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INTRODUCTION TO THE COURSE

The course econometrics 1l (Econ 2062) is a continuation of Econometrics 1. It is designed
principally to make students of economics familiar with the basics of the theory (and practice)
of regression on qualitative information, time series and panel data econometrics as well as
simultaneous equation modeling. It first makes an introduction to the basic concepts in
qualitative information modeling such as dummy variable regression and binary choice
models (LPM, Logit and Probit). Elementary time series models, estimations and tests for
both stationary and non-stationary data will then be discussed. It also covers introduction to
simultaneous equation modeling with alternative estimation methods. Introductory pooled

cross-sectional and panel data models will finally be highlighted.

This course requires that the student be acquainted with the basic principles of macro and

micro economics as some illustrations involve economic applications.

Course Objectives:

After the completion of this course, learners are expected to:
o Understand the basic concepts in regression involving dummy independent and
dependent variables;

<« Know the theory and practice of elementary time series econometrics;

4

Understand the motivation and estimation methods of simultaneous equation modeling;

<@ Get introductory ideas on linear panel data models; and



Symbols

Dear learner! There are Symbols in this module to guide you in your study. Therefore, please use
them properly.

{Q} This indicates there is an objective to a section.

This indicates there is a question to answer or think about in the text.
@ This indicates to note and remember important points.

o This indicates there is a checklist of the main points.

This indicates there is a self-check test for you to do.

This indicates these are the answers to the activities and self-test Questions
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Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

Chapter One
Regression Analysis with Qualitative Information: Binary or

Dummy Variables

In this chapter you will be introduced with an important concept known as binary or dummy
variable and non-linear regression. The need to deal with dummy variables and non-linear
models is because we use them most often for specification and estimation of models

involving of qualitative information.

The chapter starts by introducing the meaning of qualitative information or dummy variables.
Section 1.2 presents the analysis of variance and analysis of covariance models. The
distinction between the two depends of whether there are only dummy independent variables
(Analysis of variance) or there are both qualitative and quantitative regressors (analysis of
covariance models) Section 1.3 is devoted to the concept of qualitative dependent variable
models. Three models are discussed in this chapter. These are the linear probability model
(LPM), the logit model and the probit model. The last two have quite similar probability

density function and similar probability estimations and used interchangeably quite often.

In addition, the truncated (censored) model — Tobit model (named after the Nobel price

winner economist James Baumol Tobin) — is used before the end of the chapter.
Obijective of the chapter
At the end of the chapter you are expected to:

e Know and define what qualitative information or dummy variable is,

e Understand how dummy/qualitative independent variables can be incorporated in
econometric model

e Understand the purpose and use of slope dummy and intercept dummy

e Understand how interactions between a dummy and a qualitative independent
variable can be incorporated in econometric model

e Know when and how to use binary response model

¢ undertake mathematical manipulations of logit and probit model
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Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

e Distinguish between linear probability model, logit model and probit model

e Be able to calculate marginal effect in logit model and probit model

e Understand extensions of logit and probit models (multinomial logit and
multinomial probit, ordered logit and ordered probit)

e Know when to apply a Tobit model

What is qualitative information?

Have you ever heard of qualitative information and dummy variable? If yes, try to

answer what does these Mean? -------------mmmmmmm oo

If you try your own, read the following.

1.1. Describing Qualitative Information

In dealing with variables, there are four categories namely: ratio scale variable, ordinal scale

variable, interval scale variable and nominal scale variable.

Ratio scale variables: these are variables that are quantitative and can be divided, subtracted
and ordered for comparison. E.g. measures of income, consumption, wage, GDP,
supply, price, etc. It is meaningful to ask how big this year’s GDP is compared with
the previous year’s GDP.

Interval scale variable: If we are given different values of an interval scale variable,
subtraction between any two values of a variable, ordering of values of a variable —
such as for comparison — can give meaningful result, but dividing one value by

another value is meaningless.

Ordinal scale variable: The values of an ordinal scale variable are measured using a certain
categorical order, such as schooling (less than 8 years, 8 to 11 years, 12 years, and
over 12 years. They can be ordered for comparison, but cannot be divided, nor

subtracted.
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Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

Nominal scale variables: Values of a nominal scale variable cannot be divided, nor subtracted,
nor ordered for comparison. Regressions involving ratio scale variables are covered in
Econometrics 1. Yet, using ratio scale variables is not the end of the story in regression
analysis.

We may want to find the effect of nominal scale variables — such as variables which are
qualitative in nature like gender, race, color, religion, nationality, geographical location,
change in government policy, devaluation, war, draught, election, etc. — on the variable of our

interest.

For example, we may be interested formulating an econometric model to deal with the

following issues:

v’ Estimating the effect of gender, and/or color on earning? That is, we may want to
answer a question; “Is there difference in average earning between men and women, or
between the white and the black people”?

v’ Estimating the effect of gender, place of residence on consumption? For example we
may want to answer, “Is there difference in average consumption expenditure between
men and women, or between urban and rural dwellers?”

v" Measuring the effect of policy change, for example devaluation of Birr, on Ethiopian
balance of payments?

v" What is the effect of war, or drought, natural hazard, etc. on a nation’s GDP?

v Etc.

Although the variables gender, color, place of residence, devaluation, drought, natural
hazard, war, etc. may all significantly affect different economic variables, they are not
quantitatively measurable. Hence, we need to have a mechanism of quantitatively analyzing

the effect of such variables.
Consider another case, in which we model consumption as follows:

Consumption = ay + a,DispIncome + a,FamilySize + a;Gender + u;..(1.1)
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Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

Consumption, Disposablelncome and FamilySize are measurable quantitatively; for example,
a household’s consumption could be 5000 birr per month, or 300 birr per day, its family size

of could be 6, or 3, or 1, etc.

But, the variable “Gender” can only assume string of characters of “Male” and “Female”.
Basically, qualitative variables, such as gender, indicate only the presence or absence of an
attribute. In other words, such types of qualitative variables indicate to which category a
given observation is grouped to. This kind of variables is known as dummy variable. For
example, in equation (1.1) observations or individuals for whom we model consumption are
grouped either to male, or to female category. But, how much is “Male”? Or, how much is
“Female”? Can we measure such strings quantitatively? Obviously no! So, what should we do

to estimate the impact of gender on consumption?

Fortunately, there are methods of “quantifying” such type of qualitative variables — by using

artificial variables — which involves assigning binary numbers of 0 and 1 arbitrarily.

Variables that assume such 0 and 1 values are called dummy variables or dichotomous

variables or binary variables or categorical variables or indicator variables.

In general, regression analysis with qualitative information tries to address such types of
issues. In effect, qualitative variables can be introduced in a model as a dependent variable, or

as independent variables, or both which are discussed in this chapter.

1.2. Dummy as Independent Variables

As a matter of fact, dummy variables can be incorporated in regression models just as easily
as quantitative variables. A regression model may contain regressors that are all exclusively
dummy, or qualitative, in nature. Such models are called Analysis of Variance (ANOVA)
models. The significance of the difference between the means of two samples can be judged
through either z-test or the t-test. But, when we want to examine the significance of the
difference amongst more than two sample means at the same time, the ANOVA technique

enables us to perform this simultaneous test.

Prepwfd @g Mulat W, 4



Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

On the other hand, regression models containing a mixture of quantitative and qualitative
variables are called analysis of covariance (ANCOVA) models. The interpretation of dummy
variables remains the same in both the ANCOVA and ANOVA models.

1.2.1. Regression with only qualitative regressors: The ANOVA Models

Consider the consumption model for a hypothetical town below where consumption is a
function of only dummy variable gender having two categories or classes: “Male” and

“Female”.
Ci =g+ D+ Uj e e s et e e e e e e e e e eees (L2)
Where, C; average monthly consumption
D; = 1, if a person is male
= 0, Otherwise (i.e. if gender of the person is not male)

u; = the error term satisfying the usual assumptions of classical linear regression

model.

By doing so, equation (1.2) enables us to find out whether gender creates difference in
average consumption among individuals, citrus paribus. Since all regressors are dummies, the
intercept is equal to the expected value and the estimated model will be horizontal; hence, we

can find the mean values of equation (1.2) for two different values of Di as follow:
v To estimate average consumption (intercept) of male people, use D; = 1
ECD;=1)=E(ag+a; *1+u;)

v To estimate the average consumption (intercept) of female people, use D; = 0
(Gi|D; =0) = E(ag + ay * 0+ u;)

04, SR VPP VRPPPUR (o B 3
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Note that the difference between equation (1.3) and equation (1.4) equals a;. This a;

measures difference in average consumption between male and female people. That means:

& If the estimator of a; is positive and statistically significant, average consumption of
male people exceeds average consumption of female people by the amount equal to «;.

& On the other hand, if the estimator of a, is negative and statistically significant, it
means average consumption of female people exceeds average consumption of male
people by the amount equal to the estimator of «;.

& |If the estimator of a; is statistically insignificant, average consumption of male people
does not have statistically significant difference with average consumption of female

people.

ifa, >0

ay +

Disposable income

Figure 1.1: Average consumption as shown by dummy regressors
Remember equation (1.2) once again:
C;i = ag+ aD; +y;
D; = 1, if a person is male
= 0, Otherwise

In the above case testing the existence of difference in average consumption between males

and females requires setting the null and alternative hypothesis

Prepwfd @g Mulat W, 6
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If we assume that male people have higher consumption that female people, the hypothesis is

as follows.
HO: al = 0
Hi:a; >0

If, on the other hand, we assume that female people have higher consumption that male

people, the hypothesis is as follows:
HO: a, = 0
H;: a; < 0 (if we assume that females have higher consumption)

Another thing worth mentioning here is that ANOVA models can have more than one dummy

variables (see equation (1.6) below).
Example 1.1

Suppose estimating equation (1.2) for two different samples give the following, where values
in braces are standard errors.

A. C; = 1500 — 200 D;
(170.0)  (13.5)

B. ¢; = 3000 — 500 D
(880.0)  (350.0)
I. Find the average consumption of male?
ii. Find the average consumption of female?
iii. Find the difference in average consumption of males and females?

Solution

Remember that before dealing with problems of the above type, first check whether
an estimator is statistically significant or not. If not significant, an estimator is

regarded as zero.
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Question A: Since the estimates divided by standard errors if greater than two, both
estimators are statistically significant. Hence, we can estimate average consumption of all

categories.

I. Average consumption for males
C; = 1500 — 200 * 1 = 1300
ii. Average consumption for females
C; = 1500 — 200 * 0 = 1500
iii. The difference between males and females is given by the coefficient of the
dummy variable and it equals 200. Or, we can find it by taking the difference

between the average values of the two categories. That is, 1500 -1300 = 200.

Question B: The dummy variable is not statistically significant, because 500/350 is less than

two. Hence, average consumption for both male and female categories is equal to 3000.

1.2.2. Regression with a mixture of quantitative and qualitative regressors
(The ANCOVA models)

Analysis of Covariance (ANCOVA) models contain a mixture of both qualitative (dummy)
and quantitative regressors. ANCOVA models, which provide a method of statistically
controlling the effects of quantitative regressors called covariates or control variables, are

common than ANOVA models in economics. General form of the model:
Ci=ay+ a,Yd; + a;D; + as(D;Yd;) + Uj eeecee e e e e e e e v wve ee e (1L5)
Where, C; is consumption, Yd; is disposable income, D; is dummy for gender where,
D; = 1, if gender is male
=0, otherwise
a, = differential intercept dummy
a5 = differential slope coefficient or slope dummy.

As far as this model is concerned, there are four possibilities of modeling it.
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A. Coincident Regressions: This is the case where both the intercept and the slope
coefficients are the same. This means the coefficients of a, and a5 are insignificant and

equation (1.5) is reduced to:
Ci=apg+a1Yd; +Uj oo ii e e e e e (L50)

Because a, is insignificant both male and female have the same intercept which equals a,

and because a3 is insignificant both male and female have the same slope which equals «;.

C

El = qy + (Xlei

Disposable income

Figure 1.2: regression line with same intercepts and slope coefficients

B. Parallel Regression: This is the case where only the intercept regression is different
but the slopes are the same. This means the coefficient of a5 is insignificant and equation

(1.5) is reduced to:

It is evident form equation (1.5b) that the model has one quantitative variable (disposable
income) and one qualitative variable (gender). If individuals have the same average
disposable and if the estimator for a, is statistically significant, we conclude that the average

consumption between male and female individuals is different by the estimate equal to a,.
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For example, if «a, is positive, graphically it is shown as:
C Ei=a0+a1ﬁi+a2

Ei =0ay + a1mi
(24)) + a,

o4

Disposable income

Figure 1.3: Regression line with different intercepts

As shown in figure 1.3, since the only difference is the intercept gap between the two

regression lines shown above amounts to a, and the two regression lines are parallel.

C. Concurrent Regressions: The intercepts in the two regressions are the same, but the
slopes are different. Returning, once again, to equation (1.5), the coefficient of a, is

statistically insignificant and the equation is reduced to:

From equation (1.5c), the intercept is equal to a, for both males and females, but the slope is

different and it is equal to:
a, for females, and
a, + a3 for males.

If, for example, the coefficient a5 is negative and statistically significant then the slope of the

consumption function is flatter for males than for females as shown under figure 1.4.
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Regression line for females
c Ci = Q + (Xlei

Regression line for males

Ci = Qg + CZ1Ydl' + CZ3(Dinl')
o

Disposable income

Figure 1.4: Regression line with different slope coefficients

D. Dissimilar regressions: This is the case where both the intercepts and slopes in the two
regressions are different. Considering equation (1.5), all parameters are statistically

significant.
Ci=ag+aYd; +a,D; + as(D;Yd;) + Uj e vovs e et e v v e v e w2 (1.5d)
Hence,
Intercept for females = «,, Intercept for males = ay + a,
Slope form females = a; Slope for males =ay + a5

If a, is less than zero and if a5 is greater than zero and if both coefficients are statistically

significant.

The graph of the consumption for males and females becomes the following.
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Regression line for males
C El = 0(0 + aIYdi + azDi + ag(Dini)
Regression line for females
Ci = Qy + alei
o
ay + a;

Disposable income

Figure 1.5: Regression line with different intercept and slope coefficients

Note also that there are only two categories for gender: “Male” and “Female”. In fact, a
dummy variable can have more than two categories. For example, equation (1.5) can be
extended by adding another dummy variable called “Education”. Here, we incorporate four

categories for education: illiterate, primary, Secondary, and college and above shown by:
C;i = ayg + a,Yd; + a,familySize; + azDy; + ayDy; + asD3; + agDy + u; ... ... (1.6)
D,; = 1, if Gender is male
=0, otherwise
D,; = 1, if education is Primary
=0, otherwise
Ds; = 1, if education is Secondary
=0, otherwise
D,; = 1, if education is College and above

=0, otherwise
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Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

Note from equation (1.6) that:

v" The assumption underlying equation(1.6) is that it is only in the intercept that changes
for each group, but not the slope coefficients.

v" Even though gender has two categories (Female and Male), we ignore “Female” and
considered only “Male”. Also, we identified four categories for education (illiterate,
primary, Secondary, and college and above), but we ignore the category “illiterate”,

and incorporate only three categories.

This is because if we incorporate all categories of a dummy variable, it results an exact
linear relationship among regressors. This is known as dummy variable trap. If there
is dummy variable trap, perfect multicollinearity problem arises and remember that
we can’t estimate the model under perfect multicollinearity, unless we drop at least the
intercept in which case coefficients of each category becomes its own intercept.
Therefore, if a qualitative variable has m categories, you have to introduce only (m—1)

dummy variables.

v No dummy variables are assigned for the categories “female” and “llliterate”. Such
categories for which no dummy variable is assigned are called the base, or benchmark,
or control, or comparison, or reference, or omitted category. For example, in equation
(1.2) “Female” is the benchmark since the category “Female” is omitted, from there,
Also, in equation (1.6) the categories “female” and “llliterate” are omitted, so the
benchmark is the combination of illiterate and female which can be read as: illiterate
people who are females.

v" The intercept term for each individual is obtained by substituting the appropriate
values for D, through D,. For example, for a male, with secondary education, we have,
D;=1,D,=0,D;3=1,D,=0

Hence, the intercept is:
agt+az*1l+a,*x0+as*x1+ag*0

=ay+az+ ag
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Similarly, for females, with no education at all (illiterate), the intercept is:
ag+az3*0+a,*x0+as*x0+ag=*0
= ao

v" You may choose any category as a benchmark, yet all comparisons are made in
relation to the benchmark category. For example, in equation (1.6), the intercept of
illiterate female people (=the bench mark), as obtained above, equals a,.Whereas,
the intercept of male who completed secondary education, equals = a, + a3 + as.
Thus, keeping the effect of all other variables constant, the difference between the
average consumption of male people who completed secondary education and the
average consumption of illiterate female people (= the benchmark) equals to

asz + as.

In addition, if the coefficient of the category for secondary education (= D5;) which
equals as is negative, it means keeping the effect of all other variables constant, the
average consumption of people (both male and female) who completed secondary
education is less than the average consumption of illiterate female people (= the

benchmark) by the amount equal to as.

The coefficients attached to each dummy variable are known as the differential
intercept coefficients®. It tells by how much the value of the intercept term of the
category to which the binary 1 is assigned differs from the intercept coefficient of the

base category.

! This holds if the dummy is an intercept dummy. However, a dummy can be slope dummy or both slope and
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Example: 1.2

Suppose estimation of equation (1.6) yields the following result. Values in braces are
standard errors.

Ci= \2_{1‘_(})4‘ % Ydl+ L6_Q familySizel-— 99 D1i+ 25 D2i+ §9 D3i+ }_%_Q D4i
(16.0)  (0.024) ((18.50) (8.40) (2.42) (7.60) (12.40)

Where, E(Yd;) = 500, and E(familySize;) = 4

1. What does 240 measure?

2. Compare the average consumption between male and females?

3. What is the difference in average consumption between primary education completed
and secondary education completed people?

4. Interpret the coefficients of Ds;, D,;, etc?

5. The average consumption of male people who completed primary school?

Solution

We can check that all coefficients are statistically significant. Hence, we can proceed
to the answers directly .

1. 240 is the intercept for the bench mark. Therefore, the intercept for illiterate female
people.

2. This is shown by the gender dummy which equals 60.

3. It equals the difference between the two categories. That is, 80-25=55

4. The coefficient of D3 equals 80. Since D3 represents the category “secondary”, it
means the average consumption of secondary school completed people is greater than
the average consumption of illiterate female people (the bench mark) by 60.
Similarly, the coefficient of D3 shows, the average consumption of college and above
completed people is greater than the average consumption of illiterate female people
(the bench mark) by 120.

5. Wait for a moment!
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1.2.3. Interaction effects using dummy variables

The answers for questions (1)-(4) of example (1.2) can be answered without any problem. But,
the answer to question (5) is a little bit different. Since it contains two categories male and
primary-school-completed, the answer is obtained by using a different method which is

discussed below.
Look once again equation (1.6):
Ci = ag+ a.YD; + a,familysize; + azDy; + agDy; + asDs; + agDy; + u;.

This model assumes that the differential effect of the gender dummy, D;;, is constant across
the four categories of education. Suppose the estimate of a5 is negative. This means the mean
consumption of females is greater than males irrespective of the level of education of the

latter. Succinctly speaking, it means

- the mean consumption of illiterate-females is greater than the mean consumption of
illiterate-males by the amount equal to the estimator of a3,

- the mean consumption of illiterate-females is greater than the mean consumption of
primary-school-completed males by the amount equal to the estimator of a3,

- the mean consumption of illiterate females is greater than the mean consumption of
secondary-school-completed males by the amount equal to the estimator of a3,

- the mean consumption of illiterate females is greater than the mean consumption of

college and above -completed males by the amount equal to the estimator of as,

But, in many cases such an assumption may be invalid. For example, even if the mean
consumption of illiterate-females is greater than the mean consumption of illiterate-males, it
is more probable that the mean consumption of illiterate females to be less than the mean
consumption of males who completed college and above as education favors for higher wage.
Such types of occasions are accounted by using interaction between the coefficients of

dummies.
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Look at the following:
Ci =ay+ a,Yd; + ayfamSize; + azDy; + a,Dy; + asDs; + agDy + a7D1; Dy + u; ... (1.7)

Here, look the inclusion of the term “a,D,;D,;” which is the product (interaction) of
dummies Dy; and D,;, and a- is the coefficient of interactions. This allows the gender to
depend on level of education, just as it did in equation. It allows us to easily test the null
hypothesis that the gender differential does not depend on education level.

