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2.1 Introduction
• The concept of a probability space that completely

describes the outcome of a random experiment has
been developed in Chapter-1, but a systematic and
unified procedure is needed to facilitate making
these statements, which can be quite complex.

• One of the immediate steps that can be taken in this
unifying attempt is to require that each of the
possible outcomes of a random experiment be
represented by a real number.

• In this way, when the experiment is performed, each
outcome is identified by its assigned real number
rather than by its physical description.
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Cont…
• This procedure not only permits to replace a sample

space of arbitrary elements by a new sample space
having only real numbers as its elements,

• But also; since most problems in science and
engineering deal with quantitative measures; which
leads sample spaces associated with many random
experiments of interest and these are already themselves
sets of real numbers; the real-number assignment
procedure is thus a natural unifying agent.

• So, introducing a variable , which is used to represent
real numbers, the values of which are determined by
the outcomes of a random experiment; leads to the
notion of a random variable is necessary.
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2.2 RANDOM VARIABLES

RealLine
x

 A random variable X is a function that assigns a real number X(ω)

to each outcome ω in the sample space Ω of a random experiment.

 Generally a random variable is represented by a single letter X

instead of the function X(w).

 The sample space Ω is the domain of the random variable and the

set RX of all values taken on by X is the range of the random

variable.

 Thus, RX is the subset of all real numbers.




A

X ()  x

B
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 If X is a random variable, then {ω: X(ω)≤ x}={X≤ x} is an event  

for every X in RX.

Example 2.1: Consider a random experiment of tossing a fair coin  

three times. The sequence of heads and tails is noted and the  

sample space Ω is given by:

 {HHH , HHT, HTH,THH, THT, HTT,TTH, TTT}

 Let X be the number of heads in three coin tosses. X assigns each

possible outcome ω in the sample space Ω a number from the set

RX={0, 1, 2, 3}.

 : HHH HHT HTH THH THT HTT TTH TTT

X () :3 2 2 2 1 1 1 0
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2.3 Events Defined by Random Variable
• Let X be a random variable and x be a fixed real value,

and event Ax define the subset of S that consists of all
real sample points to which the random variable X
assigns the number x. That is,

Ax ={w | X(w)=x}=[X =x]
• Since Ax is an event, it will have a probability, which we  

define as: p=P[Ax]
• Other types of events can define in terms of a random  

variable.
• For fixed numbers x, a, and b, we can define the  

following:
[X ≤x]={w | X(w)≤x}
[X > x]={w | X(w)>x}
[a < X < b]={w | a < X(w)<b}
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• These events have probabilities that are denoted by;

 P[X ≤x]is the probability that X takes a value less  
than or equal to x.

P[X > x]is the probability that X takes a value greater  
than x; this is equal to 1−P[X ≤x].

 P[a < X < b] is the probability that X takes a value  
that strictly lies between a and b.

Example 2.2 :- Consider an experiment in which a fair  
coin is tossed twice.

The sample space consists of four equally likely  
sample points: S={HH,HT,TH,TT}
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Let X denote the random variable that counts the
number of heads in each sample point.

Thus X has the range{0,1,2}.

 If we consider[X ≤1], which is the event that the
number of heads is at most 1, we obtain [X
≤1]={TT,TH,HT}

P[X ≤1]=P[TT]+(P[TH]+P[HT])

=P[X =0]+P[X =1]

= 1/ 4 + 1/ 2 = 3/4
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2.4 The Cumulative Distribution Function

 The distribution function (or cumulative distribution function  

(cdf)) of a random variable X is defined as the probability of the

event {X≤ x}. - ∞˂ x˂ ∞

Properties of the cdf, FX(x):

 The cdf has the following properties.

i. FX (x) is a non - negative function, i.e.,  

0  FX (x) 1

ii. lim FX (x)  1
x

FX (x)  P(X  x) ;

iii. lim FX (x)  0
x
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 We know that X takes on only the values 0, 1, 2 and 3 with  

probabilities 1/8, 3/8, 3/8 and 1/8 respectively.

iv. FX (x) is a non -decreasing function of X , i.e.,  

If x1  x2 , then FX (x1 )  FX (x2 )

v. P(x1  X  x2 )  FX (x2 )  FX (x1)

vi. P(X  x) 1 P(X  x) 1 FX (x)

Example 2.3: Find the cdf & draw its graph, of the random variable
number of heads in three tosses of a fair

Solution:

X which is defined as the
coin.
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Thus, FX(x) is simply the sum of the probabilities of the

outcomes from the set {0, 1, 2, 3} that are less than or

equal to x.

