z^{-1}$$
 $0 < |z|$

However, the z-transform of the convolution of x(n) with h(n) is

$$Y(z) = X(z)H(z) = \frac{1}{1 - \alpha z^{-1}} \cdot (1 - \alpha z^{-1}) = 1$$

which, due to a *pole-zero* cancellation, has a region of convergence that is the entire z-plane.

3.2.6 Conjugation

If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is

$$x^*(n) \xleftarrow{Z} X^*(z^*)$$

As a corollary, note that if x(n) is real-valued, $x(n) = x^*(n)$, then

$$X(z) = X^*(z^*)$$

3.2.7 Derivative

If X(z) is the z-transform of x(n), the z-transform of nx(n) is

$$nx(n) \xleftarrow{Z} -z \frac{dX(z)}{dz}$$

These properties are summarized in Table 3-2. As illustrated in the following example, these properties are useful in simplifying the evaluation of z-transforms.

Table 3-2 Properties of the z-Transform

Property	Sequence	z-Transform	Region of Convergence
Linearity	ax(n) + by(n)	aX(z) + bY(z)	Contains $R_x \cap R_y$
Shift	$x(n-n_0)$	$z^{-n_0}X(z)$	R_x
Time reversal	x(-n)	$X(z^{-1})$	$1/R_x$
Exponentiation	$\alpha^n x(n)$	$X(\alpha^{-1}z)$	$ \alpha R_x$
Convolution	x(n) * y(n)	X(z)Y(z)	Contains $R_x \cap R_y$
Conjugation	$x^*(n)$	$X^{*}(z^{*})$	R_x
Derivative	nx(n)	$-z \frac{dX(z)}{dz}$	R_x

Note: Given the z-transforms X(z) and Y(z) of x(n) and y(n), with regions of convergence R_x and R_y , respectively, this table lists the z-transforms of sequences that are formed from x(n) and y(n).

Sequence	Transform	ROC
<i>x</i> [<i>n</i>]	X(z)	R _x
$x_1[n]$	$X_1(z)$	R_{x_1}
$x_2[n]$	$X_2(z)$	R_{x_2}
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
nx[n]	$-z\frac{dX(z)}{dz}$	R_x , except for the possible addition or deletion of the origin or ∞
x*[n]	$X^{\bullet}(z^{\bullet})$	R _x
$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
$\mathcal{J}m\{x[n]\}$	$\frac{1}{2j}[X(z) - X^*(z^*)]$	Contains R_x
$x^{*}[-n]$	$\tilde{X}^{*}(1/z^{*})$	$1/R_x$
$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
Initial-value theorem:		

 $x[n] = 0, \quad n < 0 \qquad \lim_{z \to \infty} X(z) = x[0]$

Example 3.4

Let us find the *z*-transform of $x(n) = n\alpha^n u(-n)$. To find X(z), we will use the time-reversal and derivative properties.

$$\alpha^n u(n) \xleftarrow{2} \frac{1}{1 - \alpha z^{-1}} \qquad |z| > \alpha$$

Therefore,
$$\left(\frac{1}{\alpha}\right)^n u(n) \xleftarrow{z} \frac{1}{1-\alpha^{-1}z^{-1}} \qquad |z| > \frac{1}{\alpha}$$

and, using the time-reversal property,

$$\alpha^n u(-n) \xleftarrow{Z} \frac{1}{1-\alpha^{-1}z} \qquad |z| < \alpha$$

Finally, using the derivative property, it follows that the z-transform of $n\alpha^n u(-n)$ is

$$-z\frac{d}{dz}\frac{1}{1-\alpha^{-1}z} = -\frac{\alpha^{-1}z}{(1-\alpha^{-1}z)^2} \qquad |z| < \alpha$$

A property that may be used to find the initial value of a causal sequence

from its z-transform is the initial value theorem.

3.2.8 Initial Value Theorem

If x(n) is equal to zero for n < 0, the initial value, x(0), may be found from X(z) as follows:

 $x(0) = \lim_{z \to \infty} X(z)$

This property is a consequence of the fact that if x(n) = 0 for n < 0,

$$X(z) = x(0) + x(1) z^{-1} + x(2) z^{-2} + \cdots$$

Therefore, if we let $z \to \infty$, each term in X(z) goes to zero except the first.