Note form equation (1.6) that D,; and D,; represent dummies for male and primary education
respectively. Equation (1.7), thus, gives the mean consumption function of male people who

completed primary education. Observe that,
E(C;|Dy; = 1,Dy; = 1,Yd;, famSize;) = ag + a1 Yd; + ay,famSize,; + az + a4, + a5
a5 = differential effect of being a male person.
a,= differential effect of being primary-education-completed person.

a, = differential effect of being primary-education-completed-male person.
Example 1.3
By working on equation (1.7)

i. Construct an equation showing the mean consumption of male people who completed

secondary education?
Solution

This can be done by adding an interaction variable between male and secondary school

completed people such as using the following.
Ci=ay+ a,Yd; + ayfamSize; + azDy; + ayDy; + asD3; + agDy; + a7D1;Dy; + agDy;Ds; + u;

Here, ag is the coefficient of the interaction between male and secondary school completed

people
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1.3. Dummy as Dependent Variable

So far in this chapter, we discussed models with quantitative dependent variables having
qualitative or/and quantitative predictors. But, what if the dependent variable itself is

qualitative?

Suppose you want to model “Factors affecting house ownership of people?” Here, the
dependent variable is “ownership of a house” and the independent variables will be variables
like income, family wealth, education, age, etc. If so, when you collect data about the
dependent variable, you will ask your samples, “Do you have your own house?”, and the
respondent’s answer is either “Yes, | have”, or “No, I don’t have”. Something comes strange
here as the dependent variable is qualitative, and the “Yes” or “No” answers cannot be
expressed quantitatively.

Nonetheless, if the dependent variable of the model is dummy, the usual OLS technique will
no more be useful. Instead, the maximum likelihood estimation technique is used. This is
because when the dependent variable is dummy, the objective is finding the maximum
probability (whence the name maximum likelihood is derived) of something happening for
the given values of regressors, and qualitative response regression models are often known as
probability models ipso facto. If the dummy dependent variable has exactly two categories, it
is called binary, or dichotomous, variable. Otherwise, it is called polychotomous variable.
Basically, three approaches to developing a probability model for a binary response variable
are discussed in this chapter. These are:

i.  The Linear Probability Model (LPM),
ii.  The Logit model,
iii.  The Probit Model.
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1.3.1. The Linear Probability Model (LPM)

Consider a model on determinants of house ownership:
Yi = g+ @1 X; F 0D 4 Uy e e e e e et et e s e et et e e e e e e e ee e e e (1L8)
Where Y; = 1 if a person owns a house
= 0 if he/she does not own a house
X; = is family income
D; = 1 if the person is male, and 0 otherwise

Equation (1.8) looks like a linear regression model but because the regressand (Y;) is binary,
or dichotomous, it is called a linear probability model (LPM). The conditional expectation of
Y; given X; and D;, E(Y;|X;,D;), can be interpreted as the conditional probability that the
event will occur given X; and D;, that is, Pr(Y; = 1|X;, D;). Thus, in our example, E (Y;|X;, D;)
gives the probability of a person owning a house and whose income is given by X; and whose
gender is identified by D; . Equation (1.8) can then be estimated using OLS although this has

drawbacks which will bring us to either Logit or Probit models.
If we take the expected value of equation (1.8), we get
E(i|XiDi = 1) = Qg + @1X; F B cee v e v s v s v e eee et eve e ene wvene e (19)
Suppose the probability that the event will occur, that is,( Y; = 1) equals, P;
Then, the probability that the event does not occur (Y; = 0)equals 1 — P; .
(Remember this from the property of Bernoulli process of your statistics course).
Taking the expected value
E(Yi|Xy, Dy) = E(ag + a4 X; + a3)

Prfpwfd @g Mulat W, 19



Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

Since the probability P; must lie between 0 and 1, we have the restriction on the conditional

expectation that

0 < EW|X D) S 1o oo oo et oo e e oo e e e e (1L11)

1.3.1.1. Drawbacks of LPM

Non-Normality of the Disturbances

Since the dependent variable Y; assumes only two values (0 or 1), the disturbances u;
also takes only two values; that is, the error term follows the Bernoulli distribution. As

a result, u; is not normally distributed.

i. The Variances of the Disturbances is Heteroscedastic

Remember that for a Bernoulli distribution that the theoretical mean and variance are,
p and p(1 — p), respectively where p is the probability of success (i.e., something
happening), showing that the variance is a function of the mean. Thus, the error
variance is heteroscedastic. But,

pi = E(GlX;, D = 1) = @ 4 0Xi + @ vve e vt v e e v e (112)

Since, p; itself depends on the regressors, Var(u;) also depends on regressors.

Remember remedial measures if variances are heteroscedastic.
The restriction is not fulfilled

OLS estimation of the LPM gives no guarantee for the probability to be between 0 and
1. This is because the probability increases linearly with regressors. In fact, we can
restrict the LPM under OLS to be between 0 and 1 or use estimation techniques other
than OLS that guarantee equation (1.11). (See figure 1.6)
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P LPM (unconstrained)

s 1 LPM (constrained)

Figure 1.6: Linear probability models

R? as a Measure of Goodness of Fit is Questionable
Corresponding to the value of regressors (X’s), the dependent variable (Y) is either 0
or 1. Therefore, all the Y values will either lie along the X axis or along the line
corresponding to Y equals 1. Therefore, generally no LPM is expected to fit such a
scatter well. As a result, computed R? is of limited value in the dichotomous response

models or in qualitative dependent variables be it constrained or unconstrained.

Example 1.4:

Suppose estimating equation (1.8) yields the following (values in brackets are Standard

errors).

~

¥, = —0.084 + 0.0017 Income; + 0.008 D;
(0.021) (0.0004) (0.0032)

t = (—4.00) (4.25) (2.5) R? = 0.882

i. Interpret the intercept?
ii. Interpret the coefficient of X;?

iii.Interpret the coefficient of D;?

Solution

All t-values (coefficient divided by standard error) are greater than two; hence, all

coefficients are statistically significant.

Prfpwfd @5 Mulat W, 21



Econometrics 11, Chapter 1 Regression Analysis involving qualitative information

i. The intercept of ¥; gives the “probability’’ that a female person (since D; = 0 for
female) with zero income will own a house. This value is negative; but since
probability cannot be negative, we treat this value as zero, which is sensible in the
present instance.

ii. The slope value of 0.0017 means that for a unit change in income, on the average the
probability of owning a house increases by 0.0017 or about 0.17 percent. Of course,
given a particular level of income, we can estimate the actual probability of owning a

house.
Thus, if, for example, income = 500, the estimated probability of owning a house is
(¥;]x; = 500,D; = 1) = —0.084 + 0.0017 = 500 + 0.008 * 1
= 0.846 = 84.6 percent.
(¥;|X; = 500,D; = 0) = —0.084 + 0.0017 * 500 + 0.008 * 0
= 0.766 = 76.6 percent.

ili. The probability of owning a house for males is greater than for females on average by
0.8 percent.

@ Self Test : From example 1.4 above,

i.  Estimate the probability of owning a house for a person having income of 1000?

ii.  Relate your answer with drawback (iii)?
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1.3.2. The Logit Model and Probit Model

As we saw above, the LPM has some drawbacks. For example, look once again exercise (ii)
or figure 1.6 above. Even though a probability must be between the limits of 0 and 1, we can
see from figure 1.6 (a) that the probability could be below 0 or above 1 which is not
statistically plausible. Of course, as shown on figure 1.6(b), using restricted least square, the
probability under LPM can be made to be inside the limits of 0 and 1. Similarly, other

drawbacks can also minimized using different methods.

Yet, the LPM model assumes that Pi = E(Y = 1 | X) increases linearly with X, that is, the
marginal or incremental effect of X remains constant throughout X. This means, for example,
for a unit change in birr, the probability of owning a house for an individual earning monthly
income of 100 birr per month and an individual earning monthly income of 30, 000 per month
is equal. But, certainly this is unrealistic as one may reasonably argue that the probability of
owning a house when monthly income is too low (e.g. 100) will be close to zero. To the
opposite, the probability of owning a house if monthly income is sufficiently large (e.g. 30,
000) is close to 1.

Therefore, instead on depending on the LPM, we need a (probability) model that has these

two features or conditions:

& As Xi increases, Pi = E(Y = 1| X) increases but never steps outside the 01 interval,
& the relationship between Pi and Xi is nonlinear, i.e., “one which approaches 0 at
slower and slower rates as Xi gets small and approaches 1 at slower and slower rates

as Xi gets very large.

Geometrically, this can be portrayed as:
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Figure 1.7: cumulative distribution function (CDF)

This sigmoid, or S-shaped, curve in the figure very much resembles the cumulative
distribution function (CDF) of a random variable. Therefore, one can easily use the CDF to
model regressions where the response variable is dichotomous, taking 0-1 values. For
although all CDFs are S-shaped, the CDFs commonly chosen to represent the 0—1 response

models are (1) the logistic (Logit) model and (2) the normal (or normit) also called (probit )

model.

1.3.2.1. The Logit Model

Consider the model for home ownership;

Pi = E(Y = 11X)) = @g 4 Q1K v cee eveee v e vt e eve e eee v ene st ene st ene wenene wenene wen (1.13)
Where, X is income and Y = 1 means the family owns a house.
Question:

As we said above, we need a model whose CDF will look like figure 1.7. But, what type of

mathematical function can yield that shape? Consider the following model of home ownership;

1
1+e—(‘10+a1Xi) Chr res mea mes aes e nerowas was ses sea aes aea ner was was wes oan

pi = EY =1|X,) = e (1.14)

If we let Z; = a, + a,X;, equation (1.14) can be re-expressed as;
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eZi

1+e_Zi - 1+eZl BEE mEs EEE sEE EEs EEE S wmEw wEE o EEE EES EEE R mmw mmw wEE

pi=EY =1|X) = v ieeee o (1.15)

This is known as the (cumulative) logistic distribution function which satisfies the two
conditions stated above. Since p; gives the probability of owning a house, the probability of

not owning a house, (1 — p;), is;

1

1-— Di = m frw Eaa waa was was was mms mEs EEE EEE e Eea was sas sas s mms s s mas mEE EEE EEE @ PR Ges was wes wes s s s sas s (116)
If we divide equation (1.15) by (1.16), we get;
i 1+eZi . .
:—pi = 1+:—Zi = eZi = e®otUXi s e e e e e e e e e (117)

This is called Odds Ratio in favor of owning a house. It is the ratio of the probability that a
family will own a house to the probability that it will not own a house.

If we take the natural logarithm of equation (1.17), we get

Li=1n (L) =10 (E5) = Z0 = @ + @i e e (118)

1-p; 1+e~%i

Equation (1.18) is an interesting result since it is linear in parameters and linear in variables,
too.

L; is called the Logit whence the name Logit model is derived.
Notes from equation (1.18)

v' As P goes from 0 to 1 (i.e., as Z varies from —oo to +o0), the Logit, L, goes from —oo to
+oo which is unrestricted.

v Although L is linear in X, the probabilities themselves are not, unlike the LPM.

v We can incorporate as many regressors as may be dictated by the underlying theory.

v If L, the logit, is positive, it means that when the value of the regressor(s) increases, the
odds that the regressand equals 1 (meaning some event of interest happens) increases.
If L is negative, the odds that the regressand equals ldecreases as the value of X

increases.
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v The slope coefficients measure the change in L for a unit change in X; it tells how the
log-odds in favor of owning a house change as income changes by a unit.

v The LPM assumes that Pi is linearly related to Xi, whereas the Logit model assumes
that the log of the odds ratio is linearly related to Xi

Estimation of the Logit model
Rewriting equation (1.18);

L = ln( i ) Qo QUK U oo oo 2 (1.19)
1-p;

To estimate equation (1.19), we need data of X; and Logit, L;. This depends on the type of

data we have for analysis. We distinguish two types of data:
(1). Data at the individual, or micro, level, and
(2). Grouped or replicated data.

i. Data at the individual or micro, level

From equation (1.19), Pi = 1 if a family owns a house and Pi = 0 if it does not own a house.
Thus,

L;=1In (ﬁ) =In (%) if a person owns a house

Li=1In (1%0) =In (%) if a person does not owns a house

These imply, if we have data at the micro, or individual, level, we cannot estimate (1.19) by
the standard OLS nor WLS routine. In this situation, we may have to resort to non-linear
estimating

procedures using the maximum likelihood (ML) method.
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@ Note on estimation of individual Logit model
Avre estimated using only MLM
SE are asymptotic hence we have to use Z statistic instead of t-statistic.

R-square is not meaningful in binary response models.

S X X

LR test, which is chi-square test with df equal to number of regressors, in Logit is

equivalent the use of F-test for joint test of multiple regression model.

ii.  Grouped or Replicated Data

Here, for a given regressor, observations which have equal values are grouped together and
the logit is called Grouped Logit or GLogit ipso facto. For example, in the model represented
by equation (1.19), people who earn the same disposable income are grouped together.
Corresponding to each group of income level X;, there are N; families, among whom n; are
home owners (n; < N;). Therefore;

A Ny

e (1.20)

gives the relative frequency house owners, and can be used as an estimate of the true Pi

corresponding to each Xi. This true Pi is used to estimate the logit, L;.

N

Thus, L;=1In (1%) N RPN ¢ 15 )
gives fairly good estimate of the true logit, Li, if the number of observations Ni at each Xi is
reasonably large.

But, since the variance of error term, although it could be normally distributed for large Ni as

1

wi~N (0' N;p;(1-P))

) , is heteroscedastic, we have to use WLS instead of OLS.
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Steps:

i.  For each income level X, compute the probability of owning a house using equation
(1.20)

ii.  Foreach X;, obtain the logitas L; = In (:—;)

iii.  Then to resolve the problem of heteroscedasticity, transform equation (1.19) using

i = oWy + arWiXs + it

Or,

Where, w; = N;p;(1—P,), L*;, X*; and v; are transformed L;, X; and u;

respectively.

iv. Then estimate equation (1.22) using OLS. Note that is no intercept term introduced

explicitly and also test of hypothesis should be made at reasonably large sample.
Example 1.5
Suppose estimating equation (1.22) yields the following result

L*i = —1.51/Wi + 006X*l
(0.250) (0.016)

t= (—6.00) (3.75) R? =0.9242 .........(1.23)
Where L*; andX*; are weighted L;and X; of equation (1.21) respectively.
Interpret coefficients?

In both logit and probit models, we interpret the sign of the coefficient but not the magnitude.
The magnitude cannot be interpreted using the coefficient because different models have

different scales of coefficients.

There are various ways of interpreting estimated logit model.
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I. Logit Interpretation

The coefficient of X*; shows that for a unit increase in weighted income, the weighted log

of the odds in favor of owning a house goes up by 0.06 units.

ii. Odds Interpretation

An odds ratio of 2 means that the outcome y=1 is twice as likely as the outcome of y=0.

Since L; = In (%) its antilog gives the odds ratio which equals,
(ﬁ) — o~ 15WiH+0.06X"; — ,=15/w; 4 ,0.06X"; (1.24)

Hence, ¢%%¢ = 1.0618

This is interpreted as that for a unit increase in weighted income, the (weighted) odds in favor

of owing a house increases by 1.0618 or about 6.1 percent.
Note:

If you want to carry the analysis in terms of unweighted logit, all you have to do is to divide

the estimated Li* by \/w;.
iii. Computing Probabilities

The predicted probability indicate the likelihood of y=1. If the predicted probability is greater
than 0.5 we can predict that y=1, otherwise y=0

To compute the probability of owning a house, for example, at X=22, given value of \/Wl say,

4, which corresponds to the given value of X, substitute this in equation (1.24). That is,

L, = —1.5/w; + 0.06X*; = —1.5 % 4 + 0.06 * 22 4 = —0.72

Dividing this by 4 gives the value of — % =—-0.18

Therefore, at income level of 22, we have, ln( i ) = —0.18

1—pi
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Taking the antilog, % =e 018 =1

e 018 0835
1+e-018 = 140.835

= 0.454

Solving for p; we get, p; =

This is interpreted as given the income of birr 22, the probability of a family owning a

house is about 45.4 percent.

1.3.2.2. Probit Models

As it is said earlier, the probit model is usually used if the Cumulative Density Function (CDF)

is normal.

Figurel.8: Logit and probit cumulative distributions

Figure (1.8) portrays the difference between CDF of Logit and Probit models. As the value of
the regressor (X) increases, the probability of occurrence of the dependent variable increases
faster (gets closer to 1) under probit than under logit. Similarly, as the value of X gets smaller
and smaller, the probability of the dependent variable not-to-occur decreases faster (gets
closer to 0) under probit than under logit. Beyond this, they are quite similar. Yet, in principle
the normal CDF can be substituted in place of the logistic CDF because of this pretty

resemblance between them.
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Motivation

Suppose the decision of ownership of a house by a person or family depends on the utility

obtained from owning the house. Mathematically,

Where, I; is unobservable the utility index, also called latent variable, whose higher values

are associated with higher probability of owning a house, X; is income of i person or family.

Now, assume that there is a threshold or critical, say I; which itself is unobservable, such that
if I; exceeds I/, the family will own a house, otherwise it will not. If we assume further that I,
like I;, is normally distributed with the same mean and variance, it is possible not only to
estimate the parameters of the index given in equation (1.25) but also to get some information

about the unobservable index itself.

The probability that I is less than or equal to li can be computed from the standardized

normal CDF as:
Pp=PY =1|X) =P <I}) = P(Z; < apg+ a1 X;) = F(@g+ @1X;) o eee oo (1.26)

Where, P(Y = 1|X) means the probability that an event occurs given the value(s) of the
regressors, Z; is the standard normal variable, i.e., Z;~N(0, o2. F is the standard normal CDF,

which is:

. =2
L e2dz

FU) = =1L,

2
1 rag+arX; “Z
= Ef_; ez dz i (1.27)
The area between —oo and I; measures the probability of owning a house.
If we take the inverse of equation (1.26), we get information on I;, a,, a,. That is,

Where, F~1isthe inverse of the normal CDF.
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Estimation of Probit Model
Estimation of parameters and I; depends on whether we have grouped data or ungrouped data.
Probit Estimation with Grouped Data: gprobit

As in the case of logit model, we get the relative frequency, (the empirical measure of
probability) of owning a house at various income level, and I; can be obtained from normal
CDF. Obtaining I; makes estimating parameters relatively straightforward; it is even easier
than LPM and Logit.

Interpretation of the Probit Estimates
Suppose the estimated model is

Table 1.1: Probit estimation results for probability of owning a house

Variable coefficient Std. error t-statistic Probability

Consumption -1.0166 0.0.72 -17.7473 1.0397E-07

Disp_income 0.04846 0.00247 19.5585 4.8547E-08
R?=0.97951 Durbin-Watson statistic =0.91384

To find out the effect of a unit change in income measured in birr on the probability that Y = 1,
i.e., a family purchases a house, we want to take the derivative of equation (1.26) with respect
to X:

dapP;

Where, f(ay + a,X;) is the standard normal PDF evaluated at a + a4 X;.