0, x  0

7 /8, x  2

1, x 3


1/8, x 0

F (x)  1/ 2, x 1X

Fx(-
∞)=0  
Fx(∞)=1
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Example 2.4:-The CDF of the random variable X is  
given by

(a) Draw the graph of the CDF

(b) Compute P[X > 1/ 4 ]

Solution

(a) The graph of the CDF is drawn next slide.
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(b) The probability that X is greater than ¼ is
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2.5 Types of Random Variables
 There are two basic types of random variables.

i. Discrete Random Variable

 A discrete random variable is a random variable that can

take on at most a countable number of possible values, either

finite or countably infinite.

 A discrete random variable is defined as a random variable

whose cdf, FX(x), is a right continuous, staircase function

of X with jumps at a countable set of points x0, x1, x2,……

 The cdf of a discrete random variable X can be obtained by

using the formula:
kX kX

xk x

F (x)  P (x )U(x  x )
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ii. Continuous Random Variable

 A Continuous random variable is a random

variable that can an uncountable set of

possible values.

 It is defined as a random variable whose cdf,

FX(x), is continuous every where and can be

written as an integral of some non-negative

function f(x), i.e.,
FX (x) 

x

Xf (u)du
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2.6 The Probability Mass Function (PMF)

 The probability of a random variable equal to a number is  

called the probability mass function (pmf).

 The probability mass function (pmf) of a discrete random

variable X is defined as:

PX (X  xi )  PX (xi )  FX (xi )FX (xi1)

 Since P(X=x)=0 for any x for continuous random variables, pmf

does not exist in the case of the continuous random variable.

 Properties of the pmf, PX (xi ):

i. 0   PX ( x k )  1, k  1, 2, .....

ii. PX ( x )   0, if x  xk , k  1, 2, .....

iii.  PX (x k )  1
k
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Example 2.5 :- If PMF of X is given as bellow; find its CDF?

Solution

• Its CDF is given by;

• Thus, the graph of the CDF is;
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Example 2.6 Let the random variable X denote the

sum obtained in rolling a pair of fair dice.

Determine the PMF of X.

Solution

• Let the pair ( a, b) denote the outcomes of the roll,
where a is the outcome of one die and b is the
outcome of the other.

• Thus, the sum of the outcomes is X =a+b. The
different events defined by the random variable X are
as follows:
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• Since there are 36 equally likely sample points in the  

sample space, the PMF of X is given by
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 Obtaining the PMF from the CDF

• We know for a discrete random variable X with PMF

pX(x), the CDF is given by

• Sometimes we are given the CDF of a discrete random

variable and are required to obtain its PMF.

• CDF of a discrete random variable has the staircase plot

with jumps at those values of the random variable

where the PMF has a nonzero value.

• The size of a jump at a value of a random variable is

equal to the value of the PMF at the value.
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Example 2.7 Find the PMF of a discrete random variable X whose

CDF is given by

Solution

• changes values at X = 0, X = 2, X = 4, and X = 6,

• px(0)=1/6. At X =2, px(2)= 1/2−1/6=1/3, px(4)=
5/8−1/2= 1/8, and px(6)= 1−5/8=3/8.

• Therefore, the PMF of X is
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2.7 The Probability Density Function (PDF)

 We define a random variable X to be a continuous

random variable if there exists a nonnegative function

fX(x), defined for all real x∈(−∞,∞), having the

property that for any set A of real numbers,

 The function fX(x) is called the probability density  

function (PDF) or simply density function, of the

random variable X and is defined by,

dx
(x) 

dFX (x)
f X
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Properties of the pdf, fX(x):

i. For all values of X , fX (x)  0

• The pdf does not exist for a discrete random variable
since its associated PDF has discrete jumps and is not
differentiable at these points of discontinuity.

• Using the mass distribution analogy, the pdf of a
continuous random variable plays exactly the same
role as the pmf of a discrete random variable.





iii. P(x1  X  x2 ) 





1

x2

ii.

x
Xf (x)dx

Xf (x)dx 1
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• The function fx(x) can be interpreted as the mass  
density (mass per unit length).