3.3 The Inverse Z-Transform

- The z-transform is a useful tool in linear systems analysis.
- For finding the z-transform of a sequence are methods that may be used to invert the z-transform and recover the sequence x(n) from X(z).
- Three possible approaches are described below

3.3.1 Partial Fraction Expansion

For z-transforms that are rational functions of z,

$$X(z) = \frac{\sum_{k=0}^{q} b(k) z^{-k}}{\sum_{k=0}^{p} a(k) z^{-k}} = C \frac{\prod_{k=1}^{q} (1 - \beta_k z^{-1})}{\prod_{k=1}^{p} (1 - \alpha_k z^{-1})}$$

a simple and straightforward approach to find the inverse z-transform is to perform a partial fraction expansion of X(z). Assuming that p > q, and that all of the roots in the denominator are simple, $\alpha_i \neq \alpha_k$ for $i \neq k$, X(z) may be expanded as follows:

$$X(z) = \sum_{k=1}^{p} \frac{A_k}{1 - \alpha_k z^{-1}}$$

for some constants A_k for k = 1, 2, ..., p. The coefficients A_k may be found by multiplying both sides

by
$$(1 - \alpha_k z^{-1})$$
 and setting $z = \alpha_k$. The result is

$$A_k = \left[(1 - \alpha_k z^{-1}) X(z) \right]_{z = \alpha_k}$$

If $p \le q$, the partial fraction expansion must include a polynomial in z^{-1} of order (p-q). The coefficients of this polynomial may be found by long division (i.e., by dividing the numerator polynomial by the denominator). For multiple-order poles, the expansion must be modified. For example, if X(z) has a second-order pole at $z = \alpha_k$, the expansion will include two terms,

$$\frac{B_1}{1 - \alpha_k z^{-1}} + \frac{B_2}{(1 - \alpha_k z^{-1})^2}$$

where B_1 and B_2 are given by

$$B_1 = \alpha_k \left[\frac{d}{dz} (1 - \alpha_k z^{-1})^2 X(z) \right]_{z = \alpha_k}$$
$$B_2 = \left[(1 - \alpha_k z^{-1})^2 X(z) \right]_{z = \alpha_k}$$

3.3.2 Power Series

The z-transform is a power series expansion,

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} = \dots + x(-2) z^2 + x(-1) z + x(0) + x(1) z^{-1} + x(2) z^{-2} + \dots$$

where the sequence values x(n) are the coefficients of z^{-n} in the expansion. Therefore, if we can find the power series expansion for X(z), the sequence values x(n) may be found by simply picking off the coefficients of z^{-n} .

Example 3.3.2 Consider the z-transform

$$X(z) = \log(1 + az^{-1})$$
 $|z| > |a|$

The power series expansion of this function is

$$\log(1 + az^{-1}) = \sum_{n=1}^{\infty} \frac{1}{n} (-1)^{n+1} a^n z^{-n}$$

Therefore, the sequence x(n) having this *z*-transform is

$$x(n) = \begin{cases} \frac{1}{n} (-1)^{n+1} a^n & n > 0\\ 0 & n \le 0 \end{cases}$$

3.3.3 Contour Integration

- Another approach that may be used to find the inverse z-transform of X(z) is to use contour integration.
- This procedure relies on Cauchy's integral theorem, which states that if C is a closed contour that encircles the origin in a counterclockwise direction,

$$\frac{1}{2\pi j} \oint_C z^{-k} dz = \begin{cases} 1 & k = 1\\ 0 & k \neq 1 \end{cases}$$

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$

Cauchy's integral theorem may be used to show that the coefficients x(n) may be found from X(z) as follows:

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

- Where C is a closed contour within the region of convergence of X(z) that encircles the origin in a counter clockwise direction.
- Contour integrals of this form may often by evaluated with the help of Cauchy's residue theorem,

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \sum \left[\text{residues of } X(z) z^{n-1} \text{ at the poles inside } C \right]$$

If X(z) is a rational function of z with a first-order pole at $z = \alpha_k$,

$$\operatorname{Res}[X(z)z^{n-1} \text{ at } z = \alpha_k] = [(1 - \alpha_k z^{-1})X(z)z^{n-1}]_{z = \alpha_k}$$

Contour integration is particularly useful if only a few values of x(n) are needed.

Sequence	Transform	ROC
1. δ[n]	1	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$		z > 0

Table 3.3 Some common z-Transform pairs

Sem. II, 2010 E.C Electrical and Computer Engineering DSP By: V

By: Waltengus A.