If say, X=6, we want to find NDF at (—1.0166 + 0.04846(6)) = f(—0.72548) . From
normal distribution table, for Z = —0.72548, the normal density is about 0.2358. Thus,

= (0.2358 * 0.04846 = 0.01142

This means, starting with an income level of birr 6, if the income goes up by 1, the probability

of a family purchasing a house goes up by about 0.0128 * 100 = 1.142 percent
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Probit Model for Ungrouped or Individual Data

The problem we face in Logit regression also presents here. For this reason, will have to use a
nonlinear estimating procedure based on the method of maximum likelihood; we will go for

this in lab sessions.
Marginal Effects in Logit and Probit models

Most papers report marginal effects at the mean. A problem is that there may not be such a
person in the sample.

For dummy independent variables, the marginal effect is expressed in comparison to the
base category (x=0). For continuous independent variables, the marginal effect is expressed

for a one-unit change in x.

a) In the linear regression model, the slope coefficient measures the change in the
average value of the regressand for a unit change in the value of a regressor, with all
other variables held constant.

b) In the LPM, the slope coefficient measures directly the change in the probability of an
event occurring as the result of a unit change in the value of a regressor, with the
effect of all other variables held constant.

c) In the logit model the slope coefficient of a variable gives the change in the log of the
odds associated with a unit change in that variable, again holding all other variables
constant. Moreover, the rate of change in the probability of an event happening is
given by a;P;(1 — P;).

d) In the probit model, the rate of change in the probability is given by «;f (Z;), where Z;
is the density function of the standard normal variable and Z; = ag + a1 Xq; +

a, X, + -+ ai Xy , that is, the regression model used in the analysis.

Thus, in both the logit and probit models all the regressors are involved in computing the
changes in probability, whereas in the LPM only the j™ regressor is involved. This difference

may be one reason for the early popularity of the LPM model

We interpret both the sign and the magnitude of the marginal effects. The probit and logit

models produce almost identical marginal effects.
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Further reading

The course outline for this chapter is limited to the binary choice models which we have
discussed so far. Nonetheless, below you are introduced to some further concepts which you

can proceed in different books if you want.
I. Extensions of the Logit and Probit Models

Earlier we say that in logit and probit models the dependent variable contains two categories

and is called binary choice model ipso facto. But, they have the following varieties.
a) Ordinal logit and probit models

Usually, a qualitative dependent variable, or regressand, can have more than two outcomes
and very often these outcomes are ordinal in nature; that is, they cannot be expressed on an
interval scale. For example, suppose you want to study about “Determinants of Satisfaction of
Debre Markos University Students from Library Service”. Hopefully, the dependent variable-
level of Satisfaction-may assume categories like, “highly satisfied”, “satisfied”, “dissatisfied”,
“highly dissatisfied”. In this case, it consists of 4 categories which require some kind of

ordering.
Ordinal logit and probit models are employed to model such types of phenomena.
b) Multinomial logit and probit models

Such models are similar to ordinal logit and probit models because in both cases to the
dependent variable has more than two categories. The difference, however, is that ordering
the categories of the dependent variable is not required, here. For example, if you want to
research, “The determinants of choice of modes of transportation”, the dependent variable
will be the type of transport mode-which assumes one of bicycle, motorbike, car, bus, or train-
chosen by a certain observation. In this case, the dependent variable does not require ordering,
yet has more than two categories. Such types of phenomenon are modeled using multinomial

logit and probit models.
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1.3.2.3. The Tobit model
This is an extension of the probit model. It was originally developed by the Nobel laureate
economist James Tobin.

To explain this model, let’s take our previous home ownership example,

v"In the probit model our concern is estimating the probability of owning a house as
a function of some socioeconomic variables.

v In the Tobit model, however, our interest shifts to finding out the amount of
money a person spends (measured quantitatively) on a house in relation to

socioeconomic variables.

Yet, the consumer may not own a house due to two reasons. First, the consumer may not have
sufficient money to purchase a house. Second, even if the consumer may have sufficient

money, he/she may not want to purchase a house.

We face a dilemma here: If a consumer does not purchase a house, obviously we have no data
on housing expenditure for such consumers. In other words, we have such data only on

consumers who actually purchase a house.
Hence, samples from which data is collected will have the following features.

- First, consumers about whom we have information on the regressors as well as the
regressand.
- Second, consumers about whom we have information only on the regressors but not on

the regressand. Basically, such type of observation is known as a censored sample.
Mathematically,
Y, = ap + oy X; +u; If RHS > 0 o oot et et e et e eee vt ene venene ean e wan e wen 2 (1.30)
=0 otherwise

Where, Y; is expenditure on house, RHS = right — hand side
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Since Y; is expenditure on house it can be measured quantitatively and can be estimated using
OLS. The problem, however, is due to the presence of people with no spending on housing
(censored observations), OLS estimation of equation (1.30) by neglecting data from people
who do not own a house-because there is no data for them-will make the estimators biased

and inconsistent. Instead, maximum likelihood method can still be in action.
o Check Lists
Analysis of covariance model
Analysis of variance model
Benchmark
Categorical variable
Dummy variable
Interaction variable
Linear probability model
Logit model
Odds ratio
Omitted category
Probit model
Quialitative information
Slope dummy intercept dummy

Tobit model /censored regression
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Chapter Two

Introduction to Basic Regression Analysis with Time Series Data

From your lessons of econometrics | and the first chapter of econometrics Il, you have
covered the skills and methods understanding of how to use the multiple regression models
for cross-sectional applications. Now, we turn to the econometric analysis of time series data.
Since we will rely heavily on the method of ordinary least squares, most of the work
concerning mechanics and inference has already been done. However, as you might have
noted, time series data have certain characteristics that cross-sectional data do not, and these

can require special attention when applying OLS to time series data.

The chapter starts by introducing the nature of time series data under section 2.1. Here, we
discussed two types of data: deterministic trend and stochastic trend. Section 2.2 presents the
stationary and non-stationary stochastic processes. This section covers the criteria of
stationary and non-stationary time series. In addition, the two classic or common types of
non-stationary data are discussed here. These are the random walk model with drift and the
random walk model without drift. Trend stationary and difference stationary stochastic
processes and the methods of making such stochastic processes are discussed in section 2.3.
In section 2.4, we discuss the Integrated stochastic process and explored the properties of
linear combinations of stationary and non-stationary stochastic processes. Under section 2.5,

we present the tests of stationary, and principally introduced about the unit root test.
Obijective of the chapter
At the end of the chapter you are expected to:

e Define the meaning and nature of time series data

e Differentiate between stationary and non-stationary data.

e ldentify trend stationary stochastic process (TSP) and difference stationary
stochastic process (DSP).

e Be able to transform TSP and DSP in to stationary

e Understand the properties of linear combination of stationary and non-stationary

stochastic process.
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e Perform tests of stationary using unit root test
. What is time series data?

What do you know about time series data? Have you ever seen data ordered in time such as
GDP, exchange rate, price of coffee, price of petroleum, etc.? If yes, try to answer what does

these MeaN? =--=---smeeememm e oo meemmmemmmemeeeeeeeeeeeeeees

One of the basic points we make in econometrics is that the properties of the estimators and
their usefulness for point estimation and hypothesis testing depends on how the data behave.
For instance, in a linear regression model where errors are correlated with regressors, least
squares won't be consistent and consequently it should not be used for either estimation or
subsequent testing. In this chapter, we begin to study the properties of OLS for estimating

linear regression models using time series data.

While considering the standard regression model, we did not pay attention to the timing of the
explanatory variable(s) on the dependent variable. The standard linear regression implies that
change in one of the explanatory variables causes a change in the dependent variable during
the same time period and during that period alone. But in economics, such specification is
scarcely found. In economic phenomenon, generally, a cause often produces its effect only
after a lapse of time; this lapse of time (between cause and its effect) is called a lag.
Therefore, realistic formulations of economic relations often require the insertion of lapped

values of the explanatory or insertion of lagged dependent variables.

2.1. The nature of Time Series Data

More often than not, economists study time series data. For example, economists might study
import-export time trends in Ethiopian GDP, consumption, investment, unemployment,

inflation, interest rates and so on. Time series data are often the only window we have into
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important economic processes. Many data are collected or analyzed only at the national level.

Unfortunately, time series data hold their own challenges.

Trends: persistent upward or downward movements of variables over time. It can be very
difficult to disentangle trends over time. Trends can threaten the consistency and asymptotic
normality of OLS. Many macroeconomic variables have long-term trends: Real GDP per

capita, real consumption per capita, Real investment per capita, Inflation (the CPI).
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Figure 2.1: GDP, Consumption, Investment, and the consumer price index (CPI), 1948-1998

When we talk about trends, there are two common types of trends:
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Deterministic Trends: E(y:) — E(y+1) = a. The trending variable changes by a constant amount

each period

Stochastic Trends: E(y;) — E(y+1) = b + vi. The trending variable changes by a random
amount each period ().

We will discuss these two trends in detail on the coming sections.

An obvious characteristic of time series data that distinguishes them from cross-sectional data
is temporal ordering. A time series y; is a process observed in sequence over time, =1, ..., T.
To indicate the dependence on time, we adopt new notation, and use the subscript t to denote
the individual observation, and T to denote the number of observations. Because of the
sequential nature of time series, we expect that y; and y:.1 to be not independent. So, classical

assumptions are not valid.

For analyzing time series data, we must recognize that the past can affect the future, but not
vice versa. To emphasize the proper ordering of time series data, Table 2.1 gives a partial
listing of the data on U.S. inflation and unemployment rates from various editions of the

Economic Report of the President.

Year Inflation Unemployment
1998 1.6 4.5
1999 2.2 4.2
2000 3.4 4.0
2001 2.8 4.7
2002 1.6 5.8
2003 2.3 6.0

Table 2.1: U.S. Inflation and Unemployment Rates, 1998 - 2003

Another difference between cross-sectional and time series data is more subtle. In

Econometrics I, we studied statistical properties of the OLS estimators based on the notion
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that samples were randomly drawn from the appropriate population. Understanding why
cross-sectional data should be viewed as random outcomes is fairly straightforward: a
different sample, drawn from the population, will generally yield different values of the
independent and dependent variables (such as education, experience, wage, and so on).
Therefore, the OLS estimates computed from different random samples will generally differ,

and this is why we consider the OLS estimators to be random variables.

How should we think about randomness in time series data? Certainly, economic time series
satisfy the intuitive requirements for being outcomes of random variables. For example, today
we do not know what the Real Estate Industrial Average will be at the close of the next
trading day. We do not know what the annual growth in output will be in Ethiopia during the
coming year. Since the outcomes of these variables are not foreknown, they should clearly be

viewed as random variables.

Formally, a sequence of random variables indexed by time is called a stochastic Process or a
time series process. (“Stochastic” is a synonym for random.) A random or stochastic process
is a collection of random variables ordered in time. When we collect a time series data set, we

obtain one possible outcome, or realization, of the stochastic process.

We can only see a single realization, because we cannot go back in time and start the process
all over again. (This is analogous to cross-sectional analysis where we can collect only one
random sample.) However, if certain conditions in history had been different, we would
generally obtain a different realization for the stochastic process, and this is why we think of
time series data as the outcome of random variables. The set of all possible realizations of a
time series process plays the role of the population in cross-sectional analysis. The sample
size for a time series data set is the number of time periods over which we observe the

variables of interest.
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2.2. Stationary and non-stationary stochastic Processes

2.2.1. Stationary Stochastic Processes

A type of stochastic process that has received a great deal of attention and scrutiny by time
series analysts is the so-called stationary stochastic process. Broadly speaking, a stochastic
process is said to be stationary if its mean and variance are constant over time and the value of
the covariance between the two time periods depends only on the distance or gap or lag

between the two time periods and not the actual time at which the covariance is computed.

In the time series literature, such a stochastic process is known as a weakly stationary, or
covariance stationary, or second-order stationary, stochastic process. To explain weak

stationarity, let Y;be a stochastic time series with these properties:

Mean: E(Y)=u (2.2)
Variance: var (Yy) = E(Y; — n)* = 6° (2.2)
Covariance: y=E[(Yt — 1) Yk — )] (2.3)

where y, the covariance (or autocovariance) at lag k, is the covariance between the values of
Yiand Yy, that is, between two Y values k periods apart. If k = 0, we obtain y,, which is
simply the variance of Y (= ¢®); if k = 1, 31 is the covariance between two adjacent values of Y.

If a time series is stationary, its mean, variance, and autocovariance (at various lags) remain
the same no matter at what point we measure them; that is, they are time invariant. Such a
time series will tend to return to its mean (called mean reversion) and fluctuations around

this mean (measured by its variance) will have a broadly constant amplitude.

If a time series is not stationary in the sense just defined, it is called a non-stationary time
series (keep in mind we are talking only about weak stationarity). In other words, a non-

stationary time series will have a time varying mean or a time-varying variance or both.

Why are stationary time series so important? Because if a time series is non-stationary, we
can study its behavior only for the time period under consideration. Each set of time series

data will therefore be for a particular episode. As a consequence, it is not possible to
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generalize it to other time periods. Therefore, for the purpose of forecasting, such (non-

stationary) time series may be of little practical value.

A stationary time-series' statistical properties like mean & variance will be constant over time.

They can (and will) move around but revert to the mean over time.

For example, Price to Earning ratio of a stock market index, say The Standard & Poor's 500
(often abbreviated as S&P 500 which is an American stock market index) is likely to be

stationary (see figure 2.2).

FIGURE 2.2: S&P 500 P/E Ratio
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2.2.2. Finite Sample Properties of Ordinary Least Squares Estimators

In analysing time series data, we need to alter some of our assumptions in the standard OLS
regression to take into account the fact that we no longer have the usual random sample of

individual items.
I. Linear in parameters: the stochastic process X, X, ..., X, Yi: follows the linear model

Vi = o + PiXu T foXet ...+ fn X + Ut
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where t=1, 2, ..., n; and n=the number of observations (number of time periods)
Il. Zero conditional mean: for each t, the expected value of the error term (u;), given the
explanatory variables for all time periods, is zero.
E(ut/ Xi) = E(Ut /X1, Xi2, ...,.xt) = 0; where t=1, 2, ..., n
This assumption implies that the error term at time t is uncorrelated with each
explanatory variable in every time period. If u; is independent of x’s and E(u;) = 0, this

assumption automatically holds.

1. No Perfect collinearity: like in cross-sectional regression, in the sample (in the
underlying stochastic process), no independent variable is a perfect linear combination
of another independent variable.

Theorem 1: under assumptions I, I, Ill, in other words, if these three assumptions are
satisfied, the Ordinary Least Squares Estimators (OLSEs) are unbiased: i.e. E(8;) = i ; for all
i=0,1, ..., k

IV. Homoscedasticity: conditional on x s, the variance of u; is the same for all t.
Var(u; /x)= Var(u) = o° ; where t=1, 2, ..., n
If this does not hold true, the errors are heteroskedastic.
V. No serial correlation: conditional on x’s, the errors in two time periods are uncorrelated.
Corr(uws /X) = Corr(us) = 0, for all t £ s
Gauss-Markov Theorem: given the asumptions | through V, the OLSEs are BLUE.
Hypothesis Testing

In order to use the usual OLS standard errors in hypothesis testing, t-statistics and F-statistics,

we need the normality assumption.

VI. Normality of the error term: the error u; is independently and identically distributed as

normal with is zero mean and constant variance ().

uy = IDN(0, 6°)
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When assumptions | through VI hold true, everything that applies to estimation and inference
for cross-sectional regression applies directly to time series regressions. t-statistic tests the
statistical significance of individual explanatory variables; whereas F-statistic tests joint

significance.

2.2.3. Non-stationary Stochastic Processes

A non-stationary time series’ statistical properties like mean, variance etc will not be
constant over time An example of a non-stationary time series is a series with a trend -
something that grows over time, for instance. The sample mean and variance of such a series

will grow as you increase the size of the sample.

Many economic and financial variables are non-stationary. Nominal GDP is one such. Below

(in figure 2.3) is UK's GDP over the years. There is a trend as you can see.

i ==

FIGURE 2.3: Annual GDP, in billion pounds
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Although our interest is in stationary time series, one often encounters non-stationary time
series, the classic example being the random walk model (RWM). It is often said that asset
prices, such as stock prices or exchange rates, follow a random walk; that is, they are non-
stationary. We distinguish two types of random walks: (1) random walk without drift (i.e., no

constant or intercept term) and (2) random walk with drift (i.e., a constant term is present).

Random Walk without Drift: Suppose u; is a white noise error term with mean 0 and

variance ¢°. Then the series Y, is said to be a random walk if
Yi= Y+ U

In the above random walk model, the value of Y at time t is equal to its value at time (t — 1)
plus a random shock. We can think of random walk without a drift as a regression of Y at time

t on its value lagged one period.
Now from Y; = Y1 + u;, we can write
Yi=Yo+ Up
Yo=Y +Uuy=Yo+ U +Up
Ys=Y,+U3=Yo+ U +Uy+ U3
In general, if the process started at some time 0 with a value of Y, we have
Yi=Yo+ X w
E(Y) = E(Yo + X wy)
= E(Yo) + E(Xwy)
=Yo, sinceEQuy) =0
When you calculate the variance, you will find that
Var (Yy) = E(Y: — E(Y))?

= E(Yo + X ur— Yo)?
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=EQw)’
=E(Up + Uy + Ug + ... + 1)
= E[(Uy + Us + Uz + ... +u)(Up + Up+ U + ... + U]
= E[(U1)® + (U2)* + (U3)® + ... + (ux)* + (Uglp) + (UzUz) + (UgUz) +... +( uill))
= E(uy)’ + E(Up)* + E(us)* +...+ E(uy)” + E(X(wiuy))
=0’ +0° + 0 +..+ o since E(N(uily) = 0 for all i #
=3t _ 0,2
2

= {0

As the preceding expression shows, the mean of Y is equal to its initial or starting value,
which is constant, but as t increases, its variance increases indefinitely, thus violating a
condition of stationarity. In short, the RWM without drift is a non-stationary stochastic

process. In practice Yy is often set at zero, in which case E(Y;) = 0.

An interesting feature of RWM is the persistence of random shocks (i.e., random errors). Y is
the sum of initial Y, plus the sum of random shocks. As a result, the impact of a particular
shock does not vanish. For example, if u, = 2 rather than u, = 0, then all Y ’s from Y, onward
will be 2 units higher and the effect of this shock never dies out. That is why random walk is

said to have an infinite memory.

If we take the first difference of a random walk without a drift, we get

(Yt - Yt—l) = AYt
= (Yt+ Ut) - Yt
= U;

where 4 is the first difference operator. It is easy to show that, while Y, is non-stationary, its
first difference is stationary. In other words, the first differences of a random walk time series

are stationary.
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Random Walk with Drift: Let us modify the random walk without a drift a little bit as

follows:
Ye=a+ Y+ U

where « is known as the drift parameter. The name drift comes from the fact that if we write

the preceding equation as
Yi— Y1 =AY = o + w

It shows that Y; drifts upward or downward, depending on a being positive or negative.
Following the procedure discussed for random walk without drift, it can be shown that for the
random walk with drift model:

Yi=a+ Yy+u;
Yo=Yi+Uy=a+a+ Y+ U+ U
Y=Y, tUzs=a+a+ta+ Yyg+u+U,+ Uz
Yi=t-a+ Yo+ D uy
E(Y) = E(t-a+ Yo+ X w)
=Yoo+t -a
And the variance will be:
Var (Yy) = E(Y: — E(Y))?
= E(0 +Yo + Y ug— (ta +Y))?
=t02

As you can see, for random walk model (RWM) with a drift, the mean as well as the variance
increases over time. Again it violates the conditions of (weak) stationarity. In short, RWM,
with or without drift, is a non-stationary stochastic process. Figure 2.4 may be an illustration
of RWM with and without a drift. In the graph, RWM with a drift is slightly above the RWM
without a drift which shows the drift is positive.
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Figure 2.4: Random Walk Models

Deterministic trend: if the stochastic trend is expressed as:

Yt = fo + St + U

This is called a Trend Stationary Process (TSP).