Example 2.8 :- Assume that X is a continuous random  
variable with the following PDF:

(a) What is the value of A?

(b) Find P[X > 1].

Solution

(a) Since fX(x) is a PDF, we have that
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(b) Therefore,
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Example 2.9:- Is the following function a legitimate PDF?

Solution

• For f(x) to be a legitimate PDF, we need to check to  
see if

Thus;

Therefore, f(x) is a legitimate PDF.
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Example 2.10 Consider the function

(a) For what value of c is g(x) a legitimate PDF?

(b) Find the CDF of the random variable X with the  
above PDF.

Solution

(a) For g(x) to be a legitimate PDF, we must have that
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(b) The CDF is given by
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Example 2.11 Consider the function

(a) For what value of b is f(x) a legitimate PDF?

(b) Find the CDF of the random variable X with the  
above PDF.

Solution

(a) For f(x) to be a valid PDF in the specified range,

 Thus, b=1.
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(b) The CDF of X is given by

Example 2.12 The PDF of the time T it takes a bank  
teller to serve a customer is defined by

(a) What is the CDF of T?

(b)What is the probability that a customer is served in  
less than 5 minutes?
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Solution

(a) The CDF of T is given by

(b) Since T is a continuous random variable, the
probability that a customer is served in less than 5
minutes is given by
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Example 2.13 The CDF of the random variable X is  
defined by

(a) What is the value of A?

(b) With the above value of A, what is P[X > 4]?

(c) With the above value of A, what is P[3≤X ≤5]?
Solution

(a) To find A, we know that FX(6)=1.

• Thus, from the definition of the CDF we have that
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(b) The probability that X is greater than 4 is given by

(c)The probability that X lies between 3 & 5 is given by

 We can also solve the problem by first finding the  
PDF of X as follows:

 Then using the PDF;
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Example 2.14 The CDF of the random variable Y is  
defined by

(a) For what value of K is the function a valid CDF?

(b) With the above value of K, what is FY(3)?

(c) With the above value of K, what is P[2 < Y <∞]?

Solution

(a) To find K, we know that FY(∞)=1.
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• Thus;

 This problem can also be solved by first obtaining the
PDF of Y and then integrating over the appropriate
intervals as follows:
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2.8 Expected Value, Variance and Moments
 While a probability distribution [FX (x), pX (x), or f X(x)]

contains a complete description of a random variable X, it is
often of interest to seek a set of simple numbers that gives
the random variable some of its dominant features.

• Given the set of data X1,X2,...,XN, we know that the
arithmetic average (or arithmetic mean) is given

• When the above numbers occur with different frequencies, we
usually assign weights w1,w2,...,wN to them and the so-called
weighted arithmetic mean becomes

• The average is a value that is representative or typical of a set
of data and tends to lie centrally within a set of data that are
arranged according to their magnitudes.
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• Thus, it is usually called a measure of central tendency.

• The term expectation is used for the process of averaging
when a random variable is involved.

• It is a number used to locate the “center” of the
distribution of a random variable.

• In many situations we are primarily interested in the
central tendency of a random variable, and as will be seen
later, the expectation (or mean or average) of a random
variable can be likened to the weighted arithmetic
average defined above.

• Another measure of central tendency of a random
variable is its variance, which measures the degree to
which a random variableis spread out.
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i. Expected Value (Mean)

 Mean represents the average value of the random variable in a very

large number of trials.

 The expectation (or expected value or mean) of a continuous random  

variable X, denoted by μX or E(X), is defined as:



XX xf (x)dx  E(X ) 

 Similarly, the expected value of a discrete random variable X is :

X  E(X )  xk PX (xk )
k

 Thus, the expected value of X is a weighted average of the possible

values that X can take, where each value is weighted by the probability

that X takes that value.
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Example 2.15 Find the expected value of the random  
variable X whose PDF is defined by

Solution
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Example 2.16 Find the expected value of the discrete  
random variable X with the following PMF:

Solution

Example 2.17 Find the expected value of the random  
variable K with the following PMF:

Solution

E[K]is given by
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Example 2.18 Find the expected value of the random  
variable X whose PDF is given by

Solution

• The expected value of X is given by
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ii. Moments of Random Variables and the Variance

• The nth moment of the random variable X, denoted  
by E[Xn], is defined by

for n=1,2,3,...

• The first moment, E[X], is the expected value of X.

• We can also define the central moments (or moments  
about the mean) of a random variable.

• These are the moments of the difference between a  
random variable and its expected value.
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• The nth central moment is defined by

The central moment for the case of n=2 is very
important and carries a special name, the variance,
which is usually denoted by σ2 X. Thus,
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Let X be a random variable with the PDF fX(x) and  
mean E[X], and a and b be constants.

• Then, if
Y=aX+b,

Y is the random variable defined by  
the expected value of Y is given by

E[Y]=aE[X]+b. Why?

Proof.

• Since Y is a function of X, its expected value is given  
by
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Let X be a random variable with the PDF fX(x) and
mean E[X], g1(X) and g2(X) be two functions of the
random variable X, and let g3(X) be defined by
g3(X)=g1(X)+g2(X).

• The expected value of g3(X) is E[g1(X)]+ E[g2(X)].

Proof

• Since g3(X) is a function of X, its expected value is  
given by
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Using above properties, and noting that E(X) is a  

constant, we obtain the variance of X as follows:

The square root of the variance, σX, is called the
standard deviation.

• Variance is a measure of the “spread” of a PDF or PMF.

• If a random variable has a concentrated PDF or PMF, it  
will have a small variance.

• Similarly, if it has a widely spread PDF or PMF, it will  
have a large variance.
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..Example-2.19:

The pdf of a continuous random variable is given by:

where k is a constant.

a. Determine the value of k.

b. Find the corresponding cdf of X.

c. Find P(1/ 4  X  1)

d. Evaluate the mean and variance of X .

0  x 1

otherwise
X

0,

kx,

f (x) 
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Solution:


k
 1

k x d x  1f ( x ) d x  1 a.
1

0

 

 x 2 1
 k    1   

2 0





X



2

 k   2

0  x 1

0, otherwise
 f (x) 

2x,
X
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Solution:

0

f (u )d u

b. The cdf of X is given b y :
x

x  
 x 2

0 0

x

X

x

f (u )du  2udu   u 2
XF ( x ) 

XX

C a s e 1 : for x   0

F X  ( x )  0, since f X  ( x )  0, for x   0   

C a s e 2 : for 0  x  1

F ( x ) 

 



12/2/2020 DMU,DMIoT,SoECE,PRP,BY,Muluken G,2012 EC 53



Cont…

Solution:

Case 3 :

F ( x ) 

0
F ( x ) 

for x  1

2

0 0
1 1
2udu  u 2  1






0,

 The cdf is given by

x  0

x , 0  x  1
1, x  1


1

f (u )du 

X

XX
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1/ 4
 P(1/ 4  X  1)  x2 1

 15 /16

 P(1/ 4  X  1)  15 /16

ii. Using the cdf

P(1/ 4  X  1)  FX (1)  FX (1/ 4)

 P(1/ 4  X  1)  1 (1/ 4)2  15 /16

 P(1/ 4  X  1)  15 /16

f (x)dx 

i. Using the pdf

P(1/ 4  X  1) 

Solution:

c. P(1/ 4  X  1)

1

1/ 4

1

1/ 4  2 xdxX
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Solution:

  X  Var(x)  1/ 2  (2 / 3)  1/18
2 2

2 / 3
3 0

1


ii. Variance
 X  Var( X )  E( X )  [E( X )]

2 2 2


2x3

0 0

0 0

 


1

E( X 2 )  x2 f 
1

(x)dx  2x3dx  1/ 2

 
1

xf (x)dx  2x2dx

d. Mean and Variance

i. Mean
1

X

X

XX  E( X ) 
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1/ 3 ,

Example-2.20:

Consider a discrete random variable X whose pmf is given by:

xk  1, 0,1
PX (xk )  

0, otherwise

Find  the mean and variance of X.
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Solution:

i. Mean

  X  Var(x)  2 / 3  (0)  2 / 3
2 2

1

E( X 2 )   x 2 P (x )  1/ 3[(1)2  (0)2  (1)2 ]  2 / 3
k1

k X k

X  E( X )   xk PX (xk )  1/ 3(1 0 1)  0
k 1

ii. Variance
 X  Var( X )  E( X )  [E( X )]

2 2 2

1
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Example 2.21 Let X be a continuous random variable  
with the PDF

Find the expected value and variance of X.