E(y) = E(Bo + fat + Uy)

= E(Bo) + E(Brt) + E(uy)

= fo + pit

Although the mean of y; is not constant, its variance, indeed, is.

Var(yy) = E(y; - w)?* =

= E[(Bo + it + u) —( fo + f1D)]° = E(u)* = o
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Once the values of Sy & 1 are known, the mean can be forecast perfectly since u = o + pit.
Therefore, if we subtract the mean of y; from y;, the resulting series will be stationary. That is

why, it is called trend stationary. This procedure of removing the trend is called detrending.

2.3. Trend Stationary and Difference Stationary Stochastic Processes

Non-stationary data, as a rule, are unpredictable and cannot be modeled or forecasted. The
results obtained by using non-stationary time series may be spurious in that they may indicate
a relationship between two variables where one does not exist. In order to receive consistent,
reliable results, the non-stationary data needs to be somehow transformed into stationary data.
In contrast to the non-stationary process that has a variable variance and a mean that does not
remain near, or returns to a long-run mean over time, the stationary process reverts around a

constant long-term mean and has a constant variance independent of time.

The stationary stochastic process is a building block of many econometric time series models.
Many observed time series, however, have empirical features that are inconsistent with the
assumptions of stationarity. For example, the following plot shows quarterly U.S. GDP
measured from 1947 to 2005. There is a very obvious upward trend in this series that one
should incorporate into any model for the process.

FIGURE 2.5: QUARTERLY U.S. GDP,
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Before we get to the point of transformation for the non-stationary financial time series data,
we should distinguish between the different types of the non-stationary processes discussed
above. This will provide us with a better understanding of the processes and allow us to apply
the correct transformation. A trending mean is a common violation of stationarity. Examples
of non-stationary processes are stochastic trends being either random walk with or without a
drift (a slow steady change) and deterministic trends (trends that are constant, positive or

negative, independent of time for the whole life of the series).

e Trend stationary: The mean trend is deterministic. Once the trend is estimated and
removed from the data, the residual series is a stationary stochastic process.

« Difference stationary: The mean trend is stochastic. Differencing the series d times

yields a stationary stochastic process.

The distinction between a deterministic and stochastic trend has important implications for the

long-term behavior of a process:

e Time series with a deterministic trend always revert to the trend in the long run (the

effects of shocks are eventually eliminated). Forecast intervals have constant width.

e Time series with a stochastic trend never recover from shocks to the system (the

effects of shocks are permanent). Forecast intervals grow over time.
Unit root tests are a tool for assessing the presence of a stochastic trend in an observed series.

The distinction between stationary and non-stationary stochastic processes (or time series) has
a crucial bearing on whether the trend is deterministic or stochastic. Broadly speaking, if the
trend in a time series is completely predictable and not variable, we call it a deterministic

trend, whereas if it is not predictable, we call it a stochastic trend.

2.3.1. Difference Stationary

A random walk with or without a drift can be transformed to a stationary process by
differencing (subtracting Y:.; from Y taking the difference Y - Y1) correspondingly to Y; - Y1
=&o0r Yi- Y1 = a + & and then the process becomes difference-stationary. The disadvantage
of differencing is that the process loses one observation each time the difference is taken.
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FIGURE 2.6: Differencing
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2.3.2. Trend Stationary

A non-stationary process with a deterministic trend becomes stationary after removing the
trend, or detrending. For example, Y = a + B + U is transformed into a stationary process by
subtracting the trend S Y - St = a + ug, as shown in the Figure below. No observation is lost

when detrending is used to transform a non-stationary process to a stationary one.
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FIGURE 2.7: Detrending
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2.4. Integrated Stochastic Process

Time series that can be made stationary by differencing is called integrated stochastic process.
Recall that the RWM without a drift is non-stationary but its first difference is stationary.
Thus we call RWM without a drift integrated of order 1, denoted as y; ~ | (1).

Similarly, if a time series has to be differenced twice to make it stationary, such a time series
is called integrated of order 2, denoted as y; ~ | (2). In general, if a non-stationary time series
has to be differenced d times to make it stationary, that time series is said to be integrated of
order d, y; ~ 1 (d).

If a time series y; is stationary from the start, it is called integrated of order O, y; ~ I (0). We
often use the terms ‘stationary time series’ and ‘time series integrated of order zero’ 10 say
the same thing.

2.4.1. Properties of integrated series

Let X;, Vi, & z; be three time series:
a. Ifx.~1(0)andy;~ I(1), then z; = (x; + yy) is 1(2).

The sum of stationary and non-stationary time series is non-stationary.

P//fpmffﬂ/ bg Teklemarian T 53



Econometrics 11, Chapter 3 Introduction to Basic regression Analysis with Time Series Data

b. If x;~I(d), theny, = (a + bx;) ~ I(d); where a and b are constants.
The linear combination of 1(d) series is also I(d).
c. Ifx;~1(dy) and y; ~ I(d,), then z; = (ax; + by;) ~ 1(d1), where d; > ds.
d. If x;~1(d) and y; ~ I(d), then z; = (ax; + byy ~ I(d’), where d* = d, but sometimes d* < d.

2.5. Tests of Stationarity: The Unit Root Test

Recall that stationary time series is what we most care about mainly because non-stationary
time series gives spurious results. So the question is ‘how do we know whether a given time
series is stationary or not?” To find out the stationarity of a time series, it is always important
and advisable to plot the time series under study graphically as a starting point of more formal
tests of stationarity. There are several tests of stationarity. But we will focus on a test which
has become popular in recent past, which is the unit root test.

2.5.1. The Unit Root Test
The starting point to unit root test is the following autoregressive process.
Yt = pye1 + U

When p=1, we have a unit root, and thereby a RWM without a drift. The general essence
behind the unit root test of stationarity is, therefore, to find out if the estimated rho(p) is
statistically equal to one. In principle, we can run this regression (y; = pyw1 + U;) and see if
p=1, but we cannot estimate model regressing the series on its lagged value to find out if the
estimated p=1/ because in the presence of a unit root, the t-statistic for rho(p) coefficient is

severely biased.
Therefore, we manipulate this equation (y; = pyt1 + Uy) as follows:
Yt — Y1 = pye1 — Y1 + Ut
Aye = (p-1)ye1 + Ug
If we let (p-1) = 6, then

Ayt = Oyr1 + Uy
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Now it is a matter of testing if o is zero or less than zero.
o If 0=0, p-1=0 =» p = I, implying a unit root (non-stationary)
o <0, p-1<0=>» p < I, implying stationary
e we exclude a situation 0 > 0, p>1

But the problem is that we cannot rely on the usual t-test on the significance of §. It is
because the null hypothesis is 6=0 (i.e. p=1), and the t-value of the estimated coefficient of y;.

1 does not follow the t-distribution. The alternative is the Dickey-Fuller (DF) test.

Dicky and Fuller have shown that under the null hypothesis that =0, the standard t-value of
the coefficient of y; follows 7" (tau) statistic. These authors have computed the critical values
of the T-statistics. In principle, three specifications can be tried, depending on whether or not

the series show a trend.
1. Ayt = Oyr1 + U =2 random walk (no drift, no trend).......................... eq. 1
2. Ayt = fo + Oyr1 + Uy =2 random walk (with drift, no trend) ................ eq. 2
3. Ayt = fo + fat + dyr1 + U =2 random walk (with drift, with trend)....... eg. 3

Note that for each case, Ho: =0 (i.e. there is a unit root, and the series is non-stationary or it
has a stochastic trend) against Hy- 6<0 (i.e. there is no unit root and the series is stationary,

possibly around a deterministic trend).

If the null hypothesis is rejected, it means that y; is a stationary time series with zero mean in
the case of eq. 1; that y; is stationary with a nonzero mean [= 1/ (I — p)] in the case of eq. 2;

and that y; is stationary around a deterministic trend in eq. 3.

It is extremely important to note that the critical values of the tau test to test the hypothesis
that 0 = 0, are different for each of the preceding three specifications of the DF test. Moreover,
if, say, specification in eq. 2 is correct, but we estimate eq. 1, we will be committing a
specification error. The same is true if we estimate eq. 3 rather than the true eq. 2. Of course,
there is no way of knowing which specification is correct to begin with. Some trial and error

is inevitable, data mining, nonetheless. The actual estimation procedure is as follows:
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Estimate eq. 1, or eq. 2, or eq. 2 by OLS; divide the estimated coefficient of y;.; in each case
by its standard error to compute the (7) tau statistic; and refer to the DF tables (or any

statistical package).
STATA Commands for DF-test
1. dfullery, noconstant regress
2. dfullery, regress
3. dfullery, trend regress
The results report a Mackinnon p-value.
> If the p-value is less than the significance level, reject the null hypothesis (6=0).
> If the p-value is greater than the significance level, there is a unit root.
Or alternatively, check the tau-statistic of the lagged y:.; or its coefficient.

» If |computed T-statistic| > |critical T-value|, reject the null, (6=0), hypothesis which
implies the time series is stationary

> If the reverse is true, do not reject the null hypothesis which implies the time series is

non-stationary.

Critical/ table value of T-statistic in the three cases

1% 5% 10%
1. Ayt = oy + Uy -2.59 -1.94 -1.62
2. Ay¢= Po+ oy + U -3.51 -2.89 -2.58
3. dyi= Po+ fit + oy + U -4.07 -3.46 -3.16
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Example: the DF-test results of time series variable, vy, is given as follows.

(-6.03)

(0.09) (0.97)
A= 27 = 0.6Yis + 2.317t e ooece e EqL 6

(15.03) (-4.78)  (0.876)

Our primary interest here is in the 7 value of the y.; coefficient. The critical, as given above,

1 percent, 5 percent, and 10 percent 7 values for model (Eq. 4) are —2.59, —1.94, and —1.62,

respectively; and are —3.51, —2.89, and —2.58 for model (Eq. 5), respectively; and —4.07,
—3.46, and —3.16 for model (Eq. 6), respectively.

As noted before, these critical values are different for the three models. Before we examine
the results, we have to decide which of the three models may be appropriate. We should rule
out model (Eq. 5) because the coefficient of y..1, which is equal to ¢ is positive. Because ¢ = (p
— 1), a positive ¢ would imply that p > 1. Although it is a theoretical possibility, we rule this
case out because in this case the time series y would be explosive. More technically, the so-
called stability condition requires that |p| < 1.

That leaves us with models (Eg. 4) and (Eg. 6). In both cases the estimated o coefficient is
negative, implying that the estimated p is less than 1. For these two models, the estimated p
values are 0.5 (1 — 0.5) and 0.4 (1 — 0.6), respectively. The only question now is if these
values are statistically significantly below 1 for us to declare that the y time series is

stationary.

For model (Eq. 4) the estimated 7 value is —6.03, which in absolute value is above even the 1

percent critical value of —2.59. Since, in absolute terms, the former is larger than the latter,

our conclusion is that the y time series is stationary. The story is the same for model (Eg. 6).

The computed 7 value of —4.78 is greater than even the 1 percent critical z value of —4.07 in
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absolute terms. Therefore, on the basis of the Dickey—Fuller test, the conclusion is that the

given y time series does not contain a unit root.

2.6. Co-integration and Error Correction Mechanism
The discussion of spurious regression in the previous section certainly makes one wary of

using the levels of I(1) variables in regression analysis. In earlier chapters, we suggested that
I(1) variables should be differenced before they are used in linear regression models, whether
they are estimated by OLS or instrumental variables. This is certainly a safe course to follow.
Unfortunately, always differencing 1(1) variables limits the scope of the questions that we can

answer.

There is a unique case where a regression of a non-stationary series on another non-stationary
series does not result in spurious regression. Recall one of the properties of integrated
stochastic processes in section 2.4; that if x; ~ 1(d) andy; ~ 1(d), then z; = (ax; + byy ~ I(d’),
where d’= d, but sometimes d’< d. In other words, if two non-stationary stochastic processes
are integrated of order one, the linear combination of the two stochastic processes can produce
stationary stochastic process. This is the situation of cointegration.

If two time series have stochastic trends (i.e. they are non-stationary), a regression of one on
the other may cancel out the stochastic trends, which may suggest that there is a long-run, or
equilibrium, relationship between them even though individually the two series are non-

stationary.

Let us suppose that we consider an income (Y;) and consumption (C) two stochastic processes.
Subjecting these time series individually to unit root analysis, suppose that they both are 1(1);
that is, they contain a unit root. Suppose, then, that we regress C; on Y; as follows:

Ct:a1+062Yt+Ut ........... (1)

Let us rewrite this model as:

Suppose we now subject u;to unit root analysis and find that it is stationary; that is, it is 1(0).
This is an interesting situation, for although C;and Y:are individually I(1), that is, they have
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stochastic trends, their linear combination equation (2) is 1(0). So to speak, the linear
combination cancels out the stochastic trends in the two series. If you take consumption and

income as two I(1) variables, savings defined as (income — consumption) could be 1(0).

As a result, a regression of consumption on income as in equation (1) would be meaningful
(i.e., not spurious). In this case, we say that the two variables are cointegrated. Economically
speaking, two variables will be cointegrated if they have a long-term, or equilibrium,

relationship between them.

In short, provided we check that the residuals from regressions like equation (1) are 1(0) or
stationary, the traditional regression methodology (including the t and F tests) that we have
considered extensively is applicable to data involving (non-stationary) time series. The
valuable contribution of the concepts of unit root, cointegration, etc. is to force us to find out
if the regression residuals are stationary. As Granger notes, “A test for cointegration can be

thought of as a pre-test to avoid ‘spurious regression’ situations.”

In the language of cointegration theory, a regression such as equation (1) is known as a
cointegrating regression and the slope parameter o, is known as the cointegrating
parameter. The concept of cointegration can be extended to a regression model containing k

regressors. In this case we will have k cointegrating parameters.

2.6.1. Test cointegration:
A. Engle Granger (EG) test

We already know how to apply the DF or ADF unit root tests. All we have to do is:

— estimate a regression like equation (1); C; = o1 + o2Y¢
— obtain the estimated residuals

— use the DF test to see whether or not #; has a unit root

There is one precaution to exercise, however. Since the estimated ; are based on the
estimated cointegrating parameter a,, the DF critical significance values are not quite
appropriate. Engle and Granger have calculated these values, which can be found in the
references. Therefore, the Dickey Fuller (DF) and Augumented Dickey Fuller (ADF) tests in
the present context are known as Engle-Granger (EG) and augmented Engle—-Granger
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(AEG) tests. However, several software packages now present these critical values along with

other outputs.

Let us illustrate these tests. We first regressed PCE on PDI and obtained the following

regression:

Ci=278.5 + 0.92Y;
t=(3.58) (12.8)

Since C; and Y; are individually non-stationary, there is the possibility that this regression is
spurious. But suppose that when we perform a unit root test on the residuals obtained from the

above regression result, we obtain the following results:

A= —0.312404
t=(—4.321)

The Engle—Granger 1 percent critical T value is —2.5899. Since the computed 7(= t) value is

much more negative than this, our conclusion is that the residuals from the regression of C; on
Y. are 1(0); that is, they are stationary. Hence, the above regression result of C; on Y; is a
cointegrating regression and this regression is not spurious, even though individually the two

variables are non-stationary.

One can call this cointegrating regression the static or long run consumption function and
interpret its parameters as long run parameters. Thus, 0.92 represents the long-run, or
equilibrium, Marginal Propensity to Consumer (MPC).

2.6.2. Error Correction Mechanism
We just showed that C; and Y; are cointegrated; that is, there is a long term, or equilibrium,

relationship between the two. Of course, in the short run, there may be disequilibrium.
Therefore, one can treat the error term in equation (2) as the “equilibrium error.” And we can
use this error term to tie the short-run behavior of C; to its long-run value. The error
correction mechanism (ECM) first used by Sargan (J. D. Sargan, “Wages and Prices in the
United Kingdom: A Study in Econometric Methodology,” In K. F. Wallis and D. F. Hendry,
eds., Quantitative Economics and Econometric Analysis, Basil Blackwell, Oxford, U.K.,

1984.) and later popularized by Engle and Granger corrects for disequilibrium. An important
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theorem, known as the Granger representation theorem, states that if two variables Y and X
are cointegrated, then the relationship between the two can be expressed as ECM. To see
what this means, let us revert to our consumption—income example. Now consider the

following model:
ACi=og + opAYi + azUpy + €. oo (3)

Where Aas usual denotes the first difference operator, e; is a random error term, and ug; = (Ciq
—o1 — 0Y4), that is, the one-period lagged value of the error from the cointegrating regression

of equation (1).

ECM equation (3) states that AC depends on 4Y and also on the equilibrium error term. If the
equilibrium error term (ut.1) is nonzero, then the model is out of equilibrium. Suppose AY is
zero and u4is positive. This means Ci is too high to be in equilibrium, that is, Ci4 is above
its equilibrium value of (a1 + a2Y4). Since az is expected to be negative, the term aguq IS
negative and, therefore, AC; will be negative to restore the equilibrium. That is, if C; is above

its equilibrium value, it will start falling in the next period to correct the equilibrium error;

hence the name error correction mechanism (ECM).

By the same token, if u.; is negative (i.e., C is below its equilibrium value), asuy1 will be
positive, which will cause 4C; to be positive, leading C; to rise in period t. Thus, the absolute
value of a3 decides how quickly the equilibrium is restored. In practice, we estimate uqy by it
= (Ce— a1 — 02Yy).

Returning to our illustrative example, the empirical counterpart of equation (3) is:

AC;=57.45 + 0.194Y; — 0.124i;,
t=(4.69) (6.12) (-3.59)

Statistically, the equilibrium error term is zero, suggesting that C adjusts to changes in Y in
the same time period. As the above result shows, short-run changes in Y have a positive
impact on short-run changes in C. One can interpret 0.19 as the short-run marginal propensity
to consume (MPC); the long-run MPC is given by the estimated (static) equilibrium relation

in the original OLS regression result as 0.92.
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o Check list of terms

Cointegration

Deterministic trend

Detrending

Difference stationary stochastic process
Drift

Engle Granger Test

Error correction mechanism
Granger representation theorem
Integrated stochastic process

Non stationary data

Random walk with drift

Random walk without drift
Stationary data

Stochastic process

Temporal ordering

Trend stationary stochastic process

Unit root test
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Chapter Three

Introduction to Simultaneous Equation models

In the previous sections, you have learned regressions involving single equation models. In
such models, the dependent variable is expressed as a function of one or more independent
variables. In this chapter, you are going learn about models involving two or more equations.

These models are known as simultaneous equation models.

The nature of simultaneous equation model is presented in section 3.1. In this section, you
will look at the endogenous variable and exogenous variable. Section 3.2 then presents the
simultaneity bias and the inconsistency of OLS estimation of simultaneous equations. In
section 3.3, you will see identification and estimation of structural equations in simultaneous
equation models. In this section you will know about two methods of identification: the order
condition for identification and the rank condition for identification.

Finally, in section 3.4, you will be familiar with methods of estimation of simultaneous
equations. These include, the Indirect Least Squares (ILS), Instrumental Variable (1) and

Two-Stage Least Squares (2SLS) estimation of structural equations.
Objective of the chapter
At the end of the chapter you are expected to:

e Know the meaning and nature of simultaneous equations,

e ldentify endogenous and exogenous variables of a simultaneous equation

e Understand what does it mean by simultaneity bias

e Know the problems of estimating simultaneous equation using ordinary least
squares method

e Understand what does it mean by structural equation of simultaneous equation

e Understand what does it mean by reduced form equation of simultaneous equation

e Determine identification of a simultaneous equation using order condition

e Determine identification of a simultaneous equation using rank condition

e Know how to estimate simultaneous equation using indirect least squares method
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e Know how to estimate simultaneous equation using instrumental variables method

e Know how to estimate simultaneous equation using two-stage least squares
method

e Know how to drive structural equation parameters from estimates of reduced form

equation.
What is simultaneous equation model?

Dear learner, what do you know about simultaneous equations from your linear algebra

lessons and from your high school math classes? Write what comes to your mind on the

following SPaces =---=-==s=smemmme oo mmmmmmemeeeeeeee

Hopefully, you answered that a simultaneous equation is an equation system which has more
than one equation and more than one variables or unknowns. Usually, the number of
equations is equals the number of variables. Otherwise, it would be difficult to find a unique
solution or may not be able to find a solution at all. Simultaneous equation models quite

resemble simultaneous equations you know before. Try to read and understand the following.

3.1. The Nature of Simultaneous Equation Models

All discussions we have made so far involve single dependent variable - called most of the
time Y - and one or more explanatory variables, usually called X’s. In such models the
emphasis was on estimating and/or predicting the average value of the dependent
variable(Y)conditional upon the fixed values of the explanatory variables (X’s). In such
models it is, thus, assumed that X’s cause/determine Y, or Y is caused/determined by X’s.
For example, if you are given two variables consumption (Y) and income (X), and asked
about the cause-effect relationship, you may reasonably respond that income determines

consumption or X causes Y.

In any regression modeling, generally an equation is considered to represent a relationship

describing a phenomenon. Many situations involve a set of relationships which explain the
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behavior of certain variables. For example, in analyzing the market conditions for a particular
commaodity, there can be a demand equation and supply equations which explain the price and
quantity of commodity exchanged in the market at market equilibrium. So there are two
equations to explain the whole phenomenon - one for demand and another for supply. In such
cases, it is not necessary that all the variables should appear in all the equations. So estimation
of parameters under this type of situation has those features that are not present when a model
involves only a single relationship. In particular, when a relationship is a part of a system,
then some explanatory variables are stochastic and are correlated with the disturbances. So the
basic assumption of a linear regression model that the explanatory variable and disturbance
are uncorrelated or explanatory variables are fixed is violated and consequently ordinary least

squares estimator becomes inconsistent.
Question: Can it always be the case that one variable causes the other? Obviously No!

We may believe for whatever reason that the dependent variable () is not only a function of
explanatory variables (X’s) but also all or some of the X’s, in turn, are function of the
dependent variable () itself. To identify such situation, we may reasonably use
counterfactual reasoning that there is two way relationship between two or more variables.
The existence of this two-way flow of influence between Y and the X’s makes the distinction
between dependent and independent variables a little dubious or doubtful. Therefore, to
understand the multi-flow of influence among the variables, we need to consider more than
one regression equations for each variable and this is what simultaneous equation models
(SEM) deal about.

Similar to the classification of variables as explanatory variable and study variable in linear
regression model, the variables in simultaneous equation models are classified as endogenous

variables and exogenous variables.

3.1.1. Endogenous variables (Jointly determined variables)

The variables which are explained by the functioning of system and values of which are
determined by the simultaneous interaction of the relations in the model are endogenous

variables or jointly determined variables.

Prepared by Gelagay Y. and Mulatu . 65



Econometrics 11, Chapter 3 Introduction to Simultaneous Equation Models

3.1.2. Exogenous variables (Predetermined variables)

The variables that contribute to provide explanations for the endogenous variables and values
of which are determined from outside the model are exogenous variables or predetermined

variables.

Exogenous variables help is explaining the variations in endogenous variables. It is customary
to include past values of endogenous variables in the predetermined group. Since exogenous
variables are predetermined, so they are independent of disturbance term in the model. They
satisfy those assumptions which explanatory variables satisfy in the usual regression model.
Exogenous variables influence then endogenous variables but are not themselves influenced
by them. One variable which is endogenous for one model can be exogenous variable for the

other model.

Note that: In linear regression model, the explanatory variables influence study
variable but not vice versa. So relationship is one sided.

The classification of variables as endogenous and exogenous is important because a necessary
condition for uniquely estimating all the parameters is that the number of endogenous
variables is equal to the number of independent equations in the system. Moreover, the main
distinction of predetermined variable in estimation of parameters is that they are uncorrelated

with disturbance term in the equations in which they appear.

In general simultaneous equation models have the following form:

Yi =y + alXi + azzli + Ui} (3 1)

Xi=PBo+ B+ BaZy + &
Where,Z,; is a variable which affects Y; but not X; and the variable Z,; affects only X; but not

Y;. u; and g; are the stochastic disturbance terms. We will discuss these in more detail later.

Look at the first line of equation (3.1) that Y; is a function of X;and Z;;. On the other hand, in
the second equation,X; -which was serving as an independent variable in the first equation-
becomes a function of Y;-which was treated as a dependent variable in the first equation- and
Z,;. So, we can’t identify whether the variables Y; and X; are dependent or independent in this
SEM. Can we?
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A model constitutes a system of simultaneous equations if all the relationships involved are
needed for determining the value of at least one of the endogenous variables included in the
model. This implies that at least one of the relationships includes more them one endogenous

variable.

Since Z;; and Z,; are observable, they are called observed shifters in the SEM. On the other
hand u; and ¢; are not observed but affect the two equations respectively and are, thus, called

unobserved shifters ipso facto.
Several important features can be observed from equation (3.1).

v One, if the equations are derived from economic theory and have causal interpretation,
they are called structural or behavioral equations.

v" Two, given the values of Z,;, Z,;, u;, &;, these two equations determine Y; and X;. For
this reason,Y; and X; are known as endogenous variables in the SEM.

v' Three, because Z;; and Z,; are determined outside the model we view them as
exogenous variables. From a statistical standpoint, the key assumption concerning Z,;
and Z,; is that they are both uncorrelated with error terms.

v Four, without including Zy; and Z,; in the model, there is no way to identify® each

equation.
Example 3.1:

If you want to specify an econometric model containing the variables asset and income, then
which one will you make the dependent and which one will you make the independent

variable?
To answer this, ask yourself: Does asset determine income? Or, does income determine asset?

Here, if you think intelligently, you may reason out that a person who receives higher income
will have higher asset. Also, large asset can be source of higher income. If so,you will answer
that we cannot distinguish which one is the dependent variable and which one is the

independent variable.

? Refer to section 3.3.1 to make yourself clear with the concept of identification.
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The model for the above example may, therefore, have the following type of appearance:

Asset = ay + ajIncome + a,Z,; + ui}

Income = By + BiAsset + By Z,; + & e e e 2 (3.2)

Where Z;;is a variable which affects asset but not income so that income model can be
identified and the variable Z,;affects only income but not asset so that asset model can be
identified.

Example 3.2:

From economic theory we know that quantity demanded is determined by price and other
factors that affect demand. Also, quantity supplied is determined by price and other factors

which affect supply. So, will finding equilibrium point require formulating SEM? Why?

Answer: (See equation (3.9))

3.2. Simultaneity bias (Inconsistency of OLS Estimators under SEM)

In a simultaneous equation model, if an explanatory variable is determined simultaneously
with the dependent variable, it is generally correlated with the error term and applying OLS
will result in biased and inconsistent estimates. That is, the least squares estimator of
parameters in a structural simultaneous equation is biased and inconsistent because of the
correlation between the random error and the endogenous variables on the right-hand side of

the equation.

Take once again equation (3.1) specified above. For simplicity, suppress/ignore the constant
term.

Yi = Qy + (XlXi + azzli + ul'}

Xi = Po+ B1Yi + P22y + & (33)

Equation (3.3) is a simultaneous equation model in which Y; and X; are endogenous variables,
and Z,; and Z,; are exogenous variables. By assumption (which emanates from reasoning)Z,;
and u; are uncorrelated and also Z,; and ¢; are uncorrelated. If we estimate, for example, the
first equation Y; = o, X; + a,Z;; + u; alone using OLS, the estimates for a; and a,will be

biased and inconsistent. This is because X; and u; are correlated which creates endogeniety
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problem (the most serious assumption of linear regression model). This can be shown

mathematically as follows.

Let’s solve for X; in terms of exogenous variables (Z;;and Z,;) and error term. To doso, plug

in the value of Y; from the first equation in to the second equation which becomes:

Xi = B1(ag + a1 X; + ayZy; + w;) + PrZy; + &

Xi — Pray X = Brag + BrazZy; + Pru; + PoZy + &
Xl(l - ﬁlal) = ﬁlao + ﬁlazzli + Blul + Bzzzi + gl y Where ﬁlal .‘,t 1 er are s are e (3.4‘)

Dividing both sides of the equation by (1 — S, a;), gives:

a a u; + ¢
X; = htg | P Zli+LZZi+L.........................(3.5)
1-pa; 1-pay 1-p1a4 1-p1ay
If we let,
_ Biag _ Biay _ B2 o Biui+e; . .
Ty = ha T e 2= T gar w; = T B then we will have:

Remember that Z,; and Z,; are assumed to be exogenous. Therefore, from equation (3.6) X;
and u; are correlated if w; and u; are correlated. But, we can see that w; is linear function of

u;and g;, so it is correlated with u;.Note that w; and u; will be correlated if

v' By # 0 even if u; and g; are uncorrelated, or
v' u; and g; are correlated even if §; = 0

Both cases meanX;is simultaneously determined with Y;.

In general, when a variable X; is correlated with u; because of simultaneity, we say that OLS
suffers from simultaneity bias. Obtaining the direction of the bias in the coefficients will

generally get more complicated as the explanatory variables in the model increase.

Equation (3.6), expresses X; in terms of the exogenous variables and the error terms. This is
called the reduced form equation for X;. A reduced-form equation is one that expresses an

endogenous variable solely in terms of the exogenous variables and the stochastic
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disturbances. The parameters, m,; and m,, are called reduced form parameters. These
parameters are nonlinear functions of the structural parameters, which appear in the

structural equation (3.3).

Since u; and ¢; are each uncorrelated with Z;; and Z,;, the reduced form error term(w;)is
also uncorrelated with Z,; and Z,;because it is a linear function of u; and ¢;. Therefore, we
can consistently estimate m,; and m,,by OLS, something that is used for two-stage least

squares (2SLS) estimation®.

3.3. ldentification and Estimation of Structural Equations in SEM

Earlier we have said that SEM, unlike linear regression model, cannot be estimated directly
using OLS technique for it will give us biased and inconsistent estimates. Rather there are
other estimation techniques-like Instrumental Variable (IV) estimation or two-stage least
squares estimation method ((2SLS). However, a SEM has to first pass the criteria called
identification which we promised to discuss right now under section 3.1. Hence, we will first
discuss the issue of identification condition under section (3.3.1) and will then proceed to

estimation under section (3.3.2).

3.3.1. ldentification of Structural Equation (Order and rank conditions)
(without proof)
By identification it is to mean whether numerical estimates of the parameters of a structural
equation can be obtained from the estimated reduced-form coefficients. Thus, when we say
that an equation is identified, it means we can estimate the parameters of a structural equation
from the estimated reduced-form coefficients. Identification is a concern of model
formulation, not estimation as the latter depends up on the empirical data and the form of the

model. Let’s elucidate this concept with the following example.
Consider the following SEM involving two-equation system.

Vi =ag+arYy + a7, + u} e (37)

Y, =Bo+ B1Y1 + P2z, + €

® Refer section 3.3.2 to know about 2SLS.
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Where,Y; andY, are endogenous variables (because they are correlated with the error terms),
and Z; andZ,are exogenous (because they’re assumed to be independent of, or uncorrelated

with, the error terms).

For the first equation to be identified, there should be at least one variable which is excluded
from the first equation- but included in the other equation - and is uncorrelated with the error
term of the first equation. This is known as exclusion restrictions. Therefore, sinceZ, is
excluded from the first equation, and since Z, is uncorrelated with the error term u-because it

is assumed to be exogenous-the first equation is identified.

Similarly, for the second equation to be identified there should be at least one variable which
is excluded from the second equation, and is uncorrelated with the error term (&)of this
equation. SinceZ; is excluded from the second equation, and sinceZ, is assumed to be
exogenous (uncorrelated with the error term, €) the second equation is identified.
Take another SEM which involves three-equation system.

Yl = ao + a1Y2 + a3Y3 + a4ZI +u

Yo =Bo+ B1Y1 + BoZy + P32y + ByZ3 + € cer e e e e e e e e e (3.8)

Y =vo+ 1Yo +VaZ1+v3Zy +VaZ3 +ysZy+v

Where, Y3, Y,, and Y; are endogenous variables, and Z,, Z,, Z;andZ, are exogenous

variables.a;, B;andy; are estimators of the three structural equations respectively.

It is generally difficult to show that an equation is identified in an SEM with more than two

equations, but it is easy to see when certain equations are not identified.

The first equation is identified (is at least promising) because three exogenous variables

Z,,ZzandZ, are excluded from this equation.
The second equation is identified (is at least promising). Why?

But, the third equation is not identified because no exogenous variables excluded from this
equation. That, is Z;, appears in the first equation,Z, and Z; appear in the second equation

and Z,appear in the third equation itself.
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Formally speaking, there are two rules/conditions which must be fulfilled for an equation to
be identified.

A. The order condition for identification

This condition is based on a counting rule of the exogenous and endogenous variables
included and excluded in the SEM. This condition states that an equation in any SEM satisfies
the order condition for identification if the number of excluded exogenous variables from the
equation is at least as large as the number of right-hand side endogenous variables in the

equation.
Now, identification condition for equation (3.8) can be answered based on order condition as:

Table 3.1: order condition for identification

Equation | No of endogenous | No of excluded | Identification condition
No variables exogenous variables

1% 2 (=Y, and Y3) 3 (= Zy,ZzandZ,) (3 > 2) over-identified
2" 1 1 (1 = 1)just identified
3" 1 0 (0 < 1)underidentified

Note from the above that in the first equation the number of excluded exogenous variables
(=3) is greater than the number of endogenous variables (=2). Such an equation is called over-
identified. In the second equation, the number of excluded exogenous variables (=1) is
exactly equal to the number of endogenous variables (=1). In this case, the equation is called
just-identified. In the third equation, the number of excluded exogenous variables (=0) is less
than the number of endogenous variables (=1) and the equation is called unidentified
equation. Under-identified equation means we can’t estimate the parameters of a structural

equation from the estimated reduced-form coefficients.
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Order condition is a necessary (but not sufficient) condition for identification. For example,
from equation (3.8), we have said that the second equation is identified because of the
presence of an excluded variableZ, from this equation. But, if ys = 0, it meansZ,is not
correlated withY;, Y, or Y;and will be eliminated from the model, so the second equation will
remain unidentified. This again illustrates that identification of an equation depends not only
on the presence of an excluded variable but also on the values of the parameters (which we
can never know for sure) in the other equations. The sufficient condition for identification is

called the rank condition which is discussed below.
B. The rank condition for identification

The rank condition states that in an SEM containing G equations any particular equation is
identified if and only if it is possible to construct at least one non-zero determinant of order
(G-1) from the coefficients of the variables excluded from that particular equation but
contained in the other equations of the model.

Remember from your linear algebra course that, the term rank refers to the rank of a matrix
and is given by the largest-order square matrix(contained in the given matrix) whose
determinant is nonzero. Alternatively, the rank of a matrix is the largest number of linearly

independent rows or columns of a matrix.

To understand the order and rank conditions, let’s introduce the following notations:
Let, M = number of endogenous variables in the model

m = number of endogenous variables in a given equation

K = number of exogenous variables in the model including the intercept

k = number of exogenous variables in a given equation

» Order Condition
v In a model of M simultaneous equations in order for an equation to be identified, it
must exclude at least M —1 variables (endogenous as well as exogenous) appearing
in the model. If it excludes exactly M — 1 variables, the equation is just identified.

If it excludes more than M—1 variables, it is over-identified.
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v In a model of M simultaneous equations, in order for an equation to be identified,
the number of exogenous variables excluded from the equation must not be less
than the number of endogenous variables included in that equation less 1, that is,

K-k>m-1
If K-k =m — 1, the equation is just identified, but if K — k > m — 1, it is over-
identified.
» Rank condition
v"In a model containing M equations in M endogenous variables, an equation is
identified if and only if at least one nonzero determinant of order (M — 1)(M — 1)
can be constructed from the coefficients of the variables (both endogenous and
predetermined) excluded from that particular equation but included in the other
equations of the model.
v In a model containing in simultaneous equations:
- If K- k>m — 1 and the rank of the A matrix is M — 1, the equation is over-
identified.
- If K= k=m — 1 and the rank of the matrix A is M — 1, the equation is
exactly identified.
- If K- k>m — 1 and the rank of the matrix A is less than M — 1, the
equation is under-identified.
- If K=k < m — 1, the structural equation is unidentified. The rank of the A
matrix in this case is bound to be less than M — 1. (Why?)
Steps of checking rank condition
Bring all items of each equation, except the error term, to the left of the equal sign
Put all the endogenous and exogenous variables in a row

Put the corresponding coefficients of each variable beneath each variable

N

Construct a matrix from excluded variables (both exogenous and endogenous) and
check for its rank

5. If we can form at more than one (M-1) by (M-1) matrix of non-zero determinant, the
matric is said to be over identified. If we can form at exactly one (M-1) by (M-1)

matrix of non-zero determinant, the matric is said to be just identified. If we can not
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form at least (M-1) by (M-1) matrix of non-zero determinant, the matric is said to be

under identified.
Hlustration

Given the following simultaneous equation model, check whether it is identified or not using
both rank and order conditions?

Yl = 0(0 + 0(1Y2 + a2Y3 + a3ZI +u

Y, =PBo+ Bi1Ys + 221 + B3Z, + ¢

Ys=vo+viYi+v2Z1+y3Z,+v

Y4 = 90 + 91Y1 + 92Y2 + 93Z3 + w

To check the order condition for identification, look at the following table

Table 3.2: order condition for identification

Equation | No of endogenous | No of  excluded | Identification condition
No variables exogenous variables

1% 2 (=Y, and Y3) 2 (= ZzandZ,) (3 > 2) exactly-identified
2" 1(=Ys) 1(= Z3) (1 = 1)just identified

3" 1(=Y,) 1(=Z3) (1 = 1)exactly-identified
4™ 2 (=Y, and Y5) 2 (= ZyandZ,) (3 > 2) just-identified

As it can be seen from the table, all equations are just identified.
Now, Let us recheck with the rank condition.
First, let’s bring all items, except error terms, to the left
Yl - ao - a1Y2 - a2Y3 - 0(3Z1 =Uu
Y, = Bo— B1Ys — B2Zy1 — f3Z, = ¢
Ys=vo—viY1 —v2Z1—v3Z, =v
Y4 - 80 - 91Y1 - 02Y2 - 03Z3 =
The second step is, put all the endogenous and exogenous variables in a row and put the

corresponding coefficients beneath each variable
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Table 3.3: Rank condition for identification

Eq. No 1 Y, Y, Ys Y, Z Z, Zs
1 —ag 1 —a, | —a, 0 —as 0 0
2" ~Bo | 0 1 | B | O | B | B | O
3 Yo | N 0 1 0 —V2 —V3 0
4™ —6, | -6, | -6, 0 1 0 0 —0;

Consider the first equation, which excludes variables Y4, Z,, and Z3 (this is represented by
zeros in the first row of table 3.3). For this equation to be identified, we must obtain at least
one nonzero determinant of order 3 x 3 from the coefficients of the variables excluded from
this equation but included in other equations. To obtain the determinant we first obtain the
relevant matrix of coefficients of variables Y4, Z,, and Z3 included in the other equations. In
the present case there is only one such matrix, call it A, defined as follows.

0 _ﬁ3 0
1 O _93
If we find the determinant of matrix A, it is equal to zero. This implies the rank of the matrix

is less than 3 and it is not identified. Therefore, although the order condition shows that the
SEM is identified, the rank condition shows that it is not.

As noted, the rank condition is both a necessary and sufficient condition for identification.

3.3.2. Indirect Least Squares (ILS), Instrumental Variable (1) and Two-
Stage Least Squares (2SLS) estimation of structural equations

Once we finished modeling SEM, the next task is estimation. Yet, estimation problem is
rather complex because there are a variety of estimation techniques with varying statistical

properties.
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In an SEM, two approaches may be adopted to estimate the structural equations, namely,
single-equation methods, also known as limited information methods, and system
methods, also known as full information methods.