Solution

• The expected value of X is given by
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• an alternative method
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Example 2.22 A test engineer discovered that the CDF  
of the lifetime of an equipment in years is given by

a. What is the expected lifetime of the equipment?

b. What is the variance of the lifetime of the
equipment?

Solution

From the definition of its CDF, we can see that X is a
random variable that takes only nonnegative values.
Thus,
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(a) The expected lifetime of the equipment is given by

(b) To find the variance, we first evaluate the PDF:

Thus, the second moment of X is given by
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Thus,
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Example 2.23 A shopping cart contains ten books whose

weights are as follows: There are four books with a
weight of 1.8 lbs each, one book with a weight of 2 lbs,
two books with a weight of 2.5 lbs each, and three books
with a weight of 3.2 lbs each.

a. What is the mean weight of the books?
b. What is the variance of the weights of the books?

Solution
The total number of books is 10. The fractions of books in  

each weight category are as follows:
 Fraction of books with weight 1.8 lbs is 4/10=0.4
 Fraction of books with weight 2.0 lbs is 1/10=0.1
 Fraction of books with weight 2.5 lbs is 2/10=0.2
 Fraction of books with weight 3.2 lbs is 3/10=0.3
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• Let Y be a random variable that denotes the weights  
of the books.

• Since these fractions are essentially the probabilities  
of occurrence of these weights, we have that

E[Y]=(0.4×1.8)+(0.1×2.0)+(0.2×2.5)+(0.3×3.2)=2.38
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Example 2.24 the lifetime of the equipment can be  
modeled by a random variable X that has the PDF

a. Show that f(x) is a valid PDF.

b. What is the probability that the lifetime of the  
equipment exceeds 20?

c. What is the expected value of X?
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Solution

(a) For f(x) to be a valid PDF,
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(b)The probability that the lifetime of the equipment exceeds 20 is

(c) The expected value of X is given by
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2.9. Some Special Probability Distributions

• Random variables with special probability
distributions are encountered in different fields of
science and engineering.

• These include the Bernoulli distribution, binomial
geometric  

hypergeometric  
exponential

distribution,  
distribution,  
distribution,

uniform distribution, and

Pascal
Poisson
Erlang
normal

distribution,
distribution,
distribution,
distribution,
distribution.

• These can also divided as continuous and discrete.

• To see some of these;
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i. Continuous Probability Distributions

1. Normal (Gaussian) Distribution

 The random variable X is said to be normal or Gaussian random

variable if its pdf is given by:

 The corresponding distribution function is given by:

where

e  ( x  ) 2 / 2 2

.
2 2

1
Xf ( x ) 

 






x
e dy   GXF ( x ) 



2 2 ( y  ) / 21 x  

2 2

1
e  y 2 / 2 dy

x

2
G ( x )   
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 The normal or Gaussian distribution is the most  

common continuous probability distribution.

fX                                                         (x)

x


Fig. Normal or Gaussian Distribution
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2. Uniform Distribution

3. Exponential Distribution

fX(x)

x
a b

1

b a

Fig. Uniform Distribution

0,

1 e  x /  ,
f X ( x )   

x  0,

o therw ise.

fX (x)

x

Fig. Exponential Distribution

 , a  x  b

otherwise.

1
f X ( x )   b  a

 0,
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4. Gamma Distribution

5. Beta Distribution

where

 ( a , b ) 




f ( x )  

x 1

o therw ise.
X

 x / 
 e , x   0,

 ( )
0,






0,

x a  1 (1 x) b  1 , 0  x  1,

otherwise.
f X ( x )    (a , b)

1


1

0
u ( 1  u) b  1 du .a 1

12/2/2020 DMU,DMIoT,SoECE,PRP,BY,Muluken G,2012 EC 73



Cont…

6. Rayleigh Distribution

7. Cauchy Distribution

8. Laplace Distribution



x   0,

0, otherwise.

 x e  x 2 / 2 2

,
f X ( x )   2

X
 ( x   ) 2 2

f ( x ) 
� /

,    x   .

   x   .
1 e | x | /  ,

2
f ( x ) X
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k  0 , 1 , 2 , � , n.
 