In the single-equation methods, we estimate each equation in the system (of simultaneous
equations) individually, taking into account any restrictions placed on that equation (such as
exclusion of some variables) without worrying about the restrictions on the other equations in
the system, hence the name limited information methods.

In the system methods, on the other hand, we estimate all the equations in the model
simultaneously, taking due account of all restrictions on such equations by the omission or
absence of some variables (recall that for identification such restrictions are essential), hence

the name full information methods.

Although the systems method-such as the full information maximum likelihood (FIML)
method- may be good to preserve the spirit of simultaneous-equation models, in reality they

are not commonly used for different reasons. Some of these include:

i. High burden of the computation: for example, estimating 20 equations require
incorporating 151 coefficients for US economy in 1955.

ii. The systems methods, such as FIML, lead to solutions that are highly non-linear in the
parameters and are, therefore, often difficult to determine.

iii. If there is a specification error (say, a wrong functional form or exclusion of relevant
variables) in one or more equations of the system, that error is transmitted to the rest
of the system. As a result, the systems methods become very sensitive to specification

errors.

Due to the above problems, therefore, single-equation methods are often used in practice.
These include:

A. Ordinary least squares (OLS)
B. Indirect least squares (ILS)
C. Two-stage least squares (2SLS)
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A. Ordinary least squares (OLS):
OLS can be used for recursive, triangular, or causal models. Since this is out of the
course outline, we will not go for it; you can explore details from books you can have
access to.

B. Indirect least squares (ILS)

For a just or an exactly identified structural equation, the method of obtaining the estimates of
the structural coefficients from the OLS estimates of the reduced-form coefficients is known
as the method Indirect Least Squares(ILS), and the estimates obtained are known as the

indirect least squares estimates.
Steps in ILS

Step 1: Obtain the reduced-form equations; solve for the endogenous variable in each
equation in terms solely of the exogenous variables and the stochastic error term.

This gives the reduced-form equations.

Step 2: Apply OLS to the reduced-form equations individually. Since the explanatory
variables in these equations are predetermined/exogenous variables which are
uncorrelated with the stochastic disturbances, this operation is permissible and the
estimates obtained are consistent.

Step 3: Obtain estimates of the original structural coefficients from the estimated
reduced-form coefficients obtained in Step 2. If an equation is exactly identified,
there is a one-to-one correspondence between the structural and reduced-form

coefficients; that is, one can derive unique estimates of the former from the latter.
Example 3.3:

Q= ayg + a1 P + ayl; + ut}

Qt = BO + ﬁlpt + & T (39)

Where, Q; and P; are quantity and price which are endogenous,I; is income and is exogenous
in the first equation, u, is error term of the first equation and ¢, is error term of the second

equation. Then, given equation(3.9)
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i. Differentiate the demand function and the supply function?
ii. Determine the identification condition of equation system?

iii. Find the estimators of the structural equation using ILS?

Solution

i. The first equation is demand function (Why?). As a result, the second equation has to
be supply function.

ii. In the first equation, there is no excluded variable; hence the demand function is
under-identified. But, Income,I;, is excluded from the second equation; hence supply
function is just-identified.

iii. Since the second equation is just identified, we can apply ILS and solve for Q; and P,

in this equation as in the following.

At equilibrium Supply = Demand. Hence, substitute Q, from the first equation in to Q,

of the second equation.
a0+a1Pt+a21t+ut =ﬁ0+ﬁlpt+£t
a1 Py — B1Pr = Bo — g — ax 1y + & — Uy

Pi(ay — 1) = Bo — ag — azxly + & —u,  Where, a; # B, (Why?)

Bo — g —a; & — U
P, = + I + VRSPV € A° ) /)
‘ a,—p1 a;— P ‘ a; — By
Bo—o
ere, m, P (3.11)
_ &t~ ut
Ve = ai1—P1
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To estimate Q;, substitute the estimate of P.from equation (3.9b) in to either the demand or

supply function of equation (3.9):

Qr = Po+ B1Pr + &

Bo — @ —Qa E — U
0c=Fo+ 5 + I+ )+
‘ 0 ! a; — By a1—,81t a; — P ‘
Bo — —pLa; & — Uy
= Bo + ( ) + I + (—) +e
Fat b ay = f1 =By A ay — P ‘
Boay — BoP1 + B1Bo — Brag = —P1az B1&c — Brus + a1 & — P1&;
= + It +
a; — By a; — By a; — P
Simplifying this gives:
a, — P« —Ba a.& — Pu
0, b m B —h I + — Py e (313)
a; — Py a; — Py a; — By
Where, yo = 20078100 et e e (3015)
ai—pF1
Y. = ﬁ RPN ¢ 5 1)
_ ua—fiue
t ai—pf1

Look once again back to the structural equations (3.9). It consists of five structural
coefficients/parameters; namelya,, a;, a,, By, and ;. But, there are only four equations to
estimate those structural coefficients, namely, the four reduced-form coefficients

Ty, 1, YoaNdy; given by equations (3.11), (3.12), (3.15) and (3.16) respectively.

Since the number of coefficients in the structural equations (=5) is greater than the number of
coefficients in the reduced form equations (=4), unique solution of all the structural

coefficients is not possible.(Relate this from your linear algebra lessons).

Question: Why is that the number of parameters in the structural equation is greater than the

number of equations in the reduced form equation in this example?
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As aresult, only the parameters of the supply function can be identified as:

Remember from chapter of econometrics | that estimating equation (3.10) using OLS results:

i
#, = 21_92‘ OO PRI € 5 £ )
lt

Similarly, estimating equation (3.14) using OLS results:

. Xql
Lt
?0 = é —_— ?11_... W mEe s mEw EEE mEE R EEE E EEE wEs wEs EEw sEE EEs ® ws @ EEs EEE EE® EEE @ EEE E @ Eeu @ w (3.21)

Where, the lowercase letters, as usual, denote deviations from mean value, and Q, P and Iare

the sample mean values of Q and P and |I.

Substituting estimates of the reduced-form coefficients in to equation (3.17) gives the ILS
estimators of structural equation parameters for supply functions:

1 1

But, as far as the demand function is under-identified, there is no unique way of estimating

the parameters of, and remains under-identified.
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@ Self Test 1:

If estimation of equations (3.10) and (3.14) gives the following result: Source: (undisclosed)
P, = 72.3 + 0.00431,
Q. = 84.07 + 0.0021,

Assuming all estimators are statistically significant, find the ILS estimates of 3,, 3, for the

supply function in equation (3.9)?

Answer: B, = 51.058; = 0.456

So, the estimated ILS regression is: Q; = 51.05 + 0.456P,

C. Two-Stage Least Squares (2SLS)
If we have over-identified equation(s) in an SEM,

v" OLS will not be appropriate because the existence of endogenous variable(s) on the
right side of an equation will give biased and inconsistent estimated due to
endogeniety problem.(Refer to section 3.2)

v ILS estimation will not be appropriate because it will give more than one estimate for

a single coefficient, for example for 8, in equation (3.23 below).
Therefore, other estimation techniques have to be used such as 2SLS discussed as under.
Ilustration
Consider the following SEM:

Income = ay + a;Asset + a,Experience + a,Education + ui}

Asset = ﬁO + ﬁllncome + g e s e (323)

Where, experience and level of education (both measured in years) are assumed exogenous.
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Applying the order condition of identification, we can see that the income equation is under-

identified whereas the asset equation is over-identified.
If we can find a variable, Z, which satisfies the following conditions:

i.  highly correlated with the endogenous variable (income in this case)

ii. But, uncorrelated with error term (g; in this case)

Then, we can substitute Z in place of income in the second equation and estimate the asset
model using OLS directly. This means since Z is correlated with income, it can serve as a
“proxy” or “substitute” for income. Z is then known as instrumental variable (V) and the

estimation is called instrumental variable estimation.

But, sometimes we may find more than one exogenous variables (like Experience and
Educationin this example) which satisfy the above two conditions. In this case, which
variable shall we use as a proxy? The answer is, as far as these variables are uncorrelated with
the error term (s), any linear combination of these exogenous variables Experience and
Educationis also uncorrelated with the error term(s), and can be used as a valid instrumental
variable for income. That is, to find the best instrumental variable for income, we choose the
linear combination Experience and Education that is most highly correlated with income

using the following:
Income = my + miExperience + myEducation + v ... oot vt e e ien s e eeen w1 (3.24)
Where, E(v) = 0, Cov(Experience,v) = 0, Cov(Education,v) =0

This is the concept of two-stage least squares (2SLS) estimation. As the name 2SLS implies
estimation of SEM using 2SLS involves two stages. These are:

Stage 1: Estimate the endogenous variable using all exogenous variable of the SEM

To get rid of the likely correlation between endogenous variable(income) and the error
term,g;, we find the best linear combination among all the exogenous variables in the
whole system, not just that equation. The linear combination of Experience and

Education in equation (3.24), which we callIncome™ becomes:
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Income® = my + mExperience + myEducation ... ... ... . o cee o ... (3.25)

But, since we don’t know the exact value ofIncome™,we can only estimate, using OLS, by

regressing income on experience and education as:
Income = #ty + 7t Experience + iy EAUCALION ... cov. oo cevs cve e v evee v evn enn . (3.26)
Or,
INCOME = INCOME + D vvvs s e e eee e ee e eeeee e eesene ve s enes e enee e eee 2 (3.27)
Then, conduct a joint significance of variables for equation (3.26) using F-test.

If the variable are found jointly significant (not larger than 5%), then use the fitted values

of income, Income, as an IV. All the above tasks involve Stage-I.

Stage 2: Substitute the estimated value of the endogenous variable obtained from Stage-
1 and estimate the over-identified model of the SEM

Substitute equation (3.27) in the second equation of (3.23), and estimate the asset model

using OLS method yields:
Asset = Income + D + & = o + S1INcoOme + Wi. w..coeee ceerevreveeeeee e e v e (3.28)
Where, wi =¥ + ¢;

Equation (3.28) is very similar in appearance, with the second equation of (3.23) with the only
difference being that actual value of income is replaced by its estimated value, Income, using

exogenous variables .
Advantage of doing so:

v' The error term,g;,is correlated with income, but not Income.Why?
v' As a result, OLS estimation of on equation (3.28), will give unbiased and

consistent estimate unlike equation (3.23).
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Features of 2SLS

Vi.

It can be applied to an individual equation in the SEM without directly taking into account
any other equation(s) in the system. For this reason the method has been used extensively
in practice, for solving econometric models involving a large number of equations.

ILS provides multiple estimates of a parameter in the over identified equations, but 2SLS
provides only one.

It is easy to apply because all one needs to know is the total number of exogenous or
variables in the system, without knowing any other variables in the system.

It can also be applied to exactly identified equations and gives identical estimates with
ILS.

If the R? values in the reduced-form regressions (that is, Stage-1 regressions) are very high,
say, in excess of 0.8, the classical OLS estimates and 2SLS estimates will be very close.
Why?

In reporting the ILS regression, we did not state the standard errors of the estimated
coefficients. But we can do this for the 2SLS estimates because the structural coefficients
are directly estimated from the second-stage (OLS) regressions, though there may be some

modification (seewi = ¥ + &; under equation (3.28) above).
o Endogenous variable
Exogenous variable
Full information methods
Identification
Indirect least square
Instrumental variable
Observed shifters
Order condition

Rank condition
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Reduced form equation
Simultaneity bias
Simultaneous equation
Structural equation
Systems method

Two stage least squares

Unobserved shifters
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Chapter Four

Introduction to Panel Data Regression Models

Dear learner!, you have learned about three types of data in econometrics |. these are cross
sectional data, time series data and panel data. You have learned models involving time series
data and cross sectional data in the previous lessons. In this chapter will learn about models

involving panel data.

In section 4.1, you will learn about types of panel data and advantages of panel data. In this
section, you will look at the endogenous variable and exogenous variable. The second section
of the chapter covers estimation of panel data. Here, you will learn about the two techniques
of estimating panel data. These are the fixed-effects approach and the random-effects

approach.
Obijective of the chapter

At the end of the chapter you are expected to:

e Be familiar with the nature of panel data.

e Distinguish between panel data and pooled data.

e Understand the characteristics panel data.

e Know the advantages of using panel data over cross-sectional or time series data.

e Understand what does it mean by the fixed-effects approach of estimating panel data.

e ldentify the different possibilities/assumptions of fixed-effects approach

o Differentiate between the with-in estimator, between-estimator and over-all estimator.

e Understand what does it mean by the random-effects approach of estimating panel
data.

e Know how to estimate panel data using random-effects approach
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What is panel data?

Dear learner, what do you know about simultaneous equations from your lessons of

econometrics | and statistics courses? Write what comes to your mind on the following

SPaces  --------mmmmmmnee- oo

4.1. Introduction

So far, you have covered regression analysis using either cross sectional or time series data
alone. Although these two cases arise often in applications, cross-sectional data across time-a
situation where the data set has both cross sectional and time series dimensions-are being used

more and more often in empirical research.

We know that, multiple regression is a powerful tool for controlling for the effect of variables
on which we have data. If data is not available for some of the variables, however, they
cannot be included in the regression and the OLS estimators of the regression coefficients

could have omitted variables bias.

This chapter describes a method for controlling for some types of omitted variables without
actually observing them. This method requires a specific type of data, called panel data, in
which each observational unit, or entity, is observed at two or more time periods. By studying
changes in the dependent variable over time, it is possible to eliminate the effect of omitted

variables that differ across entities but are constant over time.

Basically sampling cross sectional data across time involves two kinds of data sets: Panel data
and pooled data. Panel data (also known as longitudinal or cross-sectional time-series data)
is a dataset in which the behavior of entities are observed across time. These entities could be

states, companies, individuals, countries, etc.

The structure of panel dataset looks like the following.
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country year Y X1 X2 X3
1 2000 6.0 78 5.8 13
1 2001 4.6 0.6 Ta 7.8
1 2002 9.4 2.1 24 1.1
2 2000 9.1 1.3 6.7 4.1
2 2001 8.3 09 6.6 5.0
2 2002 0.5 9.8 04 7.2
3 2000 91 0.2 26 6.4
3 2001 458 59 32 6.4
3 2002 9.1 5.2 69 21

Panel data allows you to control for variables you cannot observe or measure like cultural
factors or difference in business practices across companies; or variables that change over
time but not across entities (i.e. national policies, federal regulations, international agreements,

etc.). That is, it accounts for individual heterogeneity.

4.1.1. Pooled data

This involves sampling randomly from a large population at different points in time. Samples
drawn in different times may not be the same. The advantage here is samples consist of
independently sampled observations. This was also a key aspect in our analysis of cross-
sectional data: among other things, it rules out correlation in the error terms across different
observations. Pooling is helpful only if the relationship between the dependent variable and at

least some of the independent variables remain constant over time.
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4.1.2. Panel data/Longitudinal data

In panel data the same cross-sectional units are surveyed over time. The problem here is if we
lose any observation for whatever reason (e.g. because of death), we can no longer use panel
data.

Despite the existence of some variations, both pooled data and panel data essentially connote
movement over time of cross-sectional units. We will, therefore, use the term panel data in a

generic sense to include one or more of these terms.
Panel Data Model Examples

» Labor economics: effect of education on income, with data across time and
individuals.

» Economics: effects of income on savings, with data across years and countries.
Panel data characteristics

1. Panel data provide information on individual behavior, both across individuals and
over time — they have both cross-sectional and time-series dimensions.

2. Panel data include N individuals observed at T regular time periods.

3. Panel data can be balanced when all individuals are observed in all time periods
(T; = Tfor all i) or unbalanced when individuals are not observed in all time periods
(T; #T).

4. We assume correlation (clustering) over time for a given individual, with
independence over individuals.

e Example: the income for the same individual is correlated over time but it is

independent across individuals.
Panel data types

» Short panel: many individuals and few time periods (we use this case in class)
» Long panel: many time periods and few individuals

» Both: many time periods and many individuals
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Regressors

» Varying regressors x;;

o annual income for a person, annual consumption of a product
» Time-invariant regressors x;; = x;for all t.

o gender, race, education
» Individual-invariant regressors x;; = xfor all i.

o time trend, economy trends such as unemployment rate
Variation for the dependent variable and regressors

o Overall variation: variation over time and individuals.
o Between variation: variation between individuals.

o Within variation: variation within individuals (over time).

Id | Time | Vanable | Individual | Owerall Overall Between Within
mean mearn deviation deviation deviation
i t Xip X X Xyp — X X;— X X — X;
1 1 0 10 20 -11 -10 -1
1 2 10 10 20 -10 -10 0
1 3 11 10 20 -9 -10 1
2 1 20 20 20 0 0 0
2 2 20 20 20 0 0 0
2 3 20 20 20 0 0 0
3 1 25 30 20 5 10 -3
3 2 30 30 20 10 10 0
3 3 35 30 20 135 10 3

.. — 1
Individual mean x, = ;thl-t

_ 1
Overall mean x = ﬁZithit

» Time-invariant regressors (race, gender, education) have zero within variation.

» Individual-invariant regressors (time, economy trends) have zero between variation.
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> We need to check the data to see if the between or within variation is larger for each

variable.

4.1.3. Advantages of using panel data

1. The techniques of panel data estimation can take into account heterogeneity relating to
firms, states, countries, etc., over time, explicitly by allowing for individual-specific

variables.

2. Increases precision estimators with more power of test statistics: By combining time
series of cross-section observations, panel data give “more informative data, more
variability, less collinearity among variables, more degrees of freedom and more

efficiency.”

3. By studying the repeated cross section of observations, panel data are better suited to
study the dynamics of change. Example: Spells of unemployment, job turnover, and

labor mobility.

4. Panel data can better detect and measure effects that simply cannot be observed in
pure cross-section, or pure time series data. Ex: the effects of minimum wage laws on

employment and earnings.

5. Panel data enables us to study more complicated behavioral models. For example,
phenomena such as economies of scale and technological change.

6. By making data available for several thousand units, panel data can minimize the bias
that might result if we aggregate individuals or firms into broad aggregates.

Panel data models have the following general form:
Yit =y + aleit + aZXZit + -+ aanit + Uit e von vin ten sin tin s e wan s (41)

Where, i stands for the i cross-sectional unit in the time period t. X's are regressors,Yas
usual refers to the dependent variable. u;.is the error term assumed to follow the classical
assumption of zero mean and constant variance. As a matter of convention, we usually let

i denote the cross-section identifier and t the time identifier.
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According to the above denotation, Y;,shows the value of the dependent variable for the i
cross-sectional unit in the time period t. X;;; shows the value of the first independent variable

for the i™ cross-sectional unit in the time period t, etc.
Illustration

Suppose you want to estimate, “The determinant of real investment (I) in Ethiopian
manufacturing industries from 2001 to 2015”. For this, say, you selected four firms: Muger
Cement Factory (MCF), Abay Steel and Plastic Factory (APF), Kombolcha Textile Factory
(KTF) and Dashen Brewery (DB). So, you will collect a 15 years data for each industry.
Suppose, again, the explanatory variables are the real value of the firm (X;) and real capital
stock (X,).

v If you want to run time series regressions only, you can have four regressions, one

for each company.

v' If you want to run cross sectional regression only, you can have fifteen regressions,
one for each year.

v' But, if you want to run panel data regression, you can have one regression having
15*4=60 observations.

Individual-specific effects model
» We assume that there is unobserved heterogeneity across individuals captured by a;.
Example: unobserved ability of an individual that affects wages.

» The main question is whether the individual-specific effects a; are correlated with the
regressors. If they are correlated, we have the fixed effects model. If they are not

correlated, we have the random effects model.
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4.2. Estimation of Panel Data Regression Models

4.2.1. The Fixed Effects Approach

» The fixed effects model allows the individual-specific effects to be correlated with the

regressors X.
» We include a;as intercepts.
» Each individual has a different intercept term and the same slope parameters.

Yie = a; + X + Uy
» We can recover the individual specific effects after estimation as:
@ =7 -%p
In other words, the individual-specific effects are the leftover variation in the
dependent variable that cannot be explained by the regressors.

» Time dummies can be included in the regressors X.

Estimation of (4.1) depends on the assumptions we make about the intercept, the slope

coefficients, and the error term. There are several possibilities/assumptions

Case 1: The intercept and slope coefficients are constant across time and space and the

error term captures differences over time and individuals
Case 2: The slope coefficients are constant but the intercept varies over individuals.

Case 3: The slope coefficients are constant but the intercept varies over individuals and

time.
Case 4: Both the intercept as well as slope coefficients vary over individuals.
Case 5: Both the intercept as well as slope coefficients vary over individuals and time.
Note that complexity and reality increase as we move from case 1 to case 5.
Case 1: All Coefficients Constant across Time and Individuals

This is the simplest approach which requires OLS regression by disregarding the space and

time dimensions of the pooled data.
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If you have a model under illustration 1, you will get a result which looks like the following:
I = =634 0.11X1 4 0.3X5 covcee vereee eeeeee eere eve s ene v eee v ens v eee v ene s (402)

Where, I is real investment of an industry, X; is real value of the firm, and X, is real capital

stock.

Suppose the estimators are statistically significant and the slope coefficients for real value of
the firm (X;) and real capital stock (X,) are expected to be positive and they are! This
estimation is pretty easy. Nevertheless, this result assumes that the estimates of the intercept

value as well as slope coefficients are the same for every industry: MCF, APF, KTF, DB.

For example, if the estimator of the coefficient of capital stock (X,) is statistically significant,
a unit increase in real capital stock increases real investment, on average, by 0.3 units across
all firms, MCF, APF, KTF, DB.

This means, the model does not take in to account the specific nature of each company. This
means, for example, a unit change in real capital stock (X,) has the same effect in each

industry, which is unlikely. Is it?

Therefore, what we need to do is find some way to take into account the specific nature of the

four companies; case 2 can better do this.

Case 2: The slope coefficients are constant but the intercept varies across
individuals: The Fixed Effects or Least-Squares Dummy Variable (LSDV)

Regression Model
This assumption tries to take into account two possibilities:
A. Cross section effect: the “individuality” of each company or each cross-sectional unit

B. Time Effect: such as changes in technology, government policy, war (let it not be,

indeed), etc.
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All in all, these will be incorporated by letting the intercept vary for each company but still
assumes that the slope coefficients are constant across firms. This is done by putting the

subscript i on the intercept term («,) as:
Yit = aol' + aleit + af2X2it + -+ aannl't + uit 2% weu wes =ms sEs mEw aas sue wn (4‘3)

In equation (4.3), @,; shows the intercept varies across firms but not time. Equation (4.3) is
known as the fixed effects regression model (FEM). But, the equation assumes that slope

coefficients remain fixed.
A. Incorporating “individuality” of each cross-sectional unit
Question: How do we actually allow for the intercept to vary between companies?

Answer: Introduce dummy variables called differential intercept dummies in the equation.

This is shown on equation (4.4):
Yie = Bo + B1D1i + B2Dy; + 3Dz + a1 Xqie + @2 Xoir + Uit v veevveeee .. (44)
Where, D,; = 1 if the observation belongs to Muger Cement Factory (MCF)
=0, otherwise
D,; = 1 if the observation belongs to Abay Steel and Plastic Factory (APF),
=0, otherwise
Ds; = 1 if the observation belongs to Kombolcka Textile Factory (KTF)
=0, otherwise

Since we are using dummies to estimate the fixed effects, equation (4.4) is known as the
least-squares dummy variable (LSDV) model or covariance model. So, the terms fixed
effects and LSDV can be used interchangeably.

Note that, since equation (4.4) has a constant term, we have to omit one category: Dashen
Brewery (DB) in this case (Why?). Hence, the differential intercept coefficients 5;, £, and
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B tell us by how much the intercepts of MCF, APF, and KTF differ from the intercept of the
omitted category (DB) respectively.

Usually, if a company owns unique features, intercepts in equation (4.4) are more likely to be

statistically significant.

Example: suppose estimation of equation (4.4) gives the following result, where values in
brackets are standard errors.

Yie = (;%682) + (on'E;)D“ B (8.'131%)D2i + (9.'3%)D3i + (096257))(1” + (9.b26§)X2it

Find the intercept of each factory
Solution

- The constant term is the intercept of the omitted category, DB. Hence, the intercept for
DB is equal to 4.8.

- D1 is the dummy for, MCF and its coefficient is statistically significant. Hence, the
intercept for MCF is equal to 4.8+0.6=5.4

- D2 is the dummy for, APF and its coefficient is statistically significant. Hence, the
intercept for ABF is equal to 4.8-0.35=4.45

- D3 is the dummy for, KTF and its coefficient is not statistically significant. Hence,
there is no statistical difference between the intercept of DB and KTF.

If both equations (4.2) and (4.4) are significant we may choose the better model based on
significance of t-values, Durbin-Watson d-statistic, the value of R?etc. But, R* will be higher
in (4.4) (why?). Nonetheless, the formal test is to use restricted F-test we discussed in chapter

three of econometrics 1. To remind you, use:

RSSp — RSSyg /RSSUR

e (45)

Number of restrictions

Where, RSSy is residual sum of squares for restricted model (equation 4.2), RSS;r denotes
residual sum of squares for unrestricted model (equation 4.4), number of restrictions equal

number of dummies, n is sample size, kK number of parameters.
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B. Time effect

This can be accounted by introducing time dummies for each year. In the above example since we are

analyzing a 15 years-data (from 2001 to 2015), we introduce 14 time dummies. Why? The model
becomes:

Yie =vo +V1Do1 + V2Doz + - + V1aD1s + a1 X1 + a2 Xoit + Ujp v v v e e e .. (4.6)
Where, Dyq, Dy3 , ..., D14 represent dummies form 2001, 2002, ..., 2014 respectively
Dy, = 1 for observations of MCF, APF, KTF, DB in year 2001,
= 0 for the rest of years
Dy, = 1 for observations of MCF, APF, KTF, DB in year 2002, and
=0 for the rest of years
Etc.
We can, then, estimated equation (4.6) and test statistical significance of coefficients, y;s.

Case 3: The slope coefficients are constant but the intercept varies over

individuals and time.

This implies we have different intercepts in each year for each company. This can be
accounted by combining equations (4.4) and 4.6)

Yit = Bo + B1D1i + B2Dy; + B3D3; +vo + v1Do1 + V2Doz + - + V1aD1s + @1 Xqie +

The omitted categories are DB and the year 2015

By first estimating equation (4.7), we can test for individual company effect(g;s) as well as
time effect (y;s).

From equation (4.7), for example, If all estimators are statistically significant,

The intercept for DB in 2015 equals B+ v,
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The intercept for DB in 2002 equals By + v, + 72

The intercept for MCF in 2015 equals B, + B + vo

The intercept for MCF in 2002 equals By + 81 + vo + 72
The intercept for KTF in 2001 equals By + B5 +vo + V2 + 71
Etc.

Using this method, we may allow intercepts to vary among cross sectional units and over time.

Case 4: Both the intercept as well as slope coefficients vary over individuals.

This assumes, for the above example, that all industries MCF, APF, KTF, and DB have
different investment functions. Put in other words, the effect of each regressor, the real value
of the firm (X;) and real capital stock (X,) in this case, is different in each factory. To account
this, we multiply each of the company dummy (D,;,D,;andD5;) by each regressor (X;;;and

X»;¢) which gives an additional of 6 variables given as:

Yie = Bo + B1D1i + B2D2; + B3D3; + a1 Xqie + azX5i + v1(D1iX1ie) + ¥2(D1iX2i6)
+ ¥3(D2iX1it) + Va(D2iXzie) + ¥s(D3iX1ie) + Ve (D3iX2ie) + wje.... (4.8)

Where, f; are differential intercept coefficients, and y; are differential slope coefficients, DB

is the omitted cross sectional unit and 2015 is omitted year

The interpretation of intercepts is the same as that of equation 4.7. Thus, let’s see only the

slopes. If all estimators are statistically significant,

The slope coefficient of the real capital stock (X,) for DB (the omitted category)

equals a.
The slope coefficient of the real capital stock (X,) for APF equals a, + v,
The slope coefficient of the real value of the firm (X;) for KTF equals a; + ys

Etc.
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Using this we can allow variation of slope coefficients among cross sectional units.
Problems of Fixed Effects Approach, or LSDV model

i Incorporating too many dummy variables will erode the degree of freedom down.
This reduces the degree of precision.

ii. Existence of too many variables will more likely cause multicollinearity problem.

iii. Error term may exhibit different behavior for different units. For example, it may
be autocorrelated for KTF, where as it may not in MCI, etc.

iv. Problems with the existence of time-invariant variables

4.2.2. The Random Effects Approach

» The random-effects model assumes that the individual-specific effects a; are
distributed independently of the regressors.

» We include a; in the error term.

» Each individual has the same slope parameters and a composite error term €;; = a; +
it

Yie = Xief + (a; + e;)

As it is said earlier fixed effect (covariance model) is straightforward to apply, but require
loss of large degree of freedom in the presence of large cross-sectional units. More
specifically, if the dummy variables do in fact represent a lack of knowledge about the (true)
model, we can express this ignorance through the disturbance term and this is what the error
components model (ECM) or random effects model (REM) suggest. Let’s start with one of

the previous models:

The random effect assumes that instead of treating a,;as fixed, we assume that it is a random
variable with a mean value of a, (no subscript i here). And the intercept value for an

individual company can be expressed as:

0 T 2 i =¥ PSPPSRI € 30 0 )
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Where, i is a random error term with a mean value of zero and variance of 2.
Substitute equation (4.10) in to (4.9),
Yie = ap + & + a1 Xqie + a2 Xope + Uyt
Yie = g + a1 X1it F 0aXoit F Vjp con cen ven e e et et et e e e e e e e e e e e e (4211

Where, v;; = & + u;, & accounts cross-section, or individual-specific, error component, and ,
u;; accounts the combined time series and cross-section error components. Bothe; and u;; are
assumed to fulfill the basic assumptions of classical linear regression model (CLRM). In
addition, the correlation between them should be zero.

In FEM each cross-sectional unit has its own (fixed) intercept value, in all N such values
for N cross-sectional units. In REM (ECM), on the other hand, the intercept «, represents the
mean value of all the (cross-sectional) intercepts and the error component i represents the
(random) deviation of individual intercept from this mean value. Note that &i is not directly

observable, and is known as an unobservable, or latent, variable.

Let’s go back to the previous example. This model says that the four firms included in our
sample are drawn from a much larger population of such companies and that they have a
common mean value for the intercept (= a,) and the individual differences in the intercept

values of each company are reflected in the error term &;.

Note also that Var (v;;) = 62 + o2 (remember this from previous semester). Hence, if
02 =0, there is no difference between models (4.1) and (4.9). But, though v; is
homoscedastic, it is autocorrelated. Unless we account for this problem, estimates though are
unbiased, will be inefficient. To this end, the generalized least square (GLS) is mostly used.
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Example: suppose the random effect estimation of the four firms is given as under following

result:

Table: 4.1: ECM estimation result

Variable Coef. Std. error t-statistic p value
Intercept 4.84 211 2.294 0.032
X1 0.16
X2 0.24
Random Effect
MCF 0.612
APF -0.542
KTF 0.383
DB 0.453
R’=0.9124 (GLS)

Note from table (4.1) that:

v The sum of the random effect values given for the four companies will be zero (why?).

v" The mean value of the random error component, i, is the common intercept value of
—4.84.

v' The random effect value of MCF of 0.612 tells us by how much the random error
component of MCF differs from the common intercept value. Similar interpretation
applies to the other three values of the random effects

4.2.3: Comparison of FEM Vs ECM
& Which is better?

To decide between fixed or random-effects you can run a Hausman test where the
null hypothesis is that the preferred model is random effects vs. the alternative the
fixed effects. It basically tests whether the unique errors (&;) are correlated with the

regressors, the null hypothesis is they are not.

Run a fixed effects model and save the estimates, then run a random model and save the
estimates, then perform the test. If the p-value is significant (for example <0.05) then use

fixed effects, if not use random effects.
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v If it is assumed that ¢i and the X’s are uncorrelated, ECM may be appropriate,

whereas if ¢i and the X’s are correlated, FEM may be appropriate.
& Which one has to be chosen?

v’ If the number of time series data is large and the number of cross-sectional units
is small, there is likely to be little difference in the values of the parameters
estimated by FEM and ECM. Hence the choice here is based on computational
convenience. On this score, FEM may be preferable.

v"If the number of time series data is small and the number of cross-sectional units
is large, there is significant difference and FEM is appropriate. Note that
ay;depends on number of cross sectional units.

v" If the number of time series data is small and the number of cross-sectional units
is large, and if the assumptions underlying ECM hold, ECM estimators are more
efficient than FEM estimators.

v" If &i and one or more X’s are correlated, ECM will be biased. So what?

Tips for further reading
Policy analysis using Panel data model

Panel (pooled) data models are often used to evaluate policy measures. The most common

one is the difference in difference estimator.

Difference-in-difference estimator (DID): For example, if your instructor wants to
estimate the effect of tutorial on the result of second year economics students, he may give
a test for all students before tutorial. Then, he may divide the students in to two groups: (1)
those who are going to be given the tutorial land (2) those who will not take the tutorial.
Then, after the tutorial is given, he will give another test for both groups. Finally, he will
compare the average score for both groups before and after the tutorial is given, by
controlling the effect of time itself. Since this action measures the effect of the “treatment”

or policy on the average outcome, it is also called average treatment effect (ATE)”.

* You can read from other books such as Wooldridge (2004) for further.
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o Check list of important points to remember from the chapter.

Between estimator
Cross section effect
Difference-in-difference
Fixed effects
Longitudinal data

Over all estimator

Panel data

Pooled data

Random effects

Time effect

Within estimator
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Appendices
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Appendix 2:

The F-Distribution

Values of F Exceeded with Probabilities of 5 and 1 Percent
df (numerator)
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Bl 599 | S04 | 476 | 4.53 | 439 | 428 | 421 | 405 | 400 | 406 | 403 | 400 391 | 387 | 384 | 381 ITT | 375 | 372 | 371 | 3469 | 368 | 36T
1174 |I092 | .78 | 9.15 | B.75 | B.47 | 826 | 810 | 7598 | 7.87 [ 7.7% | .72 752 | T3% | 731 | 723 | T4 | A9 | TAZ | 699 | 694 | 690 | 6HE

T| 559 | 474 [ 434 | 412 | 397 | 3BT | 379 | 373 | 368 | 363 | 360 35T 349 | 344 | 341 | 338 | 334 [ 332 | 329 | 3IE | 325 | 324 | 313

g 1025 | 955 | B45 | TBS | 746 | 7.19 | 7.0 | 6.84 | 671 | 662 | 6.54 | 647 627 [ 615 | 607 | 598 | 590 | 58S | 578 | 575 | 570 | 56T | 565
E B| 532 | 446 [ 407 | 14 | 369 | 358 | 350 | 344 | 339 | 334 | 331 | AIB | 3Z3 [ 320 [ 315 [ 302 | 08 | 3035 | 303 | 300 | 198 | 196 | 194 | 293
E 1L | B65 | 759 | 700 | 6l | 637 | 6019 | 603 | 591 | 582 | 574 | 567 | 556 | 548 | 536 | 528 | 520 | 5101 | 506 | 500 | 496 | 491 | 488 | 486
E 9 512 | 426 | 3R6 | 363 | 348 | 337 | 329 | 323 | 308 | 303 | 300 | 307 | 302 | 298 | 293 | 290 | 286 | 282 | 280 | 277 | 276 | 273 | 272 | 21
;’ 1056 | BOZ | 699 | 642 | 606 | S.B0 | S62 | 547 | 535 | 526 | 508 | 501 | 5.00 | 492 | 480 | 4.73 | 464 [ 456 | 451 | 445 | 441 | 436 | 433 | 431
= 10 496 | 4010 | 371 | 348 | 333 | 122 A4 | 307 | 302 | 257 | 294 | 29] | 2E6 | 282 | 277 | 274 | 270 | 267 | 264 | 261 159 | 156 | 255 | 154
10 | 756 | 655 | 599 | 56d | 539 | 521 (506 | 495 | 485 | 478 | 471 | 460 | 452 | 441 | 433 | 425 [ 417 | 412 | 405 | 401 | 396 | 393 | 391

DI 4B4 | 398 | 359 | 336 | 320 | 309 | 301 | 295 | 290 | 286 | 282 | 279 | 274 | 270 | 265 | 261 | 2.57 | 253 | 2500 | 247 | 145 | 242 | 241 | 240
965 | 720 | 6212 [ 567 | 53 | 507 | 4ABS | 474 | A63 | 454 | 446 | 440 | 439 | 421 [ 400 | 402 | 394 | 3B6 | 3BD | 374 | 370 | 366 | 362 | 360

12) 475 | 3BE | 349 [ 326 | 200 | 30 | 292 | 285 | 28D | 2.76 | 2.72 | 269 | 264 | 260 | 254 | 250 | 2.46 | 2.42 | 240 | 236 | 235 | 232 | 131 | 230
933 | 693 | 595 [ 541 | S0 | 4B2 | 465 | 450 | 439 | 430 ( 422 [ 406 | 405 | 398 [ 386 | 3T | 370 [ 361 | 356 | 349 | 346 | 3d] | 338 | 336

13| 467 | 380 | 341 | 318 | 302 | 292 | 284 | .77 267 (263 (260 | 255 | 251 (246 | 242 | 238 (234 | 232 | 238 | 226 (224 | 222 | 221
907 | 6T | 574 | SI0 | 4BE | 462 | 444 | 430 400 | 402 (396 | 3ES | 378 | 367 | 3.59 | 351 | 342 | 337 | 330 | 327 | 321 | 308 | A16

I4) 460 | 374 | 334 | 200 | 296 | 2BS | 277 | 1.TD I60 | L5h | Z53 | 248 | 244 (239 | 235 | 23] | 227 | 224 | 221 | 209 | L& | 204 | 213
BR6 | 651 | 556 | 503 | 469 | 446 | AZR (404 | 403 | 204 | 3R6 | BBD | AT0 | 362 | 351 | 343 | 334 | 326 [ 321 | 304 | 30D | 306 | 302 | 3000

IS5 454 | 368 | 329 | 306 | 290 | 279 | 270 | 264 | 259 | 255 | 250 | 24K | 243 | 239 | 233 | 229 | 225 | 221 | 208 | 205 | 202 | 200 | 208 | 207
B68 | 636 | 542 | 489 | 456 | 432 | 414 [ 40D | 3RS | 3RO | A73 | R6T | 356 | 348 | 33 |39 | A LIZ | 307 | 300 | 2197 | 292 | LY | 187

I6) 449 | 363 | 324 [ 300 | 285 | 274 | 266 | 259 | 254 | 249 | 245 | 242 | Z37 | 233 | ILI8 | 124 | 230 (206 | 203 | 2.09 | 207 | 204 | 202 | 201
BS3 | 623 | 529 | 477 | 444 | 420 | 403 | 389 | ATR | 369 | 361 | 355 | 345 | 337 | 3B | B A0 | 300 | 29 | 298 | L.B6 | B0 | L.TT | .75

17| 445 | 359 | 320 | 296 | 2.8l | .70 | 262 | 155 | L350 | Z45 | 241 | 238 | 233 | Z19 | L.13 A9 | ZAS | 200 | 208 | 204 | 202 | 199 | 197 | 196
A | 61 | 508 | 467 | 434 | 4000 | 393 | 379 | 168 351 | 345 | 335 | 327 | 306 | 308 | 300 | X9 | IB6 | LT9 | LT | LTD | L&T | 165