P ( X  k ) 
 n 

p k q n  k , 
k

, k  0 , 1 , 2 , � , .
k !

P ( X  k )  e   k

12/2/2020 DMU,DMIoT,SoECE,PRP,BY,Muluken G,2012 EC 75



Cont...

P ( X  k )  p q k , k  0 , 1 , 2 , � , ,

6. Negative Binomial Distribution

max(0, m  n  N )  k  min(m, n)

   


 N 
 
 n 
 

5. Geometric Distribution

4. Hypergeometric Distribution

m  Nm 

 k  nk
P( X  k)      ,

q  1  p.

P ( X  k ) 
 k  1 

p r q k  r , k   r ,  r 1 , . r  1  
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The Poisson distribution has many applications in
science and engineering.

• For example, the number of telephone calls arriving
at a switchboard during various intervals of time and
the number of customers arriving at a bank during
various intervals of time are usually modeled by
Poisson random variables.

• As already seen; a discrete random variable K is
called a Poisson random variable with parameter λ,
where λ>0, if its PMF is given by
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• The CDF of K is given by

• The expected value of K is given by
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• The second moment of K is given by

• But
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• Thus, the second moment is given by

• The variance of K is given by
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Example 2.25 Messages arrive at a switchboard in a
Poisson manner at an average rate of six per hour.
Find the probability for each of the following events:

(a) Exactly two messages arrive within one hour.

(b) No message arrives within one hour.

(c) At least three messages arrive within one hour.

Solution

Let K be the random variable that denotes the number
of messages arriving at the switchboard within a one-
hour interval. The PMF of K is given by
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a. The probability that exactly two messages arrive  
within one hour is

b. The probability that no message arrives within one  
hour is

c. The probability that at least three messages arrive  
within one hour is
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2.10 Multiple Random Variables

 In many applications, it is very important to study two or more
random variable defined on the same sample space.

 In this lecture, we will consider only two random variables and
this concept can be extended to three or more random variables.

 Let Ω be the sample space of a random experiment and let X
and Y be two random variables.

 Then, the pair (X, Y) is called a two dimensional random
variable if each of X and Y associates a real number with every
element of Ω.

 Thus, a two dimensional random variable (X, Y) is a function
that assigns a point (x, y) in the xy-plane to each possible
outcome ω in the sample space.
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x
y

Cont…
2.10.1The Joint Cumulative Distribution Function

 The joint cdf of two random variables X and Y denoted by

FXY(x, y) is a function defined by:

FXY (x, y)  P[X ()  x and Y()  y]

 FXY (x, y)  P( X  x, Y  y)

where x and y are arbitrary real numbers.

Properties of the Joint cdf, FXY(x, y):

i. 0  FXY (x, y) 1

ii. lim FXY (x, y)  FXY (,)  1

x
y

iii. lim FXY (x, y)  FXY (,)  0
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iv. lim FXY (x, y)  FXY (, y)  0
x

vi. P(x1  X  x2 , Y  y)  FXY (x2 , y)  FXY (x1, y)

v i i . P(X  x, y1  Y  y2 )  FXY (x, y2 )  FXY (x, y1)

vii. P(x1  X  x2 , y1  Y  y2 )  FXY (x2 , y2 )

 FXY (x2 , y1)  FXY (x1, y2 )  FXY (x1, y1)

v. lim FXY (x, y)  FXY (x,)  0
y
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2.10.2 The Joint Probability Density Function

 The joint probability function (pdf) of two continuous random

variables X and Y is defined as:

 Thus, the joint cumulative distribution function (cdf) is given  

by:

xy
f XY (x, y) �XY

2 F (x, y)

 FXY (x, y) 
y x

- -
XYf (x, y)dxdy
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Properties of the Joint pdf, fXY(x, y):

1. fXY (x, y)  0

4. fXY(x,y) is continuous for all except possibly finitely  
values of x or of y.

 

 

3. P(x1  X  x2 , y1  Y  y2 ) 

 

- -

1 1

y2 x2

2.

y x XYf (x, y)dxdy

XYf (x, y)dxdy1
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• When both X and Y are discrete random variables,  
we define their joint PMF as follows:

pXY(x,y)=P[X =x,Y =y]

The properties of the joint PMF include the following:

1. As a probability, the PMF can neither be negative  
nor exceed unity, which means that 0≤pXY(x , y)≤1.
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y

Cont…
2.10.3 Marginal Statistics of Two Random Variables

 In the case of two or more random variables, the statistics of  

each individual variable are called marginal statistics.

i. Marginal cdf of X and Y

FX (x)  lim FXY (x, y)  FXY (x,)

FY ( y)  lim FXY (x, y)  FXY (, y)



x

ii. Marginal pdf of X and Y



-
f (x, y)dyf (x)  XYX




-
( y)  f (x, y)dxf XYY
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iii. Marginal pmf of X and Y

P( X  xi )  PX (xi )   PXY (xi , yi )
y j

P(Y  y j )  PY ( y j )   PXY (xi , yi )
x i
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2.10.4 Independence of Two Random Variables

 If two random variables X and Y are independent, then

i. from the joint cdf

FXY (x, y)  FX (x)FY (y)

ii. from the joint pdf

fX Y  (x, y)  f X  (x) fY (y)

iii. from the joint pmf

PXY (xi , y j )  PX (xi )PY ( y j )
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2.10.5 Condition Distributions

i. Conditional Probability Density Functions

 If X and Y are two continuous random variables with joint  

pdf fXY(x, y), then the conditional pdf of Y given that X=x is  

defined by:

 Similarly, the conditional pdf of X given that Y=y is defined  

by:

f ( y)  0
f ( y)

Y

Y

f (x / y) 
f XY (x, y)

,X /Y

f (x)

92

X

f ( y / x) 
f XY (x, y)

, f (x)  0Y / X X
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ii. Conditional Probability Mass Functions

 If X and Y are two discrete random variables with joint pmf

PXY(xi , yj), then the conditional pmf of X given that Y=yj is

defined by:

 Similarly, the conditional pmf of Y given that X=xi is  

defined by:

Y j

Y j

j

P ( y )

PXY (xi , y )
PX /Y (xi / y j )  , P ( y )  0

X i

93

X i

j

P (x )

PXY (xi , y )
PY / X ( y j  / xi )  , P (x )  0
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2.10.6 Correlation and Covariance

i. Correlation

ii. Covariance

  XY  Cov( X ,Y )  E( XY)  E( X )E(Y )

iii. Correlation Coefficient

 Cor(X,Y)  E(XY)RXY

 Cov( X ,Y )  E[( X  X )(Y  Y )] XY

 X Y  XY

94


Cov( X ,Y )


 XY

XY

12/2/2020 DMU,DMIoT,SoECE,PRP,BY,Muluken G,2012 EC 94



Cont…

Example 2.26 The joint PMF of two random variables  
X and Y is given by

where k is a constant.

a. What is the value of k?

b. Find the marginal PMFs of X and Y.

c. Are X and Y independent?

d. What is the conditional PMF of Y given X?

e. What is the conditional PMF of X given Y?

Solution

(a) To evaluate k, we remember that
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Thus,

This gives k=1/18.

(b) The marginal PMFs are
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(c) Since pX(x)pY(y)≠pXY(x,y),we conclude that  
X and Y are not independent.

d , e ; the conditional PMFs are given by
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Example 2.27 X and Y are two continuous random  
variables whose joint PDF is given by

Are X and Y independent?

Solution

To answer the question, we first evaluate the marginal  
PDFs of X and Y:
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which means that X and Y are independent.
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where k is a constant.

a. Find the value of k.

b. Find the marginal pdf of X and Y.

c. Are X and Y independen t?

d. Find P(X  Y  1)

e. Find  the conditiona l pdf of X and Y.

XY
0 , otherwise


Example-2.28:

The joint pdf of two continuous random variables X and Y is  

given by:

0  x 1,0  y 1
f (x, y) 

kxy,
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Solution:

k  4

101

 1
k

2

1
2 0

kxydxdy1f (x, y)dxdy 1a.