15[ 4.41 355 | 306 | 293 | 277 | 266 | 258 | 251 | 246 237 | 23 (229 | 225 | 209 | 205 | 200 | 207 | 204 | 20O | 198 | 195 | 1.93 | 192
BIE | 601 | 509 | 458 | 425 | 401 | 385 | 371 | 160 344 | 337 | 32T | 319 | 30T | AW | 291 | ZE3 | ILTH | LTI | L&6W | LA2 | LS9 | 157

19 438 | 352 | 313 | 290 | 274 | 263 | 255 | 248 | 243 | 138 | 234 | 230 | 226 | 221 | ZO5 | Z001 | ZO7 | Zo2 | ZOO | D96 | 194 [ 151 | 190 [ LER
BIE | 593 | 501 | 450 | 4017 | 394 | 377 | 363 | 352 | 343 | 336 | 330 [ 309 | 302 [ 3iW | 292 [ XZE4 | LT6 | LT0 | 263 | Xe0 | 254 | 151 | 249
(435 | 349 [ 300 | 287 | 270 | 260 | 252 ( 245 | 240 230|228 (213 | 208 | 202 | 208 | 2O4 | 199 | 196 | 192 | 190 | LET | LES | 1.E4
B | 585 | 494 | 443 ) 400 | 3BT | 371 | 356 | 245 330 | 323 [ RJ3 | 305 | 294 | 1B | 177 | L&D | A3 | 156 | L53 | 247 | 244 | 242

21| 432 | 347 | 307 | 184 | 268 | 15T | 249 | 242 | 237 I8 | 215 | 220 | 205 | 2409 | 205 | 00 | 196 | 193 | LE9 | LE7 [ LE4 | LE2 [ LE]
B0 | 57H | 487 | 437 | 404 | 1K1 | 365 | 351 | 240 324 | 307 | 307 | 299 | 18 | 2RO | 272 | 263 | 15K | 150 | 247 | 242 | 3R | 1.3

22| 450 | 344 | 305 | 282 | 266 [ 255 | 247 [ 240 | 235 | 230 | 226 | 223 | 2R | 203 | 207 | 203 | 1498 | 153 | 191 IBT | LB4 | LBl LBD [ .78
T84 | 572 | 482 | 431 | 399 | 376 | 359 | 345 | 335 | 326 | AIE | AIZ [ 302 | 194 | 2E3 | 175 | L6T | LSE | 153 | 146 L3I | 23| 131

23| 4I8 | 342 | 303 | 280 | 264 | 253 | 245 | 138 | 131 | 128 | 124 | 1320 | 104 | 200 | 20 | 200 | 196 | 191 | LEE | LB4 LT | L7T7 | L78
TEY | 566 | 476 | 426 | 394 [ 371 | 354 | 341 | 330 | 321 | 304 | 307 [ 297 | 289 | L7E | 170 | 162 | 153 | 148 | 141 132 | LI8 | 126
24426 | 340 | 301 | 278 | 262 | 251 | 243 | 236 | 230 | 226 | 222 | 2IE | 203 | 209 | 202 | 198 | 1G94 | IB9 [ LE& [ IB2 | LBOD [ L7& | 174 [ LT3

= TEI | 561 | 4.7 | 422 | 390 | 347 | 350 | 336 | 325 | 307 | 309 | 303 (293 | 285 ( 174 | 266 | 25K | 249 | 244 | 236 | 233 | 227 | .13 | L1
E 25| 424 | 338 | 159 | 276 | 260 | 249 | 241 | 234 | 2 234 | 220 | 206 | 2001 | 206 | 2000 | 196 | 192 | LET | LE4 | LEO | LT [ 174 | LTZ [ LTI
E T77 | 557 | 468 | 408 | 3B6 | 363 | 346 | 332 | 3 313 | 305 | 299 | 2B9 | 2E] | BTO | 262 | 254 | 245 | 140 | 232 | 129 | 223 | 19 | 1T
E 6422 | 337 | 298 | 274 | 259 | 247 | 239 | 232 | 227 | 22X [ 208 | 205 | 2000 | 205 | 199 | 195 [ 190 | 185 1.52 178 L76 [ 172 | 170 | 169
g T7 | 553 | 464 | 404 | 3EI | 359 | 342 | 319 | 307 | 309 | 302 | 296 | LE6 | 277 | L66 | 25K | 2SO0 | 241 [ 236 | 228 | 225 | 1% | 215 | 13

=

I7) 421 | 335 | 196 | 273 | 157 | 246 | 137 | 230 | 225 | 230 | 206 | 203 | ZOB | 203 | 197 | 193 | L8R | 1B4 | 1ED | 176 | L4 | LTI | LGB | L&T
T68 | 549 | ded | 411 | ATE [ A5G | A3 | ID36 | 304 | 3G | 298 | 293 | RER | 74 | B63 | 255 | 24T | 23K | 231 | 2325 | B2 | 06 | 12 | LD

ZR( 420 | 334 | 295 | 271 | 256 | 244 | 236 | 229 | 224 | 209 [ 205 | 202 | 206 | 202 | 196 | 191 LET | 1.E1 178 | 175 | 1.72 | 1.6% | 167 | L&3
Thd | 545 | 45T | 407 | 376 | 353 | 336 | 3213 | 300 | 303 | 395 | X0 ( ZBO | 271 ( &0 | 2SR ( D44 | 235 [ 130 | L2 | LR | 213 | 209 | IO6

M| 408 | 333 | 293 | 270 | 254 | 243 | 235 | IIB | 222 | LI | L4 0 | 205 | 200 [ 154 | 190 [ LES | 180 [ LTT | .73 | 171 | 1.68 | 165 | 1.64
TH0 | 542 | 454 |40 | AT3 | 350 | R3X | RI0 | 308 | XM | 292 | LET | 77 | 268 | L57 | 249 | 241 | 232 ( 227 | 209 | LIS (| 200 | 206 | 23

30| 407 | 33T | 292 | 269 | 153 |24 | 134 | 22T | 221 | L6 | Z0Z | 209 [ ZoM | 059 | 193 | DE9 | LE4 | LT | LTe | 172 | L&Y% [ 166 | 164 | L&2
T56 | 539 | 451 | 402 |30 | 347 | 3300 | 307 | 306 | 298 | L9 | R4 | BT74 | 266 | XS5 | 247 (X3S | 29 [ 224 | 206 | L3 | 2.07 | Z.03 | 20O

32( 405 | 330 | 290 | 267 | 251 | 240 | 232 | 225 | 209 | 204 [ 210 | 207 | 202 [ 19T | 191 | LE6 [ LEZ | 176 [ 174 | 169 | 167 | 164 | 1.6l 1.5%
TS0 | 534 | 446 | 397 | 366 | 343 | 325 | 202 | 300 | 294 | ZB6 | LRG| BTO | L62 | ES1 | 242 (234 | 335 [ ZED | 202 | 0K (| 202 | 19K | 196
34403 | 3328 | 288 | 265 | 249 | 238 | 230 | 223 | 207 | 212 | 208 | 205 | 200 | D95 | 1B9 | DB4 [ DLED | 174 [ LTI 167 | 164 | 161 | 1.9 [ 1.57
TA44 | 529 | 442 | 393 | 361 | 338 | 321 (DB | 297 1B | 176 |66 | 258 (247 | 238 (23 | 221 (205 | 208 | ZOd | L9H | LS4 | 191

36| 401 326 | 286 | 263 | 24K (236 | 228 | 220 | 205 | 200 | 206 | 203 | 1OE | D93 | IBT [ DB2 [ LTE | 72 [ 069 | D65 | LA2 [ 159 | 1.56 | 1.55
T3» | 525 |438 | 389 |35E (335 |AIE (AW | 294 | 2B6 |L7E | L7 | 62 | LS54 | X43 | 235 | BI6 | LOT | 202 | Iod | 20D | 15§ | 19O | LET
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dll i numerator)

1 2 3 4 5 6 7 & L iU} 11 12 14 16 0 4 o 4n i} 75 1D | 200 | 500 5

3| 400 | 325 | 2BS | 262 | 246 | 235 | 16 | LI9 | Z14 | 209 | 205 | ZO2 | DSG | 092 | LES | LED | LTe | LTI | 16T | 163 | L&0 | 157 | 154 | 1.53

TA5 | 511 | 4.4 | 386 | 354 | 332 | 315 | 20X | 291 | ZR2 | 175 | L&9 | 259 | 251 | 10 | 232 | 22| RO4 | LOH | 200 | 197 | 190 | LE& | 184

40| 407 | 323 | 2B4 | 26l | 245 | 234 | 235 | LIS | 202 | 207 | Z04 | ZO0 | D95 | 190 | LE4 | LT9 | 174 | L&% | Le6 | 161 | 159 | 155 | 1.53 | 1.51

T30 | 518 | 4301 | 383 | 351 | 229 | B2 | 9% | ZHE | ZRO [ 173 | L&6 | ILS6 | 249 | 237 | 119 | L0 | BO1 | ZOS | 19T | 194 | LER | 134 | 1LE)

42| 407 | 322 | 2R3 | 259 | 244 ) 232 [ 2N ROT | 2D | 26 | 202 | D59 | DSd | DE9 | DED | LTE | LTI 168 | 164 | 160 15T | 154 | 151 | 1.49

TIT | 515 | 429 | 380 | 349 | 326 | 300 | 2% | ZR6 | 277 | 270 | 264 | 254 | 246 | 235 | 1B | ZIT7 | RO | o2 | 184 | 191 | LEBS | LED | L7R

dd| 406 | 320 | 2B | 28R | 243 | 230 (223 | 206 | 2O | 205 | 201 | 0S8 | D92 | DLER | DBl | 1LT& | 1LT2| 166 | 163 | 158 | 156 | 1.52 | 150 | 1.48

T | 512 | 426 | 378 | 346 | 324 | 307 | 294 | 2R | 275 | 26K | A2 | 252 | 244 | 232 | 2M4 | 205 | BG | DD | 192 | LER | 1L.BX | LLTR | 175

46| 405 | 320 | 2RI | 157 | 242 ) 230 | 23T | LI4 | 0 | Z0M | ZOD | 19T | LO1 | LET | LED | L5 ) LTI L&5 | L&l | 15T | 154 | 151 | 148 | 146

T2 | 500 | 424 | 376 | 344 | 322 | A0S | XOT | ZE2 | XT3 | 166 | 26D | 2SO0 | 242 | DE0 | 222 | LR | Rd | 15K | 190 | LE& | LED | LT6 | 172

48| A0 | 3019 | 2RO | 256 | 240 | 2300 [ 220|204 | ZOK | 203 | 199 | 196 | 190 | LES | LT | 174 | LTO | 164 | 161 | 156 | 153 | 1500 | 147 | 1.45

TA9 | 508 | 422 | 374 | 342 | 3200 | 30 | 290 | ZED | BT | 264 | 2SE | D48 | 240 | LIS | ZB0 | ZI0 | EOZ | 19 | IER | LE4 | LTR | LT3 | LTO

50| 403 | 308 | 279 | 256 | 240 | 229 [ 2000 | 203 | 207 | 202 | LG9S | 195 | 190 | LRES | LTR | L74 | 169 [ 163 | D60 | 1S5S | D52 | D48 | a6 | a4

TAT | 506 | 420 | 372 ( 341 | 31K | 30 [ 288 | 17K | 2700 | 262 | 256 | 246 | 139 | 126 | LIS | IO | 00 | LS4 | IEB6 | LE2 | LT6 | L.T1 | L&68

o) 400 | 305 [ 276 [ 252 | 237 | 125 | 107 | 200 | 204 | 199 [ 185 | 1482 | LBG6 | LED | LTS [ L0 [ L65 [ 159 | L5 | 150 | D48 | 144 | 141 | 139

= TOR | 498 | 413 | 365 | 334 | 312 | 295 | 2RZ | 272 | 263 | 256 | 2SO0 | T40 | 232 | IO | L2 | O3 | L9 | LET | LT9 | 1LT4 | 16K | L63 | L&0

E TO| 398 | 303 | 174 | 250 | 135 | 123 [ 104 | 207 | o0 | 19T | 193 | LB9 | LB | LT9 | LTI | LT | L62 | LB | L53 | D47 | 145 | 140 | 13T | 135

E T | 492 | 408 | 360 ( 329 | 307 | 291 | 7T | 16T | 259 | 151 | 245 | 235 | LI | 115 | Z07 | 198 | LA® | LEI | LLT4 | L&9 | L&Z | L.56 | L33
g

S B0 396 | 301 | 272 ( 248 | 133 | 121 [ 212 ) 205 | 199 [ 195 ) 191 | LBS | LBZ [ L77 | L70 | 165 [ L60 | L54 | 151 045 | 142 | L35 | L35 [ 132

= 696 | 488 | 404 | 356 | 325 | 304 | IRT [ 174 | 164 | 155 | 248 | 240 | 232 | 124 | LOD [ ZO3 | LS | LE4 | LTH | LTD | L&S | L57 | L5Z | L49
=

oo 394 | 309 | 2. 246 | 13 0% | LMk | 203 | 19T | 192 | 1BE | LBS | L7 | L5 | 68 | Le3 | 15T | L3I | 148 | D42 | L3 | L3 | L3 | LI8

690 | 481 | 398 | 351 (320 | 299 | IR | 269 | 159 | 151 | 243 | 136 | 126 | 209 | 1 | 198 | LE9 | LT® | LT3 | LG4 | L59 | L51 | L46 | L43

I25( 391 | 307 | 268 | 2.44 | 229 | 2017 | 208 | 200 | 195 | 190 | 186 [ 1LE3 | L77 | 172 ) 165 | 160 | 135 | 149 | 145 | 139 | 136 | 130 | .27 | L15

6B | 4TH | 394 | 347 | 307 | 295 | 279 | 265 | 156 | 247 | 2400 | 233 | 223 | 205 | 203 | L% | LES | 175 | 168 | 159 | L5 | 146 | L40 | 3T

150 391 | 306 | 267 | 243 [ 227 | 2016 | 207 | 200 | 194 | 1E® | 185 [ LB | L76 | 170 | Léd4 [ 1539 | 134 | 14T | 144 | 13T | L34 | L9 | 125 | L12

GEl | 475 | 391 | 344 (304 | 292 | LTH | 262 | 253 | Z.44 | 237 | 130 | 20 | 202 | 200 | 191 | LE3 | 17X | 166 | 156 | 51 | 143 | 13T | L33

| 3E9 | 304 | 265 | 2401 | 226 | 2014 | 205 [ 198 | 192 | 1ET | 1E3 | LED | 174 | 169 | 162 | L5T | 152 | 145 | 142 | 135 | 132 | 126 | 12X | LI9

676 | 471 | 388 | 3401 ( 301 | 290 | 273 | 60 | IS0 | 241 | 234 | ZZE | 2T [ 2409 | 197 | 1EE | 179 | 169 | 162 | 153 | 148 | 139 | 133 | LIE

¥ 3EH | 302 | 262 | 239 | 223 | 202 | 203 [ 156 | L9 | 1EF [ 191 | L7 | L2 | 16T | Loh | 154 | 149 | 142 138 | 132 | 128 | 122 | L6 | LI3

670 | 466 | 3B3 | 336 | 306 | LBS | 269 | LS5 | L6 | 23T | ZI% | 23 | RZ [ ZdA& | 092 | 1B4 | 174 | D64 | 15T | 14T | 142 | 132 | 124 | 119

1My 385 [ 300 | 261 | 238 | 222 | 200 [ 202 | 195 | LEY | 1E4 [ LED | 1LTG [ 170 165 | 158 | 153 | 14T | 141 | 136 | 130 | 126 [ 119 | LI13 | 108

Gy | 462 | ZB0 | 334 | 304 | 2ED | Zeh | 253 | L3 | L34 | 226 | LZO | 209 | ZOT | L9 [ LE1 | LTI | 161 | 154 ) 144 | 138 | 1IE | 119 | 111

oo | ZB4 | Z99 | ZA0 | 3T | 221 | 209 | Z00 | D54 | LES | LEF [ LT | 175 | 16% | 164 | 157 | 151 | 146 | 180 [ 135 | 128 | 124 | 11T | LD | 100

Gufid | 460 | 378 | 332 [ 302 | IR0 | 264 | 251 | 240 | 232 | 224 [ 1 ZO7 | 199 | LET | L7% | La% [ 1.5% | 152 [ 141 | 136 | 1.25 | 115 | LoD
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Appendix 3

ADF Critical Values

Augmented Dickey-Fuller (ADF) Test Left-Hand Critical Values (f test)

and Right-Hand Critical Values (F Test): 5% Level of Significance

Mo Intercept, Intercept, Intercept, F
n Mo Trend No Trend Trend Statistic
25 —3.33 —355 T.24
S0 —322 —3.80 6.73
100 =317 —3.73 .49
250 —314 —3.649 634
500 =313 —3.68 .30
oo —3.12 — 366 6.25

Sowrce: W. A, Fuller, Inrroduction ro Stavistical Time Series, Wiley, New York, 1976; D. A, Dickey and W. A. Fuller, ““Likelihood
Ratio Statistics for Autoregressive Time Series with a Unit Root,” Ecomomerrica 49 (1981), pp. 1057-1072.
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Debre Market University
College of Business and Economics

Department of Economics

Econometrics 11 (Econ 2062) Assignment (30%)

1.

9.

Discuss in detail with clear examples what stochastic process (stationary, non-stationary)
is?
What is the difference between Panel data and Pooled data?
Suppose a friend of you, who is a junior economist, wants to estimate “Married Women’s
Annual Labor Supply in Debre Markos Town”, where the dependent variable is
measured in hours worked, as a function of education level, experience, spouse’s earning,
and number of siblings. To do so, he asked you for an advice about the type of model he
shall specify. As a student of econometrics class, which model would you recommend?
Why?
What does it mean by identification of a simultaneous equation model?
What are Problems of Fixed Effects Approach, or LSDV model?
Suppose If X;~I(3) and Y;~I(3), then what do you comment about the possible linear
combination between X.and Y; given by Z; = (aX; + bY,) = I(d*)?
Make distinction between ordered Logit and multinomial Logit?
Distinguish between

I. Structural equations and reduced for equations?

ii. Structural equation parameters and reduced for equation parameters?

iii. Endogenous variables and exogenous variables?

iv. Observed shifters and unobserved shifters?

Suppose X = w1 + moXi1 + €

where, X; is a stochastic process, t is time, 71 and z, are parameters and different from zero

and e is the disturbance term

A. Show X; is non-stationary stochastic process.

B. Show X; would be stationary stochastic process if w; and 7, were zero



10. The Dickey-Fuller unit-root test result of a stochastic process Z; is given as follows.

AZ.=-04237 .
tau.......(-1.176)

AZ,=-315+04237
tau.......(~3.1)....(0.786)

AZ,=815+0.67t-09147 |
tau......(3.1)...(0.786)...(-1.1)
where AZ; is the estimated change in Z..
Assuming that the sample size is large and 5% significance level,
A. Based on the above result, is Z; stationary or non-stationary?
B. Why?

11. Suppose estimation of a consumption model gives the result

Y = 1200 + 0.25 X5 + 100 Dqj — 50 Dy;
(60.0)  (0.024) (18.40) (7.42)
Where, Y; is consumption, X;; is monthly disposable income, D;; = 1if the person is
Ethiopian and 0 otherwise, and D,; = 1 if sex is male and 0 otherwise, E(X;;) = 800.
i. What is the amount of average consumption of Ethiopian people?
ii. Determine the mean consumption of female people who are not Ethiopians?

12. Use both rank and order conditions to show whether the following SEM is identified?
Yl == ao + (X]_YZ + O(3Y3 + (X4Z1 +u

Y, = Bo + B1Y1 + B2Zy + B3Zy + ByZs + PsZy + ¢
Y3 =vo+ VY1 + Y221 +V3Zy +V4Zs + v

Check whether the above SEM is identified using both order and rank conditions?