1

0

1

0

1 1

0 0

 
 

k

4 0 4

 y2 1
ydy  k

 
 

 x2 1
 k





 


- 




y

XY

12/2/2020 DMU,DMIoT,SoECE,PRP,BY,Muluken G,2012 EC 10
1



Cont…



102

0,
 f (x) 

2x,

 2x 
 

 
f (x, y)dy f (x) 

i. Marginal pdf of X


2 0

0  x  1  

otherwise

 y2 1
 f (x)  4x

4xydy

b. Marginal pdf of X and Y

1

0

X

X

XYX
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

103

0,
 f ( y) 

2 y,

 2y 
 

 
f (x, y)dx f (y) 

ii. Marginal pdf of Y


2 0

0  y 1  

otherwise

 x2 1
 f ( y)  4 y

4xydx

b. Marginal pdf of X and Y

1

0

Y

Y

XYY
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 X and Y are independen t

c. f XY (x, y)  f X (x) fY ( y)

2 0

104

4xydxdyd. P(X Y 1)

1

0

1

0

24y[1/ 2(1 y) ]dy 

0 0

1

0



 
 


 2(y2 / 22y3 /3 y4 / 4) 1/ 6

P(X Y 1)1/ 6

2(y2y2  y3)dy

 
1 1y

 dy
 x2 1

4y
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

105

0,

2x,
 f (x / y)

2y

0  x 1,0  y 1  

otherwise

f (y)

e. Conditiona l pdf of X and Y

i. Conditiona l pdf of X

X /Y

Y

f (x / y) 
f XY (x, y) 


4xy

 2xX /Y
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

106

0,

2y,
 f ( y / x) 

2x

0  x 1,0  y 1  

otherwise

f (x)

e. Conditiona l pdf of X and Y

ii. Conditiona l pdf of Y

Y / X

X

f (y / x) 
f XY (x, y)


4xy

 2yY / X
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where k is a constant.

a. Determine the value of k.

b. Find the marginal pdf of X and Y.

c. Are X and Y independen t?

d. Find P(0  X  1/ 2)

e. Find the conditiona l pdf of X andY.

X
0, otherwise


Example-2.29:

The joint pdf of two continuous random variables X and Y is  

given by:

0  y  x 1
f (x) 

k,
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Solution:

k  2

108

1
k

202
(1 y)dy  k

1
1

x

kdxdy 1f (x, y)dxdy 1a.

1

0

1

0

1 1




y2 1




y  k

 k





 0 y


- 




y

XY
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
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0,
 f (x) 

2x,

0

0  x  1

 f (x)  2y x
 2x

 
f (x, y)dy f (x) 

b. Marginal pdf of X and Y

i. Marginal pdf of X


otherwise

2dy
0

X

X

x

XYX
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

110

0,
 f (y) 

2(1 y), 0  y  1  

otherwise

 
f (x, y)dxf (y) 

b. Marginal pdf of X and Y

ii. Marginal pdf of Y


2dx
1

y
 f ( y) 2x1  2(1 y)

Y

Y

y
XYY
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c. fXY (x, y)  fX (x) fY (y)

X and Y are not independent

P(0 X 1/ 2) 1/ 4

111

1/ 4
0

1/ 2

0
2dydx

fXY (x, y)dydxd. P(0  X  1/ 2)

1/2

0

22xdx x

0 0

1/2

0

0 0







 
1/2 x



 
1/2 x

x
(2y) dx
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
0,

112

 f (x / y)  1 y


, 0  y  x 1


2 1

2(1 y) (1 y)

otherwise

1

f (y)

e. Conditiona l pdf of X and Y

i. Conditiona l pdf of X

X /Y

Y

f (x / y) 
f XY (x,y) 

X /Y
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1
,

113

0  y  x 1

0, otherwise

 f ( y / x)  x

(y / x) 
fXY (x, y)


2


1

f (x) 2x x

e. Conditiona l pdf of X and Y

ii. Conditiona l pdf of Y

Y / X

fY / X

X
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Example 2.30 The joint CDF of two discrete random  
variables X and Y is given as follows:

Determine the following:

a. Joint PMF of X and Y

b. Marginal PMF of X

c. Marginal PMF of Y.
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a, The joint PMF becomes
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b, The marginal PMF of X is given by

c, The marginal PMF of Y is given by

Example 2.31 Two random variables X and Y have the  
following joint PDF:

• Determine the conditional PDF of X given Y and the  
conditional PDF of Y given X. Solution
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